
 

Instructions for use

Title Modal amplitude and phase estimation of multimode near field patterns based on artificial neural network with the help
of grey-wolf-optimizer

Author(s) Sugawara, Naoto; Fujisawa, Takeshi; Nakamura, Kodai; Sawada, Yusuke; Mori, Takayoshi; Sakamoto, Taiji; Imada,
Ryota; Matsui, Takashi; Nakajima, Kazuhide; Saitoh, Kunimasa

Citation Optical fiber technology, 67, 102720
https://doi.org/10.1016/j.yofte.2021.102720

Issue Date 2021-12

Doc URL http://hdl.handle.net/2115/90541

Rights ©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Rights(URL) http://creativecommons.org/licenses/by-nc-nd/4.0/

Type article (author version)

File Information OFT-revised-ver1.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


 

Modal Amplitude and Phase Estimation of 

Multimode Near Field Patterns Based on 

Artificial Neural Network with the Help of 

Grey-Wolf-Optimizer 
 

 

Author names and affiliations: 
 
Naoto Sugawara 

Graduate School of Information Science and Technology, Hokkaido University 

Sapporo 060-0814, Japan 

sugawara@icp.ist.hokudai.ac.jp 

 

Takeshi Fujisawa 

Graduate School of Information Science and Technology, Hokkaido University 

Sapporo 060-0814, Japan 

fujisawa@ist.hokudai.ac.jp 
 
Kodai Nakamura 

Graduate School of Information Science and Technology, Hokkaido University 

Sapporo 060-0814, Japan 

nakamura@icp.ist.hokudai.ac.jp 
    

Yusuke Sawada 

Graduate School of Information Science and Technology, Hokkaido University 

Sapporo 060-0814, Japan 

sawada@icp.ist.hokudai.ac.jp 
 

Takayoshi Mori 

NTT Access Network Service Systems Laboratories, NTT Corporation 

Ibaraki 305-0805, Japan 

takayoshi.mori.sf@hco.ntt.co.jp 
 

 
Taiji Sakamoto 

NTT Access Network Service Systems Laboratories, NTT Corporation 

Ibaraki 305-0805, Japan 



taiji.sakamoto.un@hco.ntt.co.jp 
 

Ryota Imada 

NTT Access Network Service Systems Laboratories, NTT Corporation 

Ibaraki 305-0805, Japan 

ryota.imada.fh@hco.ntt.co.jp 
 
 

Takashi Matsui 

NTT Access Network Service Systems Laboratories, NTT Corporation 

Ibaraki 305-0805, Japan 

takashi.matsui.uh@hco.ntt.co.jp 
 

Kazuhide Nakajima 

NTT Access Network Service Systems Laboratories, NTT Corporation 

Ibaraki 305-0805, Japan 

kazuhide.nakajima.gr@hco.ntt.co.jp 
 

Kunimasa Saitoh 

Graduate School of Information Science and Technology, Hokkaido University 

Sapporo 060-0814, Japan 

ksaitoh@ist.hokudai.ac.jp 

 

 

Corresponding author: 
 

Takeshi Fujisawa 

Graduate School of Information Science and Technology, Hokkaido University 

Sapporo 060-0814, Japan 

fujisawa@ist.hokudai.ac.jp 



 

Modal Amplitude and Phase Estimation of 

Multimode Near Field Patterns Based on 

Artificial Neural Network with the Help of 

Grey-Wolf-Optimizer 
 

Naoto Sugawara,1 Takeshi Fujisawa,1 Kodai Nakamura,1 Yusuke Sawada,1 
Takayoshi Mori,2 Taiji Sakamoto,2 Ryota Imada,2 Takashi Matsui,2 Kazuhide 

Nakajima,2 and Kunimasa Saitoh,1 

 
1Graduate School of Information Science and Technology, Hokkaido University, 

Sapporo, Japan 
2NTT Access Network Service System Laboratories, Tsukuba, Ibaraki, Japan 

 

Abstract 
A simple and efficient method for estimating modal amplitude and phase of 
multimode near field patterns (NFPs) based on artificial-neural-network (ANN) 
with the help of the optimization method is proposed. The inferred amplitude and 
phase of measured NFPs based on ANN are refined by using a gray-wolf optimizer 
(GWO). By using the proposed method, the image correlation between reproduced 
and measured NFPs is improved without re-training of ANN, which is the most 
time-consuming part of ANN-based numerical modal decomposition technique. 
Numerical examples of three and six mode cases are presented for the estimation 
using simple ANN. For six-mode case, the correlation is greatly improved by using 
the optimizer. Finally, the estimation of the measured NFPs from three-mode 
exchanger and six-mode mode conversion grating is implemented, and 5% 
improvement in the correlation value is observed for six-mode case. The proposed 
method offers alternative way to improve the correlation without using elaborated 
ANN. 
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1. Introduction 

In recent years, mode division multiplexing (MDM) transmission attracts a lot of 

attention for expanding the transmission capacity. In MDM transmission, so-called 

differential mode delay and mode dependent loss deteriorate the receiver performance. 

To overcome these problems, a mode exchanging or mixing technique at a relay point 

between two few-mode fibers (FMFs) is useful [1]. In a mode-exchanger or mode 



mixer, input modes are converted or mixed with other modes. So far, various 

mode-mixing devices, such as mode exchangers (mode Exs) and mode scramblers, 

have been demonstrated in various platforms, such as planar lightwave circuit (PLC) 

[2-6] and fiber-based long-period gratings [7-9].  

In the mode mixers, the output is usually the mixture of multiple modes. To 

evaluate the experimental performance of the device, the estimation of modal 

amplitude and phase of the fabricated device is necessary. We call this method as 

modal decomposition (MD) method, hereafter. To estimate these quantities, various 

MD methods have been developed and they are divided into two categories: 

experimental MD [10-13] and numerical MD methods [14-19]. For experimental MD 

methods, very high precision results can be obtained, however, usually precisely 

adjusted optical interference setup is necessary to accurately estimate the modal 

amplitude and phase, leading to complex measurement system and time-consuming 

post-data processing. For example, a digital holography approach [12,13] can perform 

MD with very high accuracy, however, precise experimental setup is necessary 

together with the preparation of reference beam. On the other hand, numerical MD 

technique usually only require the measurement of NFP and far field pattern (FFP) 

from the output. From the measured NFP (and sometimes FFP), the modal amplitude 

and phase can be estimated by using iterative optimization algorithm, such as, 

Gerchberg-Saxton algorithm [14], stochastic parallel descent algorithm [15], and line 

search algorithm [16]. These approaches are simple compared with the experimental 

ones in terms of the measurement setup. However, as discussed in [16], the accuracy 

and computation time of MD of these iterative methods strongly depend on their initial 

values for modal amplitude and phase. Although good guess for initial values 

accelerates the convergence, it is difficult to obtain it. 

For non-iterative approach, numerical MD methods based on ANN [17-19] 

have attracted much attention. Using the NFP of multimode system as the input, 

trained ANN can infer the amplitude and phase, almost instantaneously. Although the 

training time of ANN usually takes long time, the inference itself does not take time 

once the training is finished. In [17,18], an special ANN called VGG-16 [20] was used 

to decompose the modes of FMF up to six modes. In [19], an special ANN called 

Dense-Net [21] was used to apply the method for large number of modes and ten-mode 

decomposition contained in 55-mode multimode fiber was demonstrated. In these 

articles, numerically calculated modal fields are randomly mixed and the mixed fields 

were used as training data. ANN was trained with the calculated NFPs and very high 

precision training was demonstrated by using special ANNs. However, if the method 

was applied to “measured” NFPs, the accuracy is degraded for large number of modes. 

For example, in [18], the averaged correlation value between numerically calculated 

and inferred NFPs was 0.9842 for six-modes. However, for the measured NFPs, the 

value is reduced to 0.8896. To increase the accuracy, the ANN has to be trained again 



with including the measured data as additional training data. Since the most 

time-consuming part of numerical MD technique is the training part of ANN, it is not 

desirable to train ANN multiple times. Recently, an analytical MD method was 

proposed based on the calculation of pseudoinverse matrix [22]. The method is fast and 

accurate, however, it is also demonstrated that the error (phase error, especially) is 

increased for large number of modes and images with large noises. For both ANN and 

analytical approaches, further refinement of the estimation is difficult as in the 

iterative approach. In [23], a hybrid approach based on ANN and an optimization 

method was proposed. The training data was divided into 10 categories according to 

their shape, and the ANN was used as a classifier. If the image is inputted to the ANN, 

the label of the image is obtained. According to the label, the correlation values 

between the image and the training data belong to the same label were calculated, and 

amplitude and phase coefficients of the training data with maximum correlation are 

used as the initial guess of the optimization method. These values are refined by the 

interior point algorithm. The image reconstruction of three mode case was 

demonstrated, and the method seems to be very effective. However, as shown in 

[17-19] and this paper, the amplitude and phase coefficients can be learned directly in 

ANN, and therefore, the above process can be shortened. Also, generally speaking, 

since the interior point algorithm find a minimum based on gradient-based search, the 

gradient of the unknown function has to be calculated. 

In this paper, to solve these problems, a simple and efficient MD method for 

estimating modal amplitude and phase of multimode NFPs based on ANN with the help 

of the optimization method is proposed. The amplitude and phase coefficients are 

directly learned with ANN and only the inferred phase of measured NFPs is refined by 

using a GWO, which is a meta-heuristic optimization algorithm [24]. Different from 

the gradient-based optimization, the GWO does not need any gradient calculations, and 

good exploitation and local minima avoidance characteristics were demonstrated [24]. 

By using the proposed method, the image correlation between reproduced and 

measured NFPs is improved without re-training of ANN. Furthermore, as shown later, 

the majority of errors comes from the phase error, and therefore, we only refine phase 

values in the iterative approach, reducing the variables for optimization half compared 

with [23]. Numerical examples of three and six mode cases are presented for the 

estimation using simple ANN. In addition to our preliminary conference report [25], 

detailed theoretical design and new experimental results are added in this paper. For 

the six-mode case, the correlation is greatly improved by using the optimizer. Finally, 

the estimation of the measured NFPs from three-mode EX [2] and six-mode mode 

conversion grating [6] based on PLC is implemented, resulting in 5% improvement in 

the correlation value for the six-mode case. The calculation time of the proposed 

approach is inferior to high-speed characteristics of non-iterative approach. However, 



for some applications, such as simple device characterization shown in this paper, the 

accuracy is more important than the decomposition speed. 

 

2. Theory 

We consider the mixture of three or six modes in FMF as shown in Fig. 1. The mixed 

trasnverse field (x,y) can be expressed as 
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where, N is the number of modes, ck is the k-th modal amplitude with  |ck|2 = 1, k(x,y) 

is the electric field of k-th each eigenmode, and θk is the modal phase, whose range is 

[-π，π]. Here, we set the phase of the fundamental mode θ0 = 0 and relative phases to 

the fundamental mode is treated. Therefore the goal of this paper is to estimate ck and 

θk from given (x,y). 

 

2.1 Learning with ANN 

We use the simple ANN as shown in the left panel of Fig. 2 to estimate ck and θk. The 

ANN is composed of input layer, output layer and multiple hidden layers. By renewing 

the weights of the nodes by an error back propagation method, the relationship 

between input and output characteristics are obtained. Here, the input layer is 

composed of the intensity (luminance) of NFP, in other words, pixel values of NFP 

image. In this paper, we use images with the resolution of Np × Np, where Np is the 

number of pixels for one row (or column) of the image. The output layer contains ck 

and cosθk, and there are 2N -1 nodes. For the three-mode case, there are 5 nodes (three 

ck and two cosθk) and for the six-mode case, there are 11 nodes (six ck and five cosθk). 

The reason for using cosθk instead of θk is that there are multiple combinations of the 

phase that give the same NFP, as shown in the right panel of Fig. 2 [17]. This 

deteriorates the learning of ANN. As shown later, the learning is more efficient if only 

the modal amplitude is treated. Both ck and cosθk are normalized to 0 to 1. The number 

of hidden layers is L-1, where L is the number of all layers except for the input layer. 

The number of nodes of i-th hidden layer is Nhd,i (i = 1 to L-1). A sigmoid function is 

used for all the activation functions. No other special techniques, such as ReLU 

function, drop out, normalization, etc, are used. The initial values of weight of each 

node is given by Normal distribution with the standard deviation of √NNFP, where NNFP 

is the number of sample data. The values of weights are renewed based on steepest 

descent method. 

 We generate NNFP randomly mixed data from the field of Fig. 1 by randomly 

generating ck and θk. 90% of the data were used for training and remaining data were 

used for testing. The learning is evaluated by the average error given by 
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where tN is the number of testing data, Otrain , ik is the normalized ck and cosθk of i-th test data. O-

ANN,ik is the output values of trained ANN (normalized ck and cosθk) for i-th test data input. Also, 

the correlation value C  of two images is defined as [17] 
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where Im，  are the luminance and average luminance values of inputted images, I r，  are the 

luminance and average luminance values of ANN-reconstructed images. The range of the C  is 

[0,1], and C  = 1 if two images are perfectly equal. Since we learn cosθk for the phase, there are 

two candidates for θk. Therefore, there are 2N -1 candidates for the phase combination. We 

calculate C  for each set of the phase and choose the phase set having the largest C . 

 

2.2 Phase estimation using GWO 

By using the ANN described in the previous section, we can estimate ck and θk from 

given (x,y). However, the accuracy of learning strongly depends on the architecture of 

the ANN, and for large number of modes, the accuracy is degraded [22]. Furthermore, 

as stated in the Introduction, if the “measured” image is input to the ANN, the 

correlation between the measured and estimated images tends to be low [18]. If we 

only use the ANN for the estimation, the only thing we can do is to train the ANN 

again with adding the new training data. The learning is the most time-consuming part 

in the ANN-based numerical MD technique, the alternative way to increase the 

accuracy is desired. 

Here, we achieve this goal by using GWO [23]. The GWO is one of the optimizing 

algorithms mimicking the hunting of grey wolves. The flowchart of the algorithm is 

summarized in Fig. 3. There are Nw wolves and the position of i-th wolf is denoted by 

vector X i. The dimension of X i corresponds to the search space of wolves. Each wolf 

has a fitness value according to the position, and large fitness means that the wolf is 

near the prey. The position is renewed by the positions of three wolves, , , and , 

who have top 3 fitness. At the iteration t, random vectors A i and C i are initialized as  

 2i ia a A r         (4) 

 2i iC r         (5) 

where a = 2-2t/Nit, N i t is a total iteration count and r i is a random vector. Then, the 

fitness of all wolves are evaluated by their positions X i. In this paper, the fitness and 

the position correspond to the correlation value, C, and the phase set of mixed mode 

fields, θk as denoted in Fig. 3. Therefore, the dimension of X is N-1. From the fitness 

values, top 3 wolves are selected, and their positions are X, X, X. From these 

positions, following vectors are calculated. 



 1, ,i i i  X X A D        (6a) 

 2, ,i i i  X X A D        (6b) 

 3, ,i i i  X X A D        (6c) 

where ∘denotes Hadamard product. Dn is given by 

 ,n i i n i D C X X       (7) 

where n = , , and . Then, the position of i-th wolf is renewed as 

  1
1, 2, 3, / 3t

i i i i
   X X X X       (8) 

where the superscript shows the iteration count.  

 

3. Numerical results for three- and six-mode case 

Here, numerical examples of the estimation is presented. First, we consider three-mode 

case. We generate NNFP = 10,000 images with a resolution of 64 × 64 (Np = 64, the 

number of input nodes is 4,096). Np is determined to match the measured NFPs, shown 

in section 4 later. 9,000 images are used for training and remaining 1,000 images are 

used for testing. First, we train ANN with only modal amplitude to show the difficulty 

of the estimation of the phase. For the amplitude estimation, the number of nodes of 

the output layer is 3. The left panel of Fig. 4 shows the learning curve and averaged C 

of ANN with L = 4 when only ck is learned. We calculate the averaged C between the 

reproduced patterns by ANN and test patterns. For the phases, we used answer values. 

The learning curve is smooth and after training, δ is decreased to below 1%, and 

averaged C is over 0.999. It’s shown that the amplitude can be estimated almost 

perfectly. Next, we estimate both modal amplitude and phase. The right panel of Fig. 4 

shows the learning curve of ck and θk for different number of ANN layers. By 

increasing the number of layers, δ is reduced and it is about 2% for L = 4. The training 

time for this ANN (Np = 64) was 4 hours in our environment. From these results, the 

learning of modal amplitude only is easier than that of modal amplitude and phase. 

However, for the three-mode case, the error is small enough even if the phase is 

included in the learning. 

 Figure 5 shows the total calculation time of various approaches as a function of 

the number of pixels for three-mode case in our environment (Intel(R) Xeon(R) CPU 

E5-2630 v4 @ 2.20GHz, no parallelization technique is used). The dashed line shows 

the calculation time for forward propagation in ANN. The green solid line shows the 

calculation time for reproducing one image with phase estimation, explained in section 

2.1. The calculation time is monotonically increased for the number of pixels and the 

time for forward propagation is very small. The red solid line shows the calculation 



time for reproducing one image with 100 epoch in the GWO with Nw = 4 (If we use a 

parallelization in terms of wolves, the values will be 1/Nw). If we use the GWO for the 

refinement of phase coefficients, the calculation time is further increased. However, as 

shown later for six-mode case, the accuracy is greatly improved. Therefore, the method 

is attractive for specific applications, where the accuracy is more important than the 

speed. Device characterizations, such as mode mixers shown in section 4, are one of 

the candidates. 

Next, we consider six-mode case. We generate NNFP = 100,000 images with a 

resolution of 90 × 90 (Np = 90, the number of input nodes is 8,100). 90,000 images are 

used for training data and remaining 10,000 images are used for testing. The left panel 

of Fig. 6 shows the learning curves for six-mode case. A dashed line shows the 

learning curve when only the amplitude is learned for L = 3. The error is below 2% and 

high accuracy estimation is possible with simple ANN. Solid lines show the learning 

curves for ck and θk for different number of ANN layers. The error is reduced with the 

epoch and ANN with L = 3 (2 hidden layers) shows the best performance in this case. 

The training time for this ANN (Np = 90) was 108 hours in our environment. However, 

there are still 8% errors, showing the difficulty of estimating the phase from the 

intensity pattern only. The right panel of Fig. 6 show the learning curves for different 

NNFP. For each NNFP, 10% of data is used as test data. Although  is decreased for large 

NNFP, the accuracy is not so improved due to the difficulty of phase estimation. As 

shown in [17-19], by using special ANN based on convolutional network, the error can 

be reduced further. However, in this paper, since we want to show the accuracy 

improvement based on alternative technique, we use simple ANN.  

To improve the image correlation without re-training of ANN, we use GWO 

described in 2-2. After estimating ck and θk by using ANN, only θk are refined based on 

GWO. Here, we choose Nw = 32 and the initial positions of wolves are set to all phase 

sets given by the combinations of θk. From the test data, we take three images with 

worst C value (No.1) and not so good C values (No.2 and 3). These original images are 

shown in the left panel of the bottom panel of Fig. 7. The top panel of Fig. 7 shows C 

values of these three images reproduced by ANN or ANN+GWO. For the ANN, we use 

the ANN with L = 3. The leftmost bars show C values reproduced by ANN. If we use 

ANN only approach, the C value for No.1 is only 0.75. C values for No. 2 and 3 are 0.9 

and 0.87. By using the phase set given by ANN, we estimate the true phase set by using 

the GWO. The bars of second from the left shows C values reproduced by ANN+GWO. 

The epoch is 100. By using GWO, the C values are greatly improved, and they are 

0.984, 0.958 and 0.966 for No.1, 2, and 3. The reproduced images are shown in the 

third column in the bottom panel of Fig. 7.  

Next, we investigate the characteristics of ANN+GWO under the noise. We add 

noises to original images with the signal to noise ratio (SNR). Here, SNR is defined as 
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where Imax is the maximum luminance value of the image and Inosei ,max is the maximum 

luminance noise. The luminance values of the pixels of the image with noise, Inoise, are 

given by 
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where I is the luminance value of the original image and rand() is random number 

between 0 and 1. 

The fourth column of the bottom panel of Fig. 7 shows the noise added images 

with SNR = 10 dB. The third and forth bars in the top panel of Fig. 7 shows C values 

reproduced images by ANN+GWO with SNR = 20 and 10 dB. Basically, the C values 

are worse when the noise is added. However, the C values are still greatly larger than 

those obtained by ANN reproduced images, showing the usefulness of the ANN+GWO 

approaches. 

The calculation time of GWO for one wolf is about 1.0 ms for Np = 90 in our 

environment described above. Therefore, if a parallel computation is implemented in 

terms of wolves, the total estimation time is about “1.0 ms × epoch of GWO” and the 

time required for GWO is not so long. However, compared with non-iterative 

approaches, the proposed method takes long time due to the GWO calculation.  

The left panel of Fig. 8 shows the percentage of test data (Occupancy) as a 

function of error in terms of C for three-mode case. Orange and blue bars are for ANN 

and ANN+GWO. The interval of horizontal axis is 0.1%. For example, the percentage 

at a horizontal value of 0.05 means that the percentage of the test data between the 

error of 0 to 0.1%. For ANN+GWO, the phase values of each image speculated by 

ANN are refined based on GWO. GWO iteration is 100. For three-mode case, as shown 

in Fig. 4, since the accuracy of ANN is already high enough, the difference between 

two methods is small. The right panel of Fig. 8 shows the percentage of test data as a 

function of error in terms of C for six-mode case. The interval of horizontal axis is 

2.5%. For ANN, the percentage between 0 to 2.5% error is 70%. The value is increased 

to 97.5% after the phase refinement by GWO. Therefore, C values using ANN+GWO is 

greatly improved compared with those of ANN. 

 

4. Estimation of measured NFP 

Here, we show the modal amplitude and phase estimation of “measured” NFP. We 

measured output NFPs of FMF-pigtailed PLC modules. For three-mode case, output 

NFPs of three-mode EX [2] are examined. For six-mode case, output NFPs of mode 

conversion gratings [6] are examined. 

 



4.1 NFPs of three-mode EX based on PLC 

Figure 9 shows a schematic of three-mode EX. The device was fabricated on 

silica-PLC platform. The device consists of cascaded adiabatic directional coupler, 

directional coupler, and mode rotator, which converts inputted LP11a mode to LP11b 

mode. The device is designed to exchange modes as shown in the right panel of Fig. 8. 

The detail of the device operation principle can be found in [2]. FMF-pigtailed module 

is made by using the fabricated chip and shown in the left picture of Fig. 10. We 

measured the output NFPs by launching LP01, LP11a, and LP11b modes at 1550 nm from 

the input side and they are shown in the right panel of Fig. 10. Launched LP01 mode is 

converted to two peak LP11-like mode, as expected. The mode power ratio of the output 

light for LP01 input is measured by a bending method [26]. Since LP11a,b components 

are easily coupled each other in the pigtailed FMF, we cannot discriminate these 

modes. Therefore, we only measure the power ratio between LP01 and LP11a,b modes. 

The power ratios for LP01 and LP11a,b modes are 34 and 66 %, showing majority of the 

power is converted to LP11a,b mode. Similarly, the power ratios for LP11a,b inputs were 

measured and they are 0.48:0.52 for LP11a, and 0.12:0.88 for LP11b input. These values 

are summarized in Table 1. The next task is to reproduce these images. Figure 11 

shows the reproduced images of three-mode EX based on ANN (left) and ANN+GWO 

(right). Here, the number of wolves is 12, and initial positions (corresponding to the 

phase set) of 4 wolves are set to the combinations of the phase set speculated by ANN 

and the positions of remaining 8 wolves are set to random values. Although the number 

of wolves has a little effect to the C value if Nw > 2N-1, we increased Nw for large space 

exploitation. The iterations of GWO are 100. Numbers shown below the images are C 

between measured and reproduced images. Measured images are successfully 

reproduced with large values of C. In this case, the difference between two methods is 

small. In Table 1, the power ration between LP01 and LP11a,b modes calculated by the 

reproduced images are also shown, and they are in very good agreement with the 

measured results, showing the accuracy of the reproduced images. 

 

4.2 NFPs of six-mode mode conversion gratings based on PLC 

Figure 12 shows a schematic of the mode conversion gratings [6]. One side of the 

waveguide is periodically corrugated to convert input mode to the different mode. The 

pitch, the depth, and the length of the grating waveguide are , d, and L, respectively. 

Here, we consider two grating waveguides (Grating-1: G1, Grating-2: G2). In G1, two 

mode sets (E11-E12 and E21-E22) are simultaneously converted. In G2, E11 mode is 

converted to E31 mode. The BPM simulated fields are shown at the right side of Fig. 12. 

The details of these grating can be found in [5,6].  

 To reproduce the images, we use ANN with L = 3 and NNFP = 100,000 in Fig. 6. 

For GWO, we set Nw = 50, and initial positions of 32 wolves are set to the 

combinations of the phase set speculated by ANN and remaining 18 wolves are set to 



random. The top panel of Fig. 13 and 14 are measured NFPs of G1 and G2. The input 

mode for each NFP is written below the image. Strongly mixed NFPs can be seen. The 

middle panel of Fig. 13 and 14 are reproduced images by ANN. The values below the 

images are correlation values. The averaged correlations are 0.93 and 0.91 for G1 and 

G2.  

 To increase the accuracy, we use ANN+GWO. The left and right panels of Fig. 

15 shows C values as a function of GWO iterations for G1 and G2. The C values for 

each input mode is improved with GWO iterations. The bottom panel of Fig. 13 and 14 

show reproduced images by ANN+GWO. The values below the images are correlation 

values. If the C value obtained by ANN is already large, the improvement is not so 

large. However, if it is small, the improvement is significant. For example, the worst C 

value obtained by ANN is 0.844 for LP02 input of G2. It is improved to 0.93 by using 

ANN+GWO, almost 10% increase in the C value. The averaged correlations are 0.95 

and 0.96 for G1 and G2. These values are summarized in Table 2. The correlations are 

clearly improved, especially for LP11a and LP02 input, showing the usefulness of the 

proposed method. Remaining errors may come from the existence of radiation modes in 

the NFPs, which is not taken into account in the theory. 

 

5. Conclusion 

A novel method for estimating modal amplitude and phase of multimode NFP is 

proposed. The method is based on ANN with the help of optimizer for the phase 

estimation. The method is effective when the accuracy of the speculation based on 

ANN is not enough and offer alternative way to improve the image correlation. 

Measured NFPs of recently proposed three- and six-mode devices are successfully 

reproduced, showing the usefulness. The proposed approach is useful for applications, 

where the accuracy is more important than decomposition speed. Although we used 

simple ANN in this paper, one can use, of course, more elaborated ANN, such as 

convolutional NN, or other non-iterative approach, such as an analytical MD method 

[22].  
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Figure captions 

 

Fig. 1.  Six mode fields of FMF. 

 

Fig. 2.  (Left) A schematic of ANN and (right) NFP candidates for the same set of 

cosine values of the phase set. 

 

Fig. 3. A flowchart of GWO. 

 

Fig. 4.  (Left) Learning curves and the average C values for three-mode case when 

only the modal amplitude is taken into account. (right) Learning curves for both modal 

amplitude and phase. 

 

Fig. 5. The calculation time as a function of the number of pixels for three-mode case. 

 

Fig. 6.  (Left) Learning curve of modal amplitude (dashed) and modal amplitude and 

phase (solid) for six-mode case. (Right) Learning curves for both modal amplitude and 

phase with different NNFP. 

 

Fig. 7.  (Top) C values obtained by ANN and ANN+GWO approaches with and 

without noise for six-mode case. (Bottom) Test and reproduced images. 

 

Fig. 8.  The percentage of test data as a function of error in terms of C for (left) three- 

and (right) six-mode cases. 

 

Fig. 9.  A schematic of three-mode EX and its operation. 

 

Fig. 10.  (left) A picture of the fabricated module of three-mode EX and (right) 

measured NFPs of this module. 

 

Fig. 11.  Reproduced images of three-mode EX based on (left) ANN and (right) 

ANN+GWO. The numbers below Figures indicate C values between measured and 

reproduced images. 

 

Fig. 12.  (Left) A schematic of mode conversion grating and (right) BPM simulated 

field distributions of G1 and G2. 

 

Fig. 13.  (Top) Measured NFPs of G1. The input mode is denoted below the images. 

Reproduced images of G1 based on (middle) ANN and (bottom) ANN+GWO. The 

numbers below Figures indicate C values between measured and reproduced images. 



 

Fig. 14.  (Top) Measured NFPs of G2. The input mode is denoted below the images. 

Reproduced images of G2 based on (middle) ANN and (bottom) ANN+GWO. The 

numbers below Figures indicate C values between measured and reproduced images. 

 

Fig. 15. C values as a function of GWO iterations for (left) G1 and (right) G2. 

 



Table captions 

 

Table 1.  Measured and speculated power ratio between LP01 and LP11 modes of 

three-mode EX 

 

Table 2 Averaged correlation values for G1 and G2 
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Figure 9 
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Table 1  

Input mode LP01 LP11a LP11b 

Power ratio LP01:LP11 

Bending 

method 

0.36:0.64 0.48:0.52 0.12:0.88 

ANN 0.35:0.65 0.47:0.53 0.15:0.85 

 

Table 2 

 G1 G2 

ANN 0.93 0.91 

ANN+GWO 0.95 0.96 

 

 


