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Extended abstract for poster 
High tracking performance for mechatronic systems requires accurate feedforward control, which can be 
learned from data through dedicated efficient algorithms. This research aims to improve performance 
through new approaches at the intersection of machine learning (neural networks, random learning), 
controls (feedforward), and precision mechatronics. Four examples are: 1) automated model-free 
feedforward tuning, 2) fast and accurate iterative learning control (ILC) without noise amplification 
through nonlinear filters, 3) the use of control-relevant neural networks for feedforward, and 4) ILC 
method for accurate contour tracking. 
 
 
1) Randomized experiments lead to efficient learning of MIMO feedforward parameters  
Accurate parameterized feedforward control is at the basis of many successful control applications with 
varying references. However, parameterized feedforward control for MIMO systems with interaction 
involves many interdependent parameters, such that manual tuning approaches are infeasible in practice. 
In addition, due to modelling and design requirements the application of automated feedforward tuning 
approaches such as ILC are not trivial. Therefore, this research aims to develop an efficient data-driven 
approach to learn the feedforward parameters for MIMO systems. 
 
Approach: optimal parameters through stochastic gradient descent 
The aim of feedforward control is to find a parameterization 𝑓𝑓(𝑟𝑟) ≈ 𝑃𝑃−1𝑟𝑟 such that 𝑒𝑒 ≈ 0, see Figure 1. To 
this end, consider a parameterization of 𝑓𝑓 that is linear in the parameters 𝜃𝜃: 
 

𝑓𝑓(𝑟𝑟,𝜃𝜃) = 𝜓𝜓(𝑟𝑟)𝑇𝑇𝜃𝜃. 
 
An example of this structure is that of mass feedforward for a 2x2 MIMO system with interaction, 
constructed as 
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In order to minimize ℐ = �|𝑒𝑒|�2, with 
 

𝑒𝑒 = (𝐼𝐼 + 𝑃𝑃𝑃𝑃)−1𝑟𝑟 − (𝐼𝐼 + 𝑃𝑃𝑃𝑃)−1𝑃𝑃 𝑓𝑓 = 𝑆𝑆𝑟𝑟 − 𝐽𝐽𝑓𝑓, 
 
the gradient 𝑔𝑔(𝜃𝜃) =  𝑑𝑑ℐ

𝑑𝑑𝑑𝑑
 is computed as 

𝑔𝑔(𝜃𝜃) =  −2𝜓𝜓(𝑟𝑟)𝐽𝐽𝑇𝑇𝑒𝑒(𝜃𝜃). 
 
For SISO systems, a trick using adjoints enables the computation of 𝑔𝑔(𝜃𝜃) through a direct measurement 
on 𝐽𝐽𝑇𝑇, such that the optimal feedforward parameters can be found through gradient descent without 
model knowledge. However, this does not extend well to multivariable systems: generating gradients 
requires 𝑛𝑛𝑖𝑖 × 𝑛𝑛𝑜𝑜 experiments per iteration and is comparable to tuning by turning one knob at a time.  
 
Instead of expensive exact gradients, an unbiased gradient estimate can be generated through one 
experiment regardless of the size of the MIMO system [1]. To this end all experiments are run 
simultaneously (‘turn all knobs’) in randomized directions, leading to an estimate  𝑔𝑔�(𝜃𝜃) of the gradient. 
This estimate is used in a stochastic gradient descent algorithm to update the parameters according to 
 

𝜃𝜃𝑗𝑗+1 =  𝜃𝜃𝑗𝑗 + 𝜖𝜖𝑗𝑗𝑔𝑔��𝜃𝜃𝑗𝑗�. 
 
The optimal step size 𝜖𝜖𝑗𝑗 is determined through an additional experiment. 
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Experimental results 
The approach is illustrated through two examples. The first is a simulation example using a 21x21 
system, for which an unparameterized feedforward signal is optimized, i.e., 𝜓𝜓 = 𝐼𝐼. The results in Figure 2 
show that the stochastic gradient descent ILC approach using a randomized gradient estimate results in 
fast convergence compared to deterministic approaches that use the full gradient. 
 
 

 
 
 

 
The approach is also applied in experiments to the parameterized feedforward control of an industrial 
flatbed printer, see Figure 3. The printer is a 3x3 system with inputs in two translation and one rotation 
direction. The position, velocity and acceleration feedforward parameters are tuned automatically in a 
small number of experiments, as shown in Figure 4. 
 
 

 

 
 
 
2) Nonlinear filters in ILC: beating the trade-offs between iteration-varying (noise) and 

iteration-invariant (reference) disturbances [3] 
 
Iterative learning control (ILC) aims to learn a feedforward signal 𝑓𝑓 that fully compensates repeating 
disturbances through repeated experiments. While standard ILC can attenuate repeating disturbances 
completely, leading to high performance, it may also amplify iteration-varying disturbances up to a factor 
two. A standard ILC update of a feedforward signal 𝑓𝑓 is given by 

𝑓𝑓𝑗𝑗+1 = 𝑄𝑄�𝑓𝑓𝑗𝑗 + 𝛼𝛼𝛼𝛼𝑒𝑒𝑗𝑗�, 
 
with learning filter 𝛼𝛼 an approximation of the system inverse, and robustness filter 𝑄𝑄 a lowpass filter. The 
learning gain 𝛼𝛼 ∈ (0,1] can be used to reduce the amplification of iteration-varying disturbances, but this 
also reduces the learning speed significantly as illustrated in Figure 5. The aim of this research is to 
develop an approach that achieves both small converged errors and fast convergence. 
 

Figure 2  Stochastic gradient descent ILC (red) 
is faster than deterministic approaches (black) 
that may diverge when data is noisy (blue). 
 

Figure 1 The aim of parameterized 
feedforward control is to find 𝑓𝑓(𝑟𝑟) ≈ 𝑃𝑃−1𝑟𝑟 
such that 𝑒𝑒 ≈ 0. 
 

Figure 3 Arizona industrial flatbed printer. 
 

Figure 4 The automated model-free tuning of 
feedforward parameters for the flatbed printer 
requires only a small number of iterations. 
 



 

 
 
 
 
 
 
 
 
 
 
 
 

 
Approach: nonlinear iterative learning control 
The main idea is to use a deadzone nonlinearity to differentiate between varying and repeating 
disturbances based on their amplitude characteristics and apply different learning actions: fast 
attenuation of repeating disturbances, and slow averaging of varying disturbances [3]. In Figure 6 the 
repeating and iteration-varying disturbances for 20 experiments are shown. 
 
The deadzone nonlinearity with width 𝛿𝛿 and gain 𝛾𝛾 is included in the feedforward update as follows: 
 

𝑓𝑓𝑗𝑗+1 = 𝑄𝑄 �𝑓𝑓𝑗𝑗 + 𝛼𝛼𝛼𝛼𝑒𝑒𝑗𝑗 + 𝛼𝛼𝐿𝐿�𝑒𝑒𝑗𝑗��, 
 
with 
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The deadzone nonlinearity satisfies an incremental sector condition with 𝛾𝛾, which enables convergence 
analysis for frequency-domain ILC, lifted ILC and the related technique of repetitive control. The resulting 
convergence conditions are reminiscent of the conditions employed in standard ILC. For example, 
frequency-domain nonlinear ILC is monotonically convergent in the vector 2-norm if 
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ℒ∞
+
𝛾𝛾
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a condition which can be evaluated easily using measured or identified frequency response data of the 
system. 
 
Simulation results 
Nonlinear frequency-domain ILC is validated in simulations. The results in Figure 7 show that nonlinear 
ILC achieves both fast convergence and low converged errors, removing the trade-off that is present in 
standard ILC. 
 

 

Figure 5  ILC with learning gain 𝛼𝛼 equal to 1(blue), 0.5 (red), 0.2 (yellow) and 0.1 (purple). Reducing 𝛼𝛼 
leads to lower errors because the noise amplification is reduced, at the cost of convergence speed. 
 

Figure 6  Iteration-varying and repeating 
(blue) disturbances. 
 

Figure 7  Nonlinear ILC (green) achieves both fast 
convergence and small converged errors, removing 
the trade-off that is present in standard ILC. 
 



 

3) Neural networks for flexible feedforward: cost functions, model structures and training 
data  

Neural networks are promising for flexible feedforward control, but combining them in a harmonious way 
with state-of-the-art feedback control is subtle and requires care. In particular: 

- The cost function used for training should reflect the aim of minimizing the tracking error, as  
||𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 − 𝑓𝑓𝑡𝑡𝑡𝑡||, with 𝑒𝑒(𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡) = 0, being small does not necessarily mean that 𝑒𝑒(𝑓𝑓𝑡𝑡𝑡𝑡) will be small. 

- The model structure should allow for non-causal feedforward, as many systems contain delays. 
- Training data, consisting of representative references and feedforward signals, should be 

generated in closed-loop, for example using ILC, as nonlinearities manifest along trajectories. 
 
Experimental results on the carriage of the Arizona flatbed printer (Figure 3) for two types of non-causal 
neural networks are shown in Figure 8. The results show that good performance can be achieved. 
Recurrent neural networks are shown to be sensitive to overfitting, reducing the performance. 
 
 
4) Weighting the errors that matter: cross-coupled iterative learning control  
For contour tracking applications, the error in time domain is less important than the deviation from the 
contour. Cross-coupled ILC can be used to design feedforward signals for these specific cases, by using a 
cost function that weights this contour error explicitly. The cost function also weights the error tangential 
to the contour error, to allow for specifying different aims in different parts of the trajectory. For 
example, one might want to slow down in sharp corners and make up for lost time when moving straight.  
 
Simulation results in Figure 9 show the improved tracking of the contour (black) when cross-coupled ILC 
is applied (blue, dashed) compared to the case without ILC (red, dotted).  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Conclusion 
Dedicated learning-based algorithms for feedforward control are developed by combining insights from 
precision mechatronics, control, and machine learning, leading to high performance in different use 
cases. To address the challenge of dealing with varying references, a method for efficient, automated 
model-free tuning of feedforward is parameters developed and the use of control-relevant neural 
networks for flexible feedforward is investigated. In addition, it is shown that a deadzone nonlinearity 
leads to reduced amplification of iteration-varying disturbances in ILC, and a dedicated ILC approach for 
contour tracking is developed. 
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Figure 8 Errors for a reference outside the 
training set resulting from 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 (blue), a non-
causal time-delay neural network (yellow) and 
a non-causal recurrent neural network (red) 
 

Figure 9  Iteration-varying and repeating 
(blue) disturbances. 
 


