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ABSTRACT
Accurate energy consumption prediction is essential for improving the driving experience. 
In the urban road scenario, we discussed the influencing factors of energy consumption and 
divided the modes from various perspectives. The differences in energy consumption charac-
teristics and distribution laws for electric vehicles using the IDM and CACC car-following 
models under different traffic flows are compared. An energy consumption prediction frame-
work based on the LightGBM model is proposed. According to the study, driving range, 
acceleration, accelerating time, decelerating time and cruising time all significantly impact 
the overall energy consumption of electric vehicles. There are apparent differences in energy 
consumption characteristics and distribution laws under different traffic flows: average ener-
gy consumption is lower under low flow and increased under high flow. The CACC-electric 
vehicles consume more energy in low flow than IDM-electric vehicles. Under high flow, 
the opposite is true. The results show that the proposed framework has a high accuracy: the 
MAPE based on IDM datasets is 3.45% and the RMSE is 0.039 kWh; the MAPE based on 
CACC datasets is 5.57% and the RMSE is 0.042 kWh. The MAPE and RMSE are reduced by 
33.7% and 50.6% (maximum extent) compared to the best comparison algorithm.
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1. BACKGROUND
Transportation electrification has been widely recognised as a necessary mean to improve energy effi-

ciency and reduce emissions [1]. In the intelligent and connected environment, accurate and real-time energy 
consumption (EC) prediction for electric vehicles (EVs) is essential to improve the travel service experience, 
as well as provide support for optimising battery design [2], planning an energy-saving travel route [3] and 
improving charging infrastructure [4]. Considering that the EC characteristics and influencing factors of EVs 
are discrepant from fuel vehicles due to the apparent differences in the power system, and the urban road en-
vironment is relatively complicated, it is inevitable to analyse the influencing factors of EC and predict EC for 
EVs on urban roads. Most of the previous related studies considered the influencing factors such as weather, 
microscopic operating parameters, road conditions and vehicle and driver characteristics while ignoring the 
direct/indirect impact of vehicle interaction and signal control on EC under different traffic flows. In addition, 
the existing studies mainly focused on manual-driving vehicles. There is insufficient research of the EC law 
of connected automated vehicles (CAV, e.g. the car-following model for cooperative adaptive cruise control). 
These factors motivate us to analyse the EC law of non-CAV and CAV in combination with driving conditions 
and signal control under different traffic flows and predict the EC. 
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2. LITERATURE REVIEW
The battery capacity shortens the endurance mileage of EVs due to the technology’s limitations. Hence, it is 

essential to focus on EC in real-time. EC is attributable to multiple influencing factors and changes unceasingly 
in a realistic driving environment. Therefore, the problem of EC prediction becomes relatively complicated. 
The influencing factors of EC roughly come from three categories based on the analysis of previous research: 
vehicle, environment and driver. Vehicle-related factors include vehicle speed, acceleration, vehicle-specific 
power and battery state of charge (SOC). Wu et al. [5] proposed a power estimation model based on longitu-
dinal dynamics (LDM) to estimate EVs’ instantaneous power and EC. Wang et al. [6] constructed an online 
EC prediction algorithm by combining LDM and other factors (e.g. driving behaviour and traffic states). The 
results showed that the mean absolute percentage error between the actual EC values and the online prediction 
results for each test was within 5%. Similar research has also been implemented. The EC prediction model for 
EVs developed by Fiori et al. [7] and Yang et al. [8] took acceleration into account. They found that the EVs 
with high EC usually possess high speed, significant acceleration, long space headway and short time headway. 
Environmental factors comprise ambient temperature road conditions. For example, Liu et al. [9] raised and 
further corrected an EC model combined with ambient temperature, vehicle auxiliary load analysis and other 
factors. Ahn et al. [10] quantified the impact of intersection control methods (e.g. roundabouts, traffic signals, 
two-way parking control) on EC according to the specific driving scenarios on the urban roads, and systemat-
ically studied the EC modes of EVs. Additionally, Wang et al. [11] developed an EC prediction algorithm for 
the future travel of EVs. The algorithm, composed of an offline and online algorithm, comprehensively con-
siders diverse factors, including weather and traffic situations, to make future driving plans for electric vehicle 
(EV) drivers and make online adjustments. The EC can also be affected by driver-related factors (e.g. driving 
style). For instance, aiming at the problems of short driving range and unprecise remaining range prediction 
of EVs, Guo et al. [12] used a linear method-based drive cycle prediction model for real-world conditions 
prediction and subsequently proposed an EC prediction method integrating road information and driving style 
optimisation. Based on the analysis of influencing factors, most of the above studies have applied model-driv-
en EC prediction methods, which rely on parameter assumptions and specified conditions, resulting in the 
difficulty of satisfying EVs’ actual driving performance requirements. In addition, the traffic environment near 
signalised intersections is more complicated by contrast. Thus, the distribution law of EC needs to be analysed 
in combination with traffic signals and driving conditions.

Due to the rapid development of the Internet of Vehicles (IoV), vehicle operating data and traffic informa-
tion can be obtained in real-time. Extensive practical driving data can be acquired based on various statistics 
and machine learning algorithms to predict the EC of EVs via the data-driven method. For example, Yi et 
al. [13] introduced a data-driven approach to establish a random EC model of EVs with a two-dimensional 
grid (average speed and ambient temperature), the accuracy of which depends on the number of available 
data samples collected. Hence, plenty of valuable data can ease the model precision in the IoV environment. 
Confronting the problem of range anxiety of drivers, De et al. [14] adopted the neural network to predict the 
unknown microscopic driving parameters of the roadway link before departure and then utilised multiple linear 
regression to predict EC with a mean absolute error of 12–14%. Modi et al. [15] implemented a method based 
on deep convolution neural network to predict the real-time EC of EVs, which can be carried out to strictly 
calculate the remaining ranges, thereby alleviating drivers’ range anxiety. Moreover, Madhusudhanan and Na 
[16] innovatively proposed a cruise control system (CCS) to increase the endurance mileage for EVs. The 
CCS includes an EC model exploited based on actual data, reducing the EC of EVs driving on urban roads and 
highway travel by 36.6% and 15.4%, respectively. Combining the prediction of real-world driving situations, 
Zhang et al. [17] and Yao et al. [18] separately raised a machine learning-based EC prediction method, which 
achieved anticipatory effects compared with traditional ones. Furthermore, Fukushima et al. [19] developed 
a machine learning-based multi-vehicle mileage prediction system applicable for EVs driving in the highway 
environment. They applied data-driven models to predict the EC for EVs and recommended suitable charging 
sites for highway drivers. The above explained researches show that machine learning algorithms perform 
better under complicated real-world scenarios and can employ massive driving data to improve prediction 
accuracy. A light gradient boosting machine (LightGBM) [20] supports efficient parallel training with low 
memory consumption and high precision. It can rapidly process massive data and performs efficiently in time 
series prediction. In addition, CAVs can obtain more information than non-CAVs in the IoV environment, so 
its EC law is worth exploring.
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Most existing studies consider vehicle characteristics and microscopic operating parameters on EC. How-
ever, on the one hand, the interaction between vehicles will affect driving behaviour, especially when the traffic 
flow is high. On the other hand, due to signal control, the EV is in different driving modes (such as accelerating, 
decelerating, cruising and idling) near the intersection. Moreover, the delay of EVs at signalised intersections 
is distinct under different traffic flows. Due to secondary queuing, the delay time is significantly prolonged 
under high traffic flow. These factors are closely related to EC. In addition, vehicles can realise cooperative 
driving in the IoV environment. Compared with non-CAVs, CAVs have distinct EC laws due to their commu-
nication advantages and different car following rules, which will also have an impact on EC prediction. The 
existing research rarely analyses and compares the EC law of non-CAVs and CAVs at a signalised intersection, 
especially considering the influence of vehicle interaction and signal control under different traffic flows. The 
data-driven method has been widely applied [21, 22]. In particular, LightGBM is usually utilised in traffic flow 
prediction [23], risk factors analysis on crashes [24], lane-changing risk prediction [25] and other fields in the 
intelligent transportation system, but it has not been used in EC prediction.

Therefore, this paper compared the EC and its distribution for EVs with the intelligent driving model (IDM-
EVs) and the cooperative adaptive cruise control (CACC-EVs) system driving at signalised intersections un-
der different traffic flows, taking into account vehicle interactions and signal control factors, and divided the 
multi-mode EC from perspectives of traffic flow and vehicles. An EC prediction framework based on the ma-
chine learning algorithm – LightGBM was developed afterward. The data used in this study and the proposed 
framework can be further applied to evaluate and optimise EVs’ EC and endurance mileage, which is crucial 
for alleviating “range anxiety”.

The main contributions of this paper are: (1) The comparative experimental method was adopted to study 
the differences in EC distribution between IDM-EVs and CACC-EVs during different driving stages. The 
braking energy regeneration of EVs was considered in the process. (2) A multi-mode EC division method 
was introduced, and the EC in different modes was studied from perspectives of traffic flow and vehicles to 
explore the EC law in depth. (3) An EC prediction framework for EVs based on the LightGBM algorithm was 
proposed, comprehensively considering various vital influencing factors in practical applications to improve 
prediction performance. The remainder of this paper is organised as follows; influencing factors of EC are 
elaborated in Section 3. Section 4 introduces the EC prediction framework and compares the prediction results 
with the comparison algorithm. Finally, Section 5 summarises the main conclusions of this paper and discusses 
further prospects.

3. ELECTRIC VEHICLE ENERGY CONSUMPTION INFLUENCING FACTORS
Unstable EC will occur and sometimes fluctuate significantly during the driving process of EVs. As shown 

in Figure 1, the energy consumption rate (ECR) varies within a specific range during the driving process, mainly 
due to the influence of various factors on EC. In addition, energy regeneration (ER) cannot be neglected in 
the whole driving process. The battery system of an IDM-EV recovers an average of 9.87% of the energy per 
kilometre, and the battery system of a CACC-EV recovers an average of 12.50% of the energy per kilometre.

Figure 1 – The distribution of ECR and ERR of EVs
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The influence of acceleration and speed on EC has attracted much attention in previous studies. As shown 
in Figure 2, acceleration shows an apparent positive correlation with ECR and energy regeneration rate (ERR), 
which can reach a high level at high acceleration/deceleration stages. The relationship will slightly differ due 
to the distinct car-following models. Figure 3 shows the relationship between cruising speed and ECR. ECR 
decreases with the increase of cruising speed before the cruising speed reaches 24 km/h and then increases 
gradually. Multiple variables simultaneously influence EC, but it is impossible to comprehensively explain 
their coupling effect on the EC of EVs by theoretical methods. This section analyses the EC of EVs driving in 
different areas and summarises the EC laws and the influencing factors by mining the EC modes.

3.1 Experimental settings
This paper validates the proposed method for predicting EC in an urban road environment using a simula-

tion of urban traffic (SUMO). Based on C++ and Python, SUMO is a microscopic, continuous spatial discrete 
traffic simulation software that simulates various road traffic networks. In SUMO, users can set a variety of 
contents, including signal intersections, traffic flow, vehicle parameters and driving routes. The XML file gen-
erated at the end of the simulation records the entire road network information. The simulated road network is 
shown in Figure 4, including five signalised intersections and 16 road sections. Aiming to study the effectiveness 
of the proposed EC prediction method under different traffic demands, the traffic flows at each entrance are 
set to 600 vehs/h and 1,200 vehs/h, respectively. Each entrance is 2 km long and contains three motor vehicle 
lanes: straight, left-turn and straight-right mixed lanes. The total mileage of EVs can reach up to 12 km. Each 
intersection is controlled by a conventional four-phase timing signal with a cycle time of 132 s, of which the 
straight (and right-turn) phase is 35 s, and the left-turn phase is 25 s. The total simulation time is 3,600 s, and 
the vehicle’s free-flow speed is 50 km/h. In addition, the vehicle length is 5 m. According to Fiori et al. [26] 

and considering the energy loss generated by EVs during driving, the recuperation efficiency is set to 0.8. Other 
detailed specifications are shown in Table 1.

a) IDM-EVs                                                                b) CACC-EVs

Figure 2 – Relationship of average acceleration with ECR and ERR

              Figure 3 – Relationship of cruising speed with ECR                                           Figure 4 – Road layout
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Table 1 – The specifications of the studied EVs

Parameters Value

Maximum acceleration 3 m/s2

Maximum deceleration 3 m/s2

Maximum velocity 70 km/h

Car-following model IDM; CACC

Lane-changing model LC2013

tau 1.4 (When the car-following model is IDM); 
0.6 (When the car-following model is CACC)

Battery capacity 20 kWh

Maximum power 85 kW

Vehicle mass 1,500 kg

Recuperation efficiency 0.8

3.2 Energy consumption analysis by areas
Due to EVs near the intersection being controlled by signals and producing more complex driving be-

haviours, which results in differences in the distribution of EC in different areas (e.g. between the entrance 
road and the inside of the intersection), it is necessary to analyse the EC by areas. The distribution of EC near 
the signalised intersection is directly related to the driving state of EVs, except for the traffic flow. EVs on the 
entrance/exit lane beyond a certain distance from the intersection are less affected by the signal light and usu-
ally maintain the cruising state so the EC tends to be stable. Due to signal control, EVs start braking within a 
certain distance from the intersection on the entrance road, resulting in high energy recovery. The EC of EVs 
lining up on the entrance road is low and stable. EVs restart at the end of the red light and accelerate inside 
the intersection and near the exit road, resulting in high EC. To further clarify the driving states of EVs for 
data statistics, a typical travel segment is taken as an example, as shown in Figure 5. According to the variation 
range of speed and acceleration, each travel segment is divided into five driving states: starting, accelerating, 
cruising, decelerating and idling. The division criteria are determined based on statistics of all driving data, as 
shown in Table 2. It is noted that the starting state is the accelerating process from the vehicle’s stationery to the 
first cruising or decelerating state [17].

Figure 5 – Example of driving states
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Table 2 – Division principle of driving states

Driving states
Division principle

Speed (v, m/s) Acceleration (a, m/s2)

Accelerating v > 1.11 a > 0.15

Decelerating v > 1.11 a < -0.15

Cruising v > 1.11 -0.15 < a < 0.15

Idling v ≥ 1.11 --

Starting v ≥ 0 a > 0.15

3.3 Energy consumption mode mining
Energy consumption mode division

For exploring the EC laws of EVs in each driving state, this subsection discusses two perspectives of traf-
fic flow and vehicles, divides the EC modes according to driving conditions and summarises the influencing 
factors of EC. From the traffic flow perspective, Figure 6 shows the method of dividing EC modes. Based on 
the trajectory division, in Figure 6a one of the typical trajectory lines is taken as a specific illustration. S1 is 
the cruising stage (green segment), in which EC is positively correlated with vehicle speed, driving time and 
distance, etc. and its EC mode is noted as P1. S2 is the stage (red segment) when the vehicles on the entrance 
road start to brake and queue due to the red light. EVs begin to recover energy when the deceleration reaches a 
specific value, the peak value of which has a great relationship with the magnitude of deceleration. In addition, 
the behaviours such as stop-and-go and changing lanes frequently (related to the law of car-following) also 
increase the EC. The EC mode at this stage is recorded as P2. S3 is the queuing stage (blue segment). The EVs 
produce a low and stable EC to ensure the operation, and their EC mode is recorded as P3. The total EC during 
this stage is related to the queueing delay. S4 is the stage (brown segment) when the EVs start and accelerate to 
a constant speed after the green light. The fleet begins dissipating and EC increases in the stage. The EC mode 
is recorded as P4. Figure 6b shows the EC distribution states at P1, P2, P3 and P4.

To further analyse EC for each mode, an EV controlled to drive 1 km (including a signalised intersection) 
was selected as the research object under low and high traffic flow, as shown in Figure 7 (the negative value 
indicates energy recovery). The total EC of CACC-EVs is 13.2% higher than IDM-EVs under low traffic flow 
and 22.7% lower than IDM-EVs under high traffic flow. After analysis, it is difficult to form a fleet among the 
CACC-EVs under low traffic flow, and the car-following advantage is lost when losing the “guidance” of the 
leader. However, CACC-EVs can readily form a fleet under high traffic flow, which can significantly optimise 
driving trajectories to reduce the EC. Moreover, the results show that the higher the traffic flow in a particular 
range is, the more energy-saving the CACC-EVs can be.

 
                a) Dividing EC modes based on vehicle trajectory map             b) Dividing EC modes based on the EC map

Figure 6 – Multi-mode division of EC

-50

-100

-150

-200

-250

-300

0

-50

-100

-150

-200

-250

-300

Intersection area

Po
si

tio
n 

[m
]

Po
si

tio
n 

[m
]

300 400 500 600 700 800 900
Time [s]

300 400 500 600 700 800 900
Time [s]

2.440

0.4000

0.000

-5.100

EC [Wh]



Promet ‒ Traffic&Transportation. 2023;35(5):662-680.  Science in Traffic and Transport

668

Figure 7 – EC in different modes

From the perspective of vehicles, the driving state of EVs during travel continues to change according to the 
traffic environment, and it is necessary to further analyse its EC law from the microscopic level. At signalised 
intersections, EVs generally experience several processes of cruising–decelerating–queuing–starting and ac-
celerating–cruising when they are queuing due to the red light, which is denoted as s1 (cruising), s2 (braking), s3 
(queuing), s4 (accelerating). As shown in Figure 8, both the s1 and s3 stages produce stable EC. The EC in the s1 
stage is mainly related to the driving speed and distance (or time). In contrast, the EC in the s3 stage is related 

a) EV in low flow b) EV in high flow

b) CACC-EV

Figure 8 – EC of a single vehicle

a) IDM-EV
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primarily to queueing delay. The EV reclaims part of the energy during the s2 stage and consumes plenty of 
energy in the s4 stage. The period of the two stages for the CACC-EV is usually shorter than the IDM-EV. The 
correlation curves of the two EVs in Figure 8 show noticeable differences mainly caused by car-following laws: 
IDM-EVs prefer to gradually complete driving tasks, while CACC-EVs pay more attention to efficiency. For 
example, the acceleration of the former gradually increases when the vehicle starts, while the latter tends to 
take maximum acceleration.

The study found that when CACC-EVs are queuing, the EC law of the leader is different from the follow-
ing vehicles, as shown in Figures 8 and 9. The CACC-EV in Figure 8 is the fleet leader, while the identical EV 
in Figure 9 is one of its followers. During the s2 stage, the leader gradually decelerates and mainly recovers 
energy. Nevertheless, the continuous changes in the acceleration of the follower cause the speed to increase 
and decrease, and the EC fluctuates consequently. However, the overall recovered energy is more than the 
consumed amounts. A similar phenomenon also exists in the s4 stage. It should be noted that if some vehicles 
do not line up at the intersection, there is no s3 stage. In addition, the vehicle possesses lateral and longitudinal 
acceleration during left-turning, and its EC is slightly different from the straight-going one. The main differ-
ence is reflected inside the intersection, corresponding to the s4 phase, as shown in Figure 10. There are signif-
icant fluctuations in the EC of the IDM-EV during left-turning, especially for the following vehicle, which is 
mainly related to the changes in its acceleration. However, the EC of the straight-going vehicle (Figure 8) shows 
a process of increasing and then decreasing to flatness in this stage. The CACC-EV leader and the following 
showed visible fluctuations in EC during left-turning, and the maximum EC was higher than the corresponding 
straight-going vehicle (Figures 8 and 9).

Multi-mode energy consumption laws
During the S1 stage (the EC mode is P1), the vehicle is cruising. Its EC is mainly related to vehicle speed and 

distance (or driving time). During the S2 stage (the EC mode is P2), the EV starts to brake and queue, and the 
recovered energy is closely correlated with the deceleration. During the S3 stage (the EC mode is P3), the vehi-
cle is idling, the EC of which is mainly related to queueing delay. Moreover, during the S4 stage (the EC mode 
is P4), the vehicle starts and further accelerates, the EC of which is relatively correlative with the acceleration.

There are differences in the EC laws for each mode of IDM-EVs and CACC-EVs. Compared to IDM-EVs, 
this study found that CACC-EVs consume more energy in the S1 and S4 stage, more energy is recovered in the 
S2 stage, and less EC in the S3 stage under the same traffic flow. In addition, when driving the same mileage 
near the signalised intersection, compared to the IDM-EV, the total EC of the CACC-EV is higher at low traffic 
flow and lower at high traffic flow, which means that the CACC-EV saves more energy and possesses higher 
driving efficiency under high traffic flow.

Based on the EC modes analysis, the influencing factors of EC can be summarised into two aspects; one 
is related to vehicle travel, including car-following rules and driving behaviours; the other is related to signal 
control, including queuing caused by red lights. Specifically, the analysis from a temporal perspective includes 
factors such as travel time, delay, accelerating and decelerating time, cruising time, and idling time. The anal-
ysis from a spatial perspective includes factors such as driving distance, acceleration and deceleration, the 
number of lane changes and stops, and car-following behaviours between EVs.

Figure 9 – EC of a following CACC-EV in a fleet
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4.  ENERGY CONSUMPTION PREDICTION CONSIDERING THE INFLUENCE OF 
MULTIPLE FACTORS
Section 3 analysed the EC law of EVs from the perspective of traffic flow and vehicles and summarised 

the influencing factors of EC. It is challenging to quantify the effects of some influencing factors on EC since 
they couple in nonlinear ways. Machine learning algorithms can efficiently model the nonlinear relationship 
between multiple influencing factors and EC. This subsection proposes a LightGBM-based EC prediction 
framework that integrates the extracted features related to vehicle travel and signal control.

4.1 Datasets
The dataset is divided into IDM and CACC datasets according to vehicle type, each containing driving 

segments of 1,000 EVs in different traffic flows. Each driving segment is in the range of 4–12 km in length and 
contains S1–S4 driving stages. The training and test sets are split according to 4:1, and the constructed datasets 
is shown in Tables 3 and 4. Table 3 relates to vehicle travel and includes statistical information for each segment, 
such as driving time, driving range, acceleration and deceleration and average travel speed. The classification 
standard of the accelerating, decelerating, cruising, idling and starting of the EV in Table 3 is recorded in Table 2. 
Table 4 relates to the signal control and includes the signal states corresponding to the arrival of vehicles at the 
intersection in each segment. The signal phases are divided according to 1:2:1. For example, the green light for 
straight-going and right-turn is 35 s, and its early, mid and late stages are 8.75 s, 17.5 s and 8.75 s, respectively.

a) IDM-EV b) IDM-following EV

c) CACC-EV d) CACC-following EV

Figure 10 – EC of a left-turn vehicle
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Table 3 – Vehicle-related variables

Input/
output Parameters Unit

Training
…

Test

veh1 veh2 vehi veh1 veh2 vehj

Input

Driving time s 1,031.3 1,155.1 395.6 … 301.9 505.0 714.0

Travel delay s 216.6 316.1 88.7 … 7.6 74.4 143.9

Waiting time s 144.6 263.8 73.0 … 0.0 38.2 91.6

Driving range km 12.0 10.0 4.0 … 4.0 6.0 8.0

95 % quantile of acceleration m/s2 2.99 2.98 2.94 … 1.06 2.80 2.35

5 % quantile of deceleration m/s2 -2.46 -2.00 -2.27 … -1.17 -2.18 -2.19

Average travel speed m/s 11.63 8.64 10.09 … 13.23 11.86 11.19

Waiting count times 2 5 1 … 0 3 3

Lane-change count times 17 13 7 … 5 10 13

Accelerating time s 41.3 43.0 19.6 … 10.0 34.2 51.6

Decelerating time s 39.7 46.0 17.7 … 10.6 25.9 39.4

Cruising time s 799.2 787.3 282.0 … 281.3 397.7 517.6

Idling time s 150.5 275.5 76.0 … 0.0 44.1 100.1

Starting time s 0.6 3.3 0.3 … 0 3.1 5.3

Average time headway s 13.8 506.0 14.4 … 11.3 20.0 572.3

Minimum time headway s 1.77 1.15 1.2 … 1.83 1.81 1.93

Average space headway m 170.0 124.5 186.3 … 151.8 169.0 221.3

Minimum space headway m 22.5 2.0 14.8 … 13.3 2.0 2.0

Output ECb kWh 1.14 0.94 0.38 … 0.36 0.62 0.82

Notes: (1) Travel delay: refers to the total time delay during the travel per EV, including queuing delay, braking delay, etc.
(2) Accelerating time, Decelerating time, Cruising time, Idling time, Starting time: time statistics for different driving states during the travel per EV.

The variables in Table 4 require additional clarification. The signal states corresponding to the arrival at the 
intersection have a different impact on the driving behaviours of the vehicle, which in turn affects the EC. The 
corresponding state of the vehicle arriving at the intersection is shown in Figure 11. The serial number ①~⑦ 
indicates seven EVs, corresponding to different signal states when they arrive at the intersection. EVs ①~③ 
line up due to red lights, but the queuing time differs. EV ① lines up for longer, while EV ③ queues for 
a shorter time. Moreover, EVs often queue twice under high traffic flow, namely prolonged queuing time, 
resulting in increased EC due to time delays. EVs ④~⑥ arrive at the intersection during the green light, and 
they will adopt different accelerations and decelerations to pass the intersection before the end of the green 
light. When the EV ⑦ arrives at the intersection during the yellow light, it usually slows down. It passes 
through the intersection after confirming safety.

① ② ③③ ④④ ⑤ ⑥⑥ ⑦⑦

Figure 11 – Schematic diagram of the corresponding signal phase when the vehicle arrives at the intersection
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Table 4 – Signal control-related variables

Input Parameters Intersection 
number Unit

Training Test

veh1 veh2 veh3 vehi veh1 veh2 veh3 vehj

Input

Yellow 
light stage

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

Early green 
stage

 - 0 1 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 1 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 1 0 1 …

Mid green 
stage

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 1 0 0 … 0 0 1 …

 - 0 0 0 … 0 1 0 …

Late green 
stage

 - 0 0 0 … 0 0 0 …

 - 1 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 1 0 0 … 0 0 0 …

Early red 
stage

 - 0 0 1 … 0 0 0 …

 - 0 1 0 … 0 0 0 …

 - 1 1 0 … 0 0 0 …

 - 0 1 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

Mid red 
stage

 - 1 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

Late red 
stage

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 0 0 …

 - 0 0 0 … 0 1 0 …

 - 0 0 0 … 0 0 0 …

Output ECb kWh 1.14 0.94 0.38 … 0.36 0.62 0.82 …

Note: The numbers ~ in the “Position” column in the table are the numbers of the five signalised intersections, indicating that 
the EVs arrive at the intersection’s stop line corresponding to the number at the corresponding time stage. The value 1 indicates that 

the vehicle comes at the designated intersection in the corresponding signal phase. Otherwise, it is marked as a value of 0.
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4.2 Conventional EC prediction method
The conventional prediction method for EC utilises historical driving data to estimate the EC of future trav-

els. This calculation process is relatively simple. The average ECR of each historical trip can be regarded as 
approximately constant within a specific range. First, calculate the average ECR of the historical driving range 
and then predict the EC of future travels, as shown in Equation 1

 

( )( ) ( ) ( ) ( )
( )

past
pred pred

future future
past

EC xEC x ECR x M x M x
M x

= ⋅ ≈ ⋅
 

(1)

where EC pred represents the predicted EC of the EV within a certain driving distance, futureM ; ECR is the energy 

consumption rate (kWh/km) and predECR  is the predicted value of ECR; futureM , pastM  refers to the future and 
past driving distance of the EV, respectively; EC past represents the EC value of the EV within a certain driving 
distance pastM  in the past.

In this study, the above mentioned conventional method is used to predict the EC for EVs and compare 
it with the actual value, as shown in Table 5. However, many factors are affecting the EC. The conventional 
method utilises the historical ECR to predict the future EC. It only considers the driving distance, thus ignor-
ing other factors that may have a non-negligible impact on the EC, resulting in inconsistent prediction results.

Table 5 – The examples of EC prediction results using the conventional method

ECRpast [kWh/km] Test range [km] ECpred ECreal Relative error [%]

0.0996 9.9740 0.9931 0.9921 0.10

0.0922 5.9895 0.5525 0.6038 8.49

0.0888 7.9895 0.7096 0.8885 20.14

0.0945 9.9895 0.9441 1.0517 10.23

0.1054 5.9767 0.6298 0.6227 1.14

0.1028 3.9949 0.4107 0.3971 3.42

0.0946 11.9740 1.1322 1.1991 5.58

0.1077 3.9922 0.4300 0.4013 7.14

0.0830 11.9767 0.9944 1.1628 14.48

0.0889 5.9586 0.5296 0.6051 12.47

4.3 The EC prediction framework based on LightGBM model
The eXtreme Gradient Boosting (XGBoost) model is a large-scale parallel-boost tool with high prediction 

accuracy and flexibility. However, it has shortcomings. Although the utilisation of pre-sorting and approximation 
algorithms can reduce the amount of calculation to find the best-split point, the dataset must still be traversed 
during the node-splitting process. The space complexity of the pre-sorting process is unduly high, and not 
only needs to store the feature value but needs to store the index of the statistical gradient value of the sample 
corresponding to the feature, which is equivalent to consuming twice the memory [27]. The LightGBM is a 
light gradient boosting machine, which was improved based on the shortcomings of XGBoost. Compared with 
XGBoost, on the one hand, LightGBM occupies less memory, reduces spatial complexity and the number of 
features during training, and dramatically diminishes memory consumption. On the other hand, LightGBM is 
faster, which significantly decreases the temporal complexity, reduces unnecessary calculations and optimises 
the cache.

The EC prediction framework based on the LightGBM model is proposed in this paper, as shown in Figure 
12. The framework mainly includes five parts: ① data collection; ② data preprocessing; ③ influencing 
factors analysis of EC; ④ feature extraction; ⑤ training and optimisation for the prediction model. This 
prediction framework is mainly composed of the model training and prediction phases.

Data collection: simulation in SUMO to get the raw data and use of Python to eliminate data noise.
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Data preprocessing: according to the characteristics of the urban road environment, the data were divided 
into vehicle travel-related data and signal control-related data.

Influencing factors analysis of EC: in previous related studies, the speed and acceleration of EVs have 
attracted much attention, but in fact, the EC of EVs is affected concurrently by many influencing factors. This 
framework first analysed the EC laws of EVs with different trajectories according to lanes and areas, then 
summarised four EC modes from perspectives of traffic flow and vehicles, and induced the influencing factors 
of EC.

Feature extraction: this framework considered travel-related factors (Table 3), including travel time, dis-
tance, delay, speed and acceleration. In addition, the influence of signal control is also taken into account (Table 
4), including the seven phases, early green stage, mid-green stage, late green stage, early red stage, mid-red 
stage, late red stage and yellow stage.

Training and optimisation for the prediction model: LightGBM implements machine learning algorithms 
under the tree boosting framework, efficiently constructing boosting trees and realising parallel operation. It is 
so efficient that it can solve the problem of EC prediction under various working conditions. In the meantime, 
compared to XGBoost, LightGBM proposes two improvements: gradient-based one-side sampling (GOSS) 
and exclusive feature bundling (EFB) [28].

GOSS: sort according to the absolute value of the gradient of all samples, select the first 100%a ⋅  samples 
(to form set A), and randomly select 100%b ⋅  samples (to form set B, its size is cb A⋅ ) from the remaining 
(1 ) 100%a− ⋅  samples (called a set Ac) to generate a small gradient sample set. When calculating the informa-
tion gain for small gradient samples, multiply it by a constant 1 a

b
− . Therefore, LightGBM only pays more

attention to the under-trained samples and does not excessively change the original data distribution.
GOSS divides the data on the set A B∪  by estimating the variance gain Vj(d):
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Figure 12 – The EC prediction framework
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where { : }l i ijA x A x d= ∈ ≤ , { : }r i ijA x A x d= ∈ > , { : }l i ijB x B x d= ∈ ≤ , { : }r i ijB x B x d= ∈ > , 1 a
b
−  is used 

to normalise the sum of gradients of dataset B.

Let )()(~)( dVdVd jj −=ε  be the approximate error of GOSS 
( )( )

( )
c

i r

i
x A Aj

l j
l

g
g d

n d
∈ ∪=
∑

, then: 

2
, ,

1 1 ln1/( ) ln1/ max , 2
( ) ( )

{ }a b a bj j
l r

d C DC
n d n d n

δε δ≤ ⋅ +  (3)

where , max
1

c
i

a b i
x A

aC g
b ∈

−
= , and max ( ), ( )( )j j

l rD g d g d= .

Therefore, the asymptotic approximation probability of GOSS is 1 1 1( )
( ) ( )j j

l r

O
n d n d n

+ +  if the split is 

unbalanced (such as ( ) ( )j
ln d O n≥  or ( ) ( )j

rn d O n≥ ), the approximation probability depends on the second 
term of Equation 2 (if n →∞ the second term tends to 0), which means that when there are vast samples, the 
approximation probability is entirely accurate.

EFB: in actual application, although there are great features, many are sparse, and EFB provides an almost 
lossless method to reduce the possibility of the number of practical features. It bundles mutually exclusive 
features into one, designs a suitable algorithm for the optimisation bundling problem as a graph colouring 
problem, and utilises a greedy algorithm to approximate the solution. For feature bundling, the complexity can 
be reduced from ( )O data feature⋅  to ( )O data bundle⋅  (bundle is much smaller than feature), which is the 
reason for its acceleration.

Combined with the above advantages, the framework based on LightGBM has preferable applicability to 
this study’s EC prediction. In addition, a model optimisation framework combining KFold and GridSearch was 
used in the model training and optimisation process. The model performance was evaluated comprehensively 
by KFold with sufficient training samples. Hyperparameters were empirically established, and GridSearch was 
applied to stepwise test different combinations of hyperparameters to improve model accuracy.

4.4 Model evaluation and comparison
This paper utilises root mean square error (RMSE) and mean absolute percentage error (MAPE) to evaluate 

the prediction performance of the framework. RMSE and MAPE are respectively defined as:

2

1

1 ˆ( )
n

i i
i

RMSE y y
n =

= −∑
 

(4)

 1

ˆ100% n
i i

i i

y yMAPE
n y=

−
= ∑

 
(5)

where 1 2ˆ ˆ ˆ{ , ,..., }ny y y  is the predicted value and 1 2{ , ,..., }ny y y  is the actual value. The smaller the value of RMSE 
and MAPE is, the more accurate the prediction results can be.

The framework is trained using the training set and evaluated by the 10-fold cross-validation training 
strategy. As shown in Figure 13, the model performed differently on each training and verification sample. The 
average indexes of 10-fold cross-validation determined the final model prediction performance. MAPE was 
applied in model training and optimisation to evaluate the model’s accuracy. Based on 10-fold cross-validation 
and evaluation indicators, the critical hyperparameters in LightGBM, including learning rate, maximum tree 
depth, sub-sample training examples and regularisation terms, were optimised to improve model performance 
and reduce prediction errors. As shown in Figure 14, taking the learning rate optimisation in the training process 
as an example, a grid with a learning rate of 0.01 to 0.1 was set, and ten cross-validations were used for testing. 
For the IDM-EVs, the results show that the error is the smallest when the learning rate is 0.04, while for the 
CACC-EVs, the error is the smallest when the learning rate is 0.03.

The trained model is employed to predict EC based on the test set. As illustrated in Figure 15, the R2 values 
of the EC prediction results are 0.96 and 0.95, respectively, which indicates that more than 95% of the variation 
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Figure 13 – 10-fold cross-validation

Figure 14 – Grid search

Figure 15 – The prediction results based on the proposed framework

characteristics of EC can be explained using the variables in Tables 3 and 4. To verify the prediction performance 
of the LightGBM model, in addition to the conventional method, this study adopts two other comparison 
algorithms, including the XGBoost model and the gradient boosted regression tree (GBRT) model. They are 
gradient boosting algorithms that are highly accurate at handling the complex nonlinear relationship between 
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feature inputs and EC. The results of the two evaluation indicators are shown in Table 6. For the IDM dataset, 
the average prediction errors of the LightGBM model are 3.45% (MAPE) and 0.039 kWh (RMSE), which are 
33.7% and 50.6% lower than the best comparison algorithm (XGBoost model), respectively. For the CACC 
dataset, the average prediction errors of the LightGBM model are 5.57% (MAPE) and 0.042 kWh (RMSE), 
which are 16.1% and 34.4% lower than the best comparison algorithm (XGBoost model), respectively. The 
conventional method shows the lowest prediction performance on both datasets. Figure 16 shows that the pro-
posed framework exhibits better predictions in most cases of the test set. Based on the analysis of the above re-
sults, the proposed framework shows the best performance in predicting the EC of IDM-EVs and CACC-EVs.

Table 6 – Prediction performance of LightGBM model and comparison algorithms

Model
MAPE [%] RMSE [kWh]

IDM-EVs CACC-EVs IDM-EVs CACC-EVs

Conventional method 8.62 9.54 0.085 0.082

GBRT 6.98 7.45 0.074 0.081

XGBoost 5.20 6.64 0.079 0.064

LightGBM 3.45 5.57 0.039 0.042

To understand the impact of the extracted features on the EC prediction and to provide the necessary in-
terpretability for the prediction results of the proposed framework, this study obtained the feature importance 
ranking of the LightGBM model on the test set, as shown in Figure 17. The abscissa represents 53 features, 

Figure 16 – The EC prediction results of 20 group EVs
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sorted according to the features shown in Tables 3 and 4. The ordinate represents the feature importance value. 
The top five essential features are marked in the figure. The 19th to 53rd features on the abscissa represent the 
signal phases corresponding to vehicle arrival at each intersection (as shown in Table 4). Compared with the 
first 18 features, the latter 35 features are of lower importance, but this shows that signal control has a certain 
degree of influence on the EC of EVs. Signal control factors may not be neglected in future related microscopic 
studies. It can be seen that there are certain differences in the EC feature importance between IDM-EVs and 
CACC-EVs. The driving range, acceleration, accelerating time, decelerating time and cruising time marked in 
the figure correspond to larger feature importance values, which are significant factors affecting the EC of EVs.

Figure 17 – Feature importance maps for EC prediction

5. CONCLUSION 
This paper analyses EC by driving areas and defines accelerating, decelerating, cruising, idling and start-

ing states for EVs. The four EC modes (P1, P2, P3, P4) are classified according to the driving states from the 
perspectives of traffic flow and vehicles, and the EC laws and distribution differences between IDM-EVs and 
CACC-EVs under different traffic flows are compared and analysed. Based on the above analysis, the influenc-
ing factors of EC are summarised and extracted, which are mainly related to vehicle travel and signal control. 
Finally, the EC prediction framework based on the LightGBM algorithm is proposed, and its prediction results 
are validated using other advanced comparison algorithms. The results show that the proposed framework 
exhibits the best performance in EC prediction for IDM-EVs and CACC-EVs. For the IDM dataset, the aver-
age prediction error of the proposed framework is 3.45% (MAPE) and 0.039 kWh (RMSE), which is 33.7% 
and 50.6% lower in relation to the best comparison algorithm (XGBoost model). For the CACC dataset, the 
average prediction error of the proposed framework is 5.57% (MAPE) and 0.042 kWh (RMSE), which is 
16.1% and 34.4% lower in relation to the XGBoost model. In addition, this paper brings about the following 
conclusions:
1) Due to the relatively complex urban road environment, many factors affect the EC of EVs. This paper 

extracted vehicle travel-related and signalled control-related factors. The final results show that driving 
distance, acceleration, decelerating and cruising are critical. They are significant influencing factors in the 
overall EC during travel.

2) There is an apparent discrepancy in the EC and its EV distribution under high and low traffic flows. Un-
der low traffic flow, the EV gains higher freedom, and the interplay between vehicles is inconspicuous so 
that the average EC of EVs is low; under high traffic flow, the driving freedom of EV is reduced, and the 
interplay between EVs is excellent, especially the queuing time is prolonged at signalised intersections, 
resulting in increased idling EC. Previous studies [5, 6, 8] did not specifically consider the factor of flow, 
which may weaken the generalisation ability of the energy consumption prediction algorithm.

3) This paper compared and analysed the EC of IDM-EVs and CACC-EVs. Compared to IDM-EVs, the re-
sults show that CACC-EVs consume more energy at lower flow, while the opposite is true at higher flow. 
It is difficult to form a fleet among the CACC-EVs under low traffic flow, and the car-following advantage 
is lost when losing the “guidance” of the leader. However, CACC-EVs can readily form a fleet under 
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high traffic flow, which can significantly optimise driving trajectories to reduce the EC. Previous research 
[13–15] predicted the EC of manual driving vehicles. However, intelligent connected EVs possess appar-
ent advantages in the IoV environment, so its EC law is worth exploring.

EC has become one of the essential concerns of EV drivers. Accurate and real-time prediction of EC can 
significantly improve the range anxiety for drivers. Because of the above mentioned situation, the prediction 
framework of electric vehicle energy consumption proposed in this study possesses high accuracy and good 
real-time performance, suitable for various traffic scenarios.

This study also has limitations, mainly reflected in ① the analysis is only based on signalized intersections; 
② the degradation of EV battery is not considered; ③ only urban road scenarios are considered. Therefore, 
to improve the prediction performance of the proposed framework, the above factors be considered in future 
studies, such as: analysing the trajectories and EC laws at the actuated signalised intersection and comparing 
it with the case of fixed-time signalised control; take into account the impact of battery status on EC; applying 
the proposed prediction framework to a variety of scenarios, for instance, highway sections, up and down 
ramps. In addition, with the rapid development of the IoV, the framework can be utilised to optimise travel 
paths for intelligent connected EVs and further applied in the operation of urban road charging infrastructure.
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刘擎超，高芬霞，赵晶娅，周卫琪
智能网联环境下电动汽车能耗预测研究

摘要
准确的能耗预测对于改善驾驶体验至关重要。在城市道路场景中，我们讨论了能源
消耗的影响因素，并从各个角度对模式进行了划分。比较了使用IDM和CACC跟车模
型的电动汽车在不同交通流量下的能耗特征和分布规律的差异。提出了一种基于
LightGBM模型的能耗预测框架。研究表明，续航里程、加速、加速时间、减速时间
和巡航时间都会显著影响电动汽车的整体能耗。不同交通流量下的能耗特征和分布
规律存在明显差异：低流量下平均能耗较低，高流量下平均功耗较高。CACC电动汽
车在低流量下比IDM电动汽车消耗更多的能量。在高流量下，情况正好相反。结果表
明，该框架具有较高的精度：基于IDM数据集的MAPE为3.45%，RMSE为0.039kWh；基
于CACC数据集的MAPE为5.57%，RMSE为0.042kWh。与最佳比较算法相比，MAPE和RMSE
分别降低了33.7%和50.6%（最大程度）。
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