

Learning Continually Under Changing Data Distributions

Citation for published version (APA):
Sokar, G. (2023). Learning Continually Under Changing Data Distributions. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Eindhoven University of Technology.

Document status and date:
Published: 31/10/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/7f1926c2-f0ff-4f0f-af49-b97c4796f4f3

Learning Continually
Under Changing

Data Distributions

Ghada Sokar

Learning C
ontinually U

nder C
hanging D

ata D
istributions

G
hada Sokar

Learning Continually Under Changing Data
Distributions

Ghada Sokar

Learning Continually Under Changing Data Distributions by Ghada
Sokar.
Eindhoven: Technische Universiteit Eindhoven, 2023. Proefschrift.

A catalogue record is available from the Eindhoven University of Tech-
nology Library

ISBN 978-90-386-5853-7

SIKS Dissertation Series No. 2023-27
The research reported in this thesis has been carried out under the
auspices of SIKS, the Dutch Research School for Information and
Knowledge Systems.
Keywords: continual learning, reinforcement learning, sparse neural net-

work training, dynamic sparse training, sparse representation,
changing data distributions, non-stationarity

Cover image: DALL.E 2

Cover design: ipskampprinting.nl

Printed by: ipskampprinting.nl

Copyright © 2023 by Ghada Sokar. All Rights Reserved.

Learning Continually Under Changing
Data Distributions

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus prof.dr. S.K. Lenaerts, voor een
commissie aangewezen door het College voor

Promoties, in het openbaar te verdedigen op dinsdag
31 oktober 2023 om 13:30 uur

door

Ghada Sokar

geboren te Ar Rass, Saoedi-Arabië

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr. M.T. de Berg
promotor: prof.dr. M. Pechenizkiy
copromotor: dr. D.C. Mocanu
leden: prof.dr. C. Dovrolis (Georgia Institute of Technology, The

Cyprus Institute)
prof.dr. D. Ernst (University of Liège)
prof.dr. T. Karkkainen (University of Jyvaskyla)
dr. C.P. de Campos

adviseur(s): dr. P.S. Castro (Google DeepMind)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uit-
gevoerd in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefen-
ing.

Summary

Classical deep learning has demonstrated remarkable accomplishments in var-
ious domains. However, these achievements have primarily been in isolated
single-task learning scenarios, assuming a stationary data distribution and ne-
cessitating a large number of training examples upfront. The rapid change in
the real world, accompanied by the generation of new data across various do-
mains, highlights the need for deep neural networks to possess the ability to
continually learn and adapt over time. This capability enables various applica-
tions, including autonomous vehicles that can adjust to new road conditions and
traffic patterns, as well as chatbots that can stay updated with the emergence of
new vocabulary and evolving user behavior. However, such a dynamic learning
regime has many challenges. For instance, networks tend to forget previously
learned knowledge when they are adapted to new data. Over time, networks
also lose their ability to effectively adapt to new information. Additionally, in
order to learn continuously, it is crucial to utilize a network’s capacity efficiently
to accommodate all the data encountered, while also ensuring that the training
process remains memory and computationally efficient.

In this thesis, we analyze the underlying factors contributing to the chal-
lenges of continuous learning through the lens of learned representations, train-
ing regimes, and network capacity utilization. Using these insights, we propose
novel methods for training deep neural networks on continuous data. We study
two learning paradigms. First, Continual Learning (CL), where a model sequen-
tially learns new tasks over time. Second, Deep Reinforcement Learning (DRL),
where a model is trained on a single environment (task); however, it continually

vi

learns new samples that are collected during training while interacting with the
environment. The main contributions of this thesis are summarized as follows:

• SpaceNet: We propose the first dynamic sparse training method for contin-
ual learning. SpaceNet trains a sparse sub-network from scratch for each
task and optimizes the sparse topology during training to learn sparse rep-
resentations. Our results demonstrate that dense representations learned
by conventional training contribute to forgetting past tasks. In contrast,
sparse representations effectively reduce interference among tasks and
forgetting. Furthermore, we show that the capacity of over-parameterized
models can be utilized efficiently to learn multiple tasks sequentially.

• SAM: We investigate the characteristics of useful representations that help
to learn new tasks. Our analyses show that having prior generic knowl-
edge before learning the continual sequence helps to improve perfor-
mance. In addition, selecting the relevant representation from the past
while learning new tasks promotes forward transfer and reduces forget-
ting via selective update of networks’ parameters. We demonstrate these
findings using our proposed Self-Attention Meta-learner (SAM).

• DST for DRL: We introduce for the first time Dynamic Sparse Training
(DST) to the reinforcement learning paradigm and study the adaptability
of networks to changing distributions. A sparse neural network is trained
from scratch, and its topology is dynamically adapted to the changing data
distribution during training. We show that networks trained using dy-
namic sparse training have faster adaptability and learning speed. More-
over, they outperform dense networks while reducing the floating-point
operations (FLOPs) required for training.

• ReDo: We investigate the underlying reasons behind the loss of adaptabil-
ity of dense networks to new samples over time. To this end, we analyze
changes in network utilization in deep reinforcement learning by monitor-
ing neuron activity. Our study reveals the existence of the dormant neuron
phenomenon, where an agent’s network suffers from an increasing num-
ber of inactive neurons, thereby affecting network expressivity. We found
that target non-stationarity is the main cause of this phenomenon. To
tackle this, we propose a simple method (ReDo) that Recycles Dormant
neurons during training. Our experiments demonstrate significant perfor-
mance improvements by reducing dormant neurons via recycling.

vii

We conclude this thesis by discussing our findings regarding effective rep-
resentations, training regimes, and network utilization for learning paradigms
with changing data distributions. We highlight the potential of sparse training
in addressing different challenges in such paradigms. We further discuss the
limitations of our proposed methods and present a range of promising direc-
tions for future work. These directions aim to contribute to developing more
accurate and efficient AI systems capable of adapting and improving over time
when encountering new information.

List of Publications

Ghada Sokar has the following publications:

Journal Publications

1. Zahra Atashgahi, Ghada Sokar, Tim van der Lee, Elena Mocanu, Decebal
Constantin Mocanu, Raymond Veldhuis, Mykola Pechenizkiy. Quick and
robust feature selection: the strength of energy-efficient sparse training for
autoencoders. Machine Learning, 1-38, 2022.

2. Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy. SpaceNet:
make free space For continual learning. Neurocomputing, 1–11, 2021.

Conference Publications

3. Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, Utku Evci. The
dormant neuron phenomenon in deep reinforcement learning. International
Conference on Machine Learning (ICML), PMLR, Oral, 2023.

4. Bram Grooten, Ghada Sokar, Shibhansh Dohare, Elena Mocanu, Matthew
E. Taylor, Mykola Pechenizkiy, Decebal Constantin Mocanu. Automatic
noise filtering with dynamic sparse training in deep reinforcement learning.
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2023.

x List of Publications

5. Ghada Sokar, Zahra Atashgahi, Mykola Pechenizkiy, Decebal Constantin
Mocanu. Where to pay attention in sparse training for feature selection?
Advances in Neural Information Processing Systems (NeurIPS), 2022.

6. Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pech-
enizkiy, Peter Stone. Dynamic sparse training for deep reinforcement learn-
ing. International Joint Conference on Artificial Intelligence (IJCAI), 2022.
Adaptive and Learning Agents Workshop at the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), Best Paper
Award, 2022.

7. Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy. Avoid-
ing forgetting and allowing forward transfer in continual learning via sparse
networks. The European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2022.

8. Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar,
Elena Mocanu, Mykola Pechenizkiy, Zhangyang Wang, and Decebal Con-
stantin Mocanu. Deep ensembling with no overhead for either training or
testing: the all-round blessings of dynamic sparsity. International Confer-
ence on Learning Representations (ICLR), 2022.

9. Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy. Self-
attention meta-learner for continual learning. International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2021.

10. Ghada Sokar. Continual lifelong learning for intelligent agents. Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Doctoral Con-
sortium, 2021.

11. Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy. Learning
invariant representation for continual learning. Meta-Learning for Com-
puter Vision Workshop at the AAAI Conference on Artificial Intelligence
(AAAI), 2021.

xi

12. Shiwei Liu, Tim Van der Lee, Anil Yaman, Zahra Atashgahi, Davide Fer-
raro, Ghada Sokar, Mykola Pechenizkiy, and Decebal Constantin Mocanu.
Topological insights into sparse neural networks. The European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD), 2020.

13. Ghada Sokar, Yassien Zakaria, Asmaa Rabie, Kareem Madkour, Ira Lev-
enthal, Jochen Rivoir, Xinli Gu, and Haralampos-G. Stratigopoulos. "IP
Session on Machine Learning Applications in IC Test-Related Tasks." In
2019 IEEE 37th VLSI Test Symposium (VTS), pp. 1-1. IEEE, 2019.

14. Ghada Sokar, Elsayed E. Hemayed, and Mohamed Rehan. "A generic
OCR using deep siamese convolution neural networks." In 2018 IEEE 9th
Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), pp. 1238-1244. IEEE, 2018.

Preprint (under review / in preparation)

15. Murat Onur Yildirim, Elif Ceren Gok, Ghada Sokar, Decebal Constantin
Mocanu, Joaquin Vanschoren. Continual learning with dynamic sparse
training: exploring algorithms for effective model updates. 2023.

16. Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy. The role
of data in continual learning. 2023.

Contents

Summary v

List of Publications ix

List of Figures xvii

List of Tables xxv

1 Introduction 1
1.1 Continual Learning . 2

1.1.1 Scenarios for Continual Learning 3
1.1.2 Desiderata of Continual Learning 4

1.2 Deep Reinforcement Learning . 5
1.3 Research Questions . 7
1.4 Thesis Contributions and Outline 8

1.4.1 Chapter 2 . 9
1.4.2 Chapter 3 . 9
1.4.3 Chapter 4 . 10
1.4.4 Chapter 5 . 10
1.4.5 Chapter 6 . 11

1.5 Reading This Thesis . 11

2 SpaceNet: Make Free Space for Continual Learning 13
2.1 Introduction . 14

xiv CONTENTS

2.2 Background . 16
2.2.1 Continual Learning . 16
2.2.2 Dynamic Sparse Training (DST) 17

2.3 Related Work . 17
2.4 SpaceNet . 19
2.5 Experiments . 25

2.5.1 Datasets . 25
2.5.2 Architectures . 26
2.5.3 Experimental Details . 26
2.5.4 Evaluation Metrics . 27
2.5.5 Experimental Results . 27

2.6 SpaceNet Analysis . 30
2.6.1 Learned Representation . 30
2.6.2 Learned Topology . 32
2.6.3 Memory Efficiency Improvement 33
2.6.4 Utilizing Model Capacity . 35

2.7 Conclusion and Future Work . 35

3 Self-Attention Meta-Learner for Continual Learning 37
3.1 Introduction . 38
3.2 Related Work . 40

3.2.1 Continual Learning Strategies 40
3.2.2 Continual Learning and Meta Learning 41
3.2.3 Attention . 41

3.3 Self-Attention Meta-Learner (SAM) 42
3.4 Experiments . 46

3.4.1 Split CIFAR-10/100 . 46
3.4.2 Split MNIST . 48

3.5 Analysis . 50
3.5.1 Effect of the Meta-attention Mechanism on Performance . 50
3.5.2 Learned Representation . 51
3.5.3 Role of Prior Knowledge . 51
3.5.4 Knowledge Reusability . 52

3.6 Improvements of CL Approaches with SAM 54
3.7 Conclusion and Future Work . 56

CONTENTS xv

4 Dynamic Sparse Training for Deep Reinforcement Learning 59
4.1 Introduction . 60
4.2 Related Work . 61

4.2.1 Sparsity in DRL . 61
4.2.2 Dynamic Sparse Training (DST) 62

4.3 Proposed Method . 63
4.4 Experiments and Results . 68

4.4.1 Baselines . 68
4.4.2 Benchmarks . 68
4.4.3 Metrics . 68
4.4.4 Results . 69

4.5 Analysis . 71
4.5.1 Memory and Computation Costs 71
4.5.2 Adaptation Schedule . 71
4.5.3 Sparsity Level . 72
4.5.4 Learning Behavior and Speed 73

4.6 Conclusion and Future Work . 74

5 The Dormant Neuron Phenomenon in Deep Reinforcement Learning 75
5.1 Introduction . 76
5.2 The Dormant Neuron Phenomenon 78
5.3 Recycling Dormant Neurons (ReDo) 83
5.4 Empirical Evaluations . 85

5.4.1 Consequences for Sample Efficiency 85
5.4.2 Learning Rate Scaling . 87
5.4.3 Is Over-parameterization Enough? 88
5.4.4 Comparison with Related Methods 89
5.4.5 Neuron Selection Strategies 90

5.5 Related Work . 91
5.6 Conclusion and Future Work . 92

6 Conclusions and Future Work 95
6.1 Conclusions . 95
6.2 Limitations . 98
6.3 Future Work . 99

Appendices 101

xvi CONTENTS

A Additional Experimental Details and Analyses on Chapter 3 103
A.1 Additional Experiment Details . 103

A.1.1 Continual Learning Training Details 103
A.1.2 Meta-training Details . 104

A.2 Gradual Learning Behavior of SAM 104

B Additional Experimental Details and Analyses on Chapter 4 107
B.1 Experimental Details . 107
B.2 Evaluation Metrics . 108
B.3 Hardware and Software Support 109
B.4 Learning Behavior Analysis . 110
B.5 DS-SAC . 110

C Additional Experimental Details and Analyses on Chapter 5 115
C.1 Experimental Details . 115
C.2 The Dormant Neuron Phenomenon in Different Domains 119
C.3 Recycling Dormant Neurons . 121

C.3.1 Effect of Activation Function 122
C.3.2 Recycling Strategies . 123
C.3.3 Effect of Batch Size . 123
C.3.4 Comparison with Continual Backprop 124
C.3.5 Effect of Recycling the Dormant Capacity 125

C.4 Performance Per Game . 126

Bibliography 131

Curriculum Vitae 157

SIKS Dissertations 158

List of Figures

1.1 An illustration of the class-incremental learning scenario in the
continual learning paradigm. A model learns new tasks sequen-
tially. Each task brings a new set of classes. Task labels are not
available at the test time. The model can make inferences on all
previously seen classes at any point. 3

2.1 An overview of SpaceNet for learning a sequence of tasks. All
tasks have the same shared output layer. The figure demonstrates
the network states after learning each of the first three tasks in
the sequence. When the model faces a new task t , sparse con-
nections are allocated and compacted throughout the dynamic
sparse training in the most important neurons for this task, mak-
ing free space for learning more tasks. The fully filled circles
indicate the neurons that are highly important and specific to
task t , while the partially filled circles represent neurons that are
less important and potentially shared with other tasks. Multiple
colored circles represent the neurons that are used by multiple
tasks. After learning task t , the corresponding weights are kept
fixed. 15

xviii LIST OF FIGURES

2.2 An overview of the main three steps of SpaceNet illustrated on
one layer. (I) When a new task arrives, new sparse connections
are allocated among non-reserved (free) neurons. (II) During our
proposed dynamic sparse training, the topology is optimized by
redistributing the connections among the important neurons for
the current task (higher importance is represented via darker col-
ors. (III) After training, a subset of the most important neurons
is reserved, and the weights of the subnetwork are fixed. 20

2.3 Accuracy on each task of CIFAR-10/100 benchmark for different
CL approaches after training the last task. Results for other ap-
proaches are adopted from [ML19]. Task 1 is the full dataset
of CIFAR10, while task 2 to task 6 are the first 5 tasks from CI-
FAR100. Each task contains 10 classes. The absence of accu-
racy for certain tasks in some methods indicates zero accuracy
value. The “average” x-axis label shows the average accuracies
computed overall tasks for each method. SpaceNet managed to
utilize the available model capacity efficiently between tasks, un-
like other methods that have high performance on the last task
but completely forget some other previous tasks. 29

2.4 Heatmap of the first and second hidden layers activations after
forwarding a subset of the test data of task 1 of Split MNIST. The
y-axis represents the test samples. The first 50 samples belong to
class 0, while the other 50 belong to class 1. 31

2.5 Connections distribution between the two hidden layers for one
task of the Split MNIST benchmark. The initial random distri-
bution of the connections on the selected neurons (a) and the
learned distribution after training (b). The connections are com-
pacted in some of the neurons. 32

2.6 Visualization of the number of outgoing connections from each
input neuron for three different tasks in Split MNIST in the case
of the Static-SparseNN baseline (top) and SpaceNet (bottom).
SpaceNet redistributes the connections in the important neurons
that identified the digits in each task. 33

2.7 Comparison between SpaceNet and other CL methods on split
MNIST in terms of model size. 34

LIST OF FIGURES xix

3.1 An overview of our proposed method, SAM. The network con-
sists of two sub-networks. The first sub-network, parameterized
by θ, is trained using an optimization-based meta-learning algo-
rithm to learn the prior generic knowledge. This learned repre-
sentation is shared between all tasks. A self-attention module is
added after each layer to select the relevant representation for
each task. The second sub-network contains a specific represen-
tation parameterized by φi for each task ti that is learned on top
of the selected representation whenever the model faces this task. 39

3.2 The accuracy of each task of the Split CIFAR-10/100 benchmark
in the class incremental learning scenario after training all tasks.
The “Average” x-axis label shows the average accuracy computed
over all tasks for each method. Results for other methods except
“Scratch(TA)” are reported from [ML19]. 48

3.3 The visualization of the activation in shared sub-network for Split
MNIST. The representation for each layer is reshaped to 20×20.
Each row represents a random sample of a class in a certain task.
We illustrate the activation before being calibrated, the output
of the attention module, and the recalibrated activation in the
first (a) and second (b) blocks. The last column represents the
selected representation passed to the specific sub-networks. . . . 52

3.4 FWT comparison between SAM and the “Standard” setting used
in most of the previous CL methods. In the Standard setting, the
shared sub-network is initialized by the learned knowledge from
Task 1 (airplane, automobile) from the CIFAR10 benchmark (a).
FWT is evaluated on a dissimilar task (bird, cat) (b) and another
similar task (ship, truck) (c). SAM promotes forward transfer
in case of dissimilar tasks. While in the Standard setting, the
knowledge learned by Task 1 contains less information useful for
Task 2. 53

3.5 Activations in the shared sub-network for the Split MNIST bench-
mark. The representation is reshaped to 20×20. The first and sec-
ond rows show the representations when the shared sub-network
is initialized by SAM and a random initialization (ELM), respec-
tively. 54

4.1 Learning curves of the studied algorithms on different continu-
ous control tasks. The shaded region represents the standard
deviation of the average evaluation over 5 runs. 70

xx LIST OF FIGURES

4.2 The learning curves of DS-TD3 on HalfCheetah-v3 using different
adaptation schedules. 71

4.3 The learning curves of DS-TD3 on HalfCheetah-v3 using different
sparsity levels. 72

4.4 Learning curves of agents that start training with samples drawn
from policies trained for 5×105 (a) and 7×105 steps (b). 73

5.1 Sample efficiency curves for DQN, with a replay ratio of 1,
when using network resets [NSD+22], weight decay (WD), and
our proposed ReDo. Shaded regions show 95% CIs. The figure
shows interquartile mean (IQM) human-normalized scores over
the course of training, aggregated across 17 Atari games and 5
runs per game. Among all algorithms, DQN+ReDo performs the
best. 77

5.2 The percentage of dormant neurons increases throughout train-
ing for DQN agents. 78

5.3 Percentage of dormant neurons when training on CIFAR-10 with
fixed and non-stationary targets. Averaged over 3 independent
seeds with shaded areas reporting 95% confidence intervals. The
percentage of dormant neurons increases with non-stationary tar-
gets. 79

5.4 Offline RL. Dormant neurons throughout training with standard
moving targets and fixed (random) targets. The phenomenon is
still present in offline RL, where the training data is fixed. 80

5.5 The overlap coefficient of dormant neurons throughout training.
There is an increase in the number of dormant neurons that re-
main dormant. 81

5.6 Pruning dormant neurons during training does not affect the per-
formance of an agent. 81

5.7 The rate of increase in dormant neurons with varying replay ratio
(RR) (left). As the replay ratio increases, the number of dormant
neurons also increases. The higher percentage of dormant neu-
rons correlates with the performance drop that occurs when the
replay ratio is increased (right). 82

5.8 A pretrained network that exhibits dormant neurons has less abil-
ity than a randomly initialized network to fit a fixed target. Re-
sults are averaged over 5 seeds. 83

LIST OF FIGURES xxi

5.9 Evaluation of ReDo’s effectiveness (with τ = 0.025) in reducing
dormant neurons (left) and improving performance (right) on
DQN (with RR = 0.25). 84

5.10 Evaluating the effect of increased replay ratio with and without
ReDo. From left to right (top to bottom): DQN with default set-
tings, DQN with n-step of 3, DQN with the ResNet architecture,
and DrQ(ϵ). We report results using 5 seeds, while DrQ(ϵ) use
10 seeds; error bars report 95% confidence intervals. 86

5.11 Effect of reduced learning rate in high replay ratio setting. Scal-
ing learning rate helps, but does not solve the dormant neuron
problem. Aggregated results across 17 games (left) and the per-
centage of dormant neurons during training on DemonAttack
(right). 87

5.12 Performance of DQN trained with RR = 1 using different network
width. Increasing the width of the network slightly improves the
performance. Yet, the performance gain does not reach the gain
obtained by ReDo. ReDo improves the performance across differ-
ent network sizes. 88

5.13 Comparison of the performance for ReDo and two different reg-
ularization methods (Reset [NSD+22] and weight decay (WD))
when integrated with training DQN agents. Aggregated results
across 17 games (left) and the learning curve on DemonAttack
(right). 89

5.14 Comparison of the performance of SAC agents with ReDo and two
different regularization methods (Reset [NSD+22] and weight
decay (WD)). See Figure C.5 for other environments. 89

5.15 Comparison of different strategies for selecting the neurons that
will be recycled. Recycling neurons with the highest score (In-
verse ReDo) or random neurons causes performance collapse. . . 90

A.1 The first three rows show the accuracy for each task in the Split
CIFAR-10/100 benchmark as a function of the number of trained
tasks so far. Each panel shows the accuracy of each task starting
from the point where the model faces that task and after facing
each consecutive task. The last row shows the average accuracy
over all the tasks learned so far. 105

xxii LIST OF FIGURES

A.2 The first five panels show the accuracy for each task in the Split
MNIST benchmark as a function of the number of trained tasks
so far. Each panel shows the accuracy of each task starting from
the point where the model faces that task and after facing each
consecutive task. The last panel shows the average accuracy over
all the tasks learned so far. 106

B.1 Learning curves of SAC and DS-SAC on different continuous con-
trol tasks. The shaded region represents the standard deviation
of the average evaluation over 5 runs. 114

C.1 Effect of replay ratio in the number of dormant neurons for DQN
on Atari environments (experiments presented in Figure 5.7). . . 119

C.2 The dormant neuron phenomenon becomes apparent as the num-
ber of training steps increases during the training of DrQ(ϵ) with
the default replay ratio on Atrai 100K. 120

C.3 The number of dormant neurons increases over time during the
training of SAC on MuJoCo environments. 120

C.4 Pruning dormant neurons during the training of SAC on MuJoCo
environments does not affect the performance. 121

C.5 Comparison of the performance of SAC agents with ReDo and two
different regularization methods. 121

C.6 Training performance and dormant neuron characteristics of net-
works using leaky ReLU with a negative slope of 0.01 (default
value) compared to original networks with ReLU. 122

C.7 Comparison of performance with different strategies of reinitial-
izing the outgoing connections of dormant neurons. 123

C.8 Comparison of performance with different strategies of reinitial-
izing the incoming connections of dormant neurons. 123

C.9 Effect of the batch size used to detect dormant neurons. 124
C.10 Comparison of different strategies for selecting the recycled neu-

rons. 124
C.11 Comparison of agents with varying replay ratios, while keeping

the number of gradient updates constant. 125
C.12 Training curves for DQN with the nature CNN architecture (RR = 1).127
C.13 Training curves for DQN with the nature CNN architecture (RR =

0.25). 128
C.14 Training curves for DrQ(ϵ) with the nature CNN architecture (RR =

4). 129

LIST OF FIGURES xxiii

C.15 Training curves for DrQ(ϵ) with the nature CNN architecture (RR =
1). 130

List of Tables

2.1 Comparison between different CL methods in terms of their ful-
fillment of different continual learning desiderata. 19

2.2 ACC and BWT on Split MNIST and Split Fashion MNIST using dif-
ferent approaches. Results for regularization and rehearsal meth-
ods on Split MNIST are adopted from [vdVT18,HLRK18]. 28

2.3 Effect of learning sparse representation in the continual learning
paradigm. 31

2.4 Comparison between different strategies across different contin-
ual learning desiderata. 34

2.5 ACC and BWT on the iCIFAR100 benchmark using two different
architectures. 35

3.1 Average accuracy on the Split MNIST benchmark in TIL and CIL. 50
3.2 Ablation study of SAM on the Split MNIST and Split CIFAR-10/100

benchmarks in CIL. 51
3.3 A comparison between the random initialization (ELM) and the

initialization by the generic prior knowledge (SAM) for the shared
sub-network. 54

3.4 Enhancing existing continual learning strategies by SAM. “Stan-
dard” represents the original form of the methods. The accuracy
is reported on the Split MNIST and Split CIFAR-10/100 bench-
marks in CIL. 55

4.1 Learning curve area (LCA) (× 5000) of different methods. 69

xxvi LIST OF TABLES

4.2 Average return (R) over the last 10 evaluations of 1 million time
steps. 69

B.1 The value used for λ1 and λ2 in each environment for the DS-SAC
algorithm. 111

B.2 Learning curve area (LCA) (× 5000) of SAC and DS-SAC. 112
B.3 Average return over the last 10 evaluations of 1 million time steps

using SAC and DS-SAC. 113

C.1 Common Hyper-parameters for DQN and DrQ(ϵ). 116
C.2 Hyper-parameters for DQN. 117
C.3 Hyper-parameters for DrQ(ϵ). 117
C.4 Hyper-parameters for SAC. 118
C.5 Hyperparameters for CIFAR-10. 119
C.6 Performance of SAC on Ant-v2 using using half and a quarter of

the width of the actor and critic networks. 122
C.7 Effective rank [KAGL21] of the learned representations of agents

trained on DemonAttack. 126

Chapter 1
Introduction

Deep learning has achieved many recent breakthroughs in machine learning
[HZRS16, TL19, LMW+22, KNH+22, DBK+20]. Despite the remarkable perfor-
mance of deep neural network models, the learning paradigm of such models
has some limitations. These models are typically trained on individual isolated
tasks, assuming a static world, and rely on having a large number of train-
ing examples available before training. The data distribution remains constant
during the training process. After training, the model’s applicability is limited
to making inferences on data drawn from the same training distribution and
is inflexible to learning new data. Such limitations hinder the applicability of
these models to real-life applications in which data evolve over time. The rapid
change in the real world, accompanied by the generation of new data across
various domains, highlights the need for deep neural networks to possess the
ability to learn and adapt continually. This capability would push the advance

This chapter is partly based on:
[1] Ghada Sokar. Continual lifelong learning for intelligent agents. International Joint Conference
on Artificial Intelligence (IJCAI), Doctoral Consortium, 2021.
[2] Ghada Sokar, Zahra Atashgahi, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Where
to pay attention in sparse training for feature selection? Advances in Neural Information Processing
Systems (NeurIPS), 2022.
[3] Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy. Avoiding forgetting and allow-
ing forward transfer in continual learning via sparse networks. The European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2022.
[4] Bram Grooten, Ghada Sokar, Shibhansh Dohare, Elena Mocanu, Matthew E. Taylor, Mykola
Pechenizkiy, Decebal Constantin Mocanu. Automatic noise filtering with dynamic sparse training
in deep reinforcement learning. International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2023.

2 Introduction

in machine learning to the next level. It would enable the building of up-to-
date Artificial Intelligent (AI) systems, which are crucial for many applications.
Fraud detection systems provide an example of this concept, as they can im-
prove security by identifying newly emerging fraud patterns while simultane-
ously retaining their capability to detect older patterns. Another example that
highlights the necessity of continuous learning models is evident in autonomous
vehicles. These systems must constantly learn new situations on the road, evolv-
ing traffic patterns, and new environments. As a system operates and gathers
more experience, it can incorporate new knowledge to make more informed
decisions, enhancing overall performance.

A native solution to enable current deep neural networks to learn continu-
ally is retraining from scratch on old and new data. Although this approach is
straightforward, it comes with significant drawbacks. Recent successes in deep
learning have been achieved by large models with millions or even trillions of
parameters [HZRS16, BMR+20]. Retraining such models on massive data each
time new samples arrive requires prohibitive memory and computational costs,
as well as substantial energy consumption. For instance, it is estimated that
GPT-3 [BMR+20] costs 552 tons of CO2 equivalent emissions to train [PGL+21].
This hinders the building of greener AI systems. Moreover, the training of these
large models is extremely expensive. Recognizing these limitations has driven
the emergence of a novel learning regime for deep neural networks. In this
regime, a network continually learns new data over time while retaining previ-
ously acquired knowledge and leveraging it to facilitate future learning. Unlike
the classical learning paradigm, which assumes the availability of all data prior
to training, this new regime enables networks to learn incrementally without
the need for all data upfront. However, this introduces the challenge of train-
ing networks on changing data distributions, necessitating novel techniques to
address this dynamic nature of the learning process.

In this thesis, we study two learning paradigms that fall under this learn-
ing regime, which we dub “learning on changing data distributions”: contin-
ual learning and deep reinforcement learning. Before introducing our research
questions, we provide the problem formulation and main challenges for each
learning paradigm in the next two sections.

1.1 Continual Learning

In Continual Learning (CL), a neural network model learns a series of tasks
sequentially {1,2, ..., t , ...,T }; where T is the total number of tasks. Each task

1.1 Continual Learning 3

Figure 1.1: An illustration of the class-incremental learning scenario in the continual
learning paradigm. A model learns new tasks sequentially. Each task brings
a new set of classes. Task labels are not available at the test time. The model
can make inferences on all previously seen classes at any point.

t has its dataset D t . A model faces tasks one by one. All samples from the
current task are observed before switching to the next task. The goal is to learn
a function f parameterized by θ that minimizes the loss ℓ on the current task
without affecting previous tasks. Formally, at task t , the objective is as follows:

argmin
θ

ℓ(fθ ,D t) s.t ℓ(fθ ,D i) ≤ ℓ(f (t−1)
θ

,D i) ∀i < t , (1.1)

where f (t−1)
θ

is the learned function till task t−1. In Section 1.1.2, we will discuss
current methods that address this objective along with other continual learning
desiderata. Before diving into that, we discuss different existing scenarios for
continual learning.

1.1.1 Scenarios for Continual Learning

Recent works have divided the continual learning paradigm into different sce-
narios based on incoming data [vdVT18, WZSZ23]. It includes the following
scenarios:

• Instance-Incremental Learning (IIL): Training samples are coming from
the same task and arrive in batches.

• Domain-Incremental Learning (DIL): Tasks have the same label space,
but the input distribution is different. Thus, new tasks contain the same
classes, but the data is drawn from different domains.

4 Introduction

• Task-Incremental Learning (TIL): Tasks have disjoint label space. New
tasks bring new classes. The task identity/label is available during training
and testing. Given a task label, the model should predict a label from the
set of classes within one task.

• Class-Incremental Learning (CIL): Similar to TIL, tasks have disjoint label
space. However, the task identity is available only during training. At
inference, the model should classify the input to one of all seen classes so
far.

In this thesis, we consider the supervised image classification problem and
focus on the most challenging scenario (class-incremental learning (CIL)) [vdVT18,
HLRK18]. An overview of this scenario is illustrated in Figure 1.1. Furthermore,
we address the even more challenging situation where a model operates with
no access to previous training samples, and its fixed-capacity is utilized without
expansion. These constraints address multiple CL desiderata, as we will discuss
next.

In Section 1.2, we will discuss the reinforcement learning paradigm, wherein
the scenario of instance incremental learning (IIL) finds its manifestation.

1.1.2 Desiderata of Continual Learning

The goal of continual learning is to optimize the objective function presented in
Equation 1.1 while taking into consideration the following desiderata [HRRP20,
DRLFM18]:

• Backward transfer. Learning new tasks should not negatively affect per-
formance on old tasks and may even enhance their performance.

• Forward transfer. The model should use the previously learned knowl-
edge to help in future learning.

• Minimal access to old task data. The model should not rely on the
availability of past data while learning new tasks to account for possible
privacy concerns and computational and memory efficiency.

• Minimal expansion of model capacity. The model should not get bigger
with every new task, and the capacity of the model should be utilized
efficiently.

1.2 Deep Reinforcement Learning 5

• Task agnostic. The model should not rely on the availability of task iden-
tity at inference.

• Computational and memory efficiency. To achieve scalability and ef-
ficient learning of a sequence of tasks, the computational and memory
requirements of the training approach should be considered.

Addressing multiple desiderata simultaneously is challenging. For instance,
forward and backward transfers may be competing. Changing the model param-
eters to adapt to a new task causes forgetting the previously learned knowledge
(negative backward transfer). On the other hand, limiting the change of the
model parameters would hinder learning new tasks. This challenge is known as
the stability-plasticity dilemma [MBB13]. The competition increases when we
consider other CL requirements, such as restrictions in expanding the model ca-
pacity or having no or limited access to old data. Moreover, recent studies have
demonstrated that deep neural networks lose their plasticity over time, making
continual learning more challenging [DMS21,AZM+23].

Research in continual learning can be categorized into three main direc-
tions: rehearsal-based, architectural-based, and regularization-based strategies
[WZSZ23, LAM+19]. The rehearsal-based strategy involves replaying old data
while using a fixed-capacity model. Although it has been successful in achieving
better performance compared to other strategies, it has limitations related to ac-
cessing old data and managing memory and computational costs. On the other
hand, the regularization-based strategy relies on constraining the changes of
network weights through regularization techniques and employs fixed-capacity
models without access to previous data. However, many of these methods en-
counter issues such as the stability-plasticity dilemma, leading to suboptimal
performance. The architectural-based strategy focuses on balancing forward
and backward transfer by modifying the model architecture, typically by ex-
panding the model capacity when learning a new task. Despite these efforts,
achieving a balance that fulfills all CL requirements remains an ongoing and
challenging problem.

1.2 Deep Reinforcement Learning

Deep reinforcement learning (DRL) is another form of learning on changing
data distributions. In this paradigm, there are no training samples upfront. An
agent (model) collects the samples incrementally during training while interact-
ing with the environment. This represents an example of instance-incremental

6 Introduction

learning discussed above, where all samples belong to one task (environment)
and arrive in batches of size 1. There is no labeled data, and the agent learns
by trial and error. These introduce changes in the data distribution throughout
training, as we will discuss next.

Formally, we consider a Markov decision process [Put14], M= 〈S,A,R,P,γ〉,
defined by a state space S, an action space A, a reward function R : S×A→ R,
a transition probability distribution P(s′|s, a) indicating the probability of tran-
sitioning to state s′ after taking action a from state s, and a discounting factor
γ ∈ [0,1). An agent’s behaviour is formalized as a policy π : S→ Di st (A); given
any state s ∈ S and action a ∈A, the value of choosing a from s and following
π afterwards is given by Qπ(s, a) = E[

∑∞
t=0γ

tR(st , at)]. The goal in RL is to find a
policy π∗ that maximizes this value: for any π, Qπ∗ :=Q∗ ≥Qπ.

In deep reinforcement learning, the Q-function is represented using a neu-
ral network Qθ with parameters θ. During training, an agent interacts with the
environment and collects trajectories of the form (s, a,r, s′) ∈ S×A×R×S. These
samples are typically stored in a replay buffer [Lin92], from which batches are
sampled to update the parameters of Qθ using gradient descent. The optimiza-
tion performed aims to minimize the temporal difference loss [Sut88]: L =
Qθ(s, a)−QT

θ
(s, a); here, QT

θ
(s, a) is the bootstrap target [R(s, a)+γmaxa′∈AQθ̃(s′, a′)]

and Qθ̃ is a delayed version of Qθ that is known as the target network.
The number of gradient updates performed per environment step is known

as the replay ratio. This is a key design choice that has a substantial impact on
performance [VHHA19,FRA+20,KAM+21,NSD+22]. Increasing the replay ratio
can increase the sample-efficiency of RL agents as more parameter updates per
sampled trajectory are performed. However, prior works have shown that train-
ing agents with a high replay ratio can cause training instabilities, ultimately
resulting in decreased agent performance [NSD+22].

One important aspect of reinforcement learning, when contrasted with clas-
sical supervised learning on a single task, is that RL agents train on highly non-
stationary data, where the non-stationarity comes in a few forms [IFL+20]:

• Input data non-stationarity: The data the agent trains on is collected in
an online manner by interacting with the environment using its current
policy π; this data is then used to update the policy, which affects the
distribution of future samples.

• Target non-stationarity: The learning target used by RL agents is based
on its own estimate Qθ̃, which is changing as learning progresses.

The learning nature of DRL agents makes the training challenging. Most

1.3 Research Questions 7

research focuses on providing algorithmic tricks to address training instabil-
ity, such as the use of target networks, prioritized experience replay, multi-step
targets, among others [HMVH+18]. Although these methods have shown suc-
cess in enhancing performance, gaining a deeper understanding of the behav-
ior of deep neural networks in the context of RL learning dynamics is valu-
able for addressing the underlying causes of the challenges. For instance, re-
cent works demonstrate that deep neural networks suffer from implicit under-
parameterization during RL training, affecting their expressivity and ability to
adapt and fit new targets [LRD21, KAGL21]. Thus, similar to the observations
made in continual learning, RL agents also experience a loss of plasticity over
time [LZN+23]. Another work shows deep networks’ tendency to overfit early
samples affecting the rest of the learning process. These observations may also
contribute to the fact that deep networks require a very long training time to
achieve good performance [VBC+19], which results in significant memory and
computational costs.

1.3 Research Questions

Enabling deep neural networks to adapt to changing data distributions is vital
for numerous applications; however, achieving this objective poses several chal-
lenging problems, as previously discussed. In this thesis, we aim to improve
the ability of deep networks to learn continually while enhancing memory and
computational efficiency. To this end, we address the main challenges in this
learning regime, including catastrophic forgetting, forward transfer, adaptabil-
ity, and the loss of expressivity and plasticity. We investigate these challenges
through the lens of learned representations, training regimes, and the utiliza-
tion of the model capacity. More specifically, we address the following research
questions:

(Q1) How to learn new tasks representations without affecting old ones?

One of the main obstacles in continual learning is that optimizing the
network weights for a new task overwrites the previously learned one,
especially when a fixed-capacity model is used, and there is no access to
past data. Learning effective representation without forgetting is crucial
for such a learning paradigm.

(Q2) How to make use of previously acquired knowledge to facilitate learn-
ing a new task?

8 Introduction

While most research focuses on mitigating forgetting, it is equally crucial
to consider the promotion of forward transfer, enabling faster learning of
new tasks. By analyzing the characteristics of representations that facil-
itate learning new tasks, we can develop training approaches that effec-
tively address both backward and forward transfer.

(Q3) How to improve the adaptability to new samples and training effi-
ciency to reduce training time?

Adapting to changing data distributions may prolong training time, es-
pecially when a model learns by trial and error (i.e., DRL training). Ex-
ploring an alternative technique to train these models in memory and a
computationally efficient manner while improving their adaptability has
great value for developing models with improved capabilities and effi-
ciency. Moreover, such advancements pave the way for training these
models on edge devices, further extending their applicability.

(Q4) What is the underlying reason behind the loss of adaptability over
time during training?

It has been observed that dense networks lose their expressivity and ability
to fit new targets over time, despite being over-parameterized. By gaining
insights into the behavior of deep neural networks in RL learning dynam-
ics, we can better understand this phenomenon and develop improved
DRL agents capable of learning effectively in non-stationary conditions.

1.4 Thesis Contributions and Outline

We conduct several studies to address the above-mentioned research questions.
In Chapter 2, we present a novel approach that learns sparse representations
for continual learning, effectively addressing forgetting without needing access
to past data. Chapter 3 centers around studying the characteristics of repre-
sentations that promote forward transfer in continual learning. To improve
the memory and computational efficiency of training RL agents while achieving
high performance, we introduce dynamic sparse training in DRL in Chapter 4. In
Chapter 5, we analyze potential causes for the loss of expressivity in RL training
and propose an effective method to mitigate this issue. We provide an outline
of the thesis and a summary of the main contributions below:

1.4 Thesis Contributions and Outline 9

1.4.1 Chapter 2

In Chapter 2, we introduce SpaceNet [SMP21b], the first dynamic sparse train-
ing approach that is designed to enable deep neural network models to learn
continually while satisfying multiple continual learning desiderata. Instead
of training a dense model on the continual sequence, we train a sparse sub-
network from scratch for each task. During training, the weights and the topol-
ogy (distribution of the sparse connections) are optimized to learn sparse repre-
sentations for the task. We show that sparse representations are very promising
for this learning paradigm as they significantly reduce interference between
tasks and forgetting. Moreover, the over-parameterized capacity of the model
can be utilized efficiently to learn multiple tasks by using a sparse subnetwork
for each one. Interestingly, we show that SpaceNet with a fixed capacity model
outperforms methods that expand the model size over time. Furthermore, we
demonstrate that SpaceNet outperforms other methods that learn dense repre-
sentations by a big margin.

1.4.2 Chapter 3

The insights from SpaceNet show the effectiveness of sparse representations
in reducing forgetting in the continual learning paradigm. Yet, there is a lack
of understanding of the characteristics of representations useful for promoting
forward transfer to future tasks. Is all the previously learned representation
useful for learning new tasks? To study this question, in Chapter 3, we pro-
pose SAM [SMP21a], a Self-Attention Meta-learner for continual learning. SAM
learns to calibrate the input features in each layer according to the input data.
We show that representation useful for learning a new task is sparse. Not all
previously learned knowledge might be useful for new tasks, and using dense
representations reduces performance. Interestingly, we demonstrate that se-
lecting the relevant knowledge while learning a new task is also beneficial for
reducing forgetting, as the weights are also selectively updated based on their
relevance. Finally, we show that having generic prior knowledge before learning
a sequence of tasks improves performance.

Based on our findings from this chapter, we further propose another method
based on sparse training that learns sparse representations to reduce forgetting
while also selecting the potential features from the past to increase forward
transfer [SMP22]. We demonstrate that the learned topology of each task plays
an important role in addressing both objectives. Moreover, new tasks can reuse
some learned components instead of allocating new sparse connections in each

10 Introduction

layer in the network. Additionally, we propose another effective sparse training
method that can quickly select informative features from the input [SAPM22].
We optimize the sparse topology to give more attention to important features,
estimated by their impact on the loss and the magnitude of their connected
weights. We show that our proposed method can identify important features in
a few training iterations, even for high-dimensional feature space.

1.4.3 Chapter 4

Training deep neural networks to adapt to changing data distributions is chal-
lenging. The challenge increases when a model learns a task with no true la-
bels. Deep reinforcement learning (DRL) exemplifies this scenario. Achieving
good performance with dense neural networks under these challenges requires
significant training time, resulting in the consumption of prohibitive computa-
tional and memory resources [VBC+19]. To address these limitations, in Chap-
ter 4, we introduce for the first time dynamic sparse training in this learning
paradigm [SMM+22]. A sparse neural network is trained from scratch, and
its topology is optimized during training to adapt to the changing data distri-
bution. Our study conveys that dynamic sparse agents have a faster learning
speed than dense agents. They can reach the performance of dense agents with
a 40 - 50% reduction in the training steps. Comparing our method to train-
ing sparse agents with fixed topology reveals that the dynamic adaptability of
the topology throughout training contributes to improved learning. Besides the
improved performance achieved by dynamic sparse agents, they significantly
reduce memory and computational costs during training and inference. Our
contributions open the door for DRL agents to be trained and deployed on low-
resource devices (e.g., mobile phones, tablets, and wireless sensor nodes) where
the memory and computation power are strictly constrained.

In [GSD+23], we further investigate the effectiveness of dynamic sparse
agents in more challenging scenarios where environments are extremely noisy.
Our analyses demonstrate that dense agents fail to maintain their performance.
In contrast, dynamic sparse agents are able to attend to task-relevant features,
outperforming their dense counterparts by a large margin. Moreover, we show
that sparse agents have faster adaptability when they face new tasks over time.

1.4.4 Chapter 5

The underlying reasons for the loss of the ability of dense models to adapt to
new samples are still not fully understood. To tackle this question, in Chap-

1.5 Reading This Thesis 11

ter 5, we analyze the utilization of network capacity throughout the training
process by tracking neuron activity [SACE23]. Our analyses reveal the exis-
tence of the dormant neuron phenomenon in DRL; an agent’s network suffers
from an increasing number of inactive neurons, thereby affecting network ex-
pressivity. Examining different components of RL training, we find that target
non-stationarity is the main source of this phenomenon. We find that networks
with a higher number of dormant neurons have less ability to fit targets, and
increasing the model size does not help to solve this issue.

Leveraging our findings, we propose a simple and effective method (ReDo)
that Recycle Dormant neurons periodically during training to maintain the uti-
lization of network capacity. We demonstrate that ReDo significantly improves
the agents’ performance across different algorithms, network architectures, and
network sizes. ReDo has higher effects when the network has a larger inactive
capacity. In contrast to the recent approach that periodically resets some or
all network layers [NSD+22], causing “forgetting” of previously learned knowl-
edge, ReDo maintains this knowledge and effectively utilizes the network ca-
pacity. It achieves higher performance than reset while eliminating the required
training time to recover performance after reset.

1.4.5 Chapter 6

In Chapter 6, we summarize the research questions investigated in this thesis,
our proposed methods to tackle these questions, and the key findings. We fur-
ther discuss the limitations of these methods. Finally, we conclude by outlining
several promising avenues for future research that can build upon the insights
and outcomes of this study.

1.5 Reading This Thesis

We have tried to make each chapter of this thesis self-contained to the greatest
extent possible. As a result, it is not mandatory to read the chapters in a strictly
sequential manner, although doing so might offer a more gradual introduction
to the presented concepts.

Chapter 2

SpaceNet: Make Free Space for
Continual Learning

In this chapter, we aim to explore the feasibility of simultaneously addressing mul-
tiple continual learning desiderata. We propose SpaceNet, a replay-free method
that uses a fixed-capacity model to learn a sequence of tasks. Under these desirable
restrictions, a model’s capacity has to be utilized efficiently to fit multiple tasks
without interference and forgetting. To address this objective, we introduce the
first dynamic sparse training method for continual learning. SpaceNet trains a
sparse subnetwork from scratch for each task and optimizes the sparse topology
during training to learn sparse representations. We demonstrate that sparse rep-
resentations effectively reduce forgetting for this paradigm, especially when past
data is not accessible. Additionally, the utilization of sparse networks leads to sub-
stantial reductions in computational costs. We evaluate SpaceNet on a variety of
well-known benchmarks and various network architectures, demonstrating its su-
periority over regularization-based methods that learn dense representations and
architectural-based methods that expand the model gradually. Our source code is
available at https: // github. com/ GhadaSokar/ SpaceNet .

This chapter is integrally based on Ghada Sokar, Decebal Constantin Mocanu, and Mykola
Pechenizkiy. SpaceNet: make free space for continual learning. Neurocomputing, 1–11, 2021.

https://github.com/GhadaSokar/SpaceNet

14 SpaceNet: Make Free Space for Continual Learning

2.1 Introduction

Deep neural networks (DNNs) have achieved outstanding performance across
various computer vision and machine learning tasks [HZRS15,ZVSL18,CPK+17,
KT19,LDG+17,GLO+16,LWL+17]. However, this remarkable success is achieved
within a static learning paradigm, where models are trained on a large dataset
specific to a single task and tested on data with similar distributions. This
paradigm contradicts the dynamic nature of the real world, which evolves rapidly.
Standard training of a neural network model on new data leads to signifi-
cant performance degradation on previously learned knowledge, a phenomenon
known as catastrophic forgetting [MC89]. Continual learning (CL) has emerged
as a solution to address this dynamic learning paradigm. It aims at building neu-
ral network models capable of learning sequential tasks while accumulating and
maintaining the knowledge from previous tasks without forgetting.

Several methods have been proposed to address the CL paradigm, focusing
on alleviating catastrophic forgetting. These methods generally follow three
strategies: rehearsal-based [SLKK17, MVE+16], regularization-based [KPR+17,
ZPG17], and architectural-based strategies [RRD+16,YYLH18]. Rehearsal-based
methods are effective in preserving the performance of previously learned tasks
by replaying their data during the learning of new tasks. However, these meth-
ods face limitations when access to old data is unavailable (e.g., due to privacy
concerns) or when computational and memory constraints hinder retraining
the data from all tasks. Regularization-based methods address forgetting by
constraining the change in the important parameters of past tasks. These meth-
ods do not store past data and typically use fixed-capacity models. However,
in challenging continual learning scenarios such as class incremental learning,
they suffer from sub-optimal performance [KMA+18, HLRK18, FG19, vdVT18].
Architectural-based methods dynamically expand the network capacity to re-
duce interference between tasks. They achieve a good performance at the ex-
pense of increasing the model capacity.

In this work, we propose a novel architectural-based method for the CL
paradigm named SpaceNet. We address the challenging scenario class incre-
mental learning, in which a model has a single-headed output layer, and the
task identity is not accessible during inference. We also assume that the data
from previous tasks is unavailable when learning new tasks. Unlike previous
architectural-based methods, SpaceNet effectively utilizes the fixed capacity of
a model instead of expanding the network.

SpaceNet is a new dynamic sparse training approach that continually learns
tasks sequentially in an efficient manner. It trains a sparse neural network

2.1 Introduction 15

Task 1 Task tTask 3Task 2

Shared
Output

t

Shared
Output

Shared
Output

Figure 2.1: An overview of SpaceNet for learning a sequence of tasks. All tasks have the
same shared output layer. The figure demonstrates the network states after
learning each of the first three tasks in the sequence. When the model faces
a new task t , sparse connections are allocated and compacted throughout
the dynamic sparse training in the most important neurons for this task,
making free space for learning more tasks. The fully filled circles indicate the
neurons that are highly important and specific to task t , while the partially
filled circles represent neurons that are less important and potentially shared
with other tasks. Multiple colored circles represent the neurons that are used
by multiple tasks. After learning task t , the corresponding weights are kept
fixed.

from scratch for each task and optimizes the sparse topology during training
to learn sparse representations. After learning the current task, the weights of
its sub-network are kept fixed. In addition, we reserve some neurons, based on
their importance, to be specific for that task, while others can be shared with
other tasks. This allows future tasks to use the previously learned knowledge
during their learning while reducing the interference between tasks. Figure
2.1 illustrates an overview of the proposed method. The usage of sparse net-
works in the continual paradigm has multiple advantages. The learned sparse
representations reduce interference between tasks and forgetting. Utilizing a
sparse subnetwork for a task leaves more space for future tasks. Additionally,
training this sparse subnetwork significantly reduces computational costs. We

16 SpaceNet: Make Free Space for Continual Learning

note that the proposed dynamic sparse training approach uses readily available
information during the standard training; no extra computational or memory
overhead is needed to learn new tasks or remember the previous ones. We
evaluate SpaceNet on the well-known benchmarks for CL: Split MNIST, Split
Fashion-MNIST, CIFAR-10/100, and iCIFAR100. Our empirical results demon-
strate that SpaceNet outperforms regularization-based methods by a big perfor-
mance gap. Moreover, it achieves better performance than architectural-based
methods without model expansion. Our main contributions are summarized as
follows:

• We propose the first dynamic sparse training approach for continual learn-
ing, named SpaceNet. SpaceNet utilizes the fixed capacity of a model effi-
ciently to learn a sequence of tasks. A sparse subnetwork is optimized for
each task to learn sparse representations.

• We demonstrate the effectiveness of sparse representations in reducing
the interference between tasks and forgetting, revealing its potential for
the continual learning paradigm.

• We address the challenging scenario, class incremental learning, while
considering more desiderata for continual learning, such as inaccessibility
of previous tasks data, reducing memory and computational costs, and
using fixed-capacity models.

• We demonstrate the effectiveness of the proposed approach on various
benchmarks and network architectures, showing its superior performance
to other regularization and architectural methods.

2.2 Background

2.2.1 Continual Learning

Problem Formulation. A continual learning problem consists of a sequence
of tasks {1,2, ..., t , ...,T }; where T is the total number of tasks. Each task t has
its dataset D t . A neural network model faces tasks one by one. All samples
from the current task are observed before switching to the next task. Once the
training for the current task is completed, its data becomes inaccessible. The
goal is to learn the sequence of the tasks without forgetting any of them.

In this work, we address the class incremental learning scenario in CL. The
task identity is not available at the test time. At any point, the model should

2.3 Related Work 17

classify the input to one of the classes learned so far, regardless of the task
identity.

2.2.2 Dynamic Sparse Training (DST)

DST is a line of research that aims to train a sparse neural network from scratch.
The idea was introduced in [MMN+16] for single-task unsupervised learning.
In recent years, DST proved its success in achieving the same performance as
dense neural networks in single-task standard supervised/unsupervised learn-
ing while having much faster training speed and much lower memory require-
ments [MMS+18, BKML18, DZ19, EGM+20, JZR+19, MW19]. In this training
regime, the training starts with a random sparse neural network, and dur-
ing training, the topology of the network dynamically evolves. The topology
evolves through drop-and-grow cycles in which a fraction of sparse connections
are dropped, and the same fraction is grown among other neurons. The criteria
used for dropping and growing determine the learned topology.

Works from [EGM+20, MW19] also showed that sparse training performs
better than iteratively pruning a pre-trained dense model and static sparse neu-
ral networks. Moreover, [LVdLY+21] demonstrated a plenitude of sparse sub-
networks with very different topologies that achieve the same performance.

2.3 Related Work

The interest in CL in recent years has led to a growing number of methods by
the research community. Methods can be generally categorized into three main
strategies: regularization, rehearsal, and architectural.

Regularization methods preserve the knowledge of old tasks by adding
regularization terms in the loss function to constrain the change in important
weights of past tasks. Multiple approaches have been proposed such as: Elas-
tic Weight Consolidation (EWC) [KPR+17], Synaptic Intelligence (SI) [ZPG17],
and Memory Aware Synapses (MAS) [ABE+18]. Each of these methods pro-
poses an estimation of weight importance relative to the learned task. During
the training of a new task, changes to the important weights associated with
previous tasks are penalized. Learning Without Forgetting (LWF) [LH17] is an-
other regularization method that limits the change of old tasks performance by
using a distillation loss [HVD15a]. The current task data is used to compute
the response of the model on old tasks. During learning new tasks, this re-
sponse is used as a regularization term to keep old tasks stable. Despite that

18 SpaceNet: Make Free Space for Continual Learning

regularization methods are suitable for situations where one can not access pre-
vious data, their performance degrades much in the class incremental learning
scenario [KMA+18,HLRK18,FG19,vdVT18].

Rehearsal methods replay old tasks data along with the current task data
to mitigate the catastrophic forgetting of old tasks. Deep Generative Replay
(DGR) [SLKK17] trains a generative model on the data distribution instead of
storing the original data from previous tasks. Similar work has been done by
Mocanu et al. [MVE+16]. Other methods combine the rehearsal and regular-
ization strategies, such as iCaRL [RKSL17]. iCaRL uses a distillation loss along
with an exemplar set to impose output stability on old tasks. The main draw-
backs of rehearsal methods are (1) the memory overhead of storing old data
or a model to generate them, (2) the computational overhead of retraining the
data from all previous tasks, and (3) the unavailability of the previous data in
some cases.

Architectural methods modify the model architecture in different ways
to make space for new knowledge while maintaining the old one. PathNet
[FBB+17] uses a genetic algorithm to find which parts of a network can be
reused for learning new tasks. While learning new tasks, the weights of old
tasks are kept frozen. This approach has high computational complexity. CLNP
[GKC19] uses a simpler way to find the parts that can be reused in a network by
calculating the average activity of each neuron. The least active neurons are re-
assigned for learning new tasks. Progressive Neural Network (PNN) [RRD+16]
is a combination of network expansion and parameter freezing. Catastrophic
forgetting is prevented by instantiating a new neural network model for each
task while keeping previously learned networks frozen. New networks can take
advantage of previous ones through inter-network connections. In this method,
the number of model parameters keeps increasing over time. Copy-Weights with
Reinit (CWR) [LM17] uses a fixed-capacity model but has limited applicability
and performance. Fixed shared parameters are used for all tasks, while the out-
put layer is extended and trained when the model faces a new task. Dynamic
Expandable Network (DEN) [YYLH18] keeps the network sparse via weight reg-
ularization. A subset of previously learned weights is jointly retrained with the
new task weights. This subset is chosen regardless of its importance to old
tasks. If the performance of old tasks degrades much, they try to restore it by
node duplication.

Recent methods have been proposed based on sparse neural networks [MDL18,
ML18]. PackNet [ML18] prunes the unimportant weights after learning each
task and retrains the network to free some connections for later tasks. A mask
is saved for each task to select the connections that will be used during the test

2.4 SpaceNet 19

Table 2.1: Comparison between different CL methods in terms of their fulfillment of dif-
ferent continual learning desiderata.

Strategy Method Fixed Model Capacity Memory Efficiency Fast Training Old Data Inaccessibility Old Tasks Performance

Regularization
EWC [KPR+17]

p p p p ×
SI [ZPG17]

p p p p ×
LWF [LH17]

p p p p ×
Rehearsal

iCaRL [RKSL17]
p × p × p

DGR [SLKK17]
p × × p p

Architectural

PNN [RRD+16] × × p p p
PackNet [ML18]

p × × p p
DEN [YYLH18] × × × p p

SpaceNet (Ours)
p p p p p

time. Instead of learning the network weights, Piggyback [MDL18] learns a
mask for each task to select some weights from a pre-trained dense network.
These methods require the task identity during inference to activate the corre-
sponding mask to a test input. Our method is different from these ones in many
aspects: (1) we address the class incremental learning scenario where the task
identity is unknown during inference, (2) we aim to avoid the computational
overhead of iterative pruning and fine-tuning the network after learning each
task, and (3) we aim to learn sparse representations on top of the topological
sparsity.

Most of these works use a certain strategy to address the catastrophic forget-
ting in the CL paradigm. However, there are more desiderata for CL as argued
by [SCL+18, FG19]. Table 2.1 provides a comparison of various algorithms in
terms of their fulfillment of different continual learning desiderata. The CL
algorithm should be constrained in terms of computational and memory over-
head. The model size should kept fixed, and additional unnecessary neural
resources should not be allocated for new tasks. New tasks should be added
without adding high computational complexity or retraining the model. The CL
problem should be solved without the need for additional memory to save old
data or a specific mask for each task. Lastly, the algorithm should not assume
the availability of old data.

2.4 SpaceNet

In this section, we introduce SpaceNet, our proposed method for enabling deep
neural networks to learn within the continual learning paradigm.

The main objectives of our approach are: (1) utilizing the fixed capacity of a
model efficiently by learning each task in a compact space, leaving room for fu-
ture tasks, (2) learning effective representations to reduce interference between

20 SpaceNet: Make Free Space for Continual Learning

Figure 2.2: An overview of the main three steps of SpaceNet illustrated on one layer.
(I) When a new task arrives, new sparse connections are allocated among
non-reserved (free) neurons. (II) During our proposed dynamic sparse train-
ing, the topology is optimized by redistributing the connections among the
important neurons for the current task (higher importance is represented via
darker colors. (III) After training, a subset of the most important neurons is
reserved, and the weights of the subnetwork are fixed.

tasks and forgetting without replaying old data, and (3) avoiding adding high
computational and memory overhead for learning new tasks.

To address these objectives, we propose a new training strategy for continual
learning based on dynamic sparse training. Unlike previous methods in which
the weights of a dense model are optimized on each task, we dynamically train
a sparse subnetwork from scratch for each task. The goal of this dynamic sparse
training is to learn sparse representations for each task. We hypothesize that
these sparse representations are more effective in reducing the interference be-
tween tasks than the typical dense representations. SpaceNet can be divided
into three main steps: (1) Connections allocation, (2) Task training, and (3)
Neurons reservation, as illustrated in Figure 2.2. When a model faces a new
task, new sparse connections are randomly allocated between a selected num-
ber of non-reserved neurons in each layer. The learning of this task is then
performed using our proposed dynamic sparse training method.

2.4 SpaceNet 21

Algorithm 1 SpaceNet for Continual Learning

1: Require: loss function L , training dataset for each task in the sequence Dt

2: Require: sparsity level ϵ, rewiring fraction r
3: Require: number of selected neurons sel t

l , number of specific neurons spec t
l

4: for each layer l do
5: h f r ee

l ←hl // Initialize free neurons with all neurons in l

6: hspec
l ←;

7: Wl ←;
8: W saved

L ←;
9: end for

10: for each available task t do
11: W ← ConnectionsAllocation(ϵ, sel t

l ,h f r ee)// Perform Algorithm 2
12: W t ← TaskTraining(W,D t ,L,r) // Perform Algorithm 3

13: h f r ee
l ← NeuronsReservation(spec t

l) // Perform Algorithm 4
14: W saved

L ← W saved
L ∪ W t

L // Retain the connections of last layer for
task t

15: WL ←WL \W t
L

16: end for

During training, the initial distribution of the connections is evolved, and
more connections are grouped in the important neurons for that task. After
training, the most important neurons from the initially selected ones are re-
served to be specific to this task, while the other neurons are shared between
tasks. The details of our proposed approach are illustrated in Algorithm 1. Next,
we will provide the details of each of the main steps of SpaceNet.

Connections allocation. Suppose that we have a neural network parameter-
ized by W = {Wl }L

l=1, where L is the number of layers in the network. Initially,

the network has no connections (W = ;). A list of free neurons h f r ee
l is main-

tained for each layer. This list contains the neurons that are not specific for a
certain task and can be used by other tasks for connections allocation. When
the model faces a new task t , the shared output layer hL is extended with the
number of classess in this task nt

c . New sparse connections W t = {W t
l }L

l=1 are al-
located in each layer for that task. A selected number of neurons sel t

l (which is

a hyperparameter) is picked from h f r ee
l in each layer for allocating the connec-

tions of task t . The selected neurons for task t in layer l is represented by hsel
l .

Sparse parameters W t
l with sparsity level ϵ are randomly allocated between hsel

l−1

22 SpaceNet: Make Free Space for Continual Learning

Algorithm 2 Connections allocation

1: Require: number of selected neurons sel t
l , sparsity level ϵ

2: hL ← hL ∪nt
c {Expand the shared single output layer with new task classes}

3: for each layer do
4: (hsel

l−1,hsel
l) ← randomly select sel t

l−l and sel t
l neurons from h f r ee

l−1 and h f r ee
l

5: randomly allocate parameters W t
l with sparsity ϵ between hsel

l−1 and hsel
l

6: Wl ←Wl ∪W t
l

7: end for

and hsel
l . The parameters W t of task t is added to the network parameters W.

Algorithm 2 describes the connections allocation process.

Task training. The task is trained using our proposed dynamic sparse training.
The training data D t of task t is forwarded through the network parameters W.
The weights W t are optimized with the following objective function:

min
W t

L(W t ;D t ,W 1:t−1), (2.1)

where L is the loss function and W 1:t−1 =W\W t are the parameters of previous
tasks. The parameters W 1:t−1 are kept fixed during learning task t . During the
training process, the distribution of sparse connections of task t is adaptively
changed, ending up with sparse connections compacted in fewer neurons. Al-
gorithm 3 shows the details of our proposed dynamic sparse training algorithm.
After each training epoch, a fraction r of the sparse connections W t

l in each
layer is dynamically changed based on the importance of the connections and
neurons in that layer. Their importance is estimated using the information that
is already calculated during the training epoch; no additional computation is
needed for importance estimation, as we will discuss next. The dynamic change
in the connections consists of two phases: (1) Drop and (2) Grow.

Drop phase. A fraction r of the least important weights is removed from
each sparse parameter W t

l . Connection importance is estimated by its contri-
bution to the change in the loss function. The first-order Taylor approximation
is used to approximate the change in loss during one training iteration i as
follows:

L(Wi+1)−L(Wi) ≈
m−1∑
j=0

∂L

∂W i
j

(W i+1
j −W i

j) =
m−1∑
j=0

Ii , j , (2.2)

2.4 SpaceNet 23

where L is the loss function, W is the sparse parameters of the network, m
is the total number of parameters, and Ii , j represents the contribution of the
parameter j in the loss change during the step i , i.e., how much does a small
change to the parameter change the loss function [LLZY19]. The importance
Ω

j
l of connection j in layer l at any step is cumulative of the magnitude of Ii , j

from the beginning of the training till this step. It is calculated as follows:

Ω
j
l =

i ter∑
i=0

|Ii , j |, (2.3)

where i ter is the current training iteration.
Grow phase. The same fraction r of the removed connections are added

in each sparse parameter W t
l . The newly added weights are zero-initialized.

The probability of growing a connection between two neurons in layer l is pro-
portional to the importance of these two neurons. The importance a(i)

l of the
neuron i in layer l is estimated by the summation of the importance of incoming
connections of that neuron as follows:

a(i)
l =

Ci n−1∑
j=0

Ω
j
l , (2.4)

where Ci n is the number of incoming connections of a neuron i in layer l . The
importance matrix Gl is calculated as follows:

Gl = al−1aT
l . (2.5)

Let the number of growing connections in layer l be kl , the top-kl positions
which contain the highest values in Gl and zero-value in Wl are selected for
growing the new connections.

For convolutional neural networks, the drop and grow phases are performed
in a coarse manner to impose structure sparsity instead of irregular sparsity. In
particular, in the drop phase, we consider coarse removal for the whole kernel
instead of removing scalar weights. The kernel importance is calculated by the
summation over the importance of its k × k elements calculated by Equation
2.3. Similarly, in the grow phase, the whole connections of a kernel are added
instead of adding single weights. Analogous to multilayer perceptron networks,
the probability of adding a kernel between two feature maps is proportional
to their importance. The importance of the feature map is calculated by the
summation of the importance of its connected kernels.

24 SpaceNet: Make Free Space for Continual Learning

Algorithm 3 Dynamic sparse training

1: Require: loss function L , training dataset Dt , rewiring fraction r
2: for each training epoch do
3: perform standard forward pass through the network parameters W
4: update parameters W t according to Equation 2.1
5: for each sparse parameter W t

l do

6: W̃ t
l ← sort W t

l based on the importance Ωl in Equation 2.3

7: (W t
l ,kl) ← drop (W̃ t

l ,r) // Remove the weights with smallest importance
8: compute al−1 and al from Equation 2.4 // Neurons importance for task t
9: Gl ← al−1aT

l
10: G̃l ← sortDescending(Gl)
11: Gpos ← select top-kl positions in G̃l where Wl equals zero
12: W t

l ← grow(W t
l ,Gpos) // Grow kl zero-initialized weights in Gpos

13: end for
14: end for

Algorithm 4 Neurons reservation

1: Require: number of specific neurons spec t
l

2: for each layer l do
3: compute the neuron importance al for task t using Equation 2.4
4: ãl ← sortDescending(al)
5: h

tspec

l ← top-spec t
l from ãl

6: hspec
l ←hspec

l ∪h
tspec

l

7: h f r ee
l ←h f r ee

l \h
tspec

l
8: end for

Neurons reservation. After learning the task, a fraction of the neurons
from hsel

l in each layer is reserved for this task and removed from the list of free
neurons h f r ee

l . The choice of these neurons is based on their importance to the
current task calculated by Equation 2.4. These neurons become specific to the
current task, meaning no more connections from other tasks will go into these
neurons. The other neurons in hsel

l still exist in the free list h f r ee
l and could

be shared by future tasks. Algorithm 4 describes the details of the neurons
reservation process.

After learning each task, its sparse connections in the last layer (classifier)
are removed from the network and retained aside in W saved

L . Removing the

2.5 Experiments 25

classifiers (W 1:t−1
L) of the old tasks during learning the new one contributes to

alleviating the catastrophic forgetting problem. If they are all kept, the weights
of the new task will try to get higher values than the weights of old tasks to
be able to learn, which results in a bias towards the last learned task during
inference. At deployment time, the output layer connections W saved

L for all
learned tasks so far are returned to the network weights WL. All tasks share the
same single-headed output layer.

Link to Hebbian Learning The way we evolve the sparse neural network
during the training of each task has a connection to Hebbian learning. Heb-
bian learning [HH49] is considered as a plausible theory for biological learning
methods. It is an attempt to explain the adaptation of brain neurons during the
learning process. The learning is performed in a local manner and the weight
update is not based on the global information of the loss. The theory is usu-
ally summarized as “cells that fire together wire together”. It means that if a
neuron participates in the activation of another neuron, the synaptic connec-
tion between these two neurons should be strengthened. Analogous to Hebb’s
rule, we consider changing the structure of the sparse connections in a way that
redistributes the connections between strong neurons.

2.5 Experiments

In this section, we evaluate our proposed method on the well-known bench-
marks for continual learning and compare it against methods from different
continual learning strategies.

2.5.1 Datasets

• Split MNIST [ZPG17]. It consists of five tasks. Each task contains two
consecutive classes from the MNIST dataset.

• Split Fashion-MNIST [XRV17,FG19]. The images show individual articles
of clothing. Same as Split MNIST, it consists of five tasks. Each task has
two consecutive classes of Fashion-MNIST.

• CIFAR-10/100 [ZPG17]. The benchmark is constructed from CIFAR-10
and CIFAR-100 datasets [KH+09]. It has six tasks. The first task contains

26 SpaceNet: Make Free Space for Continual Learning

the full dataset of CIFAR-10, while each subsequent task contains 10 con-
secutive classes from CIFAR-100. Note that the number of samples across
the first task and the rest is not equal, with the first task having a 10×
larger number of samples per class.

2.5.2 Architectures

To train on Split MNIST and Split Fashion MNIST, we use a multilayer percep-
tron network with two hidden layers. Each layer has 400 neurons with ReLU
activation.

For CIFAR-10/100, we follow the architecture used by [ZPG17, ML19] for a
fair and direct comparison. It consists of 4 convolutional layers (32-32-64-64
feature maps). The kernel size is 3×3. Max pooling layer is added after every
two convolutional layers. Two sparse feed-forward layers follow the convolu-
tional layers (512-60 neurons), where 60 is the total number of classes from all
tasks. We replace the dropout layers with batch normalization [IS15].

2.5.3 Experimental Details

Split MNIST and Split Fashion-MNIST. 10% of the network weights are used
for all tasks (2% for each task). The rewiring fraction r equals 0.2. Each task
in Split MNIST and Split Fashion-MNIST is trained for 4 epochs and 20 epochs,
respectively. We use a batch size of 128. The network is trained using stochastic
gradient descent with a learning rate of 0.01 and cross-entropy loss. The se-
lected number of neurons sel t

l in each hidden layer to allocate the connections
for a new task is 80. The number of neurons that are reserved to be specific for
each task spec t

l is 40. The hyperparameters are selected using a random search.
The experiment is repeated 10 times with different random seeds.

CIFAR-10/100. The model is optimized using stochastic gradient descent with
a learning rate of 0.1 and cross-entropy loss. Each task is trained for 20 epochs.
12% of the network weights is used for each task. Since the number of feature
maps in each layer in the used architecture is too small, the number of selected
feature maps for each task sel t

l equals the number of feature maps in this layer,
excluding the specific neurons in that layer. The number of specific feature maps
in each hidden layer spec t

l is as follows: [2, 2, 5, 6, 30]. The hyperparameters
are selected using a random search.

2.5 Experiments 27

2.5.4 Evaluation Metrics

To evaluate different CL requirements, we assess two metrics:

1. Average Accuracy (ACC). ACC is the average classification accuracy across
all tasks, calculated at the end of learning the whole sequence.

2. Backward transfer (BWT) [LPR17]. BWT measures the influence of learn-
ing new tasks on the performance of previous tasks. Large negative BWT
indicates catastrophic forgetting.

Formally, the ACC and BWT are calculated as follows:

ACC = 1

T

T∑
i=1

RT,i ,

BW T = 1

T −1

T−1∑
i=1

RT,i −Ri ,i ,

(2.6)

where R j ,i is the accuracy on task i after learning the j -th task in the sequence,
and T is the total number of tasks.

2.5.5 Experimental Results

Split MNIST and Fashion MNIST

Table 2.2 shows the average accuracy (ACC) and the backward transfer (BWT)
of different well-known approaches. The experiments reveal the following find-
ings:

SpaceNet outperforms regularization-based methods by a big gap. As
illustrated in the table, regularization methods fail to maintain the performance
of previously learned tasks in the class incremental learning scenario. They
have the lowest BWT performance. In contrast, SpaceNet manages to keep the
performance of previously learned tasks, causing a much lower negative back-
ward transfer. In terms of ACC, it outperforms regularization-based methods by
55.52% and 44.87% on Split MNIST and Split Fashion MNIST, respectively.

SpaceNet consumes less model capacity than DEN and achieves higher
performance. We compare our method to the DEN algorithm, which is the
most related to our work, both being architectural strategies. As discussed in
the related work section, DEN keeps the connections sparse by regularization
and restores the drift in old tasks’ performance using node duplication. The con-
nections are remarked with a timestamp (task identity). At inference, the task

28 SpaceNet: Make Free Space for Continual Learning

Table 2.2: ACC and BWT on Split MNIST and Split Fashion MNIST using different ap-
proaches. Results for regularization and rehearsal methods on Split MNIST
are adopted from [vdVT18,HLRK18].

Strategy Method Split MNIST Split Fashion MNIST
ACC (%) BWT (%) ACC (%) BWT (%)

Regularization
EWC 20.01 ± 0.06 -99.64 ± 0.01 19.47 ± 0.98 -99.13 ± 0.39

SI 19.99 ± 0.06 -99.62 ± 0.11 19.93 ± 0.01 -99.08 ± 0.51

MAS 19.52 ± 0.29 -99.73 ± 0.06 19.96 ± 0.01 -98.82 ± 0.10

Rehearsal
DGR 90.79 ± 0.41 -9.89 ± 1.02 73.58 ± 3.90 -32.56 ± 3.74

iCaRL 94.57 ± 0.11 -3.27 ± 0.14 80.70 ± 1.29 -10.39 ± 1.97

Architectural
DEN 56.95 ± 0.02 -21.71 ± 1.29 31.51 ± 0.04 -47.94 ± 1.69

SpaceNet 75.53 ± 1.82 -15.99 ± 1.83 64.83 ± 0.69 -23.98 ± 1.89

identity is required to select only the parameters trained up to this task identity.
This implicitly means that T different models are obtained using DEN, where T
is the total number of tasks. To make the comparison, we adapt the official code
provided by the authors to work on the class incremental learning scenario,
where there is no access to the task identity during inference. After training
all tasks, the test data is evaluated on the model created for each timestamp
t . The class with the highest probability from all models is the final prediction.
As shown in the table, SpaceNet obtains better performance and lower forget-
ting. It achieves an accuracy of 75.53% on Split MNIST, outperforming DEN by
18.5%. While the accuracy of DEN degrades much on the more complex bench-
mark Split Fashion MNIST, SpaceNet maintains a good performance, reaching
ACC of 64.83% and BWT of -23.98%. Furthermore, in our investigation, we ob-
served that DEN introduces an increase of approximately 35 neurons per layer
in Split MNIST. In contrast, SpaceNet retains unused neurons within the initially
allocated capacity. Specifically, SpaceNet has 92 and 91 unused neurons in the
first and second hidden layers, respectively. Similarly, in Split Fashion MNIST,
DEN expands each hidden layer by 37 neurons, while SpaceNet maintains 90
and 93 unused neurons in the first and second hidden layers, respectively.

Replaying old tasks’ data maintains their performance. Replaying the
data from previous tasks while learning a new task mitigates catastrophic forget-
ting, achieving the highest BWT. However, retraining old tasks data has the cost
of requiring additional memory for storing the data or the generative model.
Making rehearsal methods resource-efficient is still an open research problem.
The results of SpaceNet in terms of both ACC and BWT are promising compared
to rehearsal methods given that we do not use any of the old tasks data and
the number of connections is much smaller, i.e., SpaceNet has 28 times fewer

2.5 Experiments 29

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Average
0

10

20

30

40

50

60

70

80
Ac

cu
ra

cy
 %

Naive
EWC
SI
LWF
CWR
SpaceNet

Figure 2.3: Accuracy on each task of CIFAR-10/100 benchmark for different CL ap-
proaches after training the last task. Results for other approaches are
adopted from [ML19]. Task 1 is the full dataset of CIFAR10, while task 2
to task 6 are the first 5 tasks from CIFAR100. Each task contains 10 classes.
The absence of accuracy for certain tasks in some methods indicates zero
accuracy value. The “average” x-axis label shows the average accuracies
computed overall tasks for each method. SpaceNet managed to utilize the
available model capacity efficiently between tasks, unlike other methods that
have high performance on the last task but completely forget some other pre-
vious tasks.

connections than DGR.

CIFAR-10/100

Figure 2.3 shows the accuracy of each task of CIFAR-10/100 after training all
tasks using different popular CL methods. The results of other algorithms are
extracted from [ML19] and re-plotted. The “Naive” algorithm is defined by the
authors as simple finetuning where there is no mechanism for addressing for-
getting other than early stopping. As shown in the figure, SI totally fails to
remember all old tasks, and the model has a good performance only on the
last learned one. Other algorithms have a good performance on some tasks,
while the performance on the other tasks is very low. Despite that the architec-
ture used in this experiment is small, SpaceNet managed to utilize the available
space efficiently between all tasks. It outperforms all the other algorithms in

30 SpaceNet: Make Free Space for Continual Learning

terms of average accuracy. In addition, the standard deviation over all tasks ac-
curacy is much (a few times) smaller than the standard deviation of any other
state-of-the-art method. This means that the model is not biased towards the fi-
nal learned task, and the accuracy of all learned tasks is close to each other. This
highlights the robustness of SpaceNet and its strong capabilities to remember
old tasks.

This experiment shows that SpaceNet utilizes the small available capacity.
Yet, the model capacity could reach its limit after learning a certain number
of tasks. In this case, we can allocate more resources (units) to the network
to fit more tasks since we have fully utilized the existing ones. To show this
case on the same architecture and settings, we increase the number of sparse
connections allocated for each task in the second layer to 16.5% of the layer
weights. This leads the second layer to approximately reach its maximum ca-
pacity after learning the first five tasks. When the model faces the last task of the
CIFAR-10/100 benchmark, we allocate 8 new feature maps in the second and
third convolutional layers. SpaceNet continues to learn this task. The average
accuracy achieved in this experiment equals 27.89 ± 0.84.

2.6 SpaceNet Analysis

2.6.1 Learned Representation

We analyze the representations learned by SpaceNet via visualizing the activa-
tions of the two hidden layers of the network. We conduct this analysis on the
Split MNIST benchmark. After learning the first task, we examine the represen-
tations of a randomly selected subset of the test set from this task.

Figure 2.4 shows the representations of 50 random samples from class 0 and
another 50 samples from class 1. As illustrated in the figure, the representations
learned by SpaceNet are highly sparse. A small percentage of activations is
used to represent an input. These observations demonstrate that the proposed
sparse training algorithm not only optimizes the network’s capacity effectively
by employing a sparse network for each task but also generates sparse represen-
tations. These sparse representations play a crucial role in reducing interference
between tasks. It is worth highlighting that our findings are aligned with the
earlier work conducted by [Fre91]. French argued that catastrophic forgetting
arises as a result of the overlap in representations between different tasks and
that employing semi-distributed representations can mitigate the issue of catas-
trophic forgetting.

2.6 SpaceNet Analysis 31
0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

Neuron #

0
8

16
24

32
40

48
56

64
72

80
88

96
Ta

sk
 1

3

6

9

12

15

(a) First hidden layer.

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

Neuron #

0
8

16
24

32
40

48
56

64
72

80
88

96
Ta

sk
 1

2

4

6

8

(b) Second hidden layer.

Figure 2.4: Heatmap of the first and second hidden layers activations after forwarding a
subset of the test data of task 1 of Split MNIST. The y-axis represents the test
samples. The first 50 samples belong to class 0, while the other 50 belong to
class 1.

Table 2.3: Effect of learning sparse representation in the continual learning paradigm.

Method Split MNIST Split Fashion MNIST
ACC (%) BWT (%) ACC (%) BWT (%)

Static-SparseNN 61.25 ± 2.30 -29.32 ± 2.80 56.80 ± 2.30 -29.79 ± 2.22

SpaceNet 75.53 ± 1.82 -15.99 ± 1.83 64.83 ± 0.69 -23.98 ± 1.89

To further investigate the role of learning sparse representation in perfor-
mance, we compare SpaceNet with a baseline we dubbed as “Static Sparse-NN”.
This baseline allocates a sparse subnetwork for each task using the same strat-
egy as in SpaceNet. Yet, the initially allocated topology is kept fixed throughout
training. We conducted this analysis on Split MNIST and Split Fashion MNIST.
As shown in Table 2.3, redistributing the connections among the important neu-
rons and learning sparse representations via our proposed dynamic sparse train-
ing method increases performance by a good margin. The average accuracy is
increased by 14.28% and 8% on Split MNIST and Split Fashion MNIST, respec-
tively. While the backward transfer is increased by 13.3% and 6%.

32 SpaceNet: Make Free Space for Continual Learning

0 50 100 150 200 250 300 350 400
Neuron #

0

50

100

150

200

250

300

350

400

N
eu

ro
n

#

(a) Initial connections.

0 50 100 150 200 250 300 350 400
Neuron #

0

50

100

150

200

250

300

350

400

N
eu

ro
n

#

(b) Learned connections.

Figure 2.5: Connections distribution between the two hidden layers for one task of the
Split MNIST benchmark. The initial random distribution of the connections
on the selected neurons (a) and the learned distribution after training (b).
The connections are compacted in some of the neurons.

2.6.2 Learned Topology

We next investigate the effect of drop-and-growing cycles of our proposed dy-
namic sparse training method on the randomly initialized sparse topology of
a task. To this end, we analyze the distribution of the connections between
the first and the second hidden layers before and after training a task. We con-
ducted this analysis on the second task of the Split MNIST benchmark. As shown
in Figure 2.5a, the sparse connections are initially randomly distributed among
a set of chosen neurons. However, as training progresses, the optimization of
the topology leads to a redistribution of connections, grouping them within a
smaller number of neurons which are important for this task, as illustrated in
Figure 2.5b. This creates space to allocate new subnetworks for future tasks.

We further analyze whether the new distribution of the connections is among
the important neurons for a task. To qualitatively evaluate this, we examine the
number of outgoing connections after training from each neuron in the input
layer. Ideally, neurons with a high number of connections should correspond to
the important pixels in the image. We compare learned distribution by SpaceNet
with the Static-SparseNN baseline. Figure 2.6 shows the distribution of each
task topology over the 784 input neurons, reshaped to 28× 28 as the original

2.6 SpaceNet Analysis 33

0 5 10 15 20 25

0

5

10

15

20

25
5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

0 5 10 15 20 25

0

5

10

15

20

25

0

10

20

30

40

50

(a) Task 1 (0 or 1).

0 5 10 15 20 25

0

5

10

15

20

25
5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

0 5 10 15 20 25

0

5

10

15

20

25

0

5

10

15

20

25

30

35

40

(b) Task 2 (2 or 3).

0 5 10 15 20 25

0

5

10

15

20

25

5

10

15

20

co
nn

ec
tio

ns
 to

 in
pu

t n
eu

ro
ns

 (#
)

0 5 10 15 20 25

0

5

10

15

20

25

0

10

20

30

40

50

co
nn

ec
tio

ns
 to

 in
pu

t n
eu

ro
ns

 (#
)

(c) Task 5 (8 or 9).

Figure 2.6: Visualization of the number of outgoing connections from each input neuron
for three different tasks in Split MNIST in the case of the Static-SparseNN
baseline (top) and SpaceNet (bottom). SpaceNet redistributes the connec-
tions in the important neurons that identified the digits in each task.

input image. As we can see, SpaceNet reallocates the connections towards the
areas that correspond to digit identification, while there are only a limited num-
ber of connections in the background.

2.6.3 Memory Efficiency Improvement

Constraining the memory usage is necessary when learning a large number of
tasks continuously. We compare the memory consumed by neural network mod-
els used by each method by measuring the total number of model parameters.
As illustrated in Figure 2.7, among the methods studied, the rehearsal-based ap-
proach, DGR, has the highest memory requirement. This is due to the need for
both a classification model and a generative model to generate replayed data for
previous tasks. On the other hand, regularization-based methods employ dense
neural network models, resulting in a higher number of parameters compared
to the architectural-based method, DEN, which employs L1 regularization to
learn sparse connections. In contrast, SpaceNet leverages a highly sparse net-
work for each task, with at least one order of magnitude fewer parameters than

34 SpaceNet: Make Free Space for Continual Learning

0

200000

400000

600000

800000

1000000

1200000

1400000
Nu

m
be

r o
f P

ar
am

et
er

s

Deep Generative Replay (DGR)
Regularization Methods
DEN
SpaceNet

Figure 2.7: Comparison between SpaceNet and other CL methods on split MNIST in
terms of model size.

Table 2.4: Comparison between different strategies across different continual learning
desiderata.

Strategy Method Old task data Extra memory Model expansion

Regularization
EWC

No No NoSI
MAS

Rehearsal
DGR

Yes Yes No
iCaRL

Architectural
DEN No Yes Yes

Static-SparseNN
No No No

SpaceNet

any other studied method examined in the study.

Table 2.4 shows a comparison between different methods in terms of other
requirements for CL. Regularization methods satisfy many desiderata of CL
while suffering from catastrophic forgetting as illustrated earlier. Rehearsal
methods require extra memory to store the old data or the generative model.
SpaceNet is able to compromise between performance and other requirements
that are not even satisfied by other architectural methods.

2.7 Conclusion and Future Work 35

Table 2.5: ACC and BWT on the iCIFAR100 benchmark using two different architectures.

CNN WRN
Strategy Method ACC (%) BWT (%) ACC (%) BWT (%)

Regularization
EWC 13.65 ± 0.15 -64.38 ± 0.71 16.09 ± 0.29 -73.10 ± 1.11

SI 14.45 ± 0.11 -66.47 ± 0.49 16.75 ± 0.30 -77.75 ± 0.90

MAS 14.51 ± 0.22 -66.61 ± 0.31 16.51 ± 0.20 -76.82 ± 0.19

Architectural SpaceNet 28.11 ± 0.74 -45.62 ± 0.88 34.10 ± 0.92 -34.18 ± 0.91

2.6.4 Utilizing Model Capacity

Can increasing the model size reduce forgetting? To study this question, we eval-
uate the performance of SpaceNet and the regularization methods using two
models: the conventional CNN network detailed in Section 2.5.2 and a more
modern architecture Wide Residual Networks (WRN) [ZK16]. We use WRN-28-
10, with a depth of 28 and a widen factor of 10. We perform this analysis on a
more challenging benchmark iCIFAR-100 [RKSL17], which consists of 5 tasks,
each has 20 classes from CIFAR-100.

Table 2.5 shows the average accuracy and the backward transfer using the
two architectures. As illustrated in the table, SpaceNet manages to utilize the
available capacity of the conventional CNN architecture achieving higher accu-
racy than the regularization methods by 13.5%. SpaceNet is also more robust to
forgetting, BWT is higher than the regularization strategy by 19%. Our results
also show that using a larger network, WRN, does not help the regularization
strategy to alleviate the catastrophic forgetting problem. A small increase is
gained in the average accuracy, probably due to achieving higher performance
in the last task using the larger model, while the forgetting (negative backward
transfer) is increased by around 11%. On the other hand, SpaceNet takes ad-
vantage of the larger capacity. The ACC of SpaceNet is increased by 6%, and
the forgetting is decreased by 11.5%.

2.7 Conclusion and Future Work

In this chapter, we proposed SpaceNet, a new technique for deep neural net-
works to learn a sequence of tasks in the continual learning paradigm. SpaceNet
learns each task using a sparse subnetwork, leaving a space for other tasks to
be learned by the model. We proposed a dynamic sparse training algorithm
that optimizes the sparse topology of each task throughout training to learn

36 SpaceNet: Make Free Space for Continual Learning

sparse representation. We addressed the challenging class incremental learning
scenario, where the task identity is unknown during inference. The proposed
method is evaluated on the well-known benchmarks for CL: Split MNIST, Split
Fashion-MNIST, CIFAR-10/100, and iCIFAR100.

We demonstrated that SpaceNet addresses multiple CL desiderata: (1) it re-
duces catastrophic forgetting, outperforming the regularization and architectural-
based methods by a big margin, (2) the achieved performance is obtained using
a fixed capacity model without network expansion, (3) it requires much less
memory and computational costs than rehearsal based methods, (4) and it does
not rely on old tasks data.

Our analyses illustrated the effectiveness of our proposed dynamic sparse
training method in learning a sparse topology that allocates the connections in
the important neurons for a task. Moreover, we showed the importance of learn-
ing sparse representations in reducing interference between tasks. Unlike other
methods that have a high performance on the last learned task only, SpaceNet
utilizes the capacity of the model efficiently among all seen tasks.

Despite the success of SpaceNet in reducing forgetting, there is no explicit
mechanism to promote forward transfer from past tasks. Addressing forward
transfer would further allow utilizing the capacity more efficiently by making
use of the learned connections of past tasks instead of allocating new sparse
connections for each new task. Moreover, combining SpaceNet with a memory-
efficient replay method could improve the performance even further while being
efficient.

Chapter 3
Self-Attention Meta-Learner for
Continual Learning

Although catastrophic forgetting is one of the main challenges in continual learn-
ing, enabling forward transfer from past tasks to the current one is another crucial
component in this learning paradigm. In this chapter, we focus on investigating
the characteristics of the representations that facilitate learning new tasks. Many
approaches in continual learning begin by training a model from scratch, opti-
mizing it at each step to learn task-specific representations without considering
their generalization to future tasks. Additionally, each task utilizes all knowl-
edge acquired from previous tasks, even though certain parts of this knowledge
may not be directly relevant to the current task. This leads to task interference,
particularly when the data from previous tasks is inaccessible. We aim to in-
vestigate these two limitations. To this end, we propose a new method, named
Self-Attention Meta-Learner (SAM), which learns prior knowledge for continual
learning that permits learning a sequence of tasks. SAM incorporates an attention
mechanism that learns to select the relevant representations for each future task.
Each task builds a specific representation branch on top of the selected knowl-
edge, avoiding interference between tasks. Our analysis demonstrates that useful
representations for future tasks are sparse. Moreover, by learning specific repre-
sentations on top of the selected knowledge from the past, we can perform better

This chapter is integrally based on Ghada Sokar, Decebal Constantin Mocanu, and Mykola
Pechenizkiy. Self-attention meta-learner for continual learning. Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS), 2021.

38 Self-Attention Meta-Learner for Continual Learning

than several state-of-the-art methods. Finally, we demonstrate that popular ex-
isting continual learning methods gain a performance boost when incorporated
with SAM. Our source code is available at https: // github. com/ GhadaSokar/
Self-Attention-Meta-Learner-for-Continual-Learning.

3.1 Introduction

Continual learning aims to build machines that mimic human learning. The
main characteristics of human learning are (1) humans never learn in isolation,
(2) they build on top of the learned knowledge in the past instead of learning
from scratch, (3) and acquiring new knowledge does not lead to forgetting the
past knowledge. These capabilities are crucial for autonomous agents inter-
acting in the real world [PKP+19, LLS+20]. For instance, systems like chatbots,
recommendation systems, and autonomous driving interact with a dynamic and
open environment and operate on non-stationary data. These systems should
quickly adapt to new situations with the help of previous knowledge, acquire
new experiences, and retain previously learned experiences.

Deep neural networks (DNNs) have achieved outstanding performance in
different areas such as visual recognition, natural language processing, and
speech recognition [ZVSL18, CPK+17, KT19, LDG+17, GLO+16, LWL+17]. How-
ever, DNNs are effective in learning single tasks (static environments). Mean-
while, the performance degrades when a network is trained on non-stationary
data. Continual learning (CL) is a research area that addresses this problem and
aims to provide neural networks with continual learning capability.

The continual learning paradigm has many desiderata, including but not
limited to avoiding forgetting past tasks, allowing forward transfer to future
tasks, having a bounded system size, minimal or no access to past data, and not
relying on task labels during inference (see [LLS+20,SCL+18,DRLFM18] for the
complete list). Since these desiderata are competing with each other, most of
the previous methods target subsets of them, and the main focus is on address-
ing forgetting. In this work, we shift the focus to some desiderata which are not
widely addressed to the best of our knowledge and are discussed in [CL18]. The
first one is the necessity of having a good quantity of prior knowledge to facili-
tate learning new tasks. However, in most previous approaches, the model starts
from randomly initialized parameters, and then the parameters are optimized
to achieve the highest performance on the first task. The knowledge gained
from this task may contain only a bit or even no useful knowledge for future
tasks [CL18]. Second, selecting the useful and relevant parts only from previ-

https://github.com/GhadaSokar/Self-Attention-Meta-Learner-for-Continual-Learning.
https://github.com/GhadaSokar/Self-Attention-Meta-Learner-for-Continual-Learning.

3.1 Introduction 39

Global Average
Pool

c

W1 W2

In
pu

t F

c

h

wc

...

...
Shared generic knowledge learned from

meta-learning phase

Specific representation
for each task

h

wc

c/r

m
et

a-
at

te
nt

io
n

h

c
w

H

w
c

X X'

F ...
θ

h

m
et

a-
at

te
nt

io
n

Fi
na

l D
ec

is
io

n

h

...

...
Φi

Φ1

Φ2Se
le

ct
ed

 R
ep

re
se

nt
at

io
n

z s

Figure 3.1: An overview of our proposed method, SAM. The network consists of two
sub-networks. The first sub-network, parameterized by θ, is trained using
an optimization-based meta-learning algorithm to learn the prior generic
knowledge. This learned representation is shared between all tasks. A self-
attention module is added after each layer to select the relevant representa-
tion for each task. The second sub-network contains a specific representation
parameterized by φi for each task ti that is learned on top of the selected rep-
resentation whenever the model faces this task.

ous knowledge to learn each future task instead of using the whole knowledge.
We draw inspiration from human learning. For instance, a computer science stu-
dent should have a mathematical background to learn other advanced courses
such as artificial intelligence, computer graphics, database management, sim-
ulation modeling, etc. This prerequisite knowledge facilitates learning each of
these courses quickly. However, in each course, one picks only the relevant
information from their mathematical background depending on the context of
each course instead of using the whole knowledge.

To address these desiderata, we propose to learn a prior representation for
continual learning that permits and is more proficient at learning future tasks.
We address the more realistic scenario where models might be deployed in an
environment different from the ones they were pre-trained on. Therefore, we
propose to learn this representation via meta-learning to permit generalization
to out-of-distribution tasks. Moreover, we take advantage of meta-learning to
allow the network to learn to pick the relevant representation from the currently
existing one, depending on the incoming data. To this purpose, we incorporate
a self-attention mechanism with the meta-learner. During the continual learn-
ing time, we train each task in the sequence by building on top of the selected
representation from prior knowledge. These tasks are sampled from new distri-

40 Self-Attention Meta-Learner for Continual Learning

butions different from the one used in constructing the prior knowledge. Our
empirical evaluation shows the importance of the proposed desiderata in the
continual learning setting and their effectiveness in promoting the learning of
each task and reducing interference. We also demonstrate that building on top
of the relevant knowledge helps identify the correct target in the more challeng-
ing scenario where task identity is not available during inference.

Our contributions in this work can be summarized as follows:

• We demonstrate the importance of having prior generic knowledge and
selective transfer in facilitating learning new tasks. We propose SAM, a
Self-Attention Meta learner that includes these two aspects.

• We address the more challenging and realistic scenario where the task
identity is not available during inference and assume that data from past
tasks are not accessible.

• Our empirical results demonstrate that SAM performs better than state-
of-the-art methods.

• We show the improved performance of popular existing continual learning
strategies when they are integrated with SAM.

3.2 Related Work

3.2.1 Continual Learning Strategies

Many works have been proposed to address the catastrophic forgetting issue
[MMO95, MC89] in deep neural networks. Regularization approaches add a
regularization term to the learning objective to constrain the changes in im-
portant weights of past tasks [ABE+18, KPR+17, ZPG17]. The metric used to
estimate the parameter importance differs between these approaches. In Elastic
Weight Consolidation (EWC) [KPR+17], weight importance is calculated using
an approximation of the diagonal of Fisher information matrix. In Synaptic In-
telligence (SI) [ZPG17], weight importance is computed online during training.
The importance is estimated by the amount of change in the loss by a weight
summed over its trajectory. On the other hand, in Memory Aware Synapses
(MAS) [ABE+18], the weights are estimated using the sensitivity of the learned
function rather than the loss. Learning Without Forgetting (LWF) [LH17] is an-
other regularization method that constrains the change of model predictions on
old tasks, rather than the weights, by using a distillation loss [HVD15b].

3.2 Related Work 41

Other existing methods modify the model architecture to adapt to new tasks.
Progressive Neural Network (PNN) [RRD+16] instantiates a new network for
each task and keeps previously learned networks frozen. CopyWeights with
Reinit (CWR) [LM17] uses a fixed number of shared parameters for all tasks.
The shared knowledge comes from freezing the shared weights after training the
first batch. They initialize the shared weights using random weights or from a
pre-trained model (ImageNet). Dynamic expandable network (DEN) [YYLH18]
expands the model when the performance of old tasks degrades.

3.2.2 Continual Learning and Meta Learning

Recently, a new direction has emerged by combining meta-learning methods
with the CL paradigm. In [FRKL19], a modification was proposed for the MAML
algorithm to adapt to the online setting. They focus on maximizing the forward
transfer and sidestep the problem of catastrophic forgetting by maintaining a
buffer of all observed data. MER [RCA+18] combines experience replay with
the Reptile [NS18] meta-learning algorithm in the online setting. Instead of
storing all the observed data, they keep a fixed-size memory for all tasks and up-
date the buffer with reservoir sampling. Another approach by [JW19] uses the
meta-learning paradigm to learn to continually learn. They pre-train a network
and continually learn tasks sampled from the same distribution. A more realis-
tic scenario was presented in [CRO+20], where the continual tasks may come
from a new distribution that is not encountered during pre-training. However,
they relax the assumptions by allowing for task revisiting and optimizing for
fast adapting. The setting of the CL problem differs in each of these methods.
Yet, meta-learning seems a promising direction for addressing CL in all these
different settings.

3.2.3 Attention

Attention has emerged as an improvement in machine translation systems in
natural language processing [BCB15]. Recently, attention mechanisms have
been addressed in many computer vision tasks [CZX+17, HWCW19, WJQ+17,
FLT+19, ZDS+18, HSS18, PRV+19]. Few works have used the attention mecha-
nisms in the CL paradigm. In [DSP+19], attention distillation loss is combined
with the distillation loss from [LH17] to constrain the changes in old tasks.
In [SSMK18], a hard attention mechanism was proposed to determine the im-
portant neurons for each task. These neurons are masked during learning future
tasks.

42 Self-Attention Meta-Learner for Continual Learning

3.3 Self-Attention Meta-Learner (SAM)

The ultimate goal of continual learning is to mimic human learning. The starting
point to address this goal is to collect and learn prior knowledge that can help
in continuously learning a sequence of tasks. This prior knowledge should be
characterized by the good generality that enables out-of-domain tasks to learn
on top of it. Moreover, each task in the continual sequence should pick the
relevant knowledge from the previously learned knowledge. In this section, we
describe the details of our proposed method, SAM, that addresses these two
goals.

Figure 3.1 shows an overview of SAM. A neural network consists of two
parts. The first part represents the prior knowledge parameterized by the shared
learned meta-parameters θ. An attention module follows each layer in this
shared sub-network which learns to pick the relevant features from that layer
corresponding to the input. The second part learns specific representation to
each task ti parameterized by φi . Each task uses a few layers to capture the
class-specific discriminative features. The input to this part is the selected rel-
evant knowledge from prior knowledge. At deployment time, the input x is
passed through the neural network f (x;θ,φ1,φ2, ..,φi ,..) to predict the corre-
sponding class from all learned classes so far.

We can divide our approach into two main phases: prior knowledge con-
struction and the continuous learning of tasks. The training procedure for these
two phases is shown in Algorithm 5. The details of each phase are discussed in
the following paragraphs.

Prior knowledge construction. As discussed earlier, prior knowledge should
generalize well to out-of-domain tasks. To this end, we train the shared param-
eters θ using the optimization-based meta-learning algorithm MAML [FAL17],
which proves its ability to generalize to out-of-distribution tasks [FL18]. MAML
learns parameters θ that can be quickly adapted to a new task using a small
number of fine-tuning steps. In particular, the MAML algorithm consists of an
“inner loop” (Algorithm 5, Lines 4-7) and an “outer loop” (Algorithm 5, Lines
2-8). In the inner loop, the parameters θ are adapted to multiple tasks using one
or a few steps of gradient descent to obtain the parameters θ′i which are specific
for task instance Ti . In the outer loop, the initialization θ is updated by dif-
ferentiating through the inner loop to obtain a new initialization that improves
inner-loop learning.

We train our meta-learner using tasks Ti ∼ p(Tmet a) from a certain domain

3.3 Self-Attention Meta-Learner (SAM) 43

Algorithm 5 SAM

Require: p (Tmet a): distribution over meta tasks
Require: α,β: meta step size hyperparameters
Require: Nmet a : number of training steps for meta-learning
Require: η: step size hyperparameter for continual learning
Require: NC L: number of training steps for continual learning
// Learning prior knowledge with self-attention meta-learner

1 Randomly initialize θ
2 for n=1,...,Nmet a steps do
3 Sample batch of tasks Ti ∼ p(Tmet a)
4 for all Ti do
5 Sample minibatches D tr

i , Dv
i uniformly from D tr ai n

i , Dval
i

6 Forward pass the minibatch through the meta-learner including the attention
modules using eq. 3.3, 3.4, and 3.2

// One or few steps of gradient descent
7 θ′i = θ−α∇θL(D tr

i ,θ)

8 θ = θ−β∇θ
∑
Ti

L(Dv
i ,θ′i)

// Learning continuously a sequence of tasks (t1, t2, t3, ...)
9 Keep the meta-learned parameters θ fixed and shared for all tasks

10 foreach ti in tasks (t1, t2, ...) do
11 Randomly initialize φi that represents the specific parameters to task ti
12 for j=1,...,NC L steps do
13 Sample minibatch D tr

ti
from Dti

14 φi =φi −η∇φi L(D tr
ti

,φi ;θ)

44 Self-Attention Meta-Learner for Continual Learning

and optimize the parameters such that when the model is faced with a new task,
the model can adapt quickly. The objective of the MAML algorithm is:

min
θ

∑
i
L(θ−α∇θL(θ,D tr ai n

i),D val
i), (3.1)

where D tr ai n
i corresponds to the training set for task Ti which is used in the in-

ner optimization and D val
i is the validation data that is used for evaluating the

outer loss L. The inner optimization is performed via one or a few steps of gra-
dient descent with a step size α. Further details for the meta-training procedure
are included in Algorithm 5. The Tmet a tasks are used only for constructing the
prior knowledge and are different from the sequence of CL tasks that may come
from another domain.

Selection of relevant knowledge. The learned prior knowledge is shared be-
tween all tasks. When the model faces a new task, it builds on top of this
knowledge. Instead of using all the learned knowledge, the task picks the ap-
propriate knowledge to use, which helps in its learning. To address this point,
we incorporate a self-attention mechanism [HSS18] in our meta-learner. Rather
than the standard training of the self-attention mechanism as in [HSS18], we
make use of meta-learning to allow the network to learn to recalibrate the use-
ful knowledge based on the input data. In particular, an attention block is added
after each layer in the meta-learner (shared sub-network). This block’s role is
to adaptively recalibrate the convolutional channels (or the hidden neurons)
in each layer. It learns to boost the informative features corresponding to the
input and suppress the less useful ones. The input of the attention block is the
feature maps X = {X1, X2,, Xc } resulted from applying the convolutional oper-
ator F on the output of the previous layer, where X ∈ Rh×w×c and h, w , and c
are the height, width, and depth of the feature maps. The output of each at-
tention block is a vector s of size c that contains the rescaling value for each
channel, where c is the number of channels (depth). The recalibrated feature
map X

′
i ∈Rh×w is obtained as follows:

X
′
i = Xi ◦ si , (3.2)

where si is the scalar value in the vector s corresponding to the channel i and
the operation ◦ represents a channel-wise multiplication between the feature
map Xi and the scalar si . The structure of the attention block is shown in
Figure 3.1. The attention and gating mechanism consists of two steps. The

3.3 Self-Attention Meta-Learner (SAM) 45

first step is to generate channel-wise statistics by compressing the global spatial
information using global average pooling, resulting in a vector z of c channels.
The i -th element of z is calculated by:

zi = 1

h ×w

h∑
k=1

w∑
j=1

Xi (k, j). (3.3)

The second step is to model the interdependencies between channels. These
dependencies are captured using two feedforward fully connected layers. The
first layer is a bottleneck layer that reduces the dimension of the c channels with
a reduction ratio r (which is a hyperparameter), followed by a second layer that
increases the dimensionality back to c channels. A sigmoid activation is applied
to these c channels as a simple gating mechanism, producing the output vector
s, which can be calculated as follows:

s=σ(W2δ(W1z)), (3.4)

where the operation δ is the ReLU function, σ is the sigmoid function, and W1

∈R c
r ×c and W2 ∈Rc× c

r are the parameters of the two feedforward fully connected
layers respectively. The training of the attention mechanism is part of the meta-
learning phase (e.g., W1 and W2 are part of the shared parameters θ), therefore
we called it “meta-attention”.

Previously, we illustrated the attention mechanism in convolutional neural
networks. It is very easy to adapt it to multilayer perceptron networks by ig-
noring the global average pooling step. The recalibrated hidden neurons are
generated by performing element-wise multiplication between the output vec-
tor of the attention block s and the hidden neurons x.

Learning a sequence of tasks. When the model encounters a new task ti ,
a few specific layers to this task parameterized by φi are added to the model.
These layers can be any differential layers (e.g., convolutional or feedforward
fully connected layers). The input to these layers is the selected representation
from prior knowledge. The parameters φi are trained in an end-to-end manner
with a specific output layer for this task with the following objective:

min
φi

Li (φi ,D ti ;θ), (3.5)

where Li is the loss for task ti and D ti is the training set of task ti . The shared
parameters θ are kept fixed during learning each task.

46 Self-Attention Meta-Learner for Continual Learning

Final decision module. This module predicts the final output ŷ corresponding
to the test input x in the class incremental learning scenario. First, we aggregate
the output layers (ŷ1, ŷ2, ..., ŷN) of all tasks, where N is the number of encoun-
tered tasks so far. Then, the final output is predicted by getting the index of the
highest value from the concatenated output vector. This index corresponds to
the predicted class by the learned model and is calculated as follows:

argmax
i d x

(ŷ1 ⊕ ŷ2 ⊕ ...⊕ ŷN), (3.6)

where ŷi is the output layer of task ti , ⊕ represents the concatenation operation
over the output vectors, and i d x is the index of the element with the highest
value.

3.4 Experiments

In this section, we evaluate our method on the commonly used benchmarks for
CL. We compare our method with state-of-the-art approaches in regularization
and architectural strategies. We also consider another baseline, “Scratch”, where
an independent network is trained for each task individually from scratch. Each
independent network has the same architecture as the network trained across
all CL tasks. To get the predicted class using this baseline in the class incremen-
tal learning scenario, we use the final decision module of SAM. We name this
baseline Scratch (Task Agnostic) or “Scratch(TA)” for short.

3.4.1 Split CIFAR-10/100

The Split CIFAR-10/100 benchmark [ZPG17] consists of a combination of CIFAR-
10 and CIFAR-100 datasets [KH+09]. It contains 6 tasks. The first task contains
the full dataset of CIFAR-10, while each subsequent task contains 10 consecutive
classes from the CIFAR-100 dataset.

Experimental Setup

We follow the architecture used in [ZPG17, ML19]. The shared sub-network
consists of 2 blocks. Each block contains a 3×3 convolutional layer followed by
batch normalization [IS15], a ReLU activation, and an attention module with a
reduction ratio (r) of 8. The convolutional layer in each block has 32 feature
maps. A max-pooling layer follows these two blocks. The shared sub-network is

3.4 Experiments 47

initialized by the self-attention meta-learner. The specific sub-network for each
task consists of two 3×3 convolutional layers with 64 feature maps, followed by
a max-pooling layer, one fully connected layer of 512 neurons, and an output
layer. The specific layers for each task are randomly initialized. We use cross-
entropy loss for training. Each experiment is repeated 5 times with different
random seeds. Additional training details are included in Appendix A.1.

Self-attention meta-learner: We trained a convolutional neural network on
MiniImagenet [RL16]. The MiniImagenet dataset is a common benchmark used
for few-shot learning. It contains 64 training classes, 12 validation classes, and
24 test classes. The model consists of 4 blocks with a max-pooling layer follow-
ing each block. The number of feature maps in the convolutional layers in the
first and second two blocks is 32 and 64, respectively. The learned weights of
the first two blocks are copied to the shared sub-network as prior knowledge.

Since there are differences between the structure of our architecture and
the regular network used in the baselines, we analyze another split for the
shared and specific sub-networks in our results and analysis, where the shared
sub-network contains all layers except the fully connected one. In particular,
the shared sub-network consists of all 4 blocks, initialized by the self-attention
meta-learner, with a max-pooling layer following every two blocks.

Results

Figure 3.2 shows the accuracy of each task after training all tasks, along with
the average accuracy computed over all tasks. The regularization methods
(EWC [KPR+17], LWF [LH17], and SI [ZPG17]) suffer from forgetting old tasks
while having a good performance on the last trained task. On the other hand,
the performance achieved by SAM on each task is close to each other. SAM
outperforms the regularization methods by a big margin. We also compare our
method to the counterpart architectural baseline, CWR [LM17], which uses a
fixed shared pre-trained knowledge for all tasks and trains an output layer for
each task. As shown in the figure, the learned representation by SAM gen-
eralizes better than the CWR method. The average accuracy of our proposed
method is higher than CWR by around 24.5%. It is worth highlighting that
SAM achieves better performance than optimizing a separate network for each
task from scratch (Scratch(TA)).

We perform another experiment where the shared sub-network consists of 4
blocks initialized by the self-attention meta-learner. Increasing the depth of the
shared sub-network while keeping it fixed decreases the performance of SAM to
30.40%. However, the prior knowledge learned by SAM is still more proficient;

48 Self-Attention Meta-Learner for Continual Learning

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Average
0

10

20

30

40

50

60

70

80
Ac

cu
ra

cy
 %

Scratch(TA)
EWC
SI
LWF
CWR
SAM (ours)

Figure 3.2: The accuracy of each task of the Split CIFAR-10/100 benchmark in the class
incremental learning scenario after training all tasks. The “Average” x-axis
label shows the average accuracy computed over all tasks for each method.
Results for other methods except “Scratch(TA)” are reported from [ML19].

it performs better than the second-best performer method by around 7%.

3.4.2 Split MNIST

Split MNIST [ZPG17] is the most commonly used benchmark for CL. It consists
of 5 tasks. Each task has two consecutive classes from MNIST. We study the
performance of SAM and the baselines in the case of class-incremental learning
and task-incremental learning.

Experimental Setup

We use multilayer perceptron networks. Our model follows the same architec-
ture used in [vdVT18]. The shared sub-network consists of 2 blocks. Each block
consists of one hidden layer with 400 neurons followed by a ReLU activation and
an attention module with a reduction ratio (r) of 10. The shared sub-network

3.4 Experiments 49

is initialized by the self-attention meta-learner. A specific output layer for each
task follows the shared sub-network. The weights of the output layer are ran-
domly initialized. Since all layers in the used architecture are shared except the
output, we ensure a fair comparison with the baselines. We use cross-entropy
loss for training. Each experiment is repeated 5 times with different random
seeds. Additional training details are included in Appendix A.1.

Self-attention meta-learner: We train a multilayer perceptron network on the
Omniglot dataset [LSGT11]. The Omniglot dataset consists of 1623 characters
from 50 different alphabets. Each character has 20 instances. The images are
resized to 28 × 28. The model has the same architecture as our shared sub-
network, with a batch normalization that follows each hidden layer in each
block. The learned weights of the model are used as prior knowledge.

Results

Table 3.1 shows the average accuracy over all tasks after training the CL se-
quence. We report the average accuracy in class-incremental learning (CIL) and
task-incremental learning (TIL). As shown in the table, regularization methods
achieve a very good performance in TIL; however, they suffer from a huge drop
in accuracy in CIL. SAM outperforms the regularization methods by more than
38% in the latter case while achieving a comparable performance in the case
of TIL. We also compare our approach to one of the well-known architectural
approaches, DEN [YYLH18]. DEN restores the drift in old tasks’ performance
using node duplication. DEN is originally evaluated in TIL as the connections
in this method are remarked with a timestamp (task identity), and in the in-
ference, the task identity is required to test on the parameters that are trained
up to this task identity only. We adapt the official code provided by the authors
to evaluate the method in CIL and name it DEN(Task Agnostic) or DEN(TA) for
short. After training all tasks, we evaluate the test data on the model created
each timestamp. Then we use our final decision module to get the final pre-
diction. Similar to other baselines, SAM achieves a comparable performance to
DEN in TIL, while the performance of SAM is better than DEN(TA) by 6% in CIL.
Moreover, DEN expands each hidden layer by around 35 neurons, while SAM
has a fixed number of parameters. The detailed behavior of SAM for CL in CIL
is also included in Appendix A.2.

50 Self-Attention Meta-Learner for Continual Learning

Table 3.1: Average accuracy on the Split MNIST benchmark in TIL and CIL.

Method TIL CIL

Scratch 99.68 ± 0.06 -
Scratch(TA) - 67.8 ± 0.88
EWC 98.64 ± 0.22 20.01± 0.06

SI 99.09 ± 0.15 19.99± 0.06

LWF 99.57 ± 0.02 23.85 ± 0.44

DEN 99.26 ± 0.001 -
DEN(TA) - 56.95 ± 0.02

SAM (ours) 97.95 ± 0.07 62.63 ± 0.61

3.5 Analysis

In this section, we analyze: (1) the role of the meta-attention mechanism in
performance, (2) the selected representation by SAM for different classes, (3)
the importance of having prior knowledge in CL, and (4) the usefulness of the
representation learned by SAM for learning tasks from different domains.

3.5.1 Effect of the Meta-attention Mechanism on Performance

We conduct an ablation study to analyze the effect of the meta-attention mech-
anism on performance in CIL. We study two scenarios: (1) removing the atten-
tion modules from all layers in the shared sub-network, and (2) keeping the
attention module only in the last block. We perform this experiment on the
two studied benchmarks. For the Split CIFAR-10/100 benchmark, we analyze
the performance of the two splitting of the shared and specific sub-networks
discussed in Section 3.4.1. The results are summarized in Table 3.2.

When the meta-attention mechanism is excluded, and the entire knowledge
is used to learn each task, the lowest accuracy is consistently observed across
all cases. Utilizing an attention module solely at the last block of the shared
sub-network results in slightly improved accuracy. However, incorporating a
meta-attention module into each block of the shared sub-network provides sig-
nificant benefits. The effect of the attention mechanism is larger when the
shared sub-network is deeper (Shared: 4 blocks) as the features become more
discriminative at higher layers. Restricting the input to each specific classifier to
the relevant representation obtained from prior knowledge helps to select the
correct classifier and improve the classification accuracy.

3.5 Analysis 51

Table 3.2: Ablation study of SAM on the Split MNIST and Split CIFAR-10/100 bench-
marks in CIL.

Split MNIST Split CIFAR-10/100

Method Shared: 2 blocks Shared: 4 blocks

SAM without attention 51.33 ± 2.30 46.52 ± 0.33 24.21 ± 0.59

SAM with attention at the last block only 54.67 ± 0.80 46.58 ± 0.29 25.04 ± 0.14

SAM 62.63 ± 0.61 48.24 ± 0.30 30.40 ± 0.31

3.5.2 Learned Representation

We further investigate the effect of the meta-attention modules on the learned
representation. To this end, we visualize the learned representation of each
block in the shared sub-network before applying the attention module, the de-
cision (scores) of the attention module, and the recalibrated activation. We
draw these representations for random samples from different classes in differ-
ent tasks from the Split MNIST benchmark.

As shown in Figure 3.3, the relevant representation for each sample is sparse
and varies across different classes. Furthermore, more features are selected by
the attention module in the first block, indicating that various classes may share
numerous lower-level features with prior knowledge. On the other hand, many
features are suppressed in the second block, and only the relevant features for
the input are emphasized.

3.5.3 Role of Prior Knowledge

We hypothesize that having generic prior knowledge before learning the CL se-
quence and selecting the relevant representation from the past is more crucial
when the sequence has dissimilar tasks. To evaluate this hypothesis, we gen-
erate three tasks based on the CIFAR10 benchmark: two similar tasks and one
dissimilar task. Each task consists of two classes. The first task involves the air-
plane and automobile classes, the second task involves the bird and cat classes,
and the third task involves the ship and truck classes. Thus, the first and the sec-
ond tasks are dissimilar, while the first and third tasks are similar. We compare
SAM with the setting used in most of the previous continual learning meth-
ods, where the model starts from randomly initialized weights and sequentially
learns the tasks. We call this setting “Standard”. We perform this analysis on the
same architecture discussed in Section 3.4.1 with the two splittings of the shared

52 Self-Attention Meta-Learner for Continual Learning
R

an
do

m
 S

am
pl

e
1

Activation Attention Decision Recalibrated Activation

0

2

4

6

8

10

0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10

R
an

do
m

 S
am

pl
e

2

Activation Attention Decision Recalibrated Activation

0

2

4

6

8

0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

(a) The first block

R
an

do
m

 S
am

pl
e

1

Activation Attention Decision Selected Representation

0.0

2.5

5.0

7.5

10.0

12.5

0.0

0.2

0.4

0.6

0.8

1.0

0.0

2.5

5.0

7.5

10.0

12.5

R
an

do
m

 S
am

pl
e

2

Activation Attention Decision Selected Representation

0.0

2.5

5.0

7.5

10.0

12.5

0.0

0.2

0.4

0.6

0.8

1.0

0.0

1.5

3.0

4.5

6.0

7.5

(b) The second block

Figure 3.3: The visualization of the activation in shared sub-network for Split MNIST.
The representation for each layer is reshaped to 20×20. Each row represents
a random sample of a class in a certain task. We illustrate the activation
before being calibrated, the output of the attention module, and the recal-
ibrated activation in the first (a) and second (b) blocks. The last column
represents the selected representation passed to the specific sub-networks.

and specific sub-networks. In the standard setting, the shared sub-network is
initialized with the weights learned from training the model on the first task and
then frozen. We evaluate the forward transfer (FWT) in this setting and SAM
on the second and third tasks. FWT is a metric proposed by [LPR17,DRLFM18]
to assess the ability of the CL model to transfer knowledge for future tasks.
It is estimated by the accuracy obtained on each task using the fixed shared
sub-network while allowing the training of the specific sub-network.

As shown in Figure 3.4c, the forward transfer is comparable between the
standard setting and SAM on the third task, as the previously learned knowledge
in the standard setting from the first task is useful for the third task (they have
some similarities). While in the case of dissimilar tasks, the FWT of SAM is
higher than the standard setting, as shown for the second task (Figure 3.4b).
Moreover, the performance gap increases when the shared sub-network gets
deeper. The FWT of SAM is higher than the standard setting by around 8%. The
analysis reveals the importance of having prior knowledge in the CL paradigm
to promote learning future tasks.

3.5.4 Knowledge Reusability

Is the representation learned by the self-attention meta-learner on a certain do-
main useful for learning a sequence of tasks from another domain? To answer

3.5 Analysis 53

this question, we compare SAM to the Extreme Learning Machine (ELM) [HZS04].
The authors proposed the “generalized” networks that provide the best general-
ization performance at a fast learning speed. The network parameters are ran-
domly initialized and are not updated, while the parameters of the output layer

(a) Task 1 (airplane, automobile)

(b) Task 2 (bird, cat) (c) Task 3 (ship, truck)

Figure 3.4: FWT comparison between SAM and the “Standard” setting used in most of
the previous CL methods. In the Standard setting, the shared sub-network
is initialized by the learned knowledge from Task 1 (airplane, automobile)
from the CIFAR10 benchmark (a). FWT is evaluated on a dissimilar task
(bird, cat) (b) and another similar task (ship, truck) (c). SAM promotes
forward transfer in case of dissimilar tasks. While in the Standard setting,
the knowledge learned by Task 1 contains less information useful for Task 2.

54 Self-Attention Meta-Learner for Continual Learning
SA

M
 in

iti
al

iz
at

io
n

Activation Attention Decision Recalibrated Activation

0.0

1.5

3.0

4.5

6.0

7.5

0.0

0.2

0.4

0.6

0.8

1.0

0.0

1.5

3.0

4.5

6.0

R
an

do
m

 in
iti

al
iz

at
io

n
(E

LM
) Activation Attention Decision Recalibrated Activation

0.0

0.4

0.8

1.2

1.6

0.46

0.48

0.50

0.52

0.54

0.0

0.2

0.4

0.6

0.8

(a) The first block

SA
M

 in
iti

al
iz

at
io

n

Activation Attention Decision Selected Representation

0

2

4

6

8

10

0.0

0.2

0.4

0.6

0.8

1.0

0.0

1.5

3.0

4.5

6.0

R
an

do
m

 in
iti

al
iz

at
io

n
(E

LM
) Activation Attention Decision Selected Representation

0.00

0.08

0.16

0.24

0.32

0.485
0.490
0.495
0.500
0.505
0.510
0.515

0.00

0.04

0.08

0.12

0.16

(b) The second block

Figure 3.5: Activations in the shared sub-network for the Split MNIST benchmark. The
representation is reshaped to 20× 20. The first and second rows show the
representations when the shared sub-network is initialized by SAM and a
random initialization (ELM), respectively.

Table 3.3: A comparison between the random initialization (ELM) and the initialization
by the generic prior knowledge (SAM) for the shared sub-network.

Method Split CIFAR-10/100 Split MNIST

ELM 37.95 ± 0.64 58.42 ± 0.91

SAM (ours) 48.24 ± 0.30 62.63 ± 0.61

are learned. This research is then extended by many works [BRF13, RBW+13,
FMR16,BKH15,HBKV15]. We compare SAM with ELM by initializing the shared
sub-network randomly and keeping its weights fixed. We visualize the repre-
sentation of each hidden layer in the shared sub-network on the Split MNIST
benchmark in SAM and ELM.

As shown in Figure 3.5, the self-attention meta-learner boosts and selects
some features, while the random initialization gives almost equal importance to
each feature. Table 3.3 compares the two methods in terms of performance on
the two studied benchmarks. As shown in the table, prior knowledge learned
by SAM generalizes better for the CL tasks despite the fact that the domain of
the prior knowledge is different from the CL sequence.

3.6 Improvements of CL Approaches with SAM

The experimental evaluation demonstrates the effectiveness of having prior
knowledge and selective transfer for the continual learning paradigm. In this

3.6 Improvements of CL Approaches with SAM 55

Table 3.4: Enhancing existing continual learning strategies by SAM. “Standard” repre-
sents the original form of the methods. The accuracy is reported on the Split
MNIST and Split CIFAR-10/100 benchmarks in CIL.

Split MNIST Split CIFAR-10/100

Method Standard + SAM Standard + SAM

Fine-tuning 19.86 ± 0.04 53.87 ± 1.73 12.24 ± 0.05 25.45 ± 1.76

SI 19.99 ± 0.06 67.32 ± 0.43 13.39 ± 0.04 42.92 ± 1.01

MER 32.66 ± 2.33 50.04 ± 1.85 - -

section, we analyze the performance of popular CL methods when they are in-
tegrated with SAM.

We evaluate the performance of the regularization method SI [ZPG17] as
well as the optimization-based meta-learning method MER [RCA+18] when
they are combined with SAM as well as their original form. In particular, in-
stead of freezing the shared sub-network after learning the prior knowledge,
we allow for accumulating the knowledge from each CL task. The shared sub-
network is updated using a CL baseline (SI or MER). Accumulating the knowl-
edge from each task in the shared sub-network causes catastrophic forgetting of
the previously learned ones. The SI method addresses this problem by adding
a regularization term in the loss function to constrain the change in the impor-
tant weights of previous tasks. In MER, a small memory for experience replay
is used, and the parameters are trained using the Reptile meta-learning algo-
rithm [NS18]. We also add the simple fine-tuning method as another baseline,
where new tasks are trained continuously without any mechanism to avoid for-
getting in the shared sub-network. We perform this experiment on the Split
MNIST and Split CIFAR-10/100 benchmarks. We use the same architectures
and training details described in Section 3.4. To ensure a fair comparison with
the original form of the methods, for the Split CIFAR-10/100 benchmark, we
use the network split where the shared sub-network consists of 4 blocks. For
the MER algorithm, we adapt the official code provided by the authors to eval-
uate it on the Split MNIST benchmark. Following the notation of their paper,
we use a batch size (k −1) of 10, the number of batches per example of 5, γ of
1.0, and β of 0.01. We use a memory buffer of size 200 to learn 1000 sampled
examples across each task. The results are shown in Table 3.4.

Interestingly, when SAM is combined with the other methods, it always im-
proves their performance. It is interesting to observe that the combination of
SAM with the fine-tuning baseline increases its performance despite that there

56 Self-Attention Meta-Learner for Continual Learning

is no forgetting avoidance strategy. MER achieves good results despite using
only 1000 samples from each task. Although the regularization methods suffer
from a huge performance drop when applied in CIL, as shown before, combin-
ing SAM with SI leads to a significant improvement: around 47% and 29% on
the Split MNIST and Split CIFAR-10/100 benchmarks, respectively. SAM re-
duces forgetting by allowing an adaptive update for the weights. The update of
the weights becomes a function of the recalibrated activations by SAM. There-
fore, the knowledge accumulated by new tasks affects a subset of the previously
learned representation. Accumulating the knowledge in SAM while using the
SI method to constrain the change in the important weights of old tasks outper-
forms SAM alone by 5% and 13% on the Split MNIST and Split CIFAR-10/100
benchmarks, respectively. This analysis confirms the importance of our pro-
posed desiderata for continual learning. We believe that it would open up many
directions for CIL by adopting SAM as the starting point.

3.7 Conclusion and Future Work

In this chapter, we demonstrated the importance of two desiderata of continual
learning, which have not received much attention in current state-of-the-art
approaches. First, the necessity of having a good quantity of prior knowledge
to promote future learning. Second, selecting the relevant knowledge to the
current task from previous knowledge instead of using the whole knowledge.

To demonstrate their effectiveness on performance, we proposed SAM, a
self-attention meta-learner for continual learning. SAM learns prior knowledge
that can generalize to new distributions and learns to boost the features relevant
to input data. During the continual learning phase, we introduce out-of-domain
tasks. Our empirical evaluation and analysis demonstrated the role of our pro-
posed desiderata in improving performance. The experimental results showed
that the proposed method outperforms state-of-the-art methods from different
continual learning strategies in CIL. Remarkably, SAM achieved performance
on par with the Scratch(TA) baseline despite that in this baseline an indepen-
dent model is optimized for each task separately. Finally, we demonstrated
that combining SAM with the existing continual learning methods boosts their
performance, showing the importance of selective transfer in improving both
backward and forward transfer.

SAM addresses forgetting by design to enable assessing the studied desider-
ata. Further research on addressing forgetting and forward transfer jointly is
crucial for improving performance. Moreover, more analyses of the relationship

3.7 Conclusion and Future Work 57

between forward transfer and the speed of adaptability of a network to new
data would help build improved models.

Chapter 4
Dynamic Sparse Training for
Deep Reinforcement Learning

Training deep neural networks to adapt to changing data distributions presents
significant challenges, as demonstrated earlier. These challenges are further in-
creased when a model learns a task without access to true labels. Such difficulties
are particularly evident in the context of deep reinforcement learning (DRL), where
agents are trained through trial-and-error interactions with an environment, and
new training samples are collected over time. In this case, achieving satisfactory
performance with dense neural networks often requires substantial training time
due to the inherent training difficulties involved. Hence, prohibitive computation
and memory resources are consumed. In this chapter, we aim to improve the train-
ing time of DRL agents by exploring a new training strategy for this paradigm.
More specifically, we introduce for the first time a dynamic sparse training ap-
proach for deep reinforcement learning to accelerate the training process. The
proposed approach trains a sparse neural network from scratch and dynamically
adapts its topology to the changing data distribution during training. Experi-
ments on continuous control tasks show that our dynamic sparse agents achieve
higher performance than the equivalent dense ones, reduce the parameter count

This chapter is integrally based on Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu,
Mykola Pechenizkiy, and Peter Stone. Dynamic sparse training for deep reinforcement learning. In-
ternational Joint Conference on Artificial Intelligence (IJCAI), 2022. The Adaptive and Learning
Agents Workshop at the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), Best Paper Award, 2022.

60 Dynamic Sparse Training for Deep Reinforcement Learning

and floating-point operations (FLOPs) by 50%, and have a faster learning speed
that enables reaching the performance of dense agents with 40−50% reduction in
the training steps. We release our code at https: // github. com/ GhadaSokar/
Dynamic-Sparse-Training-for-Deep-Reinforcement-Learning .

4.1 Introduction

Deep reinforcement learning (DRL) has achieved remarkable success in many
applications. The power of deep neural networks as function approximators
allows RL agents to scale to environments with high-dimensional state and ac-
tion spaces. This enables high-speed growth in the field and the rise of many
methods that improve the performance and stability of DRL agents [WLZ+20].
While the achieved performance is impressive, a long training time is required
to obtain this performance. For instance, it took more than 44 days to train
a Starcraft II agent using 32 third-generation tensor processing units (TPUs)
[VBC+19]. The very long training time leads to high energy consumption and
prohibitive memory and computation costs. In this work, we ask the follow-
ing question: Can we provide efficient DRL agents with less computation cost and
energy consumption while maintaining superior performance?

Few recent works attempt to accelerate the inference time of DRL agents via
pruning [LC20] or training a compact network under the guidance of a larger
network (knowledge distillation) [ZHL19]. Despite the computational improve-
ment achieved at inference, extensive computations throughout the training of
dense networks are still consumed. Our goal is to accelerate the training process
as well as the inference time of DRL agents.

The long training time of a DRL agent is due to two main factors: (1) the ex-
tensive computational cost of training deep neural networks caused by the high
number of network parameters [JYP+17] and (2) the learning nature of a DRL
agent in which its policy is improving through many trial-and-error cycles while
interacting with the environment and collecting a large amount of data. In
this chapter, we introduce dynamic sparse training (DST) [MMP+21,HABN+21]
in the DRL paradigm for the first time to address these two factors. Namely,
we propose an efficient training approach that can be integrated with existing
DRL methods. Our approach is based on training sparse neural networks from
scratch with a fixed parameter count throughout training (1). During training,
the sparse topology is optimized via adaptation cycles to quickly adapt to the on-
line changing distribution of data (2). Our training approach enables reducing
memory and computation costs substantially. Moreover, the quick adaptation

https://github.com/GhadaSokar/Dynamic-Sparse-Training-for-Deep-Reinforcement-Learning
https://github.com/GhadaSokar/Dynamic-Sparse-Training-for-Deep-Reinforcement-Learning

4.2 Related Work 61

to the new samples from the improving policy during training leads to a faster
learning speed.

In fact, the need for neural networks that can adapt, e.g., change their con-
trol policy dynamically as environmental conditions change, was broadly ac-
knowledged by the RL community [Sta03]. Although prior works related to
the automatic selection of function approximation based on neuroevolution ex-
ist [HMI09], perhaps the most connected in the spirit to our proposed method
is a combination of NeuroEvolution of Augmenting Topologies (NEAT) [SM02]
and temporal difference (TD) learning (i.e., NEAT+Q [WS06]). Still, the chal-
lenge remains, and cutting-edge DRL algorithms do not account for the benefits
of dynamic neural network training yet.

Our contributions in this work are as follows:

• The principles of dynamic sparse training are introduced in the deep rein-
forcement learning field for the first time.

• Efficient improved versions of two state-of-the-art algorithms, TD3 [FHM18]
and SAC [HZAL18], are obtained by integrating our proposed DST ap-
proach with the original algorithms.

• Experimental results show that our training approach reduces the mem-
ory and computation costs of training DRL agents by 50% while achieving
superior performance. Moreover, it achieves a faster learning speed, re-
ducing the required training steps.

• Analysis insights demonstrate the promise of dynamic sparse training in
advancing the field and allowing for DRL agents to be trained and de-
ployed on low-resource devices (e.g., mobile phones, tablets, and wireless
sensor nodes) where the memory and computation power are strictly con-
strained.

4.2 Related Work

4.2.1 Sparsity in DRL

To the best of our knowledge, the current advance in deep reinforcement learn-
ing is achieved using dense neural networks. Few recent studies have introduced
sparsity in DRL via pruning. PoPS [LC20] first trains a dense teacher neural net-
work to learn the policy. This dense teacher policy network guides the iterative
pruning and retraining of a student policy network via knowledge distillation.

62 Dynamic Sparse Training for Deep Reinforcement Learning

In [ZHL19], the objective is to accelerate the behavior policy network and re-
duce the time for sampling. A smaller network is used for the behavior policy
and trained simultaneously with a large dense target network via knowledge
distillation. GST [LKK+21] was proposed as an algorithm for weight compres-
sion in DRL training by simultaneously utilizing weight grouping and pruning.
Some other works [YETM19, VLS21] studied the existence of the lottery ticket
hypothesis [FC18] in RL, which shows the presence of sparse subnetworks that
can outperform dense networks when they are trained from scratch. This find-
ing motivates our study. However, pruning dense networks increases the com-
putational cost of the training process as it requires iterative cycles of pruning
and retraining. In this work, we introduce the first efficient training algorithm
for DRL agents that trains a sparse neural network directly from scratch and
adapts its topology to the changing data distribution.

4.2.2 Dynamic Sparse Training (DST)

DST is the class of algorithms that train sparse neural networks from scratch and
jointly optimize the weights and the sparse topology during training. This direc-
tion aims to reduce the computation and memory overhead of training dense
neural networks by leveraging the redundancy in the parameters (i.e., being
over-parametrized) [DSD+13]. Efforts in this line of research are devoted to
supervised and unsupervised learning. The first work in this direction was pro-
posed by [MMS+18]. They proposed a Sparse Evolutionary Training algorithm
(SET) that dynamically changes the sparse connectivity during training based
on the values of the connections (weights). SET achieves higher performance
than dense models and static sparse networks. The success of the SET algorithm
opens the path to many interesting DST methods that bring higher performance
gain. These algorithms differ from each other in the way the sparse topology is
adapted during training [MW19,EGM+20, JPR+20,LMPP21,SMP21b].

In this work, we adopt the topological adaptation from the SET algorithm
in our proposed approach. The motivation is multifold. First, SET is simple yet
effective; it achieves the same or even higher accuracy than dense models with
high sparsity levels across different architectures (e.g., multi-layer perceptrons,
convolutional neural networks, restricted Boltzmann machines). Second, unlike
other DST methods that use the values of non-existing (masked) weights in the
adaptation process, SET uses only the values of existing sparse connections. This
makes SET truly sparse and memory-efficient [LMM+20]. Finally, it does not
need high computational resources for the adaptation process. It uses readily
available information during the standard training. These factors are favorable

4.3 Proposed Method 63

for our goal to train efficient DRL agents suitable for real-world applications.
We leave evaluating other topological adaptation strategies for future work.

4.3 Proposed Method

In this section, we describe our proposed method, which introduces dynamic
sparse training for DRL. Here, we focus on integrating our training approach
with one of the state-of-the-art DRL methods; Twin Delayed Deep Deterministic
policy gradient (TD3) [FHM18]. We named our new approach Dynamic Sparse
TD3 or “DS-TD3” for short. TD3 is an efficient DRL method that offers good per-
formance in many tasks [SLXC20,WWPR20]. Yet, our approach can be merged
into other DRL methods as well. Appendix B.5 shows the integration with soft
actor-critic (SAC) [HZAL18].

TD3 is an actor-critic method that addresses the overestimation bias in pre-
vious actor-critic approaches. In actor-critic methods, a policy π is known as the
actor, and a state-value function Q is known as the critic. Target networks are
used to maintain fixed objectives for the actor and critic networks over multiple
updates. In short, TD3 limits the overestimation bias using a pair of critics. It
takes the smallest value of the two critic networks to estimate the Q value to
provide a more stable approximation. To increase the stability, TD3 proposed a
delayed update of the actor and target networks. In addition, the weights of the
target networks are slowly updated by the current networks by some propor-
tion τ. In this work, we aim to dynamically train the critics and actor networks
along with their corresponding target networks from scratch with sparse neural
networks to provide efficient DRL agents. In the rest of this section, we will
explain our proposed DST approach for TD3. The full details are also provided
in Algorithm 6.

Our proposed DS-TD3 consists of four main phases: sparse topology initial-
ization, adaptation schedule, topological adaptation, and maintaining sparsity
levels.

Sparse Topology Initialization (Algorithm 6 L1-L4). TD3 uses two critic net-
works (Qθ1

,Qθ2
) and one actor network (πϕ) parameterized by θ1 = {θl

1}|Ll=1,
θ2 = {θl

2}|Ll=1, and ϕ= {ϕl }|Ll=1 respectively; where L is the number of layers in a
network. We initialize each of the actor and critic networks with a sparse topol-
ogy. Sparse connections are allocated in each layer between the hidden neurons
at layer l −1 and layer l . We represent the locations of the sparse connections

64 Dynamic Sparse Training for Deep Reinforcement Learning

by a binary mask M = {M l }|Ll=1. Following [MMS+18], we use Erdős–Rényi
random graph [ER+60] to initialize a sparse topology in each layer l . Namely,
the probability of a connection j in layer l is given by:

p(M j) =λl nl +nl−1

nl ×nl−1
, (4.1)

where λl is a hyperparameter to control the sparsity level in layer l , and nl−1

and nl are the neurons count in layers l −1 and l , respectively. M j ∈ {0,1}; a
value of 1 means the existence of a weight in location j . We omit the index l
from the mask and weight matrices for readability. A sparse topology is created
in each layer for the actor and critic networks:

ϕ=ϕ⊙Mφ,

θi = θi ⊙Mθi , ∀i ∈ {1,2},
(4.2)

where ⊙ is an element-wise multiplication operator and Mφ, Mθ1 , and Mθ2

are binary masks to represent the sparse weights in the actor and two critic
networks, respectively. The initial sparsity level is kept fixed during training.

The target policy and target critic networks are parameterized by ϕ′, θ′1, and
θ′2, respectively. Initially, the target networks have the same sparse topology and
the same weights as the current networks: ϕ′ ←ϕ, θ′1 ← θ1, θ′2 ← θ2.

After the topological and weight initialization, the agent collects enough
data before training using a purely exploratory policy. During training, for each
time step, TD3 updates the pair of critics towards the minimum target value of
actions selected by the target policy πϕ′ :

y = r +γmin
i=1,2

Qθ′
i
(s′,πϕ′ (s′)+ϵ), (4.3)

where γ is the discounting factor, r is the current reward, s′ is the next state,
and ϵ∼ cl i p(N(0, σ̃),−c,c) is the proposed clipped noise by TD3, defined by σ̃, to
increase the stability; where c is the clipped value. As discussed, TD3 proposed
to delay the update of the policy network to first minimize the error in the value
network before introducing a policy update. Therefore, the actor network is
updated every d steps with respect to Qθ1 as shown in Algorithm 6 L17-L19.

During the weight optimization of the actor and critic networks, only the
values of the existing sparse connections are updated (i.e., the sparsity level is
kept fixed). The sparse topologies of the networks are also optimized during
training according to our proposed adaptation schedule.

4.3 Proposed Method 65

Algorithm 6 DS-TD3 (λl , η, e, N , τ, d)

1: Initialize critic networks Qθ1 , Qθ2 and actor network πϕ with sparse param-
eters θ1, θ2, ϕ with a sparsity level defined by λl :

2: Create Mφ, Mθ1 , and Mθ2 with Erdős–Rényi graph
3: θ1 ← θ1⊙ Mθ1 , θ2 ← θ2⊙ Mθ2 , ϕ←ϕ⊙Mφ

4: Initialize target networks θ′1 ← θ1, θ′2 ← θ2, ϕ′ ←ϕ
5: Initialize replay buffer B
6: for t = 1 to T do
7: Select action with exploration noise a ∼πϕ(s)+ϵ,
8: ϵ∼N(0,σ) and observe reward r and new state s′
9: Store transition tuple (s, a,r, s′) in B

10: Sample mini-batch of N transitions from B

11: ã ←πϕ′ (s′)+ϵ, ϵ∼ cl i p(N(0, σ̃),−c,c)
12: y ← r +γmini=1,2 Qθ′

i
(s′, ã)

13: θi ← ar g mi nθi
1
N

∑
(y −Qθi (s, a))2

14: if t mod e then
15: θi ← TopologicalAdaptation(θi,Mθi ,η) (Algo. 7)
16: end if
17: if t mod d then
18: Update ϕ by the deterministic policy gradient:
19: ∇ϕ J (ϕ) ← 1

N

∑∇aQθ1 (s, a)|a=πϕ(s)∇ϕπϕ(s)
20: if t mod e then
21: ϕ← TopologicalAdaptation(ϕ,Mφ,η) (Algo. 7)
22: end if
23: Update target networks:
24: θ′i ← τθi+ (1−τ)θ′i
25: ϕ′ ← τϕ+ (1−τ)ϕ′

26: θ′
i
← MaintainSparsity(θ′i ,

∥∥θi∥∥0) (Algo. 8)
27: ϕ′ ← MaintainSparsity(ϕ′,∥ϕ∥0) (Algo. 8)
28: end if
29: end for

Adaptation Schedule. The typical practice in DST methods applied to the
supervised setting is to perform the dynamic adaptation of the sparse topology
after each training epoch. However, this would not fit the RL setting directly due
to its dynamic learning nature. In particular, an RL agent faces instability during

66 Dynamic Sparse Training for Deep Reinforcement Learning

Algorithm 7 Topological Adaptation (X, M , η)

1: c ← η∥X∥0

2: cp ← c/2 ; cn ← c/2
3: X̃p ← get_cp -th_smallest_positive(X)
4: X̃n ← get_cn-th_largest_negative(X)
5: M j ←M j − 1[(0 <X j < X̃p)∨ (0 >X j > X̃n)]
6: Generate c random integers {x}|c1
7: M j ←M j + 1[(j == x)∧ (X j == 0)]
8: X ←X ⊙M

Algorithm 8 Maintain Sparsity (X, k)

1: X̃ ← Sort_Descending(|X |)
2: M j = 1[|X j |−X̃k ≥ 0],∀ j ∈ {1, ...∥X∥0}
3: X =X ⊙M

training due to the lack of a true target objective. The agent learns through trial
and error cycles, collecting the data online while interacting with the environ-
ment. Adapting the topology very frequently in this learning paradigm would
limit the exploration of effective topologies for the data distribution and give a
biased estimate of the current one. To address this point, we propose to delay
the adaptation process and perform it every e time steps, where e is a hyper-
parameter. This would allow the newly added connections from the previous
adaptation process to grow. Hence, it would also give better estimates of the
connections with the least influence on performance and an opportunity to ex-
plore other effective ones. Analysis of the effect of the adaptation schedule in
the success of applying dynamic sparse training in the RL setting is provided in
Section 5.2.

Topological Adaptation (Algorithm 7). We adopt the adaptation strategy of
the SET method [MMS+18] in our approach. The sparse topologies are op-
timized according to our adaptation schedule. Every e steps, we update the
sparse topology of the actor and critic networks. Here, we explain the adapta-
tion process on the actor network as an example. The same strategy is applied
to the critic networks.

The adaptation process is performed through a “drop-and-grow” cycle which
consists of two steps. The first step is to drop a fraction η of the least impor-

4.3 Proposed Method 67

tant connections from each layer. This fraction is a subset (cp) of the smallest
positive weights and a subset (cn) of the largest negative weights. Thus, the re-
moved weights are the ones closest to zero. Let ϕ̃p and ϕ̃n be the cp -th smallest
positive and the cn-th largest negative weights, respectively. The mask Mφ is
updated to represent the dropped connections as follows:

M
j
φ
=M

j
φ
− 1[(0 <ϕ j < ϕ̃p)∨ (0 >ϕ j > ϕ̃n)], ∀ j ∈ {1, ...,∥ϕ∥0}, (4.4)

where M
j
φ

is the element j in Mφ, 1 is the indicator function, ∨ is the logical
OR operator, and ∥.∥0 is the standard L0 norm. The second step is to grow the
same fraction η of removed weights in random locations from the non-existing
weights in each layer. Mφ is updated as follows:

M
j
φ
=M

j
φ
+ 1[(j == x)∧ (ϕ j == 0)], ∀ j ∈ {1, ..,∥ϕ∥0}, (4.5)

where x is a random integer generated from the discrete uniform distribution
in the interval [1,n(l−1) × (nl)] and ∧ is the logical AND operator. The weights of
the newly added connections are zero-initialized.

Maintain Sparsity Level in Target Networks (Algorithm 8). TD3 delays the
update of target networks to be performed every d steps. In addition, the target
networks are slowly updated by some proportion τ instead of making the target
networks exactly match the current ones (Algorithm 6 L23-L25). These two
points lead to a slow deviation of the sparse topologies of target networks from
current networks. Consequently, the slow update of the target networks by τ

would slowly increase the number of non-zero connections over time. To address
this, after each update of target networks, we prune the extra connections that
make the total number of connections exceed the initially defined one. We
prune the extra weights based on their smallest magnitude. Assume we have
to retain k connections. The target masks of the actor (M ′

ϕ′) and critics (M ′
θ′

1
,

M ′
θ′

2
) are calculated as follows:

M
′ j
ϕ′ = 1[|ϕ′ j |− ϕ̃′k ≥ 0], ∀ j ∈ {1, ...,

∥∥ϕ′∥∥
0},

M
′ j
θ′

i
= 1[|θ′ j

i |− θ̃′
k
i ≥ 0], ∀ j ∈ {1, ...,

∥∥θ′i ∥∥0}, ∀i ∈ {1,2},
(4.6)

where ϕ̃′k
and θ̃′i

k
is the k-th largest magnitude in the actor and critics respec-

tively, and |(.) j | is the magnitude of element j in the matrix. The target networks

68 Dynamic Sparse Training for Deep Reinforcement Learning

are updated as follows:

ϕ′ =ϕ′⊙M ′
ϕ′ ,

θ′i = θ′i ⊙M ′
θ′

i
∀i ∈ {1,2}.

(4.7)

4.4 Experiments and Results

In this section, we assess the efficiency of our proposed dynamic sparse training
approach for the DRL paradigm and compare it to state-of-the-art algorithms.
Experimental settings are provided in Appendix B.1.

4.4.1 Baselines

We compare DS-TD3 with the following baselines: (1) TD3 [FHM18], the origi-
nal TD3 where dense networks are used for actor and critic models, (2) Static-
TD3, a variant of TD3 where the actor and critic models are initialized with
sparse neural networks which are kept fixed during training (i.e., there is no
topological optimization), and (3) SAC [HZH+18], a popular off-policy algo-
rithm in which the policy is trained to maximize the trade-off between expected
return and entropy, resulting in policies that explore better.

4.4.2 Benchmarks

We perform our experiments on MuJoCo continuous control tasks interfaced
through OpenAI Gym. We evaluate our approach on five challenging environ-
ments (HalfCheetah-v3, Hopper-v3, Walker2d-v3, Ant-v3, and Humanoid-v3).

4.4.3 Metrics

We use multiple metrics to assess the efficiency of the studied DRL methods:

• Return: The standard metric used in DRL to measure the performance of
an agent.

• Learning curve area (LCA): An estimate of the learning speed of a model
(i.e., how quickly a model learns) [CRRE18] by measuring the area under
the training curve of a method.

4.4 Experiments and Results 69

Table 4.1: Learning curve area (LCA) (× 5000) of different methods.

Method HalfCheetah-v3 Walker2d-v3 Hopper-v3 Ant-v3 Humanoid-v3

TD3 1.7686 0.5264 0.4788 0.5524 0.3635
Static-TD3 1.7666 0.5167 0.4984 0.5807 0.5182
DS-TD3 (ours) 1.9560 0.6956 0.5435 0.6623 0.6089
SAC 1.7297 0.6128 0.5572 0.7969 0.5639

Table 4.2: Average return (R) over the last 10 evaluations of 1 million time steps.

Method HalfCheetah-v3 Walker2d-v3 Hopper-v3 Ant-v3 Humanoid-v3

TD3 11153.48±473.29 4042.36±576.57 2184.78±1224.14 4287.69±1080.88 3809.15±1053.40
Static-TD3 10583.84±307.03 3951.01±443.78 3570.88±43.71 4148.61±801.34 4989.47±546.32
DS-TD3 (ours) 11459.88±482.55 4870.57±525.33 3587.17±70.62 5011.56±596.95 5238.16±121.71
SAC 11415.23±357.22 4566.18±448.25 3387.36±148.73 5848.64±385.85 5518.61±97.03

• Network size (#params): An estimate of the memory cost measured by
the number of network parameters.

• Floating-point operations (FLOPs): An estimate of the computational
cost required for training. It is the typical metric in the literature to com-
pare a DST method against its dense counterpart.

More details can be found in Appendix B.2.

4.4.4 Results

Learning Behavior and Speed. Figure 4.1 shows the learning curve of stud-
ied methods. DS-TD3 has a much faster learning speed than the baselines,
especially at the beginning of the training. After 40-50% of the steps, DS-TD3
can achieve the final performance of TD3. Static-TD3 does not have this fa-
vorable property, revealing the importance of optimizing the sparse topology
during training to adapt to incoming data. Table 4.1 shows the learning curve
area (LCA) of each method. DS-TD3 has higher LCA than TD3 and static-TD3 in
all environments. It is also higher than SAC in three environments out of five.
This metric is important to differentiate between two agents with similar final
performance but very different LCA.

Performance. Table 4.2 shows the average return (R) over the last 10 eval-
uations. DS-TD3 outperforms TD3 in all environments. Interestingly, it im-
proves TD3 performance by 2.75%, 20.48%, 64.18%, 16.88%, and 37.51% on

70 Dynamic Sparse Training for Deep Reinforcement Learning

0 50 100 150 200
Time steps x 5000

0

2500

5000

7500

10000

12500

Av
er

ag
e

Re
tu

rn

(a) HalfCheetah-v3.

0 50 100 150 200
Time steps x 5000

0

2000

4000

6000

Av
er

ag
e

Re
tu

rn
(b) Walker2d-v3.

0 50 100 150 200
Time steps x 5000

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(c) Hopper-v3.

0 50 100 150 200
Time steps x 5000

0

2000

4000

6000

Av
er

ag
e

Re
tu

rn

(d) Ant-v3.

0 50 100 150 200
Time steps x 5000

0

2000

4000

6000

Av
er

ag
e

Re
tu

rn

(e) Humanoid-v3.

Figure 4.1: Learning curves of the studied algorithms on different continuous control
tasks. The shaded region represents the standard deviation of the average
evaluation over 5 runs.

4.5 Analysis 71

0 50 100 150 200
Time steps x 5000

0

2500

5000

7500

10000

Av
er

ag
e

Re
tu

rn
DS-TD3 e=200
DS-TD3 e=500
DS-TD3 e=1000
DS-TD3 e=2000
TD3

Figure 4.2: The learning curves of DS-TD3 on HalfCheetah-v3 using different adaptation
schedules.

HalfCheetah-v3, Walker2d-v3, Hopper-v3, Ant-v3, and Humanoid-v3, respec-
tively. Static-TD3 performs closely to TD3 in most cases except for Humanoid-
v3, where Static-TD3 outperforms TD3 by 30.98%. DS-TD3 has a better final
performance than SAC in three environments.

4.5 Analysis

4.5.1 Memory and Computation Costs

We analyze the costs needed for the training process by calculating the FLOPS
and #params for the actor and critics. We perform this analysis on Half-Cheetah-
v3. #params for dense TD3 is 214784, which requires 1×(1.07e14) FLOPs to
train. With our DS-TD3, we can find a much smaller topology that can effec-
tively learn the policy and the function value, achieving higher performance
than TD3 with a sparsity level of 51%. This consequently reduces the number
of required FLOPs to 0.49×(1.07e14).

4.5.2 Adaptation Schedule

We analyze the effect of the adaptation schedule on performance. In particular,
we ask how frequently the sparse topology should be adapted. We perform this
analysis on HalfCheetah-v3.

Figure 4.2 shows the learning curves of DS-TD3 using different adaptation
schedules controlled by the hyperparameter e (Section 4.3). Adapting the topol-

72 Dynamic Sparse Training for Deep Reinforcement Learning

0 50 100 150 200
Time steps x 5000

0

2500

5000

7500

10000

Av
er

ag
e

Re
tu

rn
TD3 Sparsity 0%
DS-TD3 Sparsity 25%
DS-TD3 Sparsity 50%
DS-TD3 Sparsity 80%

Figure 4.3: The learning curves of DS-TD3 on HalfCheetah-v3 using different sparsity
levels.

ogy very frequently (e ∈ {200,500}) would not allow the connections to grow and
learn in the dynamic changing nature of RL. The current adaptation process
could remove some promising newly added connections from the past adap-
tation process. This would be caused by a biased estimate of a connection’s
importance as it becomes a factor of the length of its lifetime. Hence, the very
frequent adaptation would increase the chance of replacing some promising
topologies. With less frequent adaptation cycles, e = 1000, DS-TD3 can learn
faster and eventually achieves higher performance than other baselines. Giving
the connections a chance to learn helps in having better estimates of the impor-
tance of the connections. Hence, it enables finding more effective topologies by
replacing the least effective connections with ones that better fit the data. How-
ever, increasing the gap between every two consecutive adaptation processes
to 2000 steps decreases the exploration speed of different topologies. As illus-
trated in the figure, DS-TD3 with e = 2000 has a close learning behavior and
final performance to TD3. Yet, it still offers a substantial reduction in memory
and computation costs. This analysis reveals the importance of the adaptation
schedule in the success of introducing DST to the DRL field.

4.5.3 Sparsity Level

We analyze the performance of our proposed method using different sparsity
levels. Figure 4.3 shows the learning curves of dense TD3 and DS-TD3. By re-
moving 25% of the connections and training the sparse topology dynamically
using DS-TD3, we can achieve a faster learning speed and a performance in-

4.5 Analysis 73

0 50 100 150 200
Time steps x 5000

0

2500

5000

7500

10000

12500

Av
er

ag
e

Re
tu

rn

TD3
DS-TD3 (ours)

(a)

0 50 100 150 200
Time steps x 5000

0

2500

5000

7500

10000

12500

Av
er

ag
e

Re
tu

rn

TD3
DS-TD3 (ours)

(b)

Figure 4.4: Learning curves of agents that start training with samples drawn from poli-
cies trained for 5×105 (a) and 7×105 steps (b).

crease of 2.11%. More interestingly, with a higher reduction in the size of the
networks by 50%, we achieve a much faster learning speed. However, when the
network has a very high sparsity level (i.e., 80%), it fails to learn effective rep-
resentations for the reinforcement learning setting. Learning DRL agents using
very highly sparse networks is still an open-challenging task.

4.5.4 Learning Behavior and Speed

DRL agents learn through trial-and-error due to the lack of true labels. An agent
starts training with samples generated from a purely exploratory policy, and new
samples are drawn from the learning policy over time. Our results show that
dynamic sparse agents have faster adaptability to the newly improved samples,
thanks to the generalization ability of sparse neural networks [HABN+21]. This
leads to higher learning speed, especially at the beginning of the training. We
hypothesize that dense neural networks, being over-parameterized, are more
prone to memorize and overfit the inaccurate samples. A longer time is required
to adapt to the newly added samples by the improved policy and forget the old
ones.

To validate this hypothesis, we analyze the behavior of a dense TD3 agent
when it starts training with samples generated from a learned policy instead
of a purely exploratory one. We use two learned policies trained for 5× 105

and 7× 105 steps to draw the initial samples. We perform this experiment on
HalfCheetah-v3. As illustrated in Figure 4.4, the learning speed of DS-TD3 and
TD3 becomes close to each other at the beginning. Afterward, DS-TD3 performs

74 Dynamic Sparse Training for Deep Reinforcement Learning

better than TD3 since the new samples are generated from the current learning
policies. With initial samples drawn from a more improved policy (Figure 4.4b),
dense TD3 learns faster. It performs better than the dense baseline that starts
learning with samples drawn from the policy trained for 5× 105 steps (Figure
4.4a). On the other hand, DS-TD3 is more robust to over-fitting, less affected
by the initial samples, and quickly adapts to the improved ones over time.

4.6 Conclusion and Future Work

Introducing dynamic sparse training principles to the deep reinforcement learn-
ing field provides an efficient training process for DRL agents. Our dynamic
sparse agents achieve higher performance than the state-of-the-art methods
while reducing the memory and computation costs by 50%. Optimizing the
sparse topology during training to adapt to the incoming data increases the
learning speed. Our findings show the potential of dynamic sparse training in
advancing the DRL field. This would open the path to efficient DRL agents
that could be trained and deployed on low-resource devices where memory and
computation are strictly constrained.

Further research on learning with higher sparse networks can lead to more
efficient agents. Exploring other dynamic sparse training approaches would also
improve the adaptability to the changing distribution. A deeper investigation of
the reasons behind the less ability of dense networks to new samples would help
address this challenge.

Chapter 5
The Dormant Neuron
Phenomenon in Deep
Reinforcement Learning

The slower learning speed and less adaptability to new samples exhibited by
dense neural networks contribute to prolonged training times, as discussed in
the previous chapter. To effectively tackle these challenges, it is crucial to un-
derstand the underlying reasons behind these limitations. In this chapter, we
investigate the behavior of dense neural networks under the learning dynamics
of RL. Our study reveals the existence of the dormant neuron phenomenon in
deep reinforcement learning, where an agent’s network suffers from an increas-
ing number of inactive neurons, thereby affecting network expressivity and abil-
ity to learn. We demonstrate the presence of this phenomenon across a variety
of algorithms and environments, and highlight its effect on learning. To ad-
dress this issue, we propose a simple and effective method (ReDo) that Recycles
Dormant neurons throughout training. Our experiments demonstrate that ReDo
maintains the expressive power of networks by reducing the number of dormant
neurons and results in improved performance. Our code is available at https:
// github. com/ google/ dopamine/ tree/ master/ dopamine/ labs/ redo .

This chapter is integrally based on Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and
Utku Evci. The dormant neuron phenomenon in deep reinforcement learning, International Confer-
ence on Machine Learning (ICML), Oral, 2023.

https://github.com/google/dopamine/tree/master/dopamine/labs/redo
https://github.com/google/dopamine/tree/master/dopamine/labs/redo

76 The Dormant Neuron Phenomenon in Deep Reinforcement Learning

5.1 Introduction

The use of deep neural networks as function approximators for value-based re-
inforcement learning (RL) has been one of the core elements that has enabled
scaling RL to complex decision-making problems [MKS+15,SHM+16,BCC+20].
However, their use can lead to training difficulties that are not present in tra-
ditional RL settings. Numerous improvements have been integrated with RL
methods to address training instability, such as the use of target networks, pri-
oritized experience replay, multi-step targets, among others [HMVH+18]. In
parallel, there have been recent efforts devoted to better understanding the be-
havior of deep neural networks under the learning dynamics of RL [vHDS+18,
FKSL19,KAGL21,BPP20,LRD21,ACC21].

Recent work in so-called “scaling laws” for supervised learning problems
suggest that, in these settings, there is a positive correlation between perfor-
mance and the number of parameters [HNA+17, KMH+20, ZKHB22]. In RL,
however, there is evidence that the networks lose their expressivity and ability to
fit new targets over time, despite being over-parameterized [KAGL21, LRD21];
this issue has been partly mitigated by perturbing the learned parameters. In
[IFL+20,NSD+22], some, or all, of the layers of an agent’s neural networks are
periodically reset, leading to improved performance. These approaches, how-
ever, are somewhat drastic: reinitializing the weights can cause the network to
“forget” previously learned knowledge and require many gradient updates to
recover.

In this work, we seek to understand the underlying reasons behind the loss
of expressivity during the training of RL agents. The observed decrease in the
learning ability over time raises the following question: Do RL agents use neural
network parameters to their full potential? To answer this, we analyze neuron
activity throughout training and track dormant neurons: neurons that have be-
come practically inactive through low activations. Our analyses reveal that the
number of dormant neurons increases as training progresses, an effect we coin
the “dormant neuron phenomenon”. Specifically, we find that while agents start
the training with a small number of dormant neurons, this number increases
as training progresses. The effect is exacerbated by the number of gradient up-
dates taken per data collection step. This is in contrast with supervised learning,
where the number of dormant neurons remains low throughout training.

We demonstrate the presence of the dormant neuron phenomenon across
different algorithms and domains: in two value-based algorithms on the Ar-
cade Learning Environment [BNVB13] (DQN [MKS+15] and DrQ(ϵ) [YKF21,
ASC+21]), and with an actor-critic method (SAC [HZAL18]) evaluated on the

5.1 Introduction 77

2 4 6 8 10
Number of Frames (in millions)

0.0

0.2

0.4

0.6
IQ

M
 N

or
m

al
ize

d
Sc

or
e DQN

DQN + ReDo
DQN + Reset
DQN + WD

Figure 5.1: Sample efficiency curves for DQN, with a replay ratio of 1, when using net-
work resets [NSD+22], weight decay (WD), and our proposed ReDo. Shaded
regions show 95% CIs. The figure shows interquartile mean (IQM) human-
normalized scores over the course of training, aggregated across 17 Atari
games and 5 runs per game. Among all algorithms, DQN+ReDo performs the
best.

MuJoCo suite [TET12]. To address this issue, we propose Recycling Dormant
neurons (ReDo), a simple and effective method to avoid network under-utilization
during training without sacrificing previously learned knowledge: we explicitly
limit the spread of dormant neurons by “recycling” them to an active state. ReDo
consistently maintains the capacity of the network throughout training and im-
proves the agent’s performance (see Figure 5.1). Our contributions in this work
can be summarized as follows:

• We demonstrate the existence of the dormant neuron phenomenon in
deep RL.

• We investigate the underlying causes of this phenomenon and show its
negative effect on the learning ability of deep RL agents.

• We propose Recycling Dormant neurons (ReDo), a simple method to re-
duce the number of dormant neurons and maintain network expressivity
during training.

• We demonstrate the effectiveness of ReDo in maximizing network utiliza-
tion and improving performance.

78 The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0 1 2 3 4 5 6
Gradient steps (x106)

0
5

10
15
20
25
30

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack

0 1 2 3 4 5 6
Gradient steps (x106)

5
10
15
20
25
30

Do
rm

an
t n

eu
ro

ns
 [%

] Asterix

Figure 5.2: The percentage of dormant neurons increases throughout training for DQN
agents.

5.2 The Dormant Neuron Phenomenon

Prior work has highlighted the fact that networks used in online RL tend to lose
their expressive ability; in this section we demonstrate that dormant neurons
play an important role in this finding.

Definition 5.1. Given an input distribution D, let hℓi (x) denote the activation
of neuron i (a neuron’s output) in layer ℓ under input x ∈ D and Hℓ be the
number of neurons in layer ℓ. We define the score of a neuron i (in layer ℓ) via
the normalized average of its activation as follows:

sℓi = Ex∈D |hℓi (x)|
1

Hℓ

∑
k∈h Ex∈D |hℓk (x)| (5.1)

We say a neuron i in layer ℓ is τ-dormant if sℓi ≤ τ.

The threshold τ allows us to detect neurons with low activations. Even
though these low activation neurons could, in theory, impact the learned func-
tions when recycled, their impact is expected to be less than the neurons with
high activations.

Definition 5.2. An algorithm exhibits the dormant neuron phenomenon if the
number of τ-dormant neurons in its neural network increases steadily through-
out training.

An algorithm exhibiting the dormant neuron phenomenon is not using its
network’s capacity to its full potential, and this under-utilization worsens over
time.

5.2 The Dormant Neuron Phenomenon 79

0 20 40 60 80 100
Epochs

0

10

20

30

40

50

Do
rm

an
t n

eu
ro

ns
 [%

]

Fixed targets
Non-stationary targets

Figure 5.3: Percentage of dormant neurons when training on CIFAR-10 with fixed and
non-stationary targets. Averaged over 3 independent seeds with shaded ar-
eas reporting 95% confidence intervals. The percentage of dormant neurons
increases with non-stationary targets.

The remainder of this section focuses first on demonstrating that RL agents
suffer from the dormant neuron phenomenon, and then on understanding the
underlying causes for it. Specifically, we analyze DQN [MKS+15], a founda-
tional agent on which most modern value-based agents are based. To do so, we
run our evaluations on the Arcade Learning Environment [BNVB13] using 5 in-
dependent seeds for each experiment, and reporting 95% confidence intervals.
For clarity, we focus our analyses on two representative games (DemonAttack
and Asterix), but include others in Appendix C.2. In these initial analyses, we
focus solely on τ = 0 dormancy, but loosen this threshold when benchmarking
our algorithm in sections 5.3 and 5.4. Additionally, we present analyses on
an actor-critic method (SAC [HZAL18]) and a modern sample-efficient agent
(DrQ(ϵ) [YKF21]) in Appendix C.2.

The dormant neuron phenomenon is present in deep RL agents. We begin
our analyses by tracking the number of dormant neurons during DQN train-
ing. In Figure 5.2, we observe that the percentage of dormant neurons steadily
increases throughout training. This observation is consistent across different
algorithms and environments, as can be seen in Appendix C.2

Target non-stationarity exacerbates dormant neurons. We hypothesize that
the non-stationarity of training deep RL agents is one of the causes for the

80 The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0 1 2 3 4 5 6
Gradient steps (×106)

5
10
15
20
25
30
35

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack

Fixed Targets
Non-Stationary Targets

0 1 2 3 4 5 6
Gradient steps (×106)

0
10
20
30
40
50

Do
rm

an
t n

eu
ro

ns
 [%

] Asterix

Figure 5.4: Offline RL. Dormant neurons throughout training with standard moving tar-
gets and fixed (random) targets. The phenomenon is still present in offline
RL, where the training data is fixed.

dormant neuron phenomenon. To evaluate this hypothesis, we consider two
supervised learning scenarios using the standard CIFAR-10 dataset [KH+09]:
(1) training a network with fixed targets, and (2) training a network with non-
stationary targets, where the labels are shuffled throughout training. Experi-
mental details can be found in Appendix C.1. As Figure 5.3 shows, the number
of dormant neurons decreases over time with fixed targets, but increases over
time with non-stationary targets. Indeed, the sharp increases in the figure cor-
respond to the points in training when the labels are shuffled. These findings
suggest that the continuously changing targets in deep RL are a significant fac-
tor for the presence of the phenomenon.

Input non-stationarity does not appear to be a major factor. To investigate
whether the non-stationarity due to online data collection plays a role in exac-
erbating the phenomenon, we measure the number of dormant neurons in the
offline RL setting, where an agent is trained on a fixed dataset (we used the
dataset provided by [ASN20]). In Figure 5.4 we can see that the phenomenon
remains in this setting, suggesting that input non-stationary is not one of the
primary contributing factors. To further analyze the source of dormant neu-
rons in this setting, we train RL agents with fixed random targets (ablating the
non-stationarity in inputs and targets). The decrease in the number of dormant
neurons observed in this case (Figure 5.4) supports our hypothesis that target
non-stationarity in RL training is the primary source of the dormant neuron
phenomenon.

5.2 The Dormant Neuron Phenomenon 81

0 1 2 3 4 5 6
Gradient steps (×106)

20
30
40
50
60
70

Ov
er

la
p

co
ef

fic
ie

nt
 [%

] DemonAttack

0 1 2 3 4 5 6
Gradient steps (×106)

30
40
50
60
70
80

Ov
er

la
p

co
ef

fic
ie

nt
 [%

] Asterix

Figure 5.5: The overlap coefficient of dormant neurons throughout training. There is an
increase in the number of dormant neurons that remain dormant.

0 10 20 30 40
Number of Frames (x106)

0
1000
2000
3000
4000
5000

Av
er

ag
e

re
tu

rn

DemonAttack

Standard
Pruning

0 10 20 30 40
Number of Frames (x106)

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

Asterix

Standard
Pruning

Figure 5.6: Pruning dormant neurons during training does not affect the performance of
an agent.

Dormant neurons remain dormant. To investigate whether dormant neu-
rons “reactivate” as training progresses, we track the overlap in the set of dor-
mant neurons. Figure 5.5 plots the overlap coefficient between the set of dor-
mant neurons in the penultimate layer at the current iteration, and the histor-
ical set of dormant neurons. The increase shown in the figure suggests that
once a neuron becomes dormant, it remains that way for the rest of the train-
ing. To further investigate this, we explicitly prune any neuron found dormant
throughout training, to check whether their removal affects the agent’s overall
performance. As Figure 5.6 shows, their removal does not affect the agent’s

The overlap coefficient between two sets X and Y is defined as over l ap(X ,Y) = |X∩Y |
min(|X |,|Y |) .

82 The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack
RR=0.25
RR=0.5
RR=1
RR=2

0 10 20 30 40
Number of Frames (x106)

0

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DemonAttack

Figure 5.7: The rate of increase in dormant neurons with varying replay ratio (RR) (left).
As the replay ratio increases, the number of dormant neurons also increases.
The higher percentage of dormant neurons correlates with the performance
drop that occurs when the replay ratio is increased (right).

performance, further confirming that dormant neurons remain dormant.

More gradient updates lead to more dormant neurons. Although an in-
crease in replay ratio can seem appealing from a data-efficiency point of view
(as more gradient updates per environment step are taken), it has been shown
to cause overfitting and performance collapse [KAGL21, NSD+22]. In Figure
5.7, we measure neuron dormancy while varying the replay ratio, and observe
a strong correlation between replay ratio and the fraction of neurons turning
dormant. Although difficult to assert conclusively, this finding could account for
the difficulty in training RL agents with higher replay ratios; indeed, we will
demonstrate in Section 5.4 that recycling dormant neurons and activating them
can mitigate this instability, leading to better results.

Dormant neurons make learning new tasks more difficult. We directly ex-
amine the effect of dormant neurons on an RL network’s ability to learn new
tasks. To do so, we train a DQN agent with a replay ratio of 1 (this agent exhibits
a high level of dormant neurons as observed in Figure 5.7). Next we fine-tune
this network by distilling it towards a well performing DQN agent’s network,
using a traditional regression loss and compare this with a randomly initialized
agent trained using the same loss. More details can be found in Appendix C.1.
In Figure 5.8 we see that the pre-trained network, which starts with a high level
of dormant neurons, shows degrading performance throughout training; in con-

5.3 Recycling Dormant Neurons (ReDo) 83

0 100 200 300 400 500
Gradient Steps (×100)

10 1

100

Lo
ss

DemonAttack
Random
Pretrained (RR=1)

0 100 200 300 400 500
Gradient Steps (×100)

20

40

60

80

100

Do
rm

an
t n

eu
ro

ns
 [%

]

DemonAttack

Figure 5.8: A pretrained network that exhibits dormant neurons has less ability than a
randomly initialized network to fit a fixed target. Results are averaged over
5 seeds.

trast, the randomly initialized baseline is able to continuously improve. Further,
while the baseline network maintains a stable level of dormant neurons, the
number of dormant neurons in the pre-trained network continues to increase
throughout training.

5.3 Recycling Dormant Neurons (ReDo)

Our analyses in Section 5.2, which demonstrates the existence of the dormant
neuron phenomenon in online RL, suggests these dormant neurons may have a
role to play in the diminished expressivity highlighted by [KAGL21] and [LRD21].
To account for this, we propose to recycle dormant neurons periodically during
training (ReDo).

The main idea of ReDo, outlined in Algorithm 9, is rather simple: during
regular training, periodically check in all layers whether any neurons are τ-
dormant; for these, reinitialize their incoming weights and zero out the out-
going weights. The incoming weights are initialized using the original weight
distribution. Note that if τ is 0, we are effectively leaving the network’s output
unchanged; if τ is small, the output of the network is only slightly changed.

Figure 5.9 showcases the effectiveness of ReDo in dramatically reducing the
number of dormant neurons, which also results in improved agent performance.
Before diving into a deeper empirical evaluation of our method in Section 5.4,
we discuss some algorithmic alternatives we considered when designing ReDo.

84 The Dormant Neuron Phenomenon in Deep Reinforcement Learning

Algorithm 9 ReDo

Input: Network parameters θ, threshold τ, training steps T , frequency F
for t = 1 to to T do

Update θ with regular RL loss
if t mod F == 0 then

for each neuron i do
if sℓi ≤ τ then

Reinitialize input weights of neuron i
Set outgoing weights of neuron i to 0

end if
end for

end if
end for

0.0 0.5 1.0 1.5 2.0 2.5
Gradient steps (x106)

0
5

10
15
20
25
30
35

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack

DQN
DQN + ReDo

0 10 20 30 40
Number of Frames (x106)

0

2000

4000

6000

8000

Av
er

ag
e

re
tu

rn

DemonAttack

Figure 5.9: Evaluation of ReDo’s effectiveness (with τ= 0.025) in reducing dormant neu-
rons (left) and improving performance (right) on DQN (with RR = 0.25).

Alternate recycling strategies. We considered other recycling strategies, such
as scaling the incoming connections using the mean of the norm of non-dormant
neurons. However, this strategy performed similarly to using initial weight dis-
tribution. Similarly, alternative initialization strategies like initializing outgoing
connections randomly resulted in similar or worse returns. Results of these
investigations are shared in Appendix C.3.2.

Are ReLUs to blame? RL networks typically use ReLU activations, which can
saturate at zero outputs, and hence zero gradients. To investigate whether the
issue is specific to the use of ReLUs, in Appendix C.3.1, we measured the number

5.4 Empirical Evaluations 85

of dormant neurons and resulting performance when using a different activation
function. We observed that there is a mild decrease in the number of dormant
neurons, but the phenomenon is still present.

5.4 Empirical Evaluations

Agents, architectures, and environments. We evaluate DQN on 17 games
from the Arcade Learning Environment [BNVB13] (as used in [KAGL21,KAM+21]
to study the loss of network expressivity). We study two different architectures:
the default CNN used by [MKS+15], and the ResNet architecture used by the
IMPALA agent [ESM+18].

Additionally, we evaluate DrQ(ϵ) [YKF21, ASC+21] on the 26 games used
in the Atari 100K benchmark [KBM+19], and SAC [HZAL18] on four MuJoCo
environments [TET12].

Implementation details. All our experiments and implementations were con-
ducted using the Dopamine framework [CMG+18]. For agents trained with
ReDo, we use a threshold of τ = 0.1, unless otherwise noted, as we found this
gave a better performance than using a threshold of 0 or 0.025. When aggre-
gating results across multiple games, we report the Interquantile Mean (IQM),
recommended by [ASC+21] as a more statistically reliable alternative to me-
dian or mean, using 5 independent seeds for each DQN experiment, 10 for the
DrQ and SAC experiments, and reporting 95% stratified bootstrap confidence
intervals.

5.4.1 Consequences for Sample Efficiency

Motivated by our finding that higher replay ratios exacerbate dormant neurons
and lead to poor performance (Figure 5.7), we investigate whether ReDo can
help mitigate these. To do so, we report the IQM for four replay ratio values:
0.25 (default for DQN), 0.5, 1, and 2 when training with and without ReDo.
Since increasing the replay ratio increases the training time and cost, we train
DQN for 10M frames, as opposed to the regular 200M. As the top-left plot in
Figure 5.10 demonstrates, ReDo is able to avoid the performance collapse when
increasing replay ratios, and even to benefit from the higher replay ratios when
trained with ReDo.

86 The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0.25 0.5 1 2
Replay ratio

0.1
0.2
0.3
0.4
0.5
0.6

IQ
M

DQN

DQN
DQN + ReDo

0.25 0.5 1 2
Replay ratio

0.3
0.4
0.5
0.6
0.7
0.8

IQ
M

DQN

0.25 0.5 1 2
Replay ratio

0.2
0.4
0.6
0.8
1.0

IQ
M

DQN (ResNet)

1 2 4 8
Replay ratio

0.35
0.40
0.45
0.50
0.55
0.60
0.65

IQ
M

DrQ()

Figure 5.10: Evaluating the effect of increased replay ratio with and without ReDo. From
left to right (top to bottom): DQN with default settings, DQN with n-step
of 3, DQN with the ResNet architecture, and DrQ(ϵ). We report results
using 5 seeds, while DrQ(ϵ) use 10 seeds; error bars report 95% confidence
intervals.

Impact on multi-step learning. In the top-right plot of Figure 5.10 we added
n-step returns with a value of n = 3 [SB18]. While this change results in a gen-
eral improvement in DQN’s performance, it still suffers from performance col-
lapse with higher replay ratios; ReDo mitigates this and improves performance
across all values.

Varying architectures. To evaluate ReDo’s impact on different network ar-
chitectures, in the bottom-left plot of Figure 5.10 we replace the default CNN
architecture used by DQN with the ResNet architecture used by the IMPALA
agent [ESM+18]. We see a similar trend: ReDo enables the agent to make better
use of higher replay ratios, resulting in improved performance.

Varying agents. We evaluate on a sample-efficient value-based agent DrQ(ϵ)
[YKF21, ASC+21]) on the Atari 100K benchmark in the bottom-right plot of

5.4 Empirical Evaluations 87

Baseline
+ReDo

+Low-LR
0.0

0.2

0.4

0.6

IQ
M

0.0 0.5 1.0 1.5 2.0 2.5
Gradient steps (×106)

0
10
20
30
40
50

Do
rm

an
t [

%
] (

=
0.

1)

DemonAttack

Baseline
+ReDo
+Low-LR

Figure 5.11: Effect of reduced learning rate in high replay ratio setting. Scaling learning
rate helps, but does not solve the dormant neuron problem. Aggregated re-
sults across 17 games (left) and the percentage of dormant neurons during
training on DemonAttack (right).

Figure 5.10. In this setting, we train for 400K steps, where we can see the
effect of dormant neurons on performance, and study the following replay ratio
values: 1 (default), 2, 4, 8. Once again, we observe ReDo’s effectiveness in
improving performance at higher replay ratios.

In the rest of this section, we do further analyses to understand the improved
performance of ReDo and how it fares against related methods. We perform this
study on a DQN agent trained with a replay ratio of 1 using the default CNN
architecture.

5.4.2 Learning Rate Scaling

An important point to consider is that the default learning rate may not be op-
timal for higher replay ratios. Intuitively, performing more gradient updates
would suggest a reduced learning rate would be more beneficial. To evaluate
this, we decrease the learning rate by a factor of four when using a replay ratio
of 1 (four times the default value). Figure 5.11 confirms that a lower learning
rate reduces the number of dormant neurons and improves performance. How-
ever, the percentage of dormant neurons is still high, and using ReDo with a
high replay ratio and the default learning rate obtains the best performance.

88 The Dormant Neuron Phenomenon in Deep Reinforcement Learning

1 2 4
Width

0.3
0.4
0.5
0.6
0.7
0.8

IQ
M

DQN

DQN
DQN + ReDo

0.0 0.5 1.0 1.5 2.0 2.5
Gradient steps (×106)

0
10
20
30
40
50

Do
rm

an
t [

%
] (

=
0.

1)

DemonAttack

width
1
2
4

Figure 5.12: Performance of DQN trained with RR = 1 using different network width.
Increasing the width of the network slightly improves the performance. Yet,
the performance gain does not reach the gain obtained by ReDo. ReDo
improves the performance across different network sizes.

5.4.3 Is Over-parameterization Enough?

In [LRD21, FKSL19], it is suggested that sufficiently over-parameterized net-
works can fit new targets over time; this raises the question of whether over-
parameterization can help address the dormant neuron phenomenon. To inves-
tigate this, we increase the size of the DQN network by doubling and quadru-
pling the width of its layers (both the convolutional and fully connected). The
left plot in Figure 5.12 shows that larger networks have at most a mild positive
effect on the performance of DQN, and the resulting performance is still far in-
ferior to that obtained when using ReDo with the default width. Furthermore,
training with ReDo seems to improve as the network size increases, suggesting
that the agent is able to better exploit network parameters, compared to when
training without ReDo.

An interesting finding in the right plot in Figure 5.12 is that the percentage
of dormant neurons is similar across the varying widths. As expected, the use of
ReDo dramatically reduces this number for all values. This finding is somewhat
at odds with that from [SDX+20]. They demonstrated that, in supervised learn-
ing settings, increasing the width decreases the gradient confusion and leads to
faster training. If this observation would also hold in RL, we would expect to
see the percentage of dormant neurons decrease in larger models.

5.4 Empirical Evaluations 89

DQN

DQN + ReDo

DQN + Reset

DQN + WD
0.0

0.2

0.4

0.6

IQ
M

0 2 4 6 8
Number of Frames (×106)

0

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DQN - DemonAttack
DQN
DQN + ReDo
DQN + Reset
DQN + WD

Figure 5.13: Comparison of the performance for ReDo and two different regularization
methods (Reset [NSD+22] and weight decay (WD)) when integrated with
training DQN agents. Aggregated results across 17 games (left) and the
learning curve on DemonAttack (right).

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
1000
2000
3000
4000
5000

Av
er

ag
e

re
tu

rn

Ant-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
2000
4000
6000
8000

10000
12000

Av
er

ag
e

re
tu

rn

HalfCheetah-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

Figure 5.14: Comparison of the performance of SAC agents with ReDo and two differ-
ent regularization methods (Reset [NSD+22] and weight decay (WD)). See
Figure C.5 for other environments.

5.4.4 Comparison with Related Methods

In [NSD+22], it was also observed performance collapse when increasing the
replay ratio, but attributed this to overfitting to early samples (an effect they
refer to as the “primacy bias”). To mitigate this, they proposed periodically
resetting the network, which can be seen as a form of regularization. We com-
pare the performance of ReDo against theirs, which periodically resets only the
penultimate layer for Atari environments. Additionally, we compare to adding
weight decay, as this is a simpler, but related, form of regularization. It is worth

90 The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0 2 4 6 8
Number of Frames (×106)

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e

re
tu

rn
DQN - DemonAttack
ReDo
Random
Inverse ReDo

0 2 4 6 8
Number of Frames (×106)

500

1000

1500

2000

2500

Av
er

ag
e

re
tu

rn

DQN - Asterix

Figure 5.15: Comparison of different strategies for selecting the neurons that will be re-
cycled. Recycling neurons with the highest score (Inverse ReDo) or random
neurons causes performance collapse.

highlighting that [NSD+22] also found high values of replay ratio to be more
amenable to their method. As Figure 5.13 illustrates, weight decay is compara-
ble to periodic resets, but ReDo is superior to both.

We continue our comparison with resets and weight decay on two MuJoCo
environments with the SAC agent [HZAL18]. As Figure 5.14 shows, ReDo is
the only method that does not suffer performance degradation. The results on
other environments can be seen in Appendix C.2.

5.4.5 Neuron Selection Strategies

Finally, we compare our strategy for selecting the neurons that will be recy-
cled (Section 5.2) against two alternatives: (1) Random: neurons are selected
randomly, and (2) Inverse ReDo: neurons with the highest scores according to
Equation 5.1 are selected. To ensure a fair comparison, the number of recycled
neurons is a fixed percentage for all methods, occurring every 1000 steps. The
percentage of neurons to recycle follows a cosine schedule starting at 0.1 and
ending at 0. As Figure 5.15 shows, recycling active or random neurons hinders
learning and causes performance collapse.

5.5 Related Work 91

5.5 Related Work

Function approximators in RL. The use of over-parameterized neural net-
works as function approximators was instrumental to some of the successes in
RL, such as achieving superhuman performance on Atari 2600 games [MKS+15]
and continuous control [LHP+16]. Recent works observe a change in the net-
work’s capacity over the course of training, which affects the agent’s perfor-
mance. In [KAGL21, KAM+21], it is shown that the expressivity of the network
decreases gradually due to bootstrapping. Gulcehre et al. [GSS+22] investigate
the sources of expressivity loss in offline RL and observe that underparamteri-
zation emerges with prolonged training. Lyle et al. [LRD21] demonstrate that
RL agents lose their ability to fit new target functions over time, due to the
non-stationary in the targets. Similar observations have been found, referred to
as plasticity loss, in the continual learning setting where the data distribution is
changing over time [BCD+21,DMS21]. These observations call for better under-
standing how RL learning dynamics affect the capacity of their neural networks.

There is a recent line of work investigating network topologies by using
sparse neural networks in online [GEEC22, SMM+22, THP+22] and offline RL
[AOPP21]. They show up to 90% of the network’s weights can be removed with
minimal loss in performance. This suggests that RL agents are not using the
capacity of the network to its full potential.

Generalization in RL. RL agents are prone to overfitting, whether it is to
training environments, reducing their ability to generalize to unseen environ-
ments [KZGR21], or to early training samples, which degrades later training
performance [FKSL19, NSD+22]. Techniques such as regularization [HIH+21,
WKSF20], ensembles [CWZR20], or data augmentation [FWH+21,JFZL19,HSW21]
have been adopted to account for overfitting.

Another line of work addresses generalization via re-initializing a subset or
all of the weights of a neural network during training. This technique is mainly
explored in supervised learning [TSD21, ZVLC21, AMK21, ZBK+23], transfer
learning [LXA+20], and online learning [AA20]. A few recent works have
explored this for RL: Igl et al. [IFL+20] periodically reset an agent’s full net-
work and then perform distillation from the pre-reset network. Nikishin et
al. [NSD+22] (already discussed in Figure 5.13) periodically resets the last
layers of an agent’s network. Despite its performance gains, fully resetting
some or all layers can lead to the agent “forgetting” prior learned knowledge.
The authors account for this by using a sufficiently large replay buffer, so as

92 The Dormant Neuron Phenomenon in Deep Reinforcement Learning

to never discard any observed experience; this, however, makes it difficult to
scale to environments with more environment interactions. Further, recover-
ing performance after each reset requires many gradient updates. Similar to
our approach, Dohare et al. [DMS21] adapt the stochastic gradient descent by
resetting the smallest utility features for continual learning. We compare their
utility metric to the one used by ReDo in Appendix C.3.4 and observe similar or
worse performance.

Neural network growing. A related research direction is to prune and grow
the architecture of a neural network. On the growing front, Evci et al. [EvMU+21]
and Dai et al. [DYJ19] proposed gradient-based strategies to grow new neurons
in dense and sparse networks, respectively. Yoon et al. [YYLH18] and Wu et
al. [WWL19] proposed methods to split existing neurons. Zhou et al. [ZSL12]
add new neurons and merge similar features for online learning.

5.6 Conclusion and Future Work

In this chapter, we identified the dormant neuron phenomenon whereby, during
training, an RL agent’s neural network exhibits an increase in the number of
neurons with little-or-no activation. We demonstrated that this phenomenon is
present across a variety of algorithms and domains, and provided evidence that
it does result in reduced expressivity and inability to adapt to new tasks.

Interestingly, studies in neuroscience have found similar types of dormant
neurons (precursors) in the adult brain of several mammalian species, including
humans [BCD22], albeit with different dynamics. Certain brain neurons start off
as dormant during embryonic development, and progressively awaken with age,
eventually becoming mature and functionally integrated as excitatory neurons
[RBB+18,BDK+20,BCD22]. Contrastingly, the dormant neurons we investigate
here emerge over time and exacerbate with more gradient updates.

To overcome this issue, we proposed a simple method (ReDo) to maintain
network utilization throughout training by periodic recycling of dormant neu-
rons. The simplicity of ReDo allows for easy integration with existing RL algo-
rithms. Our experiments suggest that this can lead to improved performance.
Indeed, the results in Figure 5.10 and 5.12 suggest that ReDo can be an im-
portant component in being able to successfully scale RL networks in a sample-
efficient manner.

5.6 Conclusion and Future Work 93

Limitations and future work. Although the simple approach of recycling neu-
rons we introduced yielded good results, it is possible that better approaches
exist. For example, ReDo reduces dormant neurons significantly but it doesn’t
completely eliminate them. Further research on initialization and optimization
of the recycled capacity can address this and lead to improved performance.
Additionally, the dormancy threshold is a hyperparameter that requires tuning;
having an adaptive threshold over the course of training could improve perfor-
mance even further. Finally, further investigation into the relationship between
the task’s complexity, network capacity, and the dormant neuron phenomenon
would provide a more comprehensive understanding.

Similarly to the findings of [GEEC22], this work suggests there are important
gains to be had by investigating the network architectures and topologies used
for deep reinforcement learning. Research presented in [KH23] has demon-
strated that integrating a linear approximation operator into neural networks
improves their approximation capabilities. Investigating this approach in the
DRL paradigm could improve learning ability and the expressivity of networks.
Finally, the observed network’s behavior during training (i.e., the change in the
network capacity utilization), which differs from supervised learning, indicates
a need to explore optimization techniques specific to reinforcement learning
due to its unique learning dynamics.

Chapter 6
Conclusions and Future Work

In this chapter, we summarize the main research questions addressed in this
thesis and our key findings. We further discuss the limitations of our proposed
approaches. Finally, we conclude by outlining several promising avenues for
future research.

6.1 Conclusions

Deep neural networks have achieved remarkable success in many tasks, sur-
passing human-level performance in various domains [HZRS15]. However, they
lack the innate human ability to learn and adapt to new and changing data con-
tinually. This ability is crucial for many applications in which data evolve over
time, such as autonomous driving, chatbots, and healthcare systems. Recently,
more efforts have been devoted to enabling deep neural networks to learn on
changing data distributions and adapt over time to new samples while main-
taining previously learned knowledge.

In this thesis, we explored two learning paradigms within this learning
regime: continual learning and reinforcement learning. In the continual learn-
ing paradigm, a model learns a series of tasks sequentially, aiming to main-
tain performance on all previously learned tasks. Specifically, we focus on ad-
dressing the class-incremental learning scenario (CIL) within continual learn-
ing, where each task introduces a new set of classes. In contrast, the rein-
forcement learning paradigm involves receiving new samples over time during
training, but these samples originate from a single environment (task). Within

96 Conclusions and Future Work

reinforcement learning, various sources of non-stationarity emerge due to the
absence of true targets and the distinctive learning nature of RL.

Our main goal is to investigate the behavior of deep neural networks in this
learning regime and provide new approaches that have improved performance
while being memory and computationally efficient. To this end, we addressed
the following research questions in this thesis.

(Q1) Learning effective representation for continual learning. In Chap-
ter 2, we addressed the main challenge in the continual learning paradigm,
catastrophic forgetting; a model forgets the previously learned representation
when it learns a new one. We demonstrated that this challenge increases
when other continual learning desiderata are considered, such as using a fixed-
capacity model and inaccessibility of old data. To address this challenge, we
proposed the first dynamic sparse training algorithm for continual learning
(SpaceNet). SpaceNet dynamically trains a sparse neural network from scratch
for each task and optimizes its topology during training to produce sparse
representations. We demonstrated the effectiveness of sparse representations
in reducing interference between tasks and forgetting. SpaceNet outperforms
regularization-based methods that learn dense representations for each task by
a large margin. In addition, it has higher performance than architectural-based
methods that require expanding the model capacity. Using sparse subnetworks
allows learning multiple tasks within a fixed capacity model. Furthermore, it
improves memory and computational efficiency significantly. Our findings have
paved the way for further investigations, demonstrating the effectiveness of
sparse networks in the context of continual learning [GD22,WZG+22,KMM+22,
GMD23].

(Q2) Promoting forward transfer in continual learning. Another important
aspect of the continual learning paradigm is using previously learned knowledge
to help learn new tasks. In Chapter 3, we highlighted two aspects that promote
forward transfer. First, having generic knowledge prior to learning the continual
sequence, especially when tasks are dissimilar. Second, selectively transfer the
relevant knowledge from the past instead of using all knowledge. To illustrate
these two factors, we proposed SAM, a Self-Attention Meta-learner for continual
learning. We showed that SAM outperforms other CL approaches from various
strategies. Moreover, integrating SAM with state-of-the-art methods improves
their performance. Our findings in this study suggest that focusing on address-
ing forward transfer could also satisfy other continual learning desiderata. For

6.1 Conclusions 97

instance, the selective transfer of knowledge results in selective weight updates,
which promote backward transfer and reduce forgetting. Learning based on rel-
evant knowledge would increase the learning speed of a task and could reduce
the number of training samples required. This, consequently, will reduce the
memory and computational costs of training.

(Q3) Reducing the long training time of DRL agents. The challenges of
learning on changing data distributions and the unavailability of true targets
in the reinforcement learning paradigm result in a prolonged training time. In
Chapter 4, we addressed this challenge. More specifically, we aim to enable
deep neural networks to adapt faster to new samples and reduce the computa-
tional costs of training dense models. To this end, we introduced for the first
time dynamic sparse training for deep reinforcement learning. We train a sparse
network from scratch and dynamically adapt its topology over time. We showed
that dynamic sparse networks have faster learning speeds than dense ones. In
addition, they achieve higher performance while reducing memory and com-
putational costs by 50%. Finally, we showed that dense models tend to overfit
initial samples, which affects the rest of the learning process. Our findings re-
vealed the potential of dynamic sparse networks in adapting to changing data
distributions and opened the path to efficient DRL agents that could be trained
and deployed on low-resource devices [GEEC22,THP+22].

(Q4) Understanding the reasons behind the loss of adaptability of dense
models in DRL. Gaining insights into the root causes of dense networks grad-
ually losing their capability to fit new samples over time would facilitate the
development of improved agents. We addressed this goal in Chapter 5. Our
study revealed the existence of the dormant neuron phenomenon, where an
agent’s network suffers from an increasing number of inactive neurons, thereby
affecting network expressivity and ability to learn. The observation is consistent
across different algorithms, domains, and architectures. Investigating different
sources of non-stationarity in DRL, we found that target non-stationarity is the
main source of this phenomenon. We demonstrated that removing dormant
neurons from the network does not affect performance. Moreover, networks
with more dormant neurons have less ability to fit new targets. We also showed
that larger networks do not compensate for dormant neurons. To address this
phenomenon, we proposed an effective method (ReDo) that periodically Re-
cycles Dormant neurons throughout training. We showed the effectiveness of
ReDo in improving performance and utilizing the capacity of models efficiently.

98 Conclusions and Future Work

6.2 Limitations

In this thesis, we studied forgetting and forward transfer in continual learning
separately, highlighting the effective representation types for each aspect. Fur-
ther work is needed to integrate and address both objectives simultaneously.
The achieved performance of our proposed replay-free methods is very promis-
ing. Yet, they do not reach the performance of rehearsal-based methods, which
rely on retraining old data. Achieving high performance without relying on old
data remains an ongoing and challenging problem.

Our investigations within the reinforcement learning paradigm have uncov-
ered distinct behaviors in the network during training, highlighting differences
compared to supervised learning. Although we provide simple and effective
mechanisms to mitigate the consequences of these behaviors, the development
of novel optimization techniques tailored specifically to reinforcement learning
would address the root causes of the challenges. Moreover, a deeper under-
standing of the underlying factors that contribute to phenomena observed in
this paradigm, such as overfitting old samples, would contribute to the devel-
opment of improved agents.

While our proposed methods, which leverage sparsity, enhance performance,
and tackle numerous challenges in the studied paradigms, this proof-of-concept
does not fully utilize the memory and computational benefits offered by sparse
neural networks, similar to many existing sparse training methods in the litera-
ture. This is due to the lack of hardware support for sparsity and the higher
focus of the community on the algorithmic side [HABN+21]. Nevertheless,
there is recent growing attention to hardware and software support for spar-
sity [HSRN+19,ZMZ+20,WJH+18,LMM+20,CMP21,ABB+19,CYES19]. NVIDIA
released NVIDIA A100, which supports a 50% fixed sparsity level [ZMZ+20],
and many other efforts on the hardware side are proposed [WJH+18, ABB+19,
CYES19, LBV+18]. On the software side, libraries that support truly sparse im-
plementations have been started for supervised learning [LMM+20, CMP21].
With a joint community effort in the algorithmic, software, and hardware di-
rections, we would be able to actually provide faster, memory-efficient, and
energy-efficient deep neural networks. Further discussion can be found in
[Hoo21,MMP+21].

We demonstrated the potential of leveraging sparsity empirically. Offering
theoretical analyses of these findings would support the results and pave the
way for innovative approaches to address challenges in this learning regime. Re-
cent works have made some attempts at theoretical analysis [Pog22, GXGP23],
suggesting that sparsity is a key property for generalization in modern archi-

6.3 Future Work 99

tectures like transformers. It is essential to devote efforts toward establishing a
theoretical foundation for sparsity in networks that learn continually.

6.3 Future Work

In this section, we discuss potential future research directions.

Scalability of continual learning models. While current approaches in con-
tinual learning are typically evaluated on benchmarks consisting of 10-20 tasks,
the question remains: can we scale these methods to handle hundreds of tasks?
Achieving such a goal necessitates exploring various research directions. The
feasibility of learning all tasks using a fixed capacity model is an area that re-
quires thorough investigation. Further research on the reusability of learned
components and the expansion of specific parts of the model when necessary
would help in efficiently utilizing the model capacity to accommodate a large
number of tasks. Additionally, determining the similarity between new tasks
and previously learned knowledge would aid in making informed decisions re-
garding model expansion or reuse.

Data centric. Current research in the continual learning paradigm mainly fo-
cuses on developing new training algorithms or strategies for expanding net-
work architectures. However, little attention has been given to the role of data
in this context. With an abundance of new data available, training on every
single sample causes significant memory and computational costs. A model
needs to leverage its previously acquired knowledge to learn from only a few
samples, thereby saving the labor-intensive process of labeling all samples, re-
ducing training time, and addressing the imbalance between old and new sam-
ples. This motivates the exploration of new techniques for selecting important
samples from new data and investigating novel meta-learning methods that fa-
cilitate fast adaptability using a limited number of samples. Focusing on these
aspects can enhance the efficiency and effectiveness of continual learning ap-
proaches, making them more practical and applicable in real-world scenarios.

Selective knowledge transfer. We shed light on the importance of forward
transfer in the continual learning paradigm. Further work on selecting the rele-
vant knowledge from the past is needed to improve forward transfer. Attention

100 Conclusions and Future Work

mechanisms play an important role in this research. Exploring modern archi-
tectures such as the Vision Transformer (ViT) [DBK+20] within this paradigm
is a potential avenue for investigation. In addition, research on new training
regimes like meta-learning would help to learn knowledge from each task that
can be easily transferred to future tasks.

Studying different types of tasks and learning paradigms. In this thesis,
we focused on supervised image classification tasks as the basis for our analysis
in continual learning. However, considering the cost involved in labeling each
new sample, it suggests exploring unsupervised or semi-supervised techniques
within this paradigm. Additionally, there is a need for increased attention to
be given to other types of tasks beyond image classification. Various natural
language processing applications, including chatbots, language translation, and
spam detection, heavily rely on continual learning abilities. Further research in
this direction would also open the path to studying the applicability of contin-
ual learning to large language models. Furthermore, addressing the continual
reinforcement learning scenario is another interesting research direction. De-
voting more efforts to tackling non-stationarity within and across tasks in this
paradigm would significantly contribute to advancing the field.

Appendices

Appendix A
Additional Experimental Details
and Analyses on Chapter 3

A.1 Additional Experiment Details

A.1.1 Continual Learning Training Details

On the Split MNIST benchmark, each task is trained for 5 epochs. We use a
batch size of 64. The model is trained using stochastic gradient descent with
a Nesterov momentum of 0.9, a learning rate of 0.01, and cross-entropy loss.
We search in the space {2,4,8,10,20} for the reduction ratio (r). The standard
training/test-split for the MNIST dataset was used, resulting in 60,000 training
images and 10,000 test images.

On the Split CIFAR-10/100 benchmark, each task is trained for 30 epochs.
We use a batch size of 64. The model is trained using Adam optimizer (η =
.001,β1 = 0.9,β2 = 0.999) and cross-entropy loss. We search in the space {2,4,8,16}
for the reduction ratio (r). The CIFAR-10 dataset consists of 10 classes and has
60000 samples (50000 training + 10000 test), with 6000 images per class. In
contrast, the CIFAR-100 dataset consists of 100 classes and has 600 images per
class (500 train + 100 test).

Each experiment is repeated 5 times with different random seeds.

104 Additional Experimental Details and Analyses on Chapter 3

A.1.2 Meta-training Details

On the MiniImagenet dataset, the self-attention meta-learner is trained using 5-
way classification, 5 shot training, and a meta batch-size of 4 tasks. The model
is trained using 5 gradient steps with step size α = 0.01. The meta step size for
the outer loop β = 0.001. The model is trained for 60000 iterations.

On the Omniglot dataset, the self-attention meta-learner model is trained
using 5-way classification, 1 shot training, and a meta batch-size of 32 tasks.
The model is trained using 5 inner gradient steps with step size α = 0.4. The
meta step size for the outer loop β = 0.001. The model is trained for 1000
iterations.

We adapt the Pytorch code for the MAML algorithm from [Lon18] to in-
corporate the attention module in the network architecture and to work for
multilayer perceptron networks.

A.2 Gradual Learning Behavior of SAM

We analyze the performance of our proposed method in CIL gradually. We per-
form this analysis by computing the average accuracy on all past tasks after
training SAM on each task. We also analyze the performance of each task as a
function of encountered tasks. With this experiment, we would like to under-
stand how the performance of the proposed model degrades over time when
new tasks are encountered in the training process. We compare the gradual
performance of SAM to the Scratch(TA) baseline. Figure A.1 and A.2 show the
gradual learning behavior on the Split CIFAR-10/100 and Split MNIST bench-
marks, respectively. This experiment allows us to dive more into the learning
process of SAM. As expected, the performance degrades when new tasks are
encountered. It is interesting to see that SAM performs on par with the Scratch
models, while in the Scratch baseline, a new model is trained for each task from
scratch. The degradation in performance for Scratch(TA) comes from using the
decision module to identify the final output in the CIL. Instead of evaluating the
CL methods using the final average accuracy over all classes, this experiment
would be useful for future work to determine the factors that lead to perfor-
mance degradation. For instance, as shown in the figures, some tasks cause
significant degradation in performance. Identifying the correct task to which
the test input image belongs would help increase the model performance. This
will open new research ideas for CIL.

A.2 Gradual Learning Behavior of SAM 105

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Performance_on_task1
SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Performance_on_task2
SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Performance_on_task3
SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100
Ac

cu
ra

cy
 [%

]
Performance_on_task4

SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Performance_on_task5
SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Performance_on_task6
SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Average_performance
SAM
Scratch(TA)

Figure A.1: The first three rows show the accuracy for each task in the Split CIFAR-
10/100 benchmark as a function of the number of trained tasks so far. Each
panel shows the accuracy of each task starting from the point where the
model faces that task and after facing each consecutive task. The last row
shows the average accuracy over all the tasks learned so far.

106 Additional Experimental Details and Analyses on Chapter 3

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Performance_on_task1

SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Performance_on_task2
SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Performance_on_task3
SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Performance_on_task4
SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Performance_on_task5
SAM
Scratch(TA)

1 2 3 4 5
After training CL task [#]

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

Average_performance
SAM
Scratch(TA)

Figure A.2: The first five panels show the accuracy for each task in the Split MNIST
benchmark as a function of the number of trained tasks so far. Each panel
shows the accuracy of each task starting from the point where the model
faces that task and after facing each consecutive task. The last panel shows
the average accuracy over all the tasks learned so far.

Appendix B
Additional Experimental Details
and Analyses on Chapter 4

B.1 Experimental Details

For a direct comparison with the TD3 algorithm, we follow the same setting as
in [FHM18]. We use multi-layer perceptrons for the actor and critics networks
with two hidden layers of 256 neurons and a ReLU activation function. A Tanh
activation is applied to the output layer of the actor network. Sparse connec-
tions are allocated in the first two layers for all networks, while the output layer
is dense. We use λ2 of 64 for all environments. In contrast, λ1 varies across
environments based on each environment’s state and action dimensions. We
use λ1 of 7 for HalfCheetah-v3, Hopper-v3, and Walker2d-v3. For Ant-v3 and
Humanoid-v3, we use λ1 of 40 and 61, respectively. The same sparsity levels
are used for Static-TD3.

We adapt the sparse connections every e time steps, with e = 1000. A frac-
tion of the sparse connections η is adapted with η = 0.05. The networks are
trained using Adam optimizer with a learning rate of 0.001 and a weight decay
of 0.0002. The networks are trained with mini-batches (N) of 100, sampled
uniformly from a replay buffer containing the entire history of the agent.

Following the TD3 algorithm [FHM18], we add noise of ϵ ∼ N(0,0.2) to the
actions chosen by the target actor network and clipped to (−0.5,0.5). The actor
and target networks are updated every 2 steps (d = 2). The τ used for updating
the target networks equals 0.005. A purely exploratory policy is used for the first

108 Additional Experimental Details and Analyses on Chapter 4

25000 time steps, then an off-policy exploration strategy is used with Gaussian
noise of N(0,0.1) added to each action.

The hyperparameters for the dynamic sparse training (λ1,λ2,η,e) are se-
lected using random search. Each environment is run for 1 million time steps
with evaluations every 5000 time steps, where each evaluation reports the aver-
age return over 10 episodes with no exploration noise. LCA is calculated using
the average return computed every 5000 time steps. Our results are reported
over 5 seeds.

All models are implemented with PyTorch and trained on Nvidia GPUs. We
use the official code from the authors of TD3 [FHM18], which has an MIT li-
cense, to reproduce the results of TD3 with the above settings.

For SAC, we use the Pytorch implementation from [Tan18]. We follow the
settings from the original paper [HZAL18] with the same architecture used for
TD3. The networks are trained using Adam optimizer with a learning rate of
0.0003 and mini-batches of 256. We use τ of 0.005 and a target update interval
of 1. The models are trained for 1M steps.

B.2 Evaluation Metrics

In this appendix, we explain the details of the metrics used to assess the perfor-
mance of our proposed method.

Return (R). The average return is the standard metric used in the RL re-
search to measure the performance of an agent. The return is the sum of rewards
(r) obtained in one episode of T steps. R is calculated as follows:

R =
T∑

t=1
rt . (B.1)

Learning curve area (LCA). This metric estimates the learning speed of a
model. LCA measures the area under the training curve of a method. Intu-
itively, the higher learning curve, the faster the learner is. We adapt this metric
from [CRRE18] to fit the reinforcement learning paradigm. LCA is calculated as
follows:

LC A = 1

∆

∫ ∆

0
R(t)d t = 1

∆

∆∑
t=0

R(t), (B.2)

where ∆ is the number of training steps and R is the average return.

B.3 Hardware and Software Support 109

Network size (#params). This metric estimates the memory cost consumed
by an agent. The network size is estimated by the summation of the number of
connections allocated in its layers as follows:

#par ams =
L∑

l=1

∥∥∥W l
∥∥∥

0
, (B.3)

where W l is the actual weights used in layer l , ∥.∥0 is the standard L0 norm,
and L is the number of layers in the model. For sparse neural networks,

∥∥W l
∥∥

0
is controlled by its defined sparsity level for the model.

Floating-point operations (FLOPs). This metric estimates the computa-
tional cost of a method by calculating how many FLOPs are required for train-
ing. We follow the method described in [EGM+20] to calculate the FLOPs. The
FLOPs are calculated with the total number of multiplications and additions
layer by layer in the network.

FLOPs is the typically used metric in the literature to compare a DST method
against its dense counterpart. The motivation is twofold. First, it gives an un-
biased estimate of the actual required number of operations since the running
time would differ from one implementation to another. Second, more impor-
tantly, existing dynamic sparse training methods in the literature are currently
prototyped using masks over dense weights to simulate sparsity [HABN+21].
This is because most deep learning specialized hardware is optimized for dense
matrix operations. Therefore, the running time using these prototypes would
not reflect the actual gain in memory and speed using a truly sparse network.
Therefore, the FLOPs and network parameters are the current commonly used
metrics to estimate the computation and memory costs, respectively, for sparse
neural networks [HABN+21].

B.3 Hardware and Software Support

As a joint community effort, research on sparsity is going in three parallel direc-
tions: First, hardware that supports sparsity. NVIDIA released NVIDIA A100,
which supports a 50% fixed sparsity level [ZMZ+20]. Second, software li-
braries that support truly sparse implementations. Efforts have been started
to be devoted to supervised learning [LMM+20]. Third, algorithmic methods,
our focus, that aim to provide approaches that achieve the same performance
of dense models using sparse networks [HABN+21]. With the parallel efforts
in the three directions, we would be able to actually provide faster, memory-

110 Additional Experimental Details and Analyses on Chapter 4

efficient, and energy-efficient deep neural networks. This is further discussed
in [Hoo21,MMP+21].

B.4 Learning Behavior Analysis

To analyze the effect of the absence of true labels in the behavior of dense
and dynamic sparse agents, we perform experiments in which an agent starts
learning from samples drawn from a learned policy (Section 5.2). We test two
learned policies with different performances to study how the quality of the
initial samples affects the learning behavior. To this end, we train two dense
policies using TD3 for 5×105 and 7×105 steps on Half-Cheetah-v3. Similarly,
we train two sparse policies for the same steps using DS-TD3. Instead of using a
purely exploratory policy, we draw samples from the learned policies to fill the
initial buffers for dense and dynamic sparse agents that learn from scratch.

As discussed in Section 5.2, the performance of dense DRL agents is more
affected by the initial samples. The better the samples are, the higher per-
formance is. On the other hand, dynamic sparse agents adapt quickly to the
improving samples over time and are less affected by the quality of the initial
samples.

B.5 DS-SAC

In this appendix, we demonstrate that our proposed dynamic sparse training
approach can be integrated with other state-of-the-art DRL methods. We use
the soft actor-critic (SAC) method [HZH+18] and name our improved version
of it as Dynamic Sparse SAC or DS-SAC.

SAC is an off-policy algorithm that optimizes a stochastic policy. A key fea-
ture of this method is entropy regularization. The policy is trained to maximize
the trade-off between expected return and entropy (a measure of randomness).
Thus, the agent addresses the exploration-exploitation trade-off, which results
in policies that explore better. Algorithm 10 shows our proposed DS-SAC. We
integrated the four components of our approach (sparse topology initialization,
adaptation schedule, topological adaptation, and maintain sparsity levels) into
the original algorithm.

B.5 DS-SAC 111

Algorithm 10 DS-SAC

1: Require: λl , η, e
2: Create Mφ, Mθ1 , and Mθ2 with Erdős–Rényi random graph with sparsity

level λl

3: θ1 ← θ1⊙ Mθ1 , θ2 ← θ2⊙ Mθ2 , φ←φ⊙Mφ

4: Initialize target networks θ̄1 ← θ1, θ̄2 ← θ2

5: D←; // Initialize an empty replay pool
6: for each iteration do
7: for each environment step do
8: at ∼πφ(at |st) // Sample action from the policy
9: st+1 ∼ p(st+1|st , at) // Sample transition from the environment

10: D←D∪ {(st , at ,r (st , at), st+1)} // Store the transition in the replay pool
11: end for
12: for each gradient step do
13: θi ← θi −λQ ∇̂θi JQ (θi) // Update Q-functions
14: if t mod e then
15: θi ← TopologicalAdaptation(θi ,Mθi ,η) (Algo. 7)
16: end if
17: φ←φ−λπ∇̂φ Jπ(φ) // Update policy weights
18: if t mod e then
19: φ← TopologicalAdaptation(φ,Mφ,η) (Algo. 7)
20: end if
21: θ̄i ← τθi + (1−τ)θ̄i // Update target network
22: θ̄i ← MaintainSparsity(θ̄i ,∥θi∥0) (Algo. 8)
23: end for
24: end for

Table B.1: The value used for λ1 and λ2 in each environment for the DS-SAC algorithm.

Environment λ1 λ2

HalfCheetah-v3 12 80
Walker2d-v3 12 80
Hopper-v3 7 20
Ant-v3 30 64
Humanoid-v3 61 64

112 Additional Experimental Details and Analyses on Chapter 4

Tasks. We compare our proposed DS-SAC with SAC. We perform our exper-
iments on five MuJoCo control tasks. Namely, we test the following environ-
ments: HalfCheetah-v3, Hopper-v3, Walker2d-v3, Ant-v3, and Humanoid-v3.

Experimental settings. We follow the setting from the SAC method [HZAL18].
All networks are multilayer perceptrons with two hidden layers of 256 neurons
and a ReLU activation function. The networks are trained with Adam optimizer
and a learning rate of 0.0003. We use mini-batches of 256. Each environment is
run for 1 million steps. As DRL algorithms and their variants behave differently
in various settings/environments, to cover a wider range of possible scenarios,
we study here the case of hard target update where τ= 1 [HZAL18]. Following
the original paper, we use a target update interval of 1000 and a temperature α
of 0.2. Table B.1 shows the value used for λ1 and λ2 to determine the sparsity
levels for DS-SAC. We use e of 1000 and η of 0.1. The hyperparameters are
selected using a random search. Our results are reported over 5 seeds.

Metrics. We use the same metrics discussed in Section 5.4 to assess the
performance of our proposed method.

Results. Figure B.1 shows the learning behavior of DS-SAC and SAC. Con-
sistent with our previous observations, DS-SAC learns faster, especially at the
beginning of the training. The LCA of DS-SAC is higher than SAC for all envi-
ronments, as shown in Table B.2. DS-SAC outperforms the final performance
of SAC for all environments except one where it achieves a very close perfor-
mance to it, as illustrated in Table B.3. Please note that the results of SAC are
slightly different from the ones obtained in Section 4.4.4 as we study here the
hard target update case of SAC [HZH+18].

These experiments reveal that we can improve a DRL agent’s learning speed
and performance while reducing its required memory and computation costs for
training.

Table B.2: Learning curve area (LCA) (× 5000) of SAC and DS-SAC.

Environment SAC DS-SAC (ours)

HalfCheetah-v3 1.6229 1.7081
Walker2d-v3 0.5368 0.5906
Hopper-v3 0.4441 0.4875
Ant-v3 0.7504 0.8229
Humanoid-v3 0.3776 0.6777

B.5 DS-SAC 113

Table B.3: Average return over the last 10 evaluations of 1 million time steps using SAC
and DS-SAC.

Environment SAC DS-SAC (ours)

HalfCheetah-v3 11645.12 ± 425.585 11084.39 ± 445.15
Walker2d-v3 3858.20 ± 689.913 4216.77 ± 236.23
Hopper-v3 3100.39 ± 374.45 3229.39 ± 135.82
Ant-v3 5899.30 ± 197.15 5943.54 ± 169.95
Humanoid-v3 5425.56 ± 196.33 5584.64 ± 109.40

114 Additional Experimental Details and Analyses on Chapter 4

0 50 100 150 200
Iterations x 5000

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

Re
tu

rn

SAC
DS-SAC (ours)

(a) HalfCheetah-v3.

0 50 100 150 200
Iterations x 5000

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

SAC
DS-SAC (ours)

(b) Walker2d-v3.

0 50 100 150 200
Iterations x 5000

0

1000

2000

3000

Av
er

ag
e

Re
tu

rn

SAC
DS-SAC (ours)

(c) Hopper-v3.

0 50 100 150 200
Iterations x 5000

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
tu

rn

SAC
DS-SAC (ours)

(d) Ant-v3.

0 50 100 150 200
Iterations x 5000

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
tu

rn

SAC
DS-SAC (ours)

(e) Humanoid-v3.

Figure B.1: Learning curves of SAC and DS-SAC on different continuous control tasks.
The shaded region represents the standard deviation of the average evalua-
tion over 5 runs.

Appendix C
Additional Experimental Details
and Analyses on Chapter 5

C.1 Experimental Details

Discrete control tasks. We evaluate DQN [MKS+15] on 17 games from the
Arcade Learning Environment [BNVB13]: Asterix, Demon Attack, Seaquest,
Wizard of Wor, Bream Reader, Road Runner, James Bond, Qbert, Breakout, En-
duro, Space Invaders, Pong, Zaxxon, Yars’ Revenge, Ms. Pacman, Double Dunk,
Ice Hockey. This set is used by previous works [KAGL21,KAM+21] to study the
implicit under-parameterization phenomenon in offline RL. For hyper-parameter
tuning, we use five games (Asterix, Demon Attack, Seaquest, Breakout, Beam
Rider). We evaluate DrQ(ϵ) on the 26 games of Atari 100K [KBM+19]. We used
the best hyper-parameters found for DQN in training DrQ(ϵ).

Continuous control tasks. We evaluate SAC [HZAL18] on four environments
from MuJoCo suite [TET12]: HalfCheetah-v2, Hopper-v2, Walker2d-v2, Ant-v2.

Code. For discrete control tasks, we build on the implementation of DQN and
DrQ provided in Dopamine [CMG+18], including the architectures used for
agents. The hyper-parameters are provided in Tables C.1, C.2, and C.3. For con-
tinuous control, we build on the SAC implementation in TF-Agents [GKR+18]

116 Additional Experimental Details and Analyses on Chapter 5

Table C.1: Common Hyper-parameters for DQN and DrQ(ϵ).

Parameter Value

Optimizer Adam [KB15]
Optimizer: ϵ 1.5×10−4

Training ϵ 0.01
Evaluation ϵ 0.001
Discount factor 0.99
Replay buffer size 106

Minibatch size 32
Q network: channels 32, 64, 64
Q-network: filter size 8 × 8, 4 × 4, 3 × 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512
Recycling period 1000
τ-Dormant 0.025 for default setting, 0.1 otherwise
Minibatch size for estimating neurons score 64

and the codebase of [GEEC22]. The hyper-parameters are provided in Ta-
ble C.4.

Evaluation. We follow the recommendation from [ASC+21] to report reliable
aggregated results across games using the interquartile mean (IQM). IQM is the
calculated mean after discarding the bottom and top 25% of normalized scores
aggregated from multiple runs and games.

Baselines. For weight decay, we searched over the grid [10−6,10−5,10−4,10−3].
The best found value is 10−5. For reset [NSD+22], we consider re-initializing
the last layer for Atari games (same as the original paper). They use a reset
period of 2× 104 in for Atari 100k [KBM+19], which corresponds to having 5
restarts in a training run. Since we run longer experiments, we searched over
the grid [5×104,1×105,2.5×105,5×105] gradient steps for the reset period which
corresponds to having 50, 25, 10 and 5 restarts per training (10M frames, replay
ratio 1). The best found period is 1×105. For SAC, we reset agent’s networks
entirely every 2×105 environment steps, following the original paper.

C.1 Experimental Details 117

Table C.2: Hyper-parameters for DQN.

Parameter Value

Optimizer: Learning rate 6.25×10−5

Initial collect steps 20000
n-step 1
Training iterations Default setting: 40, otherwise: 10
Training environment steps per iteration 250K
(Updates per environment step, Target network update period) (0.25, 8000)

(0.5, 4000)
(1, 2000)
(2, 1000)

Table C.3: Hyper-parameters for DrQ(ϵ).

Parameter Value

Optimizer: Learning rate 1×10−4

Initial collect steps 1600
n-step 10
Training iterations 40
Training environment steps per iteration 10K
Updates per environment step 1, 2, 4, 8

Replay ratio. For DQN, we evaluate replay ratio values: {0.25 (default), 0.5,
1, 2}. Following [VHHA19], we scale the target update period based on the
value of the replay ratio as shown in Table C.2. For DrQ(ϵ), we evaluate the
values: {1 (default), 2, 4, 8}.

ReDo hyper-parameters. We did the hyper-parameter search for DQN trained
with RR = 1 using the nature CNN architecture. We searched over the grids
[1000, 10000, 100000] and [0, 0.01, 0.1] for the recycling period and τ-
dormant, respectively. We apply the best values found to all other settings of
DQN, including the ResNet architecture and DrQ(ϵ), as reported in Table C.1.

Dormant neurons in supervised learning. Here we provide the experimen-
tal details of the supervised learning analysis illustrated in Section 5.2. We train

118 Additional Experimental Details and Analyses on Chapter 5

Table C.4: Hyper-parameters for SAC.

Parameter Value

Initial collect steps 10000
Discount factor 0.99
Training environment steps 106

Replay buffer size 106

Updates per environment step (Replay Ratio) 1, 2, 4, 8
Target network update period 1
target smoothing coefficient τ 0.005
Optimizer Adam [KB15]
Optimizer: Learning rate 3×10−4

Minibatch size 256
Actor/Critic: Hidden layers 2
Actor/Critic: Hidden units 256
Recycling period 200000
τ-Dormant 0
Minibatch size for estimating neurons score 256

a convolutional neural network on CIFAR-10 [KH+09] using stochastic gradi-
ent descent and cross-entropy loss. We select 10000 samples from the dataset
to reduce the computational cost. We analyze the dormant neurons in two
supervised learning settings: (1) training a network with fixed targets, the stan-
dard single-task supervised learning, where we train a network using the inputs
and labels of CIFAR-10 for 100 epochs, and (2) training a network with non-
stationary targets, where we shuffle the labels every 20 epochs to generate new
targets. Table C.5 provides the details of the network architecture and training
hyper-parameters.

Learning ability of networks with dormant neurons. Here we present the
details of the regression experiment provided in Section 5.2. Inputs and targets
for regression come from a DQN agent trained on DemonAttack for 40M frames
with the default hyper-parameters. The pre-trained network was trained for
40M frames using a replay ratio of 1.

C.2 The Dormant Neuron Phenomenon in Different Domains 119

Table C.5: Hyperparameters for CIFAR-10.

Parameter Value

Optimizer SGD
Minibatch size 256
Learning rate 0.01
Momentum 0.9
Architecture:
Layer (channels, kernel size, stride)
Convolution (32, 3, 1)
Convolution (64, 3, 1)
MaxPool (-, 2, 2)
Convolution (64, 3, 1)
MaxPool (-, 2, 2)
Dense (128, -, -)

C.2 The Dormant Neuron Phenomenon in Differ-
ent Domains

In this appendix, we demonstrate the dormant neuron phenomenon on DrQ(ϵ)
[YKF21] on the Atari 100K benchmark [KBM+19] as well as on additional
games from the Arcade Learning Environment on DQN. Additionally, we show

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50
60
70

Do
rm

an
t n

eu
ro

ns
 [%

] Asterix
RR=0.25
RR=0.5
RR=1
RR=2

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50
60

Do
rm

an
t n

eu
ro

ns
 [%

] BeamRider

RR=0.25
RR=0.5
RR=1
RR=2

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50

Do
rm

an
t n

eu
ro

ns
 [%

] Breakout

RR=0.25
RR=0.5
RR=1
RR=2

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack
RR=0.25
RR=0.5
RR=1
RR=2

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50
60
70

Do
rm

an
t n

eu
ro

ns
 [%

] Seaquest

RR=0.25
RR=0.5
RR=1
RR=2

0 10 20 30 40
Number of Frames (x106)

0
1000
2000
3000
4000
5000

Av
er

ag
e

re
tu

rn

Asterix

0 10 20 30 40
Number of Frames (x106)

0
1000
2000
3000
4000
5000
6000

Av
er

ag
e

re
tu

rn

BeamRider

0 10 20 30 40
Number of Frames (x106)

0
25
50
75

100
125
150
175

Av
er

ag
e

re
tu

rn

Breakout

0 10 20 30 40
Number of Frames (x106)

0

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DemonAttack

0 10 20 30 40
Number of Frames (x106)

0
2000
4000
6000
8000

10000
12000

Av
er

ag
e

re
tu

rn

Seaquest

Figure C.1: Effect of replay ratio in the number of dormant neurons for DQN on Atari
environments (experiments presented in Figure 5.7).

120 Additional Experimental Details and Analyses on Chapter 5

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (x106)

2
4
6
8

10
12

Do
rm

an
t n

eu
ro

ns
 [%

] DrQ() - Asterix

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (x106)

4
6
8

10
12
14
16
18

Do
rm

an
t n

eu
ro

ns
 [%

] DrQ() - BeamRider

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (x106)

0
2
4
6
8

10

Do
rm

an
t n

eu
ro

ns
 [%

] DrQ() - Breakout

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (x106)

2

4

6

8

10

Do
rm

an
t n

eu
ro

ns
 [%

] DrQ() - DemonAttack

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (x106)

2
4
6
8

10
12

Do
rm

an
t n

eu
ro

ns
 [%

] DrQ() - Seaquest

Figure C.2: The dormant neuron phenomenon becomes apparent as the number of train-
ing steps increases during the training of DrQ(ϵ) with the default replay ratio
on Atrai 100K.

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (×106)

0
2
4
6
8

10
12

Do
rm

an
t n

eu
ro

ns
 [%

] SAC - Actor - Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (×106)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Do
rm

an
t n

eu
ro

ns
 [%

] SAC - Critic - Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (×106)

1
2
3
4
5
6
7
8

Do
rm

an
t n

eu
ro

ns
 [%

] SAC - Actor - HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (×106)

0
1
2
3
4
5

Do
rm

an
t n

eu
ro

ns
 [%

] SAC - Critic - HalfCheetah-v2

Figure C.3: The number of dormant neurons increases over time during the training of
SAC on MuJoCo environments.

the phenomenon on continuous control tasks and analyze the role of dormant
neurons in performance. We consider SAC [HZAL18] trained on MuJoCo envi-
ronments [TET12]. Same as our analyses in Section 5.2, we consider τ = 0 to
illustrate the phenomenon.

Figure C.1 shows that across games, the number of dormant neurons con-
sistently increases with higher values for the replay ratio on DQN. The in-
crease in dormant neurons correlates with the performance drop observed in
this regime. We then investigate the phenomenon on a modern valued-based
algorithm DrQ(ϵ). As we see in Figure C.2, the phenomenon emerges as the
number of training steps increases.

Figure C.3 shows that the phenomenon is also present in continuous control
tasks. An agent exhibits an increasing number of dormant neurons in the actor
and critic networks during the training of SAC on MuJoco environments. To
analyze the effect of these neurons on performance, we prune dormant neu-
rons every 200K steps. Figure C.4 shows that the performance is not affected
by pruning these neurons; indicating their little contribution to the learning
process. Next, we investigate the effect of ReDo and the studied baselines (Re-
set [NSD+22] and weight decay (WD)) in this domain. Figure C.5 shows that
ReDo maintains the performance of the agents while other methods cause a per-

C.3 Recycling Dormant Neurons 121

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
1000
2000
3000
4000
5000
6000

Av
er

ag
e

re
tu

rn
Ant-v2

Standard
Pruning

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
2000
4000
6000
8000

10000
12000

Av
er

ag
e

re
tu

rn

HalfCheetah-v2

Standard
Pruning

Figure C.4: Pruning dormant neurons during the training of SAC on MuJoCo environ-
ments does not affect the performance.

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
1000
2000
3000
4000
5000

Av
er

ag
e

re
tu

rn

Ant-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
2000
4000
6000
8000

10000
12000

Av
er

ag
e

re
tu

rn

HalfCheetah-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

re
tu

rn

Hopper-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
1000
2000
3000
4000
5000

Av
er

ag
e

re
tu

rn

Walker2d-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

Figure C.5: Comparison of the performance of SAC agents with ReDo and two different
regularization methods.

formance drop in most cases. We hypothesize that ReDo does not provide gains
here as the state space is considerably low and the typically used network is
sufficiently over-parameterized.

To investigate this, we decrease the size of the actor and critic networks by
halving or quartering the width of their layers. We perform these experiments
on the complex environment Ant-v2 using 5 seeds. Table C.6 shows the final
average return in each case. We observe that when the network size is smaller,
there are some gains from recycling the dormant capacity. Further analyses of
the relation between task complexity and network capacity would provide a
more comprehensive understanding.

C.3 Recycling Dormant Neurons

Here we study different strategies for recycling dormant neurons and analyze
the design choices of ReDo. We perform these analyses on DQN agents trained
with RR = 1 and τ = 0.1 on Atari games. Furthermore, we provide some addi-
tional insights into the effect of recycling the dormant capacity on improving

122 Additional Experimental Details and Analyses on Chapter 5

Table C.6: Performance of SAC on Ant-v2 using using half and a quarter of the width of
the actor and critic networks.

Width SAC SAC+ReDo

0.25 2016.18 ± 102 2114.52 ± 212
0.5 3964.04 ± 953 4471.61 ± 648

the sample efficiency and the expressivity of the network.

C.3.1 Effect of Activation Function

In this section, we attempt to understand the effect of the activation function
(ReLU) used in our experiments. The ReLU activation function consists of a
linear part (positive domain) with unit gradients and a constant zero part (neg-
ative domain) with zero gradients. Once the distribution of pre-activations falls
completely into the negative part, it would stay there since the weights of the
neuron would get zero gradients. This could be the explanation for the in-
creased number of dormant neurons in our neural networks. If this is the case,
one might expect activations with non-zero gradients on the negative side, such
as leaky ReLU, to have significantly fewer dormant neurons.

In Figure C.6, we compare networks with leaky ReLU to original networks
with ReLU activation. As we can see, using leaky ReLU slightly decreases the
number of dormant neurons but does not mitigate the issue. ReDo overcomes
the performance drop that occurs during training in the two cases.

0.0 0.5 1.0 1.5 2.0 2.5
Gradient steps (×106)

0
10
20
30
40
50

Do
rm

an
t n

eu
ro

ns
 [%

] DQN - DemonAttack

algorithm
Baseline
ReDo
act_type
ReLU
Leaky-ReLU

0 2 4 6 8
Number of Frames (×106)

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DQN - DemonAttack
algorithm
Baseline
ReDo
act_type
ReLU
Leaky-ReLU

Figure C.6: Training performance and dormant neuron characteristics of networks using
leaky ReLU with a negative slope of 0.01 (default value) compared to original
networks with ReLU.

C.3 Recycling Dormant Neurons 123

C.3.2 Recycling Strategies

Outgoing connections. We investigate the effect of using random weights to
reinitialize the outgoing connections of dormant neurons. We compare this
strategy against the reinitialization strategy of ReDo (zero weights). Figure C.7
shows the performance of DQN on five Atari games. The random initialization
of the outgoing connections leads to a lower performance than the zero initial-
ization. This is because the newly added random weights change the output of
the network.

Incoming connections. Another possible strategy to reinitialize the incoming
connections of dormant neurons is to scale their weights with the average norm
of non-dormant neurons in the same layer. We observe that this strategy has a
similar performance to the random weight initialization strategy, as shown in
Figure C.8.

C.3.3 Effect of Batch Size

The score of a neuron is calculated based on a given batch D of data (Section
5.2). Here we study the effect of the batch size in determining the percent-

0 2 4 6 8
Number of Frames (×106)

500

1000

1500

2000

2500

Av
er

ag
e

re
tu

rn

Asterix

Zero
Random

0 2 4 6 8
Number of Frames (×106)

1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

re
tu

rn

BeamRider

Zero
Random

0 2 4 6 8
Number of Frames (×106)

20
30
40
50
60

Av
er

ag
e

re
tu

rn

Breakout

Zero
Random

0 2 4 6 8
Number of Frames (×106)

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DemonAttack
Zero
Random

0 2 4 6 8
Number of Frames (×106)

500

1000

1500

2000

2500

Av
er

ag
e

re
tu

rn

Seaquest
Zero
Random

Figure C.7: Comparison of performance with different strategies of reinitializing the out-
going connections of dormant neurons.

0 2 4 6 8
Number of Frames (×106)

500
1000
1500
2000
2500
3000

Av
er

ag
e

re
tu

rn

Asterix
Initial distribution
Norm of active neurons

0 2 4 6 8
Number of Frames (×106)

1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

re
tu

rn

BeamRider
Initial distribution
Norm of active neurons

0 2 4 6 8
Number of Frames (×106)

20
30
40
50
60
70

Av
er

ag
e

re
tu

rn

Breakout
Initial distribution
Norm of active neurons

0 2 4 6 8
Number of Frames (×106)

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DemonAttack
Initial distribution
Norm of active neurons

0 2 4 6 8
Number of Frames (×106)

500
1000
1500
2000
2500

Av
er

ag
e

re
tu

rn

Seaquest
Initial distribution
Norm of active neurons

Figure C.8: Comparison of performance with different strategies of reinitializing the in-
coming connections of dormant neurons.

124 Additional Experimental Details and Analyses on Chapter 5

0.0 0.5 1.0 1.5 2.0 2.5
Number of Gradients (x106)

20

30

40

50

Do
rm

an
t n

eu
ro

ns
 [%

] Asterix

BS = 32
BS = 64
BS = 1024
BS = 256

0.0 0.5 1.0 1.5 2.0 2.5
Number of Gradients (x106)

15
20
25
30
35
40
45
50
55

Do
rm

an
t n

eu
ro

ns
 [%

] BeamRider

BS = 32
BS = 64
BS = 1024
BS = 256

0.0 0.5 1.0 1.5 2.0 2.5
Number of Gradients (x106)

20
30
40
50
60

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack

BS = 32
BS = 64
BS = 1024
BS = 256

0.0 0.5 1.0 1.5 2.0 2.5
Number of Gradients (x106)

35

40

45

50

55

Do
rm

an
t n

eu
ro

ns
 [%

] Seaquest

BS = 32
BS = 64
BS = 1024
BS = 256

Figure C.9: Effect of the batch size used to detect dormant neurons.

age of dormant neurons. We study four different values: {32, 64, 256, 1024}.
Figure C.9 shows that the identified percentage of dormant neurons is approxi-
mately the same using different batch sizes.

C.3.4 Comparison with Continual Backprop

Similar to the experiments in Figure 5.15, we use a fixed recycling schedule
to compare the activation-based metric used by ReDo and the utility metric pro-
posed by Continual Backprop [DMS21]. Results shown in Figure C.10 show that
both metrics achieve similar results. Note that the original Continual Backprop
algorithm calculates neuron scores at every iteration and uses a running aver-
age to obtain a better estimate of the neuron saliency. This approach requires
additional storage and computing compared to the fixed schedule used by our
algorithm. Given the high dormancy threshold preferred by our method (i.e.,
more neurons are recycled), we expect better saliency estimates to have a lim-
ited impact on the results presented here. However, a more thorough analysis
is needed to make general conclusions.

0 2 4 6 8
Number of Frames (×106)

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e

re
tu

rn

DQN - DemonAttack

ReDo
Continual BP

0 2 4 6 8
Number of Frames (×106)

500
750

1000
1250
1500
1750
2000
2250

Av
er

ag
e

re
tu

rn

DQN - Asterix

Figure C.10: Comparison of different strategies for selecting the recycled neurons.

C.3 Recycling Dormant Neurons 125

Figure C.11: Comparison of agents with varying replay ratios, while keeping the number
of gradient updates constant.

C.3.5 Effect of Recycling the Dormant Capacity

Improving Sample Efficiency. To examine the impact of recycling dormant
neurons on enhancing the agents’ sample efficiency, an alternative approach
is to compare agents with varying replay ratios, while keeping the number of
gradient updates constant during training. Consequently, agents with a higher
replay ratio will perform fewer interactions with the environment.

We perform this analysis on DQN and the 17 Atari games. Agents with
a replay ratio of 0.25 run for 10M frames, a replay ratio of 0.5 run for 5M
frames, and a replay ratio of 1 run for 2.5M frames. The number of gradient
steps is fixed across all agents. Figure C.11 shows the aggregated results across
all games. Interestingly the performance of ReDo with RR = 1 is very close to
RR = 0.25, while significantly reducing the number of environment steps by four.
On the other hand, DQN with RR = 1 suffers from a performance drop.

Improving Networks’ expressivity. Our results in Chapter 5 show that recy-
cling dormant neurons improves the learning ability of agents measured by their
performance. Here, we do some preliminary experiments to measure the effect
of neuron recycling on the learned representations. Following [KAGL21], we
calculate the effective rank, a measure of expressivity, of the feature learned in
the penultimate layer of networks trained with and without ReDo. We perform
this analysis on agents trained for 10M frames on DemonAttack using DQN.
The results are averaged over 5 seeds. The results in Table C.7 suggest recy-
cling dormant neurons improves the expressivity, shown by the increased rank
of the learned representations. Further investigation of expressivity metrics and
analyses on other domains would be an exciting future direction.

126 Additional Experimental Details and Analyses on Chapter 5

Table C.7: Effective rank [KAGL21] of the learned representations of agents trained on
DemonAttack.

Agent Effective rank

DQN 449.2 ± 5.77
DQN + ReDo 470.8 ± 1.16

C.4 Performance Per Game

Here we share the training curves of DQN using the CNN architecture for each
game in the high replay ratio regime (RR = 1) (Figure C.12) and the default
setting (RR = 0.25) (Figure C.13). Similarly, Figure C.14 and C.15 show the
training curves of DrQ(ϵ) for each game in the high replay ratio regime (RR = 4)
and the default setting (RR = 1), respectively.

C.4 Performance Per Game 127

500

1000

1500

2000

2500

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Seaquest

0

1000

2000

3000

4000

5000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

DemonAttack

200

300

400

500

600

700

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

SpaceInvaders

1000

2000

3000

4000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Qbert

20

19

18

17

16

15

14

13

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

DoubleDunk

1000

1500

2000

2500

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

MsPacman

0

200

400

600

800

1000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Enduro

0

1000

2000

3000

4000

5000

6000

7000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

BeamRider

500

1000

1500

2000

2500

3000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

WizardOfWor

100

200

300

400

500

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Jamesbond

0

10000

20000

30000

40000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

RoadRunner

500

1000

1500

2000

2500
Ev

al
/A

ve
ra

ge
Re

tu
rn

s

Asterix

15

10

5

0

5

10

15

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Pong

0 2 4 6 8
0

2000

4000

6000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Zaxxon

0 2 4 6 8
2000

4000

6000

8000

10000

12000

14000

16000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

YarsRevenge

0 2 4 6 810

20

30

40

50

60

70

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Breakout

0 2 4 6 8

14

12

10

8

6

4

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

IceHockey

Number of Frames (x106)

algorithm

DQN
DQN + ReDo

Figure C.12: Training curves for DQN with the nature CNN architecture (RR = 1).

128 Additional Experimental Details and Analyses on Chapter 5

0

1000

2000

3000

4000

5000

6000

7000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Seaquest

0

2000

4000

6000

8000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

DemonAttack

250

500

750

1000

1250

1500

1750

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

SpaceInvaders

0

2000

4000

6000

8000

10000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Qbert

22

20

18

16

14

12

10

8

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

DoubleDunk

500

1000

1500

2000

2500

3000

3500

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

MsPacman

0

200

400

600

800

1000

1200

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Enduro

0

1000

2000

3000

4000

5000

6000

7000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

BeamRider

0

1000

2000

3000

4000

5000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

WizardOfWor

0

100

200

300

400

500

600

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Jamesbond

0

10000

20000

30000

40000

50000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

RoadRunner

1000

2000

3000

4000

5000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Asterix

20

10

0

10

20

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Pong

0 10 20 30 40
0

2000

4000

6000

8000

10000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Zaxxon

0 10 20 30 40

5000

10000

15000

20000

25000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

YarsRevenge

0 10 20 30 40
0

25

50

75

100

125

150

175

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Breakout

0 10 20 30 40

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

IceHockey

Number of Frames (x106)

algorithm

DQN
DQN + ReDo

Figure C.13: Training curves for DQN with the nature CNN architecture (RR = 0.25).

C.4 Performance Per Game 129

Figure C.14: Training curves for DrQ(ϵ) with the nature CNN architecture (RR = 4).

130 Additional Experimental Details and Analyses on Chapter 5

Figure C.15: Training curves for DrQ(ϵ) with the nature CNN architecture (RR = 1).

Bibliography

[AA20] Jordan Ash and Ryan P Adams. On warm-starting neural net-
work training. Advances in Neural Information Processing Systems,
33:3884–3894, 2020. (Cited on page 91.)

[ABB+19] Mike Ashby, Christiaan Baaij, Peter Baldwin, Martijn Bastiaan,
Oliver Bunting, Aiken Cairncross, Christopher Chalmers, Liz Corri-
gan, Sam Davis, Nathan van Doorn, et al. Exploiting unstructured
sparsity on next-generation datacenter hardware, 2019. (Cited on
page 98.)

[ABE+18] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus
Rohrbach, and Tinne Tuytelaars. Memory aware synapses: Learn-
ing what (not) to forget. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 139–154, 2018. (Cited on
pages 17 and 40.)

[ACC21] João Guilherme Madeira Araújo, Johan Samir Obando Ceron, and
Pablo Samuel Castro. Lifting the veil on hyper-parameters for
value-based deep reinforcement learning. In Deep RL Workshop
NeurIPS, 2021. (Cited on page 76.)

[AMK21] Ibrahim Alabdulmohsin, Hartmut Maennel, and Daniel Keysers.
The impact of reinitialization on generalization in convolutional
neural networks. arXiv preprint arXiv:2109.00267, 2021. (Cited
on page 91.)

132 BIBLIOGRAPHY

[AOPP21] Samin Yeasar Arnob, Riyasat Ohib, Sergey Plis, and Doina Precup.
Single-shot pruning for offline reinforcement learning. Offline Rein-
forcement Learning Workshop at Neural Information Processing Sys-
tems, 2021. (Cited on page 91.)

[ASC+21] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C
Courville, and Marc Bellemare. Deep reinforcement learning at
the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021. (Cited on pages 76,
85, 86, and 116.)

[ASN20] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An
optimistic perspective on offline reinforcement learning. In Inter-
national Conference on Machine Learning, pages 104–114. PMLR,
2020. (Cited on page 80.)

[AZM+23] Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Mar-
los C Machado. Loss of plasticity in continual deep reinforce-
ment learning. arXiv preprint arXiv:2303.07507, 2023. (Cited on
page 5.)

[BCB15] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neu-
ral machine translation by jointly learning to align and translate.
In 3rd International Conference on Learning Representations, 2015.
(Cited on page 41.)

[BCC+20] Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun
Gong, Marlos C Machado, Subhodeep Moitra, Sameera S Ponda,
and Ziyu Wang. Autonomous navigation of stratospheric balloons
using reinforcement learning. Nature, 588(7836):77–82, 2020.
(Cited on page 76.)

[BCD+21] Tudor Berariu, Wojciech Czarnecki, Soham De, Jörg Bornschein,
Samuel L. Smith, Razvan Pascanu, and Claudia Clopath. A study
on the plasticity of neural networks. CoRR, abs/2106.00042, 2021.
(Cited on page 91.)

[BCD22] Bruno Benedetti and Sebastien Couillard-Despres. Why would the
brain need dormant neuronal precursors? Frontiers in Neuro-
science, 16, 2022. (Cited on page 92.)

BIBLIOGRAPHY 133

[BDK+20] Bruno Benedetti, Dominik Dannehl, Richard König, Simona
Coviello, Christina Kreutzer, Pia Zaunmair, Dominika Jakubecova,
Thomas M Weiger, Ludwig Aigner, Juan Nacher, et al. Functional
integration of neuronal precursors in the adult murine piriform cor-
tex. Cerebral cortex, 30(3):1499–1515, 2020. (Cited on page 92.)

[BKH15] Zuo Bai, Liyanaarachchi Lekamalage Chamara Kasun, and Guang-
Bin Huang. Generic object recognition with local receptive fields
based extreme learning machine. 2015. (Cited on page 54.)

[BKML18] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Leg-
enstein. Deep rewiring: Training very sparse deep networks. In
International Conference on Learning Representations, 2018. (Cited
on page 17.)

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020. (Cited on page 2.)

[BNVB13] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowl-
ing. The arcade learning environment: An evaluation platform for
general agents. Journal of Artificial Intelligence Research, 47:253–
279, 2013. (Cited on pages 76, 79, 85, and 115.)

[BPP20] Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interfer-
ence and generalization in temporal difference learning. In Inter-
national Conference on Machine Learning, pages 767–777. PMLR,
2020. (Cited on page 76.)

[BRF13] Omri Barak, Mattia Rigotti, and Stefano Fusi. The sparse-
ness of mixed selectivity neurons controls the generalization–
discrimination trade-off. Journal of Neuroscience, 33(9):3844–
3856, 2013. (Cited on page 54.)

[CL18] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 12(3):1–
207, 2018. (Cited on page 38.)

134 BIBLIOGRAPHY

[CMG+18] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh
Kumar, and Marc G. Bellemare. Dopamine: A Research Frame-
work for Deep Reinforcement Learning. 2018. (Cited on pages 85
and 115.)

[CMP21] Selima Curci, Decebal Constantin Mocanu, and Mykola Pech-
enizkiyi. Truly sparse neural networks at scale. arXiv preprint
arXiv:2102.01732, 2021. (Cited on page 98.)

[CPK+17] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin
Murphy, and Alan L Yuille. Deeplab: Semantic image segmenta-
tion with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2017. (Cited on pages 14 and 38.)

[CRO+20] Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Nor-
mandin, Min Lin, Lucas Page-Caccia, Issam Hadj Laradji, Irina Rish,
Alexandre Lacoste, David Vázquez, and Laurent Charlin. Online
fast adaptation and knowledge accumulation (osaka): a new ap-
proach to continual learning. In Advances in Neural Information
Processing Systems, 2020. (Cited on page 41.)

[CRRE18] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and
Mohamed Elhoseiny. Efficient lifelong learning with a-gem. In
International Conference on Learning Representations, 2018. (Cited
on pages 68 and 108.)

[CWZR20] Xinyue Chen, Che Wang, Zijian Zhou, and Keith W Ross. Ran-
domized ensembled double q-learning: Learning fast without a
model. In International Conference on Learning Representations,
2020. (Cited on page 91.)

[CYES19] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss
v2: A flexible accelerator for emerging deep neural networks on
mobile devices. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 9(2):292–308, 2019. (Cited on page 98.)

[CZX+17] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian Shao, Wei
Liu, and Tat-Seng Chua. Sca-cnn: Spatial and channel-wise atten-
tion in convolutional networks for image captioning. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 5659–5667, 2017. (Cited on page 41.)

BIBLIOGRAPHY 135

[DBK+20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition
at scale. In International Conference on Learning Representations,
2020. (Cited on pages 1 and 100.)

[DMS21] Shibhansh Dohare, A Rupam Mahmood, and Richard S Sutton.
Continual backprop: Stochastic gradient descent with persistent
randomness. arXiv preprint arXiv:2108.06325, 2021. (Cited on
pages 5, 91, 92, and 124.)

[DRLFM18] Natalia Díaz-Rodríguez, Vincenzo Lomonaco, David Filliat, and
Davide Maltoni. Don’t forget, there is more than forgetting: new
metrics for continual learning. In Workshop on Continual Learning,
NeurIPS 2018 (Neural Information Processing Systems, 2018. (Cited
on pages 4, 38, and 52.)

[DSD+13] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato,
and Nando de Freitas. Predicting parameters in deep learning. In
Proceedings of the 26th International Conference on Neural Informa-
tion Processing Systems-Volume 2, pages 2148–2156, 2013. (Cited
on page 62.)

[DSP+19] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu,
and Rama Chellappa. Learning without memorizing. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5138–5146, 2019. (Cited on page 41.)

[DYJ19] Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: A neural net-
work synthesis tool based on a grow-and-prune paradigm. IEEE
Transactions on Computers, 68(10):1487–1497, 2019. (Cited on
page 92.)

[DZ19] Tim Dettmers and Luke Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance. arXiv preprint
arXiv:1907.04840, 2019. (Cited on page 17.)

[EGM+20] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and
Erich Elsen. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning, pages 2943–2952.
PMLR, 2020. (Cited on pages 17, 62, and 109.)

136 BIBLIOGRAPHY

[ER+60] Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs.
Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60, 1960. (Cited on
page 64.)

[ESM+18] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad
Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dun-
ning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International conference
on machine learning, pages 1407–1416. PMLR, 2018. (Cited on
pages 85 and 86.)

[EvMU+21] Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Fabian Pe-
dregosa, and Max Vladymyrov. Gradmax: Growing neural net-
works using gradient information. In International Conference on
Learning Representations, 2021. (Cited on page 92.)

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. In Proceedings
of the 34th International Conference on Machine Learning-Volume
70, pages 1126–1135. JMLR. org, 2017. (Cited on page 42.)

[FBB+17] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols,
David Ha, Andrei A Rusu, Alexander Pritzel, and Daan Wierstra.
Pathnet: Evolution channels gradient descent in super neural net-
works. arXiv preprint arXiv:1701.08734, 2017. (Cited on page 18.)

[FC18] Jonathan Frankle and Michael Carbin. The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks. In International
Conference on Learning Representations, 2018. (Cited on page 62.)

[FG19] Sebastian Farquhar and Yarin Gal. Towards robust evaluations of
continual learning. In Privacy in Machine Learning and Artificial
Intelligence workshop, ICML, jun 2019. (Cited on pages 14, 18, 19,
and 25.)

[FHM18] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function
approximation error in actor-critic methods. In International con-
ference on machine learning, pages 1587–1596. PMLR, 2018. (Cited
on pages 61, 63, 68, 107, and 108.)

[FKSL19] Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diag-
nosing bottlenecks in deep q-learning algorithms. In International

BIBLIOGRAPHY 137

Conference on Machine Learning, pages 2021–2030. PMLR, 2019.
(Cited on pages 76, 88, and 91.)

[FL18] Chelsea Finn and Sergey Levine. Meta-learning and universality:
Deep representations and gradient descent can approximate any
learning algorithm. In International Conference on Learning Repre-
sentations, 2018. (Cited on page 42.)

[FLT+19] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,
and Hanqing Lu. Dual attention network for scene segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3146–3154, 2019. (Cited on page 41.)

[FMR16] Stefano Fusi, Earl K Miller, and Mattia Rigotti. Why neurons mix:
high dimensionality for higher cognition. Current opinion in neu-
robiology, 37:66–74, 2016. (Cited on page 54.)

[FRA+20] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua
Bengio, Hugo Larochelle, Mark Rowland, and Will Dabney. Revisit-
ing fundamentals of experience replay. In International Conference
on Machine Learning, pages 3061–3071. PMLR, 2020. (Cited on
page 6.)

[Fre91] Robert M French. Using semi-distributed representations to over-
come catastrophic forgetting in connectionist networks. In Pro-
ceedings of the 13th annual cognitive science society conference, vol-
ume 1, pages 173–178, 1991. (Cited on page 30.)

[FRKL19] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey
Levine. Online meta-learning. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, 2019. (Cited on page 41.)

[FWH+21] Linxi Fan, Guanzhi Wang, De-An Huang, Zhiding Yu, Li Fei-Fei,
Yuke Zhu, and Animashree Anandkumar. Secant: Self-expert
cloning for zero-shot generalization of visual policies. In Interna-
tional Conference on Machine Learning, pages 3088–3099. PMLR,
2021. (Cited on page 91.)

[GD22] Mustafa B Gurbuz and Constantine Dovrolis. Nispa: Neuro-
inspired stability-plasticity adaptation for continual learning in
sparse networks. In International Conference on Machine Learning,
pages 8157–8174. PMLR, 2022. (Cited on page 96.)

138 BIBLIOGRAPHY

[GEEC22] Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro.
The state of sparse training in deep reinforcement learning. In
International Conference on Machine Learning, pages 7766–7792.
PMLR, 2022. (Cited on pages 91, 93, 97, and 116.)

[GKC19] Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Contin-
ual learning via neural pruning. arXiv preprint arXiv:1903.04476,
2019. (Cited on page 18.)

[GKR+18] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Cas-
tro, Ethan Holly, Sam Fishman, Ke Wang, Ekaterina Gonina, Neal
Wu, Efi Kokiopoulou, Luciano Sbaiz, Jamie Smith, Gábor Bartók,
Jesse Berent, Chris Harris, Vincent Vanhoucke, and Eugene Brevdo.
TF-Agents: A library for reinforcement learning in tensorflow.
https://github.com/tensorflow/agents, 2018. [Online; ac-
cessed 25-June-2019]. (Cited on page 115.)

[GLO+16] Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu,
and Michael S Lew. Deep learning for visual understanding: A
review. Neurocomputing, 187:27–48, 2016. (Cited on pages 14
and 38.)

[GMD23] Mustafa Burak Gurbuz, Jean Michael Moorman, and Constantine
Dovrolis. Sharp: Sparsity and hidden activation replay for neuro-
inspired continual learning. arXiv preprint arXiv:2305.18563,
2023. (Cited on page 96.)

[GSD+23] Bram Grooten, Ghada Sokar, Shibhansh Dohare, Elena Mocanu,
Matthew E Taylor, Mykola Pechenizkiy, and Decebal Constantin
Mocanu. Automatic noise filtering with dynamic sparse training
in deep reinforcement learning. In Proceedings of the 2023 Inter-
national Conference on Autonomous Agents and Multiagent Systems,
pages 1932–1941, 2023. (Cited on page 10.)

[GSS+22] Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg
Ostrovski, Mehrdad Farajtabar, Matthew Hoffman, Razvan Pas-
canu, and Arnaud Doucet. An empirical study of implicit regu-
larization in deep offline rl. Transactions on Machine Learning Re-
search, 2022. (Cited on page 91.)

https://github.com/tensorflow/agents

BIBLIOGRAPHY 139

[GXGP23] Tomer Galanti, Mengjia Xu, Liane Galanti, and Tomaso Poggio.
Norm-based generalization bounds for compositionally sparse neu-
ral networks. arXiv preprint arXiv:2301.12033, 2023. (Cited on
page 98.)

[HABN+21] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and
Alexandra Peste. Sparsity in deep learning: Pruning and growth
for efficient inference and training in neural networks. J. Mach.
Learn. Res., 22(241):1–124, 2021. (Cited on pages 60, 73, 98,
and 109.)

[HBKV15] Guang-Bin Huang, Zuo Bai, Liyanaarachchi Lekamalage Chamara
Kasun, and Chi Man Vong. Local receptive fields based ex-
treme learning machine. IEEE Computational intelligence magazine,
10(2):18–29, 2015. (Cited on page 54.)

[HH49] Donald Olding Hebb and DO Hebb. The organization of behavior,
volume 65. Wiley New York, 1949. (Cited on page 25.)

[HIH+21] Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi On-
ishi, and Yoshimasa Tsuruoka. Dropout q-functions for doubly effi-
cient reinforcement learning. In International Conference on Learn-
ing Representations, 2021. (Cited on page 91.)

[HLRK18] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira.
Re-evaluating continual learning scenarios: A categorization and
case for strong baselines. In NeurIPS Continual learning Workshop,
2018. (Cited on pages xxv, 4, 14, 18, and 28.)

[HMI09] Verena Heidrich-Meisner and Christian Igel. Neuroevolution strate-
gies for episodic reinforcement learning. Journal of Algorithms,
64(4):152–168, 2009. Special Issue: Reinforcement Learning.
(Cited on page 61.)

[HMVH+18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul,
Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Moham-
mad Azar, and David Silver. Rainbow: Combining improvements
in deep reinforcement learning. In Thirty-second AAAI conference
on artificial intelligence, 2018. (Cited on pages 7 and 76.)

[HNA+17] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos,
Heewoo Jun, Hassan Kianinejad, Md Patwary, Mostofa Ali, Yang

140 BIBLIOGRAPHY

Yang, and Yanqi Zhou. Deep learning scaling is predictable, empir-
ically. arXiv preprint arXiv:1712.00409, 2017. (Cited on page 76.)

[Hoo21] Sara Hooker. The hardware lottery. Communications of the ACM,
64(12):58–65, 2021. (Cited on pages 98 and 110.)

[HRRP20] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu.
Embracing change: Continual learning in deep neural networks.
Trends in cognitive sciences, 24(12):1028–1040, 2020. (Cited on
page 4.)

[HSRN+19] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal
Singh, and P Sadayappan. Adaptive sparse tiling for sparse matrix
multiplication. In Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming, pages 300–314, 2019. (Cited
on page 98.)

[HSS18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7132–7141, 2018. (Cited on pages 41 and 44.)

[HSW21] Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep q-
learning with convnets and vision transformers under data aug-
mentation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 3680–3693. Curran Asso-
ciates, Inc., 2021. (Cited on page 91.)

[HVD15a] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowl-
edge in a neural network. stat, 1050:9, 2015. (Cited on page 17.)

[HVD15b] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowl-
edge in a neural network. arXiv preprint arXiv:1503.02531, 2015.
(Cited on page 40.)

[HWCW19] Lun Huang, Wenmin Wang, Jie Chen, and Xiao-Yong Wei. Attention
on attention for image captioning. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 4634–4643, 2019.
(Cited on page 41.)

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
Soft actor-critic: Off-policy maximum entropy deep reinforcement

BIBLIOGRAPHY 141

learning with a stochastic actor. In International conference on ma-
chine learning, pages 1861–1870. PMLR, 2018. (Cited on pages 61,
63, 76, 79, 85, 90, 108, 112, 115, and 120.)

[HZH+18] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George
Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek
Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applica-
tions. arXiv preprint arXiv:1812.05905, 2018. (Cited on pages 68,
110, and 112.)

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015. (Cited on
pages 14 and 95.)

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–
778, 2016. (Cited on pages 1 and 2.)

[HZS04] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme
learning machine: a new learning scheme of feedforward neural
networks. In 2004 IEEE international joint conference on neural
networks (IEEE Cat. No. 04CH37541), volume 2, pages 985–990.
IEEE, 2004. (Cited on page 53.)

[IFL+20] Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin
Boehmer, and Shimon Whiteson. Transient non-stationarity and
generalisation in deep reinforcement learning. In International
Conference on Learning Representations, 2020. (Cited on pages 6,
76, and 91.)

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift. In
International conference on machine learning, pages 448–456. pmlr,
2015. (Cited on pages 26 and 46.)

[JFZL19] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When
to trust your model: Model-based policy optimization. Advances
in Neural Information Processing Systems, 32, 2019. (Cited on
page 91.)

142 BIBLIOGRAPHY

[JPR+20] Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero,
and Erich Elsen. Top-kast: Top-k always sparse training. Advances
in Neural Information Processing Systems, 33:20744–20754, 2020.
(Cited on page 62.)

[JW19] Khurram Javed and Martha White. Meta-learning representations
for continual learning. In Advances in Neural Information Processing
Systems, pages 1820–1830, 2019. (Cited on page 41.)

[JYP+17] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan
Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual inter-
national symposium on computer architecture, pages 1–12, 2017.
(Cited on page 60.)

[JZR+19] LIU Junjie, XU Zhe, SHI Runbin, Ray CC Cheung, and Hayden KH
So. Dynamic sparse training: Find efficient sparse network from
scratch with trainable masked layers. In International Conference
on Learning Representations, 2019. (Cited on page 17.)

[KAGL21] Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine.
Implicit under-parameterization inhibits data-efficient deep rein-
forcement learning. In International Conference on Learning Repre-
sentations, 2021. (Cited on pages xxvi, 7, 76, 82, 83, 85, 91, 115,
125, and 126.)

[KAM+21] Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville,
George Tucker, and Sergey Levine. Dr3: Value-based deep rein-
forcement learning requires explicit regularization. In International
Conference on Learning Representations, 2021. (Cited on pages 6,
85, 91, and 115.)

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. (Cited on pages 116 and 118.)

[KBM+19] Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Os-
iński, Roy H Campbell, Konrad Czechowski, Dumitru Erhan,
Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model based

BIBLIOGRAPHY 143

reinforcement learning for atari. In International Conference on
Learning Representations, 2019. (Cited on pages 85, 115, 116,
and 119.)

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. Technical report, Citeseer, 2009. (Cited
on pages 25, 46, 80, and 118.)

[KH23] Tommi Kärkkäinen and Jan Hänninen. Additive autoencoder for
dimension estimation. Neurocomputing, 551:126520, 2023. (Cited
on page 93.)

[KMA+18] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes,
and Christopher Kanan. Measuring catastrophic forgetting in neu-
ral networks. In Thirty-second AAAI conference on artificial intelli-
gence, 2018. (Cited on pages 14 and 18.)

[KMH+20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown,
Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey
Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020. (Cited on page 76.)

[KMM+22] Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan
Madjid, Jaehong Yoon, Mark Hasegawa-Johnson, Sung Ju Hwang,
and Chang D Yoo. Forget-free continual learning with winning sub-
networks. In International Conference on Machine Learning, pages
10734–10750. PMLR, 2022. (Cited on page 96.)

[KNH+22] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas
Zamir, Fahad Shahbaz Khan, and Mubarak Shah. Transformers in
vision: A survey. ACM computing surveys (CSUR), 54(10s):1–41,
2022. (Cited on page 1.)

[KPR+17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the na-
tional academy of sciences, 114(13):3521–3526, 2017. (Cited on
pages 14, 17, 19, 40, and 47.)

[KT19] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language

144 BIBLIOGRAPHY

understanding. In Proceedings of NAACL-HLT, pages 4171–4186,
2019. (Cited on pages 14 and 38.)

[KZGR21] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rock-
täschel. A survey of generalisation in deep reinforcement learning.
arXiv preprint arXiv:2111.09794, 2021. (Cited on page 91.)

[LAM+19] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot,
Xu Jia, Ales Leonardis, Gregory Slabaugh, and Tinne Tuytelaars.
A continual learning survey: Defying forgetting in classification
tasks, 2019. (Cited on page 5.)

[LBV+18] Chen Liu, Guillaume Bellec, Bernhard Vogginger, David Kappel,
Johannes Partzsch, Felix Neumärker, Sebastian Höppner, Wolfgang
Maass, Steve B Furber, Robert Legenstein, et al. Memory-efficient
deep learning on a spinnaker 2 prototype. Frontiers in neuroscience,
page 840, 2018. (Cited on page 98.)

[LC20] Dor Livne and Kobi Cohen. Pops: Policy pruning and shrinking
for deep reinforcement learning. IEEE Journal of Selected Topics
in Signal Processing, 14(4):789–801, 2020. (Cited on pages 60
and 61.)

[LDG+17] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Har-
iharan, and Serge Belongie. Feature pyramid networks for object
detection. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2117–2125, 2017. (Cited on
pages 14 and 38.)

[LH17] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelligence,
40(12):2935–2947, 2017. (Cited on pages 17, 19, 40, 41, and 47.)

[LHP+16] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. In ICLR
(Poster), 2016. (Cited on page 91.)

[Lin92] Long-Ji Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 8(3):293–321,
1992. (Cited on page 6.)

BIBLIOGRAPHY 145

[LKK+21] Juhyoung Lee, Sangyeob Kim, Sangjin Kim, Wooyoung Jo, and
Hoi-Jun Yoo. Gst: Group-sparse training for accelerating deep rein-
forcement learning. arXiv preprint arXiv:2101.09650, 2021. (Cited
on page 62.)

[LLS+20] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Mal-
toni, David Filliat, and Natalia Díaz-Rodríguez. Continual learning
for robotics: Definition, framework, learning strategies, opportu-
nities and challenges. Information Fusion, 58:52–68, 2020. (Cited
on page 38.)

[LLZY19] Janice Lan, Rosanne Liu, Hattie Zhou, and Jason Yosinski. Lca:
Loss change allocation for neural network training. In Advances
in Neural Information Processing Systems, pages 3619–3629, 2019.
(Cited on page 23.)

[LM17] Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset
and benchmark for continuous object recognition. In Conference
on Robot Learning, pages 17–26, 2017. (Cited on pages 18, 41,
and 47.)

[LMM+20] Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Rama-
puram Matavalam, Yulong Pei, and Mykola Pechenizkiy. Sparse
evolutionary deep learning with over one million artificial neu-
rons on commodity hardware. Neural Computing and Applications,
33:2589–2604, 2020. (Cited on pages 62, 98, and 109.)

[LMPP21] Shiwei Liu, Decebal Constantin Mocanu, Yulong Pei, and Mykola
Pechenizkiy. Selfish sparse rnn training. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 6893–6904. PMLR, 18–24 Jul 2021. (Cited on
page 62.)

[LMW+22] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer,
Trevor Darrell, and Saining Xie. A convnet for the 2020s. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11976–11986, 2022. (Cited on page 1.)

[Lon18] Liangqu Long. Maml-pytorch implementation. https://github.
com/dragen1860/MAML-Pytorch, 2018. (Cited on page 104.)

https://github.com/dragen1860/MAML-Pytorch
https://github.com/dragen1860/MAML-Pytorch

146 BIBLIOGRAPHY

[LPR17] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic
memory for continual learning. In Advances in neural information
processing systems, pages 6467–6476, 2017. (Cited on pages 27
and 52.)

[LRD21] Clare Lyle, Mark Rowland, and Will Dabney. Understanding and
preventing capacity loss in reinforcement learning. In International
Conference on Learning Representations, 2021. (Cited on pages 7,
76, 83, 88, and 91.)

[LSGT11] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua
Tenenbaum. One shot learning of simple visual concepts. In Pro-
ceedings of the annual meeting of the cognitive science society, vol-
ume 33, 2011. (Cited on page 49.)

[LVdLY+21] Shiwei Liu, Tim Van der Lee, Anil Yaman, Zahra Atashgahi, Davide
Ferraro, Ghada Sokar, Mykola Pechenizkiy, and Decebal Constantin
Mocanu. Topological insights into sparse neural networks. In Ma-
chine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18,
2020, Proceedings, Part III, pages 279–294. Springer, 2021. (Cited
on page 17.)

[LWL+17] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu,
and Fuad E Alsaadi. A survey of deep neural network architectures
and their applications. Neurocomputing, 234:11–26, 2017. (Cited
on pages 14 and 38.)

[LXA+20] Xingjian Li, Haoyi Xiong, Haozhe An, Cheng-Zhong Xu, and Dejing
Dou. Rifle: Backpropagation in depth for deep transfer learning
through re-initializing the fully-connected layer. In International
Conference on Machine Learning, pages 6010–6019. PMLR, 2020.
(Cited on page 91.)

[LZN+23] Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires,
Razvan Pascanu, and Will Dabney. Understanding plasticity in neu-
ral networks. In Proceedings of the 40th International Conference on
Machine Learning, 2023. (Cited on page 7.)

[MBB13] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The
stability-plasticity dilemma: Investigating the continuum from

BIBLIOGRAPHY 147

catastrophic forgetting to age-limited learning effects, 2013. (Cited
on page 5.)

[MC89] Michael McCloskey and Neal J Cohen. Catastrophic interference
in connectionist networks: The sequential learning problem. In
Psychology of learning and motivation, volume 24, pages 109–165.
Elsevier, 1989. (Cited on pages 14 and 40.)

[MDL18] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback:
Adapting a single network to multiple tasks by learning to mask
weights. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 67–82, 2018. (Cited on pages 18 and 19.)

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level con-
trol through deep reinforcement learning. nature, 518(7540):529–
533, 2015. (Cited on pages 76, 79, 85, 91, and 115.)

[ML18] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple
tasks to a single network by iterative pruning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7765–7773, 2018. (Cited on pages 18 and 19.)

[ML19] Davide Maltoni and Vincenzo Lomonaco. Continuous learning in
single-incremental-task scenarios. Neural Networks, 116:56–73,
2019. (Cited on pages xviii, xix, 26, 29, 46, and 48.)

[MMN+16] Decebal Constantin Mocanu, Elena Mocanu, Phuong H Nguyen,
Madeleine Gibescu, and Antonio Liotta. A topological insight into
restricted boltzmann machines. Machine Learning, 104(2-3):243–
270, 2016. (Cited on page 17.)

[MMO95] James L McClelland, Bruce L McNaughton, and Randall C O’Reilly.
Why there are complementary learning systems in the hippocam-
pus and neocortex: insights from the successes and failures of con-
nectionist models of learning and memory. Psychological review,
102(3):419, 1995. (Cited on page 40.)

[MMP+21] Decebal Constantin Mocanu, Elena Mocanu, Tiago Pinto, Selima
Curci, Phuong H Nguyen, Madeleine Gibescu, Damien Ernst, and
Zita A Vale. Sparse training theory for scalable and efficient agents.

148 BIBLIOGRAPHY

In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pages 34–38, 2021. (Cited on
pages 60, 98, and 110.)

[MMS+18] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H
Nguyen, Madeleine Gibescu, and Antonio Liotta. Scalable train-
ing of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9(1):2383,
2018. (Cited on pages 17, 62, 64, and 66.)

[MVE+16] Decebal Constantin Mocanu, Maria Torres Vega, Eric Eaton, Pe-
ter Stone, and Antonio Liotta. Online contrastive divergence with
generative replay: Experience replay without storing data. arXiv
preprint arXiv:1610.05555, 2016. (Cited on pages 14 and 18.)

[MW19] Hesham Mostafa and Xin Wang. Parameter efficient training of
deep convolutional neural networks by dynamic sparse reparame-
terization. In International Conference on Machine Learning, pages
4646–4655, 2019. (Cited on pages 17 and 62.)

[NS18] Alex Nichol and John Schulman. Reptile: a scalable metalearning
algorithm. arXiv preprint arXiv:1803.02999, 2:2, 2018. (Cited on
pages 41 and 55.)

[NSD+22] Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Ba-
con, and Aaron Courville. The primacy bias in deep reinforcement
learning. In International Conference on Machine Learning, pages
16828–16847. PMLR, 2022. (Cited on pages xx, xxi, 6, 11, 76, 77,
82, 89, 90, 91, 116, and 120.)

[PGL+21] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-
Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and
Jeff Dean. Carbon emissions and large neural network training.
arXiv preprint arXiv:2104.10350, 2021. (Cited on page 2.)

[PKP+19] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan,
and Stefan Wermter. Continual lifelong learning with neural net-
works: A review. Neural Networks, 113:54–71, 2019. (Cited on
page 38.)

[Pog22] Tomaso Poggio. Compositional sparsity: a framework for ml. Tech-
nical report, Center for Brains, Minds and Machines (CBMM),
2022. (Cited on page 98.)

BIBLIOGRAPHY 149

[PRV+19] Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan Bello,
Anselm Levskaya, and Jon Shlens. Stand-alone self-attention in vi-
sion models. In Advances in Neural Information Processing Systems,
pages 68–80, 2019. (Cited on page 41.)

[Put14] Martin L Puterman. Markov decision processes: discrete stochas-
tic dynamic programming. John Wiley & Sons, 2014. (Cited on
page 6.)

[RBB+18] Peter Rotheneichner, Maria Belles, Bruno Benedetti, Richard König,
Dominik Dannehl, Christina Kreutzer, Pia Zaunmair, Maren Engel-
hardt, Ludwig Aigner, Juan Nacher, et al. Cellular plasticity in the
adult murine piriform cortex: continuous maturation of dormant
precursors into excitatory neurons. Cerebral Cortex, 28(7):2610–
2621, 2018. (Cited on page 92.)

[RBW+13] Mattia Rigotti, Omri Barak, Melissa R Warden, Xiao-Jing Wang,
Nathaniel D Daw, Earl K Miller, and Stefano Fusi. The impor-
tance of mixed selectivity in complex cognitive tasks. Nature,
497(7451):585–590, 2013. (Cited on page 54.)

[RCA+18] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina
Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn without
forgetting by maximizing transfer and minimizing interference. In
International Conference on Learning Representations, 2018. (Cited
on pages 41 and 55.)

[RKSL17] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and
Christoph H Lampert. icarl: Incremental classifier and represen-
tation learning. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010, 2017. (Cited on
pages 18, 19, and 35.)

[RL16] Sachin Ravi and Hugo Larochelle. Optimization as a model for
few-shot learning. 2016. (Cited on page 47.)

[RRD+16] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert
Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu,
and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016. (Cited on pages 14, 18, 19, and 41.)

150 BIBLIOGRAPHY

[SACE23] Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku
Evci. The dormant neuron phenomenon in deep reinforcement
learning. In International Conference on Machine Learning. PMLR,
2023. (Cited on page 11.)

[SAPM22] Ghada Sokar, Zahra Atashgahi, Mykola Pechenizkiy, and Dece-
bal Constantin Mocanu. Where to pay attention in sparse training
for feature selection? Advances in Neural Information Processing
Systems, 35:1627–1642, 2022. (Cited on page 10.)

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018. (Cited on page 86.)

[SCL+18] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Ag-
nieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pascanu, and
Raia Hadsell. Progress & compress: A scalable framework for con-
tinual learning. In International Conference on Machine Learning,
2018. (Cited on pages 19 and 38.)

[SDX+20] Karthik Abinav Sankararaman, Soham De, Zheng Xu, W Ronny
Huang, and Tom Goldstein. The impact of neural network over-
parameterization on gradient confusion and stochastic gradient de-
scent. In International conference on machine learning, pages 8469–
8479. PMLR, 2020. (Cited on page 88.)

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016. (Cited on page 76.)

[SLKK17] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Con-
tinual learning with deep generative replay. In Advances in Neural
Information Processing Systems, pages 2990–2999, 2017. (Cited on
pages 14, 18, and 19.)

[SLXC20] Qian Shi, Hak-Keung Lam, Chengbin Xuan, and Ming Chen. Adap-
tive neuro-fuzzy pid controller based on twin delayed deep deter-
ministic policy gradient algorithm. Neurocomputing, 402:183–194,
2020. (Cited on page 63.)

BIBLIOGRAPHY 151

[SM02] Kenneth O Stanley and Risto Miikkulainen. Evolving neural net-
works through augmenting topologies. Evolutionary computation,
10(2):99–127, 2002. (Cited on page 61.)

[SMM+22] Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola
Pechenizkiy, and Peter Stone. Dynamic sparse training for deep re-
inforcement learning. In International Joint Conference on Artificial
Intelligence, 2022. (Cited on pages 10 and 91.)

[SMP21a] Ghada Sokar, Decebal Constantin Mocanu, and Mykola Pech-
enizkiy. Self-attention meta-learner for continual learning. In
Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1658–1660, 2021. (Cited
on page 9.)

[SMP21b] Ghada Sokar, Decebal Constantin Mocanu, and Mykola Pech-
enizkiy. Spacenet: Make free space for continual learning. Neu-
rocomputing, 439:1–11, 2021. (Cited on pages 9 and 62.)

[SMP22] Ghada Sokar, Decebal Constantin Mocanu, and Mykola Pech-
enizkiy. Avoiding forgetting and allowing forward transfer in con-
tinual learning via sparse networks. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages
85–101. Springer, 2022. (Cited on page 9.)

[SSMK18] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karat-
zoglou. Overcoming catastrophic forgetting with hard attention
to the task. In International Conference on Machine Learning, pages
4548–4557, 2018. (Cited on page 41.)

[Sta03] Kenneth O. Stanley. Evolving adaptive neural networks with and
without adaptive synapses. In In Proceeedings of the 2003 Congress
on Evolutionary Computation (CEC 2003, pages 2557–2564. Press,
2003. (Cited on page 61.)

[Sut88] Richard S Sutton. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988. (Cited on page 6.)

[Tan18] Pranjal Tandon. Pytorch implementation of soft actor critic, 2018.
(Cited on page 108.)

152 BIBLIOGRAPHY

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ international
conference on intelligent robots and systems, pages 5026–5033.
IEEE, 2012. (Cited on pages 77, 85, 115, and 120.)

[THP+22] Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang.
Rlx2: Training a sparse deep reinforcement learning model from
scratch. In The Eleventh International Conference on Learning Rep-
resentations, 2022. (Cited on pages 91 and 97.)

[TL19] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International conference
on machine learning, pages 6105–6114. PMLR, 2019. (Cited on
page 1.)

[TSD21] Ahmed Taha, Abhinav Shrivastava, and Larry S Davis. Knowledge
evolution in neural networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 12843–
12852, 2021. (Cited on page 91.)

[VBC+19] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël
Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard
Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level
in starcraft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019. (Cited on pages 7, 10, and 60.)

[vdVT18] Gido M van de Ven and Andreas S Tolias. Three scenarios for con-
tinual learning. In Continual Learning Workshop NeurIPS, 2018.
(Cited on pages xxv, 3, 4, 14, 18, 28, and 48.)

[vHDS+18] Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel,
Nicolas Sonnerat, and Joseph Modayil. Deep reinforcement learn-
ing and the deadly triad. CoRR, abs/1812.02648, 2018. (Cited on
page 76.)

[VHHA19] Hado P Van Hasselt, Matteo Hessel, and John Aslanides. When
to use parametric models in reinforcement learning? Advances in
Neural Information Processing Systems, 32, 2019. (Cited on pages 6
and 117.)

BIBLIOGRAPHY 153

[VLS21] Marc Vischer, Robert Tjarko Lange, and Henning Sprekeler. On
lottery tickets and minimal task representations in deep reinforce-
ment learning. In International Conference on Learning Representa-
tions, 2021. (Cited on page 62.)

[WJH+18] Peiqi Wang, Yu Ji, Chi Hong, Yongqiang Lyu, Dongsheng Wang, and
Yuan Xie. Snrram: an efficient sparse neural network computation
architecture based on resistive random-access memory. In 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2018. (Cited on page 98.)

[WJQ+17] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Hong-
gang Zhang, Xiaogang Wang, and Xiaoou Tang. Residual attention
network for image classification. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 3156–3164,
2017. (Cited on page 41.)

[WKSF20] Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improv-
ing generalization in reinforcement learning with mixture regu-
larization. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Sys-
tems, volume 33, pages 7968–7978. Curran Associates, Inc., 2020.
(Cited on page 91.)

[WLZ+20] Hao-nan Wang, Ning Liu, Yi-yun Zhang, Da-wei Feng, Feng Huang,
Dong-sheng Li, and Yi-ming Zhang. Deep reinforcement learning:
a survey. Frontiers of Information Technology & Electronic Engineer-
ing, pages 1–19, 2020. (Cited on page 60.)

[WS06] Shimon Whiteson and Peter Stone. Evolutionary function approx-
imation for reinforcement learning. Journal of Machine Learning
Research, 7:877–917, May 2006. (Cited on page 61.)

[WWL19] Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent
for growing neural architectures. Advances in neural information
processing systems, 32, 2019. (Cited on page 92.)

[WWPR20] Jong Ha Woo, Lei Wu, Jong-Bae Park, and Jae Hyung Roh. Real-
time optimal power flow using twin delayed deep deterministic
policy gradient algorithm. IEEE Access, 8:213611–213618, 2020.
(Cited on page 63.)

154 BIBLIOGRAPHY

[WZG+22] Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong
Jian, Bin Ren, Stratis Ioannidis, Yanzhi Wang, and Jennifer Dy.
Sparcl: Sparse continual learning on the edge. Advances in Neu-
ral Information Processing Systems, 35:20366–20380, 2022. (Cited
on page 96.)

[WZSZ23] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A compre-
hensive survey of continual learning: Theory, method and appli-
cation. arXiv preprint arXiv:2302.00487, 2023. (Cited on pages 3
and 5.)

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a
novel image dataset for benchmarking machine learning algo-
rithms. arXiv preprint arXiv:1708.07747, 2017. (Cited on page 25.)

[YETM19] Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S Morcos.
Playing the lottery with rewards and multiple languages: lottery
tickets in rl and nlp. In International Conference on Learning Repre-
sentations, 2019. (Cited on page 62.)

[YKF21] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation
is all you need: Regularizing deep reinforcement learning from pix-
els. In International Conference on Learning Representations, 2021.
(Cited on pages 76, 79, 85, 86, and 119.)

[YYLH18] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang.
Lifelong learning with dynamically expandable networks. In Inter-
national Conference on Learning Representations, 2018. (Cited on
pages 14, 18, 19, 41, 49, and 92.)

[ZBK+23] Sheheryar Zaidi, Tudor Berariu, Hyunjik Kim, Jorg Bornschein,
Claudia Clopath, Yee Whye Teh, and Razvan Pascanu. When does
re-initialization work? In Proceedings on "I Can’t Believe It’s Not
Better! - Understanding Deep Learning Through Empirical Falsifica-
tion" at NeurIPS 2022 Workshops, pages 12–26, 2023. (Cited on
page 91.)

[ZDS+18] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiao-
gang Wang, Ambrish Tyagi, and Amit Agrawal. Context encoding
for semantic segmentation. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 7151–7160, 2018.
(Cited on page 41.)

BIBLIOGRAPHY 155

[ZHL19] Hongjie Zhang, Zhuocheng He, and Jing Li. Accelerating the deep
reinforcement learning with neural network compression. In 2019
International Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2019. (Cited on pages 60 and 62.)

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks.
In British Machine Vision Conference 2016. British Machine Vision
Association, 2016. (Cited on page 35.)

[ZKHB22] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas
Beyer. Scaling vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
12104–12113, 2022. (Cited on page 76.)

[ZMZ+20] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun
Yuan, Wenxiu Sun, and Hongsheng Li. Learning n: M fine-grained
structured sparse neural networks from scratch. In International
Conference on Learning Representations, 2020. (Cited on pages 98
and 109.)

[ZPG17] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learn-
ing through synaptic intelligence. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70, pages 3987–
3995. JMLR. org, 2017. (Cited on pages 14, 17, 19, 25, 26, 40, 46,
47, 48, and 55.)

[ZSL12] Guanyu Zhou, Kihyuk Sohn, and Honglak Lee. Online incremental
feature learning with denoising autoencoders. In Artificial intel-
ligence and statistics, pages 1453–1461. PMLR, 2012. (Cited on
page 92.)

[ZVLC21] Hattie Zhou, Ankit Vani, Hugo Larochelle, and Aaron Courville.
Fortuitous forgetting in connectionist networks. In International
Conference on Learning Representations, 2021. (Cited on page 91.)

[ZVSL18] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.
Learning transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8697–8710, 2018. (Cited on pages 14 and 38.)

Curriculum Vitae

Ghada Sokar was born on January 7, 1993. She is Egyp-
tian and raised in Cairo. In 2014, she received a bache-
lor’s degree in Computer Engineering from Cairo Univer-
sity with the prestigious distinction of honor and ranked
first in her class. She obtained her master’s degree in Com-
puter Engineering from Cairo University in 2017. During
her MSc, she worked at AvidBeam where she applied deep
learning techniques in many applications, including age
and gender detection, and object recognition.

In the summer of 2017, she was a research intern at the
visual computing & artificial intelligence lab at the Tech-
nical University of Munich (TUM) in Germany. Afterward, she joined Siemens
where she worked on developing a tool for automatically generating fixes for
hotspots in the layout of integrated circuits (ICs) using deep learning.

In July 2019, Ghada moved to the Netherlands, where she started her PhD
research in the Data Mining group in the Mathematics and Computer Science
Department at the Eindhoven University of Technology under the supervision of
Dr. Decebal C. Mocanu and Prof. Dr. Mykola Pechenizkiy. She simultaneously
worked as a teaching assistant in the department, gaining valuable teaching
experience in AI, data science, and computer science.

Ghada is an active member of the research community. She served on pro-
gram committees for top AI conferences, including ICML, NeurIPs, ICLR, and
ECMLPKDD. She also led some initiatives, such as co-organizing workshops on
continual learning and sparse neural networks (SNNs) at ICDM and ICLR, re-
spectively, tutorials on SNNs at IJCAI and ECMLPKDD, and a conference on con-
tinual learning with ContinualAI. Toward the end of her PhD, she joined Google
Brain as a research intern for 5 months, working on reinforcement learning.
She is currently a research scientist at Google DeepMind.

SIKS Dissertations

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Infer-
ence in Latent Gaussian Models

02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax
and Operational Semantics of an Organization-Oriented Program-
ming Language

03 Jan Martijn van der Werf (TUE), Compositional Design and Veri-
fication of Component-Based Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; For-
mal analysis and empirical evaluation of temporal-difference

05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age -
Increasing the Performance of an Emerging Discipline.

06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in
Cultural Heritage

07 Yujia Cao (UT), Multimodal Information Presentation for High
Load Human Computer Interaction

08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-
Oriented Dialogues

09 Tim de Jong (OU), Contextualised Mobile Media for Learning
10 Bart Bogaert (UvT), Cloud Content Contention
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-

focused HCI Perspective
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process

Mining
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling

for Airport Ground Handling
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artifi-

cial Markets
15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link

Evidence for Information Retrieval
16 Maarten Schadd (UM), Selective Search in Games of Different

Complexity
17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity

and Relatedness
18 Mark Ponsen (UM), Strategic Decision-Making in complex games

19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles
20 Qing Gu (VU), Guiding service-oriented software engineering - A

view-based approach
21 Linda Terlouw (TUD), Modularization and Specification of

Service-Oriented Systems
22 Junte Zhang (UVA), System Evaluation of Archival Description

and Access
23 Wouter Weerkamp (UVA), Finding People and their Utterances in

Social Media
24 Herwin van Welbergen (UT), Behavior Generation for Interper-

sonal Coordination with Virtual Humans On Specifying, Schedul-
ing and Realizing Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of
Models for Trust Dynamics

26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communi-
cation - Emotion Regulation and Involvement-Distance Trade-Offs
in Embodied Conversational Agents and Robots

27 Aniel Bhulai (VU), Dynamic website optimization through au-
tonomous management of design patterns

28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploiting
Query Context and Document Structure

29 Faisal Kamiran (TUE), Discrimination-aware Classification
30 Egon van den Broek (UT), Affective Signal Processing (ASP): Un-

raveling the mystery of emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Ap-

proaches for Modeling Bounded Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliomet-

ric Mapping of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions
34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Log-

ical and Game-theoretical Investigations
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Train-

ing
36 Erik van der Spek (UU), Experiments in serious game design: a

cognitive approach
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Ap-

plications for Preference Learning and Supervised Network Infer-
ence

38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization

39 Joost Westra (UU), Organizing Adaptation using Agents in Serious
Games

40 Viktor Clerc (VU), Architectural Knowledge Management in
Global Software Development

41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data
Access Control

42 Michal Sindlar (UU), Explaining Behavior through Mental State
Attribution

43 Henk van der Schuur (UU), Process Improvement through Soft-
ware Operation Knowledge

44 Boris Reuderink (UT), Robust Brain-Computer Interfaces
45 Herman Stehouwer (UvT), Statistical Language Models for Alter-

native Sequence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery:

A Rule-based Architecture for the Domain of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for In-

telligent Support of Persons with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a

Sensitive Artificial Listening Agent
49 Andreea Niculescu (UT), Conversational interfaces for task-

oriented spoken dialogues: design aspects influencing interaction
quality

2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda
02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in

Human and Ambient Agent Models
03 Adam Vanya (VU), Supporting Architecture Evolution by Mining

Software Repositories
04 Jurriaan Souer (UU), Development of Content Management

System-based Web Applications
05 Marijn Plomp (UU), Maturing Interorganisational Information

Systems
06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge

Workers in Research Networks
07 Rianne van Lambalgen (VU), When the Going Gets Tough: Ex-

ploring Agent-based Models of Human Performance under De-
manding Conditions

08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories

09 Ricardo Neisse (UT), Trust and Privacy Management Support for
Context-Aware Service Platforms

10 David Smits (TUE), Towards a Generic Distributed Adaptive Hy-
permedia Environment

11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large:
Preprocessing, Discovery, and Diagnostics

12 Kees van der Sluijs (TUE), Model Driven Design and Data Integra-
tion in Semantic Web Information Systems

13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal ex-
pressions of emotion during playful interactions

14 Evgeny Knutov (TUE), Generic Adaptation Framework for Unify-
ing Adaptive Web-based Systems

15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling
of Integrated Internal and Social Dynamics of Cognitive and Af-
fective Processes.

16 Fiemke Both (VU), Helping people by understanding them - Am-
bient Agents supporting task execution and depression treatment

17 Amal Elgammal (UvT), Towards a Comprehensive Framework for
Business Process Compliance

18 Eltjo Poort (VU), Improving Solution Architecting Practices
19 Helen Schonenberg (TUE), What’s Next? Operational Support for

Business Process Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Ro-

bust Paradigm for Brain-Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Infor-

mation Retrieval
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenig-

bare grootheden?
23 Christian Muehl (UT), Toward Affective Brain-Computer Inter-

faces: Exploring the Neurophysiology of Affect during Human
Media Interaction

24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for
Spoken Document Retrieval

25 Silja Eckartz (UT), Managing the Business Case Development in
Inter-Organizational IT Projects: A Methodology and its Applica-
tion

26 Emile de Maat (UVA), Making Sense of Legal Text
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evalu-

ation & Brain-Computer Interface Games

28 Nancy Pascall (UvT), Engendering Technology Empowering
Women

29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval
30 Alina Pommeranz (TUD), Designing Human-Centered Systems for

Reflective Decision Making
31 Emily Bagarukayo (RUN), A Learning by Construction Approach

for Higher Order Cognitive Skills Improvement, Building Capacity
and Infrastructure

32 Wietske Visser (TUD), Qualitative multi-criteria preference repre-
sentation and reasoning

33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)
34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and

applications
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution

of Controllers in Swarm- and Modular Robotics
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collabora-

tive Modeling Processes
37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise

Architecture Creation
38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evo-

lutionary Algorithms
39 Hassan Fatemi (UT), Risk-aware design of value and coordination

networks
40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia
41 Sebastian Kelle (OU), Game Design Patterns for Learning
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-

regulated Learning
43 Withdrawn
44 Anna Tordai (VU), On Combining Alignment Techniques
45 Benedikt Kratz (UvT), A Model and Language for Business-aware

Transactions
46 Simon Carter (UVA), Exploration and Exploitation of Multilingual

Data for Statistical Machine Translation
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content

and Predicting Behavior
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-

series Data

49 Michael Kaisers (UM), Learning against Learning - Evolutionary
dynamics of reinforcement learning algorithms in strategic inter-
actions

50 Steven van Kervel (TUD), Ontologogy driven Enterprise Informa-
tion Systems Engineering

51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practi-
cal framework with a case study in elevator dispatching

2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Support
02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the

Column-store Database Technology for Efficient and Scalable
Stream Processing

03 Szymon Klarman (VU), Reasoning with Contexts in Description
Logics

04 Chetan Yadati (TUD), Coordinating autonomous planning and
scheduling

05 Dulce Pumareja (UT), Groupware Requirements Evolutions Pat-
terns

06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and
Queries for a Data Warehouse Audience

07 Giel van Lankveld (UvT), Quantifying Individual Player Differ-
ences

08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for
opponent agents in fighter pilot simulators

09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational
Methods and Applications

10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling
Framework for Service Design.

11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-
organization in Overlay Services

12 Marian Razavian (VU), Knowledge-driven Migration to Services
13 Mohammad Safiri (UT), Service Tailoring: User-centric creation

of integrated IT-based homecare services to support independent
living of elderly

14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised
Learning Learning

15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and
Applications

16 Eric Kok (UU), Exploring the practical benefits of argumentation
in multi-agent deliberation

17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the
Smart Electricity Grid

18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classifi-
cation

19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning
and Scheduling

20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank
for Information Retrieval

21 Sander Wubben (UvT), Text-to-text generation by monolingual
machine translation

22 Tom Claassen (RUN), Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT), Value Activity Monitoring
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforce-

ment Learning
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based De-

cision Support. A new way of representing and implementing
clinical guidelines in a Decision Support System

26 Alireza Zarghami (UT), Architectural Support for Dynamic Home-
care Service Provisioning

27 Mohammad Huq (UT), Inference-based Framework Managing
Data Provenance

28 Frans van der Sluis (UT), When Complexity becomes Interesting:
An Inquiry into the Information eXperience

29 Iwan de Kok (UT), Listening Heads
30 Joyce Nakatumba (TUE), Resource-Aware Business Process Man-

agement: Analysis and Support
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for En-

gineering Cloud Applications
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role

of Networking in a Lifelong Learner’s Professional Development
33 Qi Gao (TUD), User Modeling and Personalization in the Mi-

croblogging Sphere
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interac-

tion
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams
37 Dirk Börner (OUN), Ambient Learning Displays

38 Eelco den Heijer (VU), Autonomous Evolutionary Art
39 Joop de Jong (TUD), A Method for Enterprise Ontology based

Design of Enterprise Information Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player

Games
41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dy-

namic Systems: A Knowledge Engineering Perspective on Quali-
tative Reasoning

42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning
43 Marc Bron (UVA), Exploration and Contextualization through In-

teraction and Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from
Data

02 Fiona Tuliyano (RUN), Combining System Dynamics with a Do-
main Modeling Method

03 Sergio Raul Duarte Torres (UT), Information Retrieval for Chil-
dren: Search Behavior and Solutions

04 Hanna Jochmann-Mannak (UT), Websites for children: search
strategies and interface design - Three studies on children’s search
performance and evaluation

05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing
Dynamic Capability

06 Damian Tamburri (VU), Supporting Networked Software Devel-
opment

07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior
08 Samur Araujo (TUD), Data Integration over Distributed and Het-

erogeneous Data Endpoints
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence:

Representation and Computation of Meaning in Natural Language
10 Ivan Salvador Razo Zapata (VU), Service Value Networks
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for

Social Support
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Au-

tonomous Vehicle Control
13 Arlette van Wissen (VU), Agent-Based Support for Behavior

Change: Models and Applications in Health and Safety Domains
14 Yangyang Shi (TUD), Language Models With Meta-information

15 Natalya Mogles (VU), Agent-Based Analysis and Support of Hu-
man Functioning in Complex Socio-Technical Systems: Applica-
tions in Safety and Healthcare

16 Krystyna Milian (VU), Supporting trial recruitment and design by
automatically interpreting eligibility criteria

17 Kathrin Dentler (VU), Computing healthcare quality indicators
automatically: Secondary Use of Patient Data and Semantic In-
teroperability

18 Mattijs Ghijsen (UVA), Methods and Models for the Design and
Study of Dynamic Agent Organizations

19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative
and Quantitative Evaluation and Tool Support

20 Mena Habib (UT), Named Entity Extraction and Disambiguation
for Informal Text: The Missing Link

21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Envi-
ronments

22 Marieke Peeters (UU), Personalized Educational Games - Devel-
oping agent-supported scenario-based training

23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for
the Big Data Era

24 Davide Ceolin (VU), Trusting Semi-structured Web Data
25 Martijn Lappenschaar (RUN), New network models for the analy-

sis of disease interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating

Fuzzy and Probabilistic Representations of Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Soft-

ware
30 Peter de Cock (UvT), Anticipating Criminal Behaviour
31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel

Manufacturing and Product Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data
33 Tesfa Tegegne (RUN), Service Discovery in eHealth
34 Christina Manteli (VU), The Effect of Governance in Global Soft-

ware Development: Analyzing Transactive Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Mid-

dleware Design Approach

36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining
Structured Process Models

37 Maral Dadvar (UT), Experts and Machines United Against Cyber-
bullying

38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces
better: improving usability through post-processing.

39 Jasmina Maric (UvT), Web Communities, Immigration, and Social
Capital

40 Walter Omona (RUN), A Framework for Knowledge Management
Using ICT in Higher Education

41 Frederic Hogenboom (EUR), Automated Detection of Financial
Events in News Text

42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Rele-
vance Models

43 Kevin Vlaanderen (UU), Supporting Process Improvement using
Method Increments

44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel:
Intelligence-gestuurde politiezorg in gebiedsgebonden eenheden.

45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-
Based Approach

46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redun-
dancy, Diversity

47 Shangsong Liang (UVA), Fusion and Diversification in Informa-
tion Retrieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Informa-
tion in Crisis Response

02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance
Checking in Customs Controls

03 Twan van Laarhoven (RUN), Machine learning for network data
04 Howard Spoelstra (OUN), Collaborations in Open Learning Envi-

ronments
05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern

Hiding
06 Farideh Heidari (TUD), Business Process Quality Computation

- Computing Non-Functional Requirements to Improve Business
Processes

07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation
Analysis

08 Jie Jiang (TUD), Organizational Compliance: An agent-based
model for designing and evaluating organizational interactions

09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Sup-
port Systems

10 Henry Hermans (OUN), OpenU: design of an integrated system to
support lifelong learning

11 Yongming Luo (TUE), Designing algorithms for big graph
datasets: A study of computing bisimulation and joins

12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynam-
ics: The Effect of Context on Scientific Collaboration Networks

13 Giuseppe Procaccianti (VU), Energy-Efficient Software
14 Bart van Straalen (UT), A cognitive approach to modeling bad

news conversations
15 Klaas Andries de Graaf (VU), Ontology-based Software Architec-

ture Documentation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative

Multi-Robot Teamwork
17 André van Cleeff (UT), Physical and Digital Security Mechanisms:

Properties, Combinations and Trade-offs
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational

Data in Asymmetric Memories
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong

Learners
20 Lois Vanhée (UU), Using Culture and Values to Support Flexible

Coordination
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize

Online Learning
22 Zhemin Zhu (UT), Co-occurrence Rate Networks
23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage
24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Ver-

tical Search Algorithms and Evaluation
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detec-

tion
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided

by Semantics and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores
28 Janet Bagorogoza (TiU), Knowledge Management and High Per-

formance; The Uganda Financial Institutions Model for HPO

29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for
One-Player and Two-Player Domains

30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recogni-
tion in E-Learning

31 Yakup Koç (TUD), On the robustness of Power Grids
32 Jerome Gard (UL), Corporate Venture Management in SMEs
33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Re-

sources
34 Victor de Graaf (UT), Gesocial Recommender Systems
35 Jungxao Xu (TUD), Affective Body Language of Humanoid

Robots: Perception and Effects in Human Robot Interaction

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and
Machines

02 Michiel Christiaan Meulendijk (UU), Optimizing medication re-
views through decision support: prescribing a better pill to swal-
low

03 Maya Sappelli (RUN), Knowledge Work in Context: User Cen-
tered Knowledge Worker Support

04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Contain-

ment and an Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environ-

ment
07 Jeroen de Man (VU), Measuring and modeling negative emotions

for virtual training
08 Matje van de Camp (TiU), A Link to the Past: Constructing His-

torical Social Networks from Unstructured Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Informa-

tion on Cultural Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Al-

gorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Norma-

tive Multi-Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural

Development in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modern-

ization

15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical
Aspects, Algorithms and Experiments

16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that
Learn from Human Reward

17 Berend Weel (VU), Towards Embodied Evolution of Robot Organ-
isms

18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogi-

cal Data
20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive

Playspaces: Automatic Analysis of Player Behavior in the Interac-
tive Tag Playground

22 Grace Lewis (VU), Software Architecture Strategies for Cyber-
Foraging Systems

23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration

of Data; An Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Under-

stand Searching and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Com-

putational Models to Study the Role of Human Awareness and
Control in Behavioural Choices, with Applications in Aviation and
Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social
Media

28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation
- A study on epidemic prediction and control

29 Nicolas Höning (TUD), Peak reduction in decentralised electricity
systems - Markets and prices for flexible planning

30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service

Availability Risks for Crisis Organisations
33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning

from just one example
34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicita-

tion, Analysis, and Enactment

35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization,
Classification and Recommendation

36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal
interaction behavior optimized for robot-specific morphologies

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual
and computational inquiry

38 Andrea Minuto (UT), Materials that Matter - Smart Materials
meet Art & Interaction Design

39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and
Interpersonal Style Selection for an Artificial Suspect

40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Frame-

work for Analysing Institutional Design and Enactment Gover-
nance

42 Spyros Martzoukos (UVA), Combinatorial and Compositional As-
pects of Bilingual Aligned Corpora

43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-
Management: From Theory to Practice

44 Thibault Sellam (UVA), Automatic Assistants for Database Explo-
ration

45 Bram van de Laar (UT), Experiencing Brain-Computer Interface
Control

46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dy-

namic innovation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A

Game-Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for

Operational Performance Alignment in IT-enabled Service Supply
Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic

Bayesian Networks using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical

Approach with Autonomous Products and Reconfigurable Manu-
facturing Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store

05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web

Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to

Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining

in Health Insurance Data using Outlier Detection and Subgroup
Discovery

09 Dong Nguyen (UT), Text as Social and Cultural Data: A Compu-
tational Perspective on Variation in Text

10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emo-

tion in Twitter #anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the

reach of social touch through haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are:

Modelling Player Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of

Modern Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vec-

tors in Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in

Knowledge Sharing: The Role of Perceived Benefits, Costs and
Visibility

21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and
Serious Gaming (A Play on Worlds)

22 Sara Magliacane (VU), Logics for causal inference under uncer-
tainty

23 David Graus (UVA), Entities of Interest — Discovery in Digital
Traces

24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learn-
ing

25 Veruska Zamborlini (VU), Knowledge Representation for Clinical
Guidelines, with applications to Multimorbidity Analysis and Lit-
erature Search

26 Merel Jung (UT), Socially intelligent robots that understand and
respond to human touch

27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors
of Social Robots: People’s Preferences, Perceptions and Behaviors

28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to

Performance: A Moderated Mediation Model of Social Innovation,
and Enterprise Governance of IT"

30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT cal-

culations
32 Thaer Samar (RUN), Access to and Retrievability of Content in

Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software

Documentation: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning An-

alytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisa-

tion from High-throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adap-

tation Framework that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory

system and compressive sensing methods to increase noise robust-
ness in ASR

40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Ex-
ploration of Human Control in Relation to Emotions, Desires and
Social Support For applications in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Explo-
ration of Mental Processes and a Smart Environment to Provide
Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing
data with applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computa-

tional Linguistics in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support

47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Repre-
sentations

02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge

Modeling, Model-Driven Development of Context-Aware Applica-
tions, and Behavior Prediction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagno-
sis Teams in Data-Centric Engineering Tasks

05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of
the Information Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assess-
ment of Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent
systems

08 Rick Smetsers (RUN), Advances in Model Learning for Software
Systems

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical ac-

tivity behavior change through intelligent technology
11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-

oriented Collaborative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal

Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emo-

tion in a group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for author-

ing and playing scenario-based serious games

22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the
Spread of Behaviours, Perceptions and Emotions in Social Net-
works

23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment
Analysis

24 Jered Vroon (UT), Responsive Social Positioning Behaviour for
Semi-Autonomous Telepresence Robots

25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made:

Motivational Messages for Behavior Change Technology
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable

Software Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they

feel and how they make you feel
29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The "K" in "semantic web" stands for "knowledge":

scaling semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding
systems. A graph-based approach to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualiza-
tions for Assessing Class Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on
Databases: Extracting Event Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from clin-
ical data

05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to

Linked Cultural Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning

Platforms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov De-

cision Processes
09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy

efficiency in software systems
10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for

Allocation and Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand

Learner Behavioral Engagement in MOOCs

12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and

Content Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling

Learner Behavior & Improving Learning Outcomes in Massive
Open Online Courses

15 Erwin Walraven (TUD), Planning under Uncertainty in Con-
strained and Partially Observable Environments

16 Guangming Li (TUE), Process Mining based on Object-Centric Be-
havioral Constraint (OCBC) Models

17 Ali Hurriyetoglu (RUN),Extracting actionable information from
microtexts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human

collective intelligence
21 Cong Liu (TUE), Software Data Analytics: Architectural Model

Discovery and Design Pattern Detection
22 Martin van den Berg (VU),Improving IT Decisions with Enterprise

Architecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpret-

ing, Verification
24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing

Labeled Data for Natural Language Processing
25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) im-

age description
26 Prince Singh (UT), An Integration Platform for Synchromodal

Transport
27 Alessandra Antonaci (OUN), The Gamification Design Process ap-

plied to (Massive) Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learn-

ing to prepare airline pilots for critical situations
29 Daniel Formolo (VU), Using virtual agents for simulation and

training of social skills in safety-critical circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Sys-

tems
31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial Gen-

eral Intelligence in Games

33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in
Artificial Neural Networks

34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Net-
work Features for Classification of Epilepsy and PNES

35 Lisa Facey-Shaw (OUN), Gamification with digital badges in
learning programming

36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to
Master Complex Skills

37 Jian Fang (TUD), Database Acceleration on FPGAs
38 Akos Kadar (OUN), Learning visually grounded and multilingual

representations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat
Behaviour

02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes us-
ing Probabilistic Graphical Models

03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for
Language Understanding

04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TUE), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking dur-

ing Requirements Elicitation - An Approach and Tool Support
07 Wim van der Vegt (OUN), Towards a software architecture for

reusable game components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte

Carlo Tree Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data

Quality for Digital Humanities Research
10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process

Mining
11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data Aug-

mentationMethods for Long-Tail Entity Recognition Models
12 Ward van Breda (VU), Predictive Modeling in E-Mental Health:

Exploring Applicability in Personalised Depression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Opti-

mal Mixing Evolutionary Algorithms for Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational

Databases

15 Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning
for Configurable Assessments in Serious Games

16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feed-

back from Multimodal Experiences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in

Markets with Uncertainties: Electricity Markets in Renewable En-
ergy Systems

19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender
Systems

20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisa-
tions

21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life
as it could be

22 Maryam Masoud Khamis (RUN), Understanding complex systems
implementation through a modeling approach: the case of e-
government in Zanzibar

23 Rianne Conijn (UT), The Keys to Writing: A writing analytics ap-
proach to studying writing processes using keystroke logging

24 Lenin da Nobrega Medeiros (VUA/RUN), How are you feeling,
human? Towards emotionally supportive chatbots

25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for

Model-Based mixed-Integer opTimization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent

in an educational context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate prac-

tice: Training complex skills with augmented reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference
30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst
31 Gongjin Lan (VU), Learning better – From Baby to Better
32 Jason Rhuggenaath (TUE), Revenue management in online mar-

kets: pricing and online advertising
33 Rick Gilsing (TUE), Supporting service-dominant business model

evaluation in the context of business model innovation
34 Anna Bon (MU), Intervention or Collaboration? Redesigning In-

formation and Communication Technologies for Development

35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software
Production

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based
Games for Social Interaction in Public Space

02 Rijk Mercuur (TUD), Simulating Human Routines:Integrating So-
cial Practice Theory in Agent-Based Models

03 Seyyed Hadi Hashemi (UVA), Modeling Users Interacting with
Smart Devices

04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adap-
tive learning analytics for self-regulated learning

05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous
Systems

06 Daniel Davison (UT), "Hey robot, what do you think?" How chil-
dren learn with a social robot

07 Armel Lefebvre (UU), Research data management for open sci-
ence

08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Pro-
gramming on Computational Thinking

09 Cristina Zaga (UT), The Design of Robothings. Non-
Anthropomorphic and Non-Verbal Robots to Promote Childrens
Collaboration Through Play

10 Quinten Meertens (UvA), Misclassification Bias in Statistical
Learning

11 Anne van Rossum (UL), Nonparametric Bayesian Methods in
Robotic Vision

12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs
13 Bob R. Schadenberg (UT), Robots for Autistic Children: Under-

standing and Facilitating Predictability for Engagement in Learn-
ing

14 Negin Samaeemofrad (UL), Business Incubators: The Impact of
Their Support

15 Onat Ege Adali (TU/e), Transformation of Value Propositions
into Resource Re-Configurations through the Business Services
Paradigm

16 Esam A. H. Ghaleb (UM), BIMODAL EMOTION RECOGNITION
FROM AUDIO-VISUAL CUES

17 Dario Dotti (UM), Human Behavior Understanding from motion
and bodily cues using deep neural networks

18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-
Making Tools and Formal Systems - Facilitating the Construction
of Bayesian Networks and Argumentation Frameworks

19 Roberto Verdecchia (VU), Architectural Technical Debt: Identifi-
cation and Management

20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-
Sided Exposure Bias in Recommender Systems

21 Pedro Thiago Timb Holanda (CWI), Progressive Indexes
22 Sihang Qiu (TUD), Conversational Crowdsourcing
23 Hugo Manuel Proena (LIACS), Robust rules for prediction and

description
24 Kaijie Zhu (TU/e), On Efficient Temporal Subgraph Query Pro-

cessing
25 Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Com-

bining AI and Self-Adaptation to Create Adaptive E-Health Mobile
Applications

26 Benno Kruit (CWI & VUA), Reading the Grid: Extending Knowl-
edge Bases from Human-readable Tables

27 Jelte van Waterschoot (UT), Personalized and Personal Conversa-
tions: Designing Agents Who Want to Connect With You

28 Christoph Selig (UL), Understanding the Heterogeneity of Corpo-
rate Entrepreneurship Programs

2022 1 Judith van Stegeren (UT), Flavor text generation for role-playing
video games

2 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Op-
timisation: A Deep Learning Journey

3 Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away:
Reinforcement Learning For Personalized Healthcare

4 Ünal Aksu (UU), A Cross-Organizational Process Mining Frame-
work

05 Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time
Over-Parameterization

06 Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers in
Real Time Bidding

07 Sambit Praharaj (OU), Measuring the Unmeasurable? Towards
Automatic Co-located Collaboration Analytics

08 Maikel L. van Eck (TU/e), Process Mining for Smart Product De-
sign

09 Oana Andreea Inel (VUA), Understanding Events: A Diversity-
driven Human-Machine Approach

10 Felipe Moraes Gomes (TUD), Examining the Effectiveness of Col-
laborative Search Engines

11 Mirjam de Haas (UT), Staying engaged in child-robot interac-
tion, a quantitative approach to studying preschoolers’ engage-
ment with robots and tasks during second-language tutoring

12 Guanyi Chen (UU), Computational Generation of Chinese Noun
Phrases

13 Xander Wilcke (VUA), Machine Learning on Multimodal Knowl-
edge Graphs: Opportunities, Challenges, and Methods for Learn-
ing on Real-World Heterogeneous and Spatially-Oriented Knowl-
edge

14 Michiel Overeem (UU), Evolution of Low-Code Platforms
15 Jelmer Jan Koorn (UU), Work in Process: Unearthing Meaning

using Process Mining
16 Pieter Gijsbers (TU/e), Systems for AutoML Research
17 Laura van der Lubbe (VUA), Empowering vulnerable people with

serious games and gamification
18 Paris Mavromoustakos Blom (TiU), Player Affect Modelling and

Video Game Personalisation
19 Bilge Yigit Ozkan (UU), Cybersecurity Maturity Assessment and

Standardisation
20 Fakhra Jabeen (VUA), Dark Side of the Digital Media - Computa-

tional Analysis of Negative Human Behaviors on Social Media
21 Seethu Mariyam Christopher (UM), Intelligent Toys for Physical

and Cognitive Assessments
22 Alexandra Sierra Rativa (TiU), Virtual Character Design and its

potential to foster Empathy, Immersion, and Collaboration Skills
in Video Games and Virtual Reality Simulations

23 Ilir Kola (TUD), Enabling Social Situation Awareness in Support
Agents

24 Samaneh Heidari (UU), Agents with Social Norms and Values - A
framework for agent based social simulations with social norms
and personal values

25 Anna L.D. Latour (LU), Optimal decision-making under con-
straints and uncertainty

26 Anne Dirkson (LU), Knowledge Discovery from Patient Forums:
Gaining novel medical insights from patient experiences

27 Christos Athanasiadis (UM), Emotion-aware cross-modal domain
adaptation in video sequences

28 Onuralp Ulusoy (UU), Privacy in Collaborative Systems
29 Jan Kolkmeier (UT), From Head Transform to Mind Transplant:

Social Interactions in Mixed Reality
30 Dean De Leo (CWI), Analysis of Dynamic Graphs on Sparse Arrays
31 Konstantinos Traganos (TU/e), Tackling Complexity in Smart

Manufacturing with Advanced Manufacturing Process Manage-
ment

32 Cezara Pastrav (UU), Social simulation for socio-ecological sys-
tems

33 Brinn Hekkelman (CWI/TUD), Fair Mechanisms for Smart Grid
Congestion Management

34 Nimat Ullah (VUA), Mind Your Behaviour: Computational Mod-
elling of Emotion & Desire Regulation for Behaviour Change

35 Mike E.U. Ligthart (VUA), Shaping the Child-Robot Relationship:
Interaction Design Patterns for a Sustainable Interaction

2023 01 Bojan Simoski (VUA), Untangling the Puzzle of Digital Health In-
terventions

02 Mariana Rachel Dias da Silva (TiU), Grounded or in flight? What
our bodies can tell us about the whereabouts of our thoughts

03 Shabnam Najafian (TUD), User Modeling for Privacy-preserving
Explanations in Group Recommendations

04 Gineke Wiggers (UL), The Relevance of Impact: bibliometric-
enhanced legal information retrieval

05 Anton Bouter (CWI), Optimal Mixing Evolutionary Algorithms for
Large-Scale Real-Valued Optimization, Including Real-World Med-
ical Applications

06 António Pereira Barata (UL), Reliable and Fair Machine Learning
for Risk Assessment

07 Tianjin Huang (TU/e), The Roles of Adversarial Examples on
Trustworthiness of Deep Learning

08 Lu Yin (TU/e), Knowledge Elicitation using Psychometric Learn-
ing

09 Xu Wang (VUA) Scientific Dataset Recommendation with Seman-
tic Techniques

10 Dennis J.N.J. Soemers (UM) Learning State-Action Features for
General Game Playing

11 Fawad Taj (VUA) Towards Motivating Machines: Computational
Modeling of the Mechanism of Actions for Effective Digital Health
Behavior Change Applications

12 Tessel Bogaard (VUA) Using Metadata to Understand Search Be-
havior in Digital Libraries

13 Injy Sarhan (UU) Open Information Extraction for Knowledge
Representation

14 Selma Čaušević (TU Delft) Energy resilience through self-
organization

15 Alvaro Henrique Chaim Correia (TU/e) Insights on Learning
Tractable Probabilistic Graphical Models

16 Peter Blomsma (TiU) Building Embodied Conversational Agents:
Observations on human nonverbal behaviour as a resource for the
development of artificial characters

17 Meike Nauta (UT) Explainable AI and Interpretable Computer Vi-
sion – From Oversight to Insight

18 Gustavo Penha (TU Delft) Designing and Diagnosing Models for
Conversational Search and Recommendation

19 George Aalbers (TiU) Digital Traces of the Mind: Using Smart-
phones to Capture Signals of Well-Being in Individuals

20 Arkadiy Dushatskiy (TU Delft) Expensive Optimization with
Model-Based Evolutionary Algorithms applied to Medical Image
Segmentation using Deep Learning

21 Gerrit Jan de Bruin (Leiden University) Network Analysis Meth-
ods for Smart Inspection in the Transport Domain

22 Alireza Shojaifar (UU) Volitional Cybersecurity
23 Theo Theunissen (UU) Documentation in Continuous Software

Development
24 Agathe Balayn (TU Delft) Practices Towards Hazardous Failure

Diagnosis in Machine Learning
25 Jurian Baas (UU) Entity Resolution on Historical Knowledge

Graphs
26 Loek Tonnaer (TU/e) Linearly Symmetry-Based Disentangled

Representations and their Out-of-Distribution Behaviour
27 Ghada Sokar (TU/e) Learning Continually Under Changing Data

Distributions

	Summary
	List of Publications
	List of Figures
	List of Tables
	1 Introduction
	1.1 Continual Learning
	1.1.1 Scenarios for Continual Learning
	1.1.2 Desiderata of Continual Learning

	1.2 Deep Reinforcement Learning
	1.3 Research Questions
	1.4 Thesis Contributions and Outline
	1.4.1 Chapter 2
	1.4.2 Chapter 3
	1.4.3 Chapter 4
	1.4.4 Chapter 5
	1.4.5 Chapter 6

	1.5 Reading This Thesis

	2 SpaceNet: Make Free Space for Continual Learning
	2.1 Introduction
	2.2 Background
	2.2.1 Continual Learning
	2.2.2 Dynamic Sparse Training (DST)

	2.3 Related Work
	2.4 SpaceNet
	2.5 Experiments
	2.5.1 Datasets
	2.5.2 Architectures
	2.5.3 Experimental Details
	2.5.4 Evaluation Metrics
	2.5.5 Experimental Results

	2.6 SpaceNet Analysis
	2.6.1 Learned Representation
	2.6.2 Learned Topology
	2.6.3 Memory Efficiency Improvement
	2.6.4 Utilizing Model Capacity

	2.7 Conclusion and Future Work

	3 Self-Attention Meta-Learner for Continual Learning
	3.1 Introduction
	3.2 Related Work
	3.2.1 Continual Learning Strategies
	3.2.2 Continual Learning and Meta Learning
	3.2.3 Attention

	3.3 Self-Attention Meta-Learner (SAM)
	3.4 Experiments
	3.4.1 Split CIFAR-10/100
	3.4.2 Split MNIST

	3.5 Analysis
	3.5.1 Effect of the Meta-attention Mechanism on Performance
	3.5.2 Learned Representation
	3.5.3 Role of Prior Knowledge
	3.5.4 Knowledge Reusability

	3.6 Improvements of CL Approaches with SAM
	3.7 Conclusion and Future Work

	4 Dynamic Sparse Training for Deep Reinforcement Learning
	4.1 Introduction
	4.2 Related Work
	4.2.1 Sparsity in DRL
	4.2.2 Dynamic Sparse Training (DST)

	4.3 Proposed Method
	4.4 Experiments and Results
	4.4.1 Baselines
	4.4.2 Benchmarks
	4.4.3 Metrics
	4.4.4 Results

	4.5 Analysis
	4.5.1 Memory and Computation Costs
	4.5.2 Adaptation Schedule
	4.5.3 Sparsity Level
	4.5.4 Learning Behavior and Speed

	4.6 Conclusion and Future Work

	5 The Dormant Neuron Phenomenon in Deep Reinforcement Learning
	5.1 Introduction
	5.2 The Dormant Neuron Phenomenon
	5.3 Recycling Dormant Neurons (ReDo)
	5.4 Empirical Evaluations
	5.4.1 Consequences for Sample Efficiency
	5.4.2 Learning Rate Scaling
	5.4.3 Is Over-parameterization Enough?
	5.4.4 Comparison with Related Methods
	5.4.5 Neuron Selection Strategies

	5.5 Related Work
	5.6 Conclusion and Future Work

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Limitations
	6.3 Future Work

	Appendices
	A Additional Experimental Details and Analyses on Chapter 3
	A.1 Additional Experiment Details
	A.1.1 Continual Learning Training Details
	A.1.2 Meta-training Details

	A.2 Gradual Learning Behavior of SAM

	B Additional Experimental Details and Analyses on Chapter 4
	B.1 Experimental Details
	B.2 Evaluation Metrics
	B.3 Hardware and Software Support
	B.4 Learning Behavior Analysis
	B.5 DS-SAC

	C Additional Experimental Details and Analyses on Chapter 5
	C.1 Experimental Details
	C.2 The Dormant Neuron Phenomenon in Different Domains
	C.3 Recycling Dormant Neurons
	C.3.1 Effect of Activation Function
	C.3.2 Recycling Strategies
	C.3.3 Effect of Batch Size
	C.3.4 Comparison with Continual Backprop
	C.3.5 Effect of Recycling the Dormant Capacity

	C.4 Performance Per Game

	Bibliography
	Curriculum Vitae
	SIKS Dissertations

