

Automatic Control Synthesis with Temporal Logic
Requirements
Citation for published version (APA):
van Huijgevoort, B. C. (2023). Automatic Control Synthesis with Temporal Logic Requirements: Stochastic,
Uncertain, and Nonlinear Systems. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering].
Eindhoven University of Technology.

Document status and date:
Published: 10/11/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/7ed411d4-26e4-4ea3-8a7f-fb88281e05ac

Long title of the report to illustrate the possibility of using a lot of text
A

uto
m

atic C
o

ntro
l Synthesis w

ith Tem
p

o
ral Lo

g
ic Req

uirem
ents

B
irg

it van H
uijg

evo
o

rt
A

uto
m

atic C
o

ntro
l Synthesis w

ith Tem
p

o
ral Lo

g
ic Req

uirem
ents

B
irg

it van H
uijg

evo
o

rt

Birgit van Huijgevoort

Automatic Control Synthesis with
Temporal Logic Requirements

Stochastic, Uncertain, and Nonlinear Systems

A
u

to
m

atic C
o

n
tro

l Syn
th

esis w
ith

 Tem
p

o
ral Lo

g
ic R

eq
u

irem
en

ts Birgit van H
uijgevoort

Automatic Control Synthesis with
Temporal Logic Requirements

Stochastic, Uncertain, and Nonlinear Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr. S.K. Lenaerts, voor een

commissie aangewezen door het College voor Promoties,
in het openbaar te verdedigen op

vrijdag 10 november 2023 om 13:30 uur

door

Birgit Charlotte van Huijgevoort

geboren te Breda

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

Voorzitter: prof. dr. ir. M.J. Bentum
Promotor: prof. dr. S. Weiland
Co-promotor: dr. ir. S. Haesaert
Leden: prof. dr. E. Ábrahám (RWTH Aachen University)

prof. dr. D.V. Dimarogonas (KTH Royal Institute of Technology)
dr. ir. M.A. Reniers

Adviseur: dr. S.E.Z. Soudjani (Newcastle University UK, and
Max Planck institute for software systems)

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeen-
stemming met de TU/e Gedragscode Wetenschapsbeoefening.

This dissertation has been completed in fulfillment of the requirements of the Dutch
Institute of Systems and Control (DISC) for graduate study.

A catalogue record is available from the Eindhoven University of Technology Library.
ISBN: 978-90-386-5864-3

Cover design: Birgit van Huijgevoort & Rob Sanders.
Print: ADC-Dereumaux.

Copyright © 2023 by B.C. van Huijgevoort.
All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission from the copyright owner.

Summary

Automatic Control Synthesis with
Temporal Logic Requirements

Stochastic, Uncertain, and Nonlinear Systems

The role of technology in everyday life is increasing rapidly, and so is the importance
of reliable and safe behavior of high-tech systems. This is especially the case for
safety-critical systems, where malfunctions have disastrous consequences. Even
though it is not always possible to completely avoid malfunctions, for example, due
to uncertain influences, it is crucial to minimize the likelihood of these events. In
this thesis, I look into improving the reliability of safety-critical systems by giving
guarantees on their functional behavior. To this end, I explore the area of automatic,
correct-by-design control synthesis for systems evolving over a continuous state space
and develop formal methods to synthesize provably correct controllers subject to
temporal logic requirements.
Multiple uncertain factors, such as stochastic influences on the dynamics, play a
huge role in the behavior of safety-critical systems. When ignoring these uncertain
influences, it is impossible to achieve guarantees that actually lead to reliable and
safe behavior. That is why it is crucial to manage those uncertain factors and to
obtain probabilistic guarantees on the behavior of safety-critical systems.
To manage the uncertainty in automatic control design, I develop a model-based
formal method and MATLAB tool for stochastic systems, where I exploit and analyze
the trade-off between deviation bounds on the output and probabilistic transitions
through an approximate simulation relation. This method enables an efficient
computation of the similarity quantification and increases the accuracy of the robust
satisfaction probability. Besides that, I improve the computational efficiency and
scalability of correct-by-design control synthesis by introducing multiple precision
layers, which include a trade-off between computation time and accuracy of the
results. Furthermore, we1 extend this framework to uncertain models by including
parametric uncertainty in the stochastic model obtained by measurement data. I
exploit the usage of data even further by giving a glimpse of direct data-driven
control with respect to functional guarantees in which the explicit modeling step is
replaced by a data-driven characterization of the system.

1this work is performed together with a colleague from Newcastle University, UK.

v

Contents

Summary v

1 Introduction 1

1.1 Formal methods for control design 1

1.2 Challenges . 4

1.3 Research questions . 10

1.4 Contributions and thesis outline . 17

I Control of stochastic models 21

2 Quantified abstraction for stochastic systems 23

2.1 Introduction . 24

2.2 Preliminaries . 26

2.3 Coupling compensator: Problem statement and approach 27

2.4 Coupling compensator for finite abstractions 30

2.5 A piecewise-affine abstraction for nonlinear stochastic sytems 40

2.6 Temporal logic control . 47

2.7 Results of the coupling compensator 48

2.8 Conclusion . 54

Appendices

2.A Implementation for PWA abstractions 55

vii

3 SySCoRe: Synthesis via Stochastic Coupling Relations 57
3.1 Introduction . 57
3.2 Temporal logic control . 59
3.3 Toolbox overview . 63
3.4 Benchmarks . 74
3.5 Summary and extensions . 82

4 Specification-guided temporal logic control for stochastic systems:
a multi-layered approach 85
4.1 Introduction . 86
4.2 Problem formulation . 88
4.3 Multi-layered approach . 90
4.4 Homogeneous layers with variable precision 95
4.5 Heterogeneous layers . 106
4.6 Results . 112
4.7 Conclusion . 120

Appendices
4.A Derivation for the case study in Section 4.6c 121

II Data-driven approaches 123

5 A Bayesian approach to temporal logic control of uncertain systems125
5.1 Introduction . 125
5.2 Preliminaries and problem statement 128
5.3 Data-driven parameter estimation 132
5.4 Control refinement via sub-simulation relations 134
5.5 Simulation relations for nonlinear systems 143
5.6 Case studies . 145
5.7 Discussion and conclusions . 150

Appendices
5.A Proof of Theorem 5.4 . 151

6 Direct data-driven control with signal temporal logic specifications155
6.1 Introduction . 155

viii

6.2 Problem statement . 157
6.3 Data-driven characterization of the system 161
6.4 Direct data-driven temporal logic control synthesis 162
6.5 Soundness and completeness analysis 165
6.6 Case studies . 166
6.7 Discussion on the results . 169
6.8 Conclusion . 170

Appendices
6.A Data-generating systems . 171

7 Conclusions and future research directions 173

7.1 Conclusions . 173
7.2 Future research directions . 180

Bibliography 185

List of abbreviations 199

List of symbols 201

Publiekssamenvatting 207

Acknowledgement 209

About the author 211

ix

1
Introduction

For the design and implementation of controllers for complex and safety-critical
systems, it is crucial to obtain guarantees on their high-level behavior. To
this end, we incorporate formal methods into the control design, which allows
us to automatically synthesize a provably correct controller that minimizes
the likelihood of malfunctions and gives guarantees on the behavior. When
considering practical applications of these methods, we must handle multiple
sources of uncertainties, such as stochastic influences on the systems dynamics
and model uncertainties. In this chapter, we introduce the relevant background,
motivation, and research subquestions related to preserving the functionality
guarantees under uncertain circumstances, and give an overview of the main
contributions.

1.1 Formal methods for control design

Technology and automation are everywhere and high-tech systems are getting more
intertwined with our lives every day. Also, the controllers steering these systems
are getting more intelligent and are continuously taking more decisions on their
own (Pannu 2015). Due to this increase in autonomy of systems that interact closely
with humans, reliability is a necessity (Liu et al. 2019). However, technology is
not advanced enough to guarantee fully reliable behavior of such high-tech systems
(Banerjee et al. 2018; Schwarting et al. 2018). This is especially the case for
engineering systems that represent complex physical phenomena that cannot be
captured by a (finite) deterministic system. To alleviate the lack of guarantees, we
often use additional safety measures that reduce the impact of malfunctions. For
example, car manufacturing robots are operating within a safety cage to contain
the damage when a malfunction occurs. But also, for autonomous vehicles, we
have safety measures, since it is still necessary for a driver to be present and touch
the steering wheel from time to time (Pearl 2018). Similarly, we have advanced

2 Chapter 1. Introduction

autopilot systems in airplanes, but in case of malfunctions or emergencies, we still
rely on a pilot in the cockpit. In (Zugaj and Narkiewicz 2009, p. 78), it is stated that
“they (autopilots) may not be able to react sufficiently efficient when an unpredicted
malfunction appears”. These are clear examples that we do not trust reliable and
safe operation of these systems enough (Sheng et al. 2019) and we cannot completely
rely on their correct behavior. To push the technological advancements toward fully
autonomous high-tech systems, we need a different level of reliability. This cannot
be achieved by improving the existing approaches used in industry but requires a
completely different approach often starting at the design process of these systems.
More specifically, the current approach to maximize reliability of operation relies
completely on testing, while this does not give us the guarantees we desire and need
in the future.

Realistically, we cannot always avoid malfunctions and fully guarantee correct
behavior, but we can minimize their likelihood. This is especially the case for safety-
critical systems, where malfunctions can have disastrous consequences. Consider
for example the domain of aviation or autonomous driving, where a malfunction
can lead to people dying. Another example is the oil industry, where malfunctions
lead to the rupture of oil or gas pipes. Such a malfunction does not only affect
people’s lives but also leads to huge losses for the environment and economy. Since
the safety and reliability of these systems are very important, they are called
safety-critical (Rausand 2014). This is the opposite for systems where other safety
measures already reduce the impact of control malfunctions, e.g., a safety cage for
car manufacturing robots. For systems that are not safety-critical, there is a trade-
off between the cost of a malfunction and control design cost. For safety-critical
systems, such a trade-off does not exist since safety and reliability are the most
important aspects. Hence, for safety-critical systems, it is crucial to minimize the
likelihood of malfunctions and it is important to obtain guarantees on their behavior.
Motivated by the importance of reliable behavior for such systems, we formulate
the global driver of this research as follows.

Research Objective

Improve reliability of safety-critical systems by giving guarantees
on their behavior.

The behavior of high-tech systems is usually controlled by one or more controllers.
The area of control theory is often focused on stability and performance guarantees,
while we want to achieve functional guarantees on high-level behavior. As an example,
consider an autonomous driving vehicle, where stability guarantees are necessary
to avoid skidding when turning aggressively (Lima et al. 2018), and performance
guarantees are used in lane keeping (Zhang et al. 2013) or to minimize energy
consumption. We focus on the functional guarantees of high-level behavior, such as
driving from A to B while avoiding static and dynamic obstacles. Such complex
functional requirements can be formulated in a mathematical way using temporal
logic.

1.1. Formal methods for control design 3

The general procedure of designing a controller is illustrated in Figure 1.1a and is
often referred to as the V-model (Skjetne and Egeland 2006; Sarhadi and Yousefpour
2015). This design procedure is iterative and is mainly relying on testing a system
repeatedly. According to a study on the reliability of autonomous driving (Kalra and
Paddock 2016), it takes 275 million failure-free miles to achieve accurate behavior
with 95% confidence on reliability. This would imply driving 24 hours a day for 12.5
years with 100 test vehicles. Obviously, this a very expensive and time-consuming
procedure, that does not even give us actual guarantees on safe behavior. This is
because testing can only show the presence of errors, not their absence (Dijkstra
et al. 1970, Corollary on page 6).

To obtain guarantees on safe behavior, we want to prove the absence of errors,
which would imply considering all possible behaviors of a system. This is impossible
by only testing the system’s behavior through a finite number of testing scenarios.
Besides that, when a test fails it is difficult to determine the exact reason it fails.

Luckily there exists a way to alleviate these issues, namely using so-called formal
methods (Kreiker et al. 2011), that are originally applied for verification (also known
as model checking) by the computer science community (Woodcock et al. 2009).
Currently, formal methods are also developed to automatically design provably
correct controllers (Tabuada 2009; Belta et al. 2017). Such methods can be used as
a complement to the ordinary high-level design step as illustrated in Figure 1.1b.
This formal procedure is known as temporal logic control, correct-by-design control
synthesis or automated control synthesis and allows us to formally prove the absence
of errors and to give formal guarantees on the functional behavior of systems.
Besides that, this reduces the required testing and the number of testing scenarios
substantially. Hence, we conclude that it is crucial to incorporate formal methods
in control design of safety-critical systems, since this allows us to achieve reliable
functioning by giving guarantees on controlled systems behavior.

Guarantees can be provided in either a quantitative or qualitative setting, which
respectively means either guaranteeing that desired behavior is satisfied or violated,
or giving a probability of violating desired behavior. In this thesis, we are interested
in the latter, since in practice, it is not possible to completely avoid malfunctions
due to uncertainties coming from very diverse origins.

For example, when driving on an icy road or flying through a thunderstorm. In those
cases, the dynamics of the system are influenced by certain uncertain factors. Such
factors include the weather, but also people. A bus filled with people and luggage to
(or even over) its capacity behaves differently than an empty bus. Also, power surges
in a power grid network can occur when a lot of people require a lot of energy at
the same time. Since accidents due to for example extreme weather conditions are
unavoidable, we cannot evaluate the behavior over all possible weather conditions
uniformly. Instead, these uncertain influences on the dynamics of a system can be
quantified by a probability distribution.

It should therefore not be surprising that the uncertainty in the behavior of safety-
critical systems is best described by stochastic models. Designing controllers for
stochastic models using formal methods leads to many challenges. In this case,
the control synthesis objective becomes a probabilistic synthesis problem, and the

4 Chapter 1. Introduction

System
requirements

High-level
design

Low-level
design

Coding

Unit
testing

Integration
testing

System
testing

(a) Simplified representation of the V-model to describe the design
procedure of control systems. Detailed versions can be found in, e.g.,
Skjetne and Egeland (2006) and Sarhadi and Yousefpour (2015).

High-level
design

Formalization

Control
Synthesis

Integration
testing

(b) Correct-by-design control synthesis as a complement to the
ordinary high-level design phase.

Figure 1.1: General procedure of control design in (a), with correct-by-design
control synthesis complementing the high-level design step in (b).

probability that the controlled system satisfies the desired behavior, typically cannot
be computed analytically (Abate et al. 2008). Hence, we have to either approximate
this probability or compute an accurate lower bound on the probability to meet the
specification of a controlled system. By doing so, we can still obtain guarantees on
the system’s behavior by expressing the probability of occurrence of malfunctions.
For many safety-critical systems, ignoring these influences or considering them
bounded makes it impossible to obtain realistic guarantees.

1.2 Challenges

Multiple challenges arise when developing formal methods for the control design
of dynamical systems. Formal methods are techniques that use rigorously speci-
fied mathematical models to formally prove correct behavior, hence giving formal
guarantees. We refer to control synthesis with formal guarantees as provably correct
control synthesis. As shown in Figure 1.2, a model-based control design can be split
up into two steps; a modeling step and a control synthesis step.

1.2. Challenges 5

System Model Controller

Specification

Figure 1.2: Graphical representation of model-based control design with two steps;
a modeling step and a control synthesis step (indicated by the dashed box).

The challenges associated with these steps are model uncertainty, model complexity,
and complexity of the specification. These properties can be split up even further as
described next. First, we focus on the control synthesis step, as indicated by the
dashed box in Figure 1.2.
Model complexity. Assume that we have obtained a model of the system.
The model characteristics are inherited from the system, e.g., the behavior of a
deterministic system is described by a deterministic model, while the behavior of a
stochastic system is described by a stochastic model. Such model characteristics
can lead to complex models, which pose challenges for the provably correct control
design of dynamical systems.
The behavior of the model is described either in continuous-time, discrete-time,
or a combination thereof, i.e., as a hybrid model. This leads to models that can
also be continuous-time, discrete-time, or hybrid. However, it should be noted that
through time-discretization (Gottlieb and Ketcheson 2016) continuous-time systems
can be modeled in discrete-time, and this works well in practice since controllers
are digital devices and, therefore, run in discrete-time.
Similarly, we can distinguish between models with a state space that is discrete,
continuous1 or hybrid. Furthermore, the state evolution of the model (and system)
can be deterministic or nondeterministic. If we associate probabilities with the
nondeterminism in state evolutions, we refer to probabilistic or stochastic systems.
The latter is more commonly used within the control community.
Model complexity is a broad term that can be associated with the model character-
istics as described before, with the state dimension of the system (continuous state
space), the number of states of the system (discrete state space), a quantification of
the level or degree of nonlinearity, the dimension of the stochastic influence and
the size of the (possibly unbounded) support of its probability distribution (see
Figure 1.3), and so on.
Complexity of the specification. As mentioned before, we consider specifications
written using temporal logic (Pnueli 1977), which can describe many different
properties such as safety (bad events do not happen), liveness (good events do
happen) and reachability (some situations can eventually be reached). Using
temporal and logical operators, we can combine properties and formulate more
complex specifications.

1In the Computer Science community, they often refer to state spaces that are countable or
uncountable instead of respectively discrete or continuous.

6 Chapter 1. Introduction

0a b

(a) Uniform distribution
with bounded support[
a, b

]
.

0

(b) Gaussian distribu-
tion with unbounded
support [−∞,∞].

Figure 1.3: Different probability density functions (Yates and Goodman 1999,
Chapter 3) with a bounded support in (a), and an unbounded support in (b). The
y-axes are scaled the same.

A common language to describe specifications is Linear Temporal Logic (LTL). We
give a glimpse into LTL specifications next, but for a complete understanding we
refer the interested reader to the following books on formal control synthesis subject
to temporal logic specifications: Belta et al. (2007) and Tabuada (2008).
LTL is given over a set of atomic propositions p ∈ AP that each can be either true
or false. For example, if the system is inside region P1, atomic proposition p1 is
true, otherwise it is false. The syntax of LTL is recursively defined over a set of
atomic propositions p ∈ AP as

ϕ ::= ⊤ | p | ϕ1 ∧ ϕ2 | ¬ϕ | ⃝ϕ | ϕ1 U ϕ2, (1.1)

where ϕ, ϕ1, and ϕ2 are all LTL specifications, and the different syntax rules are
split up by the vertical lines |. The term recursively defined indicates that the
specification can be built recursively from these syntax rules. The semantics are
as follows. The ⊤ stands for true and is unconditionally true. Specification ϕ = p
is satisfied if atomic proposition p is true. Specification ϕ = ϕ1 ∧ ϕ2 is satisfied if
both ϕ1 and ϕ2 are true. Specification ¬ϕ is satisfied if ϕ is false. Specification ⃝ϕ
is satisfied if ϕ is true at the next instance. Specification ϕ1 U ϕ2 is satisfied if ϕ1
is true until ϕ2 is true. Additional operators can be built from operators in the
minimal syntax in (1.1), namely,

• The or-operator, ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2), which holds if either ϕ1 or ϕ2 is
true.

• The implication, ϕ1 =⇒ ϕ2 := ¬ϕ1 ∨ ϕ2, which holds if ϕ1 equal to true
implies that ϕ2 is also equal to true.

• The eventually-operator, ♢ϕ := ⊤ U ϕ, which holds if ϕ is true at some time
instance in the future.

• The always-operator, □ϕ := ¬♢¬ϕ, which holds if ϕ is true at all time
instances.

An LTL specification can equivalently be given as an automaton, which also gives an
indication of the complexity of the specification. For example, a safety specification
ϕsafety = □¬punsafe, with punsafe the atomic proposition associated to an unsafe set of

1.2. Challenges 7

outputs, can equivalently be given by the automaton in Figure 1.4b. This automaton
starts in the state Initial and evolves depending on which atomic proposition is true.
In this case, the initial state is also accepting indicated by the double line around
it. When punsafe is false it follows the self-loop, otherwise, it goes to the sink state.
The specification is satisfied if the accepting state is visited infinitely often.
Some specifications are easier to solve than others. Even though it is difficult
to quantify the complexity of a specification precisely, we provide some insight
into this. In Figure 1.4, we show multiple automatons. Safety specifications
ϕsafetyF =

∧5
i=0⃝

i¬punsafe and ϕsafety with respectively a finite and infinite time-
horizon are respectively shown in (a) and (b). A reach-avoid specification ϕRA =
□(¬pavoid ∧ ♢preach) is shown in (c). Those specifications are in general rather
easy to satisfy, while the one in (d) is more complex. However, the complexity
also depends on the regions themselves, e.g., a safety specification with small safe
regions is more complex than one with a large safe region. Similarly, reach-avoid
specification ϕRA becomes more complicated if the avoid region (atomic proposition
pavoid), is close to the goal region (atomic proposition preach). A major impact
on the complexity is the time-horizon of the specification, where we distinguish
between specifications over a finite or infinite horizon, of which examples are shown
in Figures 1.4b and 1.4a.

Initial Accept

Sink

⊤

(a) Safety specification with a finite time-horizon. Blue and red transitions
are respectively labeled with ¬punsafe and punsafe.

Initial Sink

¬punsafe

punsafe

(b) Safety specifica-
tion.

Initial Accept

Sink

¬pavoid
¬pavoid ∧ preach

¬pavoid ∧ preach

¬pavoid
pavoid

pavoid

(c) Reach-avoid specification.

Initial

Accept

(d) More complex
specification, with
omitted labels.

Figure 1.4: Automatons corresponding to different types of specifications with
increasing complexity.

8 Chapter 1. Introduction

Model uncertainty. With model uncertainty we refer to the uncertainty encoun-
tered when modeling a system (first step in Figure 1.2), indicating that there is
most likely a mismatch between the system and its model. It is a broad concept and
can be split up as follows. On the one hand, we can have parametric uncertainty
with respect to the dynamics or the noise distribution (for stochastic systems). On
the other hand, we can have uncertainty with respect to the structure of the model
itself. It is important to understand that model uncertainty restricts the application
of formal methods for the control design of realistic systems. More specifically,
uncertainty will always have an effect on reliability in the sense that increasing
uncertainty will decrease reliability. Luckily, we can obtain information about the
system about either its states, its inputs, or its (noisy) outputs, which helps to
reduce model uncertainty.
Next, we elaborate more on the challenges in this thesis and give a brief overview
of what has been done already and what are still open challenges.

1.2a Challenges due to model complexity

To understand the challenges due to model complexity, some background on the
origin of formal methods is required. Formal methods are initially developed
for reliability of software programs (Hinchey et al. 2008). For example, to avoid
deadlocks, but also for checking completeness, traceability, verifiability, and re-
usability (Ghose 2000). These methods are applied in various engineering domains,
such as process control, population census, railway signaling, air traffic control,
telecommunications, and radiotherapy (Bowen and Hinchey 2005; Hinchey and
Bowen 2012). Furthermore, formal methods are also used to automatically generate
code (Abrial 1996; Berry 2008).
Since their application is originally focused on software programs, formal methods
have been developed for systems with a discrete state space, evolving over discrete-
time. Formal methods are extended to probabilistic systems using probabilistic
model checking (Kwiatkowska et al. 2005; Kwiatkowska et al. 2007). Probabilistic
systems define probabilities over nondeterministic state transitions and are in that
sense similar to stochastic systems when considering their state evolutions. Similarly,
results on control synthesis over quantitative and qualitative probabilistic properties
exist for finite-state Markov decision processes2 (Baier and Katoen 2008), however,
their extension to continuous-state stochastic systems is very challenging. The fact
that these methods have originally been limited to discrete state spaces is because
a countable number of states allows considering all possible behaviors of a system,
thus yielding formal guarantees on the behavior.
However, we want to obtain formal guarantees for engineering systems, which
mainly are dynamical systems that evolve both over time and space in a continuous
sense. Most engineering systems are best modeled by a combination of continuous
evolutions and discrete transitions, leading to a hybrid state space. This continuous
or hybrid behavior leads to many challenges with respect to verification (Schupp
et al. 2015) and control synthesis (Belta et al. 2007).

2A Markov decision process can be used to describe the dynamics of a stochastic system.

1.2. Challenges 9

Some of these challenges are already resolved for control synthesis of both discrete-
time and continuous-time deterministic systems through for example (approximate)
simulation relations (Girard and Pappas 2007; Tabuada 2008; Belta et al. 2017),
approximate simulation functions (Girard and Pappas 2009) or barrier certificates
(Bisoffi and Dimarogonas 2018).

The step towards stochastic systems over a continuous state space is very challenging
and lacks effective computational methods that are both accurate and scalable
to higher-dimensional models. This is especially the case when the stochastic
influence has a distribution with an unbounded support (illustrated in Figure 1.3
and discussed in detail in (Yates and Goodman 1999, Chapter 3)), which we refer to
as an unbounded disturbance. Many methods for stochastic systems are, therefore,
restricted to bounded disturbances (Majumdar et al. 2020; Majumdar et al. 2021)
or often provide trivial lower bounds for unbounded disturbances (Anand et al.
2021). These challenges prevent the application of approximate methods to realistic
stochastic systems. It is necessary to overcome these challenges since the step toward
stochastic systems is crucial in order to obtain reliable behavior of safety-critical
systems.

1.2b Challenges due to the complexity of the specification

Not only the complexity of the model is an issue, but also the complexity of the
specification. Many methods excel at handling a single specific property (Vinod
et al. 2019; Santoyo et al. 2021). Developing methods for general specifications is
becoming more interesting recently (Anand et al. 2021; Dutreix et al. 2022; Zhong
et al. 2023b), but usually have other restrictions, e.g., with respect to the model
structure or time horizon of the specification. Especially infinite-horizon properties
are challenging when considering stochastic systems (Tkachev and Abate 2011;
Tkachev et al. 2017) and most methods are restricted to specifications over finite
horizon (Lavaei et al. 2017; Jagtap et al. 2020; Santoyo et al. 2021; Nejati et al.
2022). With the increasing importance of reliable behavior, the specifications of
safety-critical systems are also becoming more complex. Hence, methods should be
able to handle complex specifications in order to be applicable to realistic systems.

1.2c Challenges due to model uncertainty

Obtaining a model is in itself a challenging task, especially when the behavior
of the system is complex. For many realistic systems, it is impossible to obtain
a model that describes the behavior of the system with 100% accuracy. Since
the guarantees obtained through formal methods only hold with respect to the
considered mathematical model, we cannot disregard model uncertainty in order to
obtain provably correct controllers for safety-critical systems.

This model uncertainty, can for example be uncertainty about the model’s parameters
or the noise distribution of a stochastic system, but also about the model structure
itself. Similarly, when using data measurements of a system to identify an accurate

10 Chapter 1. Introduction

model, we must take the uncertainty of the sensors into account. In the area of
control design, this is known as measurement noise.
Managing such uncertainties by the correct interpretation of measurement data is a
well-known topic in control design. Multiple learning-based methods are currently
investigated for automated control synthesis (Kapoor et al. 2020; Kazemi and
Soudjani 2020; Kalagarla et al. 2021), however, methods that consider stochastic
systems evolving over continuous spaces started to appear only recently (Kazemi
et al. 2022; Lavaei et al. 2022b). Also, these uncertainties must be taken into
account in order to give accurate formal guarantees on the reliable behavior of
safety-critical systems.

1.3 Research questions

With respect to the challenges of applying formal methods to control design of safety-
critical systems, we focus on taking the various uncertain influences into account.
We use the term uncertainty to describe both stochastic dynamics and model
uncertainty. Currently, formal methods cannot be used to synthesize controllers for
realistic systems, since the available methods cannot handle their complexity yet.
This is especially the case when considering stochastic systems, for which there are
no efficient computational methods available that are both accurate and scalable to
higher-dimensional models, and that can handle specifications that need to be valid
over infinite-horizon time intervals. Besides that, there is a lack of coverage of model
uncertainty in the literature, even though it is crucial to address the uncertainty
when using a model to describe the behavior of the (stochastic) system. Therefore,
we formulate the following research subquestion.

Research Question

How to manage uncertainty when automatically synthesizing con-
trollers subject to temporal logic requirements?

Before, we mentioned multiple sources of uncertainties, namely the stochastic
influence on system dynamics and model uncertainty. Model uncertainty is quite a
broad concept, which consists of among others, parametric uncertainty, measurement
noise, and unknown systems, i.e., unknown model structures. In this thesis, we
consider parametric uncertainty and unknown systems, while ignoring measurement
noise. Besides that, we focus on discrete-time systems over a continuous state
space and describe their dynamics either through (stochastic) difference equations
or Markov Decision Processes.
The research subquestion highlights the fact that we want to have automatic
controller synthesis with functional guarantees. This is illustrated in Figure 1.5.
The goal is to develop a synthesis algorithm (blue box) that takes as input a
model and a specification. To accurately describe the behavior of a dynamical

1.3. Research questions 11

Model

Specification

Synthesis
algorithm Controller

Figure 1.5: Automatic control synthesis algorithm that takes a mathematical
model and specification as input, and outputs a controller that guarantees that the
controlled system provably satisfies the specification.

system in a mathematical way we use a model with state evolutions in a continuous
state space. The specification, on the other hand, describes the desired high-level
behavior of the system. Hence, instead of focusing on low-level behavior, such
as stability and disturbance rejection, we focus on high-level behavior. We refer
to guarantees on high-level behavior as functionality guarantees. To describe
this high-level behavior mathematically, we use temporal logic. Based on the
mathematical description of both the system behavior (through a model) and the
desired behavior (through a temporal logic specification), the synthesis algorithm
should automatically design a controller, such that the desired behavior is provably
satisfied by the controlled system. In this sense, automatic control synthesis implies
that there is no handwritten, experimentally validated code present anymore.

To evaluate the research subquestion, we identify five subquestions. We start
by considering the stochastic transitions of the model as the uncertain influence
(subquestions 1-3). Next, we pose subquestions on how to handle model uncertainty
and whether we can use data-driven control to tackle this additional uncertainty
(subquestions 4 and 5). The subquestions are posed next and a more detailed
explanation follows.

1) How to automatically synthesize the most reliable controller for a stochastic system
influenced by an unbounded disturbance, such that it provably satisfies specifications
over infinite-time horizons, and accurately quantify this reliability with a satisfaction
probability?

2) How to develop efficient computational tools for solving subquestion 1?

3) How to improve the computational efficiency and scalability of provably correct
control synthesis methods for stochastic systems, while maintaining accurate lower
bounds on the satisfaction probability of their specifications?

4) After obtaining a stochastic model with explicit parametric uncertainty from data,
how to synthesize provably correct controllers that are robust against parametric
uncertainty?

5) Without using an explicit model, how to obtain guarantees on the behavior of
unknown systems subject to temporal logic properties?

12 Chapter 1. Introduction

1.3a Control of stochastic models

We consider safety-critical systems described by stochastic difference equations
and aim to design a provably correct controller, such that certain specifications
are satisfied with a high probability. More specifically, we model the behavior of
the system in discrete-time with an additive stochastic disturbance on the state
dynamics as follows:

xt+1 = f(xt, ut) + wt

yt = h(xt).

Here, xt denotes the state at the current time step t, ut the input and wt is an
additive disturbance coming from a probability distribution with an unbounded
support (cf. Figure 1.3b). The deterministic part of the state update xt+1 is
described by a function f(xt, ut) based on the current state and input. Furthermore,
yt is the output, and h(xt) is the function mapping states to outputs. This class
of discrete-time dynamics has a continuous state space, for which it is often not
possible to compute the satisfaction probability analytically (Abate et al. 2008).
However, there are two possible ways to solve this issue. We can either use sufficient
conditions to analyze the continuous-state model directly or construct a finite-state
approximation of the model, known as an abstraction (Lavaei et al. 2022a). The
first is known as abstraction-free or discretization-free techniques, the latter are
abstraction-based techniques. Both techniques have to deal with a trade-off between
accuracy and efficiency.

Abstraction-free methods have been developed to suffer less from the curse of
dimensionality, and are therefore, more scalable to models with a higher-dimensional
state space. However, abstraction-free methods are more limited with respect
to the structure of the model and the type of specifications they can handle.
Furthermore, they have computational issues and often lack guarantees of finding a
controller. More specifically, abstraction-free methods are either using certificates,
or optimization approaches. The latter, including stochastic model predictive
control (SMPC) (Mesbah 2016) do not provide formal guarantees and are often
only applicable to stochastic reachability problems of linear systems (Lavaei et al.
2022a). Methods based on finding certificates, such as simulation functions (Lavaei
et al. 2019) or (control) barrier certificates (Jagtap et al. 2020) have no general
effective computational method and are limited with respect to the structure of
the model or the specification (Lavaei et al. 2022a). These techniques either use
sum-of-square (SOS) optimization (Papachristodoulou et al. 2013; Wongpiromsarn
et al. 2015) or counter-example guided inductive synthesis (CEGIS) (Jagtap et al.
2020) to compute a certificate. The former is limited to specific safety specifications
(Wongpiromsarn et al. 2015), while the iterative nature of the latter makes it difficult
to analyze the computational complexity. Besides that, CEGIS does not provide
completeness guarantees, which means that there is no guarantee that a certificate
will be found, even though it exists (Jagtap et al. 2020; Lavaei et al. 2022a). A
major shortcoming of barrier certificate methods is that they either require strict
super-martingale conditions (Kushner 1967, Chapter I) that often do not exist
(Steinhardt and Tedrake 2012; Jagtap et al. 2020) or use relaxed super-martingale

1.3. Research questions 13

conditions, but are limited to specifications over a finite horizon (Nejati et al. 2020;
Anand et al. 2022). Therefore, the application of these abstraction-free methods is
limited to specific models and/or specifications.
Subquestion 1. Since abstraction-based methods can be applied to a wide range
of models and specifications, we focus on abstraction-based methods in the first
chapter of his thesis. The available literature on these methods is quite large
(Zamani et al. 2014; Soudjani et al. 2015; Haesaert et al. 2017b; Cauchi and Abate
2019; Haesaert and Soudjani 2020; Lavaei et al. 2020a; Lavaei et al. 2022a), however,
the present methods lack assessment of the accuracy of the computed satisfaction
probability and computational efficiency of the controller synthesis. Furthermore,
they are often limited to assumptions on a bounded stochastic influence of noise
signals or to specifications over a finite horizon (Majumdar et al. 2020; Nejati et al.
2020; Majumdar et al. 2021; Anand et al. 2022). First, we focus on developing a
computational method that is suitable for such systems and complex specifications.
To this end, we formulate the following subquestion.

Subquestion 1

How to automatically synthesize the most reliable controller for a
stochastic system influenced by an unbounded disturbance, such that
it provably satisfies specifications over infinite-time horizons, and
accurately quantify this reliability with a satisfaction probability?

Proposed methodology for Subquestion 1. As illustrated in Figure 1.6,
the following steps are performed in abstraction-based control synthesis. After
computing a finite-state approximation of the original, continuous-state model, the
controller is synthesized based on the specification. This finite-state controller is
refined back to the continuous space, after which it can be applied to the original
model. To maintain the probabilistic guarantees, we have to quantify the similarity
between the original and abstract models. This can be done through a simulation
relation. The main conservatism of abstraction-based methods is caused by this
similarity quantification. Furthermore, for this similarity quantification, the original
and abstract models are coupled through their disturbances and inputs. After which,
the similarity is quantified through deviation bounds. In Haesaert et al. (2017b), a
simulation relation is introduced that computes two bounds, the output deviation
or precision ϵ and probability deviation or confidence δ. This simulation relation
together with the corresponding robust computation of the satisfaction probability
from Haesaert and Soudjani (2020) can be applied to properties unbounded in
time. However, an efficient approach to compute the deviation bounds has not
been developed yet. Most simulation relation methods do not explicitly design the
coupling between the model and its abstraction, and are, therefore, restricted with
respect to the possible deviation bounds and simulation relations. Hence, it is of
interest to explicitly design the coupling, such that the set of possible simulation
relations can be derived. By introducing this additional freedom in the similarity
quantification, the computed satisfaction probability is more accurate, and it allows

14 Chapter 1. Introduction

Model

Abstract model Abstract controller

Controller

Specification

A
b
st
ra
ct

R
efi
n
e

Implement

Synthesis

Continuous-state

Discrete-state

Figure 1.6: Schematic overview of the steps performed in abstraction-based control
synthesis, with a continuous-state layer in red and a discrete-state layer in blue.

for efficient computation. A detailed formulation of this problem and the results
can be found in Chapter 2 entitled Quantified abstraction for stochastic systems.
Subquestion 2. Besides establishing the theory underlying the provably correct
design of controllers, it is equally important to develop tools that facilitate their
application. For stochastic systems, a collection of tools that can perform formal
controller synthesis is already available. However, they are often not capable to
handle the desired complexity of the specification and the stochastic influence on
the dynamics. Therefore, we formulate the second subquestion as follows.

Subquestion 2

How to develop efficient computational tools for solving subques-
tion 1?

Proposed methodology for Subquestion 2. It is of interest to develop a tool
that is applicable to properties that are unbounded in time and that can handle
stochastic systems with a possibly unbounded disturbance. To this end, we develop
a tool that employs the method developed in Chapter 2. Details about this MATLAB
tool can be found in Chapter 3, entitled SySCoRe: Synthesis via Stochastic Coupling
Relations.
Subquestion 3. The method introduced in Chapter 2 shows that when quantifying
the similarity between a model and its finite-state abstraction, there is a trade-off
between precision and confidence. Hence, we can either quantify the similarity
with a high precision and a low confidence, or the other way around. However, in
many cases, it is not always necessary to have a high precision over the whole state
space. For such cases, it is of interest to develop a method with variable precision.
Hence, we want to design a method where we can switch between multiple deviation
bounds. This is expected to increase the total accuracy of the computed robust
satisfaction probability.

1.3. Research questions 15

Besides accuracy, it is also important to consider the computational efficiency and
scalability of the approach. More specifically, we are interested in scalability to
higher-dimensional (in terms of state space) systems, more complex specifications,
and so on. These factors are limiting the applicability of correct-by-design control
synthesis methods to realistic systems. Therefore, we pose the following subquestion.

Subquestion 3

How to improve the computational efficiency and scalability of prov-
ably correct control synthesis methods for stochastic systems, while
maintaining accurate lower bounds on the satisfaction probability?

Proposed methodology for Subquestion 3. To this end, we exploit the
variable precision even further, by using it to combine an abstraction-free method
with an abstraction-based method. By doing so, we have the benefits of both
methods. That is, we use an abstraction-free method that is generally very fast
but has a low precision in the areas where possible. In the areas where we need
to have high precision, we use abstraction-based methods. Since we only use
this abstraction-based method on small areas, we suffer less from the curse of
dimensionality than compared to using this method for the complete state space.
The abstraction-free method guides the system towards high-precision areas such
that the final specification is satisfied with overall high precision. Therefore, this
method is expected to solve the given subquestion. Details and results are given in
Chapter 4 entitled Specification-guided temporal logic control for stochastic systems:
a multi-layered approach.

1.3b Data-driven approaches

Next, we go beyond stochastic systems with a given model by expanding towards
model uncertainty.
Subquestion 4. Normally, when designing a provably correct controller, it is
designed based on one specific model with fixed parameter values. This means that
your guarantees also only hold for this specific model. If parameters or parameter
values are uncertain, we aim to obtain guarantees for all the possible parameters
within the set, and, therefore, obtain robust guarantees on the functional behavior
of the system. This is the main reason why we pose the fourth subquestion as
follows.

Subquestion 4

After obtaining a stochastic model with explicit parametric uncer-
tainty from data, how to synthesize provably correct controllers that
are robust against parametric uncertainty?

16 Chapter 1. Introduction

Proposed methodology for Subquestion 4. More specifically, we are interested
in automatically synthesizing a provably correct controller for stochastic systems
by identifying a parametric model of the system with uncertainty incorporated in
the parameter values. Hence, we consider a model with a constant, but unknown
parameterization. This controller should be independent of the parameter, such that
the obtained guarantees hold for all the models within the considered parameter set.
In Chapter 5 entitled A Bayesian approach to temporal logic control of uncertain
systems, we follow a two-step methodology. First, we obtain data from the unknown
system, which we use to compute a set that with a certain probability contains the
(true) unknown parameter, and we obtain a parameterized set of models. Next,
we consider the nominal model within this set and synthesize a provably correct
controller for this model using an abstraction-based approach. Finally, we refine
the obtained abstract controller to a controller for the parametric model, such that
we can maintain the obtained guarantees on the uncertainty set. This method,
therefore, relates the satisfaction of temporal requirements by the identified model
to that of the original unknown stochastic model with respect to the size of the
data set. The most crucial part of this method is the introduction of the concept
of sub-similarity relation, which is inspired by the coupling compensator approach
developed in Chapter 2.

Subquestion 5. In the following Chapter 6, we go even further by considering
a direct data-driven method, that does not require any exact knowledge on the
structure of the model. Most methods require an explicit modeling step, which is
prone to errors that impact the guarantees on the behavior. Hence, by excluding this
explicit modeling step, we circumvent this issue and obtain even stronger guarantees
on the system’s behavior. Hence, we introduce the last subquestion.

Subquestion 5

Without using an explicit model, how to obtain guarantees on the
behavior of unknown systems subject to temporal logic properties?

Proposed methodology for Subquestion 5. In Chapter 6, entitled Direct data-
driven control with signal temporal logic specifications, we make a first step towards
such a direct data-driven method by considering deterministic systems and signal
temporal logic. Furthermore, we restrict ourselves to properties bounded in time,
while we envision extensions to stochastic systems and infinite-horizon properties.
The method described in this chapter consists of two main steps. First, we use a
data-driven method within the behavioral framework to obtain a characterization
of the system using only a single input-output trajectory. Next, we write the signal
temporal logic specification into mixed-integer linear programming constraints and
formulate the control synthesis as an optimization problem.

1.4. Contributions and thesis outline 17

1.4 Contributions and thesis outline

This thesis consists of two main parts; Part I: Control of stochastic models, and
Part II: Data-driven approaches. Within these two parts, there are 5 main chapters.
Each main chapter focuses on a specific research subquestion and can be read
independently. However, to get a full theoretical understanding, readers are advised
to start with Chapter 2 before reading Chapters 3-5. As illustrated in Figure 1.7,
Chapter 3 discusses the implementation of Chapter 2 through a MATLAB toolbox.
Chapters 4 and 5 are extensions of Chapter 2 and contain multiple references to
this chapter. Chapter 6 can be read completely separately. A concise list of the
symbols and abbreviations used in this thesis is given at the end.

Chapter 2: Coupling-based framework
Chapter 3:
SySCoRe

Chapter 4:
Multi-layered approach

Chapter 5:
Parametric uncertainty

Chapter 6:
Model-free
approach

Implementation

E
x
te
n
si
on

Figure 1.7: Graphical overview of the outline of this thesis, with the blue chapters
belonging to Part I and the red chapters belonging to Part II.

In Part I, which is Chapters 2-4, we consider the uncertainty only being the stochastic
influence on the dynamics and focus on computational challenges, such as accuracy
and scalability to higher-dimensional models, as detailed by subquestions 1-3. In
Part II, which is Chapters 5 and 6, we consider data-driven methods to handle
model uncertainty. In Chapter 5, we focus on stochastic models with additional
parametric uncertainty as in subquestion 4. In Chapter 6, we give a first step
towards direct data-driven control that does not require any model at all, as in
subquestion 5. This first step is performed for deterministic systems. We end this
thesis by giving a conclusion and a vision of future work in Chapter 7.
Next, we highlight the contributions associated to each main chapter in this thesis
and the papers that are not explicitly included.

Chapter 2

In this chapter, we consider discrete-time models with a continuous state space,
whose state evolution is influenced by an additive, (possibly unbounded) stochastic
influence. The models can be either linear time-invariant or nonlinear, and the

18 Chapter 1. Introduction

(possibly infinite-horizon) specifications are given in syntactically co-safe linear
temporal logic. We develop a method that explicitly designs the coupling between
a model and its (finite-state) abstraction by introducing a coupling compensator.
This allows us to characterize the set of possible simulation relations and yields
more freedom in the similarity quantification. Furthermore, this means that it is
possible to efficiently compute the deviation bounds corresponding to the similarity
quantification. As a result, when explicitly designing the coupling the lower bound
on the satisfaction probability is more accurate. For linear time-invariant systems,
we further describe how to include model reduction, which allows scalability to
higher-dimensional models.
Corresponding papers:
B.C. van Huijgevoort, and S. Haesaert. “Similarity quantification for linear stochas-
tic systems: A coupling compensator approach.” Automatica, Vol. 144, 110476,
2022.
B.C. van Huijgevoort, S. Weiland, and S. Haesaert. “Temporal logic control of
nonlinear stochastic systems using a piecewise-affine abstraction.” IEEE Control
Systems Letters, Vol. 7, pages 1039-1044, 2022.

Chapter 3

In this chapter, we develop a MATLAB tool that synthesizes provably correct controllers
for stochastic systems influenced by an unbounded disturbance and that are subject
to properties unbounded in time. The programming was a joint effort of the author
of this thesis, Dr. S. Haesaert, with some help from O. Schön, MSc. from Newcastle
University. The (developmental) software is owned by Dr. S. Haesaert.
Corresponding paper:
B.C. van Huijgevoort, O. Schön, S. Soudjani, and S. Haesaert. “SySCoRe: Synthesis
via Stochastic Coupling Relations.” 26th ACM international conference on hybrid
systems: computation and control (HSCC), pages 1-11, 2023.

Chapter 4

In this chapter, we start with extending the method of Chapter 2 to improve
scalability. More specifically, we include a variable precision by introducing multiple
layers with different bounds on the confidence and precision. This improves the
accuracy of the computed lower bound on the satisfaction probability substantially.
Next, we include the possibility to have abstraction-free layers, which improves the
applicability of this method to higher-dimensional systems while still achieving an
overall high accuracy.
Corresponding papers:
B.C. van Huijgevoort, and S. Haesaert. “Multi-layered simulation relations for
linear stochastic systems.” IEEE European control conference (ECC), pages 728-
733, 2021.
B.C. van Huijgevoort, S. Soudjani, and S. Haesaert. “Specification-guided temporal
logic control for linear stochastic systems: a multi-layered approach.” In preparation.

1.4. Contributions and thesis outline 19

Chapter 5

In this chapter, we extend the method of Chapter 2 to stochastic systems with
explicit parametric uncertainty by introducing a sub-simulation relation. Besides
that, we use data to obtain a credible set for the uncertain parameter.
The research involved in this topic has been done by the author of this thesis in
collaboration with O. Schön, MSc from Newcastle University (UK). O. Schön took
the lead in the research while being supervised by both Dr. S. Haeasaert and Dr. S.
Soudjani. As this work required deep knowledge of the coupling compensator in
correct-by-design control synthesis, we have helped out with the understanding of the
topic and with technical details and proofs. Similarly, an extension of the methods
in the SySCoRe toolbox (Chapter 3) was key to perform the simulations of the
paper, so we introduced the toolbox as well as assisting with the extension towards
parametric uncertainty. For this, the author of this thesis has been extensively
involved in the technical support. Besides that, a poster on this topic has been
presented by the author of this thesis at HSCC ‘23.
Corresponding publications:
O. Schön, B.C. van Huijgevoort, S. Haesaert, and S. Soudjani. “Correct-by-Design
Control of Parametric Stochastic Systems.” IEEE Conference on Decision and
Control (CDC), pages 5580-5587, 2022.

O. Schön, B.C. van Huijgevoort, S. Haesaert, and S. Soudjani. “Poster Abstract:
Data-Driven Correct-by-Design Control of Parametric Stochastic Systems.” 26th
ACM international conference on hybrid systems: computation and control (HSCC),
pages 1-2, 2023.

O. Schön, B.C. van Huijgevoort, S. Haesaert, and S. Soudjani. “Bayesian Regression
for Temporal Logic Control of Uncertain Systems.” Manuscript under review.

Chapter 6

In Chapter 6, we make an initial step towards direct data-driven methods that do
not require an explicit model. Those methods are often referred to as model-free.
We focus on deterministic systems and envision possible future directions for this
promising line of research.
Corresponding paper:
B.C. van Huijgevoort, C. Verhoek, R. Tóth, and S. Haesaert. “Direct data-driven
signal temporal logic control of linear systems.” In preparation.

20 Chapter 1. Introduction

Other contributions

Here, we briefly discuss the contributions that are not explicitly included in this
thesis.
Together with our colleagues from Newcastle University (UK), we have extended
the work in Chapter 5 to stochastic systems where the stochastic influence does not
come from a Gaussian distribution, but from a Gaussian mixture model. Since any
probability distribution can be approximated by a Gaussian mixture model, this
theoretically extends our work to stochastic systems where the stochastic influence
comes from any distribution. Besides that, we also extend our work to compositional
systems, where it is possible to split up the system and specifications in a particular
manner.
Corresponding paper:
O. Schön, B.C. van Huijgevoort, S. Haesaert., and S. Soudjani. “Verifying the Un-
known: Correct-by-Design Control Synthesis for Networks of Stochastic Uncertain
Systems.” Accepted for publication at the 62nd IEEE Conference on Decision and
control (CDC).

We participated in the ARCH workshop on stochastic modeling for multiple years
and the results are published (not peer-reviewed). This workshop and friendly
competition focuses on formal verification and control of continuous- and hybrid-
state systems. Together, we develop generic benchmarks and use them to compare
our software tools to each other.
Corresponding papers:
A. Abate, H. Blom, J. Delicaris, S. Haesaert, B.C. van Huijgevoort, A. Lavaei, A.
Remke, O. Schön, S. Schupp, F. Shmarov, S. Soudjani, L. Willemsen, and P. Zuliana.
“ARCH-COMP23 Category Report: Stochastic Modelling”, In preparation.

A. Abate, H. Blom, J. Delicaris, S. Haesaert, A. Hartmanns, B.C. van Huijgevoort,
A. Lavaei, H. Ma, M. Niehage, A. Remke, O. Schön, S. Schupp, S. Soudjani, and L.
Willemsen. “ARCH-COMP22 Category Report: Stochastic Modelling”, Proceedings
of 9th International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH), EPiC Series in Computing, Vol. 90, pages 113-141, 2022.

A. Abate, H. Blom, N. Cauchi, K. Degiorgio, M. Fränzle, E.M. Hahn, S. Haesaert, H.
Ma, M. Oishi, C. Pilch, A. Remke, M. Salamati, S. Soudjani, B.C. van Huijgevoort,
and A.P. Vinod. “ARCH-COMP19 Category Report: Stochastic Modelling”, 6th
International Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH), EPiC Series in Computing, Vol. 61, pages 62-102, 2019.

Part I

Control of stochastic models

2
Quantified abstraction for

stochastic systems

Synthesizing controllers for continuous-state stochastic systems automatically,
while giving guarantees on the probability of satisfying (infinite-horizon) tem-
poral logic specifications crucially depends on abstractions with a quantified
accuracy. This is especially the case when considering accurate deviation
bounds between a stochastic continuous-state model and its finite (reduced-
order) abstraction. This similarity quantification with deviation bounds is often
formalized by approximate stochastic simulation relations. However, computing
these simulation relations is challenging and tends to give conservative relations.
A key part of the simulation relations is the (implicit) choice of coupling
between the stochastic transitions of the models. In this chapter, we introduce
a parameterization of this coupling and resolve it dynamically via what we
will define as a coupling compensator. First, we use this coupling compensator
for linear stochastic systems to give a comprehensive approach to compute
the simulation relations. More precisely, we develop a computational method
that characterizes the set of possible simulation relations and gives a trade-off
between the error contributions on the systems output and deviations in the
transition probability.
Secondly, we extend the use of this coupling compensator to nonlinear systems.
To handle the nonlinearity of the system effectively, we use finite-state abstrac-
tions based on piecewise-affine approximations together with tailored simulation
relations that leverage the local affine structure.
Lastly, we show the effect of the coupling compensator on the guaranteed
satisfaction probability for several case studies.

24 Chapter 2. Quantified abstraction for stochastic systems

2.1 Introduction

Airplanes, cars, and power systems are examples of safety-critical control systems,
whose reliable and autonomous functioning is critical. It is of interest to design
controllers for these systems that provably satisfy formal specifications such as linear
temporal logic (LTL) formulae (Pnueli 1977). For systems described by stochastic
discrete-time models, these formal specifications have to be verified probabilistically.
Despite recent advances (Desharnais et al. 2003; Julius and Pappas 2009; Zamani
et al. 2014; Soudjani et al. 2015; Haesaert et al. 2017b; Cauchi and Abate 2019;
Lavaei et al. 2019; Haesaert and Soudjani 2020; Lavaei et al. 2020a; Lavaei et al.
2021), the provably correct design of controllers for such stochastic models with
continuous state spaces remains a challenging problem. Many of those methods
(Zamani et al. 2014; Soudjani et al. 2015; Haesaert et al. 2017b; Cauchi and Abate
2019; Haesaert and Soudjani 2020; Lavaei et al. 2020a) rely on constructing a
stochastic finite-state model or abstraction that approximates the original model.
Such abstraction-based methods are often more suitable for complex temporal logic
specifications, but their application to real-world problems tends to suffer from
scalability issues and conservative lower bounds on the satisfaction probability.
In this chapter, we focus on reducing the conservatism of an abstraction-based
approach that applies to unbounded stochastic disturbances and specifications with
an infinite time horizon.
A key factor in the conservatism is the quantification of the similarity between the
original and abstract model for which approximate simulation relations (Desharnais
et al. 2003; Zamani et al. 2014; Haesaert et al. 2017b; Haesaert and Soudjani 2020)
and stochastic simulation functions (Julius and Pappas 2009; Lavaei et al. 2019) can
be used. These methods inherently build on an implicit coupling of probabilistic
transitions (Segala and Lynch 1994; Tkachev and Abate 2014). The latter shows
that the coupling between stochastic processes is crucial, and omitting its explicit
choice may lead to conservative results. Therefore, in this chapter we focus on the
following research question.

Research Question

How to explicitly design the coupling between a continuous-state
model and its abstraction, such that we can efficiently compute
accurate approximate stochastic simulation relations?

Besides abstraction-based methods that leverage finite-state approximations, abstraction-
free methods also exist. Next to methods that target specific model classes and
limited reach-(avoid) specifications (Kariotoglou et al. 2017; Vinod et al. 2019),
recent results based on barrier certificates (Huang et al. 2017; Jagtap et al. 2020;
Nejati et al. 2020; Anand et al. 2021) can handle larger sets of specifications. Even
though these methods suffer less from the curse of dimensionality, they are often
restricted to specific model structures or specifications. For example, the barrier
certificates in Jagtap et al. (2020) and Nejati et al. (2020) are limited to finite-time

2.1. Introduction 25

horizon specification. Besides that, they require supermartingale conditions (Anand
et al. 2021) or relaxed versions thereof (Jagtap et al. 2020; Nejati et al. 2020).
Furthermore, for all of these methods, it is not known whether a solution can be
found even if one exists and the computational complexity grows substantially with
the length and complexity of the specification.

On the other hand, abstraction-based methods are very common in the provably
correct design of controllers (Zamani et al. 2014; Soudjani et al. 2015; Haesaert et al.
2017b; Cauchi and Abate 2019; Haesaert and Soudjani 2020; Lavaei et al. 2020a)
and they can in general handle more challenging specifications. In Lavaei et al.
(2021), it has been shown that (ϵ, δ)-stochastic simulation relations (Haesaert et al.
2017b; Haesaert and Soudjani 2020) that quantify both the probabilistic deviation
and the deviation in (output) trajectories can be used for compositional verification
of large scale stochastic systems with nonlinear dynamics and that this outperforms
results that leverage simulation functions. Therefore, in the first part of this chapter
we focus on the design of efficient (ϵ, δ)-stochastic simulation relations via tailored
coupling designs. Moreover, we will show that this allows us to characterize the set
of coupling simulations and to trade off the error contributions of the output of the
system with deviations in the transition probability. The main difference between
this chapter and Haesaert et al. (2017b) is that in Haesaert et al. (2017b) the focus
is on the conditions under which simulation relations can be established, while here,
we are interested in finding such relations with efficient computation methods.

This chapter introduces a coupling compensator to leverage the freedom in coupling-
based similarity relations such as (Haesaert et al. 2017b) via computationally
attractive set-theoretic methods. To achieve this, we exploit the use of coupling
probability measures through a coupling compensator. We start with some pre-
liminaries and a mathematical formulation of the objective in the next section. In
Section 2.3, we define the coupling compensator in a general manner that applies
to both linear and nonlinear stochastic systems. Next, in Section 2.4 we develop
a method to efficiently compute the deviation bounds for finite-state abstractions
of linear stochastic systems by formulating it as a set-theoretic problem using the
concept of controlled-invariant sets. To tackle large-scale systems, i.e., systems
with a higher-dimensional state space, we also apply the coupling compensator
to reduced-order models. In Section 2.5, we extend the theory on the coupling
compensator to nonlinear stochastic systems by using a piecewise-affine abstraction.
In Section 2.6, we explain how to perform the controller synthesis. To evaluate the
benefits of this method, we consider specifications written using syntactically co-safe
linear temporal logic (Kupferman and Vardi 2001; Belta et al. 2017) and analyze
the influence of both the deviation bounds on the satisfaction probability for linear
systems (Section 2.7). In the same section, we apply the model-order reduction
method to a system with a 7-dimensional state space and apply our method to a
nonlinear system.

26 Chapter 2. Quantified abstraction for stochastic systems

2.2 Preliminaries

We denote the set of positive real numbers by R+ and the n-dimensional identity
matrix by In. We limit our attention to spaces that are finite, Euclidean, or Polish.
For a set X in Euclidean space, which is measurable and separable, the Borel
measurable space is denoted as (X,B(X)) with B(X) the σ-algebra of the Borel
sets (Knapp 2016). A probability measure P over this space has realizations x ∼ P
with x ∈ X. The set of probability measures on the measurable space (X,B(X)) is
denoted by P(X). The weighted two-norm ||x||D is defined as ||x||D =

√
x⊤Dx. The

Minkowski sum of two sets A and B is defined as A⊕B := {a+ b | a ∈ A, b ∈ B}.
Model. Consider a system whose behavior can be modeled by a discrete-time
nonlinear stochastic difference equation

M :
{
x(t+ 1) = f(x(t), u(t), w(t))
y(t) = h(x(t)), ∀t ∈ {0, 1, 2, . . . },

(2.1)

initialized with x(0) = x0 and with state x(t) ∈ X ⊂ Rnx , input u(t) ∈ U ⊂ Rnu ,
disturbance w(t) ∈W ⊂ Rnw , and output y(t) ∈ Y ⊂ Rny . We assume that the
functions f : X× U×W→ X and h : X→ Y are Borel measurable and sufficiently
smooth. Furthermore, w(t) is an independent and identically distributed (i.i.d.)
noise signal with realizations w(t) ∼ Pw. Throughout this chapter, we use x(t+ 1),
xt+1, and x+ interchangeably to denote a time update of a variable.
Remark 2.1. This model (2.1) can equivalently be written as a general Markov
Decision Process (gMDP) as defined in Chapter 4.

A (finite) path ω[0,t] := x0, u0, x1, u1, . . . , xt of M consists of states xk and inputs uk,
for which xk+1 = x(k+ 1) follows (2.1) for a given state x(k) = xk, input u(k) = uk
and disturbance w(k) at time steps k. A control strategy µ := µ0, µ1, µ2 . . . consists
of maps µt(ω[0,t]) ∈ U assigning an input u(t) to each finite path ω[0,t] generated
by the model (2.1), that is u(t) = µt(ω[0,t]). In this work, we focus on stationary
control strategies C : u(t) = µ(ω[0,t]) that have a finite memory (formal definition
given in Section 5.2b). We denote the controlled system with M×C, similar to the
notation of a feedback composition as in Tabuada (2009, Section 6.1)
Specifications. Consider specifications written using syntactically co-safe linear
temporal logic (scLTL) (Kupferman and Vardi 2001; Belta et al. 2017) a subset of
LTL (Pnueli 1977). Denote with AP = {p1, . . . , pN} the set of atomic propositions
and let 2AP be the alphabet with letters π ∈ 2AP. An infinite string of letters is a
word πππ = π0π1π2 . . . with associated suffix πππt = πtπt+1πt+2

Definition 2.1. An scLTL formula ϕ is recursively defined over a set of atomic
proposition as

ϕ ::= p|¬p|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|⃝ϕ|ϕ1 U ϕ2,

with p ∈ AP.

The semantics of scLTL is defined for the suffixes πππt as follows. An atomic proposition
πππt |= p holds if p ∈ πt, while a negation πππt |= ¬p holds if πππt ̸|= p. A conjunction

2.3. Coupling compensator: Problem statement and approach 27

πππt |= ϕ1 ∧ ϕ2 holds if both πππt |= ϕ1 and πππt |= ϕ2 hold. A disjunction πππt |= ϕ1 ∨ ϕ2
holds if either πππt |= ϕ1 or πππt |= ϕ2 holds. A next operator πππt |= ⃝ϕ holds if
πππt+1 |= ϕ is true. An until operator πππt |= ϕ1 U ϕ2 holds if there exists an i ∈ N
such that πππt+i |= ϕ2 and for all j ∈ N, 0 ≤ j < i we have πππt+j |= ϕ1. By combining
multiple operators, the eventually operator ♢ϕ := true U ϕ can also be defined.
A labeling function L : Y → 2AP assigns letters π = L(y) to outputs y ∈ Y. A
state trajectory x :=x0x1x2 . . . satisfies a specification ϕ, written x |= ϕ, iff the
generated word πππ satisfies ϕ at time 0, i.e., πππ0 |= ϕ. The satisfaction probability
of a specification is the probability that words generated by the controlled system
M×C satisfy the specification ϕ, denoted as P(M×C |= ϕ).
General problem. The goal of this work is to automatically develop a controller C,
such that the probability that the controlled system M×C satisfies a specification
ϕ is higher than some threshold. Mathematically, this is formulated as follows.

Problem 2.1. Given model M as in (2.1), an scLTL specification ϕ and a probability
pϕ ∈ [0, 1], design a controller C, such that

P(M×C |= ϕ) ≥ pϕ. (2.2)

2.3 Coupling compensator for similarity quantifi-
cation: Problem statement and approach

2.3a Problem statement

The design of controller C and its exact quantification P(M×C |= ϕ) is computa-
tionally hard for continuous-state stochastic models (Abate et al. 2008). Therefore,
the approximation and similarity quantification of continuous-state models is a basic
step in the provably correct design of controllers. These steps implicitly depend
on the coupling between the continuous-state model and its approximation. This
section introduces the underlying coupling problem and proposes an approach to
efficiently solve this problem for general nonlinear systems.
Problem statement. Suppose that model M given in (2.1), has an abstraction
written as

M̂ :
{
x̂(t+ 1) = f̂(x̂(t), û(t), ŵ(t)),
ŷ(t) = ĥ(x̂(t)),

(2.3)

initialized with x̂(0) = x̂0, and with state x̂ ∈ X̂, input û ∈ Û, disturbance ŵ ∈W
and output ŷ ∈ Ŷ = Y, and with functions ĥ : X̂ → Y and f̂ : X̂× Û×W→ X̂.
Here, X̂ and Û can be finite and ŵ(t) is an i.i.d. noise sequence with realizations Pŵ.
We quantify the difference between the original model M and the abstract model
M̂ by bounding the difference between the outputs y and ŷ. For this, we need to
resolve the choice of inputs u, û, and the stochastic disturbance. The former is
often done by equating u(t) = û(t) and analyzing the worst-case error. An interface

28 Chapter 2. Quantified abstraction for stochastic systems

function (Girard and Pappas 2009) generalizes this by refining the control input û
to u as a function of the current states

Uv : Û× X̂× X→ U. (2.4)

More specifically, we get u(t) = Uv(û(t), x̂(t), x(t))∀t ∈ {1, 2, . . . }, with Uv a static
function. In a similar way, we can resolve the stochastic disturbance. We first relate
the probability measures Pŵ and Pw of the stochastic disturbances ŵ and w as
follows.

Definition 2.2 (Coupling of probability measures). A coupling (Hollander 2012)
of two probability measures Pŵ and Pw on the same measurable space (W,B(W)) is
any probability measure W on the product measurable space (W×W,B(W×W))
whose marginals are Pŵ and Pw, that is1,

Pŵ =W · π̂−1, Pw =W · π̄−1, (2.5)

for which π̂ and π̄ are projections, respectively defined by

π̂(ŵ, w) = ŵ, π̄(ŵ, w) = w, ∀ (ŵ, w) ∈W×W.

Remark 2.2. There are many possible couplings. Two trivial examples are:

W = Pw ⊗ Pŵ, with Pw,Pŵ arbitrary ⇔ w, ŵ are independent,
Pw = Pŵ with W on the diagonal ⇔ w = ŵ.

We can also designW as a measurable function of the current state pair and actions,
similarly to the interface function. This yields a Borel measurable stochastic kernel
associating to each (û, x̂, x) a probability measure

W̄ : Û× X̂× X→ P(W2) (2.6)

that couples probability measures Pŵ and Pw as in Definition 2.2. We can now
define a composed model as illustrated in Figure 2.1 as follows.

Definition 2.3 (Composed model). Given an interface function (2.4) and a coupling
measure (2.6) resolving the inputs and disturbances, respectively, the model M̂∥M
composed of models M̂ and M can be defined as[

x̂(t+ 1)
x(t+ 1)

]
=

[
f̂(x̂(t), û(t), ŵ(t))

f(x(t),Uv(û(t), x̂(t), x(t)), w(t))

]
[
ŷ(t)
y(t)

]
=

[
ĥ(x̂(t))
h(x(t))

]
(2.7)

with states (x̂, x) ∈ X̂×X, input û ∈ Û, coupled disturbances (ŵ, w) ∼ W̄(· |û, x̂, x),
and outputs ŷ, y ∈ Y.

1Requirement (2.5) on W can be equivalently given as

W(Â × W) = Pŵ(Â) for all Â ∈ B(W)
W(W × A) = Pw(A) for all A ∈ B(W).

2.3. Coupling compensator: Problem statement and approach 29

M̂||M

M :

{
xt+1 = f(xt, ut, wt)

yt = h(xt)

Kernel
(ŵt, wt) ∼ W

Interface
ut = Uv(ût, x̂t, xt)

M̂ :

{
x̂t+1 = f̂(x̂t, ût, ŵt)

ŷt = ĥ(x̂t)

Ĉ

wt

ŵt (x̂t, ût)

ut xt

ŷt

yt

x̂tût

Figure 2.1: Composed model M̂∥M as defined in Definition 2.3.

The deviation between M̂ and M can be expressed as the metric dY(ŷ, y) := ||y− ŷ||,
with ŷ, y ∈ Y for the traces of the composed model. Similar notions have been used
in Julius and Pappas (2009), Zamani et al. (2014), and Haesaert and Soudjani (2020).
Note that the choice of coupling is a critical part of this model composition. The
problem refining the research question from the introduction can now be formulated
as follows.

Problem 2.2. Explicitly design the coupling of probabilistic transitions to efficiently
quantify the similarity between models M̂ and M as in (2.3) and (2.1).

2.3b A coupling compensator approach

As in Haesaert et al. (2017b), consider an approximate simulation relation to
quantify the similarity between the stochastic models M̂ and M. The following
definition is a special case of Definition 9 in Haesaert et al. (2017b) applicable to
stochastic difference equations.

Definition 2.4 ((ϵ, δ)-stochastic simulation relation). Let stochastic difference
equations M̂ and M with metric output space (Y,dY) be composed into M̂∥M based
on the interface function Uv (2.4) and the Borel measurable stochastic kernel W̄
(2.6). If there exists a measurable relation R ⊆ X̂× X, such that

1. (x̂0, x0) ∈ R,

2. ∀(x̂, x) ∈ R : dY(ŷ, y) ≤ ϵ, with y = h(x) and ŷ = ĥ(x̂),

3. ∀(x̂, x) ∈ R, ∀û ∈ Û : (x̂+, x+) ∈ R holds with probability at least 1− δ,

30 Chapter 2. Quantified abstraction for stochastic systems

then M̂ is (ϵ, δ)-stochastically simulated by M and this simulation relation is denoted
as M̂ ⪯δϵ M.

Here, ϵ and δ denote the output and probability deviation respectively. Furthermore,
state updates x̂+ and x+ are the abbreviations of x̂(t+ 1) and x(t+ 1). The choice
of interface Uv impacts how much of the deviations between x(t) and x̂(t) is
compensated at the next time instance x(t+ 1) and x̂(t+ 1). Similarly, the coupling
W̄ induces a term w − ŵ that can compensate for state deviations. We can choose
to explicitly parameterize the coupling based on this compensator term. To this
end, the notion of a coupling compensator is defined next.

Definition 2.5 (Coupling compensator). Consider probability measures Pŵ and Pw
on the same measurable space (W,B(W)). Given a bounded set Γ and a probability
1− δ, we say that W̄γ is a coupling compensator if it parameterizes the coupling,
such that for any compensator value γ ∈ Γ we obtain the event w − ŵ = γ with
probability at least 1− δ, that is, W̄γ(w − ŵ = γ) ≥ 1− δ.

Remark 2.3. Without loss of generality, this definition is applicable to the case
where ŵ is in a lower-dimensional space than w. In that case, the disturbance space
W is only partially used for the coupling compensator.

In the next section, we resolve Problem 2.2 for (ϵ, δ)-simulation relations by either
choosing the coupling compensator as a linear mapping of the state deviations when
X̂ ⊂ X, that is, W̄(·|û, x̂, x) = W̄γ with γ = F (x− x̂) or as a linear mapping of the
projected state deviation when X̂ and X are of a different dimension.

In Section 2.5a, we resolve Problem 2.2 for nonlinear systems by choosing the
coupling compensator as a linear mapping of the state deviations in a piecewise
manner, that is W̄(· | û, x̂, x) = W̄i(· | û, x̂, x) = W̄γi

if x̂ ∈ P̂i, with γi = Fi(x− x̂).
Here, i denotes the partition of the piecewise-affine approximation.

2.4 Coupling compensator for finite abstractions
of linear stochastic systems

2.4a A coupling compensator for linear stochastic systems

Consider a linear time-invariant (LTI) system whose behavior is modeled by the
stochastic difference equation

M :
{
x(t+ 1) = Ax(t) +Bu(t) +Bww(t)
y(t) = Cx(t),

(2.8)

initialized with x0 and with matrices A ∈ Rnx×nx , B ∈ Rnx×nu , Bw ∈ Rnx×nw , C ∈
Rnu×nx , state x ∈ X, input u ∈ U, and output y ∈ Y. Furthermore, the stochastic
disturbance w ∈W is an i.i.d. Gaussian process.

2.4. Coupling compensator for finite abstractions 31

Remark 2.4. Without loss of generality, we assume that the disturbance w(t) has
unbounded Gaussian distribution with mean 0 and identity covariance matrix, that
is w ∼ N (0, I). Any system (2.8) with disturbance w ∼ N (µ,Σ) can be rewritten
to a system in the same class with an additional affine term (Allen et al. 2008).

To leverage model checking results (Baier and Katoen 2008) for finite-state Markov
decision processes, we can abstract the model (2.8) to a finite-state representation.

Finite-state abstraction M̂. To obtain a finite-state model M̂, partition
the state space X in a finite number of regions Aj ⊂ X, such that

⋃
j Aj = X

and Aj ∩ Al = ∅ for j ̸= l. Here, j ∈ {1, 2, . . . , NA}, with NA the finite number
of regions. Choose a representative point in each region, X̂j ∈ Aj and define
the set of abstract states x̂ ∈ X̂ based on these representative points2, that is,
X̂ := {X̂1, X̂2, X̂3, . . . , X̂NA

}. Furthermore, a finite set of inputs is selected from U
and defines Û. To define the dynamics of the abstract model, consider the operator
Π : X→ X̂ that maps states x ∈ X to the representative point X̂j ∈ Aj whenever
x ∈ Aj Using Π to obtain a finite-state abstraction of M, we get the abstract model
M̂

M̂ :
{
x̂(t+ 1) = Π(Ax̂(t) +Bû(t) +Bwŵ(t))
ŷ(t) = Cx̂(t),

(2.9)

with x̂ ∈ X̂ ⊂ X, û ∈ Û ⊂ U, and ŵ ∼ N (0, I), and initialized with x̂0 ∈ X̂. This
initial state is the associated representative point, that is x̂0 = X̂j if x0 ∈ Aj or
equivalently x̂0 = Π(x0). The abstract model M̂ can also be written as the following
LTI system

M̂ :
{
x̂(t+ 1) = Ax̂(t) +Bû(t) +Bwŵ(t) + β(t)
ŷ(t) = Cx̂(t),

(2.10)

by introducing the deviation β(t) as in Haesaert and Soudjani (2020). The β(t)-term
denotes the deviation caused by the mapping Π in (2.9) and takes values in the
following bounded set B :=

⋃
j{X̂j−xj |xj ∈ Aj}. At each time step t, the deviation

β(t) ∈ B ⊆ Rnx is a function of x̂(t), û(t) and ŵ(t), however, for simplicity we write
β(t).

Similarity quantification of M̂. To quantify the similarity between the abstract
model M̂ and the original model M, we use the notion of (ϵ, δ)-stochastic simulation
relation given in Definition 2.4. Without loss of generality we limit the interface
function to

u(t) := û(t). (2.11)

Next, we show that a coupling compensator can be computed based on the maximal
coupling between two probability measures and that the linear compensator can be

2Beyond the given representative points, one generally adds a sink state to both the continuous-
and the finite-state model to capture transitions that leave the bounded set of states.

32 Chapter 2. Quantified abstraction for stochastic systems

used to solve the similarity quantification efficiently. Based on the composed model
(c.f., Definition 2.3), we can define the error dynamics between (2.8) and (2.10) as

x+
∆(t) = Ax∆(t) +Bw(w(t)− ŵ(t))− β(t), (2.12)

where the state x∆ and state update x+
∆ are the abbreviations of x∆(t) := x(t)− x̂(t)

and x∆(t+ 1), respectively. Furthermore, the stochastic disturbances (ŵ, w) are
generated by the coupling compensator W̄γ as in (2.6) with w − ŵ the coupling
compensator term.
The error dynamics can be used to efficiently compute the simulation relation,
denoted as R. In contrast to Julius and Pappas (2009) and Blute et al. (1997) and
Desharnais et al. (2004), which quantify the deviation between the abstract and
original model either completely on ϵ or completely on δ by fixing W̄γ , we design a
coupling compensator W̄γ with compensator value γ to achieve a preferred trade-off
between ϵ and δ. Conditioned on event w − ŵ = γ as in Definition 2.5 the error
dynamics (2.12) reduce to

x+
∆(t) = Ax∆(t) +Bwγ(t)− β(t) (2.13)

and hold with a probability of W̄(w − ŵ = γ | û, x̂, x) = W̄γ(w − ŵ = γ) that is
at least larger than 1 − δ for all γ ∈ Γ. For a given γ ∈ Γ, we can compute an
optimal coupling W̄γ as follows. First, we introduce random variable ŵγ ∼ N (γ, I)
to replace the abstract disturbance

ŵ(t) = ŵγ(t)− γ(t). (2.14)

Next, we find the coupling W̄γ for ŵ and w by finding a maximal coupling of ŵγ
and w after which we can directly obtain W̄γ for ŵγ and w. The computation of a
maximal coupling in P(W×W) can be found in Hollander (2012) and builds on top
of maximizing the probability mass that can be located on the diagonal w− ŵγ = 0.
Denote with ρ(· |0, I) and ρ̂(· |γ, I) the respective probability density functions of
w ∼ N (0, I) and ŵγ ∼ N (γ, I). As in Hollander (2012), we construct a maximal
coupling W̄γ that has on its diagonal w − ŵγ = 0 the sub-probability distribution

ρ ∧ ρ̂ := min(ρ, ρ̂), (2.15)

where min denotes the minimal value of the probability density function for different
values of w. We can now establish a relation between deviation δ and value γ.

Lemma 2.1. Consider two normal distributions Pw := N (0, I) and Pŵγ
:= N (γ, I)

with γ ∈ Γ. Then there exists a coupled distribution Wγ such that

w − ŵγ = 0 for (ŵγ , w) ∼ Wγ

with a probability of at least

1− δ := inf
γ∈Γ

2 cdf(− 1
2 ||γ||). (2.16)

Here, cdf(·) denotes the cumulative distribution function of a one-dimensional
Gaussian distribution N (0, 1).

2.4. Coupling compensator for finite abstractions 33

Proof. First, an analytical expression for the maximal coupling of two disturbances
w ∼ N (0, I) and ŵγ ∼ N (γ, I) is derived. Their probability density functions are
denoted by ρ(· |0, I) and ρ̂(· |γ, I), respectively. The maximal coupling is based on
equation (2.15). The probability density function of this maximal coupling is denoted
as ρw : W×W→ R+ and can be computed as follows. Denote the sub-probability
density function ρmin(w) = min(ρ(w), ρ̂(w)), with ∆γ =

∫
Rnw

ρmin(w)dw and define
the coupling density function as

ρw(w, ŵγ) = ρmin(w)δŵγ (w) + (ρ(w)− ρmin(w))(ρ̂(ŵγ)− ρmin(ŵγ))
(1−∆γ) , (2.17)

with δŵγ
(w) the shifted Dirac delta function equal to +∞ if equality w = ŵγ holds

and 0 otherwise. The first term of the coupling (2.17) puts only weight on the
diagonal w = ŵγ . The second term puts the remaining probability density in an
independent fashion. The sub-probability ∆γ can be computed as

∆γ =
∫
Rnw

min(ρ(w), ρ̂(w))dw =
∫
E

ρ(w)dw +
∫
Ê

ρ̂(ŵγ)dŵγ . (2.18)

Here, half spaces Ê and E denote the respective regions satisfying ρ > ρ̂ and ρ ≤ ρ̂.
These regions can be represented as nw-dimensional half-spaces.
As mentioned before, ρ(· |0, I) and ρ̂(· |γ, I) are probability density functions of
Gaussian distributions w and ŵγ and therefore, ρ and ρ̂ are strictly decreasing
functions for increasing values of ||w|| and ||w− γ|| respectively. Furthermore, these
two functions are equal except for a γ-shift. This implies that for a given point w if

• ||w|| < ||w − γ|| then ρ(w) > ρ̂(w) (half space Ê)

• ||w|| ≥ ||w − γ|| then ρ(w) ≤ ρ̂(w) (half space E).

This last item shows that the half-spaces Ê (1st item) and E (2nd item) are separated
by a hyper-plane through the point w = 1

2γ and perpendicular to the vector γ. This
hyper-plane, denoted byH is characterized byH :=

{
w ∈ Rnw | γTw − 1

2 ||γ||
2 = 0

}
,

and illustrated in Figure 2.2.

Since ρ and ρ̂ are Gaussian density distribution that are equal up to γ-shift, as
depicted in 2D in Figure 2.2, the integrals in (2.18) are equal to each other and ∆γ =
2

∫
E
ρ(w)dw. It is trivial to see that this integral evaluates to ∆γ = 2 cdf(− 1

2 ||γ||).
To obtain the worst case probability as in (2.16) we need to take into account all
possible values of γ as 1− δ := infγ∈Γ ∆γ = infγ∈Γ 2 cdf(− 1

2 ||γ||). This concludes
the proof of Lemma 2.1.

This lemma shows that by choosing a maximal coupling the error dynamics (2.13)
hold with a probability of at least 1− δ. We can now quantify the similarity via
robust controlled positively invariant sets, also referred to as controlled-invariant
sets in the remainder of the paper. Here, we consider the error dynamics (2.13) as
a system with constrained input γ and bounded disturbance β.

34 Chapter 2. Quantified abstraction for stochastic systems

w1

w2

γ

H

Ê E

Figure 2.2: Level sets of probability density functions ρ(·|0, I) (black circle) and
ρ̂(·|γ, I) (dashed circle). Half spaces Ê and E are respectively the R2-plane left and
right of hyper-plane H (red line). The area underneath min(ρ, ρ̂) for these level
sets is indicated in blue.

Definition 2.6 (Controlled invariance). A set S is a (robust) controlled (positively)
invariant set (Blanchini and Miani 2008) for the error dynamics given in (2.13)
with γ ∈ Γ and β ∈ B, if for all states x∆ ∈ S, there exists an input γ ∈ Γ, such
that for any disturbance β ∈ B the next state satisfies x+

∆ ∈ S.

We can quantify the similarity as follows.

Theorem 2.1. Consider models M and M̂ with error dynamics (2.13) for which
controlled-invariant set S is given.

If ϵ ≥ sup
x∆∈S

||Cx∆|| and δ ≥ sup
γ∈Γ

(
1− 2 cdf(−1

2 ||γ||)
)

then M̂ is (ϵ, δ)-stochastically simulated by M as in Definition 2.4, denoted as
M̂ ⪯δϵ M.

Proof. Consider simulation relation

R :=
{

(x̂, x) ∈ X̂× X | (x̂, x) ∈ S
}
. (2.19)

To prove that M̂ is (ϵ, δ)-stochastically simulated by M under the conditions given
in Theorem 2.1, the simulation relation in Definition 2.4 is proven point by point.

1. Initial condition. Since x̂0 is inside the region that x0 is in, the distance
between x̂0 and x0 is bounded by B, that is, x̂0 − x0 ∈ B. Since it trivially
holds that B ⊆ S, (q.v. Theorem 5.2 in Blanchini and Miani (2008)) we also
have x∆(0) = x0 − x̂0 ∈ S. This implies that the inclusion (x̂0, x0) ∈ R holds
for simulation relation (2.19).

2.4. Coupling compensator for finite abstractions 35

2. ϵ-Accuracy. The inequality ϵ ≥ sup
x∆∈S

||Cx∆|| yields

∀(x̂, x) ∈ R : ||Cx∆|| ≤ ϵ.

For LTI-systems M (2.8) and M̂ (2.10), this condition can also be written as
∀(x̂, x) ∈ R : ||y − ŷ|| ≤ ϵ. Hence, since ϵ ≥ sup

x∆∈S
||Cx∆|| this condition holds.

3. Invariance. Let γ(t) ∈ Γ then according to Lemma 2.1 there exists a coupled
distribution W such that with probability 1− δ the error dynamics in (2.12)
can equivalently be written as (2.13). The latter implies that (x̂+, x+) ∈ R
holds with probability at least 1 − δ, which proves the third statement in
Definition 2.4.

Items one until three prove that M̂ is (ϵ, δ)-stochastically simulated by M under
the conditions given in Theorem 2.1.

Comparison to available methods. As mentioned before, in Blute et al. (1997),
Desharnais et al. (2004), Julius and Pappas (2009), Soudjani et al. (2015), and
Haesaert and Soudjani (2020) the deviation between the abstract and original model
is quantified either completely on ϵ or completely on δ by fixing W̄γ . This can now
be recovered by choosing a specific compensator value γ. More specifically, the
deviation is completely quantified on ϵ, when δ = 0. This result is obtained by
choosing γ = 0, hence by choosing W̄γ such that w − ŵ = 0 holds with probability
1, we recover the results in Haesaert and Soudjani (2020). Similarly, the deviation is
completely quantified on δ, when ϵ is fully defined by the grid size. This is obtained
by choosing γ(t) = −B−1

w Ax∆(t) such that x∆(t+ 1) = −β(t). Hence we recover
the results in Blute et al. (1997), Desharnais et al. (2004), and Soudjani et al. (2015)
that also only hold for non-degenerate systems for which Bw is invertible.
Computation of deviation bounds. Consider interface function (2.11), relation
(2.19), and an ellipsoidal controlled-invariant set S, that is

S :=
{

(x̂, x) ∈ X̂× X | ||x− x̂||D ≤ ϵ
}
, (2.20)

where ||x||D denotes the weighted 2-norm, that is, ||x||D =
√
xTDx with D a

symmetric positive-definite matrix D = DT ≻ 0. The constraints in Theorem 2.1
can now be implemented as matrix inequalities for the error dynamics (2.13) with
the linear parameterization of the compensator value as an extra design variable,
i.e., γ = Fx∆. More precisely, we can formulate an optimization problem that
minimizes the deviation bound ϵ for a given bound δ subject to the existence
of an (ϵ, δ)-stochastic simulation relation between models M̂ and M as given in
Theorem 2.1. Given δ, we can compute a bound on input γ and define a suitable
set Γ as

γ ∈ Γ :=
{
γ ∈ Rnw | ||γ|| ≤ r = |2 idf

(1− δ
2

)
|
}
, (2.21)

which is a sphere of dimension nw with radius r. Here idf is the inverse distribution
function, i.e., the inverse of the cumulative distribution function. We will show that

36 Chapter 2. Quantified abstraction for stochastic systems

given bound δ, we can optimize bound ϵ and matrix D as in (2.20) by solving the
following optimization problem

min
Dinv,L,ϵ

− 1
ϵ2

(2.22a)

s.t. Dinv ≻ 0,[
Dinv DinvC

T

CDinv I

]
⪰ 0, (ϵ-deviation) (2.22b)[

r2Dinv LT

L 1
ϵ2 I

]
⪰ 0, (input bound) (2.22c) λDinv ∗ ∗

0 (1− λ) 1
ϵ2 ∗

ADinv +BwL − 1
ϵ2 βl Dinv

 ⪰ 0 (invariance) (2.22d)

where Dinv = D−1, L = FDinv, βl ∈ vert(B) and l ∈ {0, 1, . . . , q}. This optimiza-
tion problem is parameterized in λ. We say that (2.22) has a feasible solution
for values of δ, ϵ ≥ 0 if there exist values for λ and Dinv, L such that the matrix
inequalities in (2.22) hold. Now, we can conclude the following.

Theorem 2.2. Consider models M and M̂ and their error dynamics (2.13). If
a pair δ, ϵ ≥ 0 yields a feasible solution to (2.22), then M̂ is (ϵ, δ)-stochastically
simulated by M.

Proof. To prove Theorem 2.2, we start with reformulating the conditions of Theo-
rem 2.1 into implications. Next, we show that these conditions can be written as the
matrix inequalities in (2.22) and that they represent a set of sufficient conditions
for the (ϵ, δ)-stochastic simulation relation. The proof is structured in the same
order as the conditions of Theorem 2.1.
Controlled-invariant set (first and fourth inequality constraint): In Theo-
rem 2.1, we assume that a controlled-invariant set S is given. In (2.20) we define this
ellipsoidal controlled-invariant set S, with D a symmetric positive definite matrix,
D = DT ≻ 0. This constraint can equivalently be written as Dinv = D−1 ≻ 0.
Following Definition 2.6, for S to be a controlled-invariant set we need to have
that for all states x∆ ∈ S, there exists an input γ = Fx∆ ∈ Γ, such that for any
disturbance β ∈ B the next state satisfies x+

∆ ∈ S. To achieve this it is sufficient to
require that for any β ∈ B

xT∆Dx∆ ≤ ϵ2 =⇒ ((A+BwF)x∆ − β)T D ((A+BwF)x∆ − β) ≤ ϵ2. (2.23)

This implication can equivalently be written as constraint (2.22d). First, we use
the S-procedure (Boyd et al. 1994, p. 23) and Schur complement (with D ≻ 0) and
conclude that the implication in (2.23) holds for any β ∈ B if there exists λ ≥ 0
such that for any β ∈ B λD 0 (A+BwF)TD

0 (1− λ)ϵ2 −βTD
D(A+BwF) −Dβ D

 ⪰ 0

2.4. Coupling compensator for finite abstractions 37

holds. Performing a congruence transformation with the non-singular matrix[
D−1 0 0

0 1
ϵ2 I 0

0 0 D−1

]
yields

 λDinv 0 DinvA
T + LTBTw

0 (1− λ) 1
ϵ2 −βT

ADinv +BwL −β Dinv

 ⪰ 0, (2.24)

with Dinv = D−1 and L = FDinv. It is computationally impossible to verify this
matrix inequality point by point for any β ∈ B. However, if B is a polytope, which
we represent as B = {β = bz, 1̄T z ≤ 1, z ≥ 0, } with b consisting of the q vectors
βl and 1̄ = [1 1 ... 1]T . Then we only have to consider the q vertices of B and we
conclude that the implication holds for any β ∈ B if there exists λ ≥ 0 such that
constraint (2.22d) in (2.22) is satisfied.

Output deviation ϵ (second inequality constraint): The ϵ-deviation re-
quirement ϵ ≥ supx∆∈S ||Cx∆|| in Theorem 2.1 can be simplified to the following
implication

xT∆Dx∆ ≤ ϵ2 =⇒ xT∆C
TCx∆ ≤ ϵ2. (2.25)

This implication holds if the inequality CTC ⪯ D is satisfied. Applying the Schur
complement to this inequality and performing a congruence transformation with the
non-singular matrix

[
D−1 0

0 I

]
yields constraint (2.22b). Hence, if constraint (2.22b)

is satisfied, the inequality CTC ⪯ D holds and the bound on ϵ also holds.

Probability deviation δ (third inequality constraint): The δ-deviation re-
quirement δ ≥ sup

γ∈Γ
1− 2 cdf(− 1

2 ||γ||) in Theorem 2.1 has been rewritten to an input

bound on compensator value γ as (2.21). This input bound γ ∈ Γ with γ = Fx∆
has to hold for all x∆ ∈ S, which reduces to

xT∆Dx∆ ≤ ϵ2 =⇒ xT∆F
TFx∆ ≤ r2 (2.26)

for which FTF ⪯ r2

ϵ2 D is an equivalent sufficient constraint. This inequality can
be rewritten in the same way as inequality CTC ⪯ D and yields constraint (2.22c),
where we denoted L = FDinv. Hence, if constraint (2.22c) is satisfied, the inequality
FTF ⪯ r2

ϵ2 D holds and the input bound also holds.
Concluding, if a pair δ, ϵ ≥ 0 yields a feasible solution to (2.22), then the implications
(2.23), (2.25), and (2.26) hold. Consequently, S is a controlled-invariant set and the
bounds in Theorem 2.1 are satisfied. Based on Theorem 2.1 we conclude that M̂ is
(ϵ, δ)-stochastically simulated by M.

Leveraging Theorem 2.2, an algorithm to search the minimal deviation ϵ can be com-
posed as in Algorithm 2.1. The efficiency of this algorithm depends on the efficiency
of the line-search algorithm for λ (c.f. line 3) and on the optimization problem (c.f.
line 4). The latter problem can be solved as a semi-definite programming problem
with matrix inequalities as a function of 1/ϵ2.

38 Chapter 2. Quantified abstraction for stochastic systems

Algorithm 2.1 Optimizing ϵ given δ such that M̂ ⪯δϵ M

1: Input: M, M̂, δ
2: Compute r based on δ as in (2.21)
3: for λ between 0 and 1 do
4: Dinv, L, ϵ← Solve optimization problem (2.22)
5: Set D := (Dinv)−1, F := LD,
6: Save parameters D,F, ϵ
7: end for
8: Take minimal value of ϵ and corresponding matrices D and F .

Concluding, the introduction of the coupling compensator in Section 2.3 allows the
use of the well-studied theory of controlled-invariant sets to quantify the deviation
between the original and abstract model on bounds ϵ and δ. Furthermore, it allows
an efficient computation of the deviation bounds as a set-theoretic problem. By con-
sidering an ellipsoidal controlled-invariant set, this computation can be formulated
as an optimization problem constrained by parameterized matrix inequalities.

2.4b A coupling compensator for model order reduction

The provably correct design of controllers faces the curse of dimensionality. For some
models, this can be mitigated by including model order reduction in the abstraction.
This additional abstraction step, yielding a lower dimensional continuous-state
model, decreases the dimension of the abstract model and hence decreases the
computation time. In this section, we show how the coupling compensator applies
to model reduction.
First, we construct a reduced-order model Mr, based on (2.8), with state space
Xr ⊂ Rnr with nr < n. The dynamics of Mr are given as

Mr :
{
xr(t+ 1) = Arxr(t) +Brur(t) +Brwwr(t)
yr(t) = Crxr(t),

(2.27)

initialized with xr,0 = xr(0) and with state xr ∈ Xr, input ur ∈ U, output yr ∈ Y,
and disturbance wr ∈W that satisfy a Gaussian distribution wr ∼ N (0, I).
Similarity quantification of Mr. As in Haesaert et al. (2017b), we resolve the
inputs of models M (2.8) and Mr (2.27) by choosing interface function

u(t) := Rur(t) +Qxr(t) +K(x(t)− Pxr(t)) (2.28)

for some matrices R,Q,K, P , such that the Sylvester equation PAr = AP +BQ
and Cr = CP hold. The resulting error dynamics between (2.8) and (2.27) are

x+
r∆ = Āxr∆ + B̄ur +Bw(w − wr) + B̄wwr, (2.29)

where the stochastic disturbances (wr, w) are generated by the coupled probability
measure Wγ as in (2.6) and where the state xr∆ and state update x+

r∆ are the

2.4. Coupling compensator for finite abstractions 39

abbreviations of xr∆(t) := x(t)− Px̂r(t) and xr∆(t+ 1), respectively. Furthermore,
we have Ā = A+BK, B̄ = BR− PBr and B̄w = Bw − PBrw. The term (w −wr)
can now be used as a coupling compensator term.

Unlike existing work Haesaert et al. (2017a) and Haesaert et al. (2017b), we now
use an approach similar to the one used before and substitute wr = wγ − γr for wr.
Subsequently, we choose Wγ again as the coupling that maximizes the probability
of event w − wγ = 0. The error dynamics conditioned on this event reduce to

x+
r∆ = Āxr∆ + B̄ur +Bwγr + B̄wwr. (2.30)

Lemma 2.1 still applies and can be used to compute 1− δ. If B̄w = 0 then (2.30)
reduces to a set-theoretic control problem. In contrast, if this does not hold then
by truncating the stochastic influence wr, the error dynamics are still bounded
and the probability δ can be modified to δr = δ + δtrunc, where δtrunc is the error
introduced by truncating wr to the bounded set W . We consider the resulting error
dynamics (2.30) as a system with constrained input γr and bounded disturbance
z = B̄ur + B̄wwr. This is very similar to the error dynamics in (2.13), however,
now instead of bounded disturbance β we have z ∈ Z = B̄U + B̄wW , with W the
set of the truncated disturbance wr. If we now consider simulation relation

RMOR = {(xr, x) ∈ Xr × X | ||x− Pxr||Dr
≤ ϵr} (2.31)

then we can recover the results in Theorem 2.1 to achieve an (ϵr, δr)-simulation
relation between Mr and M.

Computation of deviation bounds. Consider interface function (2.28) and
simulation relation (2.31). Given bound δr and matrices P,Q,R, we can optimize
bound ϵr and matrix Dr as in (2.31) by solving an optimization problem similar to
(2.22). Since model order reduction influences the error dynamics, the invariance
constraint in (2.22d) has to be altered to λDr,inv ∗ ∗

0 (1− λ) 1
ϵ2

r
∗

ADr,inv +BE +BwL
1
ϵ2

r
zl Dr,inv

 ⪰ 0, (2.32)

where E = KDr,inv and zl ∈ vert(Z). To make sure that the bound u ∈ U is
satisfied an additional constraint can be formulated for matrix K in the same way
as the matrix inequality for the input bound in (2.22c).

Similarity quantification between M and M̂r. The finite-state abstract model
M̂r of Mr (2.27) will now be substantially smaller than the finite-state abstraction
of M. Given the (ϵr, δr)-simulation relation between Mr and M, the relation
between M̂r and M can be computed by considering the relation between M̂r

and Mr. More precisely, we can follow Section 2.4 and compute a pair (ϵabs, δabs)
that guarantees that M̂r is (ϵabs, δabs)-stochastically simulated by Mr. Following
Theorem 5 in Haesaert et al. (2017b) on transitivity of ⪯δϵ we have that if M ⪯δr

ϵr
Mr

and Mr ⪯δabs
ϵabs

M̂r both hold, the simulation relation M ⪯δabs+δr
ϵabs+ϵr

M̂r holds as well.

40 Chapter 2. Quantified abstraction for stochastic systems

2.5 A piecewise-affine abstraction for nonlinear
stochastic sytems

In this section, we describe how to apply the coupling compensator as introduced
in Section 2.3 to nonlinear systems. To this end, we follow a similar approach as in
Section 2.4. First, we give a brief introduction and a comprehensive overview of the
relevant literature.
Introduction and literature. Safety-critical systems are difficult to analyze
and verify as they evolve over continuous spaces in a stochastic and generally
nonlinear fashion. Therefore, we need methods that can handle simultaneously
complex safety-critical requirements, large-scale continuous states, and stochastic
and nonlinear state evolutions.
Synthesizing a provably correct controller that guarantees the satisfaction of tempo-
ral logic specifications for nonlinear stochastic systems remains a very challenging
problem and the number of methods that exist is very limited. More specifically,
methods either focus on a specific type of specification (Jagtap et al. 2020; Nejati et
al. 2020), use slope restrictions on the nonlinearity (pseudo-linearity) of the systems
while requiring strict dissipativity requirements (Lavaei et al. 2019; Zhong et al.
2023a) or consider a stochastic disturbance with a bounded support (Majumdar
et al. 2020; Majumdar et al. 2021).
When focusing on local behavior, many nonlinear systems behave almost linearly.
Therefore, a widely adopted approach in classical control (Johansson 1999; Ro-
drigues and How 2003; Rodrigues and Boyd 2005) and for the verification of
nonlinear deterministic systems (Asarin et al. 2007) is performing a piecewise-affine
approximation of the nonlinear system. In this section, we focus on the following.

Subquestion

How to leverage piecewise-affine approximations for the provably
correct control design of nonlinear stochastic systems?

As before, the similarity or deviations in probability and output of stochastic sys-
tems is expressed using approximate simulation relations (Haesaert et al. 2017b).
Together with Haesaert and Soudjani (2020), this allows us to handle syntactically
co-safe linear temporal logic specifications that are unbounded in time. In this
section, we develop tailored methods for the provably correct control design of
nonlinear stochastic systems. More specifically, the conditions under which simula-
tion relations can be established exist for nonlinear stochastic systems (Haesaert
et al. 2017b; Haesaert and Soudjani 2020). However, the main challenge is to find
such relations with efficient computation methods, where existing methods can
only handle nonlinear systems with bounded slope (Lavaei et al. 2019; Zhong et al.
2023a). In this work, we perform a piecewise-affine approximation step, such that
we can develop a method like in Section 2.4. By doing so, the computational cost
can be managed and we enable an efficient and accurate implementation.

2.5. A piecewise-affine abstraction for nonlinear stochastic sytems 41

Model. Consider a system whose behavior can be modeled by a discrete-time
nonlinear stochastic difference equation

M :
{
x(t+ 1) = f(x(t)) +Bu(t) +Bww(t)
yt = Cx(t), ∀t ∈ {0, 1, 2, . . . } ,

(2.33)

with state x ∈ X ⊆ Rnx , input u ∈ U ⊆ Rnu disturbance w ∈W ⊆ Rnw , and output
y(t) ∈ Y ⊆ Rny . Furthermore, we have matrices B ∈ Rnx×nu , Bw ∈ Rnx×nw , C ∈
Rny×nx and the nonlinear function f : X→ X is assumed to be sufficiently smooth.
The disturbance w(t) is an independent and identically distributed (i.i.d.) noise
signal with realizations w ∼ Pw and the system is initialized at x0 ∈ X.
Remark 2.5. For easier exposition of the results, we assume that the output and
input enter linearly. Systems with nonlinear terms g(x(t))u(t) and h(x(t)) instead
of respectively Bu(t) and Cx(t), can also be handled through piecewise-affine
approximations.

2.5a Piecewise-affine abstraction

In this section, we discuss the first step in designing a provably correct controller,
namely constructing a piecewise-affine abstraction of the nonlinear system in (2.33).

Local affine approximation of f(x(t)). To handle the non-linearity of f(x(t))
in (2.33), we start considering f(x) a static function over a bounded domain x ∈ G.
Now, we can use affine functions to locally approximate f(x) in this bounded set
G ⊆ X. To this end, we use Taylor’s Theorem (Adams and Essex 2009, Sec. 4.10),
which for a one-dimensional (1D) function f : R→ R states the following about its
accuracy.

Proposition 2.1. Suppose that f : R→ R is defined on a closed interval G with
x, ν ∈ G and its NT + 1st order derivative f (NT +1) exists on the same interval. If
fNT

(x) is the NT th-order Taylor polynomial at the point ν, that is
fNT

(x) = f(ν) +
∑NT

l=1
f(l)(ν)
l! (x− ν)l, (2.34)

then for each x ∈ G, there exists a ζ on the interval between ν and x, such that the
remainder RNT

(x) = f(x)− fNT
(x) in the approximation f(x) ≈ fNT

(x) is given
by

RNT
(x) = f(NT +1)(ζ)

(NT +1)! (x− ν)NT +1. (2.35)

The proof is given in Adams and Essex (2009) and extended to multivariable
functions in Lou (2021, Sec. 2.4). Using Taylor’s inequality (Weisstein 2014), an
upper bound of the remainder (2.35) can be found,

|RNT
(x)| ≤ sup

ζ∈G

(∣∣∣ fNT +1(ζ)
(NT +1)!

∣∣∣) · |x− ν|NT +1, (2.36)

which holds for all x ∈ G. The derivation of this upper bound and its extension to
multivariate functions is given in Lou (2021, Sec. 2.4). By taking the supremum

42 Chapter 2. Quantified abstraction for stochastic systems

over x ∈ G, an upper bound on the approximation error of the NT th-degree Taylor
polynomial, denoted by remainder RNT

can be computed. To linearize the function
f(x(t)) in (2.33) we consider NT = 1, yielding the first-order Taylor polynomial as
affine function

f(x(t)) ≈ f1(x(t)) = Ax(t) + a for x ∈ G, (2.37)
with matrix A = ∇f(ν) and vector a = f(ν)−∇f(ν)ν. Define the bounded differ-
ence between f(x(t)) and its affine approximation (2.37) by κ(x) = f(x)− f1(x) = R1(x)
as in (2.35). Associate to this difference, bounded set K ⊂ Rnx computed using
(2.36) in all directions, that is K = {x ∈ G | (2.36) for NT = 1}. Now, we get the
following.

Theorem 2.3. Given a nonlinear function f(x(t)) that is sufficiently smooth and
its first order Taylor polynomial approximation (2.37). Then for all x ∈ G, there
exists a bounded vector κ ∈ K, such that f(x) = Ax+ a+ κ(x).

The proof of this theorem follows from the extension of Proposition 2.1 to higher-
dimensional functions as in Lou (2021). For ease of notation, we denote the
state-dependent error κ(x(t)) as κ(x).
Piecewise-affine finite-state abstraction. To construct such an abstraction, we
need two different partitionings of the state space. A coarse partitioning to construct
the piecewise-affine approximation of the nonlinear dynamics and a fine grid to get
a finite-state approximation of the affine dynamics. To obtain the coarse partitions,
we partition the state space X with polytopic cells P̂i with i ∈ {1, . . . , NP }, such that
it covers the complete state space, that is

⋃
i P̂i = X and such that the partitions do

not overlap P̂i ∩ P̂k = ∅ for i ̸= k. Similarly, to obtain the fine grid we grid the state
space X in a finite number of regions Aj ⊂ X, such that

⋃
j Aj = X and Aj ∩Al = ∅

for j ≠ l hold. In each region, a representative point X̂j ∈ Aj is chosen. Together,
these points make up the set of abstract states, x̂ ∈ X̂ =

{
X̂1, X̂2, . . . , X̂NA

}
.

Such a partitioned and gridded two-dimensional state space is shown in the top
illustration of Figure 2.3. Note that for LTI systems as in Section 2.4, we only
need the fine grid.
After performing the affine approximation for each of the partitions P̂i ⊆ G, we
select a finite number of inputs from U to form the abstract input space Û. Now, we
can approximate the behavior of the affine approximation of the nonlinear dynamics
by a finite-state abstract system. To this end, consider the operator Π : X → X̂
that maps states from the original state space to the abstract state space. Then in
region P̂i the dynamics of the abstract system equal

x̂(t+ 1) = Π(Ax̂(t) +Bû(t) + a+Bwŵ(t)), (2.38)

with states x̂ ∈ P̂i ⊂ X̂, initial state x̂0 = Π(x0), inputs û ∈ Û, and disturbances
ŵ ∈W with realizations ŵ ∼ Pŵ. Next, we introduce a bounded vector β ∈ B ⊂ X,
that pushes the state to its representative point. Then, with a slight abuse of
notation3 the state dynamics of the local abstract system (2.38) for x̂ ∈ P̂i satisfy

3Here, the Minkowski sum of the two sets is neglected.

2.5. A piecewise-affine abstraction for nonlinear stochastic sytems 43

Figure 2.3: Partitioning and gridding of a two-dimensional state space X. The
small grid cells in the top plane are the regions Aj , while the colored squares are
partitions P̂i (top) and Pi (bottom).

x̂(t+ 1) ∈ Ax̂(t) +Bû(t) +a+ ŵ(t) +B. More precisely, there exist β ∈ B, such that
x̂(t+ 1) = Ax̂(t) +Bû(t) + a+ ŵ(t) + β(t). Now, we can write the state dynamics
of the local abstract system as an affine system described by

x̂(t+ 1) = Ax̂(t) +Bû(t) + a+Bwŵ(t) + β(t) for x̂ ∈ P̂i. (2.39)

To define a piecewise-affine finite-state abstraction, we translate the abstract system
(2.39) that locally approximates the nonlinear system (2.33) to a piecewise-affine
system that approximates the complete nonlinear system as

M̂ :
{
x̂(t+ 1) = Aix̂(t) +Bû(t) + ai +Bwŵ(t) + β(t) for x̂ ∈ P̂i
ŷ = Cx̂(t),

(2.40)

with states x̂ ∈ X̂ ⊂ X, initial state x̂0, inputs û ∈ Û, and disturbance ŵ ∈W.
Concluding, we have constructed a piecewise-affine finite-state system that approxi-
mates the behavior of a nonlinear continuous-state system (2.33). This piecewise-
affine system consists of local affine dynamics defined over partitions P̂i.

2.5b Piecewise stochastic simulation relation

In this section, we discuss how to quantify the difference between the original
nonlinear stochastic model and the abstract model obtained via piecewise affine
approximations.
Similarity quantification. To quantify the similarity between the nonlinear
stochastic difference equation M in (2.33) and its finite-state abstraction M̂ in
(2.40), we follow the method as described in Section 2.3. Again, we start by defining

44 Chapter 2. Quantified abstraction for stochastic systems

a metric for the composed model as in Definition 2.3. However, in this case, we
adapt the metric such that it yields a local state-based deviation bound denoted
by δ(·). The simulation relation similar to Definition 2.4 between the nonlinear
stochastic models M (2.33) and its abstraction M̂ (2.40) is defined as follows.

Definition 2.7. ((ϵ,δ)-stochastic simulation relation): Let stochastic models
M and M̂ with metric output space (Y,dY), interface function Uv (2.4), and
stochastic kernel W̄ (2.6) be given. If there exists a measurable relation R ⊆ X̂× X,
with (x̂0, x0) ∈ R, and such that

1. ∀(x̂, x) ∈ R : dY(ŷ, y) ≤ ϵ, and

2. ∀(x̂, x) ∈ R, ∀û ∈ Û : (x̂+, x+) ∈ R holds with probability at least 1 − δ(x̂),
with δ : X̂→ [0, 1].

then M̂ is (ϵ, δ)-stochastically simulated by M, and this simulation relation is
denoted as M̂ ⪯δ

ϵ M.

As in Section 2.3, to achieve a simulation relation over the composed model, we
first couple the inputs u and û by using an interface function (2.11). This function
assigns input u to the abstract input û given the states x̂ and x of the abstract and
original model, respectively. Next, we couple disturbances w ∼ Pw and ŵ ∼ Pŵ by
following Definition 2.2. We can trivially extend this to Borel measurable stochastic
coupling kernels as in (2.6).

For such an (ϵ,δ)-stochastic simulation relation, we refer to ϵ as the (metric) output
deviation and to δ as the probabilistic or stochastic deviation function. Note that
unlike in Definition 2.4 the stochastic deviation is not uniform for the whole state
space. Instead, it is introduced as a function δ : X̂ → [0, 1] that depends on the
abstract state x̂. If δ(x̂) is a piecewise constant function, then we refer to the
simulation relation as a piecewise stochastic simulation relation.

Through Definition 2.7, we have defined a measure to quantify the difference between
two models on a global level, that is, over the full state space. The question is
now how we can compute it based on the given piecewise-affine structure of the
abstractions.

Piecewise similarity quantification. As before, we consider a simulation relation
given as

R :=
{

(x̂, x) ∈ X̂× X | ||x− x̂||D ≤ ϵ
}
, (2.41)

with a suitable weighting matrix D. It can be seen that

C⊤C ⪯ D (2.42)

implies that the first condition of Definition 2.7 is satisfied. Next, we use relation
(2.41) to show that a global (ϵ,δ)-stochastic simulation relation can be computed
with a piecewise constant probability deviation function δ : X̂→ [0, 1] defined on
state partition P̂i as δ(x̂) = δi if x̂ ∈ P̂i. The function δ assigns a constant local

2.5. A piecewise-affine abstraction for nonlinear stochastic sytems 45

probability deviation to each partition in the abstract state space X̂ based on a
local similarity quantification derived using the local error dynamics.
Local stochastic error dynamics. Consider a local interface function u(t) =
Uvi(û(t), x̂(t), x(t)) as

u(t) = û(t) +Kf,i(x(t)− x̂(t)), (2.43)

with feedback matrix Kf,i ∈ Rnu×nx and a local stochastic kernel W̄i, assigning to
each (û, x̂, x) a probability measure

W̄i : Û× P̂i × X→ P(W2). (2.44)

For x̂ ∈ P̂i, we have x̂(t+ 1) = Aix̂(t) +Bû(t) +ai+ ŵ(t) +β(t) and if ∥x− x̂∥D ≤ ϵ
holds, then there exists a κ(x) such that

x(t+ 1) = Aix(t) +Bu(t) + ai +Bww(t) + κ(x) with κ(x) ∈ Ki.

Given that x(t) belongs to Pi defined as

Pi := {x ∈ X | ∃x̂ ∈ P̂i : ∥x− x̂∥D ≤ ϵ} (2.45)

and shown for a 2D state space in Figure 2.3. For x̂(t) ∈ P̂i and x(t) ∈ Pi, we get
the error dynamics x∆(t) := x(t)− x̂(t) equal to

x+
∆ = (Ai +BKf,i)x∆(t) +Bw(w(t)− ŵ(t)) + κ(x)− β(t) (2.46)

with x∆
+ and x∆ abbreviating respectively x∆(t+ 1) and x∆(t), and with κ ∈ Ki,

β ∈ B, and (ŵ(t), w(t)) ∼ Wi.
Local coupling and interface functions with δ = δi. Following Section 2.4, we
make sure that the second condition of Definition 2.7 is satisfied by finding a global
invariant set {x∆ | ∥x∆∥D ≤ ϵ} parameterized with a global D for the error dynamics
(2.46). Together with D, we have to compute an optimal local interface function
(2.43) and coupling (2.44) for all partitions P̂i, with i ∈ {1, . . . Np}. More precisely,
we design Wi and Kf,i such that the probability 1 − δi with which ∥x∆

+∥D ≤ ϵ
holds is maximized. To this end, consider local coupling ŵ = w + Fi(x− x̂) that
holds with probability 1 − δi. The coupling term Fi introduced in Section 2.4
reduces the complexity of the design of Wi as it allows to write the design problem
as a set of implications or matrix inequalities. That is, a relation between this term
and the probability deviation δi can be derived as upper bound

||Fi(x− x̂)|| ≤ ri :=
∣∣2 idf

(1−δi

2
)∣∣ . (2.47)

Here, idf denotes the inverse distribution function of a Gaussian distribution N (0, I).
As concluded from the error dynamics in (2.46), together with the coupling, the
interface function can be used to further compensate for the error in the state by
computing a feedback-term Kf,i. To satisfy the bound u ∈ U we shrink Û by α,
such that Û ⊂ αU and we compute uu, such that

||Kf,i(x− x̂)|| ≤ uu (2.48)

implies Kf,i(x− x̂) ∈ (1− α)U. Taken together, we conclude the following.

46 Chapter 2. Quantified abstraction for stochastic systems

Lemma 2.2 (Piecewise requirements). Consider stochastic models M (2.33) and M̂
(2.40) for which a simulation relation R (2.41) with weighting matrix D satisfying
(2.42) is given. If there exist matrices Fi, and Kf,i such that for a given δ(x̂) = δi
if x̂ ∈ P̂i, the following implications are satisfied ∀x∆:

x⊤
∆Dx∆ ≤ ϵ2 =⇒


x⊤

∆F
⊤
i Fix∆ ≤ r2

i

x⊤
∆K

⊤
f,iKf,ix∆ ≤ u2

u

x⊤
∆t+1Dx∆t+1 ≤ ϵ2,

(2.49)

with x∆t+1 in (2.46) and ri in (2.47), then there exists coupling kernels W̄i and
interfaces Uvi such that

∀(x̂, x) ∈ P̂i × X,∀û ∈ Û : (x̂+, x+) ∈ R (2.50)

holds with probability 1− δi for all P̂i, with i ∈ {1, . . . Np} and with
⋃
i P̂i = X̂.

Proof. It can readily be seen that the first and second implication in (2.49) are
sufficient conditions for the bounds on respectively the coupling compensator term
(2.47) and the feedback-term (2.48). Assume that bounded sets Ki are given
and define the sets Si :=

{
(x̂, x) ∈ P̂i × X | ||x− x̂||D ≤ ϵ

}
. The last implication in

(2.49) is a sufficient condition for sets Si to be controlled invariant sets according
to Definition 2.6 with disturbance β + κ ∈ B ⊕ Ki. If the implications in (2.49)
hold, then the bounds in Theorem 2.1 are satisfied and Si are controlled-invariant
sets. Following the proofs of Theorem 2.1 and Lemma 2.2 we can conclude that this
implies the existence of coupling kernels W̄i and interfaces Uvi such that Lemma 2.2
holds. An algorithm to obtain matrix D and bounded sets Ki is explained in
Appendix 2.A.

Remark 2.6. Note that locally (consider only one partition, i.e. NP = 1), this
approach through piecewise-affine abstractions is equivalent to the approach for
LTI systems (c.f. Section 2.4) up to an affine term that disappears when computing
the error dynamics.

From local to piecewise similarity quantification. To obtain a global similarity
quantification, we define a piecewise stochastic kernel W̄ and a piecewise interface
function Uv. Since Û× P̂i × X for i ∈ {1, . . . , NP } is a partitioning of Û× X̂× X
we use the local stochastic coupling kernel W̄i : Û× P̂i × X→ P(W2) to compute
the piecewise stochastic coupling kernel W̄ : Û× X̂× X→ P(W2) as

W̄(· | û, x̂, x) = W̄i(· | û, x̂, x) if x̂ ∈ P̂i. (2.51)

Similarly, the interface function can be composed as

Uv(û(t), x̂(t), x(t)) = Uvi(û(t), x̂(t), x(t)) if x̂ ∈ P̂i. (2.52)

We can now show that these functions constitute to an (ϵ, δ)-stochastic simulation
relation for simulation relation (2.41).

2.6. Temporal logic control 47

Theorem 2.4 (Piecewise stochastic similarity). Let stochastic models M (2.33)
and M̂ (2.40) be given. Then the interface function Uv (2.52) and the global Borel
measurable stochastic kernel W̄ (2.51) computed for the simulation relation (2.41)
based on (2.49) define an (ϵ,δ)-stochastic simulation relation in a piecewise manner
as given in Definition 2.7 if

• it holds that (x̂0, x0) ∈ R, and if

• the simulation relation satisfies matrix inequality (2.42).

Proof. The proof builds on Lemma 2.2 and can be sketched as follows. The first
condition of Definition 2.7 holds by choosing matrix D, such that (2.42) holds. This
is proven in Section 2.4. Lemma 2.2 shows that if (2.49) is satisfied then a local
stochastic kernel W̄i as in (2.44) exists, such that (2.50) holds with probability
1 − δi. By choosing the interface function Uv as (2.52) and the global stochastic
kernel as in (2.51) the second condition in Definition 2.7 is satisfied.

2.6 Temporal logic control

In this section, we discuss how to compute the satisfaction probability of (infinite-
horizon) temporal logic specifications based on the dynamic programming mappings
from Haesaert and Soudjani (2020). The method described next applies to both
linear and nonlinear systems.

In correct-by-design control synthesis, an scLTL specification ϕ can be writ-
ten as a deterministic finite-state automaton (DFA), characterized by the tuple
Aϕ = (Q, q0,ΣA, τA, Qf) (Belta et al. 2017). Here, the set of states is denoted by
Q with initial state q0. The input alphabet and transition function are respectively
denoted by ΣA = 2AP and τA : Q× ΣA → Q. Finally, Qf denotes the set of accept-
ing states. The word πππ satisfies the specification ϕ, that is πππ |= ϕ, if the word πππ is
accepted by the DFA Aϕ. This means that there exists a trajectory q0, q1, . . . , qf
with qf ∈ Qf starting at q0 and evolving according to qt+1 = τA(qt, πt). By analyz-
ing the product composition between the system M and the specification DFA Aϕ,
denoted as M⊗Aϕ, we can compute the satisfaction probability. The composition
M⊗Aϕ consists of states (xt, qt) ∈ X×Q. For a given input ut = u(t), it evolves
from (xt, qt) to (xt+1, qt+1) by following the stochastic transition from xt = x(t) to
xt+1 = x(t+ 1) in (2.33) and from qt to qt+1 = τA(qt, L(Cxt)). Hence, computing
the satisfaction probability is equivalent to solving a reachability problem of the
composition M⊗Aϕ, which can be written as a dynamic program. With a slight
abuse of notation, we refer to the stationary policy of this composed system as
µ : X̂×Q→ Û.

We use the abstract model to compute the satisfaction probability since this is
not possible for the original model due to its continuous states. The satisfaction
probability with policy µ in time horizon [1, . . . , N] is expressed by the value
function V µ

N (x̂, q) : X̂ × Q → [0, 1], which is equivalent to the probability that

48 Chapter 2. Quantified abstraction for stochastic systems

the trajectory starting at (x, q) and generated by applying µ to M⊗Aϕ reaches
the target set Qf within this time horizon. The value function is defined as
V µ
N (x̂, q) := Eµ

(
max0≤t≤N 1Qf

(qt)|(x̂0, q0)
)
, with indicator function 1Qf

equal to 1
if q ∈ Qf and 0 otherwise. The value function can also be computed recursively for a
policy µi = (µi+1, . . . , µN) with horizon N − i as V µk−1

N−k+1(x̂, q) = Tµk (V µk

N−k)(x̂, q),
initialized with V0 ≡ 0. Here, operator Tµk (·) is defined as Tµk (V)(x̂, q) :=
Eµk

(max
{

1Qf
(q+), V (x̂+, q+)

}
), with DFA transitions q+ = τAϕ

(q, L(Cx+)). For
a stationary policy µ, the infinite-horizon value function is computed as V µ

∞ =
limN→∞(Tµ)NV0 initialized with V0 ≡ 0. The policy-optimal converged value
function V ∗

∞ is computed with the operator T∗(·) := supµ Tµ(·). The corresponding
satisfaction probability can now be computed as Pµ := max(1Qf

(q̄0, V
∗

∞(x̂0, q̄0)))
with q̄0 = τ(q0, L(Cx0)) and with x̂0 = Π(x0).
To cope with the output deviation ϵ and with probability deviations described by
the function δ(x̂), we define a robust dynamic programming mapping similar to
Haesaert et al. (2017b), as

Tµk

ϵ,δ(V)(x̂, q) := L
(
Eµ(min

q+∈Q+
max

{
1Qf

(q+), V (x̂+, q+)
}

)− δ(x̂)
)
, (2.53)

with L : R → [0, 1] a truncation function L(·) := min(1,max(0, ·)) and with
Q+(q, ŷ+) := {τA(q, L(y+)) | ||y+ − ŷ+|| ≤ ϵ} . We can now compute the robust
satisfaction probability by considering the first time instance based on x0, that is,
Rµ := max(1Qf

(q̄0), V µ
∞(x̂0, q̄0)) with q̄0 = τA(q0, L(Cx0)) and with x̂0 = Π(x0).

This probability is robust since it gives a lower bound on the probability in (2.2),
i.e., Rµ

ϵ,δ(M̂× Ĉ |= ϕ) ≤ P(M×C |= ϕ).
Remark 2.7. The robust operator defined in (2.53) becomes equivalent to the one
in Haesaert and Soudjani (2020) by using a global probability deviation δ instead of
the function δ(x̂). This operator, denoted as Tµk

ϵ,δ(·) is used recursively to compute
the robust satisfaction probability for linear systems.

2.7 Results of the coupling compensator

To evaluate the benefits of the coupling compensator method, we consider specifica-
tions written using syntactically co-safe linear temporal logic (Kupferman and Vardi
2001; Belta et al. 2017), and analyze the influence of both the deviation bounds
on the satisfaction probability. To this end, we consider two simple linear case
studies of parking a car in a 1- and 2-dimensional space. Next, we illustrate the
model-order reduction capabilities by considering a higher-dimensional case study
of a building automation system with affine dynamics. Besides that, with this case
study, we also show that the dimension of the input and disturbance can be smaller
than the state dimension. Finally, we show the piecewise-affine abstraction method
by considering a forced, stochastically perturbed Van der Pol oscillator.
The simulations have all been performed on a computer with a 2.3 GHz Quad-Core
Intel Core i5 processor and 16 GB MHz memory using our MATLAB toolbox SySCoRe
(details in Chapter 3). For all simulations, we report the average computation time
and memory usage. The computation time is determined by taking the average of 5

2.7. Results of the coupling compensator 49

Initial

Final

Sink

¬p1 ∧ ¬p2

p1

p2

(a) DFA Aϕpark , with labels p1
and p2 corresponding to regions
P1 and P2 respectively.

(b) Robust satisfaction probability, where
the blue, red, and green lines are obtained
with (ϵ, δ) equal to (0.05, 0.018), (0.2, 0.012) and
(0.5, 0) respectively.

Figure 2.4: DFA corresponding to the specification ϕpark = ¬p2 U p1 in (a) and
robust satisfaction probability of the 1D car parking example in (b).

simulations and the memory usage is computed based on the sizes of the matrices
stored in the workspace.

Car parking in 1- and 2-dimensional spaces

First, we consider a one-dimensional (1D) case study of parking a car. The dynamics
of the car are modeled using (2.8) with A = 0.9, B = 0.5, Bw = C = 1, and with
state space X = [−10, 10], input space U = [−1, 1], and output space Y = X. The
unpredictable changes in the position of the car are captured by Gaussian noise
w ∼ N (0, 1). The goal of the controller is to guarantee that the car will be parked in
parking spot p1 while avoiding parking spot p2. Using scLTL, this can be written as
ϕpark = ¬p2Up1, which corresponds to the DFAAϕpark

in Figure 2.4a. Here, we have
chosen the regions P1 = [4.75, 6⟩ and P2 = [6, 10] defined on the output space Y.
First, we have computed a finite-state abstract model M̂ in the form of (2.10) by
partitioning the state space with regions of size 0.1. Next, we have selected optimal
values for deviation bounds ϵ and δ based on the optimization problem given in
(2.22). Finally, we have computed the satisfaction probability using SySCoRe and
achieved a computation time of approximately4 3.6 seconds and a memory usage
of 4.52 MB. The results are shown in Figure 2.4b. Quantifying all the error on ϵ
(green) yields a relatively low overall satisfaction probability that slightly decreases
the further you are from the region P1. The low overall probability is caused by
the large ϵ value, which makes reaching the desired parking spot P1 very difficult.
On the other hand, quantifying all the error on δ (blue) yields a probability that
starts relatively high, but steeply decreases the further you are from the region P1.
The presented method (red) can achieve a full trade-off between ϵ and δ thereby
achieving a higher satisfaction probability for part of the state space.
As a second case study, we have considered parking a car in a two-dimensional
(2D) space. More specifically, we have considered the model (2.8) with A = 0.9I2,

4we observed a standard deviation of 0.2 seconds (5.6%).

50 Chapter 2. Quantified abstraction for stochastic systems

(a) (ϵ, δ) = (0.142, 0.051) (b) (ϵ, δ) = (1.005, 0.016) (c) (ϵ, δ) = (1.414, 0)

Figure 2.5: Robust satisfaction probability of the 2D car parking case study
for different couplings. Figures 2.5a and 2.5c represent quantifying the deviation
completely on δ or on ϵ respectively, while Figure 2.5b correspond to dividing the
deviation between ϵ and δ.

B = 0.7I2, Bw = C = I2, and state space X = [−10, 10]2, input space U = [−1, 1]2,
output space Y = X, and disturbance w ∼ N (0, I2). The goal is to synthesize a con-
troller such that specification ϕpark = ¬p2 Up1, with regions P1 = [4, 10]× [−3.25, 0]
and P2 = [4, 10]× [0, 3.25] is satisfied. First, we have computed a finite-state ab-
stract model M̂ in the form of (2.10) by partitioning the state space with square
regions of size 0.2. Next, we have selected optimal values for deviation bounds ϵ and
δ based on the optimization problem given in (2.22). Finally, we have computed
the satisfaction probability using SySCoRe and achieved a computation time of
approximately5 7.94 seconds and a memory usage of 27.53 MB. The results are
shown in Figure 2.5 and are very similar to the 1D case, however, the influence from
the avoid region (P2) is more apparent in 2D. Furthermore, dividing the deviation
between ϵ and δ (Figure 2.5b) shows a decent trade-off between quantifying the
deviation completely on δ (Figure 2.5a) and ϵ (Figure 2.5c). In the sense that the
satisfaction probability is relatively high overall, while not steeply decreasing the
further you are from the region P1 (or closer to region P2).

Building automation system

As a third case study, we have considered a Building Automation System (BAS)
(Cauchi and Abate 2018) that is used in the benchmark study in Abate et al.
(2020). The system consists of two heated zones with a common air supply. It has
a 7-dimensional state with a 6-dimensional disturbance and a 1-dimensional control
input as described in Cauchi and Abate (2018, Sec. 3.2). The 1-dimensional output
equals the temperature in zone 1, which is the state x1. The goal is to control the
temperature in zone 1 such that it does not deviate from the set point (20◦C) by
more than 0.5◦C over a time horizon equal to 1.5 hours, i.e., ϕT =

∧5
i=0⃝

ip1 with
p1 the label corresponding to region P1 = [19.5, 20.5] defined on the output space Y.
The corresponding DFA AϕT

is given in Figure 2.6a. We have subsequently reduced
the model to a 2-dimensional system and gridded the state space. We obtained
(ϵr, δr) = (0.2413, 0.0161) and (ϵabs, δabs) = (0.1087, 0) for a ∥β∥ ≤ 1.8 · 10−3.

5we observed a standard deviation of 0.2 seconds (2.5%).

2.7. Results of the coupling compensator 51

Initial FinalSink
p1 p1 p1 p1

¬p1 ¬p1
¬p1

. . .

(a) DFA AϕT , with label p1 corresponding to region P1. Here,
the dots indicate repeating states and transitions.

(b) Robust satisfaction probability,
where blue and yellow correspond to a
probability of 0 and 0.92 respectively.

(c) Trajectories starting at x(0) = 20.5
in green and starting at x(0) = 19.98
in blue.

Figure 2.6: DFA corresponding to ϕT =
∧5
i=0⃝

ip1 in (a), and robust satisfaction
probability of the reduced order model used in the BAS case study with initial
state xr(0) = [xr1, xr2]⊤ in (b). Multiple trajectories obtained by simulating the
controlled system are shown in (c).

This leads to a total deviation bound of (ϵ, δ) = (0.35, 0.0161). Note that these
results have been obtained for a slightly enlarged input set u(t) ∈ [15, 33], originally
u(t) ∈ [15, 30]. The satisfaction probability of 0.92 as shown in Figure 2.6b is
consistent with Abate et al. (2020). The computation is performed using SySCoRe
in approximately6 122 seconds and required a memory usage of 5.4 GB. Figure 2.6c
shows some trajectories obtained from simulating the controlled system.
Comparison to available software tools. In Abate et al. (2020), the BAS
benchmark has been used to compare the performance of AMYTISS (Lavaei et al.
2020a), FAUST (Soudjani et al. 2015), SReachTools (Vinod et al. 2019), and StocHy
(Cauchi and Abate 2019). These tools all target the verification of stochastic systems
with continuous state space. Of these tools, SReachTools is the most limited. It
can only handle a very specific set of models with specifications limited to reach(-
avoid) and invariance. In contrast, the tools AMYTISS, FAUST, and StocHy are all
abstraction-based methods that can handle a wider set of temporal specifications. In
comparison to the numerical results presented in the previous paragraph, these tools
are more mature. StocHy is implemented in C++ and combines several advanced
techniques such as symbolic probabilistic kernels and multi-threading. AMYTISS
goes even further and utilizes parallel computations. A full comparison between

6we observed a standard deviation of 7 seconds (5.7%).

52 Chapter 2. Quantified abstraction for stochastic systems

SySCoRe and other existing tools is given in Chapter 3. We briefly paraphrase those
conclusions here for completeness. The results of SySCoRe and the other tools7 are
given in Table 2.1 (repeated from Table 3.4c.). If we compare our results, we notice
that our implementation is performing on an equal footing. As indicated in the
table, FAUST was unable to run this case study. StocHy required a very fine grid
resulting in a very large computation time. AMYTISS obtains a good result, since
it achieves a reasonable probability, however, the computation time is still quite
large. It should be noted that AMYTISS performs very well when it can use all cores
of a computer (Abate et al. 2020), which has not been done for this comparison.
Our method yielded the second least conservative satisfaction probability, only
SReachTools does better and it also performs very well with respect to computation
time. It should, however, be noted that SReachTools is developed exactly for linear
systems subject to stochastic reach-avoid problems with small disturbances. Hence,
it is expected to perform best for this benchmark, but the tool is limited to a specific
type of system and specification.

Method Run time (sec) Max. reach probability
AMYTISS 312.14 ≈ 0.80
FAUST - -

SReachTools 4.59 ≥ 0.99
StocHy ≥ 335.87 ≥ 0.80± 0.23
SySCoRe 102.86 ≥ 0.92

Table 2.1: Results of the BAS case study for different tools. To compare the
tools we exclude the deployment of the controller in SySCoRe since this step is not
performed by the other tools.

Van der Pol oscillator

We have applied the piecewise-affine abstraction method from Section 2.5 to a
forced, stochastically perturbed Van der Pol oscillator with state dynamics

x1(t+ 1) = x1(t) + x2(t)τ + w1(t)
x2(t+ 1) = f2(x(t)) + u(t) + w2(t),

with nonlinear function f2(x(t)) = x2t + (−x1t + (1− x1
2
t)x2t)τ). Here, τ = 0.1 is

the sampling time and w ∼ N (0, 0.04I2) is a Gaussian disturbance8. The output
equals the state, that is yt = x(t) and we have state space X = [−3, 3]2, input
space U = [−1, 1] output space Y = X, safe region P1 = Y, and goal region
P 2 = [−1.2,−0.9] × [−2.9,−2] defined on the output space Y. The specification
ϕpol = p1 U p2 means staying in the safe region while reaching the goal region. Here,

7obtained by running their repeatability packages on the same machine (computer with a 2.3
GHz Quad-Core Intel Core i5 processor and 16 GB MHz memory).

8The dynamics can equivalently be written in the form (2.33), by adding Bw = 0.2I2 and using
standard Gaussian variable w ∼ N (0, I2).

2.7. Results of the coupling compensator 53

Initial

Final

Sink

¬p1

p1

p2

(a) DFA Aϕpol . (b) Robust satisfaction probability.

Figure 2.7: DFA corresponding to ϕPol = p1 U p2 in (a) and robust satisfaction
probability for the Van der Pol oscillator in (b).

labels p1 and p2 correspond to regions P1 and P2 respectively. The DFA Aϕpol

corresponding to this specification is given in Figure 2.7a.

We obtained an abstract model with state dynamics as in (2.38) by partitioning the
state space with square regions of width 0.01 leading to9 β ∈ B = [−0.01, 0.01]2 and
with û ∈ Û = {−0.6, 0, 0.6} leaving some input action for the feedback part, namely
−0.4 ≤ Kf,i(x− x̂) ≤ 0.4. Next, we used 1600 equally sized square partitions to
obtain a piecewise-affine abstraction as in (2.40). We then selected ϵ = 0.08
and computed a corresponding probability deviation function δ(x̂) such that the
implications in (2.49) are satisfied. We computed a global stochastic kernel W̄ (2.51)
and interface function Uv (2.52) and used Theorem 2.4 to obtain an (ϵ, δ)-stochastic
simulation relation. Finally, we obtained a robust controller C, and the robust
satisfaction probability is shown in Figure 2.7b. The MATLAB implementation takes
53 minutes while using 178.8MB memory to store the variables in the workspace.
Gridding takes approximately 45% of the computation time and 55% of the time is
spent on computing the matrices in Lemma 2.2. Figure 2.8 shows some trajectories
obtained from simulating the controlled system.

Comparison to available software tools. Similar case studies have been
presented in (Majumdar et al. 2020; Abate et al. 2021), where Majumdar et al.
(2020) considers an autonomous Van der Pol oscillator and Abate et al. (2021)
combines the input with a multiplicative noise term. However, the results presented
in Majumdar et al. (2020) and Abate et al. (2021) are limited to verification or
a reachability analysis instead of the control synthesis performed in this paper.
Furthermore, we have chosen a more stochastic variant with a Gaussian disturbance
instead of a uniform distribution with bounded support as used in Majumdar et al.
(2020) and Abate et al. (2021). The unbounded nature of the Gaussian disturbance
contributes significantly to the difficulty of this case study.

9Normally, you get B = [−0.005, 0.005]2, however, our implementation uses an efficient tensor-
based computation that leads to a bigger set for β.

54 Chapter 2. Quantified abstraction for stochastic systems

(a) Satisfying trajectories. (b) Satisfying trajectories in blue and
violating trajectories in yellow, orange,
and red. The robust satisfaction prob-
ability at x(0) equals 0.38.

Figure 2.8: Trajectories of the controlled van der Pol oscillator, where goal region
P2 is indicated by the yellow box. In (a) satisfying trajectories starting at different
initial states and in (b) trajectories starting at initial state x(0) =

[
−2,−1

]⊤.

2.8 Conclusion

We have shown that the introduction of a coupling compensator increases the accu-
racy of the satisfaction probability of methods that use (ϵ, δ)−stochastic simulation
relations. To the best of our knowledge, we are the first to define this coupling
compensator and use it to reduce the complexity of the optimization problem
that computes the similarity quantification. In the first part of this chapter, we
have defined a structured methodology based on set-theoretic methods for linear
stochastic difference equations. These set-theoretic methods leverage the freedom in
coupling-based similarity relations and allow us to tailor the deviation bounds to the
considered synthesis problem. We have applied this to compute the deviation bounds
expressed with (ϵ, δ)−stochastic simulation relations for finite-state abstractions,
reduced-order abstractions, and a combination thereof. In the second part of this
chapter, we describe a temporal logic control method for nonlinear stochastic models
that uses piecewise-affine approximations. By using a state-dependent probability
deviation, a lower bound on the satisfaction probability is computed. The method
described in this paper can handle (unbounded) scLTL specifications and applies to
nonlinear systems with an unbounded additive disturbance. For both linear and
nonlinear systems, we have illustrated that tailored deviation bounds that trade-off
output and probability deviations can be beneficial to the satisfaction probability.

Future work Future work is mainly focused on improving the computational
implementation. For example, by considering simulation relations with a polytopic
shape instead of ellipsoidal, we might achieve more accurate results, while possibly
also improving the computation time. Additionally, it would be interesting to see
the impact of our approach on models with multiplicative noise and/or disturbances
coming from a distribution with a bounded support.

2.A. Implementation for PWA abstractions 55

Finally, the approach for nonlinear systems could be improved significantly. Our
approach based on a piecewise-affine abstraction adds a lot of computational
complexity, computation time, and memory usage. So, developing a more efficient
approach specifically for nonlinear systems is an interesting topic for future work.
One possible first step is efficiently learning the piecewise-affine abstraction using
neural networks, as introduced in Abate et al. (2023).

Appendix

2.A Implementation for PWA abstractions

Here, we detail how to obtain matrices Fi and Kf,i such that the implications
in Lemma 2.2 are satisfied. To this end, we introduce Algorithm 2.2 to obtain
bounded sets Ki and global matrix D that satisfies (2.42) and likely implies the
existence of matrices Fi and Kf,i. The algorithm is based on using an optimistic

Algorithm 2.2 Get weighting matrix D and bounded sets Ki.

1: Input: M, M̂, ϵ
2: Set D = C⊤C
3: Compute Pi and Ki using (2.45) and (2.36)
4: Choose Ni ≤ NP to compute a suitable value for D
5: D ← solve optimization problem (2.54)
6: Update Pi and Ki using (2.45) and (2.36)

preliminary estimate of matrix D and sets Pi and Ki (steps 2, 3). Next, we update
these estimates by solving the following optimization problem for a small number
of partitions Ni ≤ NP (steps 4, 5).

min
Dinv,Li,Qi,ri

r2
i s.t. Dinv ≻ 0,[

Dinv DinvC
T

CDinv I

]
⪰ 0,∀i ∈ {1, . . . , Ni} :[1

ϵ2 Dinv LT
i

Li r2
i I

]
⪰ 0,

[1
ϵ2 Dinv QT

i

Qi u2
uI

]
⪰ 0, (2.54a)[

λDinv ∗ ∗
0 (1−λ)ϵ2 ∗

AiDinv+BiQi+Bw,iLi ψl Dinv

]
⪰ 0 (2.54b)

where Dinv = D−1, Li = FiDinv, Qi = Kf,iDinv, and ψl ∈ vert(B ⊕ Ki). This
optimization problem is parameterized in λ ∈ [0, 1] and constructed by following
Section 2.4. Together with the given value of ϵ, we use matrix D to update sets Pi
and Ki (step 6). Since we already obtained matrix D, we can compute matrices
Fi and Kf,i from Lemma 2.2 for all i ∈ {1, . . . , NP } in parallel by formulating an
optimization problem similar to (2.54) with constraints (2.54a)-(2.54b).

3
SySCoRe: Synthesis via Stochastic

Coupling Relations

In this chapter, we present SySCoRe, a MATLAB toolbox that synthesizes con-
trollers for stochastic continuous-state systems to satisfy temporal logic specifi-
cations. Starting from a system description and a syntactically co-safe temporal
logic specification, SySCoRe provides all necessary functions for synthesizing a
robust controller and quantifying the associated formal robustness guarantees.
It distinguishes itself from other available tools by supporting nonlinear dy-
namics, complex syntactically co-safe temporal logic specifications over infinite
horizons, and model-order reduction. To achieve this, SySCoRe generates a
finite-state abstraction of the provided model and performs probabilistic model
checking. Then, it establishes a probabilistic coupling to the original stochas-
tic system encoded in an approximate simulation relation, based on which a
lower bound on the satisfaction probability is computed. SySCoRe provides
non-trivial lower bounds for infinite-horizon properties and disturbances with
an unbounded support since its computed error does not grow linearly in the
horizon of the specification. It exploits a tensor representation to facilitate the
efficient computation of transition probabilities. We showcase these features
on several benchmarks and compare the performance of the tool with existing
tools.

3.1 Introduction

The design of provably correct controllers is crucial for the development of safety-
critical systems such as autonomous vehicles and smart energy grids (Alur 2015; Lee
and Seshia 2016). To this end, methods for synthesizing controllers for dynamical
systems that are guaranteed to satisfy temporal logic specifications have gained an
increasing amount of attention in the control community (Baier and Katoen 2008;

58 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

Tabuada 2009; Belta et al. 2017; Lavaei et al. 2022a). Besides establishing the theory
underlying these methods, it is equally important to develop tools that facilitate
their application. For stochastic systems, a collection of tools that can perform
formal controller synthesis is already available. A subset of these tools includes in
alphabetical order: AMYTISS (Lavaei et al. 2020a), FAUST (Soudjani et al. 2015),
hpnmg (Hüls et al. 2020), HYPEG (Pilch and Remke 2017), Mascot-SDS (Majumdar
et al. 2020), the Modest Toolset (Hartmanns and Hermanns 2014), ProbReach
(Shmarov and Zuliani 2015), SReachTools (Vinod et al. 2019), and StocHy (Cauchi
and Abate 2019). A complete list of these tools with their descriptions and ca-
pabilities can be found in the ARCH Competition Report (stochastic category)
(Abate et al. 2021). These tools perform the computations either using analytical
methods or employing statistical model checking. The approaches in the analytical
methods can further be divided into abstraction-based (Soudjani et al. 2015; Cauchi
and Abate 2019; Lavaei et al. 2020a; Majumdar et al. 2020) and abstraction-free
techniques (Vinod et al. 2019; Kochdumper et al. 2021). Abstraction-free techniques
are generally less prone to suffering from the curse of dimensionality, however, they
are often limited to simple invariance and reachability specifications. In contrast,
abstraction-based tools can be applied to a breadth of systems and specifications.
A survey on formal verification and control synthesis of stochastic systems is given
in Lavaei et al. (2022a).

SySCoRe contributes to the category of tools that employ analytical abstraction-
based methods. It is a MATLAB toolbox applicable to stochastic nonlinear systems
with a possibly unbounded support. Furthermore, it can perform the controller
synthesis to satisfy arbitrary syntactically co-safe specifications that can have
unbounded time horizons. To this end, it uses the (ϵ, δ)-approximate simulation
relation provided in Haesaert et al. (2017b), that explicitly designs the coupling
between the continuous-state model and its (reduced) finite-state abstraction as
in Chapter 2. Hence, SySCoRe extends the capabilities of the current tools by
considering properties that are unbounded in time and by considering systems with
an unbounded disturbance, that is a disturbance with an unbounded support.

SySCoRe is a comprehensive toolbox for temporal logic control of stochastic continuous-
state systems, implementing all necessary steps in the control synthesis process.
Moreover, it supports model-order reduction in the abstraction process with for-
mal error quantification guarantees, which makes it applicable to a larger class of
systems. To increase its computational efficiency, SySCoRe performs computations
based on tensors and sparse matrices. Furthermore, computations based on efficient
convex optimizations for polytopic sets are implemented where possible. The tool
is developed with a focus on ease of use and extensibility, such that it can easily
be adapted to suit individual research purposes. The development of SySCoRe is
a step towards solving the tooling need for temporal logic control of stochastic
systems as it expands both the class of models and the class of specifications for
which abstraction-based methods can provide controllers with formal guarantees.

This chapter is organized as follows. We discuss in Section 3.2 the temporal logic
control problem and the set-up in SySCoRe. We then give an overview of SySCoRe
in Section 3.3 by introducing the associated functions and classes. Section 3.4
discusses multiple benchmarks that show the capabilities of SySCoRe and how it

3.2. Temporal logic control 59

compares to existing tools. We end this chapter with a summary and a discussion of
possible extensions. Throughout, we give the core functions of SySCoRe in framed
white boxes and example code in gray boxes.

3.2 Temporal logic control

The main purpose of SySCoRe is to perform the complete control synthesis procedure
in abstraction-based temporal logic control. It is applicable to discrete-time models
with a possibly unbounded stochastic disturbance and synthesizes a controller for
satisfying syntactically co-safe linear temporal logic specifications that may have
an unbounded time horizon. The computational approach is based on the theory
of approximate simulation relations (Haesaert et al. 2017b), the coupling between
models (Haesaert et al. 2017b; Huijgevoort and Haesaert 2022) and robust dynamic
programming mappings (Haesaert and Soudjani 2020). In this section, we introduce
the class of models and specifications handled by SySCoRe and show how to set
up the problem. Furthermore, we provide a high-level description of the theory
underlying the implementations in SySCoRe.

3.2a Problem parameters

Model. We consider discrete-time systems described by stochastic difference
equations

M :
{
xt+1 = f(xt, ut) +Bwwt

yt = Cxt, ∀t ∈ {0, 1, 2, . . . } ,
(3.1)

with state xt ∈ X, input ut ∈ U, (unbounded) stochastic disturbance wt ∈ W,
measurable function f : X× U→ X, and matrices Bw and C of appropriate sizes.
To handle nonlinear systems of the form (3.1), we perform a piecewise-affine (PWA)
approximation that yields a system described by{

xt+1 = Aixt +Biut + ai +Bw,iwt + κt for xt ∈ Pi
yt = Cxt,

(3.2)

with Pi a partition of X and κt ∈ Ki the error introduced by performing the
PWA approximation. For ease of notation, we denote the state-dependent error
κxt as κt. Furthermore, Ai, Bi, Bw,i and ai are matrices of appropriate sizes.
Details of temporal logic control for nonlinear stochastic systems via piecewise-affine
abstractions can be found in Chapter 2. Besides nonlinear systems, we also consider
the special case of linear time-invariant (LTI) systems:{

xt+1 = Axt +But +Bwwt

yt = Cxt,
(3.3)

with A and B matrices of appropriate sizes.

60 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

Remark 3.1. This first release of SySCoRe assumes the disturbance wt has unbounded
Gaussian distribution wt ∼ N (0, I). The implementation for other classes of
distributions is underway and will be included in the future release of the tool. Note
that the assumption of standard Gaussian distribution with zero mean and identity
covariance matrix is without loss of generality since any system (3.1)-(3.3) with
disturbance w ∼ N (µ,Σ) can be rewritten to a system in the same class with an
additional affine term (Allen et al. 2008).

To specify the model, that is a nonlinear system (3.1), a PWA system (3.2) or
an LTI system (3.3), we have developed the classes NonLinModel, PWAmodel, and
LinModel, respectively. The state space, input space, and the sets needed for
defining the specification should be defined in these class descriptions.

Example. Consider a two-dimensional (2D) case study of parking a car with
dynamics of the form (3.3) with A = 0.9I2, B = 0.7I2, and Bw = C = I2. Further-
more, we have state space X = [−10, 10]2, input space U = [−1, 1]2, and disturbance
w ∼ N (0, I2). After specifying the matrices A,B,C,Bw, and setting the values for
the disturbance w with mean mu and covariance matrix sigma equal to zero and
identity respectively, we can initialize a model in SySCoRe as follows:

1 % Set up an LTI model
2 sysLTI = LinModel(A,B,C,[],Bw,mu,sigma);

The state and input spaces are defined using Polyhedron from the
multi-parametric toolbox (MPT3) (Herceg et al. 2013) as follows.

3 % Define bounded state space
4 sysLTI.X = Polyhedron(combvec([-10,10],[-10,10])');
5 % Define bounded input space
6 sysLTI.U = Polyhedron(combvec([-1,1],[-1,1])');

Specifications. In SySCoRe, we consider formal specification written using syn-
tactically co-safe linear temporal logic (scLTL) (Kupferman and Vardi 2001; Belta
et al. 2017), which consists of atomic proposition (AP) AP = {p1, p2, . . . , pN} that
are either true or false. To connect the system and the specification, we label the
output space of the system, such that we can relate the trajectories of the system
y = y0, y1, y2, . . . to the atomic propositions of the specification ϕ.

Example (continued). For the 2D car park, we consider reach-avoid specification
ϕpark with the region to reach P1 and with avoid region P2. First, we define the
regions

7 % Specify regions for the specification
8 P1 = Polyhedron([4, -4; 4, 0; 10, 0; 10 -4]);
9 P2 = Polyhedron([4, 0; 4, 4; 10, 4; 10 0]);

3.2. Temporal logic control 61

and add them to the system object:

10 % Regions that get specific atomic propositions
11 sysLTI.regions = [P1;P2];
12 % Propositions corresponding to the regions
13 sysLTI.AP = {'p1', 'p2'};

Implicitly, this means that outputs inside regions P1 and P2 are labeled using the
corresponding atomic propositions 'p1' and 'p2', respectively. Now, we can write
the scLTL specification

ϕpark = ¬p2 U p1, (3.4)

using the syntax from Gastin and Oddoux (2001) as follows

14 % Define the scLTL specification
15 formula = '(!p2 U p1)';

Denote the system M under the controller C by M×C as in Tabuada (2009) and
also introduced in Chapter 2 of this thesis. The goal is to synthesize a controller
C, such that the controlled system satisfies an scLTL specification ϕ, denoted as
M ×C |= ϕ. Since we consider stochastic systems, we compute the satisfaction
probability denoted as P(M×C |= ϕ). This goal is formulated mathematically next.

Problem statement. Given model M, scLTL specification ϕ, and probability
threshold pϕ ∈ [0, 1], design controller C such that

P(M×C |= ϕ) ≥ pϕ. (3.5)

SySCoRe automatically synthesizes a controller by maximizing the right-hand side
of (3.5) on a simplified abstract model and makes the computations robust to the
abstraction errors. It provides a robust lower bound on the satisfaction probability,
which then can be used by the user to compare with the probability threshold pϕ.

3.2b Stochastic coupling relations for control synthesis

To solve the above problem, we use an abstraction-based approach and the dynamic
programming mappings from Haesaert and Soudjani (2020), which allows us to con-
sider infinite-horizon properties. More specifically, the abstraction-based temporal
logic control implemented in SySCoRe has six main steps, namely (1) translating the
specification to an automaton, (2) constructing a (reduced) finite-state abstraction,
(3) quantifying the similarity, (4) synthesizing a controller, (5) control refinement,
and (6) deployment.
As visualized in Figure 3.1, we start from a temporal logic specification that expresses
the desired behavior of the controlled system and translate it to an automaton

62 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

Model M

Abstract model M̂ Abstract controller Ĉ

Specification ϕ

Automaton Aϕ

Controller C

2 5

1

3

4

6

Figure 3.1: Steps in abstraction-based temporal logic control with 3 main layers:
continuous-state (red), finite-state (blue), and specification (white). The numbers
correspond to the following steps: (1) translating the specification to an automaton,
(2) (reduced) finite-state abstraction, (3) similarity quantification, (4) synthesizing
a controller, (5) control refinement, and (6) deployment.

(see top layer). A finite abstract model M̂ of the system is also constructed
(step 2). For this abstract model M̂, its bounded deviation from the original
model can be quantified using simulation relations as in Chapter 2 of this thesis
(step 3). Computing these bounds is based on an efficient invariant set computation
formulated as an optimization problem constrained by a set of parameterized matrix
inequalities as described in Chapter 2. In step 4, we synthesize an abstract controller
Ĉ and compute the robust satisfaction probability, which gives a lower bound on the
actual satisfaction probability. To compute the robust satisfaction probability and
to synthesize an abstract controller Ĉ, SySCoRe solves a reachability problem over
the abstract system combined with the automaton corresponding to the specification.
This reachability problem is then solved as a dynamic programming problem. It
is shown in Haesaert and Soudjani (2020) that leveraging the deviation bounds
from step 3, the controller for the abstract model can be refined to the original
continuous-state model while preserving the guarantees. To construct this controller
C, SySCoRe refines the abstract controller in step 5. The resulting controller C is a
policy that can be represented with finite memory. Finally, SySCoRe deploys the
controller on the model (step 6). It is important to note that the abstraction step
(step 2 in Figure 3.1) can additionally contain model-order reduction or piecewise-
affine approximation, which shows the comprehensiveness of SySCoRe enabled by
establishing coupled simulation relations.

The next section gives a complete overview of the toolbox and specifies how each
step in Figure 3.1 is implemented.

3.3. Toolbox overview 63

3.3 Toolbox overview

After setting up the problem by specifying the system using the classes NonLinModel,
PWAmodel or LinModel, and the specification as an scLTL formula, we continue with
the steps illustrated in Figure 3.1. Each step corresponds to a specific function as in
Table 3.1. Note that the abstraction step may have multiple (formal) approximation
stages depending on the type of the model or its dimension.

Table 3.1: Main functions of SySCoRe for steps (1)-(6), with optional steps (2a)
and (2b).

Step Function
(1) Translate the specification TranslateSpec
(2) Finite-state abstraction FSabstraction
(2a) Piecewise-affine approximation PWAapproximation
(2b) Model-order reduction ModelReduction
(3) Similarity quantification QuantifySim
(4) Synthesize a controller SynthesizeRobustController
(5) Control refinement RefineController
(6) Deployment ImplementController

3.3a Translating the specification

For control synthesis, the scLTL specification is written as a deterministic finite-state
automaton (DFA) (Belta et al. 2017). Examples of such DFAs are given in Figure 3.2.
We use the tool LTL2BA1 to translate an scLTL specification, which constructs a
non-deterministic Büchi automaton for a general LTL specification (Gastin and
Oddoux 2001). Additionally, we check whether the given formula is written using
scLTL (instead of full LTL) and then (if possible) rewrite the non-deterministic
Büchi automaton to a DFA. This step is based on powerset conversion (Rabin
and Scott 1959) that is used to convert a nondeterministic finite-state automaton
to a DFA. The complete translation from an scLTL specification to a DFA is
implemented in the function TranslateSpec.

% Translate an scLTL formula to a DFA
DFA = TranslateSpec(formula, AP);

The input formula is given using the syntax of LTL2BA in Gastin and Oddoux
(2001).

Example (continued). For the 2D car park, we consider the reach-avoid specifi-
cation ϕpark in (3.4), which we translate to a DFA using TranslateSpec with AP
and formula given respectively in code lines 13 and 15.

1Tool available at http://www.lsv.fr/~gastin/ltl2ba/index.php

http://www.lsv.fr/~gastin/ltl2ba/index.php

64 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

Initial FinalSink

¬p1 ∧ ¬p2

p1p2

(a) DFA corresponding to specifi-
cation ϕpark in (3.4) for the run-
ning example.

Initial Final

Sink

(b) Atypical DFA

Figure 3.2: Acyclic DFA in (a) versus cyclic DFA in (b).

16 % Translate the spec to a DFA
17 DFA = TranslateSpec(formula, sysLTI.AP);

Besides reach-avoid specifications, it is also possible to describe many other types
of specifications, such as more complex reach-avoid specification, e.g., ϕPD =
♢(p1 ∧ (¬p2 U p3)), or time-bounded and unbounded safety specifications, e.g.
ϕBAS =

∧5
i=0⃝

ip1 and ϕvdPol = p1 U p2. These specifications are written in
SySCoRe as

formula_PD = 'F(p1 & (!p2 U p3))'; (3.6a)
formula_BAS = '(p1 & X p1 & X X p1 & X X X p1 ... (3.6b)
& X X X X p1 & X X X X X p1)’;

formula_vdPol = '(p1 U p2)'; (3.6c)

Note that it is also possible to directly pass a DFA as an input to SySCoRe instead
of giving the specification as an scLTL formula. SySCoRe can natively handle both
acyclic and cyclic DFAs (see Figure 3.2), in contrast to many other tools (Soudjani
et al. 2015; Rungger and Zamani 2016; Cauchi and Abate 2019; Lavaei et al. 2020a)
that do not natively support DFAs but often rely on external tools such as PRISM
(Kwiatkowska et al. 2002) to compute the controller.

3.3b Abstraction

SySCoRe includes two possible abstraction methods, namely finite-state abstraction
for continuous-state systems in (3.1)-(3.3) and model-order reduction for continuous-
state LTI systems (3.3). However, to create a finite-state abstraction of a nonlinear
system (3.1), we require an additional approximation step before constructing a
piecewise-affine finite-state abstraction. Note that the piecewise affine approximation
itself is considered an integral part of the finite-state abstraction method.

Piecewise affine approximation. To approximate a nonlinear system (3.1) by
a PWA system (3.2), we partition the state space and use a standard first-order

3.3. Toolbox overview 65

Taylor expansion to approximate the nonlinear dynamics in each partition by affine
dynamics. Additionally, we compute the error introduced by this approximation.
In SySCoRe, this is performed by the function PWAapproximation.

% Perform piecewise-affine approximation
sysPWA = PWAapproximation(sysNonLin, Np);

Here, the nonlinear system (3.1) is given by sysNonLin, and the number of partitions
in each direction is given by Np. The result is a PWA system (3.2) sysPWA.
Interface function. SySCoRe can construct a reduced-order abstract model Mr

and a finite-state abstract model M̂ of the original model M. Let us denote the
control inputs of these models respectively by ur and û. The abstract control inputs
ur and û need to be refined to a control input u for M as illustrated in Figure 3.3.

M̂

M

ŵ (x̂, û)

xw

(x̂, û)

ux

Kernel Interface

(a) Coupling between models M and its
finite-state abstraction M̂ through their
inputs and disturbances via an interface
function and a coupling kernel.

M̂

Mr

M

wr xr

w x

(xr, ur)

ux

(b) Coupling between continuous-state
models M and Mr, and between Mr and
its finite-state abstraction M̂.

Figure 3.3: Coupling between different models. Red and blue boxes correspond to
respectively continuous-state and finite-state. In (a) only a finite-state abstraction
is performed, while in (b) both model-order reduction and a finite-state abstraction
are shown.

The input refinement is performed by one or multiple interface functions, namely

ur,t = ût (default) (3.7a)
ur,t = ût +K(xr,t − x̂t) (option 1) (3.7b)
ut = ur,t +Qxr,t +KMOR(xt − Pxr,t). (option 1, MOR) (3.7c)

To refine the input û of a finite-state model to the input ur of a continuous-state
reduced-order model, we implemented two different interface functions in the format

66 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

of (3.7a) and (3.7b). For many cases the default interface function (3.7a) should
work fine, however, the option (3.7b) gives more influence on the refined controller
by including a feedback term. When the interface function (3.7b) is used, we have
to take this into account when constructing the finite-state abstraction to avoid the
input bounds being violated, therefore, the interface function must be chosen before
constructing the finite-state abstraction. We further use the interface function (3.7c)
to refine the input ur of a reduced-order model to the input u of the full-order
model. It should be noted that if only a finite-state abstraction is performed without
using model-order reduction (MOR), we have P = I,Q = 0 and xt = xr,t, hence we
obtain interface functions (3.7a) and (3.7b) with ut = ur,t and xt = xr,t.

Example (continued). It is required to select an interface function for the input
refinement before starting with the temporal logic control steps. For this running
example only use the default interface function (3.7a) without model-order reduction,
that is ut = ût. However, if desired, the user can select the option (3.7b) by setting
int_f = 1 and passing this to the functions.

In the remainder of this section, we discuss how to obtain the reduced-order and
finite-state abstract models.

Model-order reduction. It is essential to include model-order reduction for
high-dimensional models. For LTI systems (3.3) this yields a reduced-order model
Mr of the form

Mr :
{
xr,t+1 = Arxr,t +Brut +Brwwr,t

yr,t = Crxr,t,
(3.8)

with xr ∈ Xr, u ∈ U, y ∈ Y, wr ∈ W, and matrices Ar, Br, Brw and Cr of
appropriate sizes.

In SySCoRe, the function ModelReduction constructs a reduced-order model sysLTIr
of dimension dimr based on the original model sysLTI by using balanced trunca-
tions on a closed loop system with a feedback matrix F . This feedback matrix is
computed by solving discrete-time algebraic Riccati equations that can be tuned
using constant f (Pappas et al. 1980). The syntax of ModelReduction is

% Construct reduced-order model
[sysLTIr, F] = ModelReduction(sysLTI, dimr, f)

We couple the inputs u, ur from M (3.3) and Mr (3.8) using the interface function
(3.7c) as illustrated in Figure 3.3b. This is based on the theoretical results presented
in Haesaert et al. (2017b) and Huijgevoort and Haesaert (2022). To compute matrices
P and Q for the interface function, we have the function ComputeProjection that
adds the matrices automatically to the object sysLTIr.

% Compute matrices P and Q
sysLTIr = ComputeProjection(sysLTI, sysLTIr);

Finite-state abstraction. We grid the state space to construct a finite-state
abstraction M̂ of the continuous-state models (3.2), (3.3) or (3.8). More specifically,

3.3. Toolbox overview 67

we compute the abstract state space X̂ as the set consisting of the centers of the grid
cells. Next, the dynamics of the abstract model are defined by using the operator
Π : X→ X̂ that maps states x to the center of the grid cell it is in. Details on how
to construct a finite-state abstraction of a nonlinear system or an LTI system can
be found in Section 2.5a and Section 2.4a respectively.

In SySCoRe, the construction of the finite-state abstraction is implemented in the
functions GridInputSpace and FSabstraction. The function GridInputSpace
constructs the abstract input space uhat by selecting a finite number of inputs from
the input space sysLTI.U.

% Construct abstract input space
[uhat, InputSpace] = GridInputSpace(lu, sys.U, options);

Here, lu is the number of abstract inputs in each direction and options are used
to select an interface function from (3.7). If interface function (3.7b) or (3.7c) is
chosen, GridInputSpace also divides the continuous input space into a part for
actuation and for feedback and returns these spaces as output InputSpace. This is
done to make sure that the input bounds u ∈ U of the original model are satisfied.
Next, we use FSabstraction to compute a probability matrix that contains the
transition probabilities between states for all possible inputs in uhat.

% Construct abstract model
sysAbs = FSabstraction(sys, uhat, l, tol, DFA, options);

Here, sys is the continuous-state system, uhat is the abstract input space Û, l is
the number of grid cells in each direction and tol is the tolerance for truncating to
zero. This means that if a probability is smaller than the value set by tol, then
we set it to zero to increase sparsity and hence decrease computation time. Via
efficient tensor computations, we split the computation of the probability matrix
into two parts: one for the deterministic part of the transitions computed as a
sparse matrix, and one for the stochastic part of the transitions. This reduces the
required memory allocation and computation time drastically. For development
purposes options can be used to select whether or not to use this efficient tensor
computation. The complete probability matrix can then be obtained by using a
tensor multiplication, however, we do not store the complete probability matrix
and compute it when necessary to save memory.

Example (continued). To construct a finite-state abstraction of the car park
model sysLTI (defined in code lines 1-13), we compute the abstract input space
uhat:

18 % Construct abstract input space uhat
19 lu = 3; % number of abstract inputs
20 uhat = GridInputSpace(lu, sysLTI.U);

and construct the abstract model sysAbs using the DFA constructed in code line 17
as follows:

68 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

21 % Construct finite-state abstraction
22 l = [200, 200]; % number of grid cells
23 tol = 10^-6;
24 sysAbs = FSabstraction(sysLTI, uhat, l, tol, DFA, ...

'TensorComputation', true);

3.3c Similarity quantification

To quantify the similarity between the model and its abstraction (either reduced
order or finite state), we compute ϵ and δ such that they satisfy the (ϵ, δ)-stochastic
simulation relation as defined in Definition 2.4 (Section 2.4a). Here, ϵ and δ represent
bounds on the output and probability deviations, respectively. This simulation
relation allows us to consider scLTL specifications with unbounded time properties
(Haesaert and Soudjani 2020).
When using model-order reduction, we construct two simulation relations, one
relation RMOR between the original model M (3.3) and reduced-order model Mr

(3.8), and one relation R between Mr and the finite-state model M̂. The simulation
relations are of the form

RMOR := {(xr, x) ∈ Xr × X | ||x− Pxr||Dr
≤ ϵr} (3.9a)

R :=
{

(x̂, xr) ∈ X̂× Xr | ||xr − x̂||D ≤ ϵ
}
, (3.9b)

with ||x||D =
√
x⊤Dx the weighted two-norm, where D = D⊤ ⪰ 0 is positive semi-

definite. Following Section 2.4b, these simulation relations can be combined into one
total simulation relation between M and M̂. Following Haesaert and Soudjani (2020,
Section IV.A), we can now compute the initial state of the reduced-order model as
the state xr,0 that minimizes ||x0 − Pxr,0||Dr

, that is xr,0 := (P⊤DrP)−1P⊤Drx0.
The computation of the simulation relation relies heavily on the coupling of the
inputs u, û and disturbances w, ŵ of the two models. The inputs are coupled
through an interface function and the disturbances via a coupling kernel. This is
illustrated in Figure 3.3 and is based on the method developed in Chapter 2. More
specifically, the underlying computation is based on finding an invariant set for the
error dynamics xr,t+1 − x̂t+1. To this end, an optimization problem constrained by
parameterized linear matrix inequalities is used to find a value for δ that corresponds
with the given value of ϵ (see Chapter 2 for more details). To solve this optimization
problem, we use the multi-parametric toolbox (MPT3) (Herceg et al. 2013) with
YALMIP (Lofberg 2004) and with either solver SeDuMi (Labit et al. 2002) or MOSEK
(ApS 2019).
In SySCoRe, similarity quantification is implemented in the function QuantifySim.

% Quantify similarity
[simRel, interface] = QuantifySim(sys, sysAbs, epsilon, options)

This function quantifies the similarity between the models sys and sysAbs, with
sysAbs either a reduced-order or a finite-state approximation of sys, hence in terms

3.3. Toolbox overview 69

of behavior sysAbs ⪯ sys. QuantifySim yields a simulation relation simRel of
the form (3.9) that is stored in the object SimRel. This object includes a method
to check whether two states belong to the simulation relation and a method to
combine the two simulation relations from (3.9) if necessary. Besides that, the
function QuantifySim also returns the feedback-matrix of the interface function,
when interface (3.7b) or (3.7c) is chosen through the options.

Example (continued). Next, we quantify the similarity between the model of the
car stored in sysLTI and its finite-state abstraction sysAbs constructed in code
line 24 by choosing a suitable value for ϵ and using the function QuantifySim.

25 % Choose a value for epsilon
26 epsilon = 1.005;
27 % Quantify similarity
28 simRel = QuantifySim(sysLTI, sysAbs, epsilon);

Piecewise affine systems. The function QuantifySim can handle both PWA
(3.2) and LTI models (3.3). However, for PWA systems the probability deviation
is a PWA function δ(x̂) that depends on the partition of the abstract state as
described in Section 2.5.

3.3d Synthesizing a robust controller

We synthesize a robust (finite-state) controller based on the dynamic programming
approach described in Haesaert and Soudjani (2020), which is robust in the sense
that it takes the deviation bounds ϵ and δ into account to compute a lower bound
on the actual satisfaction probability. Furthermore, it is proven in Haesaert and
Soudjani (2020, Theorem 4) that the resulting control policy synthesized for the
abstract model can always be refined to a control policy for the actual model.

More specifically, we implicitly construct a product composition of the finite-state
model M̂ with the DFA such that computing the satisfaction probability becomes a
reachability problem over this product composition. This can in turn be solved using
dynamic programming by associating a robust dynamics programming operator
that allows for an iterative computation of the lower bound on the satisfaction
probability. Denote the state of the DFA by q, then the probability that a trajectory
starting at (x̂, q) reaches the set of accepting states by applying policy µ within
horizon [1, 2, . . . N] is denoted as V µ

N (x̂, q). This is equivalent to the probability of
satisfying the specification ϕ over this time horizon. The probability V is computed
iteratively by defining the operator

Tû(V)(x̂, q) := L
(
Eû

(
min
q+∈Q+

max{1Qf
(q+), V (x̂+, q+)}

)
− δ

)
, (3.10)

where x̂+and q+ are resp. the next state of the abstract model and the DFA, E
is expectation with respect to the probabilistic transitions in the abstract model,

70 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

1Qf
(q) is an indicator function that is equal to 1 if q is inside the set of accepting

states Qf of the DFA and is 0 otherwise, L : R → [0, 1] is a truncation function,
and with

Q+(q, ŷ+) :=
{
τAϕ

(q, L(y+)) | ||y+ − ŷ+|| ≤ ϵ
}
, (3.11)

where τAϕ
is the transition function of the DFA and L(y+) is the label of the next

output. This operator is robust in the sense that the probability gets reduced by
δ at every time step and the worst-case transition of the DFA is considered with
respect to ϵ. The derivation of this operator for Markov decision processes can be
found in Haesaert and Soudjani (2020).

Synthesis of an abstract control strategy pol and the computation of the robust satis-
faction probability satProb is performed by the function SynthesizeRobustController
and it is based on the abstract model sysAbs, the specification as a DFA and the
simulation relation simRel.

% Compute satisfaction probability and policy
[satProb, pol] = SynthesizeRobustController(...
sysAbs, DFA, simRel, thold, options)

We include the possibility to set the threshold thold that stops the value iteration
when the difference between two iterations is smaller than this threshold. The
default value is set to 1 · 10−12. This choice is justified by the fact that the operator
in (3.10) is contractive and will always converge monotonically to a fixed point.
Additionally, we include the options to compute the value function only for the
initial DFA state and to compute an upper bound on the satisfaction probability.
Internally, the dynamic programming algorithm computes the product between
large-scale matrices (one of which is the probability matrix as mentioned in Section
3.3b on finite-state abstractions). By performing these computations using a tensor
product (Nilsson et al. 2018), we gain superior computational efficiency.

The resulting control policy pol is a mapping µ : X̂ × Q → Û from the pair of
abstract and DFA states to the abstract input space. The abstract controller can
now be written as Ĉ : û = µ(x̂, q).

Example (continued). After specifying the desired threshold for convergence
thold, we synthesize a robust control policy pol based on the finite-state abstract
model sysAbs, the specification as a DFA and the simulation relation simRel con-
structed in code line 28. In this case, we are only interested in the satisfaction
probability satProb of the initial DFA state, hence we set the options to true.

29 % Specify threshold for convergence error
30 thold = 1e-6;
31 % Synthesize an abstract robust controller
32 [satProb, pol] = SynthesizeRobustController(...
33 sysAbs, DFA, simRel, thold, true);

The robust satisfaction probability is computed for all x0 ∈ X and is illustrated in
Figure 3.4a.

3.3. Toolbox overview 71

3.3e Control refinement

To refine an abstract finite-state controller to a controller C that can be implemented
on the original continuous-state system (see step 5 in Figure 3.1), we use one or
multiple interface functions from (3.7) as illustrated in Figure 3.3. In SySCoRe,
control refinement is included in the class RefineController, where it is possible
to select an interface function using the options.

% Refine abstract controller
Controller = RefineController(satProb, pol, sysAbs, simRel, sys, ...

DFA, options);

This class not only refines the finite-state input to the actual input but also
determines the state of the finite-state model based on the state of the original
model.

Example (continued). To construct a controller C that can be implemented on
the original model M based on the abstract control policy pol computed in code
line 32, we use the following.

34 % Refine abstract controller
35 Controller = RefineController(satProb, pol, sysAbs, simRel, ...

sysLTI, DFA);

3.3f Deployment

The final step is to deploy the controller on the model and perform simulations
using ImplementController.

% Implement the controller on the model
xsim = ImplementController(x0, N, Controller, option);

Here, N is the desired time horizon for the simulation and option is used to supply
the number of trajectories and/or additional model-order reduction inputs.

Example (continued). To simulate the controlled system with the Controller
constructed in code line 34, we use ImplementController to obtain the state
trajectory starting at x0. Trajectories of the controlled system for three initial
states are illustrated in Figure 3.4c.

36 x0 = [-4; -5]; % initial state
37 N = 40; % time horizon
38 % Simulate controlled system
39 xsim = ImplementController(x0, N, Controller);

72 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

Example (continued - improved results). To improve the results, we can select
interface function ut = ût+K(xt−x̂t) as in (3.7b) by setting int_f = 1 and passing
this to the functions GridInputSpace, QuantifySim, and RefineController. We
update among others line 20 to use respectively 60% and 40% of the input space
for actuation and feedback. The new line is as follows.

40 % Construct abstract input space uhat
41 [uhat,sysLTI.U] = ...

GridInputSpace(lu,sysLTI.U,'interface',int_f,0.6,0.4);

The resulting satisfaction probability and trajectories are given in Figures 3.4b
and 3.4d. Comparing Figures 3.4a and 3.4b, we see that the satisfaction probability
is increased substantially when using this interface function. In this case, the
additional state-feedback term K compensates for the large stochastic disturbance
that causes states x̂t to deviate from xt. Comparing Figures 3.4c and 3.4d, we see
that the controllers are different, especially for initial state [4, 8]⊤, the controller
seems to be more cautious with respect to avoiding region P2 when interface function
(3.7b) is applied.

3.3. Toolbox overview 73

(a) Robust satisfaction probability, when
interface function (3.7a) is used.

(b) Robust satisfaction probability, when
interface function (3.7b) is used.

(c) Three different trajectories for some
initial states with the corresponding satis-
faction probability.

(d) Three different trajectories for some
initial states with the corresponding satis-
faction probability.

Figure 3.4: Results of the running example with interface function ut = ût, that is
(3.7a), in (a),(c), and with interface function ut = ût+K(xt− x̂t), that is (3.7b), in
(b),(d). The robust satisfaction probability for all initial states

[
x1(0), x2(0)

]⊤ ∈ X,
is shown in (a) and (b). In (c) and (d), we show three trajectories for each initial
state: x0 =

[
−4,−5

]⊤ (blue), x0 =
[
−8, 2

]⊤ (black), and x0 =
[
4, 8

]⊤ (red). The
corresponding robust satisfaction probability is given at the initial state.

74 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

3.4 Benchmarks

To show the capabilities of SySCoRe, we included multiple benchmarks, of which
some are discussed here. The package delivery has a complex specification with a
cyclic DFA, the building automation system includes model-order reduction, and
the Van der Pol oscillator is nonlinear. We evaluate the run time and memory usage
of the benchmarks and compare SySCoRe to some existing tools.

3.4a Package delivery

With the package delivery benchmark (Abate et al. 2022), we show the capability of
SySCoRe to handle complex scLTL specifications beyond basic reach-avoid scenarios,
i.e., cyclic DFAs. Consider an agent traversing in a 2D space, whose dynamics
can be described by an LTI system (3.3) with A := 0.9I2, B := I2, Bw :=

√
0.2I2,

C := I2, and disturbance wk ∼ N (0, I2). We initialize the system using LinModel.
Define the state space X = [−6, 6]2, input space U = [−1, 1], output space Y = X,
and regions P1, P2 and P3 as follows: P1 := [5, 6]× [−1, 1], P2 := [0, 1]× [−5, 1] and
P3 := [−4,−2]× [−4,−3]. The agent can pick up a package at P1 and must deliver
it to P3. If the agent visits P2 while carrying a package, it loses the package and
has to pick up a new package at P1. This corresponds to the scLTL specification
♢(p1 ∧ (¬p2 U p3)) implemented as in (3.6a). We generate the corresponding DFA
using TranslateSpec and obtained the DFA as shown in Figure 3.5a.
Next, we construct a finite-state abstraction using GridInputSpace and FSabstraction.
For this study, we choose a comparatively fine state abstraction l = [400, 400], which
allows us to generate a simulation relation using QuantifySim with an epsilon of
just 0.075. Note that the partition size l is a tuning parameter that is determined
empirically. We synthesize a robust controller for the discrete abstraction using

[satProb, pol] = SynthesizeRobustController(...
sysAbs, DFA, rel, thold, false);

Since the resulting control policy is conditional on both the current system state
and the DFA state, we set the 5th argument to false. By doing so, we synthesize
a controller for all DFA states instead of only the initial one. The obtained robust
satisfaction probability satProb over different initial states x0 is displayed in
Figure 3.5b and can be obtained by running

% Plot satisfaction probability
plotSatProb(satProb, sysAbs, 'initial', DFA);

The peak satisfaction probability is 0.663.

3.4. Benchmarks 75

Initial q1 Final

¬p1

p1

¬p2 ∧ ¬p3

p2

p3 ∧ ¬p2

(a) DFA corresponding to ϕP D. (b) Robust satisfaction probability.

Figure 3.5: Result of the package delivery benchmark. In (a), the DFA AϕP D
.

In (b), the robust satisfaction probability for the package delivery benchmark as a
function of the initial state x0. We only show the satisfaction probability for the
initial DFA state.

Finally, we refine the controller using RefineController. To demonstrate the
performance of the obtained controller, we simulate the controlled system using
ImplementController for N = 60 time steps and an initial state of x0 = [−5,−5]T .
Note that N is an empirical parameter and should be set high enough for the DFA
to terminate. As expected, the agent moves to region P1 to pick up a package and
delivers it to P3 whilst avoiding P2. To plot trajectories we included the function
plotTrajectories.

3.4b Van der Pol oscillator

In this benchmark, we show how SySCoRe can be applied to nonlinear stochastic
systems. For this, consider the discrete-time dynamics of the Van der Pol oscillator
(Abate et al. 2022), given by

x1,t+1 = x1,t + x2,tτ + w1,t (3.12)
x2,t+1 = x2,t + (−x1,t + (1− x2

1,t)x2,t)τ + ut + w2,t,

where the sampling time τ is set to 0.1s, wt ∼ N (0, 0.04I2), and yt = xt. We define
the state space X = [−3, 3]2, input space U = [−1, 1], and output space Y = X.
For the Van der Pol oscillator, we are looking at an unbounded safety specification
(cf. (3.6c)), where the objective is to synthesize a controller such that the system
remains in the region P1 := Y until reaching region P2 := [−1.4,−0.7]× [−2.9,−2],
corresponding to the scLTL specification p1 U p2. First, we construct a DFA for the
formula (3.6c) using TranslateSpec.

Since the dynamics of the oscillator (sysNonLin) in (3.12) are nonlinear, the
abstraction process is split into two parts as outlined in Section 3.3b. First, we
construct a PWA approximation as follows:

76 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

% Number of grid points in each direction
N = [41 41];
% Perform PWA approximation
sysPWA = PWAapproximation(sysNonLin, N);

In the second part of the abstraction step, a finite-state abstraction (sysAbs)
of the PWA approximation (sysPWA) is constructed using GridInputSpace and
FSAbstraction with l=[600,600] grid cells. To generate a simulation relation
between this abstraction and the original model, we set ϵ = 0.08 and compute a
suitable weighting matrix D for the simulation relation on (x̂, x), as described in
Section 3.3c. To reduce computation time, we only use a finite number of states
to compute this weighting matrix. Details on why we need this global weighting
matrix can be found in Section 2.5.

% Compute weighting matrix D for the simulation relation based on ...
the following states

States = [1/8*x1l, 6/10*x2u; 5/7*x1u, 5/17*x2u; 2/13*x1u, 5/9*x2l; ...
3/4*x1l, 1/7*x2l; 0, 0]';

[D, ∼] = ComputeD(epsilon, sysPWA, sysAbs, 'interface', int_f, ...
'states', States);

% Quantify similarity
[rel, sysPWA] = QuantifySim(sysPWA, sysAbs, epsilon, 'interface', ...

int_f, 'weighting', D);

Note that QuantifySim returns sysPWA instead of the usual interface because
each piecewise-affine system gets its own interface function and we store this directly
in sysPWA.

Next, we use SynthesizeRobustController to synthesize a robust controller
for sysAbs and show the satisfaction probability (displayed in Figure 3.6) using
plotSatProb. Finally, we refine the controller as follows:

Controller = RefineController(satProb, pol, sysAbs, rel, sysPWA, ...
DFA, int_f);

As before, ImplementController is used to simulate the system.

3.4c Building automation system

In the last benchmark, we address a large-scale system showcasing the model-order
reduction capabilities of SySCoRe. We consider a 7D affine stochastic system of a
building automation system, regulating the temperature in two zones influenced
by a 6D disturbance. A detailed description including the system dynamics can be
found in Abate et al. (2018) and Cauchi and Abate (2018). The goal is to synthesize
a controller maintaining the temperature in zone one at 20◦C with a maximum

3.4. Benchmarks 77

Figure 3.6: Robust satisfaction
probability for the Van der Pol os-
cillator benchmark as a function
of the initial state.

permissible deviation of ±0.5◦C for 6 consecutive time steps. We translate the
specification (3.6b) to a DFA using TranslateSpec.
The dynamics of this building automation system are not of the form (3.3), since
it is influenced by a Gaussian disturbance with mean µ ̸= 0 and variance Σ ̸= I.
Furthermore, it is not an LTI system but has affine state dynamics, which cannot be
handled by our current implementation of model-order reduction. To deal with the
disturbance, we first transform the system to a system with Gaussian disturbance
w ∼ N (0, I) using the following:

% Transform the model
[sysLTI, a] = NormalizeDisturbance(sysLTI,a);

To deal with the affine dynamics, we perform a steady-state shift and simulate the
steady-state system that has LTI dynamics. After performing the control synthesis
steps, we compensate for this steady-state shift again to obtain the dynamics of the
actual system.
Now, we can start with the synthesis steps. First, we reduce the 7D model to a
2D reduced-order model (see Eq. (3.8)) using function ModelReduction with f =
0.098 and dimr=2.

% Perform model-order reduction
[sysLTIr, ∼] = ModelReduction(sysLTI, dimr, f);

As mentioned in Section 3.3b, we use an interface function of the form (3.7c),
which is selected using int_f = 1 and compute the matrices P and Q using
ComputeProjection. Next, we define the state and input spaces, and the output
regions and atomic propositions for the reduced-order model as before.
To construct the finite-state abstraction of the reduced-order model, we first grid
the input space with lu = 3.

78 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

% Construct abstract input space
[uhat,sysLTIr.U] = GridInputSpace(lu, sysLTIr.U, 'interface', ...

int_f, 0.6, 0.175);

Here, we have chosen to use 60% of the input space for actuation and 17.5% for
feedback. This leaves 22.5% for the Qxr,t part of the interface function, which is
currently not guaranteed to be satisfied, but can be checked a posteriori.
Before constructing a finite-state abstraction of the reduced-order model, we reduce
the state space to increase the computational speed. This step is currently only
available for invariance specifications and is performed by ReduceX, which performs
several backward iterations on the safety region P1 to determine a good guess of the
invariant set. This set is then used as the reduced state space. The construction of
the finite-state abstraction of the reduced-order model is as before, except that we
give the total number of grid cells as input l, instead of the number of grid cells in
each direction.

% Reduce the state space to speed up computations
[sysLTIr, ∼] = ReduceX(sysLTIr, sysLTIr.U{2}, P1, 'invariance', 5);
% Construct finite-state abstraction
l = [3000*3000]; % Total number of grid cells
tol=10^-6;
sysAbs = FSabstraction(sysLTIr, uhat, l, tol, DFA, ...

'TensorComputation', true);

To relate the reduced-order finite-state model sysAbs to the original model sysLTI,
we construct two simulation relations: relation rel_1 with ϵ1 = 0.2413 between
sysLTI and sysLTIr, and relation rel_2 with ϵ2 = 0.1087 between sysLTIr and
sysAbs:

% Compute MOR simulation relation
[rel_1, K, kernel] = QuantifySim(sysLTI, sysLTIr, epsilon_1, ...

'MOR', sysAbs);
% Compute finite-state simulation relation
[rel_2] = QuantifySim(sysLTIr, sysAbs, epsilon_2);
% Combine simulation relations
rel = CombineSimRel(rel_1, rel_2, sysLTIr, sysAbs);

For model-order reduction, we have to explicitly define the coupling kernel matrix
F , which is later used to compute the disturbance of the reduced-order model as
wr=w + F (x−Pxr). For details see Section 2.4b.
Synthesizing and refining the controller are done as before and the satisfaction
probability of the reduced-order model is shown in Figure 3.7 (obtained through
plotSatProb). We simulate the controlled system Ns = 6 times, making sure the
output is shifted with respect to the steady-state solution.

3.4. Benchmarks 79

Figure 3.7: Robust satisfaction
probability of the reduced-order
model of the building automation
system benchmark. Yellow and
blue correspond to a probability
of respectively 0.9195 and 0.

% Simulate controlled system Ns times
N_s = 6;
xsim = ImplementController(x0, N, Controller, Ns, 'MOR', sysLTIr, ...

kernel);

The resulting trajectories can be evaluated using plotTrajectories. Some arbi-
trary trajectories are given in Figure 2.6c in Chapter 2 of this thesis.

3.4d Performance evaluation

The performance of SySCoRe is evaluated on the benchmarks mentioned above. The
details of the benchmarks and their total run time and memory usage are reported
in Table 3.2. The computation times per step are reported in Table 3.3. The data
has been obtained on a computer with a 2.3 GHz Quad-Core Intel Core i5 processor
and 16 GB 2133 MHz memory by taking the average over 5 computations. Here,
we observed a maximum 6% standard deviation.

Table 3.2 can be used to compare the different benchmarks with respect to the
computations performed by SySCoRe. The main difference between the running
example and the package delivery benchmark is the DFA. The DFA of the package
delivery benchmark requires more memory, however, the increase in computation
time is small. Due to the simple DFA of the running example, we only compute
the satisfaction probability for the initial DFA state. This will not suffice for the
package delivery benchmark, which is the reason that more computation time is
spent on steps (4)-(6) compared to the running example (see Table 3.3). The
computation time for the nonlinear benchmark is large, however, the memory usage
remains reasonable. The increase in computation time is mainly due to the fine
gridding. We can also see in Table 3.3 that the similarity quantification takes a
considerable amount of time. This is because we perform this step for each partition
separately (1600 times in this case). For higher-dimensional systems that require
model-order reduction (building automation system benchmark), the computation
time and memory usage increase substantially, mainly due to the fact that the
similarity quantification has to be performed multiple times.

80 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

Table 3.2: An overview of the different benchmarks in (a) and their total com-
putation time in seconds (s) and memory usage in megabytes (MB) in (b). The
details of the computation times for each step are reported in Table 3.3. Dim. and
Comp. are abbreviations for Dimension and Computation, respectively. The size of
the specification refers to the number of states of the DFA. The benchmark names
are abbreviated as follows. Running example (RE), Package Delivery (PD), Van
der Pol oscillator (vdPol), and Building automation system (BAS).

(a) Overview of the benchmarks

System MOR Specification
Dynamics Dim. Type Time horizon Size

RE Linear 2 No Reach-avoid Unbounded 3
PD Linear 2 No Reach-avoid Unbounded 3

VdPol Nonlinear 2 No Safety, reachability Unbounded 3
BAS Linear 7 Yes Safety Bounded 8

(b) Total computation time and memory usage

Comp. time (s) Memory (MB)
RE 7.94 27.53
PD 11.02 133.40

VdPol 3191.6 178.83
BAS 122.05 5365.6

Table 3.3 shows that the similarity quantification of step (3) requires the most
computation time, followed by the finite-state abstraction of step (2). The large
computation time of the similarity quantification is due to solving an optimization
problem constrained by parameterized matrix inequalities that could be non-convex.
For most abstraction-based approaches in the literature, the main bottleneck is
the finite-state abstraction and control synthesis. This shows the efficiency of our
tensor-based implementations. It should also be noted that the efficiency of the
tensor computations is also exploited in the control synthesis step.

3.4e Comparison to existing tools

A comparison of the results on the benchmarks obtained by SySCoRe and current
tools is given in Table 3.4. The package delivery benchmark has a complex DFA and
cannot be handled natively by tools AMYTISS, FAUST, and StocHy (see Table 3.4a).
SReachTools can only handle safety specifications and is not applicable to this
benchmark. The Van der Pol oscillator benchmark poses significant challenges for
the tools due to its nonlinear dynamics, as reported in Table 3.4b. Only AMYTISS can
solve a benchmark that resembles this one as considered in Abate et al. (2021) with
multiplicative noise instead of additive noise. AMYTISS can only handle systems with
a bounded disturbance, hence it cannot directly solve the benchmark as presented
here.

3.4. Benchmarks 81

Table 3.3: Computation times for the different steps (1)-(6) in seconds and as
percentage of the total runtime. Steps (1)-(6) correspond to (1) translating the
specification, (2) finite-state abstraction, (3) similarity quantification, (4) synthe-
sizing a controller, (5) control refinement, and (6) deployment. Step (5) is almost
instantaneous (≈ 0.001 s), therefore, we have taken the computation times of steps
(5) and (6) together. The benchmark names are abbreviated as follows. Running
example (RE), Package Delivery (PD), Van der Pol oscillator (vdPol), and Building
automation system (BAS).

Step (1) Step (2) Step (3) Step (4)
RE 0.26s (3.3%) 1.32s (16.6%) 5.59s (70.4%) 0.51s (6.39%)
PD 0.28s (2.6%) 1.66s (15.0%) 6.19s (56.2%) 1.71s (15.5%)

VdPol 0.59s (0.02%) 1440s (45.1%) 1748.6s (54.8%) 2.85s (0.09%)
BAS 0.36s (0.3%) 4.80s (3.9%) 67.9s (55.7%) 37.33s (30.6%)

Step (5)and (6) Total comp. time
RE 0.20s (2.57%) 7.94s (100%)
PD 0.70s (6.37 %) 11.02s (100%)

VdPol 1.42s (0.04%) 3191.6s (100%)
BAS 9.19s (7.53%) 122.05s (100%)

Table 3.4: Results of the benchmarks for different tools. Here, n.a. means that
a tool is not applicable and n.s. means that the current version of the tool does
not natively support the computations on the benchmark, but that we do not see
fundamental limitations hindering such an extension. To compare the tools we
exclude the deployment of the controller (step (6)) since this step is not performed
by the other tools.

(a) Package delivery benchmark.

Tool Run time (s)
AMYTISS n.s.
FAUST n.s.

SReachTools n.a.
StocHy n.s.
SySCoRe 10.32

(b) Van der Pol benchmark.

Tool Run time (s)
AMYTISS n.s.
FAUST n.a.

SReachTools n.a.
StocHy n.a.
SySCoRe 3190.2

(c) Building automation benchmark.

Tool Run time (s) Max. reach probability
AMYTISS 312.14 ≈ 0.8
FAUST n.s. n.s.

SReachTools 4.59 ≥ 0.99
StocHy ≥ 335.87 ≥ 0.80± 0.23
SySCoRe 102.86 ≥ 0.92

82 Chapter 3. SySCoRe: Synthesis via Stochastic Coupling Relations

The benchmark on the building automation system can be solved by AMYTISS,
SReachTools, and StocHy without being able to use model-order reduction. This
benchmark considers a stochastic safety problem and the performance of multiple
tools is compared in Abate et al. (2020) and Abate et al. (2021). Table 3.4c reports
the results of SySCoRe together with the results from running the repeatability
packages of Abate et al. (2020) and Abate et al. (2021) on a computer with a 2.3
GHz Quad-Core Intel Core i5 processor and 16 GB 2133 MHz memory. For StocHy,
there was no repeatability package available, however, since the computational
power of the CPU used for the results in Abate et al. (2021) was more than our
computer, we included the results of Abate et al. (2021) as a lower bound on
the computation time required by StocHy. Note that this benchmark belongs
to the class of partially degenerate systems (Soudjani and Abate 2013b). The
formulation of the abstraction error for this class is available but the current version
of FAUST does not natively support partially degenerate systems. With respect
to the computation time, SReachTools performs best, and AMYTISS and StocHy
require a longer computation time. Though from the results in Abate et al. (2021),
we see that AMYTISS could be faster than the current implementation of SySCoRe
when parallel execution within CPUs is available (this parallel computation will be
exploited in future versions of SySCoRe). With respect to accuracy, both AMYTISS
and StocHy obtain a maximum reachability probability smaller than SySCoRe, while
SReachTools still outperforms SySCoRe. This shows that SReachTools is the best
option for this benchmark, which is expected since it is developed exactly for linear
systems and stochastic reach-avoid problems with small disturbances.

3.5 Summary and extensions

This chapter described the first release of SySCoRe, a tool that excels at control
synthesis problems for systems with large (unbounded) stochastic disturbances
and temporal specifications with possibly unbounded time horizon. It combines
reduced-order models and finite abstractions with formal guarantees obtained by
coupled stochastic simulation relations. SySCoRe substantially extends the class
of models and temporal specifications that current tools can handle for control
synthesis. Furthermore, the modular development of SySCoRe allows ease of use and
facilitates future extensions. The efficient implementation of tensor computations in
SySCoRe allows for fast computations, which can be exploited further by including
more parallel computations as done in AMYTISS.

An important direction for future releases is to extend the current implementation of
model-order reduction to piecewise-affine systems, such that it can also be applied
to nonlinear systems. Currently, only Gaussian disturbances are implemented
in SySCoRe, however, extensions to other distributions are underway and require
deriving new inequality constraints for the optimization problem solved in the
similarity quantification. The computation time of the similarity quantification is
large due to solving optimization problems constrained by parameterized matrix
inequalities that could be non-convex. We are working on improving the efficiency
of solving this optimization.

3.5. Summary and extensions 83

The modular implementation of SySCoRe can be utilized to integrate model-
order reduction with discretization-free approaches such as the kernel method
of SReachTools (Vinod et al. 2019; Thorpe et al. 2021) and the barrier certificates
(Jagtap et al. 2020), or to perform synthesis for stochastic systems with parametric
uncertainty (as in Chapter 5). To get non-trivial lower bounds, SySCoRe currently
requires fine-tuning the hyperparameters (e.g., the grid size and the output de-
viation). It is of interest to automatically design these parameters or to provide
guidelines to the user on the appropriate values depending on the case study.

4
Specification-guided temporal logic

control for stochastic systems: a
multi-layered approach

The design of provably correct controllers for continuous-state stochastic systems
with respect to temporal logic specifications can sometimes be done directly but
generally requires an approximate solution. Hence, the control design often relies
on an approximation step, referred to as abstraction. Different circumstances,
such as different models and/or specifications, lead to different approaches
that are either based on a discretization of the state space (discretization-
based approach) or not (discretization-free approach). Besides the choice of
an approach, the accuracy of the approximated probability of satisfying a
specification can depend on parameter choices in the approach, such as required
precision.
In this chapter, we develop a method that naturally has the flexibility to switch
between parameters or abstraction techniques to reduce the conservatism of the
approximated satisfaction probability. First, we develop a discretization-based
approach with variable precision by switching between layers with different
precision parameters. By also extending this multi-layered approach to switching
between layers with respectively discretization-based models and discretization-
free models, we achieve an efficient implementation that is both accurate and
performs well concerning computation time and memory usage. At the end of
this chapter, we illustrate the benefit of the multi-layered approach in several
case studies.

86 Chapter 4. A multi-layered approach for stochastic systems

4.1 Introduction

Stochastic difference equations are often used to model the behavior of complex
systems that are operating in an uncertain environment, such as autonomous
vehicles, airplanes, and drones. In this work, we are interested in automatically
designing controllers for which we can give guarantees on the functionality of
stochastic systems with respect to temporal logic specifications. Such automatic
control synthesis is often referred to as correct-by-design control synthesis.
There are multiple techniques within this area, where we distinguish between
methods that construct a finite-state abstraction of the original continuous-state
model by discretizing the state space (Belta et al. 2017; Lavaei et al. 2022a), and
methods that do not rely on a space discretization (Vinod et al. 2019; Jagtap et al.
2020). The former is referred to as discretization-based techniques, and the latter
as discretization-free techniques. For certain models and specifications, the most
suitable approach is discretization-based while for a different situation, the most
suitable approach is discretization-free (Abate et al. 2020; Abate et al. 2021). Even
for the same model, a different specification could lead to a different approach
performing best. Furthermore, within a method, the accuracy of the computed
probability of satisfying a specification can depend on parameter choices in the
synthesis approach, such as precision.
As an example, consider a reach-avoid specification and a system whose labeled
output space is illustrated in Figure 4.1, where we want to avoid the red area
and reach the green area from an arbitrary initial point in the configuration space.
We are interested in synthesizing a controller, or even simpler, planning a path
that satisfies this specification subject to the dynamics of a given system, while
also computing the probability that the specification is satisfied, referred to as the
satisfaction probability. In general, we can reason that certain circumstances make it
possible to accurately compute the satisfaction probability by constructing a nominal
path surrounded by a tube containing possible paths with a high probability, as is
common with discretization-free approaches. Such circumstances are for example
1) a large state space, with a small avoid region and a large goal region that is far
away from the avoid region, or 2) the distribution associated with the disturbance
has a small variance. However, the usage of a single nominal path reduces the
achievable accuracy of the approximated satisfaction probability.
Discretization-based approaches, such as Soudjani et al. (2015), Cauchi and Abate
(2019), and Cauchi et al. (2019) overcome this limitation by (often manually)
refining the grid until the accuracy of the satisfaction probability is sufficient.
However, in practice, they are limited by the available memory and computation
time. Put differently, when the available memory is limited, large-scale systems pose
enormous challenges for discretization-based approaches, and discretization-free
approaches are the only option. In this chapter, we are interested in the boundary
cases, where it is not immediately obvious what the most suitable approach is.
For those cases, we develop an approach that naturally switches between different
techniques. More specifically, in situations where a discretization-free technique
gives acceptable accuracy, we use those techniques, and only when necessary we use
the discretization-based technique. Thereby effectively combining the approaches

4.1. Introduction 87

Figure 4.1: Example of an output space
for a reach-avoid specification. The red
area is the area to avoid, the green area
is the goal region, and the black dot is an
initial state.

to compute a single approximate satisfaction probability. In our approach, the
specification determines which technique is necessary for which situation, hence we
refer to our approach as specification-guided.

Combining both abstraction techniques while maintaining the guarantees is challeng-
ing and involves multiple changes. One of them is the fact that they have a different
precision. Therefore, we initially leave the different abstraction techniques to the
side and first develop a discretization-based approach, where we switch between
different simulation relations. More specifically, we build upon Chapter 2 of this
thesis and switch between different layers each containing its own simulation relation
with specific precision parameters. Next, we extend the multi-layered methodology
to feature layers with different abstraction techniques, that are discretization-based
or discretization-free.

Literature. In the area of discretization-based techniques, multiple methods are
related to achieving a variable precision, namely through non-uniform partitioning
of the state space. For deterministic systems there exist methods that construct
a non-uniform discretization grid (Tazaki and Imura 2010; Ren and Dimarogonas
2019). More specifically, they give an approximate bisimulation relation for variable
precision (or dynamic) quantization and develop a method to locally refine a
coarse finite-state abstraction based on the system dynamics. Furthermore, for
deterministic systems, there also exist methods known as multi-layered discretization-
based control synthesis. They focus on maintaining multiple finite-state abstraction
layers with different precision, where they use the coarsest finite-state abstraction
when possible (Cámara et al. 2011a; Cámara et al. 2011b; Hsu et al. 2018; Girard
and Gössler 2020). For stochastic models, non-uniform partitioning of the state
space has been introduced for the purpose of verification (Soudjani and Abate
2013a) and for verification and control synthesis in the software tools FAUST2

(Soudjani et al. 2015) and StocHy (Cauchi and Abate 2019; Cauchi et al. 2019).
The latter builds on interval Markov decision processes. In this chapter we consider
different simulation relations that are used to quantify the similarity between a
continuous-state model and its finite-state abstraction. Hence, we go a step beyond
non-uniform partitioning and achieve a variable precision differently.

We start with allowing variable precision by presenting a simulation relation that
contains multiple precision layers. For such relations, we develop an algorithm
to determine a switching strategy and a robust dynamic programming approach
such that we can compute a lower bound on the satisfaction probability of complex
specifications. Besides that, we extend our multi-layered methodology to allow for
layers with a discretization-free technique and layers with a discretization-based
technique, therefore, improving the efficiency and scalability of our method.

88 Chapter 4. A multi-layered approach for stochastic systems

In the next section, we discuss the considered model and specifications, and formulate
the problem statement for a general class of nonlinear stochastic difference equations.
In Section 4.3, we discuss the approach and structure of this chapter in a detailed
manner. In Section 4.4, we discuss the multi-layered approach and define the
multi-layered simulation relation for variable precision. In Section 4.5, we extend
the multi-layered method to allow discretization-free layers and discretization-based
layers. Finally, in Section 4.6, we apply our method to multiple case studies and
analyze its benefit. We end this chapter with a conclusion.

4.2 Problem formulation

Notation. The Borel measurable space of a set X ⊂ Rn is denoted by (X,B(X)),
with B(X) the Borel sigma-algebra on X. A probability measure P over this space
has realization x ∼ P, with x ∈ X. Furthermore, a time update of a state variable
x is interchangeably denoted by x(t+ 1), xt+1 or x+.
Model. We consider general Markov decision processes (gMDP) as defined in
Haesaert et al. (2017b) and Haesaert and Soudjani (2020) as follows.

Definition 4.1 (general Markov decision process (gMDP)). A gMDP is a tuple
M = (X, x0,U, t,Y, h) with state space X, initial state x0 ∈ X, input space U, and
with output space Y and measurable output map h : X→ Y. The transitions kernel
t : X× U× B(X)→ [0, 1] assigns to each state x ∈ X and input u ∈ U a probability
measure t(· | x, u) over (X,B(X)).

We consider output space Y to be a metric space and denote the class of all
models with the same metric output space (Y,dY) as MY. The behavior of a
gMDP with nx-dimensional state space X ⊂ Rnx can equivalently be described by a
stochastic difference equation. We consider discrete-time systems whose dynamics
are described by a stochastic difference equation with Gaussian disturbance

M :
{
x(t+ 1) = f(x(t), u(t), w(t))
y(t) = h(x(t)), ∀t ∈ {0, 1, 2, . . . } ,

(4.1)

with state x(t) ∈ X, input u(t) ∈ U, disturbance w(t) ∈W ⊆ Rnw , output y(t) ∈ Y,
and with measurable functions f : X × U ×W → X and h : X → Y. The system
is initialized with x(0) = x0 ∈ X, and w(t) is an independently and identically
distributed sequence with realizations w ∼ Pw = N (µ,Σ).
A finite path of the model (4.1) is a sequence ω[0,t] := x0, u0, x1, u1, . . . , xt. An
infinite path is a sequence ω := x0, u0, The paths start at x0 = x(0) and are
built up from realizations xt+1 = x(t+ 1) based on (4.1) given a state x(t) = xt,
input u(t) = ut and disturbance w(t) for each time step t. We denote the state
trajectories as x = x0, x1, . . . , with associated suffix xt = xt, xt+1, The output
yt contains the variables of interest for the performance of the system and for each
state trajectory, there exists a corresponding output trajectory y = y0, y1, . . . , with
associated suffix yt = yt, yt+1,

4.2. Problem formulation 89

A control strategy is a sequence µ = (µ0, µ1, µ2, . . .) of maps µt(ω[0,t]) ∈ U that
assigns for each finite path ω[0,t] an input u(t) = ut. The control strategy is
a Markov policy if µt only depends on xt, that is µt : X → U. We refer to a
Markov policy as stationary if µt does not depend on the time index t, that is
µ = (µ, µ, . . .) for some µ. In this work, we are interested in control strategies
denoted as C that can be represented with finite memory, that is, policies that are
either time-stationary Markov policies or have finite internal memory. A policy
with finite internal memory first maps the finite state execution of the system to a
finite set (memory), followed by computing the input as a function of the system
state and the memory state. By doing so, we can satisfy temporal specifications on
the system trajectories.
Specifications. To express (unbounded time-horizon) temporal logic specifications,
we use the syntactically co-safe linear temporal logic language (scLTL) (Kupferman
and Vardi 2001; Belta et al. 2017). This language consists of atomic proposi-
tions p1, p2, . . . pN that are true or false. The set of atomic propositions and the
corresponding alphabet are denoted by AP = {p1, . . . , pN} and 2AP, respectively.
Each letter π ∈ 2AP contains the set of atomic propositions that are true. A
(possibly infinite) string of letters forms a word πππ = π0, π1, . . . , with associated
suffix πππt = πt, πt+1, The output trajectory y = y0, y1, . . . of a system (4.1) is
mapped to the word πππ = L(y0), L(y1), . . . using labeling function L : Y → 2AP

that translates each output to a specific letter πt = L(yt). Similarly, suffixes yt
are translated to suffix words πππt. By combining atomic propositions with logical
operators, the language of scLTL can be defined as follows.

Definition 4.2 (scLTL syntax). An scLTL formula ϕ is recursively defined over a
set of atomic propositions as

ϕ ::= p | ¬p |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |⃝ϕ |ϕ1 U ϕ2, (4.2)

with atomic proposition p ∈ AP.

The semantics of this syntax can be given for the suffixes πππt. An atomic proposition
πππt |= p holds if p ∈ πt, while a negation πππt |= ¬ϕ holds if πππt ̸|= ϕ. Furthermore,
a conjunction πππt |= ϕ1 ∧ ϕ2 holds if both πππt |= ϕ1 and πππt |= ϕ2 are true, while a
disjunction πππt |= ϕ1 ∨ ϕ2 holds if either πππt |= ϕ1 or πππt |= ϕ2 is true. Also, a next
statement πππt |= ⃝ϕ holds if πππt+1 |= ϕ. Finally, an until statement πππt |= ϕ1 U ϕ2
holds if there exists an i ∈ N such that πππt+i |= ϕ2 and for all j ∈ N, 0 ≤ j < i,
we have πππt+j |= ϕ1. A trajectory satisfies a specification if the generated word
πππ0 = πππ = L(y) satisfies the specification, i.e., πππ0 |= ϕ.
Correct-by-design control synthesis focuses on designing a controller C, for model M
and specification ϕ, such that the controlled system M×C satisfies the specification,
denoted as M×C |= ϕ. For stochastic systems, we are interested in the satisfaction
probability, denoted as P(M ×C |= ϕ). The general problem considered in this
chapter is the following.
Problem. Given model M as in (4.1), an scLTL specification ϕ, and a probability
pϕ ∈ [0, 1], find a controller C, such that

P(M×C |= ϕ) ≥ pϕ. (4.3)

90 Chapter 4. A multi-layered approach for stochastic systems

4.3 Multi-layered approach

In discretization-based methods, a finite-state approximation of the original model
called the abstract model, is used to both synthesize a controller and to compute a
lower bound on the satisfaction probability. By refining the obtained controller in a
suitable manner the lower bound on the satisfaction probability is maintained for
the original model. Crucial steps in this approach are the similarity quantification
between the original model and its abstraction, and the dynamic programming
approach to compute the lower bound on the satisfaction probability and the
associated controller.
In this chapter, we build upon the similarity quantification and robust dynamic
programming approach as in Chapter 2 of this thesis. More specifically, this chapter
is structured as follows.

• Standard approach. We first recap the standard approach in which one
finite-state model and one similarity quantification are used.

• Homogeneous layers. Next, we introduce a multi-layered approach with
variable precision. Here, we use multiple homogeneous layers, in which one
finite-state model with multiple layers and multiple similarity quantifications
is used.

• Heterogeneous layers. As a final contribution, we combine the multi-
layered approach with a model that is constructed using a discretization-free
technique. Hence, we use different abstract models.

Let us start with a brief recap of the standard approach based on Chapter 2.

4.3a Standard approach

Similarity quantification. Suppose that we have approximated the continuous-
state model as given in (4.1), with the following finite-state abstract model

M̂ :
{
x̂(t+ 1) = f̂(x̂(t), û(t), ŵ(t))
ŷ(t) = ĥ(x̂(t)),

(4.4)

with state x̂ ∈ X̂, initialized at x̂(0) = x̂0 and with input û ∈ Û, output ŷ ∈ Y
and disturbance ŵ ∈ Ŵ . Furthermore, we have functions f̂ : X̂× Û× Ŵ→ X̂ and
ĥ : X̂→ Y, and ŵ(t) is an independently and identically distributed sequence with
realizations ŵ ∼ Pŵ.
We use the abstract model in (4.4) to compute a lower bound on the probability
of satisfying specification ϕ. To preserve this lower bound, we need to quantify
the similarity between the models (4.1) and (4.4), graphically represented as in
Figure 4.2.
We consider an approximate simulation relation as in Definition 2.4 in Chapter 2
of this thesis, since this is suitable for specifications that are unbounded in time.

4.3. Multi-layered approach 91

M̂ M(ϵ, δ)

Figure 4.2: Graphical representation of the standard approach.

This method for quantifying the similarity is based on an explicit coupling between
the models (4.1) and (4.4), which allows for analyzing how close the probability
transitions are. Definition 2.4 in Chapter 2 is based on the following observation.
Given a simulation relation R ⊂ X̂× X, for all pairs of states inside this relation
(x̂, x) ∈ R, and for all inputs û ∈ Û we can quantify a lower bound on the probability
that the next pair of states is also inside this simulation relation, i.e. (x̂+, x+) ∈ R.
Hence, for all states (x̂, x) ∈ R, ∀û ∈ Û, we require that

(x̂+, x+) ∈ R (4.5)

has a lower bound on its probability denoted by 1− δ under the transitions in the
coupled model.
The approximate simulation relation in Definition 2.4 does not only quantify the
similarity based on the probability deviation δ but also on output deviation ϵ.
Furthermore, if M̂ is (ϵ, δ)-stochastically simulated by M, then this is denoted as
M̂ ⪯δϵ M. In Chapter 2 of this thesis, it has been shown that ϵ and δ have a trade-off.
Increasing ϵ decreases the achievable δ and vice versa. To compute the deviation
bounds (ϵ, δ), an optimization problem constrained by a set of parameterized matrix
inequalities is given in Chapter 2 of this thesis.
Robust dynamic programming. After quantifying the similarity, we can
synthesize a robust controller and compute a lower bound on the satisfaction
probability based on the deviation bounds ϵ and δ. Since we consider specifications
written using scLTL, we can formulate this problem as a reachability problem that
can be solved as a dynamic programming problem.
For control synthesis purposes an scLTL specification (4.2) can be written as a deter-
ministic finite-state automaton (DFA), defined by the tuple A = (Q, q0,ΣA, τA, Qf).
Here, Q, q0, and Qf denote the set of states, initial state, and set of accepting
states, respectively. Furthermore, ΣA = 2AP denotes the input alphabet and
τA : Q × ΣA → Q is a transition function. For any scLTL specification ϕ, there
exists a corresponding DFA Aϕ such that the word πππ satisfies this specification
πππ |= ϕ, iff πππ is accepted by Aϕ. Here, acceptance by a DFA means that there exists
a trajectory q0q1q2 . . . qf , that starts with q0, evolves according to qt+1 = τA(qt, πt),
and ends at qf ∈ Qf . We can therefore reason about the satisfaction of specifications
over M by analyzing its product composition with Aϕ (Tkachev et al. 2013) denoted
as M⊗Aϕ. This composition yields a stochastic system with states (xt, qt) ∈ X×Q
and input ut. Given input ut, the stochastic transition from xt to xt+1 of M is
extended to the transition from (xt, qt) to (xt+1, qt+1) with qt+1 = τAϕ

(qt, L(h(xt))).

92 Chapter 4. A multi-layered approach for stochastic systems

Hence, by computing a Markov policy over M⊗Aϕ that solves this reachability
problem, we obtain a controller with respect to specification ϕ, that has a finite
memory (Belta et al. 2017). In Section 2.6, we have shown that for any gMDP (and
other equivalent representations), this reachability problem can be rewritten as a
dynamic programming (DP) problem.
Given Markov policy µ = (µ0, µ1, . . . , µN) with time horizon N for M⊗Aϕ, define
the time-dependent value function V µ

N as

V µ
N (x, q) = Eµ

[
N∑
k=1

1Qf
(qk)

k−1∏
j=1

1Q\Qf
(qj)

∣∣∣∣(x0, q0) = (x, q)
]

(4.6)

with indicator function 1E(q) equal to 1 if q ∈ E and 0 otherwise. Since V µ
N (x, q)

expresses the probability that a trajectory generated under µ : X×Q→ U starting
from (x, q) will reach the target set Qf within the time horizon [1, . . . , N], it also
expresses the probability that specification ϕ will be satisfied in this time horizon.
Next, express the associated DP operator

Tu(V)(x, q) := Eu
(

max
{

1Qf
(q+), V (x+, q+)

})
, (4.7)

with u = µ(x, q), x+ := x(t+ 1) evolving according to (4.1), and with the implicit
transitions q+ = τAϕ

(q, L(h(x+))). Consider a policy µk = (µk+1, . . . µN) with
time horizon N − k, then it follows that V µk−1

N−k+1(x, q) = Tµk (V µk

N−k)(x, q), ∀(x, q) ∈
M⊗Aϕ. Thus if V µk

N−k expresses the probability of reaching Qf within N − k steps,
then Tµk (V µk

N−k) expresses the probability of reaching Qf within N − k + 1 steps
with policy µk−1. It follows that for a stationary policy µ, the infinite-horizon value
function can be computed as V µ

∞ = limN→∞(Tµ)NV0 with V0 ≡ 0. Furthermore,
the optimal DP operator T∗(·) := supµ Tµ(·) can be used to compute the optimal
converged value function V ∗

∞. The corresponding satisfaction probability can now
be computed as

Pµ∗
:= max(1Qf

(q̄0), V ∗
∞(x0, q̄0)),

with q̄0 = τAϕ
(q0, L(h(x0)) and is also denoted as P(M×C |= ϕ). When the policy

µ∗, or equivalently the controller C, yields a satisfaction probability higher than
pϕ, then (4.3) is satisfied and the synthesis problem is solved.
Due to the continuous states of M, the DP formulation above cannot be computed
for the original model M, instead, we use abstract model M̂. As a consequence,
we have to take deviation bounds ϵ and δ into account. For a fixed precision, this
robust DP operator is introduced by Haesaert and Soudjani (2020). We repeat it
here for completeness:

Tû(V)(x̂, q) = L
(
Eû

(
min
q+∈Q+

ϵ

max
{

1Qf
(q+), V (x̂+, q+)

})
− δ

)
, (4.8)

with û = µ(x̂, q) and L : R→ [0, 1] being a truncation function defined as L(·) :=
min(1,max(0, ·)), and with

Q+
ϵ (q, ŷ+) :=

{
τA(q, L(y+)) | ||y+ − ŷ+|| ≤ ϵ

}
. (4.9)

Note that compared to (4.7), in (4.8) we subtract δ from the expected value to take
the deviation in probability into account. Similarly, the deviation in the outputs

4.3. Multi-layered approach 93

ϵ can give different labels for the outputs y and ŷ. Therefore, we minimize the
probability with respect to the possible DFA states associated with these labels.
This is done through Q+

ϵ as in (4.9). A graphical representation of the value iteration
using this robust DP operator is given in Figure 4.3.

V
µN

0V
µN−1

1V
µk

N−kV
µk−1
N−k+1V

µ1
N−1V

µ0
N

. (4.8)(4.8)(4.8)

Figure 4.3: Graphical representation of the value iteration with a standard robust
DP operator. The arguments (x̂, q) of the value functions are omitted for simplicity.

The value function gives the probability of satisfying the specification in 1 to∞ time
step, by including the satisfaction at x0, we can compute the robust satisfaction
probability, that is

Rµ := max(1Qf
(q̄0), V µ

∞(x̂0, q̄0)), (4.10)

with q̄0 = τAϕ
(q0, L(h(x0))) and x̂0 ∈ R−1(x0). The robust satisfaction probability

as in (4.10) is also denoted as Rµ
ϵ,δ(M̂× Ĉ |= ϕ) to emphasize that it is computed

on M̂× Ĉ by taking (ϵ, δ) into account.

In Haesaert and Soudjani (2020) they also show that the robust DP operator in (4.8)
satisfies some important properties. The first property is that it is monotonically
increasing. Note that a Bellman-operator T(·) is monotonically increasing if for any
two functions V and W for which we have that ∀(x̂, q) ∈ X̂×Q: V (x̂, q) ≥W (x̂, q),
it holds that

Tû(V)(x̂, q) ≥ Tû(W)(x̂, q).

Following Lemma 1 in Haesaert and Soudjani (2020), we can now conclude the
following.

Proposition 4.1. The robust DP operator in (4.8) is monotonically increasing, and
the series

{
(Tû)k(V0)

}
k≥0 with V0 ≡ 0 is monotonically increasing and point-wise

converging. Furthermore, the fixed point equation V û∞ = Tû(V û∞) has a unique
solution for δ > 0, which is V û∞ = limN→∞(Tû)NV0 with V0 ≡ 0.

Based on these properties and the robust satisfaction probability as in (4.10),
following Theorem 4 in Haesaert and Soudjani (2020), we can now conclude the
following.

Proposition 4.2. Let M̂⊗Aϕ and a controller Ĉ be given. Then for any M with
M̂ ⪯δϵ M, we can construct C, such that P(M×C |= ϕ) ≥ Rϵ,δ(M̂× Ĉ |= ϕ).

This concludes the recap of the most crucial concepts in the standard approach.
Next, we give some details on the multi-layered approach developed in this chapter.

94 Chapter 4. A multi-layered approach for stochastic systems

M̂

M̂

Mw

M

Standard

Section 4.3

Homogeneous layers

Section 4.4

Heterogeneous layers

Section 4.5

(ϵi, δi)

(ϵj , δj)

E

Figure 4.4: Overview of the structure of this chapter.

4.3b Multi-layered approach

The different approaches discussed in this chapter are graphically illustrated in
Figure 4.4.

Homogeneous layers. First, we develop a multi-layered approach with homoge-
neous layers. To this end, we construct multiple layers containing the same abstract
model M̂ as in (4.4), and quantify the similarity compared to the original model
with different deviation bounds ϵ and δ. By doing so, we achieve a multi-layered
simulation relation with variable precision. To perform the value iteration, we
adjust the standard DP operator, such that it suits this multi-layered approach.

Heterogeneous layers. Next, we extend the multi-layered approach to heteroge-
neous layers. Here, one of the layers contains a discretization-free model constructed
by computing reachability tubes, instead of a discretization-based abstract model
M̂ as in (4.4). Since this model is substantially different than the abstract model
M̂, the value iteration is performed differently as well. To perform the value
iteration with heterogeneous layers, we have to combine the DP operator of the
discretization-free layer with the DP operator of the multi-layered approach with
homogeneous layers.

Overview. The main part of this chapter is structured as illustrated in Figure 4.4.
In Section 4.4, we define a multi-layered simulation relation, derive the multi-layered
DP operator, and describe a practical approach to efficiently implement the value
iteration. Furthermore, we discuss how to obtain a controller and give an efficient
implementation for the similarity quantification of linear systems. In Section 4.5, we
extend the multi-layered approach to heterogeneous layers. We start with describing
the discretization-free layer and how to perform the dynamic programming for this
layer on its own. Next, we discuss the multi-layered approach with heterogeneous
layers and describe suitable DP operators.

4.4. Homogeneous layers with variable precision 95

4.4 Homogeneous layers with variable precision

In this section, we define a multi-layered simulation relation which allows variable
precision using one abstract model, but different deviation bounds ϵ and δ. This
is graphically represented in Figure 4.5. Furthermore, we detail an appropriate
DP approach, discuss multiple computational improvements, prove the control
refinement, and give an efficient implementation for linear systems.

M̂

M̂

M

Homogeneous layers

(ϵi, δi)

(ϵj , δj)

Figure 4.5: Graphical representation of the multi-layered approach with homoge-
neous layers.

4.4a Multi-layered simulation relation

Current methods define one simulation relation for the whole state space, while
we desire a multi-layered simulation relation R that switches between multiple
simulation relations to allow for multiple (ϵi, δi) pairs, with i ∈ {1, 2, . . . , NR} where
NR denotes the number of simulation relations. Each simulation relation is denoted
as Ri and the corresponding precision as ϵi.
An example of a multi-layered simulation relation with two simulation relations is
given in Figure 4.6.

R1 R21− δ11 1− δ221− δ12

1− δ21

Figure 4.6: Multi-layered simulation relation R consisting of two simulation
relations R1 and R2. The edges are labeled with a lower bound on the probability
that the transition occurs.

Here, the self-loops represent remaining in the same simulation relation, and a
switch is indicated by the dashed arrows. Similar to the invariance requirement in
(4.5), we associate a lower bound on the probability of each transition from Ri to Rj

96 Chapter 4. A multi-layered approach for stochastic systems

as 1− δij , with i, j ∈ {1, 2, . . . , NR}. Furthermore, we define ϵ, and δ with vector
ϵ =

[
ϵ1, ϵ2, . . . , ϵNR

]
, and matrix δ =

[
δij

]
ij

In the remainder of this chapter, a
switch from simulation relation Ri to Rj is denoted by the action sij , and we define
the set of all possible switching actions by S := {sij with i, j ∈ {1, 2, . . . , NR}}.
The similarity quantification between the two models is performed by coupling the
transitions of the models. First, the control inputs u and û are coupled through an
interface function denoted by

Uv : Û× X̂× X→ U. (4.11)

Next, the disturbances w and ŵ are coupled through a stochastic kernel W̄ij(·|x̂, x, û)
in a similar fashion as in Chapter 2 of this thesis. However, in this multi-layered set-
ting, we compute multiple stochastic kernels W̄ij(·|x̂, x, û) with i, j ∈ {1, 2, . . . , NR},
and use the switching action sij to select one of them based on the state pair (x̂, q)
and the current layer i.
Based on these notions, we can now formally define the multi-layered simulation
relation as follows.

Definition 4.3 (Multi-layered simulation relation). Let the models M, M̂ ∈MY,
and the interface function Uv (4.11) be given. If there exists measurable relations
Ri ⊆ X̂ × X and Borel measurable stochastic kernels W̄ij that couple Pw and Pŵ
for i, j ∈ {1, 2, . . . , NR} such that

1. ∃i ∈ {1, 2, . . . , NR} : (x̂0, x0) ∈ Ri,

2. ∀i ∈ {1, 2, . . . , NR} ,∀(x̂, x) ∈ Ri : dY(ŷ, y) ≤ ϵi,

3. ∀i ∈ {1, 2, . . . , NR} ,∀(x̂, x) ∈ Ri,∀û ∈ Û : (x̂+, x+) ∈ Rj holds with probabil-
ity at least 1− δij with respect to W̄ij,

then M̂ is stochastically simulated by M in a multi-layered fashion, denoted as
M̂ ⪯δ

ϵ M, with precision ϵ = [ϵi]i and δ = [δij]ij for i, j ∈ {1, 2, . . . , NR}. □

Remark 4.1. This simulation relation differs from the original one in Definition 2.4,
since it contains multiple simulation relations Ri with different output precision and,
therefore, allows for variable precision. Note that for NR = 1, this multi-layered
simulation relation becomes equivalent to the simulation relation from Definition 2.4.
The difference between a simulation relation with a fixed precision and a multi-
layered simulation relation with a variable precision is illustrated in Figure 4.7.
Here, we assume ellipsoidal simulation relations, however, the method described in
this chapter is not restricted to relations with this specific shape.

4.4b Multi-layered dynamic programming

Consider a switching strategy that associates a switching action sij to state pairs
(x̂, q) ∈ X̂ × Q depending on the layer i. More specifically, we extend the input

4.4. Homogeneous layers with variable precision 97

x̂t

x̂t+1

(a) Fixed precision

x̂t

x̂t+1

(b) Variable precision

Figure 4.7: Graphical representation of a probabilistic transition for a fixed
precision in (a) and a variable precision with two discretization-based layers in (b).
In the left figure, the light blue ellipsoids contain all states xt resp. xt+1 for which
it holds that (x̂t, xt) ∈ R1 resp. (x̂t+1, xt+1) ∈ R1. In the right figure, the light blue
ellipsoid contains all states xt for which it holds that (x̂t, xt) ∈ R1, and the dark
blue ellipsoid contains all states xt+1 for which it holds that (x̂t+1, xt+1) ∈ R2. In
both figures, the space discretization or grid size is the same, while the simulation
relations R1 and R2 are ellipsoids with different parameters.

action û to (û, sij) and split up the corresponding policy as µ = (µu,µs), with
µu = (µu0 , µu1 , . . . , µuN) and µs = (µs0, µs1, . . . , µsN) determining respectively the
input action and switching action, with respectively the mappings µuk : X̂ × Q ×
{1, 2, . . . , NR} → Û, and µsk : X̂ × Q × {1, 2, . . . , NR} → S, ∀k ∈ [0, . . . , N]. Note
that for µ, we still have µ = (µ0, µ1, . . . , µN), with N the time horizon. For the
DP, we are now interested in computing both û = µuk(x̂, q, i) and sij = µsk(x̂, q, i)
for all k ∈ [0, . . . , N].
To implement a layered DP approach, we extend the value function to include the
different relations Ri as different layers. Hence, to each layer, we assign a value
function V (x̂, q, i). This value function defines a lower bound on the probability
that specification ϕ will be satisfied in the time horizon [1, . . . , N]. We define a new
robust operator Tû

sij
as

Tû
sij

(V)(x̂, q, i) = L
(
Eû

(
min

q+∈Q+
ϵj

max
{

1Qf
(q+), V (x̂+, q+, j)

})
− δij

)
, (4.12)

with

Q+
ϵj

(q, ŷ+) :=
{
τA(q, L(y+)) | ||y+ − ŷ+|| ≤ ϵj

}
. (4.13)

For given policy µ = (µu, µs), we define Tµ(V)(x̂, q, i) = Tû
sij

(V)(x̂, q, i) with
û = µu(x̂, q, i), and sij = µs(x̂, q, i). Consider a policy µk = (µk+1, . . . , µN), then for
all (x̂, q, i) we have that V µk−1

N−k+1 = Tµk (V µk

N−k), initialized with V0 ≡ 0. Figure 4.8
gives a graphical representation of the multi-layered value iteration for two layers
and all possible switching actions. As before, for a stationary policy µ, the infinite-

98 Chapter 4. A multi-layered approach for stochastic systems

V
µk

i,N−k

V
µk

j,N−k

V
µk−1
i,N−k+1

V
µk−1
j,N−k+1

Tû
sii

Tû
sjj

Tû
sij

Tû
sji

(4.12)

Figure 4.8: Graphical representation of the value iteration for homogeneous layers,
where all possible switching actions sij ∈ S are considered. All operations in the
gray box can be performed using (4.12). The arguments (x̂, q, i) and (x̂, q, j) of the
value functions in respectively the top and bottom rows are omitted for simplicity.
Note that the layer is indicated as a subscript instead. The dots indicate that the
full value iteration follows the sequence as in Figure 4.3.

horizon value function for all layers can be computed as V µ
∞ = limN→∞(Tµ)NV0

with V0 ≡ 0.
Remark 4.2. The DP operator in (4.12) is an adaptation of the operator in (4.8) to
a multi-layered setting. For a fixed precision, that is one value for ϵ and one for δ
(which could be a function of x̂ as in Section 2.6), the DP operators in (4.12) and
(4.8) become equivalent, hence we retrieve the DP operator for a fixed precision.

Since the DP operator in (4.12) is a simple adaptation of the standard DP operator
in (4.8), we can follow Proposition 4.1 to conclude that it satisfies the important
properties mentioned in this proposition.

The value function gives the probability of satisfying the specification in 1 to ∞
time step, by including the first time instance based on x0, we can compute the
robust satisfaction probability, that is

Rµ := max(1Qf
(q̄0), max

i∈{1,2,...,NR}
V µ

∞(x̂0, q̄0, i)), (4.14)

with q̄0 = τAϕ
(q0, L(h(x0))) and x̂0 ∈ R−1(x0). The robust satisfaction probability

as in (4.14) is also denoted as Rµ
ϵ,δ(M̂× Ĉ |= ϕ).

To compute the optimal converged value function V ∗
∞, we use the optimal robust

operator
T∗(·) := sup

µ
Tµ(·). (4.15)

Note that the operator supµ(·) implicitly optimizes both over û ∈ Û and j ∈
{1, 2, . . . , NR} which in practice is a very expensive operation with respect to
computation time and memory usage. This is especially the case when the number
of abstract inputs or the number of layers is large. Next, we present a way to
alleviate this issue.

4.4. Homogeneous layers with variable precision 99

4.4c Efficient implementation of multi-layered dynamic pro-
gramming

Optimize the switching strategy using a surrogate model. To reduce the
computation time and memory usage, we split the computation of the optimal input
policy and switching strategy. To this end, we use the DP operator in (4.12) in
two different ways. First to compute a switching strategy, then to compute the
abstract input and the robust satisfaction probability. In this section, we detail an
approach to determine the switching strategy that is close to optimal, while also
being efficient with respect to computation time and memory usage.
In (4.15), we determine the optimal action pair (û, sij), by considering all possible
input actions û ∈ Û and all possible switching actions sij ∈ S at all states and layers.
This computation requires a lot of memory and computation power, therefore we
pre-compute an approximately optimal switching strategy.To save computational
power, we only compute the switching strategy for an abstract model with an extra
coarsely partitioned state space, referred to as the surrogate model M̂s with state
space X̂s. Note that this surrogate model is a finite-state abstraction of the original
model M that is constructed in the exact same way as finite-state abstraction M̂,
however, the grid is a lot coarser for M̂s compared to M̂.
The approach to compute the switching strategy using this surrogate model is
summarized in Algorithm 4.1. After constructing the surrogate model by partitioning
the state space with a finite number of grid cells, we compute a suitable switching
action using the (ϵ, δ) values corresponding to the actual abstract model M̂. More
specifically, we compute the switching action at (x̂, q, i) as

(û∗, s∗
ij) = arg max

(û,sij)
Tû
sij

(V)(x̂, q, i), (4.16)

with operator Tû
sij

(·) as in (4.12), and with j ∈ {1, 2, . . . , NR}. This optimal
switching action s∗

ij = µsk(x̂, q, i) is computed at each time step k ∈ [0, . . . , N], with
N the time horizon. Hence, it is used to build up the optimal switching strategy
µs = (µs0, µs1, . . . , µsN).

Algorithm 4.1 Optimize switching strategy
1: Input: M, ϵ, δ, Aϕ
2: M̂s ← Construct surrogate model M̂s using a coarse grid.
3: µs(x̂s, q, i)← Perform dynamic programming through (4.12) over all possible

switching actions in S based on model M̂s from step 2 and inputs (ϵ, δ). After
convergence is reached, compute optimal switching action using (4.16).

4: µs(x̂, q, i) ←Translate switching strategy for M̂s from step 3 to switching
strategy for M̂.

5: Output: µs(x̂, q, i)

100 Chapter 4. A multi-layered approach for stochastic systems

Since the DP algorithm determines the best switching action sij for each abstract
state of the surrogate model, it is optimal with respect to this surrogate model.
Finally, in step 4, we translate the switching strategy from the surrogate model
to the actual abstract model M̂. More specifically, for each x̂ ∈ X̂ we determine
the closest (with respect to the L2-norm) state x̂s ∈ X̂s and associate the same
switching action sij to it.

After computing the switching strategy µs, the control policy µu is determined for
the actual abstract model M̂ together with the robust satisfaction probability. The
complete approach is summarized in Algorithm 4.2.

Algorithm 4.2 Control synthesis

1: Input: M, M̂, Aϕ
2: (ϵ, δ)← Compute (ϵ, δ) such that M̂ ⪯δ

ϵ M holds with relation R.
3: µs(x̂, q, i)← Algorithm 4.1.
4: µu(x̂, q, i),Rµ

ϵ,δ(M̂ × Ĉ |= ϕ) ← Compute robust controller and satisfaction
probability given the switching strategy from step 3.

5: Output: µ = (µu,µs), and Rµ
ϵ,δ(M̂× Ĉ |= ϕ)

Partial value iteration. To improve the computational efficiency of our approach
even further, we consider layers where we only partially compute the value function.
An example is illustrated in Figure 4.9, where for the gray part of the state space
in the high-precision layer, we fix the value function to zero and do not update
it.Therefore, the total computation time and memory usage is lower than when
performing the value iteration fully. This is especially the case for high-dimensional
systems, models with a large number of layers, and models with a large state space.

x̂t

x̂t+1

Figure 4.9: Homogeneous layers with a variable precision, where the value function
in the high-precision layer is not fully computed. The part of the state space of the
high-precision layer (bottom), where the value function is not computed, is given in
gray.

4.4. Homogeneous layers with variable precision 101

4.4d Control refinement

The abstract controller Ĉ is designed based on the abstract model M̂ in (4.4). Since
we take the similarity quantification into account during the control design, we
can refine the abstract controller Ĉ to a controller C that can be deployed on the
original model M. In this section, we show that with the given DP approach, such
a control refinement is indeed possible and the computed satisfaction probability is
valid.
We design the abstract control Ĉ based on the abstract model M̂ that is coupled
through an interface function Uv as in (4.11) and a stochastic kernel W̄ij as in (4.17).
Due to this coupling, we can define the combined stochastic difference equation,
with finite mode σt that keeps track of the layer as

M̂∥M :



(
x̂t+1
xt+1

)
=

(
f̂(x̂t, ût, ŵt)

f(xt,Uv(ût, x̂t, xt), wt)

)
ŷt = ĥ(x̂t)
yt = h(xt)
σt+1 = j if σt = i, and st = sij
(ŵt, wt) ∼ W̄ij(·|x̂, x, û) if st = sij ,

(4.17)

with pair of states (x̂, x) ∈ X̂ × X, control input û ∈ Û, outputs ŷ, y ∈ Y, and
coupled disturbance (ŵ, w). The input space of this combined system has been
extended; that is, next to control input ût we also have a switching input st. More
specifically, since the disturbances of the combined transitions (4.17) are generated
from the stochastic kernel W̄ij , (4.17) holds, with (ŵ, w) ∼ W̄ij if st = sij . The
combined system is illustrated in the gray box in Figure 4.10a. Given the coupled
stochastic difference equation, we can analyze how close the transitions are and
therefore, quantify the similarity between models (4.1) and (4.4). Furthermore,
the additional switching action allows us to do this in a multi-layered manner, as
defined in Definition 4.3.
Consider a control strategy µ for M̂, indicated by Ĉ in Figure 4.10a. This strategy
can also be implemented on the combined model M̂∥M and we denote the value
function of the combined model as Vc(x̂, x, q, i). The control strategy for the
combined model can be refined to a control strategy of the original model M (4.1),
as depicted in Figure 4.10b. Although Vc(x̂, x, q, i) expresses the probability of
satisfaction, it cannot be computed directly, instead we can compute V (x̂, q, i) over
the abstract model M̂ using (4.12).
To prove that for any control strategy µ (or controller Ĉ) for M̂∥M there still
trivially exists a controller C for M that preserves the lower-bound on the satisfaction
probability, it is sufficient to formulate the following lemma.

Lemma 4.1. Suppose M̂ ⪯δ
ϵ M with a multi-layered simulation relation R is given.

Let V (x̂, q, j) ≤ Vc(x̂, x, q, j) for all (x̂, x) ∈ Rj, then

Tû
sij

(V)(x̂, q, i) ≤ Tû
sij

(Vc)(x̂, x, q, i) ∀(x̂, x) ∈ Ri, (4.18)

102 Chapter 4. A multi-layered approach for stochastic systems

M̂||M

M :

{
xt+1 = f(xt, ut, wt)

yt = h(xt)

Kernel
(ŵt, wt) ∼ W̄ij

Interface
ut = Uv(ût, x̂t, xt)

M̂ :

{
x̂t+1 = f̂(x̂t, ût, ŵt)

ŷt = ĥ(x̂t)

Ĉ

wt

ŵt (x̂t, ût)

ut xt

ŷt

yt

x̂tût

sij

(a)

C

M :

{
xt+1 = f(xt, ut, wt)

yt = h(xt)

Kernel
ŵt ∼ W̄ij(· | wt)

Interface
ut = Uv(ût, x̂t, xt)

M̂ :

{
x̂t+1 = f̂(x̂t, ût, ŵt)

ŷt = ĥ(x̂t)

Ĉ

wt

ŵt (x̂t, ût)

ut xt

ŷt

yt

x̂tût

sij

(b)

Figure 4.10: In (a), designing an abstract controller Ĉ for coupled transitions of
M̂||M, where the switching action sij determines the stochastic kernel W̄ij . In (b),
refined controller C deployed on the model M with conditional kernel W̄ij .

where Tû
sij

(V)(x̂, q, i) is the (ϵ, δ)-robust operator (4.12) with respect to stochastic
transitions of M̂ and Tû

sij
(Vc)(x̂, x, q, i) is the exact recursion (4.7) extended to the

combined stochastic transitions (4.17).

The proof of Lemma 4.1 follows along the same lines as the proof of Lemma 3 in the
extended version of Haesaert and Soudjani (2020). It is given here for completeness.

Proof. The expected-value part of the operator Tû
sij

(V)(x̂, q, i) in (4.12) equals

Eû
(

min
q+∈Q+

ϵj

max
{

1Qf
(q+), V (x̂+, q+, j)

})
− δij (4.19)

This expected value can be rewritten to an integral and multiplication with the
transition kernel. Hence, (4.19) is equivalent to∫

x̂+∈X̂

min
q+∈Qϵj

max
{

1Qf
(q+), V (x̂+, q+, j)

}
t(dx̂+ | x̂, û)− δij . (4.20)

Denote the transition kernel of the combined model M̂||M as W̄x
ij(· | x̂, x, û) :

B(X̂×X)→ [0, 1], which is equivalent to the evolution of the state pair of M̂||M as
in (4.17), that is (

x̂t+1
xt+1

)
=

(
f̂(x̂t, ût, ŵt)

f(xt,Uv(ût, x̂t, xt), wt),

)

4.4. Homogeneous layers with variable precision 103

with (ŵt, wt) ∼ W̄ij(· | x̂, x, û) : B(W×W)→ [0, 1], written as a transition kernel.
For (x̂, x) ∈ Ri and input û applied to the combined model M̂||M, the integral in
(4.20) is equivalent to the integral∫

(x̂+,x+)∈X̂×X

min
q+∈Qϵj

max
{

1Qf
(q+), V (x̂+, q+, j)

}
W̄x
ij(dx̂+ × dx+ | x̂, x, û)− δij .

For (x̂, x) ∈ Ri, we can split this integral up using the simulation relation Ri ⊆ X̂×X
and find the following upper bound∫
(x̂+,x+)∈Ri

min
q+∈Qϵj

max
{

1Qf
(q+), V (x̂+, q+, j)

}
W̄x
ij(dx̂+ × dx+ | x̂, x, û)

+
∫

(x̂+,x+)∈(X̂×X)\Ri

min
q+∈Qϵj

max
{

1Qf
(q+), V (x̂+, q+, j)

}
W̄x
ij(dx̂+ × dx+ | x̂, x, û)− δij

≤
∫

(x̂+,x+)∈Ri

min
q+∈Qϵj

max
{

1Qf
(q+), V (x̂+, q+, j)

}
W̄x
ij(dx̂+ × dx+ | x̂, x, û).

Here, we used that W̄x
ij((X̂× X)\Ri | x̂, x, û) ≤ δij .

Following the assumption of the lemma, we have that for all (x̂+, x+) ∈ Rj , it holds
that V (x̂+, q+, j) ≤ Vc(x̂+, x+, q+, j). Furthermore, for all (x̂+, x+) ∈ Rj , we have
q+ = τA(q, L(y+)) ∈ Q+

ϵj
. Hence, we can rewrite the last integral over Ri and find

the upper bound∫
(x̂+,x+)∈Ri

max
{

1Qf
(q+), Vc(x̂+, x+, q+, j)

}
W̄x
ij(dx̂+ × dx+ | x̂, x, û)

≤
∫

(x̂+,x+)∈X̂×X

max
{

1Qf
(q+), Vc(x̂+, x+, q+, j)

}
W̄x
ij(dx̂+ × dx+ | x̂, x, û)

where the last integral is equal to Tû
sij

(Vc)(x̂, x, q, i).
By taking the truncation L to the [0, 1] interval over (4.19), we obtain operator
Tû
sij

(V)(x̂, q, i) as in (4.12). This truncation operation does not alter the steps
in the proof, and since Tû

sij
(Vc)(x̂, x, q, i) naturally falls within the interval [0, 1],

Lemma 4.1 is proven.

As the combined model represents the extension of Ĉ to C, as depicted in Fig-
ure 4.10b, we can guarantee that the robust satisfaction probability computed
using (4.14), gives a lower bound on the actual satisfaction probability of M×C.
To recap, we quantify their similarity between models M in (4.1) and M̂ in (4.4)
through a multi-layered simulation relation as in Definition 4.3. We use the ab-
stract model M̂ to compute 1) a policy µ or equivalently an abstract controller
Ĉ : (û, sij) = µ(x̂, q, i), and 2) the robust satisfaction Rϵ,δ(M̂ × Ĉ |= ϕ) as in
(4.14). In this computation, we take the deviation bounds (ϵ, δ), such that we have

104 Chapter 4. A multi-layered approach for stochastic systems

M̂ ⪯δ
ϵ M, into account. Based on Lemma 4.1, we can now follow Theorem 4 in

Haesaert and Soudjani (2020) to conclude that this robust satisfaction probability
gives a lower bound on the actual satisfaction probability.

Proposition 4.3. Given models M in (4.1), M̂ in (4.4), DFA Aϕ, and stationary
Markov policy µ. If M̂ ⪯δ

ϵ M holds, then there exists C, such that P(M ×C |=
ϕ) ≥ Rµ

ϵ,δ(M̂× Ĉ |= ϕ).

4.4e Implementation of similarity quantification for LTI sys-
tems

In this section, we elaborate on how to compute the deviation bounds (ϵ, δ) such
that M̂ ⪯δ

ϵ M holds (step 2 of Algorithm 4.2). The derivation is given for linear
time-invariant (LTI) systems but can be extended to nonlinear stochastic systems
following the techniques described in Section 2.5 of this thesis. The approach
detailed next, follows the same reasoning as in Section 2.4a of this thesis, but we
made adaptations such that it suits the multi-layered setting.

Let the models M (4.1) and M̂ (4.4) be linear time-invariant (LTI) systems whose
behavior is described by the following stochastic difference equations

M :
{
x(t+ 1) = Ax(t) +Bu(t) +Bww(t)
y(t) = Cx(t), and

(4.21)

M̂ :
{
x̂(t+ 1) = Π (Ax̂(t) +Bû(t) +Bwŵ(t))
ŷ(t) = Cx̂(t),

(4.22)

with matrices A,B,Bw and C of appropriate sizes and with the disturbances
w(t), ŵ(t) having the standard Gaussian distribution, i.e., w(t) ∼ N (0, I) = Pw and
ŵ(t) ∼ N (0, I) = Pŵ. The abstract model is constructed by partitioning the state
space X in a finite number of regions Aj ⊂ X and operator Π(·) : X → X̂ maps
states x ∈ Aj to their representative points1 X̂j ∈ X̂. We assume that the regions
Aj are designed in such a way that the set B :=

⋃
j{X̂j − xj |xj ∈ Aj} is a bounded

polytope and has vertices vert(B). Details on constructing such an abstract LTI
system can be found in Section 2.4a of this thesis.

To compute the multi-layered simulation relations in Definition 4.3, we choose the
interface function u(t) = Uv(ût, x̂t, xt) = û(t) and consider simulation relations Ri

Ri :=
{

(x̂, x) ∈ X̂× X | ||x− x̂||D ≤ ϵi
}
, (4.23)

where ||x||D =
√
xTDx with D a symmetric positive definite matrix D = DT ≻ 0.

We use the same weighting matrix D for all simulation relations Ri, with i ∈
{1, 2, . . . NR}. The simulation relations in (4.23) have an ellipsoidal shape and for

1In general, any point in the region Aj can be its representative point, but in practice the
center has computational benefits.

4.4. Homogeneous layers with variable precision 105

fixed precision such ellipsoids are illustrated in Figure 4.7a. A switch from one
simulation relation to the other one is similarly illustrated in Figure 4.7b.
For these relations (4.23), condition 1 in Definition 4.3 is satisfied by choosing
weighting matrix D ≻ 0, such that

CTC ⪯ D. (4.24)

We can now construct kernels W̄ij using a coupling compensator as introduced in
Chapter 2 of this thesis. By doing so, condition 2 of Definition 4.3 can be quantified
via contractive sets for the error dynamics xt+1 − x̂t+1 based on the combined
transitions (4.17). We assume that there exist factors αij ∈ [0, 1] with ϵj = αijϵi
that represent the set contraction between the different simulation relations. Now,
we can describe the satisfaction of condition 2 as a function of δij , αij and ϵi.

Lemma 4.2. Consider models M in (4.21) and M̂ in (4.22) for which simulation
relations Ri as in (4.23) are given with weighting matrix D satisfying (4.24). Given
δij , αij , and ϵi, if there exist parameters λij and matrices Fij such that the matrix
inequalities [1

ϵ2
i

D FT
ij

Fij r2
ijI

]
⪰ 0, (input bound) (4.25a)[λijD ∗ ∗

0 (α2
ij−λij)ϵ2

i ∗
D(A+BwFij) Dβl D

]
⪰ 0 (contraction) (4.25b)

are satisfied, then there exists a W̄ij such that condition 2 in Definition 4.3 is
satisfied. The matrix inequalities in (4.25) are parameterized with λij > 0 and
should hold for all βl ∈ vert(B). Furthermore, rij is computed as a function of δij,
that is rij = |2 idf

(
1−δij

2

)
|, with idf denoting the inverse distribution function of

the standard Gaussian distribution. □

This lemma allows us to conclude the following.

Theorem 4.1. Consider models M in (4.21) and M̂ in (4.22) for which simulation
relations Ri as in (4.23) are given with weighting matrix D satisfying (4.24). If the
inequalities (4.25) hold for all i, j ∈ {1, . . . , NR}2 and there exists i ∈ {1, . . . , NR}
such that (x̂0, x0) ∈ Ri then M̂ is stochastically simulated by M in a multi-layered
fashion as in Definition 4.3, denoted as M̂ ⪯δ

ϵ M.

Proof. The proof of both Lemma 4.2 and Theorem 4.1 build on top of the proofs
of Theorem 2.1 and Theorem 2.2 for controlled invariant sets. Instead of invariant
sets, the proof uses contractive sets to handle the multi-layered simulation relation.
For the construction of the matrix inequalities in (4.25), we follow Chapter 2 and
model the state dynamics of the abstract model (4.22) as x̂(t+ 1) = Ax̂(t) +Bû(t) +
Bw(ŵγ(t)− γ(t)) +β(t) with disturbance ŵγ ∈W ⊆ Rnw , shift γ ∈ Γ and deviation

106 Chapter 4. A multi-layered approach for stochastic systems

β ∈ B. The disturbance is generated by a Gaussian distribution with a shifted mean,
ŵγ ∼ N (γ, I). The β-term pushes the next state towards the representative point
of the grid cell. Based on Chapter 2, we choose stochastic kernels W̄ij such that the
probability of event w − ŵγ = 0 is large. The error dynamics conditioned on this
event equal x+

∆ = Ax∆(t) +Bwγij(t)− β(t), where state x∆ and state update x+
∆

are the abbreviations of x∆(k) := x(t)− x̂(t) and x∆(t+ 1), respectively. This can
be seen as a system with state x∆, constrained input γij , and bounded disturbance
β.

For a given deviation δij , we compute a bound on the allowable shift as γij ∈
Γij := {γij ∈ Rnw | ||γij || ≤ rij} and we parameterize the shift γij = Fijx∆ with
the matrix Fij . In the exact same fashion as the proof of Theorem 2.2, we can
show that if there exists λij and Fij such that the matrix inequalities in (4.25) are
satisfied, then the following implications also hold

x⊤
∆Dx∆ ≤ ϵ2i =⇒ x⊤

∆F
⊤
ij Fijx∆ ≤ r2

ij (input bound)

x⊤
∆Dx∆ ≤ ϵ2i =⇒ (x+

∆)⊤Dx+
∆ ≤ α

2
ijϵ

2
i . (contraction)

Therefore, we satisfy the bound γij ∈ Γij and the simulation relation Ri describes
an αij-contractive set. Hence, using Lemma 2.1 in Chapter 2, we can conclude
that there exists a kernel W̄ij , such that condition 2 in Definition 4.3 is satisfied.
Since condition 1 in Definition 4.3 is already satisfied by choosing D appropriately,
M̂ ⪯δ

ϵ M holds as long as the conditions in Theorem 4.1 are satisfied.

Concluding, since (4.24) holds, condition 1 in Definition 4.3 is satisfied for all i, j.
If in addition λij and Fij satisfy (4.25), then there exists a kernel W̄ij such that
condition 2 in Definition 4.3 holds (Lemma 4.2). Once this does not only hold for
a specific i, j, but for all i, j ∈ [1, . . . , NR] and there exists i ∈ {1, 2, . . . , NR} with
(x̂0, x0) ∈ Ri, then we have M̂ ⪯δ

ϵ M.

4.5 Heterogeneous layers

To alleviate the curse of dimensionality induced by discretization-based abstraction,
and to improve the computational efficiency of our approach, we consider the
possibility of an additional discretization-free layer. More specifically, in this section
we change the multi-layered approach from the previous section to have layers with
both discretization-based models and discretization-free models, hence we consider
heterogeneous layers. We start by introducing the discretization-free (DF) layer, its
model, and the dynamic programming approach for this layer on its own. Next, we
consider the combination of a discretization-free layer and a discretization-based
(DB) layer, referred to as heterogeneous layers, for which we define conditions on
switching between those different layers. Finally, we describe the adjusted dynamic
programming method.

4.5. Heterogeneous layers 107

4.5a Discretization-free layer

In the discretization-free layer, we consider a generic representation of dynamic
programming-based planning that leverages a discretization-free approach. We
introduce the important concepts next.
Model. Consider a finite set of states taken from the state space of the original
model M as in (4.1), that is xw ∈ Xw ⊂ X, referred to as waypoints. We associate
to each waypoint an ellipsoidal set

E(xw) := {x ∈ X | ||x− xw||Dw ≤ ϵw} (4.26)

containing states x ∈ X of the original model. Here, Dw is a symmetric positive
definite matrix. Note that the center of E equals xw, but without loss of generality,
we consider its shape the same for all xw ∈ Xw. We now define a state transition
function ∆w : Xw × Xw → [0, 1] that gives a lower bound on the probability of
reaching waypoint x′

w in a finite number of steps ns. More specifically, there exists
a sequence of control strategies, such that with a probability of at least ∆w(xw, x′

w),
∃ns ∈ N, such that xk ∈ E(xw) and xk+ns

∈ E(x′
w). Together, this allows us to

define the following waypoint model

Mw = (Xw, xw,0,∆w,Y, hw), (4.27)

with initial state xw,0 ∈ Xw, outputs yw ∈ Y, and output map hw : Xw → Y. An
example of a waypoint model is given in Figure 4.11.

Figure 4.11: Example of a state trajectory (black line) of a waypoint model with
the corresponding tube in gray. The red and green regions are respectively an avoid
and a goal region projected from the output space to the state space. The black
dots are the waypoints xw and the gray ellipsoids are the sets E . Note that this
waypoint model is not well-posed since not all of the outputs corresponding to the
top right ellipsoid have the same label.

Specification. To handle temporal logic specifications based on the model Mw, we
require that Mw is well-posed with respect to labeling L : Y→ 2AP, if ∀xw ∈ Xw :

1. all outputs y corresponding to states x ∈ E(xw) have the same label,
2. the outputs corresponding to paths from xw to x′

w either never change label
or only once.

108 Chapter 4. A multi-layered approach for stochastic systems

These two assumptions allow us to keep track of the DFA state in a simple manner,
which is necessary when considering temporal logic specifications.
The construction of the waypoint model, allows us to handle specifications given
using scLTL\⃝, where the ⃝-operator is excluded since the number of time steps
between waypoints is usually larger than 1.
Available methods. The construction of paths in the waypoint model is in essence
the same as solving a (deterministic) reach-avoid problem, for which there are a
lot of methods available (Althoff et al. 2010; Girard 2012; Bogomolov et al. 2019).
For some situations, the transition probability ∆w can even be computed directly
via a continuous-state (stochastic) model using for example the tool SReachTools
(Vinod et al. 2019). By defining the layer in this manner, we can use dynamic
programming (as defined next) to make a connection between DB and DF methods.
Dynamic programming. Denote the value function of the DF layer as Vxw :
Xw ×Q→ [0, 1]. Consider time horizon [1, . . . , N] and a policy µk = (µk+1, . . . µN)
with time horizon N − k, and with µk : Xw → Xw that chooses a waypoint x′

w that
is reachable from waypoint xw. We compute the value function at the next iteration
as V next

xw
= V

µk−1
xw,N−k+1 = Tµk

xw
(V µk

xw,N−k), with the Bellman operator defined as
follows.

Tx′
w
xw (Vxw

)(xw, q) = L
(

max
{

1Qf
(q′), Vxw

(x′
w, q

′)
}
− (1−∆w(xw, x′

w))
)
, (4.28)

with q′ the DFA state after ns time steps, that is q′ = q(t+ns), and with ∆w(xw, x′
w)

the probability of reaching x′
w from xw. Note that for this layer, the Bellman

operator does not contain an expected value operator anymore, so the value function
is computed in a deterministic fashion.

4.5b Heterogeneous layers

In this section, we are interested in switching between DF layers and DB layers.
Denote the switching actions from a DF layer to a DB layer and vice versa as
respectively sfb and sbf . For ease of notation, we explain everything for only one
DF layer and one DB layer, and we remark on how to deal with multiple DF and
DB layers. This is graphically represented in Figure 4.12.
In the previous section on the multi-layered approach, we use the inherent contraction
of the state dynamics to switch to a layer with higher precision. For heterogeneous
layers, this is not possible, since the states of the original model that are associated
with the DF layer might not cover the complete state space. More specifically, for
the DB layers, all states x ∈ X can be mapped to a representative state x̂ ∈ X̂
through the operator Π : X→ X̂. This does not necessarily hold for the DF layer,
due to the sparsity of the sample states xw. Hence, we have to define when a switch
between heterogeneous layers is allowed.
A switch (assuming it exists) from the DB layer to the DF layer is always from one
state x̂ ∈ X̂ to one state xw ∈ Xw, but a switch from the DF layer to the DB layer
is from one state xw to a set of states in X̂, denoted as Â(xw) ⊆ X̂. We define the
conditions of switching between the DF layer and the DB layer as follows.

4.5. Heterogeneous layers 109

M̂

Mw

M

Heterogeneous layers

(ϵ, δ)

E

Figure 4.12: Graphical representation of the multi-layered approach with hetero-
geneous layers.

Definition 4.4 (Conditions for switching between heterogeneous layers). Given
models M, Mw (4.27) and M̂, ellipsoidal sets E, and simulation relation R ⊂ X̂×X,
such that we have M̂ ⪯δϵ M.

1. A switch sbf from state x̂ to state xw is possible, if ∀x ∈ R(x̂) : (xw, x) ∈ E
holds.

2. A switch sfb from state xw to subset Â(xw) is possible, if ∀x ∈ E(xw),∃x̂ ∈
Â(xw) : (x̂, x) ∈ R holds.

Remark 4.3. When there are multiple DB layers with different precision, the
conditions in Definition 4.4 are determined for each DB layer.

The conditions of Definition 4.4 can equivalently be written as 1. R(x̂) ⊆ E(xw) and
2. E(xw) ⊆ R(Â(xw)). In Figure 4.13 we illustrate these conditions for a specific
state and subset Â(xw).

4.5c Heterogeneous dynamic programming

To distinguish between the value function of the different layers, we denote the
value function of the DF layer and DB layer respectively as Vxw

: Xw ×Q→ [0, 1]
and Vx̂ : X̂×Q→ [0, 1]. Consider time horizon [1, . . . , N], then we initially update
the value functions of both layers separately. To this end, define the updated value
functions as V next

xw
:= Tµk

xw
(V µk

xw,N−k) and V next
x̂ := Tµk

x̂ (V µk

x̂,N−k) with the operators
defined in respectively (4.28) and (4.8). After computing the next iteration of the
value function for both the DF layer and DB layers, we optimize the switching
strategy for each layer. More specifically, we take the maximum of either staying in
the same layer or switching to the other layer to implicitly determine the switching
strategy. Furthermore, we take the conditions as defined in Definition 4.4 into
account.

110 Chapter 4. A multi-layered approach for stochastic systems

xp

x̂

sbf

(a) For a specific state x̂ the states
x ∈ R(x̂) are indicated by the light blue
ellipsoid, which projected on the PRM
layer yields the dashed ellipsoid. The
states (xw, x) ∈ E are shown in red.

xp

Â

sfb

(b) For a specific state xw the states x ∈
E(xw) are indicated by the red ellipsoid,
which projected on the DB layer yields
the dashed ellipsoid). The states (x̂, x) ∈
R for x̂ ∈ Â are shown in light blue. The
set Â consists of the states represented
by black dots.

Figure 4.13: Following respectively conditions 1 and 2 of Definition 4.4, a possibility
of switching action sbf from state x̂ towards the state xw is shown in (a). A
possibility of switching action sfb from state xw towards a subset Â(xw) is shown
in (b).

For the DF layer, we compute the value function based on V next
xw

and V next
x̂ Since,

it is not known towards which specific state x̂ ∈ Â(xw) we switch, to preserve a
lower bound on the satisfaction probability, we consider the worst-case possibility.
The value function that takes a possible switch into account can now be given as

V
µk−1
xw,N−k+1(xw, q) = max

{
V next
xw

(xw, q), min
x̂∈Â(xw)

{V next
x̂ (x̂, q)}

}
, (4.29)

with Â(xw) ⊂ X̂ being the set as defined in point 2 of Definition 4.4 if a switch
is possible and the empty set, denoted as ∅ otherwise. If a switch is not possible,
hence Â(xw) = ∅, then minx̂∈Â(xw){V next

x̂ (x̂, q)} equals zero.
Remark 4.4. When it is allowed to switch from the DF layer towards multiple
DB layers according to Definition 4.4, an additional max-operator is required to
determine the optimal DB layer to switch towards.

For the DB layer, we compute the value function as

V
µk−1
x̂,N−k+1(x̂, q) = max{V next

x̂ (x̂, q), V next
xw

(Sbf (x̂), q)}. (4.30)

Here, Sbf : X̂→ Xw∪x∅, with x∅ an auxiliary state, for which we get V next
xw

(xw, q) =
V next
xw

(x∅, q) ≡ 0, is a function defined as follows

Sbf (x̂) =
{
xw if sbf is possible from x̂ to xw according to condition 2 in Def. 4.4,
x∅ otherwise.

4.5. Heterogeneous layers 111

It is trivial to prove that the operations in (4.29) and (4.30) are monotonically
increasing and upper bounded by one. First of all, we can see that (4.29) and (4.30)
consist of max- and min-operators and the operators defined in (4.28) and (4.8).
Since (4.28) is a minor adaptation of the standard DP operator in (4.8), we can
follow Proposition 4.1 to conclude that it is monotonically increasing. Next, we
can follow the proof of Lemma 1 in Haesaert and Soudjani (2020) and show that
all of the operators that build up these operations preserve an inequality, such as
V (x, q) ≥W (x, q).
The overall value function, that is the value function of the total model with
multiple heterogeneous layers is denoted as V̄ : (Xw ⊔ X̂) × Q → [0, 1], with ⊔
the disjoint union. This operator differs from the normal union operator

⋃
, by

keeping the original set membership as a distinguishing characteristic of the union
set. Given policy µ̄k = (µ̄k+1, . . . , µ̄N), with µ̄ : (Xw ⊔ X̂) × Q → Xw × Û, the
overall value function is computed iteratively as V̄ µ̄k−1

N−k+1 = T̄µ̄k (V̄ µ̄k

N−k). Here, the
overall Bellman-operator T̄µ̄k (V̄ µ̄k

N−k) is defined as

T̄µ̄k (V̄ µ̄k

N−k) =
{

(4.29) for xw ∈ Xw
(4.30) for x̂ ∈ X̂.

(4.31)

The complete procedure of the value iteration is illustrated in Figure 4.14.
Remark 4.5. When there are multiple DB layers with different precision, Figure 4.14
becomes more evolved, and among other changes, equation (4.12) is used instead of
(4.8) to take into account switching between the DB layers.

We can now conclude the following about the overall Bellman-operator in (4.31).

Theorem 4.2. Given any policy µ̄. Suppose that the operations in (4.29) and
(4.30) are monotonically increasing and upper bounded by one, then also the overall
Bellman-operator T̄µ̄k (V̄ µ̄k

N−k) as in (4.31) is monotonically increasing and upper
bounded by one.

Proof. The overall Bellman-operator T̄µ̄k (V̄ µ̄k

N−k) as in (4.31) is either computed as
(4.29) or (4.30) depending on the considered state. Since both operations in (4.29),
and (4.30) are monotonically increasing and upper bounded by one, this also holds
for the overall Bellman-operator T̄µ̄k (V̄ µ̄k

N−k).

As before, the value function gives the probability of satisfying the specification in
1 to ∞ time step, by including the first time instance based on x0, we can compute
the robust satisfaction probability, that is

R̄µ̄ := max
(
1Qf

(q̄0), V̄ µ̄∞
(
(xw,0, x̂0), q̄0

))
, (4.32)

with q̄0 = τAϕ
(q0, L(h(x0))), and with xw,0 ∈ E−1(x0) and x̂0 ∈ R−1(x0).

Following the same reasoning as in Section 4.4d, we can now conclude that the robust
satisfaction probability in (4.32) computed through the overall Bellman-operator
T̄µ̄k (V̄ µ̄k

N−k) in (4.31) provides a lower bound on the actual satisfaction probability
P(M×C |= ϕ).

112 Chapter 4. A multi-layered approach for stochastic systems

V
µk

xw,N−k

V
µk

x̂,N−k

V next
xw

V next
x̂

V
µk−1
xw,N−k+1

V
µk−1
x̂,N−k+1

(4.28)

(4.8)

(4.29)

(4.30)
(4.31)

Figure 4.14: Graphical representation of the value iteration for heterogeneous
layers. The operator in (4.31) is equivalent to the complete operation in the gray
box. The arguments (xw, q) and (x̂, q) of the value functions in respectively the top
and bottom rows are omitted for simplicity.

4.6 Results

To show the benefits of the multi-layered approach (with homogeneous layers), we
consider several case studies with increasing complexity. Next, we show that the
multi-layered approach with heterogeneous layers is promising by implementing
it in a simple example. All simulations are performed on a computer with a 2.3
GHz Quad-Core Intel Core i5 processor and 16 GB 2133 MHz memory, and use the
toolbox SySCoRe described in Chapter 3 as a basis. For each case study, we mention
the computation time and memory usage. Here, the memory usage is computed as
the size of the matrices stored in the workspace.

4.6a Simple reach-avoid specification

Consider a simple reach-avoid specification to park a car in a one-dimensional (1D)
and two-dimensional (2D) space.
Case 1: parking a car in a 1D space
We consider parking a car in a one-dimensional space. The goal of the controller is
to guarantee that the car parks in area P1, without going through area P2. This
specification can be written as

ϕpark = ¬p2 U p1, (4.33)

where the labels p1, and p2 correspond to respectively regions P1 and P2, and can
be represented by the DFA in Figure 4.15a.
The dynamics of the car are modeled using an LTI stochastic difference equation as
in (4.21) with A = 0.9, B = 0.5 and Bw = C = 1. We used states x ∈ X = [−10, 10],
inputs u ∈ U = [−1, 1], outputs y ∈ Y = X and Gaussian disturbance w ∼ N (0, 0.5).
Furthermore, we have regions P1 = [5, 6⟩, P2 = [6, 10] defined on the output space
Y and labeled as respectively p1 and p2.
For this case study, we decided to have two layers and followed Algorithm 4.1 to
determine a switching strategy. To this end, we set the first layer with R1 with

4.6. Results 113

q0

qf

qs

¬p1 ∧ ¬p2
p1

p2

(a) DFA Aϕpark . The
initial, final, and sink
state are denoted by re-
spectively q0, qf , and qs.

(b) Robust satisfaction probability, where the red and
blue lines are obtained with respectively only using R1,
(ϵ, δ) = (0.5, 0) and R2, (ϵ, δ) = (0.2, 0.01). Switching
between these two simulation relations with switching
strategy (4.34) yields the black line.

Figure 4.15: DFA associated with specification ϕpark = ¬p2 U p1 in (a), and in
(b) the robust satisfaction probability of the 1D car park example obtained for
different simulation relations.

bounds (ϵ1, δ11) = (0.5, 0) and the second layer with R2 with deviation δ22 = 0.0168.
We chose δ12 = 0.168 and precision ϵ2 = 0.2 to satisfy Lemma 4.2. Next, we
obtained a surrogate model by partitioning with regions of size 0.4 and found the
optimal switching strategy2 corresponding to this grid as

µs(x̂, q, i) =


s11 if − 10 ≤ x̂ ≤ 4.8 and i = 1
s12 if 4.8 < x̂ ≤ 10 and i = 1
s21 if − 10 ≤ x̂ ≤ 2.8 and i = 2
s22 if 2.8 < x̂ ≤ 10 and i = 2,

(4.34)

with i denoting the layer.

Next, we constructed abstract model M̂ in the form of (4.22) by partitioning with
regions of size 0.1 with B = [−0.05, 0.05] and û ∈ Û =

[
−1,− 2

3 ,−
1
3 , . . . , 1

]
. We

quantified the accuracy of M̂ with a bi-layered simulation relation with R1 and R2
and obtained the satisfaction probability in Figure 4.15b. The average3 computation
time is 22.6 seconds while using a memory of 21.2 MB.

A fixed precision with either simulation relation R1 or R2 yields the conservative
satisfaction probability indicated by the respective red and blue lines in Fig 4.15b.
The bi-layered method (black line) takes advantage of both simulation relations.
Close to the parking areas simulation relation R2 is generally active, which compared
to simulation relation R1 gives us a non-zero satisfaction probability. Switching
to layer 1 limits the rapid decrease of the satisfaction probability further from the
parking areas, which is normally caused by the relatively high value of δ22.

2In this case the switching strategy is the same for all DFA states q ∈ Q.
3we took the average over 5 computations and observed an average standard deviation of 2.1%.

114 Chapter 4. A multi-layered approach for stochastic systems

Case 2: parking a car in 2D space
For this case study the specification is the same, that is ϕpark as in (4.33). The
dynamics of the car are modeled using an LTI stochastic difference equation as in
(4.21) with A = 0.9I2, B = 0.5I2 and Bw = C = 1. We used states x ∈ X = [−5, 5]2,
inputs u ∈ U = [−1, 1]2, outputs y ∈ Y = X and Gaussian disturbance w ∼ N (0, 0.5).
Furthermore, we have regions P1 = [3, 5]× [−1, 0]and P2 = [3, 5]× [0, 1] defined on
the output space Y and labeled as respectively p1 and p2.
We computed deviation bounds (ϵ, δ) that satisfy Lemma 4.2 as

ϵ =
[
0.5 0.2

]
, δ =

[
0 0.168
0 0.0169

]
.

Next, we obtained a surrogate model by partitioning with 55× 55 grid cells and
found the optimal switching strategy1 corresponding to this grid as illustrated in
Figure 4.16.

(a) Switching strategy for layer 1.
The blue and red dots correspond
to s11 and s12 respectively.

(b) Switching strategy for layer 2.
The blue and red dots correspond
to s21 and s22 respectively.

Figure 4.16: Switching strategy for the states of the surrogate model of the 2D
car park case study. Here, a blue resp. red dot represents switching to layer 1 resp.
layer 2. The black boxes indicate regions P1 (bottom) and P2 (top).

(a) Single layer, with
(ϵ1, δ1) = (0.5, 0).

(b) Single layer, with
(ϵ2, δ2) = (0.2, 0.0169).

(c) Multiple layers with
simulation relation R.

Figure 4.17: Robust satisfaction probability of the 2D car park case study where
a single layer is used in (a) and (b). A multi-layered simulation relation, with
switching strategy as in Figure 4.16 is used in (c).

4.6. Results 115

Then, we constructed abstract model M̂ in the form of (4.22) by partitioning with
283× 283 regions leading to B = [−0.0353, 0.0353]2. We quantified the accuracy
of M̂ with a bi-layered simulation relation R and obtained the robust satisfaction
probability in Figure 4.17c. The average4 computation time is 78.8 seconds while
using a memory of 243 MB. The robust satisfaction probability of the multi-layered
approach is higher everywhere compared to only using a single layer, with either
R1, with (ϵ1, δ1) = (0.5, 0) or R2, with (ϵ2, δ2) = (0.2, 0.0169) as can be seen in
Figure 4.17.
Similar results are obtained when moving the avoid region to P2 = [0, 1]× [−4, 2.5]
as can be seen in Figure 4.19. However, close to region P1 the robust satisfaction
probability is not increased by using a multi-layered approach. The obtained
switching strategy is shown for the surrogate model in Figure 4.18.

(a) Switching strategy for layer 1.
The blue and red dots correspond
to s11 and s12 respectively.

(b) Switching strategy for layer 2.
The blue and red dots correspond
to s21 and s22 respectively.

Figure 4.18: Switching strategy for the states of the surrogate model of the 2D car
park case study with P2 = [0, 1]× [−4, 2.5]. Here, a blue resp. red dot represents
switching to layer 1 resp. layer 2. The black boxes indicate regions P1 (right) and
P2 (left).

(a) Single layer, with
(ϵ1, δ1) = (0.5, 0).

(b) Single layer, with
(ϵ2, δ2) = (0.2, 0.0169).

(c) Multiple layers with
simulation relation R.

Figure 4.19: Robust satisfaction probability of the 2D car park case study with
P2 = [0, 1]× [−4, 2.5]where a single layer is used in (a) and (b). A multi-layered
simulation relation, with switching strategy as in Figure 4.18 is used in (c).

4we took the average over 5 computations and observed an average standard deviation of 2.2%.

116 Chapter 4. A multi-layered approach for stochastic systems

4.6b Complex reach-avoid specification

Next, we consider a complex reach-avoid specification that is cyclic.
Case 3: Package delivery
In this case, we consider multiple regions. A pick-up region P1, a delivery region P3,
a strict avoid region P4, and a region where you lose a package P2. The goal of the
controller is to make sure that a package is picked-up at P1 and delivered to P3 while
avoiding P4. Region P2 is fine to visit without a package, but once crossed while
carrying a package, the package is lost and a new package has to be picked up from
P1. This specification is written in scLTL as ϕPD = ¬p4 U (p1 ∧ (¬(p4 ∨ p2) U p3)),
with its corresponding DFA given in Figure 4.20. The regions are defined on the
output space Y as P1 = [−4,−3]2, P2 = [0, 1] × [0, 2.5], P3 = [3, 5] × [−2,−0.5]
and P4 = [0, 1] × [−4, 0], and are labeled as respectively p1, p2, p3 and p4. The
dynamics of the car are similar as before, except for the slightly enlarged input
space U = [−1.25, 1.25]2 and a smaller stochastic disturbance w ∼ N (0.0.25).
We decided to have two layers and followed Algorithm 4.1 to determine a switching
strategy. To this end, we set the first layer with R1 with bounds (ϵ1, δ11) = (0.3, 0)
and the second layer with R2 with deviation δ22 = 0.0160. We chose δ12 = 0.1586
and precision ϵ2 = 0.3 to satisfy Lemma 4.2. Hence, we have total deviation bounds

ϵ =
[
0.5 0.3

]
, δ =

[
0 0.1586
0 0.0160

]
.

Next, we obtained a surrogate model by partitioning with 55× 55 grid cells and
found the optimal switching strategy corresponding to this grid as illustrated in
Figure 4.21. Here, the blue and red dots correspond to switching to layer 1 and layer
2 respectively. From this figure, we can see that this approach is indeed guided by
the specification, since depending on the DFA state, the role of region P2 (either not
relevant or try to avoid) is different and the switching strategy changes accordingly.

Then, we constructed abstract model M̂ in the form of (4.22) by partitioning the
state space with 283 × 283 regions and the input space with 3 × 3 regions. We
quantified the accuracy of M̂ with a bi-layered simulation relation with R1 and R2
as before and obtained the robust satisfaction probability in Figure 4.22c and 4.22e.
The average5 computation time is 123 seconds while using a memory of 340 MB. The
robust satisfaction probability of the multi-layered approach is higher everywhere
compared to only using a single layer, as can be seen in Figure 4.22.

5we took the average over 5 computations and observed an average standard deviation of 1.1%.

4.6. Results 117

Initial q1 Final

Sink

¬p1 ∧ ¬p4
p1 ∨ ∅

p1

p2

p3

p4

p4

true

Figure 4.20: Cyclic DFA corresponding to the specification of case 3, package
delivery. Here, ∅ denotes the empty set, which means that all atomic propositions
p ∈ AP are false.

(a) Switching strategy for DFA
state q0 and layer 1. The blue
and red dots corresponds to s11
and s12 respectively.

(b) Switching strategy for DFA
state q0 and layer 2. The blue
and red dots corresponds to s21
and s22 respectively.

(c) Switching strategy for DFA
state q1 and layer 1. The blue
and red dots corresponds to s11
and s12 respectively.

(d) Switching strategy for DFA
state q1 and layer 2. The blue
and red dots corresponds to s21
and s22 respectively.

Figure 4.21: Switching strategy for the states of the surrogate model of the
package delivery case study for DFA states q0 (Initial) in (a), (b) and q1 in (c),
(d). Here, a blue resp. red dot represents switching to layer 1 resp. layer 2. The
black boxes indicate regions P1, P2, P3, and P4. Region P2 is colored gray.

118 Chapter 4. A multi-layered approach for stochastic systems

(a) Single layer with
(ϵ1, δ1) = (0.5, 0). DFA
state q0.

(b) Single layer with
(ϵ2, δ2) = (0.3, 0.0160).
DFA state q0.

(c) Multiple layers with
simulation relation R.
DFA state q0.

(d) Single layer with
(ϵ1, δ1) = (0.5, 0). DFA
state q1.

(e) Single layer with
(ϵ2, δ2) = (0.3, 0.0160).
DFA state q1.

(f) Multiple layers with
simulation relation R.
DFA state q1.

Figure 4.22: Robust satisfaction probability of package delivery case for DFA
state q0 (Initial) in (a)-(c) and for DFA state q1 in (d)-(f). Here, a single layer is
used in (a),(b), and (d),(e). A multi-layered simulation relation, with switching
strategy as in Figure 4.21 is used in (c) and (f).

4.6c Case study with heterogeneous layers

To show that the multi-layered approach with heterogeneous layers is promising,
we apply it to a toy case. We consider a case study similar to Case 2 of parking a
car in a 2D space. We consider the same specification ϕpark as in (4.33) with DFA
as in Figure 4.15a.

The dynamics of the car are modeled using an LTI stochastic difference equation as
in (4.21) with A = 0.9I2, B = 0.5I2, Bw =

√
0.25I2 and C = I2. Note that Bw is

used to decrease the influence of the stochastic disturbance substantially. We used
a larger state space than before, namely x ∈ X = [−20, 5], inputs u ∈ U = [−5, 5],
outputs y ∈ Y = X and Gaussian disturbance w ∼ N (0, I). Furthermore, we have
initial state x0 = [−10,−15]⊤ and regions P1 = [3, 5]× [−1, 0], and P2 = [3, 5]× [0, 1]
defined on the output space Y.

For this case study, we chose two layers, one discretization-free, and one discretization-
based layer. For the discretization-free layer, we chose ∆w = 1 − ns · 10−6, with
the number of steps between each waypoint fixed to ns = 3 steps. We have matrix
Dw = I2 for the set E as in (4.26). To decrease the size of the set E , we used
an interface function (4.11) equal to ut = uw,t + K(xt − xw,t), with K = −1.4I2.
Following the derivation in the appendix, we computed ϵw = 3.28 for set E in (4.26).

4.6. Results 119

(a) Single-layered approach with only
discretization-based layers

(b) Multi-layered approach with het-
erogeneous layers

Figure 4.23: Robust satisfaction probability of the toy case. Single-layered
with only discretization-based approach in (a) and multi-layered approach with
heterogeneous layers in (b).

The considered waypoints of the model equal xw,0 = [−10,−15]⊤, xw1 = [−4,−10]⊤,
and xw2 = [1.5,−4]⊤ and are all labeled with the empty label, which is equivalent
to ¬p1 ∧ ¬p2.

For the discretization-based layer, we computed a finite-state abstraction as in (4.22)
by gridding part of the state space [−2, 5]× [−7.5, 5] in both directions with 150
grid cells. We computed the similarity quantification between the original model
M (4.21) and its finite-state abstraction (4.22) for interface function u = û, and
obtained (ϵ, δ) = (0.1, 0.068).

For this model with heterogeneous layers, we performed a value iteration and
synthesized a controller using the technique described in Section 4.5c. The robust
satisfaction probability is shown in Figure 4.23b. The satisfaction probability for
the sample states is shown in black. Some points of the discretization-based layer
with the associated probability are indicated in red. The average6 computation
time equals 14.5 seconds, while using a memory of 49.2 MB. Figure 4.23a shows the
robust satisfaction probability obtained by using only a discretization-based layer
with a similar grid resolution as for the discretization-based part when heterogeneous
layers are used (536× 300 grid cells). The average7 computation time equals 20.2
seconds, while using a memory of 418 MB. Comparing both figures in Figure 4.23,
we can see that the accuracy of the discretization-based layer is slightly lower than
when only using a discretization-based approach. This is due to the smaller state
space that is gridded. Transitions going out of this smaller state space have a 0
satisfaction probability, hence, on the boundaries of the state space, the robust
satisfaction probability is slightly lower compared to covering the complete state
space. However, the robust satisfaction probability of the discretization-free layer in
Figure 4.23b is higher than when using only a discretization-based layer. Only using
a discretization-free layer over the complete state space gives a robust probability

6we took the average over 5 computations and observed an average standard deviation of 2.9%.
7we took the average over 5 computations and observed an average standard deviation of 2.7%.

120 Chapter 4. A multi-layered approach for stochastic systems

of 0 for all samples xw ∈ Xw, due to the large set E .
From these results, we conclude that the multi-layered approach with heterogeneous
layers is promising. It outperforms the discretization-based techniques with respect
to computation time and memory usage and the discretization-free technique as
explained in this paper with respect to accuracy. It should be noted that the
discretization-free technique employed in this paper is very basic and conservative.
Hence, using more advanced methods the results with heterogeneous layers are
expected to improve even further.

4.7 Conclusion

In this chapter, we derive a multi-layered approach that allows switching between
multiple simulation relations (homogeneous layers) and different abstraction tech-
niques (heterogeneous layers). This approach makes it possible to use the advantages
of each individual layer, hence leading to a potentially accurate and efficient com-
putational approach for temporal logic control. We have illustrated the benefit of
the multi-layered method with homogeneous or heterogeneous layers by applying
it to multiple case studies. They all show good results with respect to accuracy
and the case study with heterogeneous layers indicates a significant increase in
computational efficiency.
An interesting topic for future work is to allow multiple abstract (discretization-
based) models with a different grid size, hence multiple grid resolutions. This should
improve the efficiency of the approach even further, without reducing the accuracy.
The theory on combining heterogeneous layers and how to switch between them
has been fully developed, however, the technique used in the case study with a
discretization-free layer is very conservative and there exist more efficient and more
accurate methods that work directly on stochastic systems (Vinod et al. 2019;
Jagtap et al. 2020; Engelaar et al. 2023). In this chapter, we illustrated that the
multi-layered approach with heterogeneous layers is promising through a simple
case study, but to achieve its full potential, a more suitable technique should be
used in the discretization-free layer. This is part of ongoing research.

4.A. Derivation for the case study in Section 4.6c 121

Appendix

4.A Derivation for the case study in Section 4.6c

We want to find ϵw, or equivalently the ellipsoidal set E as in (4.26), such that
for all states corresponding to the ellipsoid around the waypoint, the next states
remain inside the ellipsoid of the next waypoint, with a probability of ∆w(xw, x′

w).
Mathematically, this can be formulated as follows:

∀x ∈ E(xw),∀uw ∈ Uw :x′ ∈ E(x′
w) with probability 1−∆w(xw, x′

w)

This is equivalent to

∀x ∈ E(xw),∀uw ∈ Uw :||x′ − x′
w||Dw

= ||Ā(x− xw) +Bww||Dw
≤ ϵw, (4.35)

with Ā = A + BK. Here, the interface function u = uw + K(x − xw) has been
substituted. Using standard properties of the vector norm (Belitskii and Lyubich
1988, Chapter 1), we find the following inequalities

||Ā(x− xw) +Bww||Dw
≤ ||Ā(x− xw)||Dw

+ ||Bww||Dw

≤ ||Ā||Dw
||(x− xw)||Dw

+ ||Bw||Dw
||w||Dw

.

For all states xw ∈ E(xw) this implies that

||x′ − x′
w||Dw ≤ ||Ā||Dwϵp + ||Bw||Dw ||w||Dw . (4.36)

For a given probability ∆w(xw, x′
w) and weighting matrix Dw = dwInx

, with scalar
dw, we can compute a bound on w using the Chi-squared distribution with nw
degrees of freedom (Chew 1966). Hence, we obtain

||w||Dw ≤
1
dw

√
rw, with rw = χ−1(∆w(xw, x′

w)|nw), (4.37)

with χ−1(·|nw) denoting the inverse cumulative distribution function of the Chi-
squared distribution with nw degrees of freedom. Intuitively, this means that for a
random variable w ∼ N (0, I), we compute the ellipsoidal set (4.37) containing w
with a confidence equal to ∆w(xw, x′

w). Substituting in (4.36), we get

||x′ − x′
w||Dw

≤ ||Ā||Dw
ϵp + ||Bw||Dw

1
dp

√
rw.

Hence, to achieve (4.35) ϵw should equal

ϵw = | − (||Ā||Dw
− 1)−1||Bw||Dw

1
dw

√
rw|. (4.38)

Part II

Data-driven approaches

5
A Bayesian approach to temporal
logic control of uncertain systems

This chapter addresses the problem of data-driven computation of controllers
that are correct by design for safety-critical systems and can provably satisfy
(complex) functional requirements. Safety-critical systems are best described
by stochastic models with a continuous-state space. In this chapter, we focus
on continuous-state stochastic systems, with additional uncertainty about the
parameters. To handle this additional uncertainty, in the context of control
design for these systems, we propose a two-stage approach that decomposes the
problem into a learning stage and a robust formal controller synthesis stage.
The first stage utilizes available Bayesian regression results to compute robust
credible sets for the true parameters of the system. For the second stage,
we introduce methods for systems subject to both stochastic and parametric
uncertainties. We provide simulation relations for enabling correct-by-design
control refinement that are founded on coupling uncertainties of stochastic
systems via sub-probability measures. The presented relations are essential for
constructing abstract models that are related to not only one model but to a
set of parameterized models. The results are demonstrated on a linear and
nonlinear model.

5.1 Introduction

The rapid development of Artificial Intelligence (AI) and learning-based methods
has changed the face of modern technology. Autonomous cars, smart grids, robotic
systems, and medical devices are just a few examples of engineered systems powered
by this technology. Most of these systems operate in safety-critical environments,
with operational scenarios being uncertain. Despite the undisputed impact of
data-driven methods, their premature usage can lead to severe incidents (Axelrod

126 Chapter 5. A Bayesian approach for uncertain systems

2013). Ensuring safe operation, or more generally, designing safety-critical systems
that behave in some desired manner even if the environment is uncertain, entails
synthesizing robust controllers such that the controlled system exhibits the desired
behavior with the satisfaction being formally verifiable. Therefore, there is an ever-
growing demand for so-called correct-by-design approaches, giving formal guarantees
on the absence of any undesired behavior of the controlled system.
However, designing control software with robust satisfaction guarantees proves to
be very challenging. Most safety-critical systems are large in scale, operate in an
uncertain environment (i.e., their state evolution is subject to uncertainty), and
comprise both continuous and discrete state variables. Designing controllers for such
systems does not grant analytical or closed-form solutions even when an exact model
of the system is known. The survey paper Lavaei et al. (2022a) provides an overview
of the current state of the art in formal controller synthesis for stochastic systems.
Abstraction methods represent a promising solution and enable formal control
synthesis w.r.t. high-level requirements (Tabuada 2009; Belta et al. 2017). Existing
approaches, however, are limited to small-scale systems and require prior knowledge
of the exact stochastic model of the system. These two major shortcomings still
prevent the implementation of correct-by-design controllers into real-world systems.
In the pursuit of improving the scalability of formal synthesis approaches, abstraction-
based techniques such as model order reduction, adaptive, and compositional meth-
ods are exploited (Lavaei et al. 2022a). All of these necessitate formally quantifying
the similarity between an abstract model and its latent true counterpart. One
means of relating the systems is using simulation relations. Whilst there exist
different definitions (Baier and Katoen 2008; Haesaert and Soudjani 2020; Lavaei
et al. 2022a), in essence, simulation relations allow for quantifying the behavioral
similarity of two systems and refining controllers designed on the (finite-state)
abstractions to the respective original model whilst transferring any guarantees
obtained on the abstract model to the original system.
Requiring knowledge of the exact stochastic model of the system implies that any
guarantees on the correctness of the closed-loop system only hold for that specific
model. Unfortunately, obtaining an exact model of the system of interest is either
not possible or expensive and time-consuming. The type of uncertainty arising from
incomplete knowledge of the system is called epistemic uncertainty. Data-driven
identification methods for learning stochastic systems are well studied (Van Den Hof
and Schrama 1995; Keesman 2011). These system identification approaches try to
find the best parameters that minimize an appropriate distance (either in the time
or frequency domain) between the output data and the output trajectories of the
identified model. For stochastic systems, there is no result available to relate the
satisfaction of temporal requirements by the identified model to that of the original
unknown model with respect to the size of the dataset.
In this chapter, we focus on the following.
Problem 5.1. Design a controller using data from the unknown true system such
that the controlled system satisfies a given temporal logic specification with at least
probability pϕ ∈ [0, 1] and confidence (1− α) ∈ [0, 1].

The main contribution of this chapter is to provide an abstraction-based scheme

5.1. Introduction 127

for answering this question for the class of parameterized discrete-time stochastic
systems and the class of syntactically co-safe linear temporal logic (scLTL) specifi-
cations (Tkachev et al. 2013). The first stage of our scheme is to utilize available
system identification techniques to learn the parameter set that contains the true
parameters with a given confidence level from a finite amount of data. In the second
stage, we provide closeness guarantees over the whole set of associated models by
defining a sub-simulation relation between a set of models and an abstract model,
which is founded on coupling uncertainties in stochastic systems via sub-probability
measures. We provide theoretical results for establishing this new relation and
the associated closeness guarantees for nonlinear parametric systems with additive
Gaussian uncertainty. This allows us to design a controller alongside quantified
guarantees such that the controlled system satisfies a given probabilistic temporal
specification uniformly on this parameter set. Whilst being generally compatible
with any robust estimation method providing parameter credible sets (Jaynes and
Kempthorne 1976), we demonstrate our approach using Bayesian linear regression
(Bishop 2006). This approach makes this chapter the first work that integrates
system identification with formal abstraction-based methods.

The remainder of the chapter is organized as follows. After reviewing the related
work, we introduce the necessary notions to deal with the stochasticity and uncer-
tainty in Section 5.2. We also give the class of models, the class of specifications,
and the problem statement. The system identification framework is presented in
Section 5.3. In Section 5.4, we introduce our new notion of sub-simulation relations
and control refinement that is based on partial coupling. We also show how to
design a controller and use this new relation to give lower bounds on the satisfaction
probability of the specification. In Section 5.5, we utilize two parameter estimation
methods to obtain credible sets and establish the relation between parametric linear
and nonlinear models and their simplified abstract models. Finally, we demonstrate
the application of the proposed approach on a linear system and the nonlinear Van
der Pol Oscillator in Section 5.6. We conclude the chapter with a discussion in
Section 5.7.

Related work: Data-driven formal approaches for systems with no stochastic state
transitions are studied in Haesaert et al. (2017c), Makdesi et al. (2021), and Kazemi
et al. (2022). For stochastic systems, one approach for dealing with epistemic
uncertainty is to model it as a stochastic two-player game, where the objective
of the first player is to create the best performance considering the worst-case
epistemic uncertainty. The literature on solving stochastic two-player games is
relatively mature for finite state systems (Chatterjee and Henzinger 2012; Chatterjee
and Doyen 2016). There is a limited number of papers addressing this problem
for continuous-state systems. The papers Majumdar et al. (2020) and Majumdar
et al. (2021) look at satisfying temporal logic specifications on nonlinear systems
utilizing mu-calculus and space discretization. The results rely on direct access to
the full state and are hence incompatible with model order reduction techniques,
which is often required to tackle the curse of dimensionality introduced by space
discretization. The work Badings et al. (2023) addresses epistemic uncertainty
in stochastic systems by abstracting the system to an interval Markov decision
process (iMDP) and is limited to finite horizons, reach-avoid specifications, and

128 Chapter 5. A Bayesian approach for uncertain systems

linear systems. Similarly, Lavaei et al. (2022b) extends upon this by constructing
an interval MDP for uncertain nonlinear systems by solving a scenario optimization
problem. This is helpful when only data from the system is available or the dynamics
are very complex. However, capturing epistemic uncertainty using interval MDPs
relies on the assumption that the epistemic uncertainty is state-wise independent,
leading to inconsistent and overly conservative results. In contrast, we relate
epistemic uncertainty explicitly using parametric MDPs.

The latest work in the area of abstraction-free approaches develops control barrier
certificates (CBC) that are based on constructing a set of feasible models (Cohen
et al. 2022). Similarly, adaptive control for continuous-time control-affine parametric
systems using so-called unmatched control barrier functions is studied in Lopez
and Slotine (2023). Whilst CBCs are potentially more scalable than abstraction-
based solutions, finding a valid CBC for systems with non-control-affine and non-
polynomial dynamics is generally hard. Even more, CBCs for specifications beyond
simple reachability yields, e.g., sequential reachability problems (Anand et al.
2021), greatly impede their applicability. Further work on model-free reinforcement
learning studies synthesizing robust controllers for temporal logic specifications
without constructing a model of the system (Kazemi and Soudjani 2020; Lavaei
et al. 2020b).

Our approach utilizes the techniques from the system identification literature to
compute parameter sets with respect to a given confidence for stochastic systems.
We then build a theoretical foundation on the concepts presented in Chapter 2
of this thesis and in Haesaert et al. (2017b) and Haesaert and Soudjani (2020) to
design robust controllers using abstraction methods that are compatible with both
model order reduction and space discretization.

5.2 Preliminaries and problem statement

5.2a Preliminaries

The following notions are used. The transpose of a matrix A is indicated by
A⊤. A measurable space is a pair (X,F) with sample space X and σ-algebra F
defined over X, which is equipped with a topology. In this work, we restrict our
attention to Polish sample spaces (Bogachev 2007). As a specific instance of F ,
consider Borel measurable spaces, i.e., (X,B(X)), where B(X) is the Borel σ-algebra
on X, that is the smallest σ-algebra containing open subsets of X. A positive
measure W on (X,B(X)) is a non-negative map W : B(X) → R≥0 such that for
all countable collections {Ai}∞

i=1 of pairwise disjoint sets in B(X) it holds that
W(

⋃
iAi) =

∑
iW(Ai). A positive measure W is called a probability measure if

W(X) = 1, and is called a sub-probability measure if W(X) ≤ 1.

A probability measure Px together with the measurable space (X,B(X)) define
a probability space denoted by (X,B(X),Px) and has realizations x ∼ Px. We
denote the set of all probability measures for a given measurable space (X,B(X)) as
P(X). For two measurable spaces (X,B(X)) and (Y,B(Y)), a kernel is a mapping

5.2. Preliminaries and problem statement 129

W̄ : X× B(Y)→ R≥0 such that W̄(x, ·) : B(Y)→ R≥0 is a measure for all x ∈ X,
and W̄(·, B) : X→ R≥0 is measurable for all B ∈ B(Y). A kernel associates to each
point x ∈ X a measure denoted by W̄(·|x). We refer to W̄ as a (sub-)probability
kernel if in addition W̄(·|x) : B(Y) → [0, 1] is a (sub-)probability measure. The
normal stochastic kernel with mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n is
defined by

N (dx|µ,Σ) := dx√
(2π)n det(Σ)

exp
[
−1

2(x− µ)⊤Σ−1(x− µ)
]
,

with det(Σ) denoting the determinant of Σ. The Dirac delta measure concentrated
at a point a ∈ X is denoted as δa : B(X)→ {0, 1} and is defined on a set X and for
any measurable set A ⊆ X as

δa(A) =
{

1 if a ∈ A
0 otherwise.

(5.1)

For given sets A and B, a relation R ⊂ A × B is a subset of the Cartesian
product A × B. The relation R relates x ∈ A with y ∈ B if (x, y) ∈ R, written
equivalently as xRy. For a given set Y, a metric or distance function dY is a
function dY : Y× Y→ R≥0 satisfying the following conditions for all y1, y2, y3 ∈ Y:
dY(y1, y2) = 0 iff y1 = y2 (reflexive); dY(y1, y2) = dY(y2, y1) (symmetric); and
dY(y1, y3) ≤ dY(y1, y2) + dY(y2, y3) (transitive).

5.2b Discrete-time uncertain stochastic systems and control
policies

We consider discrete-time nonlinear systems perturbed by additive stochastic noise
under model-parametric uncertainty. Consider the model M(θ) parametrized with θ:

M(θ) :
{
xt+1 = f(xt, ut; θ) + wt,
yt = h(xt),

(5.2)

where the system state, input, and output at the tth time-step are denoted by
xt ∈ X, ut ∈ U, yt ∈ Y, respectively. The functions f and h specify, respectively, the
parameterized state evolution of the system and the output map. The additive noise
is denoted by wt ∈ Rnx , which is an independent, identically distributed (i.i.d.)
noise sequence with distribution wt ∼ Pw(·).
We indicate the input sequence of a model M by u := u0, u1, u2, . . . (respectively,
u[0,N] := u0, u1, u2, . . . , uN) and we define its (finite) executions as sequences of
states x := x0, x1, x2, . . . (respectively, x[0,N] := x0, x1, x2, . . . , xN) initialized with
the initial state x0 of M at t = 0. In each execution, the consecutive state xt+1 ∈ X
is obtained via (5.2).
The execution history (x0, u0, x1, . . . , uN−1, xN) grows with the number of obser-
vations N and takes values in the history space HN := (X× U)N × X. A control
policy or controller for M(θ) is a sequence of policies mapping the current execution
history to a control input. More precisely, we define a control policy as follows.

130 Chapter 5. A Bayesian approach for uncertain systems

Definition 5.1 (Control policy). A control policy µ is a sequence µ = (µ0, µ1, µ2, . . .)
of universally measurable maps µt : Ht → P(U,B(U)), t ∈ N := {0, 1, 2, . . .}, from
the execution history to a distribution on the input space.

As special types of control policies, we differentiate Markov policies and finite
memory policies. A Markov policy µ is a sequence µ = (µ0, µ1, µ2, . . .) of universally
measurable maps µt : X → P(U,B(U)), t ∈ N, from the state space X to a
distribution on the input space. We say that a Markov policy is stationary, if
µ = (µ, µ, µ, . . .) for some µ. Finite memory policies first map the execution history
of the system to a finite set (memory). The input is then chosen similarly to the
Markov policy as a function of the system state and the memory state. This class
of policies is needed for satisfying temporal specifications on the system executions.

In the following, a control policy for the model (5.2) is denoted by C, and we denote
the feedback composition of the model M(θ) with C as M(θ)×C.

In the next subsection, we formally define the class of specifications studied in this
chapter.

5.2c Temporal logic specifications

Consider a set of atomic propositions AP := {p1, . . . , pN} that defines an alphabet
2AP, where any letter π ∈ 2AP is composed of a set of atomic propositions. An
infinite string of letters forms a word πππ = π0π1π2 . . . ∈ (2AP)N. We denote the suffix
of πππ by πππt = πtπt+1πt+2 . . . for any t ∈ N. Specifications imposed on the behavior of
the system are defined as formulas composed of atomic propositions and operators.
We consider the syntactically co-safe subset of linear-time temporal logic properties
(Kupferman and Vardi 2001) abbreviated as scLTL. This subset of interest consists
of temporal logic formulas constructed according to the following syntax

ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2 | ⃝ϕ,

where p ∈ AP is an atomic proposition. The semantics of scLTL are defined
recursively over πππt as πππt |= p iff p ∈ πt; πππt |= ϕ1 ∧ ϕ2 iff (πππt |= ϕ1) ∧ (πππt |= ϕ2);
πππt |= ϕ1 ∨ ϕ2 iff (πππt |= ϕ1)∨ (πππt |= ϕ2); πππt |= ϕ1 U ϕ2 iff ∃j ≥ i subject to (πππj |= ϕ2)
and πππk |= ϕ1,∀k ∈ {i, . . . j−1}; and πππt |=⃝ϕ iff πππi+1 |= ϕ. The eventually operator
♢ϕ is used in the sequel as a shorthand for true U ϕ. We say that πππ |= ϕ iff πππ0 |= ϕ.

Consider a labeling function L : Y → 2AP that assigns a letter to each output.
Using this labeling map, we can define temporal logic specifications over the output
of the system. Each output trace of the system y = y0, y1, y2, . . . can be translated
to a word as πππ = π0π1π2 . . . , with πk = L(yk) for k ∈ N. We say that a system
satisfies the specification ϕ with a probability of at least pϕ if P(πππ |= ϕ) ≥ pϕ. To
emphasize that the output traces of M×C are used for checking the satisfaction,
we write P(M ×C |= ϕ) instead. Similarly, we denote by P (M(θ)×C |= ϕ) the
probability that the controlled system M(θ)×C satisfies ϕ.

5.2. Preliminaries and problem statement 131

Data D Construct set Θ, s.t.
P(θ∗ ∈ Θ) ≥ 1− α

Set of models

{M(θ), with θ ∈ Θ}
Obtain nominal

model M̃

Abstract model M̃

Design controller C̃, s.t.

P(M̃× C̃ |= ϕ) ≥ pϕ

Abstract controller

C̃

Refine C̃ to C, s.t.
with confidence 1− α:
P(M∗ ×C |= ϕ) ≥ pϕ

Controller

C

Figure 5.1: Overview of the different steps in the approach to solving Problem 5.1.
Here, s.t. abbreviates such that. Subproblems 5.1a and 5.1b are respectively given
in the gray and blue boxes. Note that for Problem 5.1b we follow Chapter 2 of this
thesis and obtain two different steps, namely control synthesis (right blue box) and
control refinement (left blue box).

5.2d Problem statement

Given model M∗ defined as a parametrized form of (5.2), that is M∗ := M(θ∗),
where functions f(·) and h(·) are known and the fixed true parameter θ∗ is unknown.
Data D is obtained by sampling a finite number of points from M∗:

D :=
{

(x(i), u(i), x+(i)), i ∈ {1, . . . , N}
}
, where

x+(i) ∼ f(x(i), u(i); θ∗) + Pw(wt),
(5.3)

for arbitrary state-input pairs (x(i), u(i)). We are interested in designing a controller
C to satisfy temporal specifications ϕ on the output of the model, i.e., M(θ∗)×C |= ϕ.
As mentioned before in Problem 5.1, we are interested in designing a controller that
ensures the satisfaction of ϕ with at least probability pϕ using only data D from the
true system. In particular, we require the controller not to depend on the unknown
θ∗ directly. We decompose this problem into the following two sub-problems, as
also visualized in Figure 5.1.
Problem 5.1a. Construct a set Θ from data D that contains the true parameters
θ∗ with a given probability 1− α ∈ [0, 1], i.e.,

P(θ∗ ∈ Θ) ≥ 1− α.

Bayesian linear regression (Bishop 2006), provides a solution to Problem 5.1a, which
we detail in the next section. Based on the set Θ (Jaynes and Kempthorne 1976),
we construct a parametrized set of models {M(θ) with θ ∈ Θ}. Next, we solve
Problem 5.1 by designing a controller valid for this parametrized set of models,
formulated as follows.
Problem 5.1b. For a given specification ϕ and a threshold pϕ ∈ [0, 1], design a
controller C independent of the parameter θ such that we obtain

P (M(θ)×C |= ϕ) ≥ pϕ, ∀θ ∈ Θ.

132 Chapter 5. A Bayesian approach for uncertain systems

The controller synthesis for stochastic models through simulation relations is studied
in Chapter 2 of this thesis. Although these simulation relations can relate one
abstract model to a set of parameterized models M(θ), they would lead to a control
refinement that is still dependent on the true model or true parameter θ∗. Therefore,
this approach is unfit to solve Problem 5.1b, since θ∗ is unknown. As one of the
main contributions of this chapter, we consider a parameter-independent control
refinement and compute a novel simulation relation based on a sub-probability
coupling (see Section 5.4) to synthesize a single controller for all θ ∈ Θ. We still
follow the main steps in Chapter 2 of this thesis and consider a control synthesis
step and control refinement step.

5.3 Data-driven parameter estimation via Bayesian
linear regression

In this section, we present a solution to Problem 5.1a for the class of nonlinear
systems that are linear in the unknown parameters θ⊤ = [θ1, . . . , θnx]⊤ ∈ Rnx×nθ ,
i.e.,

M(θ) :
{
xt+1 = θ⊤f(xt, ut) + wt,
yt = h(xt),

(5.4)

where xt ∈ X ⊆ Rnx , yt ∈ Y, ut ∈ U, and the noise w ∈ W ⊆ Rnx is i.i.d.
Gaussian, that is wt ∼ N (·|0,Σ), with zero mean and full-rank covariance matrix
Σ ∈ Rnx×nx , and the functions h : X→ Y and f : X× U→ Rnθ are known. Note
that f := [f1, . . . , fnθ

]⊤ can be a comprehensive library of nonlinear functions,
hence, many systems can be expressed in the form of (5.4).
Based on state-input data D as in (5.3), Bayesian linear regression (e.g., Bishop
(2006, Sec. 3.3)) allows us to find an estimate θ̃ that approximates the true unknown
parameters θ∗ and to construct a credible set Θ for θ∗ with a given confidence
(1− α) ∈ [0, 1] (cf. Figure 5.2), defined as follows.
Definition 5.2 (Credible set). A set Θ is called a credible set of θ∗ with confidence
level (1− α) if for the given confidence (1− α) we have P(θ∗ ∈ Θ) ≥ 1− α.
Remark 5.1 (Credible vs confidence sets). Credible sets and confidence sets are two
related notions stemming from two fundamentally different statistical paradigms.
As a product of Bayesian statistics, a credible set of a random variable is a fixed
quantile of the posterior distribution that contains a prescribed fraction of the
posterior mass. A confidence set, on the other hand, is based on frequentist theory
and is computed based on the frequency of random observations of a fixed true
parameter. Bayesian credible sets treat their bounds as fixed and the estimated
parameter as a random variable, whereas frequentist confidence sets treat their
bounds as random variables and include the true fixed parameter with a certain
probability. We refer the reader to Jaynes and Kempthorne (1976) for a thorough
exposition.
Remark 5.2. The sub-simulation relations presented in subsequent sections are not
restricted to the class of systems in (5.4) and can be used in conjunction with any
other estimation method that gives a credible set Θ with θ̃ ∈ Θ.

5.3. Data-driven parameter estimation 133

Figure 5.2: The unknown true
parameter θ∗ approximated with
an estimate θ̃ and contained
within a credible set Θ (in light
gray) with a confidence of (1−α). Θ

θ̃

θ∗

5.3a Parameter estimate

To obtain an estimate of the parameters θ = [θ1, . . . , θnx
] ∈ Rnθ×nx , we define a

prior probability distribution as

p(θ) = N (θ|µ0,Σ0), (5.5)

where the mean µ0 and covariance Σ0 are either based on prior knowledge of the
likelihood of θ, if available, or set to 0 and σ2

0I, respectively, with σ2
0 a sufficiently

large number. Based on the prior distributions, Bayesian linear regression allows
us to compute the posterior distribution of the unknown parameters given data D
in (5.3). For this, we define the state (transition) matrix X+ := [x+(1); . . . ;x+(N)]
and the design matrix Φ of the form

Φ :=

 f1(x(1), u(1)) . . . fnθ
(x(1), u(1))

...
f1(x(N), u(N)) . . . fnθ

(x(N), u(N))

 .
The posterior distribution can be computed as

p(θ | D) = N (θ|µN ,ΣN), with
µN := ΣN (Σ−1

0 µ0 + Σ−1
i ⊗ (Φ⊤X+)), (5.6)

Σ−1
N := Σ−1

0 + Σ−1
i ⊗ Φ⊤Φ, (5.7)

and with ⊗ denoting the Kronecker product (Bishop 2006). Note that the parameter
estimate θ̃ is set to the mean, i.e., we have matrix θ̃ = [µN,1, . . . , µN,nx

]⊤ ∈ Rnθ×nx

constructed by concatenating vectors µN,i ∈ Rnθ , i ∈ {1, . . . , nx}.

5.3b Credible set

For a desired confidence bound (1−α) ∈ [0, 1], we obtain the corresponding credible
set

Θ = {θ ∈ Rnθ×nx | (θ − µN)⊤Σ−1
N (θ − µN) ≤ nx · χ−1(1− α | nx)}, (5.8)

where χ−1(p|ν) := inf{ζ : p ≤ χ(ζ|v)} denotes the inverse cumulative distribution
function or quantile function of the chi-squared distribution

χ(ζ|v) :=
∫ ζ

0

t(v−2)/2e−t/2

2v/2Γ(ν/2) dt (5.9)

134 Chapter 5. A Bayesian approach for uncertain systems

with v degrees of freedom and the Gamma function Γ(v) :=
∫ ∞

0 tv−1e−tdt (Chew
1966). This concludes the construction of set Θ as in (5.8), such that Problem 5.1a
is solved.
In the next section, we pave the way for answering Problem 5.1b for the class of
scLTL specifications by an abstraction-based control design scheme. We provide a
new simulation relation that enables parameter-independent control refinement from
an abstract model to the original concrete model that belongs to a parameterized
class.

5.4 Control refinement via sub-simulation rela-
tions

In order to find a controller C and answer Problem 5.1b, we employ the concept
of simulation relations. In essence, simulation relations allow us to compute a
controller for an abstract, e.g. nominal model M̃ and specification ϕ, and transfer
the guarantees of satisfaction to the original model M(θ) by quantifying their
similarity. Using the results in Section 5.3, we construct an abstract model M̃,
based on which we wish to design a controller:

M̃ :
{
x̃t+1 = f̃(x̃t, ũt; θ̃) + w̃t, w̃t ∼ Pw̃(·),
ỹt = h̃(x̃t).

(5.10)

This abstract model equals M(θ) but for a given evaluation of parameters θ = θ̃,
i.e., M̃ := M(θ̃) if h̃ ≡ h, or any other model constructed by space reduction or
discretization. Furthermore, we construct a set of models {M(θ) with θ ∈ Θ} using
the credible set computed via the approach in Section. 5.3 or any other approach
that solves Problem 5.1a.
Markov decision processes. The model M̃ in (5.10) and M(θ) with a given
fixed θ can equivalently be described by a general Markov decision process, studied
previously for formal verification and synthesis of controllers (Soudjani and Abate
2013a; Haesaert et al. 2017b). Given x̃t, ũt, we can model the stochastic state
transitions of M̃ with a probability kernel t̃(·|x̃t, ũt) that is computed based on f̃
and Pw̃(·) (similarly for M(θ)). This leads us to the representation of the systems
as Markov decision processes, which is defined next.

Definition 5.3 (Markov decision process (MDP)). An MDP is a tuple M =
(X, x0,U, t) with X the state space with states x ∈ X; x0 ∈ X the initial state; U the
input space with inputs u ∈ U; and t : X× U× B(X)→ [0, 1], a probability kernel
assigning to each state x ∈ X and input u ∈ U pair a probability measure t(·|x, u)
on (X,B(X)).

In each execution, the consecutive state xt+1 ∈ X is obtained as a realization
xt+1 ∼ t (·|xt, ut) of the controlled Borel-measurable stochastic kernel. Note that
for a parametrized MDP M(θ) its transition kernel also depends on θ denoted as
t (·|xt, ut; θ).

5.4. Control refinement via sub-simulation relations 135

As in (5.10), we can assign an output mapping h : X→ Y and a metric dY to the
MDP M to get a general MDP.

Definition 5.4 (General Markov decision process (gMDP)). A gMDP is a tuple
M = (X, x0,U, t, h,Y) that combines an MDP (X, x0,U, t) with the output space Y
and a measurable output map h : X→ Y. A metric dY decorates the output space Y.

The gMDP semantics are directly inherited from those of the MDP. Furthermore,
output traces of the gMDP are obtained as mappings of (finite) MDP state exe-
cutions, namely y := y0, y1, y2, . . . (respectively, y[0,N] := y0, y1, y2, . . . , yN), where
yt = h(xt).

Deterministic finite-state automata. Analogous to representing systems as
MDPs, the satisfaction of scLTL specifications can be checked using their alternative
representation as deterministic finite-state automata, defined next.

Definition 5.5 (Deterministic finite-state automaton (DFA)). A DFA is a tuple
A = (Q, q0,ΣA, Qf , τA), where Q is the finite set of states of the DFA, q0 ∈ Q is
the initial state, ΣA the finite alphabet, Qf ⊂ Q is the set of accepting states, and
τA : Q× ΣA → Q is the transition function.

A word πππ = π0π1π2 . . . is accepted by a DFA A if there exists a finite run q =
q0, q1, . . . , qf , with q0 the initial state, qi+1 = τA(qi, πi), and qf ∈ Qf .

Having defined the concepts of MDPs and DFAs, consider a set of models {M(θ)
with θ ∈ Θ} and suppose that we have chosen an abstract (nominal) model M̃
based on which we wish to design a single controller and quantify the satisfaction
probability over all models M(θ) in the set of models.

5.4a Control refinement

In this section, we first formalize the notion of a state mapping and an interface
function, that together form the control refinement. Then, we investigate the
conditions under which a single controller for M̃ can be refined to a controller for
all M(θ) independent of the parameter θ. Note that this is the central contribution
of this work, since instead of synthesizing a parametrized controller C(θ) for M(θ)
we synthesize a single controller C that works for all models M(θ) in the set of
models {M(θ) with θ ∈ Θ} and compute the associated lower bound on satisfying
a temporal logic specification. This leads us to the novel concept of sub-probability
couplings and simulation relations.

Consider the MDP M̃ = (X̃, x̃0, Ũ, t̃) as the abstract model, the MDP M(θ) =
(X, x0,U, t(θ)) referred to as the concrete MDP, and an abstract controller C̃ for
M̃. To refine the controller C̃ on M̃ to a controller for M(θ), we define a pair of
interfacing functions consisting of a state mapping that translates the states x ∈ X
to the states x̃ ∈ X̃ and an interface function that refines the inputs ũ ∈ Ũ to the
control inputs u ∈ U.

136 Chapter 5. A Bayesian approach for uncertain systems

x̃5x̃4x̃3x̃2x̃1 ũ5ũ4ũ3ũ2ũ1

C̃C̃C̃C̃C̃

t̃t̃t̃t̃

(a) Controller C̃ on the abstract model M̃.

C

x̃5x̃4x̃3x̃2x̃1 ũ5ũ4ũ3ũ2ũ1

x5x4x3x2x1 u5u4u3u2u1

C̃C̃C̃C̃C̃

tttt

XvXvXvXvXv UvUvUvUvUv

(b) Controller C for the concrete model M(θ).

Figure 5.3: Control refinement in (b) that uses the abstract controller C̃ in (a)
to control the concrete model M(θ). Here, Xv and Uv denote respectively the state
mapping and interface function.

Definition 5.6 (Interface function). An interface function (Girard and Pappas
2009; Girard and Pappas 2011) is defined as a Borel measurable stochastic kernel
Uv : X̃× X× Ũ→ B(U) such that any input ũt for M̃ is refined to an input ut for
M(θ) as

ut ∼ Uv(· | x̃t, xt, ũt). (5.11)

Definition 5.7 (State mapping). The state mapping is defined in a general form
as a stochastic kernel Xv that maps the current state x̃t and input ũt to the next
state x̃t+1 of the abstract model. This next state has the distribution specified by Xv
as

x̃t+1 ∼ Xv(·|x̃t, xt, x̃t+1, ũt).

The state mapping is coupled with the concrete model via its states x, xt+1 and
depends implicitly on ut through (5.11).

Figure 5.3a illustrates how the abstract controller C̃ defines a control input ũt as a
function of the abstract state x̃t. Based on the state mapping Xv and the interface
function Uv, the abstract controller C̃ can be refined to a controller for M(θ) as
depicted in Figure 5.3b. In this figure, the states xt from the concrete model M(θ)
are mapped to the abstract states x̃t with Xv, the control inputs ũt are obtained
using C̃ and x̃t, and these inputs are then refined to control inputs ut for M(θ)
using the interface function Uv. Hence, the controller C of the concrete model M(θ)
consists of the state mapping, the abstract controller, and the interface function.

We now question under which conditions on the interface function and the models
the refinement is valid and preserves the satisfaction probability. This is addressed
in the next subsection.

5.4. Control refinement via sub-simulation relations 137

5.4b Valid control refinement and sub-simulation relations

Before diving into the definition of a valid control refinement that is also amenable
to models with parametric uncertainty, we introduce a relaxed version of an (ϵ, δ)-
stochastic simulation relation as in Definition 2.4 based on sub-probability couplings.
Similar to Chapter 2 of this thesis, we couple the two models via their inputs
through an interface function (5.11) and via their states through a coupling kernel.
By doing so, we can reason about the similarity between the trajectories of the
two models. We define a sub-probability coupling with respect to a given relation
R ⊂ X̂× X as follows.

Definition 5.8 (Sub-probability coupling). Given probability measures Px ∈ P(X),
Px̃ ∈ P(X̃), relation R ⊂ X̃×X, and a value δ ∈ [0, 1], we say that a sub-probability
measure Wx

sub over (X̃×X,B(X̃×X)) with Wx
sub(X̃×X) ≥ 1−δ is a sub-probability

coupling of Px̃ and Px over R if

a) Wx
sub(X̃× X) =Wx

sub(R), that is, the probability mass of Wx
sub is located on

R,

b) for all measurable sets Ã ⊂ X̃, it holds that Wx
sub(Ã× X) ≤ Px̃(Ã); and

c) for all measurable sets A ⊂ X, it holds that Wx
sub(X̃×A) ≤ Px(A).

Note that condition (a) of Definition 5.8 implies Wx
sub(R) ≥ 1− δ.

Theorem 5.1 (Recovering probability coupling). For a sub-probability coupling
Wx
sub as in Definition 5.8, we can complete Wx

sub to get a probability coupling
Wx : B(X̂× X)→ [0, 1] that couples the probability measures Px̃ and Px:

Wx(dx̃× dx) = (5.12)

Wx
sub(dx̃× dx) + 1

1−Wx
sub(R)

(
P(dx)−Wx

sub(X̃× dx)
)(
Px̃(dx̃)−Wx

sub(dx̃× X)
)
.

In other words, (5.12) satisfies the conditions in Haesaert et al. (2017b, Definition 8).

The first term of the coupling (5.12) puts only weight on R, while the second term
assigns the remaining probability mass in an independent fashion. Note that the
factor 1

1−Wx
sub

(R) normalizes the remaining probability mass such thatWx
sub satisfies

the coupling properties Wx
sub(dx̃ × X) = Px̃(dx̃) and Wx

sub(X̃ × dx) = Px(dx) (cf.
Definition 2.2 on Coupling of probability measures.)
Remark 5.3. Note that there are similarities between Definition 5.8, Definition 2.2
and Definition 8 in Haesaert et al. (2017b). Definition 2.2 defines a coupling W over
the product space of the disturbances (W×W,B(W×W)), which can be translated
to a coupling Wx over the product space of the states (X̃× X,B(X̃× X)). Hence,
Definition 5.8 relaxes the conditions on the marginals of Definition 2.2 translated
to this product state space.

138 Chapter 5. A Bayesian approach for uncertain systems

Furthermore, Haesaert et al. (2017b, Definition 8) considers the associated simulation
relation (defined on the product state space), and refers to this as δ-lifting of a
relation. Here, they give conditions on the corresponding probability space for
which Definition 5.8 gives a relaxed version.

Proof. First, we show that Wx is a probability measure by showing that Wx is
fully supported on X̃× X, i.e., Wx(X̃× X) = 1:

Wx(X̃× X) =Wx
sub(X̃× X) + 1

1−Wx
sub(R)

(
1−Wx

sub(X̃× X)
)2 = 1,

where we utilized the property of the sub-probability coupling as in Definition 5.8(a).
The coupling properties are easily derived by calculating the marginals of Wx, i.e.,

Wx(dx̃× X) = Wx
sub(dx̃× X)

+ 1
1−Wx

sub(R)
(
1−Wx

sub(X̃× X)
)(
Px̃ −Wx

sub(dx̃× X)
)

= Px̃,

Wx(X̃× dx) = Wx
sub(X̃× dx)

+ 1
1−Wx

sub(R)
(
Px −Wx

sub(X̃× dx)
)(

1−Wx
sub(X̃× X)

)
= Px.

Thus, the complete coupling Wx satisfies all conditions of Haesaert et al. (2017b,
Definition 8) and of Definition 2.2 after translating it to the product space of the
states.

For the parametrized case, i.e., Px̃(·) and Px(·|θ), the sub-probability coupling
Wx
sub(·|θ) may likewise depend on θ. Furthermore, although we define a sub-

probability coupling Wx
sub as a probability measure over the probability spaces X

and X̃, we use it in its kernel form, denoted as W̄x
sub in the remainder of this chapter.

We obtain a particular probability measure Wx
sub from W̄x

sub for a fixed choice of
(x̃, x, ũ).
Let us now define (ϵ, δ)-sub-simulation relations for stochastic systems, where ϵ
indicates the error in the output mapping and δ indicates the closeness in the
probabilistic evolution of the two systems.

Definition 5.9 ((ϵ, δ)-sub-simulation relation (SSR)). Consider two gMDPs M =
(X, x0,U, t, h,Y) and M̃ = (X̃, x̃0, Ũ, t̃, h̃,Y), a measurable relation R ⊂ X̃×X, and
an interface function Uv : X̃× X× Ũ→ U. If there exists a sub-probability kernel
W̄x
sub(·|x̃, x, ũ) such that

(a) (x̃0, x0) ∈ R;

(b) for all (x̃, x) ∈ R and ũ ∈ Ũ, W̄x
sub(·|x̃, x, ũ) is a sub-probability coupling of

t̃(·|x̃, ũ) and t(·|x,Uv(x̃, x, ũ)) over R with respect to δ (see Definition 5.8);

5.4. Control refinement via sub-simulation relations 139

(c) ∀(x̃, x) ∈ R : dY(h̃(x̃), h(x)) ≤ ϵ;

then M̃ is in an (ϵ, δ)-SSR with M that is denoted as M̃ ⪯δ
ϵ M.

Remark 5.4. Both Definitions 5.8-5.9 are technical relaxations of the definitions of
coupling (as discussed in Remark 5.3) and of (ϵ, δ)-stochastic simulation relations
provided in Chapter 2 and in Haesaert et al. (2017b). These relations quantify the
similarity between two models by bounding their transition probabilities with δ and
their output distances with ϵ.

For a model class M(θ), with t̃(·|x̃, ũ) and t(·|x,Uv(x̃, x, ũ); θ), the above defini-
tion allows us to have an interface function Uv that is independent of θ but a
sub-probability kernel W̄x

sub(·|x̃, x, ũ; θ) which may depend on θ. In order to solve
Problem 5.1b, we require the state mapping Xv(·|x̃t, xt, xt+1, ũk) to also be inde-
pendent of θ. This leads us to a condition under which the state mapping Xv gives
a valid control refinement as formalized next.

Definition 5.10 (Valid control refinement). Consider an interface function
Uv : X̃×X×Ũ→ B(U) and a sub-probability kernel W̄x

sub, such that we get an SSR R

according to Definition 5.9. We say that a state mapping Xv : X̃×X×X×Ũ→ P(X̃)
defines a valid control refinement if the composed probability measure

X̄v(dx̃t+1 × dxt+1|x̃t, xt, ũt) :=
Xv(dx̃t+1|x̃t, xt, xt+1, ũt)t(dxt+1|xt,Uv(x̃t, xt, ũt)) (5.13)

is lower bounded by the sub-probability coupling W̄x
sub, namely

X̄v(A|x̃t, xt, ũt) ≥ W̄x
sub(A|x̃t, xt, ũt), (5.14)

for all measurable sets A ⊂ X̃× X, all (x̃t, xt) ∈ R, and all ũt ∈ Ũ.

Note that for a model class M(θ) that is in relation with a model M̃, the right-hand
side of (5.14) can depend on θ and the left-hand side can depend on θ only via the
dynamics of M(θ) represented by the kernel t, i.e.,∫
(x̃+,x+)∈A

Xv(dx̃+|x̃t, xt, xt+1, ũt)t(dx+|xt,Uv(x̃t, xt, ũt); θ) ≥ W̄x
sub(A|x̃t, xt, ũt; θ).

The next theorem states that there always exists at least one valid control refinement
for our newly defined SSR.

Theorem 5.2. For two gMDPs M̃ and M with M̃ ⪯δ
ϵ M(θ), there always exists a

valid control refinement.

Proof. If we have SSR M̃ ⪯δ
ϵ M(θ), then following Theorem 5.1, we can complete

the corresponding sub-probability kernel W̄x
sub. This implies that there also exists

140 Chapter 5. A Bayesian approach for uncertain systems

a (complete) probabilistic kernel W̄x(·|·; θ) satisfying the conditions for an (ϵ, δ)-
stochastic simulation relation as in Definition 2.4 or in (Haesaert et al. 2017b, Def.
9). Furthermore, we can then compute the state mapping Xv as the conditional
kernel obtained from W̄x(·|·; θ), that is,

Xv(dx̃t+1|x̃t, xt, xt+1, ũt; θ) := W̄x(dx̃t+1|x̃t, xt, xt+1, ũt; θ),

where the right term is conditioned on xt+1 such that

W̄x(dx̃t+1|x̃t, xt, xt+1, ũt; θ)t(dxt+1|xt,Uv(·); θ)
= W̄x(dx̃t+1 × dxt+1|x̃t, xt, xt+1, ũt; θ).

This implies that the composed probability measure equals

X̄v(dx̃t+1 × dxt+1|x̃t, xt, ũt; θ)
= Xv(dx̃t+1|x̃t, xt, xt+1, ũt; θ)t(dxt+1|xt,Uv(x̃t, xt, ũt); θ)
= W̄x(dx̃t+1|x̃t, xt, xt+1, ũt; θ)t(dxt+1|xt,Uv(x̃t, xt, ũt); θ)
= W̄x(dx̃t+1 × dxt+1|x̃t, xt, xt+1, ũt; θ)

and that it upper bounds the sub-probability coupling W̄x
sub

X̄v(dx̃t+1 × dxt+1|x̃t, xt, ũt; θ) =W̄x(dx̃t+1 × dxt+1|x̃t, xt, xt+1, ũt; θ)
≥W̄x

sub(dx̃t+1 × dxt+1|x̃t, xt, xt+1, ũt; θ).

Here, we used the fact that a completed kernel is always lower bounded by a
sub-probability kernel, which can readily be concluded from (5.12) in Theorem 5.1.
Therefore, the condition in Definition 5.10 is satisfied, and Xv is a valid control
refinement.

Note that in general there is more than one valid control refinement for given M̃
and M with M̃ ⪯δ

ϵ M(θ). This allows us to choose an interface function Uv not
dependent on θ. The above theorem states that our new framework fully recovers
the results of Haesaert et al. (2017b) for non-parametric gMDPs and the results of
Chapter 2 of this thesis for non-parametric stochastic difference equations.

Although Definition 5.10 gives a sufficient condition for a valid refinement, it is not
a necessary condition. For specific control specifications, one can also use different
refinement strategies such as the one presented in Haesaert et al. (2018), where
information on the value function and relation is used to refine the control policy.

In the next theorem, we establish that our new similarity relation is transitive.
This property is useful when the abstract model is constructed in multiple stages
of approximating the concrete model, for example with an additional finite-state
abstraction or reduced model-order abstraction as in Chapter 2 of this thesis. We
exploit this property in the case study section.

5.4. Control refinement via sub-simulation relations 141

Theorem 5.3. Suppose M̂ ⪯δ1
ϵ1

M̃ and M̃ ⪯δ2
ϵ2

M. Then, we have M̂ ⪯δϵ M with
δ = δ1 + δ2 and ϵ = ϵ1 + ϵ2.

Proof. This proof is similar to the one given in Haesaert et al. (2017b) applied to
sub-probability couplings. Consider three gMDPs M = (X, x0,U, t, h,Y), M̃ =
(X̃, x̃0, Ũ, t̃, h̃,Y), and M̂ = (X̂, x̂0, Û, t̂, ĥ,Y). Given M̂ ⪯δ1

ϵ1
M̃ and M̃ ⪯δ2

ϵ2
M with

R1, W̄x
sub1 and R2, W̄x

sub2, respectively, as formalized in Definition 5.9, define the
relation R ⊂ X̂× X as R := {(x̂, x) ∈ X̂× X | ∃x̃ ∈ X̃ : (x̂, x̃) ∈ R1, (x̃, x) ∈ R2}.

ϵ-deviation: From the definition of R, we have that ∀(x̂, x) ∈ R, ∃x̃ ∈ X̃ : (x̂, x̃) ∈
R1, (x̃, x) ∈ R2. Given (x̂, x, x̃) and the mutual output metric dY(·), we can upper
bound the output error as

dY(ĥ(x̂), h(x)) ≤ dY(ĥ(x̂), h̃(x̃)) + dY(h̃(x̃), h(x)) ≤ ϵ1 + ϵ2.

δ-deviation: We start by completing the sub-probability couplings W̄x
sub1 and W̄x

sub2
to probability kernels W̄x

1 and W̄x
2 that couple (t̂, t̃) and (t̃, t), respectively, using

(5.12). Utilizing the proof in Haesaert et al. (2017b), App. D.2., we get that there
exists a probability kernel W̄x over (X̂× X,B(X̂× X)) that couples t̂ and t over R.
Furthermore, we get that for all z ∈ Z, where Z := {(x̂, x, û) | (x̂, x) ∈ R and û ∈ Û},
we have W̄x(R | z) ≤ δ1 + δ2. From (5.12) we get that for all measurable sets
dx̂+ ⊂ X̂, dx+ ⊂ X we have W̄x(dx̂+ × dx+) ≥ W̄x

sub(dx̂+ × dx+). Hence, we
conclude that there exists an SSR M̂ ⪯δϵ M with δ ≤ δ1 + δ2.

5.4c Temporal logic control with sub-simulation relations

For designing controllers to satisfy temporal logic properties expressed as scLTL
specifications, we employ the representation of the specification ϕ as a DFA Aϕ =
(Q, q0,ΣA, Qf , τA) (see Definition 5.5). We then use a robust version of the dynamic
programming characterization of the satisfaction probability defined on the product
of M̃ and Aϕ similar as in Section 2.6. We now detail the characterization that
encodes the effects of both ϵ and δ for gMDPs.
Remark 5.5. In Section 2.6, we give more details and explanations on the following
formulas. Even though the notation in this section differs from the one in Section 2.6,
the underlying principles are exactly the same.

Denote the ϵ-neighborhood of an element ỹ ∈ Y as

Bϵ(ỹ) := {y ∈ Y|dY (y, ỹ) ≤ ϵ},

and a Markov policy as µ : X̃×Q→ P(Ũ,B(Ũ)). Similar to dynamic programming
with perfect model knowledge (Sutton and Barto 2018), we utilize value functions
V µk : X̃×Q→ [0, 1], k ∈ {0, 1, 2, . . .} that represent the probability of starting in
(x0, q0) and reaching the accepting set Qf in k steps. These value functions are
connected recursively via operators associated with the dynamics of the systems.

142 Chapter 5. A Bayesian approach for uncertain systems

Let the initial value function be V0 ≡ 0. Define the (ϵ, δ)-robust operator Tµ
ϵ,δ,

acting on value functions as

Tµk

ϵ,δ(V)(x̃, q) := L(
∫
X̃

min
q+∈Q+(q,x̃+)

max
{

1Qf
(q+), V (x̃+, q+)

}
t̃(dx̃+|x̃, µk)−δ), (5.15)

where, Q+(q, x̃+) denotes the set of possible next DFA states and L : Y→ 2AP is
the labeling function. The function L : R→ [0, 1] is the truncation function with
L(·) := min(1,max(0, ·)), and 1Qf

is the indicator function of the set Qf . The value
function is now computed recursively for a policy µi = (µi+1, . . . , µN) with horizon
N − i as

V
µk−1
N−k+1(x̃, q) = Tµk

ϵ,δ(V
µk

N−k)(x̃, q), k ∈ {0, 1, 2, . . . , N}.
initialized with V0 ≡ 0. Furthermore, we define the optimal (ϵ, δ)-robust operator as

T∗
ϵ,δ(V)(x̃, q) := sup

µ
Tµ
ϵ,δ(V)(x̃, q).

The outer supremum is taken over Markov policies µ on the product space X̃×Q.
Based on Haesaert and Soudjani (2020), Cor. 4, we can now define the lower bound
on the satisfaction probability by looking at the limit case k →∞, as given in the
following proposition.
Proposition 5.1 ((ϵ, δ)-robust satisfaction probability). Suppose M̃ ⪯δ

ϵ M with
δ > 0, and the specification being expressed as a DFA Aϕ. Then, for any such
M we can construct C such that the specification is satisfied by M×C |= ϕ with
probability at least R∗

ϵ,δ. This quantity is the (ϵ, δ)-robust satisfaction probability
defined as

R∗
ϵ,δ := max

{
1Qf

(q̄0), V ∗
∞(x̃0, q̄0)

}
,

with q̄0 = τA(q0, L(y0)). Here, V ∗
∞ is the unique solution of the fixed-point equation

V ∗
∞ = T∗

ϵ,δ(V ∗
∞), (5.16)

obtained from V ∗
∞ := limk→∞(T∗

ϵ,δ)k(V0) with V0 ≡ 0. The abstract controller C̃ is
the stationary Markov policy µ∗ that maximizes the right-hand side of (5.16), i.e.,
µ∗ := arg supµ Tµ

ϵ,δ(V ∗
∞). The controller C is the refined controller obtained from

the abstract controller C̃, the interface function Uv, and the state mapping Xv.
Remark 5.6 (Bounded state space). To compute solutions for systems with un-
bounded support over a bounded state space X, we add a sink state to capture
transitions that leave the bounded set of states.

Combining R∗
ε,δ from Proposition 5.1 with the results of Section 5.3, we get that for

the dataset D, the system under the designed controller satisfies the specification
with a lower bound equal to the product of the two probabilities, that is (1−α)R∗

ε,δ.
This can be shown using the law of total probability as follows:

P(M(θ∗)×C |= ϕ | D) = P(M(θ∗)×C |= ϕ | θ∗ ∈ Θ,D) P(θ∗ ∈ Θ)
+ P(M(θ∗)×C |= ϕ | θ∗ ̸∈ Θ,D) P(θ∗ /∈ Θ)

= R∗
ϵ,δ (1− α) + P(M(θ∗)×C |= ϕ | θ∗ ̸∈ Θ,D) P(θ∗ /∈ Θ)

≥ (1− α)R∗
ϵ,δ.

5.5. Simulation relations for nonlinear systems 143

5.5 Simulation relations for nonlinear systems

In this section, we apply the previously defined concepts to construct simulation
relations and show how to answer Problems 5.1a and 5.1b. Whilst we focus on
nonlinear systems that are linear in the unknown parameters, the outlined approach
is applicable to general nonlinear systems by choosing an appropriate parameter
estimation method. Furthermore, whilst we restrict ourselves to systems with
Gaussian noise here, the approach is generally applicable to other distributions as
well.
Consider a nonlinear system M(θ∗) as in (5.4). Let data D as in (5.3) be obtained
from this unknown true system M(θ∗). Based on D, we approximate θ∗ with an
estimate θ̃ and construct a credible set Θ as described in Section 5.3. For the fixed
parameter estimate θ̃ we construct the nominal model

M̃ :
{
x̃t+1 = θ̃⊤f(x̃t, ũt) + w̃t,

ŷt = h̃(x̃t),
(5.17)

where we abbreviate M̃ := M(θ̃). We assume that the noise wt, w̃t ∼ N (· | 0,Σ) has
Gaussian distribution with a full rank covariance matrix Σ ∈ Rnx×nx and h̃ ≡ h.
To find a valid control refinement for the systems M(θ) and M̃ in (5.4) and (5.17),
respectively, we first write their transition kernels. The probability of transitioning
from a state xt with input ut to a state xt+1 that is inside an arbitrary set S is
given by

P(xt+1 ∈ S|xt, ut) =
∫
S

t(dxt+1|xt, ut),

where the kernel t is given by1

t(dx+|x, u; θ) = N (dx+|θ⊤f(x, u),Σ) =
∫

w∈W

δθ⊤f(x,u)+w(dx+)N (dw|0,Σ). (5.18)

Similarly, the stochastic transition kernel of M̃ is

t̃(dx̃+|x̃, ũ) = N (dx̃+|θ̃⊤f(x̃, ũ),Σ) =
∫

w̃∈W

δθ̃⊤f(x̃,ũ)+w̃(dx̃+)N (dw̃|0,Σ). (5.19)

We can rewrite the model in (5.4) as

xt+1 = θ̃⊤f(xt, ut)︸ ︷︷ ︸
nominal dynamics

+ (θ − θ̃)⊤f(xt, ut) + wt︸ ︷︷ ︸
disturbance

. (5.20)

Note that the disturbance part consists of a deviation caused by the unknown
parameters θ and a deviation caused by the noise wt. Let us assume that we can
bound the former as

∥(θ − θ̃)⊤f(x, u)|| ≤ d(x, u), ∀x ∈ X, u ∈ U, θ ∈ Θ.
1Here, we used the commutative property of integrating a Dirac measure as defined in (5.1).

144 Chapter 5. A Bayesian approach for uncertain systems

Using the interface function ut = Uv(x̃t, xt, ũt) := ũt and the noise coupling

w̃t ≡ γ(xt, ut, θ; θ̃) + wt, with
γ(x, u, θ; θ̃) := (θ − θ̃)⊤f(x, u), (5.21)

we get the state mapping

x̃+ = x+ + θ̃⊤(f(x̃, ũ)− f(x, u)), (5.22)

that is both deterministic and not dependent on θ, i.e., we get x̃+ ∼ Xv(·|x̃, x, x+, ũ)
as in (5.22).

Theorem 5.4. Given data D, confidence level (1 − α), models M(θ) and M̃,
interface function ut = ũt, relation (5.24), and sub-probability kernel (5.25). If
ϵ = 0 and

δ(x̃, ũ) = 1− 2 cdf
{
−
√
r

2 ||f(x̃, ũ)||
}
, (5.23)

with
r := ||Σ−1|| ||ΣN || nx χ−1(1− α | nx),

then the nonlinear models (5.4)-(5.17) are in an SSR M̃ ⪯δ
ϵ M(θ) and the state

mapping (5.22) defines a valid control refinement.
Here, δ is given in bold to indicate that it is a function instead of a scalar. Fur-
thermore, cdf(·) is the cumulative distribution function of a standard Gaussian
distribution, i.e., cdf(ζ) :=

∫ ζ
−∞

1√
2π exp(−β2/2)dβ, covariance matrix ΣN via

(5.7), Σ is the covariance of the noise in (5.4), and χ is the chi-squared distribution
as in (5.9).

Note that this theorem gives a deviation bound δ that depends on (x̃t, ũt), thus
providing a less conservative result compared to a constant global deviation bound
δ. The proof of Theorem 5.4 is given in Appendix 5.A and is based on the following
steps. First, we show that the coupling in (5.25) is indeed a sub-probability coupling
by proving the conditions in Definition 5.8. Next, we prove that for the values of ϵ
and δ in Theorem 5.4, the conditions in Definition 5.9 are satisfied, hence M̃ is in
an (ϵ, δ)-SSR with M(θ). To this end, we select the identity relation

R := {(x̃, x) ∈ X̃× X | x = x̃} (5.24)

and we define the sub-probability coupling W̄x
sub(· | θ) over R:

W̄x
sub(dx̃+ × dx+ | θ) = (5.25)∫

w̃∈W

∫
w∈W

(
δθ̃⊤f(x̃,ũ)+w̃(dx̃+)δθ⊤f(x,u)+w(dx+)δγ+w(dw̃)ρmin

)
,

with ρmin = min{N (dw|0,Σ),N (dw̃| − γ,Σ)}.

This sub-probability coupling takes the minimum of two probability measures. Note
that we dropped some of the arguments of W̄x

sub and γ to lighten the notation.

5.6. Case studies 145

Finally, we prove that the state mapping in (5.22) is a valid control refinement by
proving the condition in Definition 5.10.

Visualization of the sub-probability coupling: We can reduce (5.25) using
the definition of γ in (5.21) to

W̄x
sub(dx̃+ × dx+ | θ) =∫

w̃∈W

δx̃+(dx+)δθ̃⊤f(x,u)+w̃(dx̃+) min{N (dw̃ | −γ,Σ),N (dw | 0,Σ)},

which is illustrated in Figure 5.4 in the 2D plane. This coupling is constructed
based on the sub-probability coupling of the two noise distributions

W̄sub(dw̃ × dw | θ) := δγ+w(dw̃) min{N (dw|0,Σ),N (dw̃| − γ,Σ)},

where γ quantifies the offset between the two distributions.

γ

t̃(
d
x̃
+
)

W̄
x

sub (dx̃ +

×
dx +

)
x̃+

x+

t(
d
x
+
|θ)

Figure 5.4: 2D representation of the sub-probability coupling W̄x
sub for the stochas-

tic transition kernels t̃ and t given some (x̃, x, ũ). Displayed is the coupling over
the product space X̃× X as well as its marginals (cf. Definition 5.8 b)-c)).

With the approach presented in this chapter, parametric uncertainty is compensated
by shifting the noise distributions relative to each other by the offset γ in the
sub-probability coupling. Hence, parametric uncertainty can only be compensated
on state variables that are perturbed by noise.

5.6 Case studies

We demonstrate the effectiveness of our approach on a linear package delivery system
subject to a complex temporal logic specification and the nonlinear discrete-time
version of a Van der Pol oscillator.

146 Chapter 5. A Bayesian approach for uncertain systems

P1
P2

P3

(a) Regions P1, P2, and P3 on
the output space Y.

Initial q1 Final

¬p1

p1

¬p2 ∧ ¬p3

p2

p3 ∧ ¬p2

(b) DFA corresponding to the specification
ϕP D = ♢(p1 ∧ (¬p2 U p3)).

Figure 5.5: Regions and DFA corresponding to the linear package delivery case
study in Section 5.6a.

5.6a Linear system with complex specification

Consider a 2D uncertain linear system in the form of (5.4) with θ =
[
θ11 θ21 θ31 θ41
θ12 θ22 θ32 θ42

]⊤ ∈
R4×2, f(xt, ut) = [xt, ut]⊤ ∈ R4, h(xt) = xt ∈ R2, and Σ =

√
0.1I2, describing a

vehicle moving in a 2D space. Define the state space X = [−6, 6]2, input space
U = [−1, 1]2, and output space Y = X. The goal is to compute a controller for a
package delivery problem. For this, the controller should navigate the vehicle to
pick up a package at region P1 and deliver it to target region P3. If the vehicle
passes the region P2 on its path, it loses the package and must pick up a new one
at P1. Here, we consider regions P1 = [3, 6]× [−2.5, 1], P2 = [−1, 1]× [−4, 3], and
P3 = [−6,−3]× [−6,−3] defined on the output space Y and labeled as respectively
p1, p2, and p3. The regions are shown in Figure 5.5a. The desired behavior is
captured by the specification ϕPD = ♢(p1∧(¬p2 Up3)). Note that the corresponding
DFA presented in Figure 5.5b contains a backward loop from DFA state q1 and is
hence not expressible as a reach-avoid specification over the state space only.
For estimating the parameters, we sample uniform excitations u from U and draw
N data points from the true system with parametrization θ∗ = [0.6 0.3 1.2 0

0.2 0.7 0 1.4]⊤. We
set the prior distribution to a Gaussian distribution with mean 0 and variance 10I
for each θij with i ∈ {1, 2, 3, 4} j ∈ {1, 2}, that is for each column of θ we set the
prior N (· | 04×2, 10I4). Using Bayesian linear regression we obtain an estimate θ̃
and a credible set Θ (displayed for (θ11, θ31) in Figure 5.6) for a lower confidence
bound of 0.9 as outlined in Section 5.3. Note that the credible set is contracting for
increasing amounts of data. We select M̃ = M(θ̃) to be the nominal model and
get ϵ1 = 0. δ1 is computed using (5.23) as a function of the state and input. The
values of maxũ δ1 are displayed in Figures 5.7a-5.7c for an increasing amount of data
samples. Note that δ1 grows rapidly for states away from the central region, thus a
global upper bound on δ1 would result in a poor lower bound on the satisfaction
probability.

5.6. Case studies 147

Figure 5.6: Contracting credible set Θ and parameter estimates θ̃11, θ̃31 for data
sizes N = 104, 105, 106 (light to dark blue) with associated confidence bound
(1− α) = 0.9.

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Results of the package delivery case study as described in Section 5.6a.
The top figures show the maximum value of δ1 with respect to ũ as a function of
the initial state (x̃1, x̃2). Here, we used a confidence bound of (1−α) = 0.9 and the
total number of samples equals N = 104, 105, 106 in respectively (a), (b) and (c).
The bottom figures show the lower bound on the satisfaction probability with the
total number of samples N = 104, 105, 106 in respectively (d), (e), and (f). Note
that the scale of the vertical axes is the same for all figures, while the colors are
associated with each figure individually to indicate the shape. Here, the color scale
goes from blue (lowest probability) to yellow (highest probability).

148 Chapter 5. A Bayesian approach for uncertain systems

Figure 5.8: Upper bound (red) and lower bound (blue) of the robust satisfaction
probability for a specific initial state as a function of the size of the dataset N .

The following steps are performed using the toolbox SySCoRe (described in Chapter
3). We compute a second abstract model M̂ by discretizing the state space of
M̃ with 2500 × 2500 grid cells. Then, we use the results of Chapter 2 to get
M̂ ⪯δ2

ϵ2
M̃ with ϵ2 = 0.034 and δ2 = 0.004. Finally, using the transitivity property

in Theorem 5.3, we have M̂ ⪯δϵ M(θ) with δ = δ1 + δ2 and ϵ = ϵ1 + ϵ2. The robust
probability of satisfying the specification with this ϵ and δ is computed based on
Proposition 5.1 and is depicted in Figures 5.7d-5.7f as a function of the initial state
of M(θ) for an increasing amount of data samples. Figure 5.8 shows the upper
bound and lower bound of the robust satisfaction probability with respect to a
specific initial state for increasing data set sizes. All of those figures show that the
robust satisfaction probability gets higher by increasing the amount of data.

5.6b Van der Pol Oscillator

Consider a 2D uncertain nonlinear system that is a Van der Pol oscillator. Its
dynamics are given in the form of (5.4) with θ =

[
θ11 θ21 θ31 θ41
θ12 θ22 θ32 θ42

]⊤ ∈ R4×2,
f(xt, ut) =

[
x1,t x2,t x2

1,tx2,t ut
]⊤, h(xt) = xt ∈ R2, and Σ =

√
0.2I2. We

consider the state space X = R2, input space U = [−1, 1], and output space Y = X.
We want to design a controller such that the system remains inside region P1 while
reaching target region P2, written as ϕpol = p1 U p2, where p1, and p2 are the labels
corresponding to respectively regions P1, and P2. The regions defined on the output
space Y are P1 = [−3, 3]2 and P2 = [2, 3]× [−1, 1].

For estimating the parameters, we sample uniform inputs u from U and draw
N = 106 data points2 from the true unknown system with parametrization θ∗ =[1 τ 0 0

−τ 1+τa τa 0
]⊤
, where a = 0.9 and τ = 0.1. We set the prior distribution to

a Gaussian distribution with mean 0 and variance 10I for each θij with i ∈
{1, 2, 3, 4} j ∈ {1, 2}, that is for each column of θ we set the prior N (· | 04×2, 10I4).

2When using fewer data points, we observed similar trends as for the linear system in Sec-
tion 5.6a.

5.6. Case studies 149

(a) (b)

Figure 5.9: Results of the van der Pol oscillator case study as described in Section
5.6b. In (a) we show the maximum value of δ1 with respect to ũ as a function of
the initial state (x̃1, x̃2) for a confidence bound of (1− α) = 0.9. In (b) we show
the lower bound on the satisfaction probability with respect to the initial state of
M(θ). The number of samples equals N = 106.

Remark 5.7. Note that the state dynamics of the unknown Van der Pol oscillator
can equivalently be written as

x1,t+1 = x1,t + x2,tτ + w1,t,

x2,t+1 = x2,t + (−x1,t + a(1− x2
1,t)x2,t)τ + ut + w2,t,

with parameter a and sampling time τ . In this case, we assume that the complete
parametrization is unknown, hence only f(xt, ut), h(xt) and Σ are given.

Using Bayesian linear regression we obtain an estimate θ̃ and a credible set Θ for a
lower confidence bound of (1− α) = 0.9. We select M̃ = M(θ̃) to be the nominal
model and get ϵ1 = 0. The value of δ1 is computed using (5.23) as a function of
the state and input. The maximum of δ1 with respect to the input is displayed in
Figure 5.9a. Using SySCoRe (see Chapter 3) we compute a second abstract model M̂
by discretizing the space of M̃ with 200× 200 grid cells. Then, we use the method
described in Chapter 2 and an extended version of SySCoRe to get M̂ ⪯δ2

ϵ2
M̃ with

ϵ2 = 0.1 and δ2 as a function of the abstract states of M̂. Using the transitivity
property in Theorem 5.3, we have M̂ ⪯δ

ϵ M(θ) with δ = δ1 + δ2 and ϵ = ϵ1 + ϵ2.
The probability of satisfying the specification with this ϵ and δ is computed based
on Proposition 5.1 and is given in Figure 5.9b as a function of the initial state of
M(θ).

150 Chapter 5. A Bayesian approach for uncertain systems

5.7 Discussion and conclusions

The approach presented in this chapter is the first to integrate parameter identi-
fication techniques with robust abstraction-based methods for stochastic systems.
We presented a new simulation relation for stochastic systems that can establish
a quantitative relation between a parameterized class of models and an abstract
model. With this, it extends the applicability of previous work and allows us
to synthesize robust controllers from data and provide quantified guarantees for
unknown nonlinear systems with unbounded noise and complex infinite-horizon
specifications. Moreover, the approach is compatible with model order reduction
techniques and can hence be applied to higher dimensional systems.
The method described in this work is naturally extendable to linear temporal logic
specifications over finite-traces (LTLf) using the native approach outlined in Wells
et al. (2020). LTLf semantics are useful for formalizing finite-horizon planning
problems. With the approach in (Wells et al. 2020), our results for SSRs can be
extended to LTLf by first translating the LTLf formula to an equivalent first-order
logic (FOL) formula (De Giacomo and Vardi 2013) and subsequently generating
a minimal DFA using, e.g., the tool MONA (Henriksen et al. 1995). Thereafter,
the procedure remains the same, by constructing a product MDP and solving the
reachability problem (cf. Haesaert and Soudjani (2020)).
Currently, we focus on disturbances with the same dimension as the state. For future
work, we plan to remove this restriction by adding a Bw−term as in Chapter 2.
Besides that, in this chapter, we define a valid control refinement. However,
finding a valid control refinement that does not depend on the parameter θ in a
computationally efficient way is a topic for future work. Other future extensions
address the limitation of the presented approach to state, input data without
any measurement noise. In order to achieve formal guarantees when only noisy
measurement data is available (i.e., when the observations are extended to have
probability distributions conditioned on the state), relation (5.24) has to be relaxed
since the state is not observed directly. The coupling in its current form has to be
adapted to accommodate this.

5.A. Proof of Theorem 5.4 151

Appendix

5.A Proof of Theorem 5.4

We first show that (5.25) is a sub-probability coupling of t̃(· | x̃, ũ) in (5.18) and
t(· | x, ũ; θ) in (5.19) over R in (5.24) by proving that the conditions of Definition 5.8
are satisfied. Next, we derive δ and prove the (ϵ, δ)-SSR between the two models
using the conditions in Definition 5.9. Finally, we show that (5.22) is a valid control
refinement.
To make the notation more compact, we define the tuple z := (x̃, x, ũ), where
z ∈ Z with Z := {(x̃, x, ũ) | (x̃, x) ∈ R and ũ ∈ Ũ}, and denote with ρmin the
sub-probability density function defined as

ρmin(dw,dw̃) := min{ρ(dw), ρ̃γ(dw̃)}

with ρ(dw) and ρ̃γ(dw̃) respectively the probability density functions N (dw | 0,Σ)
and N (dw̃ | −γ,Σ).

Step 1: Proof of sub-probability coupling

Condition Definition 5.8 a). For all z ∈ Z and θ ∈ Θ we first show that W̄x
sub

is entirely located on R, i.e., W̄x
sub(X̃ × X | z; θ) = W̄x

sub(R | z; θ). We start by
integrating W̄x

sub over X̃× X. From (5.25) we get that for all z ∈ Z and θ ∈ Θ we
have

W̄x
sub(X̃× X | z; θ)

=
∫

x̃+∈X̃

∫
x+∈X

∫
w̃∈W

∫
w∈W

δθ̃⊤f(x̃,ũ)+w̃(dx̃+)δθ⊤f(x,u)+w(dx+)δγ+w(dw̃)ρmin(dw,dw̃)

=
∫

w̃∈W

∫
w∈W

∫
x̃+∈X̃

∫
x+∈X

δθ̃⊤f(x̃,ũ)+w̃(dx̃+)δθ⊤f(x,u)+w(dx+)δγ+w(dw̃)ρmin(dw,dw̃)

=
∫
w∈W

ρmin(dw,dw̃), (5.26)

where we have changed the order of integration and used the fact that the integral
of the Dirac delta measure over the whole domain is equal to one.
Similarly, we integrate (5.25) over R to get that for all z ∈ Z and θ ∈ Θ we have

W̄x
sub(R | z; θ) =

∫
w∈W

∫
(x̃+,x+)∈R

δθ̃⊤f(x̃,ũ)+w+γ(dx̃+)δθ⊤f(x,u)+w(dx+)ρmin(dw,dw̃).

The choice of γ(x, u, θ) = (θ − θ̃)⊤f(x, u) ensures that (x̃+, x+) ∈ R for (x̃, x) ∈ R

and u = ũ. Therefore, the integration of two Dirac delta measures over R becomes

152 Chapter 5. A Bayesian approach for uncertain systems

one, and we get W̄x
sub(R | z; θ) = W̄x

sub(X̃ × X | z; θ), thus Definition 5.8 a) is
satisfied.
Condition Definition 5.8 b). For any measurable set S ⊂ X̃, we integrate W̄x

sub

in (5.25) over S ×X to get that for all z ∈ Z and θ ∈ Θ, W̄x
sub satisfies condition b)

of Definition 5.8:

W̄x
sub(S × X | z; θ) =

∫
w∈W

∫
x̃+∈S

δθ̃⊤f(x̃,ũ)+w(dx̃+)ρmin(dw,dw̃)

≤
∫

w∈W

∫
x̃+∈S

δθ̃⊤f(x̃,ũ)+w(dx̃+)ρ(dw) = t̃(S|z).

Condition Definition 5.8 c). Similarly, for any measurable set S ⊂ X, we
integrate W̄x

sub in (5.25) over X̃ × S and get that for all z ∈ Z and θ ∈ Θ, W̄x
sub

satisfies condition c) of Definition 5.8:

W̄x
sub(X̃× S|z; θ) ≤

∫
w∈W

∫
x+∈S

δθ⊤f(x̃,ũ)+w(dx+)ρ(dw) = t(S|z).

Hence, since (5.25) satisfies all conditions of Definition 5.8, it is a sub-probability
coupling.

Step 2: Proof of SSR

Condition a) of Definition 5.9 holds by setting the initial states x̃0 = x0. Condition
c) is satisfied with ϵ = 0 since both systems use the same output mapping. For
condition b), we use sub-probability coupling (5.25) and derive δ, such that the
condition in Definition 5.9 is satisfied. Note that this derivation is an extension of
the proof of Lemma 2.1 to stochastic systems that are influenced by non-standard
Gaussian noise and with additional parametric uncertainty.
Derivation of δ in (5.23). We show that δ(x̃, ũ) in (5.23) satisfies W̄x

sub(X̃ ×
X|z; θ) ≥ 1 − δ(x̃, ũ). For this, we want to find the relation between δ(x̃, ũ) and
γ(x̃, ũ, θ). We recognize that W̄x

sub(X̃× X|z; θ) takes the minimum of two normal
distributions as in (5.26). Due to the symmetric property of the normal distribution,
we get

W̄x
sub(X̃× X|z; θ) = 2

∫
E

ρ(dw) = 2
∫
E

N (dw|0,Σ), (5.27)

with E = {w | γ⊤Σ−1(2w − γ) ≥ 0} as illustrated in Figure 5.10. Note that
the set E is a half-space obtained by simplifying the inequality ρ̃(dw̃) ≥ ρ(dw).
Due to the symmetry of the variance, (5.27) can equivalently be computed as
W̄x
sub(X̃× X|z; θ) = 2P(γ⊤Σ−1(2w + γ) ≤ 0) with w ∼ ρ(dw) = N (dw | 0,Σ). This

amounts to integrating a multivariate normal distribution over a half-space.
Note that this is equivalent to integrating a one-dimensional standard Gaussian
random variable until the point w = − 1

2 ||γ||Σ−1 , which implies that we have the

5.A. Proof of Theorem 5.4 153

w1

w2

γ

Ẽ E

Figure 5.10: Level sets of probability density functions ρ(dw) (black circle) and
ρ̃γ(dw̃) (dashed circle). Half spaces Ẽ and E are respectively the R2-plane left
and right of the red line. The area underneath ρmin(dw,dw̃) for these level sets is
indicated in blue.

following.

W̄x
sub(X̃× X|z; θ) = 2 cdf

(
− 1

2 ||γ||Σ−1
)

= 2 cdf
(
− 1

2
√
γ⊤Σ−1γ

)
.

Remark 5.8. For Gaussian distributions with Σ = I, we recover the results from
Lemma 2.1 in Chapter 2, that is 1− δ = inf

γ∈Γ
2 cdf (− 1

2 ||γ||), where we have equality
(instead of ≤) because in Chapter 2 we consider a probability coupling instead of a
sub-probability coupling.

Therefore, we have W̄x
sub(X̃× X|z; θ) ≥ 1− δ(x̃, ũ), with

δ(x̃, ũ) := 1− 2 cdf
(
− 1

2
√
ζ(x̃, ũ)

)
, (5.28)

ζ(x̃, ũ) := sup
θ∈Θ

(
γ⊤(x̃, ũ, θ)Σ−1γ(x̃, ũ, θ)

)
.

Note that we calculate a δ dependent on (x̃, ũ) to reduce the conservatism of our
approach. Given the definition of γ and the characterization of Θ in (5.8), the
computation of ζ(x̃, ũ) is through the optimization

ζ(x̃, ũ) := sup
θ
f⊤(x̃, ũ)(θ − θ̃)Σ−1(θ − θ̃)⊤f(x̃, ũ) (5.29)

s.t. (∆θ)⊤Σ−1
N (∆θ) ≤ nxχ−1(1− α|nx),

where ∆θ := [θ1 − θ̃1; . . . ; θnx − θ̃nx]. This is a quadratically constrained quadratic
program, which is convex and can be solved efficiently using interior point methods.
Here, we compute an upper bound for the optimal solution, which is sufficient for

154 Chapter 5. A Bayesian approach for uncertain systems

the purpose of getting a correct formal bound for δ:

f⊤(x̃, ũ)(θ − θ̃)Σ−1(θ − θ̃)⊤f(x̃, ũ) = ∆θ⊤(Inx
⊗ f(x̃, ũ)⊤)⊤Σ−1(Inx

⊗ f(x̃, ũ)⊤)∆θ
≤ ||Inx

⊗ f(x̃, ũ)⊤||2||Σ−1|| ||∆θ||2 = ||f(x̃, ũ)||2||Σ−1|| ||∆θ||2

≤ ||f(x̃, ũ)||2||Σ−1|| nx · χ
−1(1− α|nx)

λmin(Σ−1
N)

= ||f(x̃, ũ)||2||Σ−1|| ||ΣN ||nxχ−1(1− α|nx).

In the above, we have used the following (in)equalities: x⊤Ax ≤ ||A|| ||x||2 and
x⊤Ax ≥ λmin(A)||x||2 for any vector x and symmetric positive semi-definite matrix
A; ||AB|| ≤ ||A|| ||B|| and ||A ⊗ B|| = ||A|| ||B|| for any two matrices A and B;
and ||Inx

|| = 1. Therefore, we have√
ζ(x̃, ũ) ≤ ||f(x̃, ũ)||

√
r,

with r := ||Σ−1|| ||ΣN ||nxχ−1(1 − α|nx). Substituting this into (5.28) completes
the proof of the expression for δ and shows that condition b) in Definition 5.9 is
satisfied.
Since there exists a sub-probability coupling W̄x

sub, such that all conditions in
Definition 5.9 are satisfied, we get SSR M̃ ⪯δ

ϵ M(θ) with ϵ = 0 and δ(x̃, ũ) as in
(5.23).

Step 3: Proof of a valid control refinement

Since we have an SSR M̃ ⪯δ
ϵ M(θ), we can follow Theorem 5.2 to conclude that a

valid control refinement exists. The state mapping in (5.22) is chosen as described
in the proof of Theorem 5.2. Hence, following this proof, we can conclude that state
mapping Xv in (5.22) satisfies the condition in Definition 5.10 and, therefore, is a
valid control refinement.
Since we have proven that we get an SSR with ϵ = 0 and δ(x̃, ũ) as in (5.23), and
that the state mapping in (5.22) is valid, the proof of Theorem 5.4 is concluded.

6
Direct data-driven control with

signal temporal logic specifications

Most control synthesis methods under temporal logic properties require a model
of the system, however, identifying such a model can be a challenging task.
In this chapter, we develop a direct data-driven controller synthesis method
for temporal logic specifications, which does not require this explicit modeling
step. That is, we provide certificates for the general class of linear systems.
After collecting a single sequence of input-output data from the system, we
construct a data-driven characterization of the system behavior. Using this
data-driven characterization we show that we can synthesize a controller, such
that the controlled system satisfies a signal temporal logic specification. The
underlying optimization problem is solved by mixed-integer linear programming.
We demonstrate the applicability of the results through benchmark simulation
examples.

6.1 Introduction

To achieve reliability of safety-critical systems, such as autonomous vehicles and
power grids, it is crucial to give formal guarantees on their functionality. Hence,
it is beneficial to automatically construct a provably correct controller, where the
desired behavior is described by temporal logic specifications. In this work, we
focus on signal temporal logic, since it does not only provide a qualitative answer to
whether the specification is satisfied but also provides insight into the quality of
satisfaction (or violation). More specifically, it is an extension of Linear Temporal
Logic (LTL) with real-time and real-valued constraints.

Methods that synthesize a provably correct controller for a system subject to tem-
poral logic specifications are often referred to as correct-by-design control synthesis

156 Chapter 6. Direct data-driven control with STL

methods. Most of them (Wieland and Allgöwer 2007; Tabuada 2009; Belta et al.
2017) depend on the availability of an analytic model of the system. However,
due to the increasing complexity of systems, obtaining an accurate model has
become a challenging task. Furthermore, there is always unmodeled behavior due
to first-principles-based modeling or uncertainty of the estimated model. A way
to circumvent this issue is to directly synthesize a controller from data. By doing
so, we avoid the possibility that some form of approximation error occurs in the
modeling process. In this work, we bring down correct-by-design control synthesis
to the level of data by using a data-driven method within the behavioral framework
to directly synthesize a controller. We also analyze the soundness and completeness
of the developed algorithm.

Literature. A common methodology in control design is to start with first-
principles-based modeling combined with parameter estimation to obtain a model
and use that model to design a (model-based) controller. Similar approaches
are used in correct-by-design control synthesis in Haesaert et al. (2017c) and in
Chapter 5 of this thesis, where one typically uses Bayesian linear regression to obtain
a (stochastic) continuous-state model of the system. After obtaining a description
of the continuous-state model one resorts to abstraction-based or abstraction-free
methods to construct a provably correct controller. Unfortunately, this modeling
step is challenging for complex systems and is prone to errors that propagate to
the control design. Instead of starting with a first-principle-based continuous-state
model, there also exist correct-by-design control synthesis methods (Devonport et al.
2021; Kazemi et al. 2022; Lavaei et al. 2022b) that use data to obtain a finite-state
abstract model. However, these methods are prone to similar challenges and are,
therefore, challenging for complex systems that are hard to model.
Recent work (Kapoor et al. 2020; Kazemi and Soudjani 2020; Wang et al. 2020;
Kalagarla et al. 2021) uses reinforcement learning to learn a control policy such
that a specification is satisfied. In these approaches, learning is used to obtain
a system’s description that is based on the state trajectory, while these methods
refrain from using information about the state of the system and focus solely on
input-output data.
Besides control synthesis, an interesting and somewhat related research direction
is to determine signal temporal logic (STL) specifications that are satisfied by the
behavior of the system (Kong et al. 2014; Aksaray et al. 2016; Bombara et al. 2016).
Recently, data-driven control has gained a lot of research interest, mainly because
it shows very promising results for analysis, simulation, and control of complex
systems. Such methods are generally based on the Fundamental Lemma (Willems et
al. 2005), which is inferred from the behavioral framework for LTI systems (Willems
and Polderman 1997) to obtain a full characterization of the system behavior, using
only measurement data of the system. The developed methods for LTI systems
have been used in a wide range of applications, namely data-driven simulation
(Markovsky and Rapisarda 2008), performance analysis (Romer et al. 2019; Koch
et al. 2021; Van Waarde et al. 2022), and control with closed-loop performance
guarantees (Markovsky and Rapisarda 2007; Coulson et al. 2019; De Persis and Tesi
2019; Berberich et al. 2020b). However, these methods have never been exploited to
give behavioral guarantees on the system through temporal logic specifications. In

6.2. Problem statement 157

this chapter, we develop a direct data-driven approach to automatically synthesize
a controller subject to signal temporal logic specifications, using only input-output
data.
This chapter is structured as follows. We start by introducing the relevant theory
and defining the problem statement. In Section 6.3, we describe how to obtain a
characterization of the system using data, which we use for control design subject
to a temporal logic specification in Section 6.4. In Section 6.5, we analyze whether
the algorithm satisfies important properties, namely soundness, and completeness.
In Section 6.6, we employ our method to multiple case studies and we discuss the
results and possible extensions in Section 6.7. Finally, we draw our conclusions on
the proposed methodology.

6.2 Problem statement

6.2a Notation

We define the set of natural numbers by N, the set integers by Z, and the set of
real numbers by R. In the sequel, we denote with finite intervals [a, b] the ordered
sequence {a, a + 1, . . . , b} with a < b and a, b ∈ N. Similarly we use z to denote
the infinite sequence {z0, z1, z2, . . .} and the associated infinite suffix is denoted as
zt = {zt, zt+1, zt+2, . . .}. We use z[0,N] to denote the finite sequence {z0, z1, . . . , zN}
or its stacked version1. The Hankel matrix of row size L + 1 associated with a
sequence z[0,N] with elements zt ∈ Rnz for t ∈ [0, N] is

HL+1(z[0,N]) =


z0 z1 · · · zN−L
z1 z2 · · · zN−L+1
...

...
zL zL+1 · · · zN

 , (6.1)

and has dimension HL+1(z[0,N]) ∈ Rnz(L+1)×N−L+1.

6.2b Discrete-time dynamical systems

As in Willems and Polderman (1997), we define discrete-time dynamical systems
based on their behavior as follows.

Definition 6.1 ((Willems and Polderman 1997, Definition 1.3.4)). A dynamical
system Σ is defined as a triple

Σ = (T,V,B)

with T a subset of Z, called the time axis, V a set called the signal space, and B a
subset of VT called the behavior. Here, VT is the notation for the collection of all
maps from T to V.

1Sequences can be stacked either row-wise or column-wise depending on the context.

158 Chapter 6. Direct data-driven control with STL

The behavior B of a system is a set of trajectories or time-dependent functions that
are compatible with the system.
In this work, we define a system, its initialization, and its control design via its
behavioral set. This way no exact knowledge on the structure of the system such as
the dimension of the state space of the system is required.

Linear Time-Invariant Systems. In the sequel, we will focus on Linear
Time-Invariant (LTI) systems (Willems and Polderman 1997, Def. 1.4.1 and 1.4.2).
Dynamical systems are linear if the superposition principle holds, i.e., when v1 and
v2 are trajectories that are both elements of B, then for the constant scalars α and
β, it is implied that αv1 + βv2 ∈ B. Time-invariance of a system implies that any
time-shifted version of a trajectory in B is again an element of B. More precisely,
let qτ denote the τ -shift, i.e., qτvt = vt+τ if t + τ ∈ T (and 0 otherwise). The
discrete-time dynamical system Σ is time-invariant if qτB ⊆ B for all τ ∈ T. Note
that for T = Z, we have qτB = B. This condition is called the shift-invariance of
B.
A state-space representation is a realization of B. Consider the generic state-space
representation of an LTI system given as{

xt+1 = Axt +But

yt = Cxt +Dut
(6.2)

with state xt ∈ X = Rnx , input ut ∈ U = Rnu , and output yt ∈ Y = Rny . Matrices
A,B, C, and D are of appropriate sizes. Let the signal v have a signal space
U × Y such that v can be partitioned into input signal u and output signal y,
that is, v = (u,y). Then, this representation (6.2) defines a dynamical system
Σ = (Z,V,B) with signal space V = U× Y and with behavior

B := {v ∈ VZ | ∃x ∈ XZ, s.t. (y,x,u) satisfy (6.2) ∀t ∈ Z}.

It is easy to see that Σ is linear, time-invariant, and shift invariant. Intuitively, we
define the order of the system n(B) as the minimal state dimension required in (6.2)
such that the input-output behavior of (6.2) fully represents B. Similarly, we define
the lag of the system l(B) as the minimal length of the observations y[0,N] required
to always fully reconstruct the state. Lastly, behavior is considered controllable
if we can steer a system to a desired trajectory in the behavior. Mathematical
definitions of these concepts are given in Markovsky and Dörfler (2021, Section 2.3),
and Willems and Polderman (1997, Section 1.5 and 5.2). In this chapter, we do not
require exact knowledge of the structure of the system, however, the results in the
chapter hold if we have rough upper bounds on the lag and the order of the system
(Markovsky and Rapisarda 2008).
Finite behaviors and concatenations. We denote the behavior of an LTI
system that only contains finite trajectories of length T + 1 as B|[0,T], i.e.,

B|[0,T] := {v[0,T] | ∃w ∈ B s.t. vt = wt for 0 ≤ t ≤ T}.

We say that v[0,T] is a trajectory of Σ if v[0,T] ∈ B|[0,T].

6.2. Problem statement 159

For a given dynamical system Σ, consider two input-output trajectories va ∈ B|[0,Ta]
and vb ∈ B|[0,Tb], the concatenated trajectory is defined as v = va ∧ vb with
v[0,Ta] = va and v[Ta+1,Ta+Tb+1] = vb. The concatenation va ∧ vb might, or
might not belong to B|[0,Ta+Tb+1]. If it does, we say that vb is a (compatible)
continuation of va in B|[0,Ta+Tb+1], or that va is a (compatible) precedent of vb in
B|[0,Ta+Tb+1]. Given va, we are now interested in finding trajectories vb such that vb

is a (compatible) continuation of va in B|[0,Ta+Tb+1], that is va∧vb ∈ B|[0,Ta+Tb+1].

Control design and initialization. Given a system Σ, the design of a controller
corresponds to selecting a (finite) sequence of inputs that lead to a (finite) trajectory
v in B. To this end, let L > 0 and let u[0,L] be a (given) control input signal. Let
vini ∈ B|[0,Tini] with Tini > 0 be given. If v[0,L] = (u[0,L],y[0,L]) is a compatible
continuation of vini, then y[0,L] is called the controlled output associated with the
control input u[0,L] and vini. We will be interested in the situation that Tini is
such that for all initial trajectories vini ∈ B|[0,Tini], the controlled output y[0,L]

associated with u[0,L] and vini is uniquely defined. The existence of such a Tini is
guaranteed by the following proposition.

Proposition 6.1 (Initial Condition (Markovsky and Rapisarda 2008; Markovsky
and Dörfler 2021)). Let Tini + 1 ≥ l(B). Then for any given vini ∈ B|[0,Tini]

and u[0,L] ∈ (Rnu)L+1, there is a unique y[0,L] ∈ (Rny)L+1
, such that vini ∧

(u[0,L],y[0,L]) ∈ B|[0,Tini+L].

This means that vini is the collection of past inputs and outputs that is sufficient
to uniquely determine the compatible continuations of vini, once the control input
u[0,L] is known. We, therefore, say that vini is an initialization or initial condition.

6.2c Signal temporal logic specifications.

Consider the language of signal temporal logic (STL) (Maler and Nickovic 2004;
Deshmukh et al. 2017) whose syntax is recursively defined as

φ ::= σ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | □[a,b]φ | φ1 U[a,b] φ2,

starting from predicate σ : σ(y) > 0 for predicate function σ : Y → R. The
semantics are given below.

yt |= σ ⇔ σ(yt) > 0
yt |= ¬φ⇔ ¬(yt |= φ)

yt |= φ1 ∧ φ2 ⇔ yt |= φ1 ∧ yt |= φ2

yt |= φ1 ∨ φ2 ⇔ yt |= φ1 ∨ yt |= φ2

yt |= □[a,b]φ⇔ ∀t′ ∈ [t+ a, t+ b] : yt′ |= φ

yt |= φ1 U[a,b] φ2 ⇔ ∃t′ ∈ [t+ a, t+ b] such that yt′ |= φ2

∧ ∀t′′ ∈ [t, t′] : yt′′ |= φ1.

160 Chapter 6. Direct data-driven control with STL

dataw iniw)0y,0u(
vdata vini (u0,y0)

Figure 6.1: Illustration of the different trajectories used in this approach. Here, we
see a trajectory of a system Σ build up by concatenating multiple trajectories. The
trajectory used for data and initialization are given in black and green respectively.
The designed trajectory is shown in red.

Additionally, we define the eventually-operator as ♢[a,b]φ := true U[a,b] φ, which
is true if φ holds at some time on the interval between a and b. Similarly, an
implication is defined as φ1 =⇒ φ2 := ¬φ1 ∨ φ2, which is true if φ1 implies that
φ2 is true. A (possibly infinite) trajectory y = y0y1y2 . . . satisfies φ denoted by
y |= φ iff y0 |= φ holds.
Furthermore, for a given input sequence u0 = {u0, u1, u2, . . .}, and initialization
vini, we say that Σ satisfies specification φ, if the unique continuation y0 is such
that y0 |= φ.
Remark 6.1. As is common for optimization-based approaches that synthesize
controllers that provably satisfy temporal logic requirements, we use STL to describe
the specifications. However, we should point out that exactly the same results can
be obtained for bounded versions of LTL (Belta and Sadraddini 2019).

6.2d Cost function

To optimize the performance of the controller, we introduce a cost function as a
performance measure. Since we use only input-output data of the system, the cost
function can only be a function of u and y. More specifically, we define a cost
function J : U× Y→ R that assigns a cost to a trajectory (u0,y0). In this work,
we consider cost functions that are quadratic and of the form

J(u0,y0) = ||u0||2R + ||y0||2Q,

with ||x[0,L]||P denoting the weighted-norm of a trajectory defined as
√

x⊤Px =∑L
t=0

√
x⊤
t Pxt.

6.2e Problem statement

We are now interested in data-driven control that achieves STL specifications, while
also optimizing performance. Data-driven control ranges from controllers that
are designed from data-driven models to controllers synthesized directly from (a
collection of) data. In this work, we are interested in the latter – direct data-driven
control. More precisely, we will focus on using a single sequence of data to directly
design a sound data-driven controller. Thus, given a finite input-output sequence

6.3. Data-driven characterization of the system 161

vdata from an unknown LTI system Σ = (Z,U×Y,B), vdata ∈ B|[0,T], we want to
synthesize a control input u0, such that the trajectory initialized with vini has an
optimal continuation for which y0 |= φ. Formally this can be written as.
Problem 6.1 (Direct data-driven STL control). Given a finite data sequence
vdata ∈ B|[0,T], Tini + 1 ≥ l(B), initial condition vini ∈ B|[0,Tini], STL specification
φ, and cost function J , solve

arg min
u0

J(u0,y0) (6.3a)

subject to vini ∧ (u0,y0) ∈ B, (6.3b)
and y0 |= φ. (6.3c)

Approach. In this chapter, we develop a direct data-driven control synthesis
method by performing the following steps. First, we obtain input-output data
of the system collected in vdata. As long as these trajectories contain enough
information, this allows us to obtain a data-driven characterization of the system.
Next, we rewrite the STL specification into a set of mixed-integer linear programming
constraints. After obtaining an initial trajectory that initializes the system and is
not part of vdata, we solve an optimization problem that synthesizes a controller.
This controller yields the input trajectory u[0,L] such that (u[0,L],y[0,L]) satisfies
the STL specifications. In this chapter, we focus on finite trajectories with horizon
L+ 1, hence we have (u[0,L],y[0,L]) instead of (u0,y0). More specifically, for now
we compute the entire input sequence at the beginning of the interval and then
apply it fully without any re-computation. The different trajectories used in this
approach are illustrated in Figure 6.1.

6.3 Data-driven characterization of the system

In order to obtain a characterization of the system using input-output data, we use
the Fundamental Lemma from Willems et al. (2005). Suppose that we are given
vdata ∈ B|[0,T] , of an LTI system, then based on the linearity and shift-invariance
of the LTI system, we know that for any α ∈ RT−L+1 it holds that

HL+1(vdata)α ∈ B|[0,L] .

Under some additional conditions, we also have that for every v[0,L] ∈ B|[0,L] there
exists an α ∈ RT−L+1 such that

HL+1(vdata)α = v[0,L]. (6.4)

We will formalize these statements and the required conditions in the remainder of
this section. Furthermore, we will show that these properties hold true.
Let us first introduce the persistence of excitation condition.
Definition 6.2. A finite sequence udata ∈ UT+1 is persistently exciting of order
L+ 1 if and only if

rank(HL+1(udata)) = (L+ 1)nu,

with the Hankel matrix HL+1(·) as in (6.1).

162 Chapter 6. Direct data-driven control with STL

The Fundamental Lemma (Willems et al. 2005, Thm 1) gives the conditions for
equality (6.4) and shows that once the input is persistently exciting of order L+1+nx,
the Hankel matrix of depth L+ 1 constructed from the data, spans the full behavior
of the LTI system, restricted to length L+ 1 trajectories. Translating this to the
classical control setting, we obtain the result from Berberich and Allgöwer (2020).

Proposition 6.2 (Data-driven control (Berberich and Allgöwer 2020)). Suppose
vdata = (udata,ydata) is a trajectory of an LTI system Σ, where udata is persistently
exciting of order L+ 1 + nx. Then, v[0,L] = (u[0,L],y[0,L]) is a trajectory of Σ if
and only if there exists α ∈ RT−L+1 such that[

HL+1(udata)
HL+1(ydata)

]
α =

[
u[0,L]
y[0,L]

]
. (6.5)

The main interpretation is that any length L+ 1 trajectory is spanned by the time-
shifts of the measured trajectories in the data-dictionary vdata. Hence, the left-hand
side of (6.5) can be interpreted as a fully data-based representation of the LTI
system. This implies that with sufficiently informative data, you can characterize
the full system behavior consisting of all length L+ 1 system trajectories.

6.4 Direct data-driven temporal logic control syn-
thesis

Now that we know how to obtain a characterization of the system as in (6.5), we
can rewrite the constraints of optimization problem (6.3) into a mixed-integer linear
program.
In optimization problem (6.3) we have two constraints. The first constraint on the
system dynamics implies that the trajectory belongs to the behavior of the model.
This can be equivalently written using the characterization of the system obtained
through data, i.e., as in (6.5). The second STL constraint in (6.3) guarantees the
satisfaction of the STL specification. This can equivalently be rewritten as a mixed-
integer linear program (MILP) using the method described in Raman et al. (2014).
Both steps are well known and are summarized here for completeness. Together
these steps define a new direct data-driven algorithm for STL specifications whose
soundness is analyzed in Section 6.5.

Compute minimal L for φ. We start by computing the required trajectory
length L+ 1. For a finite trajectory y[0,L] to satisfy an STL specification φ, that
is y0 |= φ, it has to be sufficiently long. For example to satisfy the specification
φ = □[a,b]♢[c,d](yt ≥ 1), the trajectory y[0,L] should have a horizon larger than b+d,
that is L+ 1 > b+ d. The necessary horizon L+ 1 can be computed based on the
structure of the formula φ, cf. Maler and Nickovic (2004). Denote the required
length associated to formula φ as ∥φ∥, then we have the following relations:

6.4. Direct data-driven temporal logic control synthesis 163

• ∥σ∥ = 0,
• ∥¬φ∥ = ∥φ∥,
• ∥φ1 ∧ φ2∥ = max(∥φ1∥, ∥φ2∥),
• ∥φ1 ∨ φ2∥ = max(∥φ1∥, ∥φ2∥),
• ∥□[a,b]φ∥ = ∥φ∥+ b,
• ∥φ1 U[a,b] φ2∥ = max(∥φ1∥, ∥φ2∥) + b.

Hence, to achieve y[0,L] |= φ, we need horizon

L+ 1 > ∥φ∥. (6.6)

STL satisfaction as MILP constraints. Following Raman et al. (2014), we
can rewrite the satisfaction of an STL specification as MILP constraints. To this
end, introduce the binary auxiliary variable ζφt ∈ {0, 1}, with t ∈ [0, 1, . . . , L],
associated to a set of MILP constraints such that ζφt = 1 if φ holds at time t . As
before, the satisfaction of a formula is considered at t = 0, hence if ζφ0 = 1, the
formula is satisfied. Variable ζφ0 is computed recursively using the associated MILP
constraints.
Associate to each predicate σ its own auxiliary binary variable ζσt ∈ {0, 1} for
t ∈ [0, 1, . . . , L]. The following constraints

σ(yt) ≤Mtζ
σ
t − ϵt (6.7)

−σ(yt) ≤Mt(1− ζσt)− ϵt, (6.8)

make sure that ζσt = 1 if and only if σ(yt) > 0. Here, Mt > 0 are sufficiently large
numbers and ϵt > 0 are sufficiently small numbers, included to avoid numerical
issues.
For each Boolean operator, that is φ = ¬φ,φ = ∧mi=1φi and φ = ∨mi=1φi, we add an
auxiliary variable ζφt . We define the encodings of these Boolean operators on binary
variables ζφt as in Raman et al. (2014) and Wolff et al. (2014) (repeated here for
completeness).

ζφt = ¬ζφt ⇔ ζφt = 1− ζφt ,
ζφt = ∧mi=1ζ

φi

ti ⇔ ζφt ≤ ζ
φi

ti , with i = 1, 2, . . . ,m
ζφt ≥ 1−m+

∑m
i=1 ζ

φi

ti ,
ζφt = ∨mi=1ζ

φi

ti ⇔ ζφt ≥ ζ
φi

ti , with i = 1, 2, . . . ,m
ζφt ≤

∑m
i=1 ζ

φi

ti ,

(6.9)

These constraints make sure that ζφt = 1 only if φ holds at time t.
Next, we define the temporal operators φ = □[a,b]ψ and φ = ♢[a,b]ψ as in Raman
et al. (2014). To this end, we add auxiliary variables ζφt and define their encodings
as follows:

ζφt = □[a,b]ζ
ψ
t ⇔ ζφt = ∧min(t+b,L)

i=min(t+a,L)ζ
ψ
i ,

ζφt = ♢[a,b]ζ
ψ
t ⇔ ζφt = ∨min(t+b,L)

i=min(t+a,L)ζ
ψ
i ,

(6.10)

164 Chapter 6. Direct data-driven control with STL

with the conjunction and disjunction operators defined in (6.9). Finally, the
bounded until operator can be written as a logical combination of the bounded
always, bounded eventually, and unbounded until operator U.

φ1 U[a,b] φ2 = □[0,a]φ1 ∧ ♢[a,b]φ2 ∧ ♢[a,a](φ1 U φ2). (6.11)

Hence, we define the encoding over auxiliary variables ζφt ∈ [0, 1] as

ζφt = ζ
φ1U[a,b]φ2
t = ζ

□[0,a]φ1
t ∧ ζ♢[a,b]φ2

t ∧ ζ♢[a,a](φ1Uφ2)
t , (6.12)

with
ζφ1Uφ2
t = ζφ2

t ∨ (ζφ1
t ∧ ζ

φ1Uφ2
t+1), (6.13)

for t = 1, 2, . . . , L and ζφ1Uφ2
L = ζφ2

L .

Direct data-driven STL control synthesis. In order to design a controller, we
need an initial trajectory that satisfies Proposition 6.1. Hence, we have a given
initializing trajectory vini = (uini,yini) of length Tini +1, with Tini ≥ l(B), such that
y[0,L] is uniquely defined by u[0,L]. Furthermore, we have data vdata = (udata,ydata),
with udata sufficiently rich according to Proposition 6.2. As in (6.3b), the total
trajectory, vini∧(u[0,L],y[0,L]), consists of an initialization part vini and a controlled
part v[0,L], which extends the data-driven characterization as in (6.5). Denote the
set of MILP constraints associated with a given STL formula φ as ζφt = 1 with
t ∈ [0, 1, . . . , L]. The optimization problem (6.3) can now be written as

arg min
u[0,L]∈UT +1,ζφ

t

J(u[0,L],y[0,L]) (6.14a)

s.t.
[
HTini+L+1(udata)
HTini+L+1(ydata)

]
α =


uini

u[0,L]
yini

y[0,L]

 (6.14b)

ζφt = 1 constructed with (6.7)− (6.13), (6.14c)
ζφ0 = 1, (6.14d)

which is solvable using an MILP algorithm, e.g. with Gurobi (Gurobi Optimization,
LLC 2023).

The complete direct data-driven control synthesis procedure is summarized in
Algorithm 6.1.

Algorithm 6.1 Direct data-control synthesis procedure
1: Input: vdata,vini, φ, J ,
2: Compute L as in (6.6)
3: Compute HTini+L+1(vdata) for constraint (6.14b)
4: Rewrite constraint y0 |= φ to MILP constraints (6.14c)
5: u[0,L] ← solve optimization problem (6.14)

6.5. Soundness and completeness analysis 165

6.5 Soundness and completeness analysis

In this section, we analyze the soundness and completeness of Algorithm 6.1. To do
this, we require two assumptions. For soundness, we make an assumption on the
length of the initializing trajectory, and for completeness, we require persistence of
excitation of the data as a condition.

6.5a Soundness

We say that an algorithm is sound if the following holds. If the algorithm returns
a controller, then the controlled system will satisfy the STL specification. In the
following theorem we show that the direct-data driven control approach summarized
in Algorithm 6.1 is sound.

Theorem 6.1 (Direct data-driven control is sound). Given initialization trajectory
vini of length Tini + 1 ≥ l(B), any solution u[0,L] of Algorithm 6.1 will have a
corresponding output y[0,L] that satisfies the STL specification.

Proof. Since u[0,L] is a solution of Algorithm 6.1, it is a solution of optimization
problem (6.14). Therefore, constraint (6.14b) is satisfied, which implies that the
concatenation vini ∧ (u[0,L],y[0,L]) is in the behavior of the system, that is vini ∧
(u[0,L],y[0,L]) ∈ B|[0,Tini+L+1]. Following Proposition 6.1, Tini is large enough for
vini to fully initialize the behavior, which implies that the output trajectory y[0,L]
is a unique optimal solution and, therefore, the only possible output of the system.
Since the MILP constraints (6.14c)-(6.14d) are also satisfied, it holds by construction
that this output trajectory satisfies the STL specification φ, that is y[0,L] |= φ holds.
Concluding, the controller u[0,L] obtained from Algorithm 6.1 applied to the system
Σ, will yield an output trajectory y[0,L], such that y[0,L] |= φ holds. This concludes
the proof of Theorem 6.1.

6.5b Completeness

We say that an algorithm is complete if the following holds. If a controller exists
such that the controlled system satisfies the specification, the algorithm will find
it. The completeness of Algorithm 6.1 depends on the solver used in the last line,
therefore, we analyze the completeness of optimization problem (6.14) instead of
the completeness of Algorithm 6.1. To this end, we state the following.

Theorem 6.2 (Completeness of the optimization problem). Given a data sequence
vdata from the controllable system Σ that is persistently exciting of order Tini +
L+ 1 + nx according to Definition 6.2. If there exists an input u[0,L] such that the
corresponding output y[0,L] satisfies the STL specification, then the optimization
problem (6.14) has a feasible solution.

166 Chapter 6. Direct data-driven control with STL

Proof. Since v[0,L] = (u[0,L],y[0,L]) is a trajectory of Σ and vdata is persistently
exciting according to Definition 6.2, we can follow Proposition 6.2 to conclude that
there exists α such that (6.14b) is satisfied. Since y0 satisfies the STL specification,
the set of MILP constraints (6.14c)-(6.14d) is satisfied. Since all constraints are
satisfied, optimization problem (6.14) has a feasible solution. This concludes the
proof of Theorem 6.2.

6.6 Case studies

In this section, we apply our approach to two case studies and evaluate the results.
All simulations have been performed on a computer with a 2.3 GHz Quad-Core
Intel Core i5 processor and 16 GB 2133 MHz memory. For each case study, we
compute the average computation time after performing 10 simulations and mention
the observed standard deviation. The computation time includes all operations, so
also includes acquiring data from the data-generating systems. Besides that, we
compute the memory usage by considering all data stored in the MATLAB workspace.

6.6a Car platoon

Inspired by Haesaert and Soudjani (2020), as a first case study, we consider a car
platooning example with two cars, a leader and a follower. To design a data-driven
controller that controls this distance, we get data from the following data-generating
system with the corresponding matrices defined in the appendix of this chapter.

xt+1 = A1xt +B1ut
yt = C1xt.

(6.15)

The data-generatingsystem has as output yt = xt,1 the distance between the
cars. Furthermore, its three-dimensional state consists of xt,2 and xt,3 denoting,
respectively, the velocity of the follower car and the leader car. We are interested
in the distance between the two cars. We consider a bounded input u ∈ U = [−2, 2]
that influences the velocity of the follower car and, therefore, also the distance
between the cars. Note that the analytic form of the data-generating system (6.15)
is only used to generate a data sequence vdata of length 31.
We consider two different scenarios. In the first scenario we want to achieve a
safe following distance, while in the second scenario, we want to drive close to
the leading car. In both scenarios, we evaluate the results for two different cost
functions. Cost function J1(u0,y0) = ∥y[0,L]∥ minimizes the distance between the
cars, while J2(u0,y0) = ∥u[0,L]∥ minimizes the actuation of the car. For both
scenarios, we use L = 12.
Scenario 1, safe following distance. In this scenario, both cars started very
close to each other with the same constant velocity. We have designed a controller
for the follower car such that it achieves a safe distance to the leader car and
maintains this for a specified time frame. This can be written using STL as
φ = □[5,10](|y| ≥ 2 ∧ |y| ≤ 3). Note that we did not specify which car should

6.6. Case studies 167

(a) Input ut at time steps t. (b) Output yt at time steps t in blue.

(c) Input ut at time steps t. (d) Output yt at time steps t.

Figure 6.2: Results of Scenario 1 of the car platoon problem for cost function
J1(u0,y0) = ∥y[0,L]∥, displayed in panels (a), (b) and for cost function J2(u0,y0) =
∥u[0,L]∥, displayed in panels (c), (d).

drive in front. After obtaining data vdata, we have considered initial trajectory
vini = (uini,yini) with uini = {0.6058, 0, 0} and yini = {−0.1636, 0, 0}, and obtained
the results in Figure 6.2. Here, vini is highlighted in the gray area. We observed
an average computation time of 3.85 seconds, with a standard deviation of 0.32
seconds and a memory usage of 3.35 MB.

In Figures 6.2b, 6.2d, we see that the specification (indicated by the green box)
is satisfied, since the output at time steps t = 5, . . . , 10 is between 2 and 3 in
Figure 6.2b and between −3 and −2 in Figure 6.2d. Besides that, we conclude that
the cost function has a big influence on the results. For cost function J1, we see that
the controller minimizes the distance between the cars, keeping it as close to zero
as possible. This is not the case for cost function J2, since the absolute distance
increases over the complete time horizon. Besides that, comparing Figures 6.2a and
6.2c, we can conclude that for cost function J2 the input is substantially smaller
over the complete horizon than when cost function J1 is considered.

Scenario 2, close following distance. In this scenario, the cars start with a
rather large distance between them and with the same constant velocity. We have
designed a controller for the follower car such that it drives towards the leader
car and remains close to it for several time steps. This can be written using STL
as φ = ♢[0,10]□[0,3]|y| ≤ 2. After obtaining data vdata, we have considered initial
trajectory vini = (uini,yini) with uini = {1.2224, 0, 0} and yini = {2.12, 2.45, 2.45},
and obtained the results in Figure 6.3. Here, the initial trajectory is highlighted by
the gray area. We see that the specification is satisfied for both cost functions since
the output is between −2 and 2 for at least 3 time steps within the time frame

168 Chapter 6. Direct data-driven control with STL

(a) Input utat time steps t. (b) Output yt at time steps t.

(c) Input ut at time steps t. (d) Output yt at time steps t.

Figure 6.3: Results of Scenario 2 of the car platoon problem for cost function
J1(u0,y0) = ∥y[0,L]∥, displayed in panels (a), (b) and for cost function J2(u0,y0) =
∥u[0,L]∥, displayed in panels (c), (d).

[0, 10]. Besides that, we see that the influence of the cost function is similar to the
first scenario. For this scenario, we observed an average computation time of 4.22
seconds, with a standard deviation of 0.17 seconds and a memory usage of 5.7 MB.

6.6b Temperature control in a building

As a second case study, we have considered controlling the temperature inside
a building based on the model in Haghighi (2013), where the continuous-time
thermodynamics of the multi-room building are approximated with an analogous
model of an electric circuit. Details about the model can be found in Haghighi (2013)
and Raman et al. (2014). After performing a time-discretization (zero-order hold),
with a sampling time of 30 minutes, we have obtained the following data-generating
system with the corresponding matrices defined in the appendix of this chapter.

xt+1 = A2xt +
[
B2 Bd

] [
ut
dt

]
yt = C2xt.

(6.16)

The model as in Haghighi (2013) and Raman et al. (2014) has an additional
disturbance term Bddt, which we included as a known time-varying term. Note
that the analytic form of the data-generating system (6.16) is only used to generate
a data sequence vdata with a length of 1050.
The goal of the controller is to keep the temperature of a room, given by yt =
Tt,room above a certain time-varying comfort level Tt,comf whenever the room is

6.7. Discussion on the results 169

Figure 6.4: Room temperature (in degrees Celsius) with respect to the time of
the day of the temperature control case study. The output Troom is given in blue
and the comfort level combined with the occupancy is given in red.

occupied occ = 1 while minimizing the input. We have considered a time horizon of
L+ 1 = 48 (corresponding to 24 hours). The STL specification is given as φtemp =
□[0,L+1]occ =⇒ y > Tt,comf and the cost function is equal to J(u0,y0) = ∥u0∥.
We have obtained data vdata, and initialized with vini = (uini,yini) with uini and
yini equal to respectively 43.65 and 20 for 5 time steps. After converting from
degrees Fahrenheit to degrees Celsius, we have obtained the results as shown in
Figure 6.4. Here, the blue line is the observed output yt = Tt,room and the red
line is the threshold value for the temperature. This is obtained by combining the
occupancy with the comfort level, that is Tt,ref = occt ∗(Tt,comf), with occt = 1 if the
room is occupied and 0 otherwise. In Figure 6.4, we can see that the specification
φtemp is satisfied, since Tt,room ≥ Tt,ref. For this case study, we observed an average
computation time of 26.99 seconds, with a standard deviation of 7.9 seconds and a
memory usage of 81.1 MB.

6.7 Discussion on the results

This chapter is a first step towards direct data-driven control with temporal logic
specifications. In this section, we describe our vision on multiple possible extensions.
These extensions will allow this theory to eventually become applicable to realistic
systems.
Extension to longer time horizons. The approach in this chapter is currently
limited to finite-time horizon specifications, however, an extension to infinite-time
horizon is feasible. In this case, one can assume some repeating behavior and adjust
the trajectory length L to the length of the repeated behavior. More specifically,
an infinite trajectory can be viewed as a finite trajectory followed by a loop, hence
assuming periodic continuation of a trajectory. In that case, we can satisfy infinite-
time properties. Similar approaches already exist in the literature on data-driven
methods, such as the multi-shooting method (Ou et al. 2022) to extend the length
of the finite trajectory that you can represent with your data. An alternative is to
extend this approach in a receding horizon sense. In that case, by showing recursive
feasibility, we can handle infinite horizon properties as well.

170 Chapter 6. Direct data-driven control with STL

Beyond signal temporal logic specifications. Besides signal temporal logic,
there exist multiple temporal logic languages to describe the desired behavior of
a system. A very common one is Linear Temporal Logic (LTL). Writing LTL
specification into MILP constraints has already been developed through bounded
model checking in Schuppan et al. (2006) and is extended to infinite-time properties
in Wolff et al. (2014). In the latter, they make use of the assumption that the
trajectory is eventually periodic. The approach in this chapter could be extended
to such specifications in the future as well.
Beyond Linear Systems. The behavioral theory and the Fundamental Lemma
have been extended to the field of Linear Parameter-Varying (LPV) systems (Verhoek
et al. 2021b) and their control (Verhoek et al. 2021a). Since the LPV framework
has the potential to represent nonlinear and time-varying systems (Tóth 2010), and
direct data-driven control approaches are currently being developed (Verhoek et al.
2022), the approach in this chapter could be extended to such systems in the future
as well.
Extensions to noisy data. In this work, we considered data that is noise free.
In recent work, on data-driven control for LTI systems, methodologies have been
developed to cope with noisy data (Berberich et al. 2020a; Pan et al. 2022a), including
developments of a stochastic Fundamental Lemma. Applying these techniques can
push this line for data-driven control subject to temporal logic properties further
and to more realistic settings. This is an interesting, but challenging topic for future
research.
Extension to stochastic systems. In this work, we focused on deterministic
systems, however, as discussed in Chapter 1 of this thesis, safety-critical systems are
best modeled by stochastic systems. In contrast to noisy data, where a noise signal
influences the output of the system, for stochastic systems a stochastic disturbance
influences the state dynamics of the system. An extension of the direct data-driven
technique within the behavioral framework towards stochastic systems is ongoing
work and results are emerging in literature (Pan et al. 2022a; Pan et al. 2022b;
Faulwasser et al. 2023). Hence, we believe this methodology shows promise toward
the extension to stochastic systems making this approach more applicable to realistic
settings as well.

6.8 Conclusion

In this chapter, we have developed a direct data-driven controller synthesis method
for linear time-invariant systems subject to a temporal logic specification, which
does not require an explicit modeling step. We build upon the promising results of
the behavioral framework and the Fundamental Lemma, which allows us to obtain
a characterization of the system, after collecting a single sequence of input-output
data from it. By exploiting existing results on rewriting signal temporal logic
specifications to MILP constraints, we can efficiently solve an optimization problem
to automatically synthesize a control policy that ensures that the specifications
are satisfied during closed-loop operation of the system. We have analyzed the
soundness and completeness of our algorithm and applied it to multiple benchmark

6.A. Data-generating systems 171

simulation examples. The main benefit of this method is that it only requires
input-output data of the system and no exact knowledge of the structure of the
system itself. We have elaborated on our vision for future work and showed that
extensions of this method are very promising considering its application to realistic
systems.

Appendix

6.A Data-generating systems

To generate the data required for the case studies, we used the following matrices
for the car platoon dynamics.

A1 =

1 −0.3 0.3
0 1 0
0 0 1

 , B1 =

−0.03
1
0

 , C1 =
[
1 0 0

]
.

We used the following matrices for the system describing the temperature in a
building.

A2 =


0.9233 0.00135 0.0009377 0.002662 0.03775

0.0009377 0.9606 0.0004754 0.00135 0.01928
0.0009377 0.0006846 0.9604 0.00135 0.01928
0.001849 0.00135 0.0009377 0.9241 0.03775
0.07636 0.05617 0.039 0.11 0.7142

 ,

B2 =


3.1194e−4
1.5815e−4
1.5815e−4
3.1194e−4

0.0131

 ,
C2 =

[
1 0 0 0 0 0 0

]
,

and

Bd =


−8.0390e−6 0.0340 1.9696e−5 3.2720e−5 0.0014 0 0
−4.0756e−6 1.1479e−5 0.0173 1.6530e−5 0.0230 0 0
−4.0756e−6 1.1479e−5 0.0173 1.6530e−5 0.0007 0 0
−8.0390e−6 2.2722e−5 1.9696e−5 0.0340 0.0014 0 0
−3.3691e−4 0.0014 0.0011 0.0021 0.0568 0 0

 .

7
Conclusions and future research

directions

In this chapter, we provide conclusions on this thesis and discuss future research
directions. We re-iterate on the objective to improve the reliability of safety-
critical systems by giving guarantees on their behavior. We do this by reflecting
on the research questions, and by providing conclusions and the main results
described in this thesis. After a short recap of the general objective, we
summarize the main contributions of each chapter and discuss their results.
Next, we take a step back and envision the most important research directions
for the future.

7.1 Conclusions

To cope with the increasing level of intelligence in autonomous systems and their
interaction with people, there is a growing need to achieve a high level of reliability
in their operation, usage, and performance. This is especially the case for safety-
critical systems, where malfunctions have disastrous consequences. In this thesis, we
have worked towards achieving a higher level of reliability that cannot be achieved
through (extensive) scenario testing. To this end, we have explored the area of
formal methods to automatically synthesize controllers subject to temporal logic
specifications.

The main focus of this thesis has been to explicitly take uncertainty into account,
while maintaining the guarantees obtained through formal methods. More specif-
ically, as formulated in the research question, we have set the goal to manage
uncertainty when automatically synthesizing controllers subject to temporal logic
requirements. We have identified two main sources of uncertainty:

174 Chapter 7. Conclusions and future research directions

1. The stochastic influence on the state dynamics, which is usually caused by
uncertain environments, such as the weather or behavioral, medical, biological
or cognitive characteristics of people.

2. Model uncertainty, such as parametric uncertainty, measurement noise, and
unmodeled dynamical features. This type of uncertainty is particularly relevant
when obtaining a model.

In the same fashion, we have split this thesis into two parts. In Part I, we have
focused on the first type of uncertainty by considering stochastic models. In Part
II, we have focused on model uncertainty by both extending some of the theory
in Part I and by giving an initial data-driven approach for unknown deterministic
systems. We have disregarded measurement noise in this thesis.

7.1a Coupling-based framework for stochastic systems

A well-known approach to automatically synthesize controllers for continuous-state
stochastic systems is through a finite-state approximate model, called an abstraction.
For such techniques, it is crucial to accurately quantify the similarity between the
original (continuous-state) model and its (finite-state) abstraction. In Chapter 2,
we have developed a general framework that makes it possible to reason about,
and efficiently compute this similarity relation that yields an explicit quantification
of accuracy of the abstraction by designing a coupling between the two stochastic
models.
We have done this in a complex setting with respect to both the considered models
and specifications. More specifically, we have focused on stochastic models without
imposing restrictions on the variance of the stochastic disturbance. Besides that,
we made sure that our approach is suitable for specifications with an infinite-time
horizon by computing a fixed point. By doing so, we have solved the first subquestion,
that is How to automatically synthesize controllers for stochastic systems influenced
by an unbounded disturbance, such that it provably satisfies specifications over
infinite-time horizons, and accurately compute this satisfaction probability?
The main conclusions of Chapter 2 can be summarized as follows:

• We have developed the concept of a coupling compensator to align general
continuous-state stochastic models with their abstraction (e.g. an approxi-
mation that can be finite-state or reduced-order). It allows for models with
probability measures of possibly unbounded support and specifications with
an infinite-time horizon.

• To facilitate an accurate computation of the lower bound on the satisfaction
probability, we have connected the coupling compensator to simulation rela-
tions that quantify the similarity between the two stochastic models through
the deviations in outputs and in transition probability.

• We have explicitly worked out this coupling-based concept for linear stochastic
systems subject to disturbances with unbounded support. This has led (in
Theorem 2.1, Chapter 2) to an explicit and computable upper bound for
approximate simulation relations through controlled invariant sets.

7.1. Conclusions 175

• We have developed a generalization of this framework to piecewise-affine
abstractions for more general nonlinear stochastic systems. This has led to an
explicit quantification of the similarity between a nonlinear stochastic model
and its piecewise-affine abstraction in Theorem 2.4 of Chapter 2.

• We have illustrated the theory with multiple examples, showing computability
and feasibility of the theoretical results.

Discussion. The results of Chapter 2 do not imply that control synthesis for
stochastic systems is now fully completed. There is still room for improvement,
even in this specific setting. Although the theoretical part of Chapter 2 functions
as a strong mathematical foundation, the approach on its own is not suitable for
large-scale systems with a high complexity, due to the required space discretization.
We expect that this can be achieved by building upon the developed theory. Since
this chapter provides a general framework that simplifies reasoning about and
computation of the similarity quantification, it is very suitable for extensions, as
done in, for example, Chapters 4 and 5.
Further improvements with respect to the computational implementation are also
possible. The implementation is currently based on simulation relations with an
ellipsoidal shape, while it is more general to consider polytopes or zonotopes. It is
expected that such an extension gives more accurate results, while possibly also
improving the computation time.
Additionally, the theory is set up in a general fashion, but in the implementation, we
consider systems with an additive disturbance generated by a distribution with an
unbounded support. In general, such models are very difficult to tackle in automatic
control synthesis subject to temporal logic requirements, and many methods give a
trivial lower bound on the satisfaction probability. As part of future work, it would
be interesting to see the impact of our approach on models with multiplicative noise
and/or disturbances coming from a distribution with a bounded support.
Finally, the approach for nonlinear systems could be improved significantly. Our
approach based on a piecewise-affine abstraction adds a lot of computational
complexity, computation time, and memory usage. So, developing a computationally
more efficient approach specifically for nonlinear systems is an interesting topic for
future work. One possible first step is learning the piecewise-affine abstraction in
an efficient manner using neural networks, as introduced in Abate et al. (2023).

7.1b Efficient software tool

Besides developing theoretical results it is crucial to develop software tools that
are applicable to multiple case studies. Initially, software is often used as an
implementation of the theory to verify its correctness, to see if there are gaps
in the theory, and to evaluate its impact. However, when software is written in
a general way, it can achieve even more. It can among others be used by other
researchers to continue the development, to compare several methods to each other,
or to motivate people to go into this research direction. In Chapter 3, we have
developed a MATLAB toolbox, called SySCoRe, that based on the theory in Chapter
2, synthesizes controllers for stochastic continuous-state systems to satisfy temporal

176 Chapter 7. Conclusions and future research directions

logic specifications. The toolbox is structured into several steps to make it easy for
users to alter specific parts. Those steps are illustrated in Figure 7.1.

Model M

Abstract model M̂ Abstract controller Ĉ

Specification ϕ

Automaton Aϕ

Controller C

2 5

1

3

4

6

Figure 7.1: Illustration of the different steps that can be performed by SySCoRe.

Discussion. SySCoRe is at an early stage of development, so there is a lot of work
ahead to keep up with other existing tools. Currently, the main limitation is the
large amount of tuning that is required to get good results. To make it easier for
users, an automatically tuned version where the user only has to input the problem
parameters is desired.

7.1c A versatile approach through multiple layers

In Chapter 4, we have increased the accuracy of our approach by extending the
method from Chapter 2 to allow for switching between different pairs of deviation
bounds. Here, we constructed multiple layers, each with its own simulation relation
and corresponding deviation pair. We refer to this as a multi-layered approach
with homogeneous layers. In Chapter 2, we have used a simulation relation that
quantifies the similarity between the original model and its finite-state abstraction,
through two deviation bounds; the deviation in output and in probability. When
quantifying the similarity between the two models, decreasing one of the deviation
bounds leads to an increase in the other one. Hence, there is a clear trade-off
between the two deviation bounds. Furthermore, we noticed that the accuracy of
the lower bound on the satisfaction probability strongly depends on the choice of
deviation bounds.

As formulated in the third research question How to improve the computational
efficiency and scalability of provably correct control synthesis methods for stochastic
systems, while maintaining accurate lower bounds on the satisfaction probability?,
we are also interested in improving the computational efficiency and scalability

7.1. Conclusions 177

of such methods. In Chapter 2 and 3, we have been focusing on discretization-
based techniques, but when it comes to efficiency and scalability, discretization-free
techniques are more promising. More specifically, discretization-free approaches
are generally fast and efficient, but the underlying method limits the achievable
performance. On the other hand, for discretization-based approaches, the achievable
performance increases with the available memory and computation time. Therefore,
in Chapter 4, we have also extended the multi-layered methodology to allow for
switching between layers with discretization-free models and discretization-based
models. We refer to this as a multi-layered approach with heterogeneous layers.

The main conclusions of Chapter 4 can be summarized as follows:

• We have motivated the idea behind a multi-layered approach with homogeneous
and heterogeneous layers, and explained why this improves the computational
efficiency and scalability of provably correct control synthesis while maintaining
accuracy.

• We have made a connection between the dynamic programming operators
and the switching between layers. This has led to the implementation of a
multi-layered DP approach that assesses multiple value functions (one per
layer) and takes into account the different deviation pairs while maintaining
the probability of satisfying specifications over infinite-time horizons. On
the computational side, we have developed an approach for approximating
the optimal strategy for switching between homogeneous layers through a
surrogate model (Algorithm 3 in Chapter 4) that is computationally attractive.

• To maintain the lower bound on the satisfaction probability computed on the
abstract model with multiple layers, we have developed a control refinement
approach that yields a robust controller for the original model.

• We have explicitly worked out the multi-layered approach in a linear setting
leading to an explicit quantification of approximate simulation relations (stated
in Theorem 4.1).

• We have motivated the importance of including a discretization-free layer
for an efficient and scalable approach and described what it should look like,
such that it can be connected to the discretization-based layers. We have
explicitly defined when switching between heterogeneous layers is allowed
and made a connection between the dynamic programming operators and the
switching between layers. This led to the implementation of a heterogeneous
DP approach that combines multiple value functions and directly determines
when to switch between layers while maintaining the probability of satisfying
specifications over infinite-time horizons.

• We have illustrated the theory with multiple examples, showing computability
and feasibility of the theoretical results.

Discussion. The developed theory should be followed with the development of a
toolbox that implements the concepts in this chapter and that allows for further
extension including an advanced method in the discretization-free layer and a
complex case study showing the full potential of this approach. This is something
we plan to do for a paper that is currently in preparation.

178 Chapter 7. Conclusions and future research directions

7.1d Stochastic models with explicit parametric uncertainty

In the second part of this thesis, we have considered an additional type of uncertainty,
namely model uncertainty. We have expanded the theory of Chapter 2 to models
with explicit parametric uncertainty. To this end, we used two main steps. First,
we obtained a credible set for the unknown parameterization from data by using
Bayesian linear regression. Next, we defined a sub-simulation relation based on
concepts from Chapter 2 to quantify the similarity between the original model
and the nominal model in the credible set. By refining the control in a suitable
manner, we obtained a controller that is independent of the unknown parameter
and is robust against parametric uncertainty. Thus, we have given an answer to the
question: After obtaining a stochastic model with explicit parametric uncertainty
from data, how to synthesize provably correct controllers that are robust against
parametric uncertainty?.
The main conclusions of Chapter 5 can be summarized as follows:

• Based on a given data set and a specified confidence level, we have defined the
concept of a credible set that with a certain confidence contains the true but
unknown parameters of the parameterized system. We did this such that it
allows a connection to correct-by-design control synthesis and gave an explicit
characterization of this credible set.

• To tackle parametric uncertainty, we have defined a sub-probability coupling
and sub-simulation relation that is required to quantify the similarity between
a parameterized system and its abstraction. We connected those concepts
(and most of the concepts in Chapter 5) to the original coupling and simulation
relation from Chapter 2.

• We have developed a (clever) interplay between state mappings and interface
functions to infer a control refinement procedure for parameterized systems.
In this context, we defined conditions for a valid control refinement that led
to Theorem 5.2, where we conclude that a valid control refinement always
exists if there is a sub-simulation relation between the parameterized system
and its abstraction.

• We have shown that the transitivity property holds for the sub-simulation
relation (Theorem 5.3), which is required to connect this approach to finite-
state abstract models and to compute a provably correct controller.

• For nonlinear systems, we have explicitly derived expressions for the deviation
bounds of the sub-simulation relation, as in Theorem 5.4.

• We have illustrated the theory with two examples; a linear model and a
nonlinear model, showing computability and feasibility of the theoretical
results.

Discussion. The current implementation could be conservative for different types
of model uncertainty, future work is on the development of improved algorithms
that can deal with this.
Besides that, for this method, we require input-state data of the system. However,
in practice, you often obtain input-output data from the system instead. It would

7.1. Conclusions 179

therefore be interesting to adjust this method such that it can handle input-output
data. By doing so, an extension to noisy data might also be feasible.

7.1e Model-free approach for unknown systems

In Chapter 6, we have given an initial data-driven approach to obtain a provably
correct controller without using an explicit model. By doing so, we have prevented
modeling errors to influence the controller and rely solely on input-output data.
Instead of using a model, we used a data-driven characterization of the system,
which we used to synthesize a controller using mixed-integer linear programming.
We took a step back and considered deterministic systems instead of stochastic
systems, but envision possible extensions for the future.
The main conclusions of Chapter 6 can be summarized as follows:

• We have developed a direct data-driven approach for an unknown system that
is assumed to be linear time-invariant. Here, the controller synthesis problem
amounts to developing a controller directly from data, that (i) minimizes a cost
function on input-output variables, while (ii) achieving an STL specification.

• On the computational side, we have shown that this problem is solvable as a
mixed-integer linear problem (MILP), provided that conditions (as defined in
Chapter 6) on the length of the data sequence are satisfied.

• We have proven that the MILP algorithm developed for direct data-driven con-
trol design is both sound and complete as specified in Theorems 6.1 and 6.2.

• We have illustrated the theory with multiple examples, showing computability
and feasibility of the theoretical results.

Discussion. Developing direct data-driven methods is a promising direction in
which less tuning is required and there are still a lot of open subjects to research.
The main direction for future research is the extension to stochastic systems and
noisy output measurements. More details are given in the chapter itself.

180 Chapter 7. Conclusions and future research directions

7.2 Future research directions

The area of automatic control synthesis with temporal logic requirements is moving
fast and a lot of developments are happening, however, the step to apply them to
realistic situations is big. We envision seven main directions to push the development
further that we consider vital to achieving the goal of reliable behavior of safety-
critical systems.

a. Generalization
b. Nonlinear systems
c. Partially observable systems
d. Data-driven approaches
e. Network of systems
f. Scalability
g. Computational methods and tooling

Each of these directions is discussed in more detail next.

7.2a Generalization

Generalization is a broad term, where we distinguish between methods and tools
that should be generally applicable to different model structures and specifications,
as well as a general platform to compare the different methods and tools.
There are a lot of methods and tools within the area of automatic control synthesis,
however, most of them are only applicable to a specific situation, hence they are
either limited with respect to the model structure or the specification. What is
missing is a method and tool that can do it all, or as we do in Chapter 4, a method
that combines different approaches. Similarly, a tool that based on the model and
specification selects the best tool to use, would bring great benefits to this research
area.
Within research, we notice the growing importance of comparing different methods
and tools to each other. However, due to the large number of model structures,
modeling techniques, and languages to describe specifications, comparing methods
and their computability is very difficult. Especially, since the developed methods
and tools are often focusing on a specific model structure and specification language.
To push the development further, a general platform to compare methods and
tools is necessary. This is also the reason the ARCH-COMP (Applied veRification
for Continuous and Hybrid systems COMPetition) has been initiated. Within
this friendly competition, researchers from different areas develop benchmarks to
which they apply their tools and compare the results. However, the same issues as
mentioned before are occurring within ARCH. The benchmarks are pretty much
tailored to what a specific tool needs, hence lacking generality.
To assist researchers in developing methods and tools that are generally applicable,
a platform that allows them to easily compare different methods and tools would
be beneficial.

7.2. Future research directions 181

7.2b Nonlinear systems

In this thesis, we have developed a theory that is applicable to both linear and
(classes of) nonlinear systems. However, the implementation for nonlinear systems
requires additional research. This is especially the case for the development of
efficient computational methods that require small computation time and memory
usage when automatically synthesizing controllers for nonlinear systems. Since
many realistic systems behave in a nonlinear fashion, this development is crucial. In
the previous section, we already mentioned the usage of neural networks that can be
directly used in combination with the implementation discussed in Chapter 2. As an
alternative, we can consider the linear parameter varying (LPV) framework. This
framework embeds the nonlinear system dynamics in an easier-to-work-with model
structure and performs well in guaranteeing stability and performance (Koelewijn
2023). The concept of the coupling compensator introduced in Chapter 2 enables
the development of an efficient implementation for nonlinear systems through the
LPV framework.

7.2c Partially observable systems

Extensions towards partially observable systems, such as systems influenced by
measurement noise, are crucial for automatic control synthesis methods to succeed.
For partially observable systems, a different simulation relation is necessary. More
specifically, the simulation relations should be extended from the state space
to relations over probability distributions of the state spaces. Combining such
a simulation relation with Kalman filters or belief spaces might be suitable for
partially observable systems that are influenced by measurement noise. However,
this is still a challenging topic to tackle. The main challenge is due to the fact
that the labeling function is defined over the outputs of a system. When there is
uncertainty about the outputs, e.g., due to measurement noise, this directly affects
the labels and, therefore, also the deterministic finite-state automaton and the
complete control synthesis. Even though there exists theoretical research on this
topic (Ding et al. 2013; Lesser and Oishi 2016; Badings et al. 2021), there is a lack
of methods that are computationally efficient while not being restricted to safety
specifications.

Neural networks for an uncertain environment. In this thesis, we consider
the (static) environment, i.e. the labels of the outputs, to be known. However, in
practice, one has to consider an unknown, uncertain, or changing environment. One
way to alleviate this issue is by using data. For example, in the signal processing
domain one can train neural networks to recognize and classify objects in the
environment. This research allows one to not only perform the classification but
also attach a confidence to their observation (that is a probability). By comparing
data to the trained neural network, one can distinguish between (moving or parked)
cars, (moving or parked) bicycles, trees, people, animals, and so on. By building
upon Chapters 2 and 5, we can now make the steps towards this additional type of
uncertainty.

182 Chapter 7. Conclusions and future research directions

7.2d Data-driven approaches

Behavioral framework. In Chapter 6, we have discussed an approach with a lot
of potential, since it is model-free and requires only a single sequence of input-output
data. Its extension towards stochastic systems with noisy data is very challenging
and at an early stage of development. We consider direct data-driven approaches as
very valuable and, therefore, this topic is worth exploring. Details about possible
extensions of Chapter 6 are given in the chapter itself.
Learning in real-time. An interesting topic related to the data-driven research
direction is learning in real time. Hence, instead of only designing a controller
beforehand, we can update it based on the data that we acquire while performing the
tasks. Such methods require an efficient computation time with small memory usage,
which is one of the major challenges in this research area. Learning in real-time can
be used on different levels concerning the uncertainty of a model, such as completely
unknown dynamics, an unknown parameterization, or an unknown disturbance
distribution. We can also use it to tackle uncertainty about the environment as
discussed in Section 7.2c.

7.2e Network of systems

Besides that, it is interesting to look into networks of systems. On the one hand, we
can model the environment as a system and consider the interconnection between
a system and its environment as a network, or we consider several systems that
perform tasks and communicate with each other through signals. This constitutes a
networked system. The latter is a research area that is often considered in research
(Lavaei et al. 2019; Lavaei et al. 2020c; Qi et al. 2023). The former is less covered
in research.
Abstraction of the environment. As an example of a networked model, one
may consider incorporating the environment into a model and describe the way it
interacts with the model. An abstracted model can, for example, be obtained by
abstracting the environment separate from abstracting the model. For example,
when an autonomous vehicle wants to overtake, it is enough to roughly estimate
the relative velocity of the vehicle in front. Instead of estimating its dynamics (e.g.
velocity and acceleration) exactly it seems sufficient to decide among the three states
whether the vehicle is driving slower, at the same speed or faster than the controlled
system. By using such an abstraction of the environment, we might be able to
quickly make decisions, while maintaining a high satisfaction probability. The main
challenge here is to define the interaction between a system and its environment and
how to give guarantees for a network consisting of a system and an environment
(or even multiple environments).

7.2f Scalability

Realistic systems are often complex, behave in a nonlinear fashion, and require
models with a state space of a high dimensional order. In this thesis, we presented

7.2. Future research directions 183

methods and tools that push the envelope in scalability and computational efficiency
of stochastic control synthesis. In Chapter 2, we show how to reduce the dimension
of a system through model-order reduction techniques, which helps with scalability
issues. In Chapter 4, we combine discretization-based methods with discretization-
free methods, which have less issues with scalability. This is a promising direction
in solving the scalability issue but requires more research. Furthermore, a thorough
analysis of the scalability of the methods developed in this thesis is necessary to
tackle it in an efficient manner.
In order to achieve applicability to realistic systems, we need to develop methods
that can handle high-dimensional models, hence scalability has to be a main focus
during development. Obviously this goes hand in hand with the development of
scalable computational tools, as described next.

7.2g Computational methods and tooling

To apply automatic control synthesis approaches to realistic systems, we need
computational methods and tools that are efficient with respect to computation
time and memory usage. With our MATLAB toolbox SySCoRe (Chapter 3 of this
thesis), we contribute to the tooling need of automatic control synthesis.
The improvement of existing tools, their extensions to higher-order systems including
for example stochastic state transitions and noisy data, and the development of
new tools is crucial for the adoption of automatic control synthesis by industry.

Bibliography

Abate, A., Blom, H., Cauchi, N., Delicaris, J., Hartmanns, A., Khaled, M., Lavaei,
A., Pilch, C., Remke, A., Schupp, S., et al. (2020). ARCH-COMP20 Category
Report: Stochastic Models. In Proceedings of 7th International Workshop on
Applied Verification of Continuous and Hybrid Systems (ARCH 2020). Vol. 74.
EasyChair, p. 76–106.

Abate, A., Prandini, M., Lygeros, J., and Sastry, S. (2008). Probabilistic reachability
and safety for controlled discrete time stochastic hybrid systems. Automatica,
44(11):2724–2734.

Abate, A., Blom, H., Bouissou, M., Cauchi, N., Chraibi, H., Delicaris, J., Haesaert,
S., Hartmanns, A., Khaled, M., Lavaei, A., et al. (2021). ARCH-COMP21 Cate-
gory Report: Stochastic Models. In Proceedings of 8th International Workshop on
Applied Verification of Continuous and Hybrid Systems, (ARCH 2021). Vol. 80.
EasyChair, p. 55–89.

Abate, A., Blom, H., Cauchi, N., Haesaert, S., Hartmanns, A., Lesser, K., Oishi,
M. M. M. K., Sivaramakrishnan, V., Soudjani, S. E. Z., Vasile, C. I., et al.
(2018). ARCH-COMP18 Category Report: Stochastic Models. In Proceedings of
5th International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH 2018). Vol. 54. EasyChair, p. 71–103.

Abate, A., Blom, H., Delicaris, J., Haesaert, S., Hartmanns, A., Huijgevoort, B. van,
Lavaei, A., Ma, H., Niehage, M., Remke, A., et al. (2022). ARCH-COMP22
Category Report: Stochastic Models. In Proceedings of 9th International Work-
shop on Applied Verification of Continuous and Hybrid Systems, (ARCH 2022).
Vol. 90. EasyChair, p. 113–141.

Abate, A., Edwards, A., Giacobbe, M., Punchihewa, H., and Roy, D. (2023).
Quantitative verification with neural networks for probabilistic programs and
stochastic systems. arXiv preprint.

Abrial, J.-R. (1996). The B-book. Vol. 1. 6. Cambridge university press Cambridge.

Adams, R. A. and Essex, C. (2009). Calculus: a complete course. 7th ed. Vol. 4.
Pearson Addison Wesley.

Aksaray, D., Jones, A., Kong, Z., Schwager, M., and Belta, C. (2016). Q-learning
for robust satisfaction of signal temporal logic specifications. In Proceedings of

185

55th Conference on Decision and Control (CDC). IEEE, p. 6565–6570.

Allen, E. J., Allen, L. J., Arciniega, A., and Greenwood, P. E. (2008). Construction
of equivalent stochastic differential equation models. Stochastic analysis and
applications, 26(2):274–297.

Althoff, M., Stursberg, O., and Buss, M. (2010). Computing reachable sets of hybrid
systems using a combination of zonotopes and polytopes. Nonlinear analysis:
hybrid systems, 4(2):233–249.

Alur, R. (2015). Principles of cyber-physical systems. MIT press.

Anand, M., Lavaei, A., and Zamani, M. (2021). Compositional Synthesis of
Control Barrier Certificates for Networks of Stochastic Systems against ω-Regular
Specifications. arXiv preprint.

Anand, M., Lavaei, A., and Zamani, M. (2022). From small-gain theory to com-
positional construction of barrier certificates for large-scale stochastic systems.
IEEE Transactions on Automatic Control, 67(10):5638–5645.

ApS, M. (2019). Mosek optimization toolbox for matlab. User’s Guide and Reference
Manual, Version, 4.

Asarin, E., Dang, T., and Girard, A. (2007). Hybridization methods for the analysis
of nonlinear systems. Acta Informatica, 43(7):451–476.

Axelrod, C. W. (2013). Managing the risks of cyber-physical systems. In 2013
IEEE Long Island Systems, Applications and Technology Conference (LISAT).
IEEE, p. 1–6.

Badings, T. S., Jansen, N., Poonawala, H. A., and Stoelinga, M. (2021). Filter-
Based Abstractions for Safe Planning of Partially Observable Dynamical Systems.
arXiv preprint.

Badings, T. S., Romao, L., Abate, A., and Jansen, N. (2023). Probabilities are
not enough: Formal controller synthesis for stochastic dynamical models with
epistemic uncertainty. In Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 37. (12), p. 14701–14710.

Baier, C. and Katoen, J. P. (2008). Principles of model checking. MIT press.

Banerjee, S. S., Jha, S., Cyriac, J., Kalbarczyk, Z. T., and Iyer, R. K. (2018). Hands
off the wheel in autonomous vehicles?: A systems perspective on over a million
miles of field data. In 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, p. 586–597.

Belitskii, G. R. and Lyubich Y. I. (1988). Matrix norms and their applications.
Birkhäuser Verlag.

Belta, C., Yordanov, B., and Gol, E. A. (2017). Formal methods for discrete-time
dynamical systems. Vol. 15. Springer.

Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., and Pappas, G. J.
(2007). Symbolic planning and control of robot motion [grand challenges of
robotics]. IEEE Robotics & Automation Magazine, 14(1):61–70.

186

Belta, C. and Sadraddini, S. (2019). Formal methods for control synthesis: An
optimization perspective. Annual Review of Control, Robotics, and Autonomous
Systems, 2:115–140.

Berberich, J. and Allgöwer, F. (2020). A trajectory-based framework for data-driven
system analysis and control. In Proceedings of 2020 European Control Conference
(ECC). IEEE, p. 1365–1370.

Berberich, J., Koch, A., Scherer, C. W., and Allgöwer, F. (2020a). Robust data-
driven state-feedback design. In Proceedings of 2020 American Control Conference
(ACC). IEEE, p. 1532–1538.

Berberich, J., Köhler, J., Müller, M. A., and Allgöwer, F. (2020b). Data-driven
model predictive control with stability and robustness guarantees. IEEE Trans-
actions on Automatic Control, 66(4):1702–1717.

Berry, G. (2008). Synchronous design and verification of critical embedded systems
using SCADE and Esterel. Lecture Notes in Computer Science, 4916:2–2.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag. isbn: 0387310738.

Bisoffi, A. and Dimarogonas, D. V. (2018). A hybrid barrier certificate approach
to satisfy linear temporal logic specifications. In Proceedings of 2018 Annual
American Control Conference (ACC). IEEE, p. 634–639.

Blanchini, F. and Miani, S. (2008). Set-theoretic methods in control. Springer.

Blute, R., Desharnais, J., Edalat, A., and Panangaden, P. (1997). Bisimulation
for labelled Markov processes. Proceedings of 12th Annual IEEE Symposium on
Logic in Computer Science:149–158.

Bogachev, V. I. (2007). Measure theory. Springer Science & Business Media.

Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., and Schilling, C. (2019).
JuliaReach: a toolbox for set-based reachability. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control, p.
39–44.

Bombara, G., Vasile, C.-I., Penedo, F., Yasuoka, H., and Belta, C. (2016). A decision
tree approach to data classification using signal temporal logic. In Proceedings of
the 19th International Conference on Hybrid Systems: Computation and Control
(HSCC), p. 1–10.

Bowen, J. P. and Hinchey, M. G. (2005). Ten commandments revisited: a ten-year
perspective on the industrial application of formal methods. In Proceedings of
the 10th international workshop on formal methods for industrial critical systems,
p. 8–16.

Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. (1994). Linear matrix
inequalities in system and control theory. SIAM.

Cámara, J., Girard, A., and Gössler, G. (2011a). Safety controller synthesis
for switched systems using multi-scale symbolic models. In Proceedings of the

187

50th IEEE Conference on Decision and Control (CDC) and European Control
Conference (ECC). IEEE, p. 520–525.

Cámara, J., Girard, A., and Gössler, G. (2011b). Synthesis of switching controllers
using approximately bisimilar multiscale abstractions. In Proceedings of the 14th
international conference on Hybrid Systems: Computation and Control (HSCC),
p. 191–200.

Cauchi, N. and Abate, A. (2018). Benchmarks for cyber-physical systems: A
modular model library for building automation systems. IFAC-PapersOnLine,
51(16):49–54.

Cauchi, N. and Abate, A. (2019). StocHy-automated verification and synthesis of
stochastic processes. Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control (HSCC):258–259.

Cauchi, N., Laurenti, L., Lahijanian, M., Abate, A., Kwiatkowska, M., and Cardelli,
L. (2019). Efficiency through uncertainty: scalable formal synthesis for stochastic
hybrid systems. In Proceedings of the 22nd international conference on Hybrid
Systems: Computation and Control (HSCC), p. 240–251.

Chatterjee, K. and Doyen, L. (2016). Perfect-information stochastic games with
generalized mean-payoff objectives. In Proceedings of the ACM/IEEE Symposium
on Logic in Computer Science, p. 247–256.

Chatterjee, K. and Henzinger, T. A. (2012). A survey of stochastic ω-regular games.
Journal of Computer and System Sciences, 78(2):394–413.

Chew, V. (1966). Confidence, prediction, and tolerance regions for the multivariate
normal distribution. Journal of the American Statistical Association, 61(315):605–
617.

Cohen, M. H., Belta, C., and Tron, R. (2022). Robust control barrier functions
for nonlinear control systems with uncertainty: A duality-based approach. In
Proceedings of the 61st IEEE Conference on Decision and Control (CDC). IEEE,
p. 174–179.

Coulson, J., Lygeros, J., and Dörfler, F. (2019). Data-enabled predictive control:
In the shallows of the DeePC. In Proceedings of 2019 18th European Control
Conference (ECC). IEEE, p. 307–312.

De Giacomo, G. and Vardi, M. Y. (2013). Linear temporal logic and linear dynamic
logic on finite traces. In Proceedings of the 23rd international joint conference on
Artificial Intelligence (IJCAI). Association for Computing Machinery, p. 854–860.

De Persis, C. and Tesi, P. (2019). Formulas for data-driven control: Stabilization,
optimality, and robustness. IEEE Transactions on Automatic Control, 65(3):909–
924.

Desharnais, J., Gupta, V., Jagadeesan, R., and Panangaden, P. (2003). Approxi-
mating labelled Markov processes. Information and Computation, 184(1):160–
200.

Desharnais, J., Gupta, V., Jagadeesan, R., and Panangaden, P. (2004). Metrics for

188

labelled Markov processes. Theoretical Computer Science, 318(3):323–354.

Deshmukh, J. V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., and Seshia, S. A.
(2017). Robust online monitoring of signal temporal logic. Formal Methods in
System Design, 51:5–30.

Devonport, A., Saoud, A., and Arcak, M. (2021). Symbolic abstractions from data:
A PAC learning approach. In Proceedings of 60th IEEE Conference on Decision
and Control (CDC). IEEE, p. 599–604.

Dijkstra, E. W. et al. (1970). Notes on structured programming.

Ding, J., Abate, A., and Tomlin, C. (2013). Optimal control of partially observable
discrete time stochastic hybrid systems for safety specifications. In Proceedings
of 2013 American Control Conference. IEEE, p. 6231–6236.

Dutreix, M., Huh, J., and Coogan, S. (2022). Abstraction-based synthesis for
stochastic systems with omega-regular objectives. Nonlinear Analysis: Hybrid
Systems, 45:101204.

Engelaar, M. H. W., Haesaert, S., and Lazar, M. (2023). Stochastic Model Predictive
Control with Dynamic Chance Constraints. arXiv preprint.

Faulwasser, T., Ou, R., Pan, G., Schmitz, P., and Worthmann, K. (2023). Behavioral
theory for stochastic systems? A data-driven journey from Willems to Wiener
and back again. Annual Reviews in Control.

Gastin, P. and Oddoux, D. (2001). Fast LTL to Büchi automata translation. In
International Conference on Computer Aided Verification. Springer, p. 53–65.

Ghose, A. (2000). Formal methods for requirements engineering. In Proceedings
International Symposium on Multimedia Software Engineering. IEEE, p. 13–13.

Girard, A. and Gössler, G. (2020). Safety synthesis for incrementally stable switched
systems using discretization-free multi-resolution abstractions. Acta Informatica,
57(1):245–269.

Girard, A. and Pappas, G. J. (2009). Hierarchical control system design using
approximate simulation. Automatica, 45(2):566–571.

Girard, A. (2012). Controller synthesis for safety and reachability via approximate
bisimulation. Automatica, 48(5):947–953.

Girard, A. and Pappas, G. J. (2007). Approximation metrics for discrete and
continuous systems. IEEE Transactions on Automatic Control, 52(5):782–798.

Girard, A. and Pappas, G. J. (2011). Approximate bisimulation: A bridge between
computer science and control theory. European Journal of Control, 17(5-6):568–
578.

Gottlieb, S. and Ketcheson, D. I. (2016). Time discretization techniques. Handbook
of Numerical Analysis. Vol. 17. Elsevier, p. 549–583.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual. url:
https://www.gurobi.com.

189

https://www.gurobi.com

Haesaert, S., Cauchi, N., and Abate, A. (2017a). Certified policy synthesis for
general Markov decision processes: An application in building automation systems.
Performance Evaluation, 117:75–103.

Haesaert, S., Soudjani, S. E. Z., and Abate, A. (2017b). Verification of general
Markov decision processes by approximate similarity relations and policy refine-
ment. SIAM Journal on Control and Optimization, 55(4):2333–2367.

Haesaert, S., Nilsson, P., Vasile, C. I., Thakker, R., Agha-mohammadi, A.-a., Ames,
A. D., and Murray, R. M. (2018). Temporal Logic Control of POMDPs via
Label-based Stochastic Simulation Relations. IFAC-PapersOnLine, 51(16):271–
276.

Haesaert, S. and Soudjani, S. E. Z. (2020). Robust dynamic programming for
temporal logic control of stochastic systems. IEEE Transactions on Automatic
Control, 66(6):2496–2511.

Haesaert, S., Van den Hof, P. M., and Abate, A. (2017c). Data-driven and model-
based verification via Bayesian identification and reachability analysis. Automat-
ica, 79:115–126.

Haghighi, M. M. (2013). Controlling energy-efficient buildings in the context
of smart grid: A cyber physical system approach. PhD thesis. University of
California, Berkeley.

Hartmanns, A. and Hermanns, H. (2014). The Modest Toolset: An Integrated
Environment for Quantitative Modelling and Verification. In Proceedings of the
20th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). vol. 8413. Lecture Notes in Computer Science.
Springer, p. 593–598.

Henriksen, J. G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, R., Rauhe, T.,
and Sandholm, A. (1995). Mona: Monadic second-order logic in practice. In
First International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer, p. 89–110.

Herceg, M., Kvasnica, M., Jones, C. N., and Morari, M. (2013). Multi-parametric
toolbox 3.0. In Proceedings of 2013 IEEE European Control Conference (ECC).
http://control.ee.ethz.ch/~mpt. IEEE, p. 502–510.

Hinchey, M. G. and Bowen, J. P. (2012). Industrial-strength formal methods in
practice. Springer Science & Business Media.

Hinchey, M. G., Jackson, M., Cousot, P., Cook, B., Bowen, J. P., and Margaria, T.
(2008). Software engineering and formal methods. Communications of the ACM,
51(9):54–59.

Hollander, F. den (2012). Probability theory: The coupling method (lecture notes).
Mathematics Institute Leiden University, The Netherlands.

Hsu, K., Majumdar, R., Mallik, K., and Schmuck, A. (2018). Multi-layered
abstraction-based controller synthesis for continuous-time systems. In Proceedings
of the 21st international conference on Hybrid Systems: Computation and Control

190

http://control.ee.ethz.ch/~mpt

(HSCC), p. 120–129.

Huang, C., Chen, X., Lin, W., Yang, Z., and Li, X. (2017). Probabilistic safety veri-
fication of stochastic hybrid systems using barrier certificates. ACM Transactions
on Embedded Computing Systems, 16(5s):1–19.

Huijgevoort, B. C. van and Haesaert, S. (2022). Similarity quantification for linear
stochastic systems: A coupling compensator approach. Automatica, 144:110476.

Hüls, J., Niehaus, H., and Remke, A. (2020). Hpnmg: A C++ Tool for Model
Checking Hybrid Petri Nets with General Transitions. In 12th International
NASA Formal Methods Symposium, NFM 2020. Springer.

Jagtap, P., Soudjani, S. E. Z., and Zamani, M. (2020). Formal synthesis of stochastic
systems via control barrier certificates. IEEE Transactions on Automatic Control,
66(7):3097–3110.

Jaynes, E. T. and Kempthorne, O. (1976). Confidence intervals vs Bayesian inter-
vals. In Foundations of Probability Theory, Statistical Inference, and Statistical
Theories of Science. Springer, p. 175–257.

Johansson, M. (1999). Piecewise linear control systems. PhD thesis. Lund Institute
of Technology, Sweden.

Julius, A. A. and Pappas, G. J. (2009). Approximations of stochastic hybrid systems.
IEEE Transactions on Automatic Control, 54(6):1193–1203.

Kalagarla, K. C., Jain, R., and Nuzzo, P. (2021). Model-free reinforcement learning
for optimal control of Markov decision processes under signal temporal logic
specifications. In Proceedings of 60th IEEE Conference on Decision and Control
(CDC). IEEE, p. 2252–2257.

Kalra, N. and Paddock, S. M. (2016). Driving to safety: How many miles of driving
would it take to demonstrate autonomous vehicle reliability? Transportation
Research Part A: Policy and Practice, 94:182–193.

Kapoor, P., Balakrishnan, A., and Deshmukh, J. V. (2020). Model-based reinforce-
ment learning from signal temporal logic specifications. arXiv preprint.

Kariotoglou, N., Kamgarpour, M., Summers, T. H., and Lygeros, J. (2017). The lin-
ear programming approach to reach-avoid problems for Markov decision processes.
Journal of Artificial Intelligence Research, 60:263–285.

Kazemi, M., Majumdar, R., Salamati, M., Soudjani, S. E. Z., and Wooding, B.
(2022). Data-driven abstraction-based control synthesis. arXiv preprint.

Kazemi, M. and Soudjani, S. E. Z. (2020). Formal policy synthesis for continuous-
state systems via reinforcement learning. In Integrated Formal Methods: 16th
International Conference, IFM 2020. Springer, p. 3–21.

Keesman, K. J. (2011). System identification: An introduction. Vol. 2. Springer.

Knapp, A. W. (2016). Chapter VI. Measure Theory for Euclidean Space. Basic
Real Analysis. Project Euclid (distributor), p. 334–394.

191

Koch, A., Berberich, J., and Allgöwer, F. (2021). Provably robust verification of
dissipativity properties from data. IEEE Transactions on Automatic Control,
67(8):4248–4255.

Kochdumper, N., Gruber, F., Schürmann, B., Gaßmann, V., Klischat, M., and
Althoff, M. (2021). AROC: A toolbox for automated reachset optimal controller
synthesis. In Proceedings of the 24th International Conference on Hybrid Systems:
Computation and Control (HSCC), p. 1–6.

Koelewijn, P. J. W. (2023). Analysis and Control of Nonlinear Systems with
Stability and Performance Guarantees: A Linear Parameter-Varying Approach.

Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E., and Belta, C. (2014).
Temporal logic inference for classification and prediction from data. In Proceedings
of the 17th International Conference on Hybrid Systems: Computation and Control
(HSCC), p. 273–282.

Kreiker, J., Tarlecki, A., Vardi, M. Y., and Wilhelm, R. (2011). Modeling, analy-
sis, and verification-the formal methods manifesto 2010 (dagstuhl perspectives
workshop 10482). Dagstuhl Manifestos, 1(1).

Kupferman, O. and Vardi, M. Y. (2001). Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314.

Kushner, H. J. (1967). Stochastic stability and control. Tech. rep. Brown University
Providence RI.

Kwiatkowska, M., Norman, G., and Parker, D. (2002). PRISM: Probabilistic
symbolic model checker. In International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation. Springer, p. 200–204.

Kwiatkowska, M., Norman, G., and Parker, D. (2005). Probabilistic model check-
ing in practice: Case studies with PRISM. ACM SIGMETRICS Performance
Evaluation Review, 32(4):16–21.

Kwiatkowska, M., Norman, G., and Parker, D. (2007). Stochastic model checking.
Formal Methods for Performance Evaluation: 7th International School on Formal
Methods for the Design of Computer, Communication, and Software Systems,
SFM 2007 :220–270.

Labit, Y., Peaucelle, D., and Henrion, D. (2002). SeDuMi interface 1.02: a tool
for solving LMI problems with SeDuMi. In Proceedings of IEEE International
Symposium on Computer Aided Control System Design. IEEE, p. 272–277.

Lavaei, A., Khaled, M., Soudjani, S. E. Z., and Zamani, M. (2020a). AMYTISS:
Parallelized automated controller synthesis for large-scale stochastic systems.
International Conference on Computer Aided Verification:461–474.

Lavaei, A., Soudjani, S. E. Z., and Zamani, M. (2019). Compositional construction
of infinite abstractions for networks of stochastic control systems. Automatica,
107:125–137. issn: 0005-1098. doi: https://doi.org/10.1016/j.automatica.
2019.05.043.

Lavaei, A., Soudjani, S. E. Z., and Zamani, M. (2021). Compositional abstraction-

192

https://doi.org/https://doi.org/10.1016/j.automatica.2019.05.043
https://doi.org/https://doi.org/10.1016/j.automatica.2019.05.043

based synthesis of general MDPs via approximate probabilistic relations. Nonlin-
ear Analysis: Hybrid Systems, 39:100991.

Lavaei, A., Somenzi, F., Soudjani, S. E. Z., Trivedi, A., and Zamani, M. (2020b).
Formal controller synthesis for continuous-space MDPs via model-free reinforce-
ment learning. In Proceedings of 2020 ACM/IEEE 11th International Conference
on Cyber-Physical Systems (ICCPS). IEEE, p. 98–107.

Lavaei, A., Soudjani, S. E. Z., and Zamani, M. (2020c). Compositional (in) finite
abstractions for large-scale interconnected stochastic systems. IEEE Transactions
on Automatic Control, 65(12):5280–5295.

Lavaei, A., Soudjani, S. E. Z., Abate, A., and Zamani, M. (2022a). Automated
verification and synthesis of stochastic hybrid systems: A survey. Automatica,
146:110617.

Lavaei, A., Soudjani, S. E. Z., Frazzoli, E., and Zamani, M. (2022b). Constructing
MDP abstractions using data with formal guarantees. IEEE Control Systems
Letters, 7:460–465.

Lavaei, A., Soudjani, S. E. Z., Majumdar, R., and Zamani, M. (2017). Composi-
tional abstractions of interconnected discrete-time stochastic control systems. In
Proceedings of 56th Annual Conference on Decision and Control (CDC). IEEE, p.
3551–3556.

Lee, E. A. and Seshia, S. A. (2016). Introduction to embedded systems: A cyber-
physical systems approach. MIT Press.

Lesser, K. and Oishi, M. M. M. K. (2016). Approximate safety verification and
control of partially observable stochastic hybrid systems. IEEE Transactions on
Automatic Control, 62(1):81–96.

Lima, P. F., Pereira, G. C., Mårtensson, J., and Wahlberg, B. (2018). Experimental
validation of model predictive control stability for autonomous driving. Control
Engineering Practice, 81:244–255.

Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., and Shi, W. (2019). Edge computing
for autonomous driving: Opportunities and challenges. Proceedings of the IEEE,
107(8):1697–1716.

Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB.
In 2004 IEEE international conference on robotics and automation (IEEE Cat.
No. 04CH37508). IEEE, p. 284–289.

Lopez, B. T. and Slotine, J.-J. E. (2023). Unmatched control barrier functions:
Certainty equivalence adaptive safety. In Proceedings of 2023 American Control
Conference (ACC). IEEE, p. 3662–3668.

Lou, D. (Nov. 2021). Parameterized Model Order Reduction with Applications to
Thermal Systems. English. PhD thesis. Electrical Engineering. isbn: 978-90-
386-5402-7.

Majumdar, R., Mallik, K., Schmuck, A.-K., and Soudjani, S. E. Z. (2021). Sym-
bolic qualitative control for stochastic systems via finite parity games. IFAC-

193

PapersOnLine, 54(5):127–132.

Majumdar, R., Mallik, K., and Soudjani, S. E. Z. (2020). Symbolic Controller
Synthesis for Büchi Specifications on Stochastic Systems. In Proceedings of the
23rd International Conference on Hybrid Systems: Computation and Control
(HSCC). Association for Computing Machinery.

Makdesi, A., Girard, A., and Fribourg, L. (2021). Efficient data-driven abstraction
of monotone systems with disturbances. IFAC-PapersOnLine, 54(5):49–54.

Maler, O. and Nickovic, D. (2004). Monitoring temporal properties of continuous
signals. In International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems. Springer, p. 152–166.

Markovsky, I. and Dörfler, F. (2021). Behavioral systems theory in data-driven
analysis, signal processing, and control. Annual Reviews in Control, 52:42–64.

Markovsky, I. and Rapisarda, P. (2007). On the linear quadratic data-driven control.
In Proceedings of 2007 European Control Conference (ECC). IEEE, p. 5313–5318.

Markovsky, I. and Rapisarda, P. (2008). Data-driven simulation and control.
International Journal of Control, 81(12):1946–1959.

Mesbah, A. (2016). Stochastic model predictive control: An overview and perspec-
tives for future research. IEEE Control Systems Magazine, 36(6):30–44.

Nejati, A., Soudjani, S. E. Z., and Zamani, M. (2020). Compositional Construction
of Control Barrier Certificates for Large-Scale Stochastic Switched Systems. IEEE
Control Systems Letters, 4(4):845–850.

Nejati, A., Soudjani, S. E. Z., and Zamani, M. (2022). Compositional construc-
tion of control barrier functions for continuous-time stochastic hybrid systems.
Automatica, 145:110513.

Nilsson, P., Haesaert, S., Thakker, R., Otsu, K., Vasile, C.-I., Agha-Mohammadi,
A.-A., Murray, R. M., and Ames, A. D. (2018). Toward specification-guided
active mars exploration for cooperative robot teams.

Ou, R., Pan, G., and Faulwasser, T. (2022). Data-driven multiple shooting for
stochastic optimal control. IEEE Control Systems Letters, 7:313–318.

Pan, G., Ou, R., and Faulwasser, T. (2022a). On a stochastic fundamental lemma
and its use for data-driven optimal control. IEEE Transactions on Automatic
Control.

Pan, G., Ou, R., and Faulwasser, T. (2022b). Towards data-driven stochastic
predictive control. arXiv preprint.

Pannu, A. (2015). Artificial intelligence and its application in different areas.
Artificial Intelligence, 4(10):79–84.

Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P., Parrilo,
P., Peet, M. M., and Jagt, D. (2013). SOSTOOLS version 4.00 sum of squares
optimization toolbox for MATLAB. arXiv preprint.

194

Pappas, T., Laub, A., and Sandell, N. (1980). On the numerical solution of
the discrete-time algebraic Riccati equation. IEEE Transactions on Automatic
Control, 25(4):631–641.

Pearl, T. H. (2018). Hands on the wheel: a call for greater regulation of semi-
autonomous cars. Ind. LJ, 93:713.

Pilch, C. and Remke, A. (2017). HYPEG: Statistical Model Checking for hybrid
Petri nets: Tool Paper. In Proceedings of the 11th EAI International Conference
on Performance Evaluation Methodologies and Tools. VALUETOOLS 2017.
Venice, Italy: ACM, p. 186–191.

Pnueli, A. (1977). The Temporal Logic of programs. 18th Annual Symposium on
Foundations of Computer Science:46–57.

Qi, S., Zhang, Z., Haesaert, S., and Sun, Z. (2023). Automated Formation Control
Synthesis from Temporal Logic Specifications. arXiv preprint.

Rabin, M. O. and Scott, D. (1959). Finite automata and their decision problems.
IBM journal of research and development, 3(2):114–125.

Raman, V., Donzé, A., Maasoumy, M., Murray, R. M., Sangiovanni-Vincentelli, A.,
and Seshia, S. A. (2014). Model predictive control with signal temporal logic
specifications. In Proceedings of 53rd IEEE Conference on Decision and Control
(CDC). IEEE, p. 81–87.

Rausand, M. (2014). Reliability of safety-critical systems: theory and applications.
John Wiley & Sons.

Ren, W. and Dimarogonas, D. V. (2019). Dynamic Quantization based Symbolic
Abstractions for Nonlinear Control Systems. In Proceedings of the 58th IEEE
Conference on Decision and Control (CDC). IEEE, p. 4343–4348.

Rodrigues, L. and Boyd, S. (2005). Piecewise-affine state feedback for piecewise-
affine slab systems using convex optimization. Systems & Control Letters,
54(9):835–853.

Rodrigues, L. and How, J. P. (2003). Synthesis of piecewise-affine controllers for
stabilization of nonlinear systems. In Proceedings of the 42nd IEEE International
Conference on Decision and Control (CDC). vol. 3. IEEE, p. 2071–2076.

Romer, A., Berberich, J., Köhler, J., and Allgöwer, F. (2019). One-shot verification
of dissipativity properties from input–output data. IEEE Control Systems Letters,
3(3):709–714.

Rungger, M. and Zamani, M. (2016). SCOTS: A tool for the synthesis of symbolic
controllers. In Proceedings of the 19th international conference on Hybrid Systems:
Computation and Control (HSCC), p. 99–104.

Santoyo, C., Dutreix, M., and Coogan, S. (2021). A barrier function approach to
finite-time stochastic system verification and control. Automatica, 125:109439.

Sarhadi, P. and Yousefpour, S. (2015). State of the art: hardware in the loop
modeling and simulation with its applications in design, development and imple-

195

mentation of system and control software. International Journal of Dynamics
and Control, 3:470–479.

Schupp, S., Ábrahám, E., Chen, X., Ben Makhlouf, I., Frehse, G., Sankaranarayanan,
S., and Kowalewski, S. (2015). Current challenges in the verification of hybrid
systems. In Cyber Physical Systems. Design, Modeling, and Evaluation: 5th
International Workshop, CyPhy 2015. Springer, p. 8–24.

Schuppan, V., Latvala, T., Junttila, T., Heljanko, K., and Biere, A. (2006). Linear
encodings of bounded LTL model checking. Logical Methods in Computer Science,
2.

Schwarting, W., Alonso-Mora, J., and Rus, D. (2018). Planning and decision-making
for autonomous vehicles. Annual Review of Control, Robotics, and Autonomous
Systems, 1:187–210.

Segala, R. and Lynch, N. (1994). Probabilistic simulations for probabilistic processes.
International Conference on Concurrency Theory:481–496.

Sheng, S., Pakdamanian, E., Han, K., Kim, B., Tiwari, P., Kim, I., and Feng, L.
(2019). A case study of trust on autonomous driving. In Proceedings of 2019 IEEE
Intelligent Transportation Systems Conference (ITSC). IEEE, p. 4368–4373.

Shmarov, F. and Zuliani, P. (2015). ProbReach: Verified Probabilistic δ-Reachability
for Stochastic Hybrid Systems. In Proceedings of the 18th International Con-
ference on Hybrid Systems: Computation and Control (HSCC). ACM, p. 134–
139.

Skjetne, R. and Egeland, O. (2006). Hardware-in-the-loop testing of marine control
system.

Soudjani, S. E. Z. and Abate, A. (2013a). Adaptive and sequential gridding
procedures for the abstraction and verification of stochastic processes. SIAM
Journal on Applied Dynamical Systems, 12(2):921–956.

Soudjani, S. E. Z., Gevaerts, C., and Abate, A. (2015). FAUST2: Formal Abstrac-
tions of Uncountable-STate STochastic Processes. TACAS. LNCS:272–286.

Soudjani, S. E. Z. and Abate, A. (2013b). Probabilistic reach-avoid computation
for partially degenerate stochastic processes. IEEE Transactions on Automatic
Control, 59(2):528–534.

Steinhardt, J. and Tedrake, R. (2012). Finite-time regional verification of stochastic
non-linear systems. The International Journal of Robotics Research, 31(7):901–
923.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

Tabuada, P. (2008). An approximate simulation approach to symbolic control.
IEEE Transactions on Automatic Control, 53(6):1406–1418.

Tabuada, P. (2009). Verification and control of hybrid systems: a symbolic approach.
Springer Science & Business Media.

196

Tazaki, Y. and Imura, J.-i. (2010). Approximately bisimilar discrete abstractions
of nonlinear systems using variable-resolution quantizers. In Proceedings of the
2010 American Control Conference (ACC). IEEE, p. 1015–1020.

Thorpe, A. J., Ortiz, K. R., and Oishi, M. M. M. K. (2021). SReachTools Kernel
Module: Data-Driven Stochastic Reachability Using Hilbert Space Embeddings of
Distributions. In Proceedings of 60th IEEE Conference on Decision and Control
(CDC). IEEE, p. 5073–5079.

Tkachev, I. and Abate, A. (2014). On approximation metrics for linear temporal
model-checking of stochastic systems. Proceedings of the 17th international
conference on Hybrid systems: Computation and Control (HSCC):193–202.

Tkachev, I., Mereacre, A., Katoen, J. P., and Abate, A. (2013). Quantitative
automata-based controller synthesis for non-autonomous stochastic hybrid sys-
tems. In Proceedings of 16th international conference on Hybrid Systems: Com-
putation and Control (HSCC), p. 293–302.

Tkachev, I. and Abate, A. (2011). On infinite-horizon probabilistic properties and
stochastic bisimulation functions. In Proceedings of 50th IEEE Conference on
Decision and Control (CDC) and European Control Conference (ECC). IEEE, p.
526–531.

Tkachev, I., Mereacre, A., Katoen, J. P., and Abate, A. (2017). Quantitative
model-checking of controlled discrete-time Markov processes. Information and
Computation, 253:1–35.

Tóth, R. (2010). Modeling and identification of linear parameter-varying systems.
Vol. 403. Springer.

Van Den Hof, P. M. and Schrama, R. J. (1995). Identification and control–closed-
loop issues. Automatica, 31(12):1751–1770.

Van Waarde, H. J., Camlibel, M. K., Rapisarda, P., and Trentelman, H. L. (2022).
Data-driven dissipativity analysis: application of the matrix S-lemma. IEEE
Control Systems Magazine, 42(3):140–149.

Verhoek, C., Abbas, H. S., Tóth, R., and Haesaert, S. (2021a). Data-driven
predictive control for linear parameter-varying systems. IFAC-PapersOnLine,
54(8):101–108.

Verhoek, C., Tóth, R., and Abbas, H. S. (2022). Direct Data-Driven State-Feedback
Control of Linear Parameter-Varying Systems. Submitted to IEEE Transactions
on Automatic Control:arXiv preprint.

Verhoek, C., Tóth, R., Haesaert, S., and Koch, A. (2021b). Fundamental lemma for
data-driven analysis of linear parameter-varying systems. In Proceedings of the
60th IEEE Conference on Decision and Control (CDC). IEEE, p. 5040–5046.

Vinod, A., Gleason, J., and Oishi, M. M. K. (2019). SReachTools: A MATLAB
stochastic reachability toolbox. Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control (HSCC):33–38.

Wang, X., Nair, S., and Althoff, M. (2020). Falsification-based robust adversarial

197

reinforcement learning. In Proceedings of 19th IEEE International Conference
on Machine Learning and Applications (ICMLA). IEEE, p. 205–212.

Weisstein, E. W. (2014). Taylor’s Inequality. https://mathworld.wolfram.com/.

Wells, A. M., Lahijanian, M., Kavraki, L. E., and Vardi, M. Y. (2020). LTLf
synthesis on probabilistic systems. arXiv preprint.

Wieland, P. and Allgöwer, F. (2007). Constructive safety using control barrier
functions. IFAC Proceedings Volumes, 40(12):462–467.

Willems, J. C. and Polderman, J. W. (1997). Introduction to mathematical systems
theory: a behavioral approach. Vol. 26. Springer Science & Business Media.

Willems, J. C., Rapisarda, P., Markovsky, I., and De Moor, B. L. (2005). A note
on persistency of excitation. Systems & Control Letters, 54(4):325–329.

Wolff, E. M., Topcu, U., and Murray, R. M. (2014). Optimization-based control
of nonlinear systems with linear temporal logic specifications. In Proceedings of
International Conference on Robotics and Automation (ICRA), p. 5319–5325.

Wongpiromsarn, T., Topcu, U., and Lamperski, A. (2015). Automata theory meets
barrier certificates: Temporal logic verification of nonlinear systems. IEEE
Transactions on Automatic Control, 61(11):3344–3355.

Woodcock, J., Larsen, P. G., Bicarregui, J., and Fitzgerald, J. (2009). Formal
methods: Practice and experience. ACM computing surveys (CSUR), 41(4):1–36.

Yates, R. D. and Goodman, D. J. (1999). Probability and stochastic processes.
John Willey & Sons.

Zamani, M., Esfahani, P. M., Majumdar, R., Abate, A., and Lygeros, J. (2014). Sym-
bolic control of stochastic systems via approximately bisimilar finite abstractions.
IEEE Transactions on Automatic Control, 59(12):3135–3150.

Zhang, S., Deng, W., Zhao, Q., Sun, H., and Litkouhi, B. (2013). Dynamic trajectory
planning for vehicle autonomous driving. In 2013 IEEE International Conference
on Systems, Man, and Cybernetics. IEEE, p. 4161–4166.

Zhong, B., Lavaei, A., Zamani, M., and Caccamo, M. (2023a). Automata-based
controller synthesis for stochastic systems: A game framework via approximate
probabilistic relations. Automatica, 147:110696.

Zhong, B., Zamani, M., and Caccamo, M. (2023b). Formal Synthesis of Con-
trollers for Uncertain Linear Systems against ω-Regular Properties: A Set-based
Approach. IEEE Transactions on Automatic Control.

Zugaj, M. and Narkiewicz, J. (2009). Autopilot for reconfigurable flight control
system. Journal of Aerospace Engineering, 22(1):78–84.

198

https://mathworld.wolfram.com/

List of abbreviations

remove white space before first entry
AI Artificial Intelligence
CBC Control Barrier Certificate
cf. Compare (confer or conferatur)
DB Discretization-Based
DF Discretization-Free
DFA Deterministic Finite-state Automaton
DP Dynamic Programming
e.g. For example (exempli gratia)
et al. And others (et alia)
GB Gigabyte
GHz Gigahertz
gMDP General Markov Decision Process
i.e. That is (id est)
i.i.d Independently and Identically Distributed

(when describing a noise signal)
LMI Linear Matrix Inequality
LTL Linear Temporal Logic
LTI Linear Time Invariant
MB Megabyte
MDP Markov Decision Process
MHz Mehahertz
nD n-Dimensional
PWA Piecewise-Affine
s, sec Seconds
scLTL Syntactically co-safe Linear Temporal Logic
s.t. Subject To or Such That
SSR (ϵ, δ)−sub-simulation relation
STL Signal Temporal Logic

List of symbols

General
dY Metric on the space Y
1Q Indicator function for set Q
vert(P) Vertices of polytope P
B(X) Borel σ- algebra on space X
β Deviation caused by state mapping from

a continuous-state space to a finite-state space
D Data consisting of data points
(1− α) Confidence bound
δa(A) Dirac measure concentrated at a point a

Coupling compensators
W Coupling compensator as a probability measure that

couples the probability measures of the disturbances
(c.f. Def. 2.2)

W̄ Coupling compensator as a Borel measurable stochas-
tic kernel over the probability measures of distur-
bances

Wx Coupled probability measure that couples the proba-
bility measures of states

W̄x Coupled Borel measurable stochastic kernel over the
probability measures of states

Wx
sub Sub-probability coupling that couples the probability

measures of the states
W̄x
sub Sub-probability coupling as a Borel measurable

stochastic kernel over the probability measures of
states

Models and automata
M Mathematical model
M̂ Abstract model (finite-state)
M̂||M Composed model as in Def. 2.3
M(θ) Mathematical model with parametric uncertainty
M̃ Abstract model (nominal parameter)
Mw Abstract model (waypoint model)

Aϕ Deterministic finite-state automaton
with respect to specification ϕ

τA Transition function of automaton A

Control
µ Control policy
C Controller
Ĉ Abstract (finite-state) controller
C̃ Abstract (nominal) controller
M×C Controlled systems
Uv Interface function
Xv State mapping

Relations
R Measurable relation
R Multi-layered simulation relation
⪯δϵ (ϵ, δ)-stochastic simulation relation,

in its most basic form defined in Def. 2.4
⪯δ
ϵ (ϵ, δ)-sub-simulation relation

ϵ Output deviation or precision (scalar)
ϵ Output deviation or precision (matrix)
δ Probability deviation or confidence (scalar)
δ Probability deviation or confidence (matrix)
δ(·) Probability deviation or confidence (function)

Dynamic programming
V (·) Value function
T(·) Bellman operator
L(·) Truncation function

Probability and statistics
P Probability measure
P(X) Set of probability measures on the measurable space

(X,B(X))
P(M×C |= ϕ) Satisfaction probability, i.e. the probability that

the controlled systems satisfies the specification ϕ
cdf(·) Cumulative distribution function of a

one-dimensional standard Gaussian distribution
idf(·) Inverse distribution function of a

one-dimensional standard Gaussian distribution
N (µ,Σ) Gaussian distribution with mean µ and co-variance

matrix Σ
N (·|µ,Σ) Gaussian stochastic kernel with mean µ and

co-variance matrix Σ
χ(· | v) Chi-squared distribution with v degrees of freedom
t(· | ·) Probability kernel describing a state transition
E(·) Expected value operator

202

Spaces
X State space
(X,B(X)) Borel measurable space
U Input space
Y Output space
W Disturbance space
X̂, Û, Ŷ State, input, and output space of abstract model M̂
X̃, Ũ State, and input space of abstract model M̃
Xw State space of abstract model Mw

Signal, trajectories and variables
x State associated with state-space representation
u Input
w Disturbance
y Output
nx Dimension of variable x
x(t+ 1) = xt+1 = x+ Time update of signal x
x(0) = x0 initial state
x̂, û, ŵ, ŷ State, input, disturbance, and output associated

with abstract model M̂
x̃, ũ, w̃, ỹ State, input, disturbance, and output associated

with abstract model M̃
xw, yw State and output associated with abstract model Mw

q State of DFA A
x State trajectory
u Input trajectory
y Output trajectory
z Infinite sequence of signals zt starting at t = 0,

that is, z = {z0, z1, . . . }
zt Infinite sequence of signals zt, that is,

z = {zt, zt+1, . . . }
z[0,N] Finite sequence of signals zt, that is,

z[0,N] = {z0, z1, . . . , zN}
θ Vector consisting of the unknown parameters of

model M(θ)
θ∗ True parameters
θ̃ Estimated parameters

Set theory
x ∈ X Set membership, that is x belongs to X
⊆, (⊂) (strict) subset
A×B Cartesian product of sets A and B
A⊕B Minkowski sum of two sets A and B
A ∪B Union of two sets A and B⋃
iAi Union of a finite number of sets Ai

A ∩B Intersection of two sets A and B

203

∅ Empty set
R+ Set of positive real numbers
N Set of natural numbers (excluding zero)
Z Set of integers

Temporal logic
ϕ co-safe temporal logic specification
AP Set of atomic propositions
pi Atomic proposition in AP
2AP Alphabet corresponding to atomic propositions AP
π Letter (in the alphabet, that is π ∈ 2AP)
πππ Word (consists of letters)
L Labeling function assigning letters to outputs
¬ Negation
∧ And operator
∨ Or operator
⃝ Next operator
U Until operator
□ Always operator
♢ Eventually operator
true True

Linear algebra and calculus
In n-dimensional identity matrix
||x|| Two-norm
||x||D Weighted two-norm
|u| Absolute value of scalar u
x⊤ Transpose of x
A−1 Inverse of matrix A
det(A) Determinant of matrix A
A⊗B Kronecker product of matrices A and B
∇f(x) Gradient of function f(x)

Sets
R Set of real numbers
R+ Set of positive real numbers
N Set of natural numbers (excluding zero)
Z Set of integers
Θ Credible set (c.f. Def. 5.2)
E(x) Ellipsoidal set centered around x
T Time-axis in the behavioral framework

Behaviors
Σ Dynamical system
B Behavior of a dynamical system
B|A Behavior of a dynamical system restricted to a

specific subset A

204

General mathematics
min Minimum
max Maximum
arg Argument of
inf Infimum
sup Supremum
≥, (>) (strict) Inequality
≻, (⪰) Positive (semi-)definite
≺, (⪯) Negative (semi-) definite
∀ For all
=⇒ Implication
≡ Equivalence
:= Equal by definition
::= Recursively defined
≈ Approximate equality

205

Publiekssamenvatting

Automatische Synthese van Regelaars met
Temporele Logica Eisen

Stochastische, Onzekere, en Niet-Lineaire Systemen

De invloed die technische systemen hebben op het dagelijks leven is aan het groeien.
Ze spelen een steeds grotere rol, worden slimmer en nemen meer beslissingen zelf.
Hierdoor is ook de betrouwbaarheid van deze hightech systemen steeds belangrijker.
Dit geldt vooral voor systemen die in een situatie gebruikt worden waarbij de
veiligheid kritiek is. Bijvoorbeeld systemen die direct in contact komen met mensen.
In de praktijk is het niet mogelijk om ervoor te zorgen dat er nooit wat fout gaat,
maar we kunnen wel fouten zo veel mogelijk voorkomen. In deze thesis kijk ik naar het
verbeteren van de betrouwbaarheid van veiligheidskritische systemen door garanties
te geven op het gedrag. Ik maak hierbij gebruik van het onderzoeksgebied van
automatische, correct-door-ontwerp regelaar synthese voor systemen met een continu
toestandsruimte en ik ontwikkel formele methodes om regelaars te synthetiseren
waarvoor je kunt bewijzen dat het regelsysteem aan temporele logica eisen voldoet.
Als we kijken naar het gedrag van veiligheidskritische systemen, dan krijgen we te
maken met meerdere onzekerheden, zoals bijvoorbeeld een stochastische invloed
op de dynamica. Het is cruciaal om deze onzekerheden mee te nemen in het
automatisch synthetiseren van regelaars en op die manier de kans te berekenen dat
een veiligheidskritisch systeem gewenst gedrag vertoond. Indien de onzekerheden
genegeerd worden is het onmogelijk om accurate garanties te geven en blijft de
betrouwbaarheid van dit soort systemen te laag.
Om om te gaan met deze onzekerheden, ontwikkel ik een formele methode met
bijbehorend MATLAB programma voor stochastische systemen. Via deze methode
is het mogelijk om het verschil in gedrag van twee modellen te kwantificeren via
1) het verschil in de uitkomst/observaties en 2) het verschil in de probabilistische
transities. Deze methode zorgt zowel voor een efficiënte berekening, als een accurate
berekening van de kans op gewenst gedrag. Hierna breid ik deze formele methode
uit in twee richtingen. Eerst verbeter ik de schaalbaarheid en rekensnelheid van deze
methode door verschillende aanpakken te combineren. Hierdoor hoeven we alleen
een langzame, moeilijke, maar wel precieze berekening te doen waar nodig en kunnen
we een minder precieze, maar wel snelle en makkelijkere berekening gebruiken waar

mogelijk. In een internationaal samenwerkingsverband met Newcastle University
(Verenigd Koninkrijk), heb ik deze methode uitgebreid door modelonzekerheid mee
te nemen. We gaan dan uit van een stochastisch model waarvan de parameters
onbekend zijn. Door data van het systeem te gebruiken, kunnen we een schatting
maken van de verzameling waarin deze parameters zitten. Deze onzekerheid nemen
we vervolgens mee in het automatisch synthetiseren van onze regelaar en in de
berekening van de kans op gewenst gedrag. Daarna ga ik nog een stapje verder
door ervan uit te gaan dat ons gehele systeem onbekend is. In plaats van een model
te gebruiken, synthetiseer ik direct aan de hand van data een regelaar. Deze eerste
stap maak ik voor deterministische systemen en laat de stochastiek dus even buiten
beschouwing.
Concluderend, in mijn thesis ontwikkel ik formele methodes voor het automatisch
synthetiseren van regelaars waarbij verschillende onzekerheden mee worden genomen.
Als we deze methodes blijven verbeteren, dan kunnen we uiteindelijk garanties
geven op het gedrag van autonome systemen in veiligheidskritische omstandigheden.
Hierdoor maken we deze technologische ontwikkeling niet alleen mogelijk, maar ook
betrouwbaar.

208

Acknowledgement

My journey as a PhD student has been influenced by the people around me and I
will try to acknowledge and thank all of them for their presence and support.

Sofie, I like to think that we started this journey together, me as a PhD student and
you as a PhD supervisor for the first time. The beginning of the journey was a bit of
a struggle, but together we found a way to work together in a very efficient manner.
I am very grateful for how easily I could reach you and how quickly you came up
with (multiple) solutions to my problems. I admire your mathematical knowledge,
programming skills, and the way you can think multiple steps ahead. You helped
me with writing in a convincing manner and emphasizing the importance of my
research, for which I am very grateful. I particularly enjoyed setting up and teaching
(part of) the CPES course with you.

Next, I would like to thank Siep. You started supervising me during my internship
and my graduation project, and then you agreed to be the Promotor of my PhD
project. In total, I enjoyed your supervision for 6 years! You have the gift of
conveying your enthusiasm to others and I always felt inspired and motivated after
our meetings. I consider this as one of the most amazing characteristics that you
have. Next to, obviously, being an amazing mathematician with a broad knowledge
of control theory in general.

Besides having Sofie as my supervisor and Siep as my promotor, Sadegh also
supervised me for a couple of months. Furthermore, I worked closely with him and
his PhD student Oliver during the last couple of years of my PhD. Sadegh, you
are a talented and kind supervisor with an inspiring ability to explain the most
complicated things in an understandable manner. Thank you for the interesting
discussions we had during my PhD and for your involvement in my research that
led to this thesis.

I would also like to thank the members of my defense committee, Erika Ábrahám,
Dimos Dimarogonas, Michel Reniers, and Sadegh Soudjani. I would like to thank
all of you for reviewing my thesis and providing me with helpful suggestions.

Next, I would like to thank some people I have collaborated with over the years.
Chris, thank you for your insight while writing a paper together. Oliver, I am so
glad Sofie and Sadegh decided to put us together. You are a very kind person and
the fact that you never stop asking questions is an important characteristic of a

PhD student. Also, thanks to you and Ben my visit to Newcastle University was
very nice.
Next, I would like to thank everybody in the Control Systems group. Especially,
Feye, Mannes, Patrick, and Tom with whom I did multiple DISC courses. Lizan, I
really enjoyed helping out with the Mathematics II course together. Carlos and Ilja,
thanks for being amazing neighbors and always being open for a chat. Clarisse, you
have become a very close friend and I hope we will continue having our coffee/tea
and cake moments occasionally. I would also like to thank all the PhDs who
welcomed me back into the group after working from home for a very long time
due to the coronavirus pandemic and maternity leave. Besides that, I would like
to thank my colleagues from the FM4Control group. We started with very few
people, but have grown substantially over the years. I am grateful for our interesting
discussions and I was very happy to finally have other PhD students interested in
working with formal methods.
I would also like to thank my friends. Especially, Lisa and Niels. Lisa, thanks for
the relaxing walks and chats. Niels, you have been my friend since we joined the
board of e.t.s.v. Thor (study Association of Electrical Engineering) together, more
than 9 years ago and I am very glad that we both started our PhD journey in
2018. It was very refreshing to discuss the struggles and joys of doing a PhD while
enjoying a “chocomel”.
Lastly, I would like to thank my family and friends for always supporting me. Mum
and Dad, thank you for supporting me throughout my studies, for believing in me,
and for offering advice when life gets tough. Rob, I could not have done this without
you. My PhD has been a rollercoaster of emotions and you helped me through the
most difficult times. Thanks for helping me with (or completely doing parts of)
programming tasks, reviewing emails, practicing my presentations, and listening to
me complain about something. I love you. You and Hugo mean everything to me.

210

About the author

Birgit van Huijgevoort was born on 10 August 1994, in
Breda, The Netherlands. She completed high school in
2012 at the Cambreur College, Dongen. She received
her Bachelor’s degree in Automotive and her Master’s
degree in Systems and Control from the Eindhoven Uni-
versity of Technology, both Cum Laude, in 2016 and
2018 respectively.
During her Bachelor’s degree, she spent a year as Pres-
ident of the Study Association of Electrical Engineering,
Thor, and a year as chief of the electrical engineering
team at Team FAST. During her Master’s degree, she spent three months at Canter-
bury University, Christchurch, New Zealand, working on parameter tuning of snake
robots. For her Master’s thesis, she worked on the topic of structure-preserving dis-
cretization of port-Hamiltonian distributed parameter systems under the supervision
of Prof. Dr. Siep Weiland and Prof. Dr. Hans Zwart.
In 2018, she started her PhD project at the Control Systems group at the Eindhoven
University of Technology under the supervision of Dr. Ir. Sofie Haesaert and Prof.
Dr. Siep Wieland. The topic of this research was Formal methods for uncertain
cyber-physical systems. During her PhD project, she also followed graduate courses
at the Dutch Institute for Systems and Control (DISC) and received her DISC
certificate. In 2021, she and her husband, Rob Sanders, welcomed their son Hugo.

	Summary
	Contents
	1 Introduction
	1.1 Formal methods for control design
	1.2 Challenges
	1.2a Challenges due to model complexity
	1.2b Challenges due to the complexity of the specification
	1.2c Challenges due to model uncertainty

	1.3 Research questions
	1.3a Control of stochastic models
	1.3b Data-driven approaches

	1.4 Contributions and thesis outline

	I Control of stochastic models
	2 Quantified abstraction for stochastic systems
	2.1 Introduction
	2.2 Preliminaries
	2.3 Coupling compensator: Problem statement and approach
	2.3a Problem statement
	2.3b A coupling compensator approach

	2.4 Coupling compensator for finite abstractions
	2.4a A coupling compensator for linear stochastic systems
	2.4b A coupling compensator for model order reduction

	2.5 A piecewise-affine abstraction for nonlinear stochastic sytems
	2.5a Piecewise-affine abstraction
	2.5b Piecewise stochastic simulation relation

	2.6 Temporal logic control
	2.7 Results of the coupling compensator
	2.8 Conclusion
	2.A Implementation for PWA abstractions

	3 SySCoRe: Synthesis via Stochastic Coupling Relations
	3.1 Introduction
	3.2 Temporal logic control
	3.2a Problem parameters
	3.2b Stochastic coupling relations for control synthesis

	3.3 Toolbox overview
	3.3a Translating the specification
	3.3b Abstraction
	3.3c Similarity quantification
	3.3d Synthesizing a robust controller
	3.3e Control refinement
	3.3f Deployment

	3.4 Benchmarks
	3.4a Package delivery
	3.4b Van der Pol oscillator
	3.4c Building automation system
	3.4d Performance evaluation
	3.4e Comparison to existing tools

	3.5 Summary and extensions

	4 Specification-guided temporal logic control for stochastic systems: a multi-layered approach
	4.1 Introduction
	4.2 Problem formulation
	4.3 Multi-layered approach
	4.3a Standard approach
	4.3b Multi-layered approach

	4.4 Homogeneous layers with variable precision
	4.4a Multi-layered simulation relation
	4.4b Multi-layered dynamic programming
	4.4c Efficient implementation of multi-layered dynamic programming
	4.4d Control refinement
	4.4e Implementation of similarity quantification for LTI systems

	4.5 Heterogeneous layers
	4.5a Discretization-free layer
	4.5b Heterogeneous layers
	4.5c Heterogeneous dynamic programming

	4.6 Results
	4.6a Simple reach-avoid specification
	4.6b Complex reach-avoid specification
	4.6c Case study with heterogeneous layers

	4.7 Conclusion
	4.A Derivation for the case study in Section 4.6c

	II Data-driven approaches
	5 A Bayesian approach to temporal logic control of uncertain systems
	5.1 Introduction
	5.2 Preliminaries and problem statement
	5.2a Preliminaries
	5.2b Discrete-time uncertain stochastic systems and control policies
	5.2c Temporal logic specifications
	5.2d Problem statement

	5.3 Data-driven parameter estimation
	5.3a Parameter estimate
	5.3b Credible set

	5.4 Control refinement via sub-simulation relations
	5.4a Control refinement
	5.4b Valid control refinement and sub-simulation relations
	5.4c Temporal logic control with sub-simulation relations

	5.5 Simulation relations for nonlinear systems
	5.6 Case studies
	5.6a Linear system with complex specification
	5.6b Van der Pol Oscillator

	5.7 Discussion and conclusions
	5.A Proof of Theorem 5.4

	6 Direct data-driven control with signal temporal logic specifications
	6.1 Introduction
	6.2 Problem statement
	6.2a Notation
	6.2b Discrete-time dynamical systems
	6.2c Signal temporal logic specifications.
	6.2d Cost function
	6.2e Problem statement

	6.3 Data-driven characterization of the system
	6.4 Direct data-driven temporal logic control synthesis
	6.5 Soundness and completeness analysis
	6.5a Soundness
	6.5b Completeness

	6.6 Case studies
	6.6a Car platoon
	6.6b Temperature control in a building

	6.7 Discussion on the results
	6.8 Conclusion
	6.A Data-generating systems

	7 Conclusions and future research directions
	7.1 Conclusions
	7.1a Coupling-based framework for stochastic systems
	7.1b Efficient software tool
	7.1c A versatile approach through multiple layers
	7.1d Stochastic models with explicit parametric uncertainty
	7.1e Model-free approach for unknown systems

	7.2 Future research directions
	7.2a Generalization
	7.2b Nonlinear systems
	7.2c Partially observable systems
	7.2d Data-driven approaches
	7.2e Network of systems
	7.2f Scalability
	7.2g Computational methods and tooling

	Bibliography
	List of abbreviations
	List of symbols
	Publiekssamenvatting
	Acknowledgement
	About the author

