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a b s t r a c t 

Academic and pharmaceutical industry research are both key for progresses in the field of molecular machine 
learning. Despite common open research questions and long-term goals, the nature and scope of investigations 
typically differ between academia and industry. Herein, we highlight the opportunities that machine learning 
models offer to accelerate and improve compound selection. All parts of the model life cycle are discussed, 
including data preparation, model building, validation, and deployment. Main challenges in molecular machine 
learning as well as differences between academia and industry are highlighted. Furthermore, application aspects 
in the design-make-test-analyze cycle are discussed. We close with strategies that could improve collaboration 
between academic and industrial institutions and will advance the field even further. 
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. Introduction 

The predictions of bioactivity and physical properties are some of
he most important applications of machine learning (ML) and artificial
ntelligence (AI) in drug discovery. This field is broadly known as quan-
itative structure-activity and property relationships (QSAR, QSPR) and
s a necessary component of numerous drug discovery projects (for an
verview of QSAR and its history see Tyrchan et al. [1] ). Academia and
ndustry are both playing central roles in shaping the field of molecular
achine learning for drug discovery [2–4] . ML is used to make better
ecisions faster and to accelerate the design-make-test-analyze (DMTA)
ycle of novel molecular entities [5] . In pharmaceutical industry, models
re usually implemented in a result-oriented fashion to save resources
nd time, in the spirit of finding the most promising drug candidates or
 fail early and cheap ’ [6] . To drive decision-making, model reproducibil-
ty, confidence, and robustness are of utmost importance. Another key
spect is the democratization of models and data science practices to en-
ble scientists of different domains to work on a shared goal. Although
harmaceutical industry is becoming progressively more active in fun-
∗ Corresponding authors. 
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amental ML and AI research, the focus on the final model application
emains the central pillar. 

On the contrary, model development and proofs-of-concept are of-
en at the core of academic endeavors. In this case, the main goal is ad-
ancing current algorithms, generating knowledge on how to improve
he state-of-the-art, and expanding methods’ applicability to novel prob-
ems [7] . Academic studies typically focus on pushing the boundaries of
L in drug discovery, e.g., by borrowing inspiration from other fields

uch as natural language processing (NLP) [8] or geometric deep learn-
ng (DL) [9] . This is usually achieved using static data sets or existing
enchmarks (e.g., GuacaMol [10] , FS-Mol [11] , MoleculeNet [12] ), but
nly seldom via prospective experimental validation [7] . Projects are
lso influenced by the duration of a PhD thesis or postdoctoral work,
ausing rapid turnovers in methods, high competition, and, potentially,
state-of-the-art chasing’ [13] at the expense of true progress [14] . As it is
ell known, academia is more publication-oriented, as an effect of the

publish-or-perish’ culture [15] . 
Another important aspect is the training and education of young sci-

ntists. Dedicated ML/AI programs and departments [16] are expected
ine-1.schneider@novartis.com (N. Schneider) . 
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Fig. 2. Data set sizes (i.e., number of compounds) in ADME data sets used 
for modelling from in-house and public sources. Data are reported for bile 
salt export pump inhibition (BSEP.inh.) [23,27] , Caco-2 permeability efflux 
(Caco.2.efflux) [18,21,22,27] , CYP3A4 inhibition (CYP3A4.inh.) [21,27,28] , 
metabolic stability in human liver microsomes (hLM.CLint) [18,21,27] , hu- 
man plasma protein binding (hPPB) [18,21,27] , octanol/water distribu- 
tion coefficient (LogD) [18,22,25,27] , P-glycoprotein substrates (P.gp.efflux) 
[21,22,24,27] , and metabolic stability in rat liver microsomes (rLM.CLint) as- 
says [21,26,27] . For endpoints present in different sources, average data set size 
is shown, whereas error bars reported the minimum and maximum size values. 
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o complement the more traditional natural science education, and in-
rease the cheminformatics literacy of future generations [17] . This as-
ect holds promise to turn data science into a key skill of wet-lab sci-
ntists, to accelerate interdisciplinary science, and to further strengthen
ts role within and outside of academia in the future. 

In this perspective, we discuss diverse aspects important to ML mod-
ls in the area of small-molecule drug discovery, including model build-
ng and applications. We highlight the different challenges and oppor-
unities that researchers in industry and academia face, and potential
ynergies. Since the field of ML/AI is very broad, we focus on models
hat are trained on experimental data as opposed to calculated data,
lthough many aspects are common and transferable. The industry per-
pective mainly covers large pharmaceutical companies and not neces-
arily common practices in smaller biotech companies or start-ups. 

. Key steps of the model life cycle 

Realizing actionable predictive models in drug discovery can be sum-
arized as an iterative cycle of four different steps, as shown in Fig. 1 .

tep 1 covers data preparation ( Section 2.1 ), which requires understand-
ng the experimental data for reliable curation. Step 2 constitutes the
ctual model design and building process ( Section 2.2 ), including ar-
hitecture definition and hyperparameter tuning. Step 3 refers to per-
ormance validation of the model and is crucial for prospective model
sage ( Section 2.3 ). Finally, step 4 is the model deployment phase
 Section 2.4 ), where the model is made available to users. 

.1. Training data 

ML model performance heavily relies on the quality of the experi-
ental data used for training, including size ( how many datapoints are

n the data set? ), chemical and property space coverage ( how broad is

he chemical space covered and what is the dynamic range in the data set? ),
iversity ( how biased or clustered is the data set? ), and errors ( how noisy

s the data set? ). Public and proprietary data from pharmaceutical indus-
ry (called ‘in-house’ in the following) typically differ when it comes to
hese characteristics. 

Data availability in the public domain has dramatically increased
hanks to major databases such as ChEMBL [18,19] and PubChem
20] . However, those data sets are generally smaller than in-house data
ets from pharmaceutical industry. Fig. 2 summarizes the size of dif-
erent proprietary and public data sets utilized for modelling in re-
2 
earch studies [18,21–28] . Exemplified on these absorption, distribu-
ion, metabolism, and excretion (ADME) data sets, in-house data (Bayer,
ovartis, Merck, and Boehringer Ingelheim) always contained more
ompound measurements than public data sets ( Fig. 2 ). 

To increase data set size, public data are generally pooled from mul-
iple sources [29] ), which in turn increases heterogeneity. Merging data
ources implies major efforts and bears the risk of biases, redundan-
ies, and error accumulation [30] , and poses challenges both in aca-
emic and industrial settings. In industry, assay protocols are standard-
zed and typically include multiple measurements per compound, giving
Fig. 1. Overview of the model life cycle in 
molecular machine learning. Summarized are 
the key steps of predictive model building in 
drug discovery and considerations at different 
stages. 
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Fig. 3. Exemplary overview of model building in industry. First. the problem is defined and some prediction baselines are implemented. Here, different modelling 
strategies including featurization and ML algorithms should be tested. Previously, this was done by an expert using a limited number of combinations. Nowadays, 
AutoML implementations allow non-experts and expert users to execute a broader method screening and extensive hyperparameter optimization. Finally, the best 
model is selected and deployed. 
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l  
ise to more homogeneous and consistent data sets. However, bring-
ng diverse data sources together might also constitute a major effort
ue to legacy systems, change of protocols over time or different con-
entions in annotations (e.g. units or molecule identifiers). Given these
hallenges with experimental data, curation and homogenization are
rucial steps for successful ML applications [11] . Discussions with exper-
mentalists may help detecting outliers, properly combining data from
iverse sources, or defining other modelling aspects. Moreover, having
eplicates to analyze experimental variability and error across the mea-
urement range also provides information about the maximum accu-
acy that a ML model can achieve and facilitates interpretation of model
utputs [31,32] . 

Even though in-house data sets are typically larger than publicly
vailable ones, these are still heavily biased with respect to the vastness
f chemical space. Compound data do not represent a systematic screen
f the relevant chemical space but rather collections of clusters centered
round specific chemical series targeting given proteins. Thus, structural
iversity might be small even in large data sets since many compounds
ould share the same chemical scaffold. Such data clusters and intrinsic
iases highly impact model performance and may cause overly opti-
istic ML results even with robust validation techniques [33] . Among

thers, class imbalance or non-uniform property data distributions pose
onsiderable challenges for classification and regression models, respec-
ively [34] . For instance, for bioactivity predictions, the desired out-
ome typically constitutes the minority class in real-world applications
the situation may be opposite or less imbalanced for ADME data sets).
owever, public bioactivity data sets often suffer from a lack of ‘nega-

ive’ or ‘inactive’ data. For example, the ChEMBL database [18,19] con-
ains an unrealistic ratio of active to inactive compounds compared to
igh-throughput screens (HTS). In particular, 11% and 27% of actives
ere reported in Cáceres et al. [35] , Valsecchi et al. [36] , respectively.
evertheless, HTS hit rates typically range from 0.1 to 2% [37,38] . In
ontrast to HTS, project-specific data may have higher percentages of
ctives but typically still below public data sets. This lack of negative
ublic data can be addressed by adding putative negative examples or
ecoys selected according to different strategies [35,39–42] . Due to these
easons, public benchmarking data sets try to mimic but often do not
3 
epresent real-world data. To facilitate academic research and improve
ethod development, sharing in-house data (e.g., ADME properties of
o longer sensitive data) might be beneficial. A recent example is a data
et with 1162 PDE10A inhibitors, including binding affinities with time
tamps, 77 crystal structures, and docking poses, by Roche [43] . 

Another – not often discussed – aspect of public benchmarking sets is
hat they are sometimes not used for the applications they were intended
or. A prominent example are the DUD data sets [39] , which were origi-
ally developed to benchmark docking methods and are now frequently
sed for ligand-based ML models’ evaluation [44,45] . However, such
enchmarks may be trivial for some applications such as ligand-based
L-based activity predictions [40,46,47] . Hence, appropriate data set

election for model training and testing is crucial for model performance
ssessment, as discussed in Section 2.3 . 

.2. Model design and building 

Model design starts with the definition of the problem and prediction
ask (see Fig. 3 ) [48] . In industry, the intend is to use a model prospec-
ively for experiment selection, compound prioritization, or, more gen-
rally, assisting in drug design. Thus, users and practical applications
eed to be considered already during model development and evalua-
ion stages. This is a key difference compared to academia, where the
ocus is shifted more towards theory and method development (e.g.,
mplementing a model with improved performance with respect to pub-
ished algorithms or generating new strategies that can be used by oth-
rs in future applications). Typically, academia is pushing the scientific
rontier by developing new tools and improving understanding, while
ndustry is employing them to generate new molecules with desirable
roperties. Nevertheless, users should also be considered in academia,
.g., when sharing code, a software package, or ML model. In such cases,
he final model users are often not clearly defined and discussions with
hem prior to publication are uncommon or not possible. Therefore, user
xpectations, stable deployment, and future updates are less frequently
onsidered during model building. 

Supervised, semi-supervised or unsupervised techniques can be se-
ected based on the question at hand. Data set characteristics also
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nfluence the choice of a regression or classification model, for numer-
cal value and categorical predictions, respectively [49–51] . Thus, the
election of the modelling approach, ML algorithm (e.g. random forest,
eep neural networks), and molecular featurization (e.g. fingerprints,
alculated descriptors, graphs) is a critical step after problem definition
nd data curation [52–54] . Due to fast emerging AI technologies, the
se of novel algorithms and features is influenced by code availabil-
ty and data science expertise. In industry, the integration of new ML
ethodologies might fall behind evergreens like random forests, which
rovide comparable performance and easier interpretation for many ap-
lications. In contrast, given academia’s focus on innovation, sometimes
impler and well-performing models might be overlooked due to the
tate-of-the-art chasing. For that reason, defining strong and valid base-
ine models is key to detect whether simple models or decision rules are
ufficient to achieve similar performance or if more complex modelling
nd featurization methods are required. Baselines are equally crucial in
ndustry given the focus on robustness and reproducibility more than
ovelty and complexity [32,55–57] . 

During model building, investigating a variety of models and fea-
ures in a systematic way is complex and time-consuming but key for
he identification of the best model (in academia) and a useful model
in industry). While this is often part of academic investigations and
here is increasing demand for it from journals, there might be less time
llocated for hyperparameter tuning and model refinement in indus-
ry due to project pressure. New ML libraries, often provided by aca-
emic groups - such as AutoML [58] or Optuna [59] to enhance hy-
erparameter tuning, or DeepChem [60] /MoleculeNet [12] , Therapeu-
ic Data Common [61] and AutoSklearn [62] for model building and
enchmarking - can help to accelerate and democratize the benchmark-
ng process (see Fig. 3 ). Some of these tools provide also a collection
f open-source benchmark data sets including tasks such as lipophilic-
ty, toxicity (Tox21, ToxCast), or binding affinity (PDBBind) prediction
12] . 

The selection of the modelling approach is also influenced by the
vailable data set size and composition. For instance, large data sets are
ften available for some physicochemical and ADME properties that are
easured across discovery projects in industry. Models based on such
ata sets with broader chemical space coverage (often referred to as

global models’) usually generalize better [63] . For project-specific as-
ays, e.g., compound activity towards a protein target, less data is avail-
ble and is biased towards few chemical series. In this case, ‘local mod-
ls’ with a potentially narrower applicability domain are generated. Dis-
inction between global and local models becomes more difficult when
rained on public data due to diverse data sources and heterogeneity, as
iscussed in the previous section. 
t  

ig. 4. Exemplary model deployment procedure. Modern MLOps scheme where a 
egistration (reg.) date, the used training set, model owner, model version or featuri
oftware packages, tools or web services, can be created so that model clients can re
stimation on new data points. 

4 
.3. Performance evaluation 

Even though model validation is an essential step in academia and
ndustry, they focus on different aspects. Model generalizability can only
e estimated with a proper choice of data splitting procedures (i.e., train-
ng and test data selection) and metrics, and it is key to avoid overly
ptimistic or pessimistic results [64–69] . Random splits typically give
 too optimistic view of the prospective performance of a model [70–
2] , while time splits have emerged as a preferred approach in industry
o evaluate the prospective model performance [71] . Such evaluation
imics how a ML model will be used in practice, i.e. to predict com-
ounds that have not been synthesized or measured (new chemical mat-
er under exploration). Unfortunately, such temporal information is not
vailable in public data, preventing time splits in most academic set-
ings. Some of the data sets popular for academic benchmarks were dis-
ussed in Section 2.1 . Moreover, an increasing body of literature points
o the importance of assessing the model performance in the presence
f ‘structure-activity/property discontinuities’, such as non-additivity
73,74] and activity cliffs [75–77] . 

Before model deployment or after re-training, a minimum quality
riterion should be ensured. The selection of a superior model might
hereby differ depending on the considered performance metric. Thus,
sing multiple metrics [67] as well as ensuring that the metric fits to
he application [78] may be beneficial. For instance, a new ML method-
logy for bioactivity predictions could be evaluated and selected based
n balanced accuracy or area under the receiver operating characteris-
ic curve (ROC). However, if such ML model is subsequently applied for
irtual screening, only the top-ranked predictions are relevant. In this
ase, recall in the 1% of top-ranked compounds or enrichment would
e more informative. In industry, focus is put on the fact that models
re evaluated using the same metrics that the actual model users (i.e.,
roject teams) will check once the model is deployed [23,31] . 

Furthermore, often ML (especially DL) models are treated as black
oxes. To gain trust in the models, methods to better understand what
he model learned are required. Explainable AI [79–82] approaches –
ften researched in academics groups – are developed to shed light on
odel decisions [83] . Such investigations are valuable to better under-

tand what the model learned and to judge the robustness of ML models
84,85] , as well as to learn data-driven features that might be related to
 specific effect, e.g., toxicophores [86] . 

.4. Model deployment 

Figure 4 illustrates the last step of the model-life cycle, which is
he deployment of the trained ML model and includes several impor-
trained ML model is registered in a model store, including metadata such as 
zation employed, among others. A REST endpoint, facilitating integration into 
quest predictions. Model monitoring is also considered, including performance 
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ant tasks: model registration, documentation and guidelines, integra-
ion into existing tools and workflows, accessibility for non-data scien-
ists, model ownership and accountability, monitoring, and model main-
enance. In industry, deployment is necessary to make a model action-
ble in the drug discovery process. 

In the past, technical deployment often included setting up a server,
reating a web service, or hard-wiring the models to other tools. This
ertainly needs a special expertise, which may not be part of a data sci-
ntist profile, and implies high maintenance costs. Nowadays, with an
ncreasing importance of predictive models, cloud-based solutions with
ophisticated ML operation services (MLOps) implementations help to
ridge this gap. A current model deployment procedure is illustrated
n Fig. 4 . Usually, this includes model registration (into a model store
r database to include important metadata like registration date, train-
ng set, molecule standardization protocol, or model owner), technical
onitoring, and REST (Representational State Transfer) endpoints for

ach model, which facilitates maintenance and integration into other
oftware packages, tools, or web services. Model usage increases when
ntegrated in tools used daily by project teams, including non-data scien-
ists. Hence, easy accessibility helps democratizing the use of ML models
or decision-making. 

Computational approaches can become increasingly obscure in terms
f accountability and ownership [87–89] due to many data scientists
perating on the same pipeline, the inevitability of software bugs and
rrors, and the increasing use of ML algorithms that might elude full
uman understanding. Model builders are typically the owners and are
esponsible to create documentation (including information about train-
ng data, modelling approach, applicability domain estimates, and how
redictions are reported). The established monitoring protocol should
lso track the performance of global models in a local setting, to al-
ow project members to judge the reliability of the model data for their
urposes. Thus, model ownership and accountability inform the user
ommunity about responsibilities and facilitate expert support in case
f issues or questions. 

A non-negligible aspect for influencing decision-making in drug dis-
overy is the integration of these models into other design platforms ac-
essible to medicinal chemist teams. Continuous model advertisement
nd education also becomes essential to keep potential users informed
nd to increase adoption. The modelers or computational chemists con-
ected to a project, who are often involved in the decision-making, also
onstitute important training resource. 

Compared to industry, models in academia are less frequently de-
loyed and come with a shorter life span. Model maintenance and ac-
ountability is challenging due to shorter-term contracts (namely grad-
5 
ate students and postdocs). This might lead to premature obsolescence
nless detailed documentation and knowledge transfer is achieved be-
ore the model builder leaves the research group. Given the push of
AIR (findable, accessible, interoperable, and reusable) science (both
ata [90] and software [91] ) and the growing spirit of open-source de-
elopments, these potential issues can be mitigated. However, by de-
ault there is limited training in this area, and financial support to hire
oftware engineers in academic groups is largely absent. 

Free training workshops (e.g., MolSSi or Software Carpentries) and
aterial (e.g., TeachOpenCADD [92] , novel formats as the ’tutorial’ cat-

gory from the LiveCoMS journal) may help to narrow this gap, until
he funding/hiring situation changes in academic settings. In addition,
ibraries and tools are available to support research groups in main-
enance tasks (e.g., continuous integration), documentation (e.g., doc-
trings, read the docs) and readability (e.g. black or PEP8 style guide
or Python code). This increases code transparency and can contain ele-
ents of accountability. Platforms such as GitHub or GitLab allow users
besides version control – signalling potential issues and proposing so-

utions to bugs and bottlenecks. Input data or model sharing, which re-
uires more storage, can be achieved via open-repositories like Zenodo
93] . 

Finally, applications of the models with subsequent measurements
f experimental data are typically missing in academia, or can only
e realized through collaborations (see Section 4 ). Nevertheless, there
re several good examples of ML models developed in academia that
ave been made available long-term including updates, e.g., retro-
ynthesis prediction (ASKCOS [94] ), toxicity prediction (emoltox [95] ,
wissADME [96] , OCHEM [97] , FAME2 [98] ), structure-based anal-
sis (PlayMolecule [99] , OpenFold [100] ), or learned descriptors
CDDD [101] ). 

. Model application aspects 

In this section, important considerations during the application
hase will be discussed once the model life cycle (see Fig. 1 and
ections 2.1 –2.4 ) has been completed at least once. 

.1. Design-make-test-analyze (DMTA) cycle 

Looking at the DMTA cycle – often invoked in industry – predic-
ive models are used in all phases of drug design ( Fig. 5 ). Ideally, pro-
osed compounds with better predicted properties are more likely to be
ynthesized and prioritized than compounds outside the desired prop-
rty range. On small scale, the model influences individual decisions on
Fig. 5. Integration of design-make-test- 
analyze (DMTA) cycle with the key steps 
of the model life cycle, which include data 
preparation, model building, model valida- 
tion, and deployment. 
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Fig. 6. Scheme of an ML model with intuitive classification outputs and confi- 
dence estimation. A classification model can be developed to predict the prob- 
ability of a certain assay result, e.g. probability that a compound is insoluble. 
However, instead of providing the model’s probability to the user, a more intu- 
itive output can be generated. Exemplary ML model reporting ‘undesired’ (e.g. 
insoluble), ‘desired’ (e.g. soluble), and ‘inconclusive’ (high uncertainty) cate- 
gories. Adapted from Rodríguez-Pérez and Gerebtzoff [23] with permission from 

Artificial Intelligence in the Life Sciences . 
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Fig. 7. Effect of model re-training for the prediction of bile salt export pump 
inhibition. ( A ): Scheme of a ML set-up for a prospective validation (time split). 
Five models were trained with different time splits: Model 1 (75/25%, dark 
blue), model 2 (80/20%, orange), model 3 (85/15%, gray), model 4 (90/10%, 
yellow), and model 5 (95/5%, cyan). Test sets were divided into subsets corre- 
sponding to 5% of the data and are labeled with a letter (from A to E) according 
to the measurement date. Models were evaluated on their prospective test sets. 
( B ): Mean absolute error (MAE) values for the five models A–E on the test sets. 
Adapted from Rodríguez-Pérez and Gerebtzoff [23] with permission from Artifi- 

cial Intelligence in the Life Sciences . (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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hich compound to make next, whereas on large scale they can also be
sed for predicting complete virtual libraries to focus making and testing
owards the most promising compounds in wet-lab experiments. Models
re also used in the analysis phase for experimental selection. If enough
vidence for trusting the model - e.g. low error or high confidence val-
es - is present, experimental testing could be avoided and focus shifted
o testing other molecules predicted with low confidence [102] . Ulti-
ately, new experimental data and obtained knowledge is fed back to

he model in the re-building or re-training stages (see Section 2.2 ). 
In academia – unless executed in a collaborative effort (see Section 4 )

the complete DMTA cycle is rarely fully executed. Few examples exist
here at least one or two cycles were performed, mainly in the context
f active learning [103] . 

.2. Model outputs 

Reporting meaningful, intuitive, and stable model outputs is essen-
ial. The model output should have a clear interpretation for non-data
cientists. For instance, the output could be the probability of a given
utcome (e.g., desired solubility range) or direct prediction of the ex-
erimental value (e.g., solubility in μM units). In case of classification
odels, meaningful property thresholds should be considered such that
redictions enable a discrimination between ‘desirable’ and ‘undesir-
ble’ property ranges [23,31] . To define such thresholds and ranges,
iscussions with project teams and assay experts are of utmost impor-
ance. Interestingly, prediction reporting might also be different across
pplications. Numerical property predictions might be preferred for gen-
rative chemistry or library design applications, whereas compound pri-
ritization might be simplified by considering an ‘undesired’ category
31] . Fig. 6 shows an exemplary classification model with ‘undesired’,
desired’, and ‘inconclusive’ (uncertain) categories. A critical assessment
f models’ output is highly relevant and ideally should include the pre-
iction and an uncertainty estimate [104–106] . However, model appli-
ability and predictions’ uncertainty is challenging to assess and is an
ctive and key research topic, especially in academia [104–107] . It has
ecome increasingly crucial in industry to gain the trust of model users
nd improve decision-making based on ML [23] . 

.3. Monitoring and model re-training 

In industry, the performance of global models is generally evaluated
n data from ongoing projects. Performance can vary depending on how
any project compounds have been used for model training or whether

he chemical space of the project is covered by the global model. Since
rug discovery projects in industry constantly generate new data points,
here is a need of model re-training to ensure stable performance and
ontinuous increase of the applicability domain (see Sections 2.2 and
6 
.3 ). Exemplified for the prediction of bile salt export pump inhibitors
23] , Fig. 7 illustrates the effect of model re-training on prospective
erformance. Policies on model re-training should be agreed with the
ser community, e.g., frequency of re-training and strategies for tracing
redictions. Each company has its own policies. In some cases, model
pdates are automatically triggered when a given amount of new data
oints are available. Predictions for the same compounds might change
fter each model update, which might cause irritation within the user
ommunity who typically prefers consistent predictions over time. Fur-
hermore, prospective performance evaluation becomes difficult if all
ew data is used for training. A more conservative approach is to only
etrain models when the performance decreases over a period of time
nd across diverse projects. The monitoring protocol can help to identify
hen the predictive performance is decreasing and model re-training is

ustified. Such a strategy provides stable predictions and enables a better
nderstanding of current model quality by checking prospective predic-
ion performance. 

Importantly, an increasing usage of the models for experiment selec-
ion influences data generation and thus model re-training. For example,
sing a reliable solubility prediction model will lead to less insoluble
ompounds being made in the future; by this the label distribution in
he new training set will change and class imbalance will be reinforced.
his process is also known as feedback loops and can cause real chal-

enges for future versions of the model [108] ). Further development of
ethods for interpretation could help to improve models in the next

raining cycle [109] . 
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In academia, studies to identify the right model updating strategy
re of high interest. One example is the conformal prediction framework
110] , which adds a calibration step on top of the ML model to enable
onfidence estimation. Mitigating the effects of data drifts in chemical
oxicity data – between assays, over time, and from public to propri-
tary data – on ML performance was studied by assessing the conformal
redictor calibration in collaboration with industry partners [111–113] .
orger et al. [112,113] found that updating the calibration set only with

he newer data resulted in a higher performance gain than re-training
he whole model. This finding may depend on the data set, including
ize and composition, and needs to be explored further. 

. Collaborations between academia and industry: challenges 

nd opportunities 

Industry and academia have been considered in our analysis up to
his point as two separated worlds. Naturally, there is a lot of research
verlap and both parties benefit from one another. In the following dis-
ussion about academia-industry collaborations, we focus on two cen-
ral aspects: (i) how do we handle reproducibility of publications and the
AIR guidelines when working with proprietary data, and (ii) how can
ollaborations, including researchers’ education, be funded. Interesting
houghts on how academia and industry can work together in drug dis-
overy in general are also provided in the review by Tralau-Stewart and
o-workers [114] . 

.1. Strategies to facilitate publishing 

Some goals and constraints of the academic and industry partners in
 collaboration can be partly opposed. In academia, it is important that
esearch outcomes are published in a timely manner. Nowadays, pub-
ication typically involves that data sets become freely available and
oftware developments are made open source to ensure reproducibility.
any journals have adapted their guidelines along these lines in the last

ew years, e.g., Bajorath et al. [115] , and Nature Machine Intelligence
116] . However, while it is often relatively straightforward for academic
roups to follow the FAIR guidelines [90,91] , publishing data sets is of-
en impossible for researchers in industry. A recent study [7] pointed
ut a remarkable difference in the number of published papers in the
omain of ML/AI for drug discovery between industry and academia,
ith only 7% of the total number of articles with industry affiliations

between 1986 to 2021). This might be attributable to the diverging
oals between industry and academia, i.e., intellectual property con-
erns as well as less pressure to publish in industry. Nevertheless, many
ompanies expect their researchers to publish general scientific findings
nd code developments. The issues around data sets can pose, however,
 non-negligible problem for collaborations between academia and in-
ustry, for instance when the idea of the collaboration is to validate/test
ethod developments on real-world proprietary data sets. The latter is

n important requisite to make ML models developed in academia more
pplicable in industry. 

A possible solution for this dilemma is to use both public and in-
ouse data when testing/validating a ML model. The public data set
an be made available and can be used for in-depth analysis and repro-
uction of results, whereas applicability of the ML model on real-world
ata can be demonstrated without sharing the proprietary data [22] .
xamples for this way of publishing results from academia-industry col-
aborations are [86,117–119] . 

Federated learning is an alternative approach developed for
ndustry-industry collaborations [120] . A recent example is the MEL-
ODDY consortium [121] , aiming at using data from different phar-
aceutical companies collectively to train ML models while protecting
roprietary data of the contributors. So far, models were only usable
y the consortium partners. It is yet to be seen whether this approach
an be adapted to facilitate publishing in academia-industry collabora-
ions. A different federated learning approach was developed by LHASA
7 
122] , where models are trained on proprietary data (each company
eparately) followed by predictions on non-sensitive public data. The
onsolidated labels from the different ML models for the public data set
erve in turn as input for the training of a final model. As the final model
s in principle publishable, this may be a more applicable approach for
cademia-industry collaborations. 

.2. Strategies for training and funding 

In addition to the classical scheme where companies fund PhD or
ostdoctoral positions of individual research groups, different set-ups
or larger consortia with multiple academic and/or industry partners
ave been explored. Recent education initiatives involving academia-
ndustry partnerships (e.g., BIGCHEM [123] and the AIDD [124] Marie
k ł odowska-Curie Doctoral Networks initiatives) are leading to a pro-
ressively more relevant role of industry in the education of the next
eneration of scientists in cutting-edge domains of research. 

While the use of commercial software in other areas of computational
rug discovery means that training in university cannot directly prepare
he students for future work, this has changed in the area of ML/AI due
o the increasing usage of the same open-source tools to build, test, and
eploy ML models in academia and industry. Using the same tools leads
o vast opportunities for cross-fertilization and simplifies collaborations.
IT and several industry partners set up a collaboration to advance

esearch in machine learning for pharmaceutical discovery and synthesis
MLPDS), where the industry partners were funding researchers at MIT
hile also being strongly involved in driving the research into a relevant
irection for real-world applications. 

Another recent example is the CACHE (critical assessment of com-
utational hit-finding experiments) [125] initiative between academic
nd industry partners to improve prospective testing of new methods for
it finding. Blind challenges in general – where for example companies
r academic groups make new data sets available (e.g., D3R [126,127] ,
AMPL [128,129] , Tox21 [130] , DREAM [131] , or the ongoing Kaggle
UOS/SLAS joint challenge for compound solubility prediction [132] )
are a very important way to test new methods in drug discovery (in-

luding ML models) with real-world examples. 

. Conclusions 

Academia and industry are both driving the field of molecular ML re-
earch. Overall there has been great advances in the field of molecular
L, and models have permeated almost every step in the DMTA cycle.
ue to the fast emergence of new ML algorithms, the field has needed
nd needs to adapt quickly, including changes in collaboration – shar-
ng data, protocols, code, and models – and multidisciplinary scientists’
ducation. Besides the common goal of generating valid and trustwor-
hy models to help designing safer drugs faster, there are differences in
he way academia and industry approach this aim, often attached to the
iven circumstances (e.g. resources availability) and overarching goals
e.g. publications or intellectual property aspects). 

First, available training data sets are typically larger and more ho-
ogeneous (consistent measurements and experimental protocols) in

ndustry, even though project-specific data can also be limited in size
s well as chemical space coverage. Although the data situation in
cademia has improved substantially over the past decade, freely avail-
ble data sets are usually still smaller in size and often collected from
ifferent sources bearing a higher risk of introducing noise and hetero-
eneity. In addition, due to the bias towards publishing ‘positive’ results,
atios of ‘positive’/‘negative’ data points in data sets differ between the
ublic and private sectors. Nonetheless, the usage of publicly available
ata in academic settings allows to promote open-science and repro-
ucibility of scientific findings. This is not always possible in industry
ettings. Future deposition of negative experimental results as well as
unded campaigns to generate additional data for model building might
elp in this regard. 
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Table 1 

Summary of the important aspects regarding molecular machine learning in industry and academia. 

Industry Academia 

Larger, more homogeneous in-house data sets 
Often multiple measurements per compound 
Easy access to experimental protocols 
Project-specific data sets may be small, biased, and imbalanced 

Data situation has improved but still more heterogeneous, imbalanced, and smaller 
data sets with mostly single measurements per compound and less “negative 
examples ”
More real-world data sets needed 
Data are usually available for free sharing and re-utilization, thus contributing to 
open science. 

Model design and building 
Focus on final application Focus on theory to advance the field rather than a concrete application 
Problem definition can be done with final model users More creative and fundamental work on innovative modelling approaches 
Tendency to simpler and robust models Simpler but robust models potentially overlooked due to “state-of-the-art chasing ”
Strong benchmark baselines are crucial Benchmark baselines are good practice 

Performance evaluation 
Time split possible and should be gold standard 
Application of the model dictates the required level of quality and robustness 

Random or cluster-based splits are used in absence of temporal information in public 
data 
Standard ML metrics are typically used to evaluate novel methods 
Availability of standardized benchmarking platforms to build upon and contribute to 

Deployment 
Model accessibility by users is crucial Models are less often deployed and often have a shorter life span 
Ownership and accountability is considered Difficulties to keep models accessible and updated 

Model accountability is harder to maintain 
More open source libraries and services available following programming best 
practices increase accountability and maintenance of models 

Model application aspects 
Performance monitoring to assess the need of re-training or architecture changes Model users are (often) not clearly definable 
Model users and practical applications need to be considered 
Model output should have a clear interpretation for non-expert users and should be 
adapted according to the application 
Model advertisement (with guidelines) and documentation is required to inform users 

Communication to model users (typically non-data scientists) is less 
common/required 
Push of FAIR coding and data guidelines helps to improve documentation and user 
aspects 
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When designing a new model to achieve a given task, e.g., prioritiz-
ng compounds active against a given target, the incentives in academia
nd industry often differ in their purpose. While academic research
ims to push the boundaries of ML techniques to advance method de-
elopment, models in pharmaceutical industry are built to solve a spe-
ific problem or question, where simplicity and robustness are more in
he focus. When it comes to model validation – besides typical cross-
alidation performance reporting – evaluation on external compounds
ets is highly recommended. Prospective testing is more common in
harmaceutical companies, whereas academic groups usually realize
his through collaborations. In academia, random or cluster-based splits
re used as an alternative in the absence of temporal information. At the
ame time, the availability of open-access benchmarks and related data
akes it easier for academic research to leverage and build upon previ-

usly designed evaluation systems, thereby ensuring comparability and
ransparency. 

Since academia is more focused on basic research and methodolog-
cal enhancements, the model cycle often ends with a proof-of-concept
tudy. In contrast, model deployment, accessibility, and stability are
rucial in industry since the models are used in active drug discov-
ry projects. More collaboration efforts between academia and indus-
ry to share data and code might lessen the gap between exploratory
nd applied research work. Some examples of private-public collabora-
ions were mentioned showcasing constellations in which science can
e advanced in real-world project set-ups while keeping sensitive data
rivate. 

For an overview of all different aspects discussed in this perspective
ee also Table 1 . 

With the increasing ease at which new ML developments can be
ranslated into industrial applications, we expect that the mentioned
oundaries/differences, progressively blur. Active research areas in-
lude uncertainty estimation and ML explainability. ML for molecule
iscovery has come a long way, but its impact will become even more
pparent when correct model decisions can be identified (low uncer-
ainty) and rationalized (explained). 
8 
uthor contributions 

All authors have contributed equally to conceptualization and writ-
ng of this perspective. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper. 

cknowledgements 

The authors thank Vigneshwari Subramanian, Nikolaus Stiefl, Gré-
ori Gerebtzoff and Gregory Landrum for proofreading the manuscript
nd valuable suggestions. 

eferences 

[1] Tyrchan C, Nittinger E, Gogishvili D, Patronov A, Kogej T. Chapter 4 —Ap-
proaches using ai in medicinal chemistry. In: Akitsu T, editor. Computational
and data-driven chemistry using artificial intelligence. Elsevier; 2022. p. 111–59.
doi: 10.1016/B978-0-12-822249-2.00002-5 . ISBN 978-0-12-822249-2. 

[2] Green DVS. Using machine learning to inform decisions in drug discovery: an in-
dustry perspective. In: Machine learning in chemistry: data-driven algorithms, learning

systems, and predictions , 1326. American Chemical Society; 2019. p. 81–101 . 
[3] Stephenson N, Shane E, Chase J, Rowland J, Ries D, Justice N, Zhang J, Chan L,

Cao R. Survey of machine learning techniques in drug discovery. Curr Drug Metab
2019;20:185–93 . 

[4] Brown N, Ertl P, Lewis R, Luksch T, Reker D, Schneider N. Artificial intelligence in
chemistry and drug design. J Comput-Aided Mol Des 2020;34:709–15 . 

[5] Schneider G. Automating drug discovery. Nature Rev Drug Discov 2018;17:97–113 .
[6] Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery.

Br J Pharm 2011;162:1239–49 . 
[7] Mak K-K, Balijepalli MK, Pichika MR. Success stories of AI in drug discovery –

where do things stand? Expert Opin Drug Discov 2022;17:79–92 . 
[8] Öztürk H, Özgür A, Schwaller P, Laino T, Ozkirimli E. Exploring chemical space

using natural language processing methodologies for drug discovery. Drug Discov
Today 2020;25:689–705 . 

[9] Atz K, Grisoni F, Schneider G. Geometric deep learning on molecular representa-
tions. Nat Mach Intel 2021;3:1023–32 . 

https://doi.org/10.1016/B978-0-12-822249-2.00002-5
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0002
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0003
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0004
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0005
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0006
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0007
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0008
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0009


A. Volkamer, S. Riniker, E. Nittinger et al. Artificial Intelligence in the Life Sciences 3 (2023) 100056 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10] Brown N, Fiscato M, Segler MH, Vaucher AC. GuacaMol: benchmarking models for
de novo molecular design. J Chem Inf Model 2019;59:1096–108 . 

[11] Stanley M, Bronskill JF, Maziarz K, Misztela H, Lanini J, Segler M, et al. FS-mol:
a few-shot learning dataset of molecules. In: 35th conference on NeurIPS datasets
and benchmarks track (round 2); 2021 . 

[12] Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, et al. Molecu-
leNet: a benchmark for molecular machine learning. Chem Sci 2018;9:513–30 . 

[13] Church KW, Kordoni V. Emerging trends: sota-chasing. Nat Lang Eng
2022;28:249–69 . 

[14] Raji I.D., Bender E.M., Paullada A., Denton E., Hanna A.. AI and the everything in
the whole wide world benchmark. arXiv preprint: arXiv:2111.15366 2021 

[15] Moosa IA. Publish or perish: perceived benefits versus unintended consequences.
Edward Elgar Publishing; 2018 . 

[16] Zhang D., Mishra S., Brynjolfsson E., Etchemendy J., Ganguli D., Grosz B., Lyons
T., Manyika J., Niebles J.C., Sellitto M., et al. The AI index 2021 annual report.
2021arXiv preprint: arXiv:2103.06312 

[17] Sydow D., Rodr-guez-Guerra J., Volkamer A.. Teaching Computer-Aided Drug De-
sign Using TeachOpenCADD; chap. 10. 2021, p. 135–158. 

[18] Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, et al.
ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res
2012;40:D1100–7 . 

[19] Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P,
Atkinson F, Bellie LJ, Cibrián-Uhalte E, Davies M, Dedman N, Karlsson A, Magari-
nos MP, Overington JP, Papadatos G, Smit I, Leach AR. The ChEMBL database in
2017. Nucleic Acids Res 2017;45:D945–54 . 

[20] PubChem: National Center for Biotechnology Information (NCBI). Accessed: 2022-
10-19; http://www.pubchem.ncbi.nlm.nih.gov . 

[21] Aleksic S, Seeliger D, Brown JB. ADMET predictability at boehringer ingelheim:
state-of-the-art, and do bigger datasets or algorithms make a difference? Mol Inf
2021;41:2100113 . 

[22] Hamzic S, Lewis R, Desrayaud S, Soylu C, Fortunato M, Grégori G, Ro-
dríguez-Pérez R. Predicting in vivo compound brain penetration using multi-task
graph neural networks. J Chem Inf Model 2022;62:3180–90 . 

[23] Rodríguez-Pérez R, Gerebtzoff G. Identification of bile salt export pump inhibitors
using machine learning: predictive safety from an industry perspective. AI Life Sci
2021;1:100027 . 

[24] Sheridan RP. Stability of prediction in production ADMET models as a function of
version: why and when predictions change. J Chem Inf Model 2022;62:3477–85 . 

[25] Montanari F, Kuhnke L, Laak AT, Clevert D-A. Modeling physico-chemical ADMET
endpoints with multitask graph convolutional networks. Molecules 2020;25:44 . 

[26] Lim MA, Yang S, Mai H, Cheng AC. Exploring deep learning of quantum chemical
properties for absorption, distribution, metabolism, and excretion predictions. J
Chem Inf Model 2022. doi: 10.1021/acs.jcim.2c00245 . 

[27] Venkatraman V. FP-ADMET: a compendium of fingerprint-based ADMET prediction
models. J Cheminform 2021;13:75 . 

[28] Veith H, Southall N, Huang R, James T, Fayne D, Artemeko N, et al. Comprehensive
characterization of cytochrome P450 isozyme selectivity across chemical libraries.
Nat Biotechnol 2009;27:1050–5 . 

[29] Kramer C, Kalliokoski T, Gedeck P, Vulpetti A. The experimental uncertainty of
heterogeneous public 𝐾 𝑖 data. J Med Chem 2012;55:5165–73 . 

[30] Yonchev D, Dimova D, Stumpfe D, Vogt M, Bajorath J. Redundancy in two major
compound databases. Drug Discov Today 2018;27:1337–45 . 

[31] Rodríguez-Pérez R, Trunzer M, Schneider N, Faller B, Gerebtzoff G. Mul-
tispecies machine learning predictions of in vitro intrinsic clearance
with uncertainty quantification analyses. Mol Pharm 2023;20:383-394.
doi: 10.1021/acs.molpharmaceut.2c00680 . in press 

[32] Sheridan RP, Karnachi P, Tudor M, Xu Y, Liaw A, Shah F, Cheng AC, Joshi E,
Glick M, Alvarez J. Experimental error, kurtosis, activity cliffs, and methodology:
what limits the predictivity of quantitative structure–activity relationship models?
J Chem Inf Model 2020;60:1969–82 . 

[33] Volkov M, Turk J-A, Drizard N, Martin N, Hoffmann B, Gaston-Mathé Y, Rognan D.
On the frustration to predict binding affinities from protein–ligand structures with
deep neural networks. J Med Chem 2022;65:7946–58 . 

[34] Esposito C, Landrum GA, Schneider N, Stiefl N, Riniker S. GHOST: adjusting the
decision threshold to handle imbalanced data in machine learning. J Chem Inf
Model 2021;61:2623–40 . 

[35] Cáceres EL, Mew NC, Keiser MJ. Adding stochastic negative examples into ma-
chine learning improves molecular bioactivity prediction. J Chem Inf Model
2020;60:5957–70 . 

[36] Valsecchi C, Grisoni F, Motta S, Bonati L, Ballabio D. NURA: a curated dataset of
nuclear receptor modulators. Tox Appl Pharm 2020;407:115244 . 

[37] Bradley D. Dealing with a data dilemma. Nat Rev Drug Discov 2008;7:632–3 . 
[38] Rodríguez-Pérez R, Miyao T, Jasial S, Vogt M, Bajorath J. Prediction of compound

profiling matrices using machine learning. ACS Omega 2018;3:4713–23 . 
[39] Irwin JJ. Community benchmarks for virtual screening. J Comput-Aided Mol Des

2008;22:193–9 . 
[40] Riniker S, Landrum GA. Open-source platform to benchmark fingerprints for lig-

and-based virtual screening. J Cheminf 2013;5:26 . 
[41] Kurczab R, Smusz S, Bojarski AJ. The influence of negative training set size on

machine learning-based virtual screening. J Cheminf 2014;6:32 . 
[42] Réau M, Langenfeld F, Zagury J-F, Lagarde N, Montes M. Decoys selection in bench-

marking datasets: overview and perspectives. Front Pharm 2018;9:11 . 
[43] Tosstorff A, Rudolph MG, Cole JC, Reutlinger M, Kramer C, Schaffhauser H, Nilly A,

Flohr A, Kuhn B. A high quality, industrial data set for binding affinity predic-
tion: performance comparison in different early drug discovery scenarios. J Com-
put-Aided Mol Des 2022;36:753–65 . 
9 
[44] Wallach I, Heifets A. Most ligand-based classification benchmarks reward memo-
rization rather than generalization. J Chem Inf Model 2018;58:916–32 . 

[45] Chen L, Cruz A, Ramsey S, Dickson CJ, Duca JS, Hornak V, et al. Hidden bias in the
DUD-E dataset leads to misleading performance of deep learning in structure-based
virtual screening. PLoS One 2019;14:e0220113 . 

[46] Riniker S, Landrum GA. Similarity maps – a visualization strategy for molecular
fingerprints and machine-learning methods. J Cheminf 2013;5:43 . 

[47] Sieg J, Flachsenberg F, Rarey M. In need of bias control: evaluating chemical
data for machine learning in structure-based virtual screening. J Chem Inf Model
2019;59:947–61 . 

[48] Gopal M. Applied machine learning. McGraw-Hill Education; 2019 . 
[49] Biship CM. Pattern recognition and machine learning (information science and

statistics). Springer New York; 2007 . 
[50] Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep learning . MIT press. 
[51] Sutton RS, Barto AG. Reinforcement learning: an introduction. MIT Press; 2018 . 
[52] Raghunathan S, Priyakumar UD. Molecular representations for machine learning

applications in chemistry. Int J Quantum Chem 2022;122:e26870 . 
[53] Wigh DS, Goodman JM, Lapkin AA. A review of molecular representation in the

age of machine learning. WIREs Comput Mol Sci 2022:e1603 . 
[54] Kimber TB, Chen Y, Volkamer A. Deep learning in virtual screening: recent appli-

cations and developments. Int J Mol Sci 2021;22:4435 . 
[55] Lin J. The neural hype and comparisons against weak baselines. In: ACM SIGIR

forum, vol. 52; 2019. p. 40–51 . 
[56] Mucherino A, Papajorgji PJ, Pardalos PM. K -nearest neighbor classification. In:

Data mining in agriculture. Springer; 2009. p. 83–106 . 
[57] Matveieva M, Polishchuk P. Benchmarks for interpretation of QSAR models. J

Cheminf 2021;13:41 . 
[58] Karmaker SK, Hassan MM, Smith MJ, Xu L, Zhai C, Veeramachaneni K. Automl

to date and beyond: challenges and opportunities. ACM Comput Surv (CSUR)
2021;54:175 . 

[59] Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-generation hyperpa-
rameter optimization framework. In: Proceedings of the ACM SIGKDD international
conference on knowledge discovery and data mining; 2019. p. 2623–31 . 

[60] Ramsundar B, Eastman P, Walters P, Pande V, Leswing K, Wu Z. Deep learning for
the life sciences. O’Reilly Media; 2019 . 

[61] Huang K., Fu T., Gao W., Zhao Y., Roohani Y., Leskovec J., Coley C.W., Xiao C.,
Sun J., Zitnik M.. Therapeutics data commons: Machine learning datasets and tasks
for drug discovery and development. 2021. 

[62] Feurer M, Eggensperger K, Falkner S, Lindauer M, Hutter F. Auto-sklearn 2.0: hand-
s-free automML via meta-learning. J Mach Learn Res 2022;23:1–61 . 

[63] Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R. Compar-
ison of different approaches to define the applicability domain of QSAR models.
Molecules 2012;17(5):4791–810 . 

[64] Rodríguez-Pérez R, Bajorath J. Evaluation of multi-target deep neural network
models for compound potency prediction under increasingly challenging test con-
ditions. J Comput-Aided Mol Des 2021;35:285–95 . 

[65] Tropsha A. Best practices for QSAR model development, validation, and exploita-
tion. Mol Inf 2010;29:476–88 . 

[66] Puzyn T, Mostrag-Szlichtyng A, Gajewicz A, Skrzy ń ski M, Worth AP. Investigating
the influence of data splitting on the predictive ability of QSAR/QSPR models.
Struct Chem 2011;22:795–804 . 

[67] Bender A, Schneider N, Segler M, Walters WP, Engkvist O, Rodrigues T. Evalua-
tion guidelines for machine learning tools in the chemical sciences. Nat Rev Chem
2022;6:428–42 . 

[68] Alexander DL, Tropsha A, Winkler DA. Beware of 𝑟 2 : simple, unambiguous assess-
ment of the prediction accuracy of QSAR and QSPR models. J Chem Inf Model
2015;55:1316–22 . 

[69] Todeschini R, Ballabio D, Grisoni F. Beware of unreliable 𝑄 2 ! a comparative study
of regression metrics for predictivity assessment of QSAR models. J Chem Inf Model
2016;56:1905–13 . 

[70] Golbraikh A, Shen M, Xiao Z, Xiao Y-D, Lee K-H, Tropsha A. Rational selection
of training and test sets for the development of validated QSAR models. J Com-
put-Aided Mol Des 2003;17:241–53 . 

[71] Sheridan RP. Time-split cross-validation as a method for estimating the goodness
of prospective prediction. J Chem Inf Model 2013;53:783–90 . 

[72] Andrada MF, Vega-Hissi EG, Estrada MR, Garro Martinez JC. Impact assessment
of the rational selection of training and test sets on the predictive ability of QSAR
models. SAR QSAR Environ Res 2017;28:1011–23 . 

[73] Gogishvili D, Nittinger E, Margreitter C, Tyrchan C. Nonadditivity in public and
inhouse data: implications for drug design. J Cheminf 2021;13:47 . 

[74] Kwapien K, Nittinger E, He J, Margreitter C, Voronov A, Tyrchan C. Implications
of additivity and nonadditivity for machine learning and deep learning models in
drug design. ACS Omega 2022;7:26573–81 . 

[75] Schneider N, Lewis RA, Fechner N, Ertl P. Chiral cliffs: investigating the influence
of chirality on binding affinity. ChemMedChem 2018;13:1315–24 . 

[76] Winkler DA, Le TC. Performance of deep and shallow neural networks, the universal
approximation theorem, activity cliffs, and QSAR. Mol Inf 2017;36:1600118 . 

[77] van Tilborg D, Alenicheva A, Grisoni F. Exposing the limitations of molecular ma-
chine learning with activity cliffs. J Chem Inf Model 2022;62:5938–51 . 

[78] Li Z, Yoon J, Zhang R, Rajabipour F, Srubar III WV, Dabo I, Radli ń ska A. Machine
learning in concrete science: applications, challenges, and best practices. npj Com-
put Mater 2022;8:127 . 

[79] Rodríguez-Pérez R, Bajorath J. Explainable machine learning for property predic-
tions in compound optimization. J Med Chem 2021;64:17744–52 . 

[80] Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial
intelligence. Nat Mach Intel 2020;2:573–84 . 

http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0010
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0011
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0012
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0013
http://arxiv.org/abs/2111.15366
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0015
http://arxiv.org/abs/2103.06312
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0018
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0019
http://www.pubchem.ncbi.nlm.nih.gov
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0021
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0022
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0023
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0024
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0025
https://doi.org/10.1021/acs.jcim.2c00245
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0027
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0028
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0029
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0030
https://doi.org/10.1021/acs.molpharmaceut.2c00680
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0032
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0033
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0034
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0035
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0036
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0037
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0038
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0039
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0040
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0041
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0042
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0043
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0044
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0045
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0046
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0047
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0048
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0049
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0051
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0052
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0053
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0054
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0055
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0056
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0057
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0058
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0059
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0060
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0062
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0063
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0064
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0065
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0066
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0067
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0068
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0069
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0070
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0071
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0072
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0073
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0074
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0075
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0076
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0077
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0078
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0079
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0080


A. Volkamer, S. Riniker, E. Nittinger et al. Artificial Intelligence in the Life Sciences 3 (2023) 100056 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

[  

 

[  

[  

 

[  

[  

 

[  

[  

 

[  

[  

[  

[  

 

[  

 

[  

[  

 

[  

[  

 

[  

 

 

[  

 

[  

[  

 

 

 

 

 

 

 

[  

 

f . 
[  

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

 

 

[  
[81] Yang CC. Explainable artificial intelligence for predictive modeling in healthcare.
J Health Inf Res 2022;6:228–39 . 

[82] Rodríguez-Pérez R, Bajorath J. Chemistry-centric explanation of machine learning
models. Artif Intel Life Scie 2021;1:100009 . 

[83] Ahmed I, Jeon G, Piccialli F. From artificial intelligence to explainable artificial
intelligence in industry 4.0: a survey on what, how, and where. IEEE Trans Ind Inf
2022;18:5031–42 . 

[84] Sheridan RP. Interpretation of QSAR models by coloring atoms according
to changes in predicted activity: how robust is it? J Chem Inf Model
2019;59:1324–37 . 

[85] Jiménez-Luna J, Skalic M, Weskamp N. Benchmarking molecular feature attribu-
tion methods with activity cliffs. J Chem Inf Model 2022;62:274–83 . 

[86] Webel HE, Kimber TB, Radetzki S, Neuenschwander M, Nazaré M, Volkamer A. Re-
vealing cytotoxic substructures in molecules using deep learning. J Comput-Aided
Mol Des 2020;34:731–46 . 

[87] De Laat PB. Algorithmic decision-making based on machine learning from big data:
can transparency restore accountability? Philos Technol 2018;31:525–41 . 

[88] Nissenbaum H.. Accountability in a computerized society. Sci Eng Ethics1996;
2:25–42. 

[89] Maini P., Yaghini M., Papernot N.. Dataset inference: ownership resolution in ma-
chine learning. arXiv preprint: arXiv:2104.10706 2021; 

[90] Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al.
The FAIR guiding principles for scientific data management and stewardship. Sci
Data 2016;3(1):1–9 . 

[91] Chue Hong N.P., Katz D.S., Barker M., Lamprecht A.-L., Martinez C., Psomopoulos
F.E., Harrow J., Castro L.J., Gruenpeter M., Martinez P.A., Honeyman T.. FAIR
principles for research software (FAIR4RS principles)2021;. 

[92] Sydow D, Rodr-guez-Guerra J, Kimber TB, Schaller D, Taylor CJ, Chen Y, Leja M,
Misra S, Wichmann M, Ariamajd A, Volkamer A. TeachOpenCADD 2022: open
source and FAIR Python pipelines to assist in structural bioinformatics and chem-
informatics research. Nucleic Acids Res 2022. doi: 10.1093/nar/gkac267 . 

[93] European Organization For Nuclear Research, OpenAIRE. Zenodo. 2013.
https://www.zenodo.org/ . 10.25495/7GXK-RD71 

[94] Coley CW, Thomas DA, Lummiss JAM, Jaworski JN, Breen CP, Schultz V, Hart T,
Fishman JS, Rogers L, Gao H, Hicklin RW, Plehiers PP, Byington J, Piotti JS,
Green WH, Hart AJ, Jamison TF, Jensen KF. A robotic platform for flow synthesis
of organic compounds informed by AI planning. Science 2019;365:eaax1566 . 

[95] Ji C, Svensson F, Zoufir A, Bender A. eMolTox: prediction of molecular toxicity
with confidence. Bioinf 2018;34:2508–9 . 

[96] Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharma-
cokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.
Sci Rep 2017;7:42717 . 

[97] Sushko I, Novotarskyi S, Körner R, Pandey AK, Rupp M, Teetz W, Brandmaier S,
Abdelaziz A, Prokopenko VV, Tanchuk VY, Todeschini R, Varnek A, Marcou G,
Ertl P, Potemkin V, Grishina M, Gasteiger J, Schwab C, Baskin II, Palyulin VA, Rad-
chenko EV, Welsh WJ, Kholodovych V, Chekmarev D, Cherkasov A, de Sousa JA,
Zhang Q-Y, Bender A, Nigsch F, Patiny L, Williams A, Tkachenko V, Tetko IV.
Online chemical modeling environment (OCHEM): web platform for data storage,
model development and publishing of chemical information. J Comput-Aided Mol
Des 2011;25:533–54 . 

[98] Š ícho M, de Bruyn Kops C, Stork C, Svozil D, Kirchmair J. FAME 2: simple and
effective machine learning model of cytochrome P450 regioselectivity. J Chem Inf
Model 2017;57:1832–46 . 

[99] PlayMolecule. https://www.playmolecule.com/ Accessed: 2022-10-11. 
100] Openfold – democratizing ai for biology. https://www.openfold.io/ Accessed:

2022-11-25. 
101] Winter R, Montanari F, Noé F, Clevert D-A. Learning continuous and data-driven

molecular descriptors by translating equivalent chemical representations. Chem Sci
2019;10:1692–701 . 

102] Ahlberg E, Bendtsen C, Carlsson L, Fredlund L, Jones B, Noeske T, Oprisiu I, Ström-
stedt P-E, Wernevik J, Winiwarter S. Use of in silico models for compound property
prediction to reduce the in vitro screening burden. Tox Lett 2017;280:S285 . 

103] Reker D, Schneider G. Active-learning strategies in computer-assisted drug discov-
ery. Drug Discov Today 2015;20:458–65 . 

104] Mervin LH, Trapotsi M-A, Afzal AM, Barret IP, Bender A, Engkvist O. Probabilistic
random forest improves bioactivity predictions close to the classification threshold
by taking into account experimental uncertainty. J Cheminf 2021;13:62 . 

105] Mervin LH, Johansson S, Semenova E, Giblin KA, Engkvist O. Uncertainty quantifi-
cation in drug design. Drug Discov Today 2021;26:474–89 . 

106] Hirschfeld L, Swanson K, Yang K, Barzilay R, Coley CW. Uncertainty quantifica-
tion using neural networks for molecular property prediction. J Chem Inf Model
2020;60:3770–80 . 

107] Bajorath J. Understanding uncertainty in deep learning builds confidence. AI Life
Sci 2022;2:100033 . 

108] Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V,
Young M, Crespo J-F, Dennison D. Hidden technical debt in machine learning sys-
tems. Adv NeurIPS 2015;28 . 
10 
109] Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of ma-
chine learning interpretability methods. Entropy 2021;23:1–45 . 

110] Shafer G, Vovk V. A tutorial on conformal prediction. J Mach Learn Res
2008;9:371–421 . 

111] McShane SA, Ahlberg E, Noeske T, Spjuth O. Machine learning strategies when
transitioning between biological assays. J Chem Inf Model 2021;61:3722–33 . 

112] Morger A, Svensson F, McShane SA, Gauraha N, Norinder U, Spjuth O, Volkamer A.
Assessing the calibration in toxicological in vitro models with conformal prediction.
J Cheminf 2021;13 . 

113] Morger A, de Lomana MG, Norinder U, Svensson F, Kirchmair J, Mathea M, Volka-
mer A. Studying and mitigating the effects of data drifts on ML model performance
at the example of chemical toxicity data. Sci Rep 2022;12:7244 . 

114] Tralau-Stewart CJ, Wyatt CA, Kleyn DE, Ayad A. Drug discovery: new models for
industry – academic partnerships. Drug Discov Today 2009;14:95–101 . 

115] Bajorath J, Coley CW, Landon MR, Walters WP, Zheng M. Reproducibility, reusabil-
ity, and community efforts in artificial intelligence research. Artif Intel Life Sci
2021;1:100002 . 

116] Research reuse. repeat. Nat Mach Intell 2020;2:729. doi: 10.1038/
s42256-020-00277-9 . 

117] Riniker S, Wang Y, Jenkins JL, Landrum GA. Using information from histor-
ical high-throughput screens to predict active compounds. J Chem Inf Model
2014;54:1880–91 . 

118] Morger A, Mathea M, Achenbach JH, Wolf A, Buesen R, Schleifer K-J, Landsiedel R,
Volkamer A. KnowTox: pipeline and case study for confident prediction of potential
toxic effects of compounds in early phases of development. J Cheminf 2020;12:24 .

119] Esposito C, Wang S, Lange UEW, Oellien F, Riniker S. Combining machine learning
and molecular dynamics to predict P -glycoprotein substrates. J Chem Inf Model
2020;60:4730–49 . 

120] Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning.
npj Digit Med 2020;3:119 . 

121] Oldenhof M., Ács G., Pejo B., Schuffenhauer A., Holway N., Sturm N., Dieck-
mann A., Fortmeier O., Boniface E., Mayer C., Gohier A., Schmidtke P., Niwayama
R., Kopecky D., Mervin L., Rathi P.C., Friedrich L., Formanek A., Antal P., Ra-
haman J., Zalewski A., Heyndrickx W., Oluoch E., Stössel M., Vanco M., Endico
D., Gelus F., de Boisfossé T., Darbier A., Nicollet A., Blottière M., Telenczuk M.,
Nguyen V.T., Martinez T., Boillet C., Moutet K., Picosson A., Gasser A., Djafar I.,
Simon A., Arany A., Simm J., Moreau Y., Engkvist O., Ceulemans H., Marini C.,
Galtier M.. Industry-scale orchestrated federated learning for drug discovery. arXiv
preprint: arXiv:2210.08871 2022 

122] Fowkes A., Sartini A., Plante J., Davies R., Werner S., Hanser T.. Aligning
data from public and proprietary sources to develop federated QSAR models.
https://www.lhasalimited.org/Public/Library/2021/Effiris%20QSAR%202021.pd

123] Bigchem project, Marie Sk ł odowska-Curie grant agreement No 676434.
https://www.bigchem.eu/ ; 2022. Accessed: 2022-09-15. 

124] Advanced machine learning for innovative drug discovery (AIDD) project, Marie
Sk ł odowska-Curie grant agreement no 956832. https://www.bigchem.eu/ ; 2022.
Accessed: 2022-09-15. 

125] Ackloo S, Al-awar R, Amaro RE, Arrowsmith CH, Azevedo H, Batey RA, et al.
CACHE (critical assessment of computational hit-finding experiments): a publicpri-
vate partnership benchmarking initiative to enable the development of computa-
tional methods for hit-finding. Nat Rev Chem 2022;6:287–95 . 

126] Gaieb Z, Liu S, Gathiaka S, Chiu M, ang C Shao HW, Feher VA, et al. D3R grand
challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative
binding free energies. J Comput-Aided Mol Des 2018;32:1–20 . 

127] Parks CD, Gaieb Z, Chiu M, Yang H, Shao C, Walters WP, et al. D3R grand challenge
4: blind prediction of protein–ligand poses, affinity rankings, and relative binding
free energies. J Comput-Aided Mol Des 2020;34:99–119 . 

128] Bannan CC, Burley KH, Chiu M, Shirts MR, Gilson MK, Mobley DL. Blind predic-
tion of cyclohexane/water distribution coefficients from the SAMPL5 challenge. J
Comput-Aided Mol Des 2016;30:927–44 . 

129] Amezcua M, Khoury LE, Mobley DL. SAMPL7 host guest challenge overview: as-
sessing the reliability of polarizable and non-polarizable methods for binding free
energy calculations. J Comput-Aided Mol Des 2021;35:1–35 . 

130] Attene-Ramos M, Miller N, Huang R, Michael S, Itkin M, Kavlock RJ, Austin CP,
Shinn P, Simeonov A, Tice RR, Xia M. The Tox21 robotic platform for the as-
sessment of environmental chemicals – from vision to reality. Drug Discov Today
2013;18:716–23 . 

131] Keller A, Gerkin RC, Guan Y, Dhurandhar A, Turu G, Szalai B, Mainland JD, Ihara Y,
Yu CW, Wolfinger R, Vens C, Schietgat L, Grave KD, Norel R, Stolovitzky G, Cec-
chi GA, Vosshall LB, Meyer PDREAM Olfaction Prediction Consortium. Predict-
ing human olfactory perception from chemical features of odor molecules. Science
2017;355:820–6 . 

132] 1st EUOS/SLAS joint challenge: Compound solubility. https://www.kaggle.com/
competitions/euos-slas/overview Accessed: 2022-11-27 

http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0081
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0082
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0083
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0084
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0085
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0086
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0087
http://arxiv.org/abs/2104.10706
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0090
https://doi.org/10.1093/nar/gkac267
https://www.zenodo.org/
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0094
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0095
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0096
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0097
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0098
https://www.playmolecule.com/
https://www.openfold.io/
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0101
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0102
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0103
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0104
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0105
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0106
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0107
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0108
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0109
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0110
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0111
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0112
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0113
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0114
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0115
https://doi.org/10.1038/\penalty -\@M s42256-020-00277-9
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0117
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0118
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0119
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0120
http://arxiv.org/abs/2210.08871
https://www.lhasalimited.org/Public/Library/2021/Effiris\0452520QSAR\04525202021.pdf
https://www.bigchem.eu/
https://www.bigchem.eu/
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0125
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0126
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0127
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0128
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0129
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0130
http://refhub.elsevier.com/S2667-3185(22)00026-5/sbref0131
https://www.kaggle.com/competitions/euos-slas/overview

	Machine learning for small molecule drug discovery in academia and industry
	1 Introduction
	2 Key steps of the model life cycle
	2.1 Training data
	2.2 Model design and building
	2.3 Performance evaluation
	2.4 Model deployment

	3 Model application aspects
	3.1 Design-make-test-analyze (DMTA) cycle
	3.2 Model outputs
	3.3 Monitoring and model re-training

	4 Collaborations between academia and industry: challenges and opportunities
	4.1 Strategies to facilitate publishing
	4.2 Strategies for training and funding

	5 Conclusions
	Author contributions
	Declaration of Competing Interest
	Acknowledgements
	References


