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ABSTRACT.	Different	terrestrial	reference	systems	have	been	defined	and	used	
because	of	some	practical	and	historical	events	in	geodesy	domain.	The	transi-
tion	from	one	system	to	another	requires	the	coordinate	transformation.	Helmert	
transformation	is	the	most	commonly	used	model	for	2D	networks.	2D	Helmert	
transformation	are	defined	by	four	transformation	parameters	and	two	common	
points	in	both	coordinate	systems	provides	a	unique	solution.	To	increase	the	reli-
ability	of	the	transformation	parameters,	redundant	observations	are	generally	
used.	In	this	case,	the	Least	Squares	(LS)	is	the	most	common	method	used	to	
obtain	the	unique	solution	from	redundant	observations.	However,	outliers	occur	
often	in	dataset	and	affect	severely	the	results	of	LS.	There	are	generally	two	ap-
proaches	applied	for	outlier	detection:	classical	outlier	tests	and	robust	methods.	
The	most	common	robust	methods	are	Least	Absolute	Deviation	(L1),	M-estima-
tors,	the	Total	Least	Squares	(TLS),	Generalised	M-estimators,	the	Least	Median	
of	Squares	(LMS)	and	the	Least	Trimmed	Squares	(LTS).	For	the	solution	of	the	
LTS	method,	there	are	exact	and	approximate	solutions.	In	this	study,	2D	Hel-
mert	transformation	parameters	between	ED50	and	ITRF	coordinates	are	esti-
mated	with	the	LS	method	including	classical	outlier	test,	exact	LTS	solution	and	
Fast-LTS	solution	which	is	an	approximate	solution	to	compare	outlier	detection	
performances	of	the	methods.

Keywords:	coordinate	transformation,	outlier	detection,	robust	solution,	the	least	
squares,	the	least	trimmed	squares,	ITRF,	ED50,	LTS,	TLS,	GNSS.

1 Hasan Dilmaç, Department of Geomatics Engineering, Faculty of Engineering, Ondokuz Mayis University, 
 TR-55139 Samsun, Turkey, e-mail: hasan.dilmac@omu.edu.tr 
 Yasemin Sisman, Department of Geomatics Engineering, Faculty of Engineering, Ondokuz Mayis Univer-

sity, TR-55139 Samsun, Turkey, e-mail: ysisman@omu.edu.tr 
2 Kamil Maciuk, AGH University of Science and Technology, PL-30-059 Krakow, Poland,
 e-mail: maciuk@agh.edu.pl 

Dilmaç, H. et al.: Outlier Detection with Robust Exact and Fast ..., Geod. list 2023, 2, 109–124



110
1. Introductıon

Different terrestrial reference systems have been defined and used because of 
some practical and historical events in geodesy domain (Chang et al. 2017). In 
Turkey, the European Datum 1950 (ED50) was used as the national coordinate 
system for various cadastral applications until 2005. After earthquakes causing 
movements and displacements in Turkey, the Turkish National Fundamental 
GPS Network (TNFGN) which uses the International Terrestrial Reference 
Frame 96 (ITRF96) was established in order to make up the shortcomings of 
the former system (Sisman 2014, Konakoglu et al. 2016). The conversion from 
ED50 to ITRF96 requires the coordinate transformation between those sys-
tems. Helmert (conformal or similarity), affine and projective transformation 
models are the conventional techniques used for coordinate transformation 
(Ziggah et al. 2018). The accuracy of the coordinate transformation depends 
not only on the method and the number of common points in both coordinate 
systems but also on the accuracy of the common points in both systems. The 
official coordinates in the target coordinate system are usually well determined 
and should not be changed. But, using classical transformation approach make 
official coordinates changed. The problem is resolved by preserving official co-
ordinates by using post transformation corrections based on the classical ap-
proach (Ligas and Banasik, 2014, Gargula and Gawronek 2023).
Helmert transformation is the most commonly used model for 2D networks 
(Öcalan 2019). 2D Helmert transformation are defined by four transformation 
parameters: two translation along the two axes, scale and rotation angle be-
tween the axes of two coordinate systems (Sjöberg 2013). Two common points 
in both coordinate systems provides a unique solution. However, more than 
two common points, that is, redundant observations are generally used to in-
crease the reliability of the transformation parameters (Akyilmaz 2007). 
The Least Squares (LS) is the most common method used to obtain the most 
probable solution from all observations, when outliers do not exist (Amiri-Sim-
kooei 2018). Outliers which behave differently from the majority of data occur 
often in dataset and affect severely the results of LS. Even one outlier could 
be sufficient for LS to have incorrect results, thus making its breakdown point 
equals 1/n which tends to 0% with increasing n (observation number) (Rous-
seeuw and Leroy 1987). Therefore, outlier detection is an important issue in 
geodesy. There are generally two approaches applied for outlier detection: clas-
sical outlier tests and robust methods (Rousseeuw and Hubert 2018). If there 
is one outlier in dataset, the classical outlier tests can successfully detect the 
outlier. But, they will fail when there is more than one outlier because of the 
swamping and masking effects of LS, thus making them sensitive to outlier 
(Sisman 2010, Hekimoglu et al. 2015). 
Robust methods are designed to be not sensitive to outliers. Many robust meth-
ods are discussed in literature. The most common robust methods are Least 
Absolute Deviation (L1), M-estimators, the Total Least Squares (TLS) (Golub 
and van Loan 1980), Generalised M-estimators (Hampel et al. 1986), the Least 
Median of Squares (LMS) (Rousseeuw 1984) and the Least Trimmed Squares 
(LTS) (Rousseeuw and Leroy 1987). M-estimators is an important class of ro-
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bust methods which is defined by an aim function ρ(v) of residuals (v) to be 
minimized. Their solution can be realized by iteratively weighted LS (Wieser 
and Brunner 2001). There are several M-estimator defined by their weight 
function such as Huber, Hampel, Andrew, Yang I, Yang II, Danish method etc. 
(Borowski and Banaś 2019). These M-estimators have been applied to vari-
ous geodetic applications (Yang et al. 2002, Berné Valero and Baselga Moreno 
2005, Gökalp et al. 2008, Knight and Wang 2009, Sisman 2010, Třasák and 
Štroner 2014, Gašinec and Gašincová 2016, Borowski and Banaś 2018, Shin 
and Oh 2020). However, their breakdown point also equal 1/n. After all these 
advancements in robust methods, high breakdown point estimators such as the 
LMS and the LTS were introduced (Rousseeuw and Leroy 1987). A trimming 
parameter (h) which determines the size of the subset is used in both methods 
(Rousseeuw and Leroy 1987, Hekimoglu et al. 2009, Mount et al. 2014) Both 
methods are also discussed in geodetic applications (Knight and Wang 2009, 
Yang 2011, Koch et al. 2017). For the solution of the LTS method, there are 
exact and approximate solutions suggested (Rousseeuw and Leroy 1987, At-
kinson and Cheng 1999, Agulló 2001, Rousseeuw and Driessen 2006, Koch et 
al. 2017, Hofmann et al. 2010).
In this study, 2D Helmert transformation parameters between ED50 and ITRF 
coordinates are estimated with the LS method including classical outlier test 
and exact and Fast-LTS solutions to compare outlier detection performance of 
the methods.

2. Methods

2.1. 2D Helmert Transformation

The Helmert transformation named after Friedrich Robert Helmert (1843–
1917) is a geometric transformation method which is often used in geodesy. 2D 
Helmert transformation is also known as 4-parameter similarity transforma-
tion (Fig. 1).
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Fig. 1. 2D Helmert Transformation (Öcalan 2019). 
 

The equation for 2D Helmert transformation between X-Y and x-y which 

define two planar Cartesian coordinate systems can be expressed as follow-

ing: 
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Here,   rotation angle,   scaling and       translations. Equation (1–2) can 

be simplified by          and         . 

 

 
             

             
(3) 

(4) 

 

or in matrix notation 
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Here,           are the four transformation parameters. 

The solution of the Eq. (3–4) requires at least two common points in both 

systems. 

 
2.2. The Least Squares and Classical Outlier Tests 

 
Geodetic observations usually include errors. Therefore, redundant observa-

tions (   , where   observation number and   unknown number) are made 

in geodetic applications. In this case, LS method is usually used for the esti-

mation. The mathematical model generally used for LS in geodetic applica-

tions is the linear Gauss-Markov model given as (Klein et al. 2017): 

 

        (6) 

 

Here,       and   are the residual vector of the observations, design matrix, 

the vector of the unknowns and the remains vector, respectively. The objec-

tive function minimizes the residuals of the observations (Okwuashi and 

Asuquo 2014): 
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Here,   is the weights of the observations which define the stochastic rela-

tionship of the observations. In order to obtain the estimated vector of the 

unknowns   , normal equation (8) is derived with respect to   and equalized 

to zero, 

 

               (8) 

 

then    is estimated by 

 

                 (9) 

 

LS is the best linear unbiased estimation if the observations have only ran-

dom errors (Akyilmaz 2007). However, an outlier detection is needed because 

geodetic observations usually contain various errors. Outliers can be de-

tected and removed from dataset by analysing the residuals obtained from 

the LS solution statistically (Yetkin 2013). Data-Snooping (DS) (Baarda 

1968), Pope test (Pope 1976) and t test (Koch 1999) are the classical outlier 

tests used frequently in geodetic applications. These tests use the cofactor 

matrix of the residuals     and variance factors (a priori variance   
 , a pos-

teriori variance   
  and a posteriori variance    

  in the Data-Snooping, Pope 
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test and t test, respectively) (Berber and Hekimoglu 2003). The variance fac-

tors and     can be calculated as follow: 

 

 
  

  
    

 
 (10) 
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Here,       the degree of freedom and   errors. Test values are calcu-

lated and compared with the critical value obtained from distribution table. 

The test values and critical values can be calculated as in Table 1 for classi-

cal outlier tests. 

 

Table 1. Test and critical values of the classical outlier tests (Sisman 2010). 

Tests Test Value Critical Value 

Data-Snooping    
    

        

           

Pope test    
    

        

             

t test    
    

         

               

 
In Table 1,    the significance level,   normal,   tau and   student distribu-

tion. 

These tests were initially developed for only one outlier. But, they can be 

applied iteratively, detecting one outlier after another for multiple outliers 

(Lehmann and Lösler 2016). 
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2.3. Breakdown Point 

 

The breakdown point is an important issue for robustness and it was first 

introduced by Hampel (1971) for location functionals. Donoho and Huber 

(1983) later introduced a simple-finite version of the breakdown point. It is 

the main criterion for the robustness of an estimator, which is the smallest 

fraction of outliers that can lead the estimator incorrect results (Mount et al. 

2014). 

The breakdown point of some robust methods (L1 method and M-estimators) 

is equal to     like LS. Siegel (1982) introduced the first high breakdown 

point estimator, the repeated median which has a     breakdown point. 

Later, another high breakdown point estimator, LMS with     breakdown 

point was introduced. But, the LMS has a poor asymptotic efficiency. Finally, 

the LTS was introduced to repair this situation (Rousseeuw and Leroy 1987). 

 
2.4. The Least Trimmed Squares 

 
The LTS which is a high breakdown point estimator is quite similar to the 

LS method. The difference of these methods is that all observation are not 

used in the LTS contrary to the LS method (Rousseeuw and Leroy 1987). The 

objective function of the LTS is given as 

 

 
        

 

 

   

 
(14) 

 

Here, h represents the number of the observation which are included in the 

parameter estimation (Koch et al. 2017). The best robustness is achieved 

when trimming parameter                   (Rousseeuw and Leroy 

1987). For the solution of the LTS, there are exact and approximate ap-

proaches suggested by (Rousseeuw and Leroy 1987, Atkinson and Cheng 

1999, Agulló 2001, Rousseeuw and Driessen 2006, Hofmann et al. 2010, 

Koch et al. 2017). The workflow of Exact LTS solution is given in Fig. 2. 
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Fig. 2. The workflow of exact LTS solution. 

 
The problem of Exact LTS solution given is its computation because it re-

quires a full search through   
 
  subsets to find the subset whose LS solution 

has the minimum sum of the squared residuals      (Dilmaç and Şişman 

2023, Fig. 2). A full search through   
 
  subsets is not possible unless the 

observation size is small (Li 2005). 

For the approximate solution, the Fast-LTS algorithm introduced by 

Rousseeuw and Driessen 2006) is discussed. The Fast-LTS algorithm con-

sists of several parts like creating initial subset, C-steps and selective itera-

tion. The size of initial subset is decided by the unknown number  . There 

are many possibility for creating u-element initial subset from   observa-

tions. Therefore, a certain number of u-element initial subset (for example, 

500) out of n observations can be drawn randomly. Then,    (estimated un-

known vector) of each 500 initial subsets and their corresponding residuals 

for all   observation are calculated. 
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Fig. 3. The workflow of the Fast-LTS solution. 

 
Then, 10 subsets with the minimum sum of the squared residuals      are 

selected for the next step. The squared residuals of these 10 subsets are or-

dered from smallest to largest. The corresponding observations of the   

smallest residuals of each 10 subsets are used for the new    and their corre-

sponding residuals for all n observations. This iteration is called C-step and 

is continued until the consecutive sum of the squared residuals      of sub-

sets converge. However, Rousseeuw and Driessen (2006) stated that taking 

just two-C steps can achieve global optimum in practice. The workflow of the 

Fast-LTS algorithm is given in Fig. 3. 
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3. Case Study 

 
For the comparative analysis, the network was established in Havza, the 

South side of Samsun, Turkey. In this network the 36 points coordinates 

(North, East, Orthometric and Ellipsoidal Height) were known in both ED50 

and ITRF96 coordinate systems. The total area of this network is about 682 

km2 (Fig. 4). 

 

 

Fig. 4. The 36-points network. 

 
Firstly, ED50 (x-y) to ITRF96 (X-Y) point coordinates were calculated for all 

points. Then, the 2D Helmert transformation parameters from ED50 (x-y) to 

ITRF96 (X-Y) was estimated by 12 control points (CP) for LS, exact LTS and 

Fast-LTS solution. The other 24 points were used as test point (TP) to check 

the validation of the estimated transformation parameters that they are 

whether close to the original coordinates or not. The ED50 coordinates of 24 

test points were converted to ITRF96 system by using the estimated trans-

formation parameters. Then, obtained ITRF96 coordinates of TD were com-
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pared with the original ITRF96 coordinates. The linear Gauss-Markov model 

is same for the methods. 

 

 

 
  

  
 

 
 

  
     
         

 
           

 

 

 
 
 
 

 

 
 

  
 
 
 

 
 

 
(15) 

 

Only difference between the LS method and LTS methods is the size of de-

sign matrix ( ) and the remains vector ( ) because of trimming parameter 

( ). Matlab programming language was used for the solution of the methods. 

 

 

4. Results 

 

Firstly, the LS method was applied. In LS method, all of the CPs were used 

for the estimation of transformation parameters. Then, t test was applied 

iteratively to detect outliers. As a result, 433 and 472 were detected as out-

lier and removed from estimation (Table 2). 

 

Table 2. The results of iterative LS method for outlier detection. 

Parameter 
Iterative LS method 

(12 CPs) (11 CPs) (10 CPs) 

         1                   

                              

                                  

                                

                            

                          

Max. Test Value                     

Critical Value                   

Outlier No 433 472 – 

                                  

 
Then, the Exact and Fast-LTS methods were applied, 4 different   values 

(11, 10, 9 and 8 which was calculated by          )) were used. For h=11, 

exact and Fast-LTS methods found the same results. They removed 433 from 

estimation just as iterative LS method (Table 3). 
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Table 3. The results of Exact and Fast-LTS methods for h=11. 

Parameter Exact and Fast LTS (h=11) 

           

           

               

               

             

             

Removed Observations 433 

                   

For h=10, Exact and Fast-LTS methods found again the same results. They 

removed 433, 472 from estimation just as iterative LS solution (Table 4). 

 

Table 4. The results of Exact and Fast-LTS methods for h=10. 

Parameter Exact and Fast LTS (h=10) 

           

           

               

              

           

             

Removed Observations 433, 472 

                 

 
For h=9, Exact and Fast-LTS methods found different observations. While 

the exact LTS found 108, the Fast-LTS found 4761. Although exact LTS had 

lower           , it didn’t go same for the            (Table 5). 

 

Table 5. The results of Exact and Fast-LTS methods for h=9. 

Parameter Exact LTS (h=9) Fast-LTS (h=9) 

                    

                    

                        

                      

                 

                   

Removed Observations 433, 472, 108 433, 472, 4761 
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For h=8, Fast-LTS methods had the smallest           . While the exact 

LTS found 106, the Fast-LTS found 108 in addition to the previous results. 

Three of removed observation (433, 472, 108) are common for exact and Fast-

LTS methods (Table 6). 

 

Table 6. The results of Exact and Fast-LTS methods for h=8. 

Parameter Exact LTS (h=8) Fast-LTS (h=8) 

                    

                    

                        

                      

                 

                   

Removed Observations 433, 472, 108, 106 433, 472, 4761, 108 

                       

 
 

5. Discussion and Conclusion 

 

In this study, 2D Helmert transformation parameters from ED50 (x-y) to 

ITRF96 (X-Y) was estimated by iterative LS method, Exact LTS and Fast-

LTS methods to compare the outlier detection performances of these meth-

ods by using a real dataset. In LS method, the outlier detection process were 

performed iteratively according to t test. As a result, 433 and 472 points 

were detected as outliers. Because iterative LS method found two points as 

outliers, h was taken 10 for the LTS methods to compare the methods. The 

results of LTS methods are the same as iterative LS method because the 

errors which 433 and 472 contain are too large (Tables 2 and 4). When the 

observations contain errors that are very close to random error, LS method 

generally show masking and swamping effects. But, it is not the case in this 

study. As a result, three methods found the same points as an outlier. 

To compare exact LTS and Fast-LTS both each other, in addition to 10, 3 

different h values (11, 9 and 8) were taken. The Exact and Fast-LTS meth-

ods mostly found the same subset especially when the h was large, that is, 

size of the subset is close to original size (12 points) (Tables 3 and 4). How-

ever, it can be said from Tables 5 and 6 that the methods tend to find differ-

ent subsets when the size of the subset moves away from the original size. 

But, it must be said that the differences of the subsets are generally not dif-

ferent from each other, that is, they generally produce the same subset. 
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As a result, the Exact and Fast-LTS method could be used for the outlier detec-
tion in geodetic applications like georeferencing, surface fitting etc. according 
to authors.
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Otkrivanje grubih pogrešaka uz pomoć robusnih 
točnih i brzih metoda regresije najmanjih 
kvadrata u transformaciji koordinata

SAŽETAK.	Različiti	 terestrički	referentni	sustavi	definirani	su	i	korišteni	zbog	
nekih	 praktičnih	 i	 povijesnih	 događaja	 u	 domeni	 geodezije.	 Prijelaz	 iz	 jednog	
sustava	u	drugi	zahtijeva	transformaciju	koordinata.	Helmertova	transformaci-
ja	najčešće	je	korištena	kao	model	za	2D	mreže.	2D	Helmertova	transformacija	
definirana	je	s	četiri	transformacijska	parametra,	a	dvije	zajedničke	točke	u	oba	
koordinatna	sustava	daju	jedinstveno	rješenje.	Kako	bi	se	povećala	pouzdanost	
parametara	 transformacije,	 obično	 se	 koriste	 redundantna	 opažanja.	 U	 ovom	
slučaju,	najmanji	kvadrati	(LS)	najčešća	su	metoda	koja	se	koristi	za	dobivan-
je	 jedinstvenog	 rješenja	 iz	 redundantnih	 opažanja.	 Međutim,	 grube	 pogreške	
često	 se	 pojavljuju	u	 skupu	podataka	 i	 ozbiljno	utječu	na	 rezultate	najmanjih	
kvadrata.	Općenito	se	primjenjuju	dva	pristupa	za	otkrivanje	grubih	pogrešaka:	
klasično	ispitivanje	grubih	pogrešaka	i	robusne	metode.	Najčešće	robusne	metode	
su	 najmanje	 apsolutno	 odstupanje	 (L1),	M-procjenitelji,	 ukupni	 najmanji	 kva-
drati	(TLS),	generalizirani	M-procjenitelji,	najmanji	medijan	kvadrata	(LMS)	i	
metoda	regresije	najmanjih	kvadrata	(LTS).	Za	rješavanje	metode	regresije	naj-
manjih	kvadrata	postoje	točna	i	približna	rješenja.	U	ovoj	studiji,	parametri	2D	
Helmertove	 transformacije	 između	ED50	 i	 ITRF	koordinata	procjenjuju	 se	LS	
metodom	uključujući	klasična	ispitivanja	grubih	pogrešaka,	točna	LTS	rješenja	
i	brza	LTS	rješenja	što	je	približno	rješenje	za	usporedbu	učinkovitosti	metoda	u	
otkrivanju	grubih	pogrešaka.

Ključne	riječi:	transformacija	koordinata,	otkrivanje	grubih	pogrešaka,	robusno	
rješenje,	najmanji	kvadrati,	regresija	najmanjih	kvadrata,	ITRF,	
ED50,	LTS,	TLS,	GNSS.
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