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Short abstract 
 
Accurate feedforward control is essential for achieving future performance specifications in mechatronic 
systems, including wafer stages and interventional X-rays. Feedforward control parametrizations based 
on physical models, such as mass, friction, or snap feedforward have seen many successful 
implementations in the high-tech industry. They are physically interpretable and can compensate most 
dynamics with a few parameters. However, the performance of these physical-model-based feedforward 
controllers is limited by hard-to-model nonlinear parasitic dynamics. 
 
To compensate these nonlinear parasitic dynamics, a feedforward framework is developed where a neural 
network component is added onto an existing physical model, creating a parallel physics-guided neural 
network (PGNN) feedforward structure. In this parallel structure, the neural network component can learn 
and subsequentially compensate hard-to-model parasitic dynamics not included in the physical model, 
increasing performance. Additionally, the neural network is regularized in such a way that it only learns 
and compensates dynamics that cannot already be captured by the physical model component. As a 
consequence, the physical model can be used as a baseline and has interpretable parameters, and the 
neural network only compensates deviations from the physical model, allowing for a neural network with 
fewer parameters and smaller outputs compared to a full neural network feedforward parametrization. 
The developed PGNN framework is validated in two use-cases in precision mechatronics. 
 
1) An ASML wafer stage: in an ASML wafer stage, more specifically, in its short-stroke, the contribution 
of each flexible mode to the system dynamics varies as a function of the position on the wafer, resulting 
in position-varying dynamics. The developed framework is able to learn and compensate these varying 
dynamics through a neural network snap gain, increasing tracking performance by a factor 5. 
 
2) A Philips interventional X-ray experimental setup: an interventional X-ray consists of three 
rotating axis coupled through cables and rolled-based guidance. The resulting position-varying friction 
characteristics and cable forces are hard-to-model, but are successfully learned from data by a PGNN 
feedforward controller, increasing the tracking performance by a factor 4.75 in a recent case-study [1]. 
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Figure 2: ASML wafer stage. Figure 1: Interventional X-ray.  
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