

Supporting Railway Standardisation with Formal Verification

Citation for published version (APA):
Bouwman, M. S. (2023). Supporting Railway Standardisation with Formal Verification. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Mathematics and Computer Science]. Eindhoven University of Technology.

Document status and date:
Published: 23/10/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/dfbf7360-5bf7-473f-913a-1906bc171a3f

Mark Bouwman

Supporting Railway
Standardisation with
Formal Verification

Supporting Railway Standardisation with
Formal Verification

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus prof.dr. S.K. Lenaerts,
voor een commissie aangewezen door het College voor Promoties, in

het openbaar te verdedigen op
maandag 23 oktober 2023 om 16:00 uur

door

Markus Simeon Bouwman

geboren te Dordrecht

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

Voorzitter: prof.dr. E.R. van den Heuvel
Promotor: dr.ir. T.A.C. Willemse
Co-promotor: dr. S.P. Luttik
Overige leden: prof.dr.ir. A.A. Basten

prof.dr.ir. J.F. Groote
prof.dr.rer.nat.habil. J. Peleska (University of Bremen)
dr. M.H. ter Beek (CNR-ISTI, Pisa)

Adviseur: dr. S. Lange (ProRail B.V.)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

IPA dissertation series 2023-08.

The position of the author was fully funded by ProRail B.V. and DB Netz AG.
The vision presented in this thesis does not necessarily reflect the strategy of DB
Netz AG or ProRail B.V., but reflects the personal views of the author.

A catalogue record is available from the Eindhoven University of Technology Li-
brary.
ISBN: 978-90-386-5821-6

Printed by ADC Nederland.

Cover design by Erik Hendriks.

Copyright © 2023 by Mark Bouwman. All Rights Reserved.

“The only difference between screwing around
and science is writing it down.”

– Adam Savage

Preface

The quote on the preceding page is from the TV show ‘Mythbusters’, which I loved
to watch as a kid. It was my dream to one day join the Mythbusters team, for
two big reasons: learning by experimenting and, of course, blowing stuff up. The
adult version of this dream is to become a researcher; to ‘screw around’ until you
discover something new, with the thrill that you might find knowledge no human
has ever held before. Doing a PhD was, for me, a means to an end: to learn how
to do proper research.

During most of my time as a PhD student coming up with ideas to tackle
problems wasn’t the most difficult part, I was already pretty good at screwing
around until I found something that seemed to work. The thing I needed to learn
to become a scientist was to write it down properly. Whilst writing things down
I sometimes discovered it only seemed to work. The three big challenges I faced
in converting ideas to a scientific text are i) writing proper definitions formalising
the ideas, ii) proving that the goal is met with the proposed techniques, and iii)
writing it down in such a way that someone else also understands. As if that wasn’t
difficult enough, there are usually two more challenges when trying to publish your
work: i) you need to squeeze everything within a page limit and ii) you need to
convince the first readers of your paper (the reviewers) that your work is novel and
impactful. The reader of this thesis can judge whether my learning trajectory w.r.t.
writing has been successful.

The saying “practise makes perfect” is partly true. It is true in the sense that
you cannot learn new skills (such as writing) without actually doing it. However,
to become better, it is helpful to gain insight in what you did well and what can be
improved; feedback from a more skilled supervisor is therefore immensely valuable.
In this respect I could not have wished for a better supervisor than Bas Luttik. He
always gave detailed and helpful feedback when I sent him a document to review.
Moreover, he always encouraged me to just make a small step forwards whenever I
was paralysed by not seeing the complete path to the final solution. Thank you
Bas for helping me grow professionally.

I also want to thank Rick Erkens for the fun and exciting cooperation in

i

developing a fast rewrite engine. When I was learning the Rust programming
language I was searching for a nice project to go beyond toy examples. Rick
had just developed a new (and rather complicated) term matching algorithm and
was reluctant to implement it, preferring to stick to the theory. He gave me the
challenge of implementing his algorithm, which I managed within a couple of
weeks. This first prototype was incredibly slow though. Intrigued by the elegance
of the algorithm and the thrill of the need for speed I continued optimising the
implementation as a hobby project. Over the course of 1.5 years we came to a tool
that can compete with the state-of-the-art. Our cooperation was a match made in
heaven; Rick could prove that his algorithm could be efficiently implemented and
I could experiment and learn some programming whilst Rick was burdened with
writing it all down and proving it correct.

Next, I would like to extend my gratitude to Djurre van der Wal, my fellow PhD
student in the FormaSig project. Thank you for your major contributions in creating
the SysML to mCRL2 translation framework, without you it would never have
become so elegantly structured. Complements also for your (Java) programming
skills. Over the years I encountered only 1 or 2 bugs in the UnifyingBlock you
created, which is pretty remarkable for a prototype scientific tool.

My gratitude also goes out to Tim Willemse and Jan Friso Groote who have
both been chair of the FSA group during my period as a PhD student. Tim, thank
you for the fun cooperation on several topics and all the time you have invested
in proofreading my manuscripts. Jan Friso, thank you for your tireless efforts to
advance the mCRL2 toolset and your wonderful anecdotes on the application of
formal methods in industry.

One of the benefits of conducting research at a university is that you are
surrounded by others who share your interests in computer science and know the
struggles of research. As it is written: “Two are better than one, because they have
a good return for their labor: If either of them falls down, one can help the other
up."1. My thanks to all the colleagues of the FSA and SET groups with whom
I have exchanged ideas with, had lunch with or shared a beer with: Bas Luttik,
Tim Willemse, Jan Friso Groote, Hans Zantema, Jeroen Keiren, Erik de Vink,
Anton Wijs, Wieger Wesselink, Thomas Neele, Clemens Dubslaff, Roel Bloo, Rick
Erkens, Olav Bunte, Maurice Laveaux, Tom Franken, Anna Stramaglia, Kevin
Jilissen, Jan Martens, Ferry Timmers, Flip van Spaendonck, Isabelle Cooijmans,
Nathan Cassee, Lars van den Haak, Sangeeth Kochanthara, David Manrique Negrin,
Hossain Muhammad Muctadir, Lina Ochoa Venegas, Weslley Torres and Agnes
van den Reek.

My gratitude also goes out to the members of the doctorate committee: Tim
Willemse, Bas Luttik, Twan Basten, Jan Friso Groote, Jan Peleska, Maurice ter
Beek and Susanne Lange. Thank you for all the time and effort you put into
reading and judging my thesis. Your feedback has definitely helped to improve it.

Finally, I would like to thank my dear wife Nienke. You supported me throughout
the journey of the past 4 years. You encouraged me and lifted up my spirits when

1Ecclesiastes 4:9-10, NIV

ii

I felt like an impostor when I was stuck on a problem, and you also shared in my
joy when I had a breakthrough.

Lastly, I would like to share a text that I read every time I was worrying: “Look
at the birds. They don’t plant or harvest or store food in barns, for your heavenly
Father feeds them. And aren’t you far more valuable to Him than they are? Can
all your worries add a single moment to your life? Seek the Kingdom of God above
all else, and live righteously, and He will give you everything you need. So do not
worry about tomorrow; for tomorrow will worry about itself. Each day has enough
trouble of its own." 2

2Matthew 6:26,27,33,34, NLT and NASB

iii

Contents

1 Introduction 1
1.1 Formal Verification . 2
1.2 EULYNX . 4
1.3 FormaSig . 5
1.4 Contributions and Structure . 6

2 Preliminaries 11
2.1 Introduction to mCRL2 . 11
2.2 Formal Process Algebraic Definitions 13
2.3 The Modal µ-calculus . 18
2.4 Tools and Workflows in mCRL2 . 20

3 A Formalisation of SysML State Machines in mCRL2 23
3.1 Introduction to SysML IBDs and State Machines 25
3.2 Strategy to Formalisation . 29
3.3 Abstract Action Language . 30
3.4 Representing State Machines in mCRL2 32
3.5 Preprocessing Transitions . 34
3.6 Step Selection . 37
3.7 StateMachine Process . 39
3.8 SysML Specific Communication . 42
3.9 Configuration and Automatic Translation 44
3.10 EULYNX Adaptations to the mCRL2 Formalisation 45
3.11 Concluding Remarks . 46

4 Scalability 47
4.1 Adapting the Translation to Reduce the State Space 50
4.2 Compositional Minimisation . 54
4.3 Extension to Branching Bisimilarity 58
4.4 Minimisation . 63

v

CONTENTS

4.5 Experimental Results . 65
4.6 Conclusion . 69

5 Case Studies 71
5.1 Structure EULYNX Interfaces and Models 72
5.2 Common Approach . 74
5.3 Adjacent Level Crossing Interface (SCI-LX) 78
5.4 Generic Subsystem Interface . 86
5.5 Point Interface (SCI-P) . 94
5.6 Subsystem Level Crossing Interface (SCI-LC) 100
5.7 Limitations and Threats to Validity 110
5.8 Conclusion . 112

6 Verifying Liveness Requirements for Just Paths 115
6.1 Justness . 118
6.2 Process Calculus . 120
6.3 Modelling Peterson’s Algorithm . 124
6.4 Signals . 127
6.5 Concurrency-consistent Labelling 132
6.6 Syntactic Conditions . 133
6.7 Expressing Liveness . 142
6.8 Automated Liveness Analysis in mCRL2 149
6.9 Application for mCRL2 Models Derived from SysML Models . . . 151
6.10 Conclusions . 155

7 Global Variables in Process Algebras 157
7.1 A Simple Process Algebra with Global Variables 159
7.2 Behavioural Equivalences . 162
7.3 Extending Hennessy-Milner Logic 165
7.4 Verifying HMLcheck Formulas Using Selfloops 169
7.5 Relation to FormaSig . 171
7.6 Scoped Variables . 172
7.7 Related Work . 175
7.8 Conclusion . 176

8 Conclusions and Future Work 179
8.1 Formal Methods in the Railway Domain 180
8.2 Ideas for Future Extensions of FormaSig Tools 181
8.3 Miscellaneous Ideas for Future Research Directions 183

Bibliography 187

Summary 201

Samenvatting 203

vi

Chapter 1
Introduction

The study of truth requires a
considerable effort - which is why
few are willing to undertake it out
of love of knowledge - despite the
fact that God has implanted a
natural appetite for such knowledge
in the minds of men.

Thomas Aquinas, Summa Contra
Gentiles

In all engineering domains the correct functioning of systems and protocols
is important. In some domains though, correctness can be a matter of life and
death, such as in the medical, aerospace and railway domains and in the oil and
gas industry. Also when the cost of equipment is extremely high, like in high tech
industry, correctness is extra important. In these domains ensuring that the system
always works safely and correctly is perhaps an even bigger challenge than ensuring
the system works at all.

We focus on the railway domain. Over the years many procedures and fail-safe
designs have been developed to make the railways safer and safer. In many cases,
a fatal accident led to improved safety measures [34]. After more than 200 years of
rail innovation, travelling by train is very safe, much safer than travelling by car
[25].

Railway safety has many aspects. For example, the tracks and trains need to
be mechanically robust to prevent derailment, and animals digging tunnels near
the tracks need to be monitored and removed before posing a danger. Another
important aspect is railway signalling, which forms the context of this thesis.
A signalling system is used to control the movement of trains, in particular to
avoid collisions. Developing safe railway signalling systems is a tough engineering
challenge. From the design of higher level protocols to decide when a train is
allowed to move to the electro-mechanical implementation and to guidelines for

1

Introduction

train drivers: scrutiny is essential as a single flaw could potentially lead to an
unacceptable hazard.

A railway signalling infrastructure consists of many field elements such as points,
light signals, level crossings, and train detection systems. Traffic controllers are
human operators setting the routes for trains. It would be unsafe to let traffic
controllers directly manipulate the infrastructure, as there could be human errors.
Instead there is a safety system between the traffic control systems and the trackside
equipment: the interlocking. The interlocking controls all the field elements. The
traffic control system requests a route for a train from the interlocking. If the
interlocking decides that this route does not conflict with the route of any other
train, it sets the route (by moving points and setting signals) and monitors the route
as the train moves over it. The interlocking reports the status of the infrastructure
to the traffic controllers.

Typically, the design of new railway equipment is approved by going through
several rounds of human reviews with the goal of catching any potential flaws.
This has the potential for human error, but for simple signalling systems this is
generally sufficient to attain enough confidence that the design is correct. However,
over the last few decades the railway industry is switching from relatively simple
electro-mechanical systems to more advanced digital systems. These digital systems
have many benefits but a downside is that specifications are getting more complex
and therefore it becomes harder to get sufficient confidence in the correctness. To
cope with the complexity, railway engineers are gradually adopting a Model-Based
System Engineering (MBSE) approach for the development of their systems. In
MBSE the system being designed is captured using a modelling language. The idea
is that an MBSE approach ensures that specifications are more structured and
therefore easier to comprehend and reason about.

There are many modelling languages with varying degrees of formality. Some
modelling languages define the meaning (i.e. semantics) of language constructs
using natural language. For such languages the syntax may be clear and well
defined but the semantics of the modelling language may be ambiguous; this class
of modelling languages is said to be semi-formal. Other languages capture the
semantics of the language using mathematics and logic; such languages are said
to be formal. Some formal languages come with a toolkit providing automated
analysis techniques. The benefits of such tools is that they can analyse much more
scenarios than a human ever could or even prove that the model meets certain
requirements.

1.1 Formal Verification

There are many formal languages with a diverse range of purposes. We are interested
in modelling languages that capture the behaviour of the system being modelled.
One such modelling language is actively maintained at Eindhoven University of
Technology: mCRL2 [24]. The associated toolkit1 can reason about the behaviour

1https://mcrl2.org

2

https://mcrl2.org

1.1 Formal Verification

of models. In fact, it can compute the state space of a model containing every state
that can be reached from the initial state. For example, the state space induced by
a model capturing the game ‘4 in a row’ contains a state for every configuration of
the board that is possible by playing the game.

The mCRL2 toolkit also allows us to check properties for a model, which is
called model checking. For example, given the ‘4 in a row’ model we can check
the property ‘Player 1 has a winning strategy’ by formalising it with a logical
formula and using the mCRL2 toolkit. The toolkit will then explore the state
space, conclude the property does not hold and give a counterexample to the user.

Since the semantics and all the analysis techniques are firmly grounded in
mathematics the result of model checking truly constitutes a proof that the
property does (not) hold for the model. For models of safety-critical systems it is a
big benefit that such a high degree of certainty can be achieved.

Formal methods have been used extensively within the railway domain [39,
40]. A recent survey [4] on the uptake of formal methods in the railway domain
shows that a wide range of methods and tools are used in academia and industry,
most notably the B method (and variants of it). Both mCRL2 and its predecessor
µCRL [8] have been used in the signalling domain before. The µCRL toolkit has
been used to assess the safety of a Vital Processor Interlocking at the station
Hoorn-KersenBoogerd in the Netherlands [57]. Similarly, model checking with
mCRL2 has been applied to a Siemens digital interlocking [14]. The mCRL2 toolset
has also been used to verify the correctness of the ERTMS hybrid level 3 principles
[3].

Many applications of formal methods focus on the interlocking, since it is
the central safety system coordinating the field elements. For example, in [71]
the behaviour of interlockings is specified and verified using CSP||B [112]. The
formal specification language EURIS [31] was specifically developed to specify
interlocking logic. In recent years there have also been a number of publications
on the application of bounded model checking in the railway domain [9, 64, 65, 69,
72]. For example, in [69] a combination of bounded model checking and inductive
reasoning is used to verify the correctness of a Danish interlocking system.

The field of formal methods in the railway domain is broader than verifying
requirements for the state space induced by a model. For example, in [88] an
approach is presented to automatically check whether a track layout (the positions
of tracks, points, signals, etcetera) is compliant with national regulations. In [60] a
technique called Fault Tree Analysis is used to find the most efficient way to meet
RAMS (Reliability, Availability, Maintenance, Safety) requirements.

Another approach to formal verification is tool assisted theorem proving. In
this approach the state space does not need to be explored by the toolset. In [63] a
distributed railway interlocking is verified using the RAISE toolset [94].

Formal methods are also used in other domains, especially in the aforementioned
domains where the correct and safe functioning of systems is extra important.
Examples of systems that have been analysed with formal methods include control
software of the Large Hadron Collider [70], satellite software [37] and aircraft
software [113].

3

Introduction

In the context of this thesis we focus on model checking signalling specifications
using mCRL2. In particular, we verify the correctness of a European standard for
the communication between the interlocking and the various field elements that is
in development. This standard is introduced in the next section.

1.2 EULYNX

In traditional signalling setups, the motors, sensors and lights of the field elements
are directly connected to the interlocking via electrical wires. This makes the
implementation of a field element highly dependent on the implementation of the
interlocking, reducing interoperability. Moreover, the copper wiring is expensive
and a single point of failure; when a wire is cut accidentally while digging, it
immediately results in a dysfunctional field element.

EULYNX2, an initiative of a consortium of thirteen European railway infrastruc-
ture managers, aims to standardise the interfaces between the interlocking and the
field elements. A key innovation by EULYNX is to eliminate the direct electrical
connections between interlocking and field elements and switch to communication
over an IP network. The low level hardware is controlled locally by an object
controller, which in turn communicates with the interlocking. By standardising
the interface, EULYNX creates a larger European market for field elements and
decouples the life cycles of the interlocking and field elements. Moreover, EULYNX
communication offers a higher resilience to cable failures, since IP packets can be
routed dynamically.

EULYNX has adopted an MBSE approach to improve clarity and precision
compared to the traditional natural language specifications and to enable simulation
of models. EULYNX specifications are given in a dialect of SysML [97]. SysML is
a popular systems engineering modelling language, closely related to the Unified
Modelling Language (UML [95]). SysML defines nine different diagram types,
several of which are extended versions of UML diagram types. Five are used in
EULYNX specifications: block definition diagrams, internal block diagrams, use
case diagrams, sequence diagrams, and state machine diagrams. Each interface with
a field elements has its own SysML model, consisting of a collection of diagrams.

The use of SysML for system specifications is a big step forward for the railway
domain as it is significantly more precise than natural language. SysML has a
fairly intuitive graphical syntax, which allows railway engineers to understand and
use it without extensive training. Still, SysML is semi-formal : it has a well-defined
syntax, but its semantics is informal and not firmly grounded in mathematics.
As a consequence, system behaviour specified by a SysML model is not directly
amenable to the more thorough kind of analysis that genuine formal methods offer.

2See https://eulynx.eu.

4

https://eulynx.eu

1.3 FormaSig

1.3 FormaSig

This thesis is part of the FormaSig3 project, a collaboration of the Dutch and
German railway infrastructure managers, Eindhoven University of Technology and
the University of Twente, with the aim to formalise the aforementioned EULYNX
standard to the extent that delivered components conforming to the standard
provably satisfy a collection of safety properties. The idea is to associate with
each EULYNX SysML model a formal mCRL2 model [24, 55]. Then mCRL2’s
model checker can be used to establish that the model satisfies the required safety
properties (see Figure 1.1). Additionally, test cases can be automatically derived
from the model to reliably test compliance of actual implementations to the model.

formal model
in mCRL2

does the implementation
conform to the model?

yes/no

EULYNX standard
in SysML

Model-checking Model-based testing

requirements implementation

do the properties hold?
yes/no

translation

Figure 1.1: FormaSig: using a formal mCRL2 model to establish that implementations
conforming to the EULYNX standard satisfy properties.

The main goal of FormaSig: supporting the development of railway standardis-
ation by providing a formal interpretation of EULYNX models, analysing whether
safety requirements are met and testing whether implementations conform to the
provably correct model. Research is needed to achieve this goal. This thesis
focusses on the aspects of formalisation and model checking. The main research
question treated in this thesis is: how can we formalise the semantics of SysML and
effectively verify requirements for industrial models? The aspect of model-based
testing is covered by a second PhD student in the FormaSig project, Djurre van
der Wal, who is employed by the University of Twente. The limited overlap in our
work is detailed in the next section.

The first challenge in achieving the stated research goal is to create a way
of (automatically) deriving an mCRL2 model from a SysML model consisting of
multiple diagrams. To determine the complete behaviour of the EULYNX interfaces
and to generate the complete mCRL2 model, internal block diagrams and state
machine diagrams are sufficient. Internal block diagrams describe the interfaces
of components and how they are connected. State machine diagrams specify the
behaviour of components. Both types of diagrams are introduced in more detail in
Chapter 3. Two questions need to be answered. How can we derive an mCRL2
model from a set of internal block diagrams and state machine diagrams? What
ambiguities are present in SysML and how do we resolve them?

Another challenge is scalability. Does our formalisation lead to mCRL2 models
that are amenable to model checking? If not, what techniques can we use to

3Formal Methods in Railway Signaling Infrastructure Standardization Processes

5

Introduction

increase scalability?
Once we have models that are amenable to model checking we need to elicit

requirements. This is challenging as railway engineers do not have experience with
formulating formal requirements and we as academics lack the needed domain
knowledge. How do we obtain the right requirements? Do the models satisfy these
requirements? If not, how can the models be adapted such that the flaws are
repaired?

SysML is a state-based modelling language whereas mCRL2 is action based.
Some requirements may refer to states in the SysML model. How do we formulate
such requirements exclusively in terms of actions? Is it possible to integrate the
state based and action-based paradigms?

For liveness requirements it is typical that some assumptions need to be made
on how events are scheduled to rule out unrealistic runs of the system that violate
the requirement. EULYNX does not make any scheduling assumptions. What is
the least assumption we can make in this regard that rules out sufficiently many
unrealistic computations? How can we rule out unrealistic computations while
model checking?

These questions are addressed in upcoming chapters and are reflected upon in
the Conclusion (Chapter 8). The next section outlines the structure of the thesis
and thereby what chapter addresses which question.

1.4 Contributions and Structure

The overarching narrative of this thesis is the verification of EULYNX SysML
models. Some of the contributions are directly related to the main topic, whilst
others are a more general contribution to the field of model checking. For these
more general contributions we show how they have been or could be employed to
aid in the verification of EULYNX models.

Below we examine the contributions in this thesis on a chapter by chapter basis.
The next chapter, Chapter 2, introduces the preliminaries on the mCRL2 language
and toolkit that are necessary to understand the rest of the thesis and does not
provide any contributions.

Various models, requirements and scripts are made available through a Zenodo
repository [12]. Throughout this thesis we refer to specific items that are available
in the repository.

The order of the chapters in this thesis does not reflect the chronological order of
the work performed in FormaSig. There were feedback loops between trying to verify
requirements, adjusting the formalisation and developing scalability improvements.
In the case studies described in this thesis we use the latest toolchain but also
reflect on how the case studies have improved the toolchain.

Chapter 3: Formalisation. The first step in our journey to verify EULYNX
SysML models, is to transform them to mCRL2 models. In this chapter we propose
such a translation. The approach taken is to encode the structure of the SysML

6

1.4 Contributions and Structure

state machines in the data language of mCRL2. This specific encoding of the
SysML model is combined with a generic mCRL2 model fragment defining the
semantics of the state machine elements. This chapter focusses on the latter, a
specification of the semantics of state machines directly in mCRL2.

This chapter is an extension of the following conference paper.

Mark Bouwman, Bas Luttik, and Djurre van der Wal. “A Formalisation
of SysML State Machines in mCRL2” [17].

Mark Bouwman has been the main contributor of the formalisation in mCRL2.
Djurre van der Wal’s contribution has focussed on a translation tool to generate
the mCRL2 encoding from a set of SysML diagrams. His work is referred to but
not included in this thesis.

Chapter 4: Scalability. A common challenge in model checking is scalability.
A system typically contains multiple parallel components and the state space
tends to scale exponentially with the number of components. In this chapter we
explore a number of techniques to reduce the size of the state space induced by
mCRL2 models obtained through our SysML translation. In particular, we discuss
a technique called compositional minimisation, which turns out to be very effective
for our models. With this technique the state space of the entire (monolithic) model
is not computed in one go. The model is first split into components. The state
space of each component is computed and then minimised modulo an equivalence
relation, reducing the number of states. These minimised state spaces are finally
combined to construct the state space of the entire model.

This chapter is an extension of the following conference paper.

Mark Bouwman, Maurice Laveaux, Bas Luttik, and Tim A. C. Willemse.
“Decompositional Branching Bisimulation Minimisation of Monolithic
Processes” [15].

The compositional minimisation technique stems from work by Maurice Laveaux and
Tim Willemse, originally only supporting strong bisimulation minimisation. This
thesis and the conference paper [15] repeat the basic definitions of the earlier work
but focus on an extension to branching bisimulation, of which Mark Bouwman has
been the lead author. Additionally, the extended technique is applied in FormaSig
yielding a much bigger reduction than is possible with just strong bisimulation
minimisation.

Chapter 5: Case Studies. The preceding chapters have given us the necessary
tools to verify requirements for FormaSig models. In this chapter we examine
several real world EULYNX interfaces, formulate (safety) requirements and verify
them using the mCRL2 toolset. Spoiler: not all requirements hold. Our verification
efforts identified a few gaps in the EULYNX specifications.

7

Introduction

This chapter is partially based on the following journal paper, detailing an analysis
of the EULYNX point interface.

Mark Bouwman, Djurre van der Wal, Bas Luttik, Mariëlle Stoelinga,
and Arend Rensink. “A Case in Point: Verification and Testing of a
EULYNX Interface” [21].

Both Djurre van der Wal and Mark Bouwman were lead authors of this paper,
where Djurre van der Wal focussed on model-based testing and Mark focussed
on formal verification. The description of the point interface and the sections on
formal verification have been included in this thesis.

Chapter 6: Justness. As we will see in the case studies, we sometimes want
to check requirements of the shape “if event a happens, then always eventually
b happens”. It is typical that for such requirements you need some assumptions
on how events are scheduled. These range from very basic assumptions to rather
strong assumptions that may not be realistic. In recent years the notion of ‘just-
ness’ [48] has been introduced. In short, it is the assumption that once an action
is enabled that stems from a set of parallel components, then one (or more) of
these components will eventually partake in an action. This appears to be a
realistic assumption that is just strong enough for many liveness requirements.
In this chapter we show how we can verify liveness requirements with a justness
assumption for mCRL2 models. Moreover, we apply the theory to FormaSig models.

This chapter is an extension of the following journal paper.

Mark Bouwman, Bas Luttik, and Tim A. C. Willemse. “Off-the-shelf
automated analysis of liveness properties for just paths” [18].

This paper is an extension of a seminar report by Mark Bouwman [10].

Chapter 7: Global Variables. Besides justness, the cases studies reveal another
need: the concept of global variables. For some requirements for FormaSig models
we need to specify that the system always (or never) ends up in a specific SysML
state. The needed information on the SysML states is embedded in the states
of the state space induced by the model. Recalling the example of ‘4 in a row’:
each state in the state space represents some configuration of the board and the
transitions represent moves by the players. In most model checking tools (including
mCRL2) we can only refer to actions in the logic used to specify requirements. In
this chapter we study a process algebra with global variables and a logic allowing
references to these variables. This enables us to inspect part of the contents of a
state during verification (such as the current SysML state or the state of the ‘4
in a row’ board). Moreover, in some settings, it allows for a more natural form of
communication between parallel components (compared to message passing).

This chapter is an extension of the following conference paper.

8

1.4 Contributions and Structure

Mark Bouwman, Bas Luttik, Wouter Schols, and Tim A. C. Willemse.
“A process algebra with global variables” [16].

Mark Bouwman has been the lead author of this paper.

The thesis is concluded by Chapter 8, which includes a number of suggestions
for future research directions.

9

Chapter 2
Preliminaries

Prepare your work outside; get
everything ready for yourself in the
field, and after that build your
house.

Proverbs 24:27

In this chapter we present a number of preliminaries regarding the mCRL2
toolkit as aspects of it will be relevant in each subsequent chapter. After reading
the preliminaries, the remaining chapters can be read more or less independently.
We do not cover all the details of mCRL2 in detail but just the aspects that
are important for this thesis. We clearly marked which aspects are left out. We
generally refer to the mCRL2 book [55] for a more complete overview.

The remainder of this chapter is organised as follows. Section 2.1 provides
a first impression of the mCRL2 language. Next we go over relevant process
algebraic definitions (Section 2.2) and introduce the logic used by mCRL2: the
modal µ-calculus (Section 2.3). Finally, in Section 2.4 we present some common
workflows with the mCRL2 toolkit that are used throughout the thesis.

2.1 Introduction to mCRL2

The mCRL2 toolset [24] is designed to analyse concurrent and distributed systems.
The mCRL2 language is an ACP-style [6] process algebra and contains a rich
data language based on abstract data types. The semantic interpretation of an
mCRL2 model is a Labelled Transition System (LTS). The toolset contains tools for
the verification of parametrised modal µ-calculus formulas, bisimulation reduction,
counterexample generation [30, 116], simulation and visualisation. Before presenting
the formal underpinning in Section 2.2 we first informally introduce the mCRL2
language with an example.

The mCRL2 language has some primitive data types built in, such as integers,

11

Preliminaries

natural numbers and Booleans, including common operations on them. Users can
also define their own data types and operations. The code below shows an example.
The sort Place has one constructor, Coordinates, with projection functions X and
Y. One operation is defined on Places. In the map section the operation is declared
with its data signature. The var section declares some variables which are used in
the eqn section to define the operation.
sort

Place = struct Coordinates(X:Nat , Y: Nat);
map

computeManhattanDistance: Place#Place -> Nat;
var

p1 , p2:Place;
eqn

computeManhattanDistance(p1,p2) = abs(X(p1)-X(p2))+ abs(Y(p1)-Y(p2));

The process definition below specifies the behaviour of the Point process; it can
perform three actions: move, invite and respond, which are declared in the act

section with their type signature. Note that we also declare an action meet; this will
be used in a moment to denote the communication result of invite and respond.
The + operator represents a non-deterministic choice (not to be confused with the
same symbol for addition). The sum operator represents a non-deterministic choice
over a data domain. Summations over infinite data domains can be restricted by
adding a guard. In the example below a guard is used to restrict the move action
to any place, other than the current place p, on a 2 by 1 grid.
act

move: Nat;
invite , respond , meet: Place;

proc
Point(p:Place) =

sum new:Place. (new != p && X(new) < 2 && Y(new) < 1)
-> move(computeManhattanDistance(p,new)). Point(new)

+ invite(p). Point(p)
+ sum new:Place. (new != p) -> respond(new).Point(new);

The initial process expression, introduced by the keyword init, specifies the
initial state of the transition system associated with the specification. The ex-
ample below specifies a parallel composition of two Point processes wrapped in
a communication and an allow operator. Both Point processes can perform a
move action, which is allowed by the allow operator. The invite and respond

actions are not allowed and hence blocked. However, the two processes can syn-
chronize on a multi-action invite|respond, which is transformed to a meet action
by the communication operator, which is allowed by the allow operator. The
labelled transition system (sometimes referred to as the state space) associated
with this specification will have exactly 4 states, representing every combination of
coordinates.
init allow ({move ,meet}, comm({ invite|respond -> meet},

Point(Coordinates (1 ,0))|| Point(Coordinates (0 ,0))));

Below we depict the LTS induced by the initial process expression. The short-
hand C(_) abbreviates allow({move,meet}, comm({invite|respond -> meet},_)). The initial
state is indicated by an arrow without a source state.

12

2.2 Formal Process Algebraic Definitions

C(Point(Coordinates(1,0))
k Point(Coordinates(0,0)))

C(Point(Coordinates(0,0))
k Point(Coordinates(0,0)))

C(Point(Coordinates(1,0))
k Point(Coordinates(1,0)))

C(Point(Coordinates(0,0))
k Point(Coordinates(1,0)))

meet(Coordinates(0,0))

meet(Coordinates(1,0))

move(1)

move(1)

move(1)

move(1)

move(1)

move(1)

move(1)

move(1)meet(Coordinates(0,0))

meet(Coordinates(1,0))

From the LTS we can see that in every state a transition labelled with move(1)
is possible. We could also formalise this with the following µ-calculus formula:
[>⇤]hmove(1)i>. The subformula [>⇤] expresses ‘after every path’ and the subfor-
mula hmove(1)i> expresses there is an outgoing transition labelled with move(1).
The µ-calculus is introduced formally in Section 2.3.

2.2 Formal Process Algebraic Definitions

In this section we provide a more structured view of the mCRL2 language and
provide some formal definitions that are relevant to the understanding of this
thesis. Common process algebraic definitions, e.g. defining LTSs and (branching)
bisimulation are referenced regularly later in the thesis. Regarding mCRL2 we
define the structure of an mCRL2 specification and the relevant operators and
their semantics, leaving out aspects such as time. The intent is to give the reader
a solid understanding of mCRL2 and, in particular, its multi-action semantics.

An mCRL2 specification is subdivided into sections denoted by the keywords
sort, cons, map, var, eqn, act, proc, init. The first 5 keywords are related to the
data specification, which will be further explained in the next section. An action
declaration section lists the actions labels and their data signature. These action
labels can be used in the definition of processes, which is marked by the keyword
proc. The process specification section lists a number of (recursive) processes. Each
process has a name, a list of data parameters and a defining process expression.
Lastly, the init section defines the initial process expression, which will also be
the initial state in the LTS. With the exception of the initialisation section all
sections can occur multiple times.

2.2.1 Data Specification

The mCRL2 formalism features a rich data language based on abstract data types
[87] and is rooted in the field of universal algebra [26]. There are several predefined
sorts, e.g. to define lists and sets. In particular, in the presentation of the theory,

13

Preliminaries

we rely on the existence of the sorts Bool and Nat and their associated semantic
domains of Booleans (B) and natural numbers (N), respectively. One can declare
custom data types using the sort section, possibly with an accompanying cons

section declaring the constructors. Structured sorts, also called recursive sorts, are
used extensively throughout this thesis. They concisely enumerate the constructors
of a sort, where each constructor may contain data. The Place sort in Section 2.1
is a structured sort with just one constructor. Below we provide another example
with two constructors. The optional recogniser functions ?isOn and ?isOff are
functions from Status to the Booleans.

sort
Status = struct On?isOn | Off?isOff;

Sections marked by map declare a list of functions/operators with their associated
signature. It is of course not sufficient to only declare the type of an operator,
we also need to specify how the operator transforms the data it is given, which
is achieved by the var and eqn sections. Respectively, they declare a number of
variables and a list of equations (using the declared variables). Expressions are, as
usual, built from variables and function symbols, e.g. true is an expression and
true ^ x is also an expression. Two closed expressions are considered equal if they
can be transformed into each other using the equations. In theory the equations can
be used from left to right and from right to left. In the implementation, however,
the equations are treated as rewrite rules and only applied from left to right.

For the remaining formal presentation we abstract from the details and pre-
suppose some abstract data theory. For each sort D we assume the existence of a
non-empty semantic domain denoted by D. We use e : D to indicate that e is an
expression of sort D. The set of free variables of an expression e is denoted FV(e).
An expression e is closed if and only if FV(e) = ;. A substitution � is a total
function from variables to closed data expressions of their corresponding sort. We
write �[x e] to denote the substitution �0 such that �0(x) = e and for all y 6= x,
we have �0(y) = �(y). We use �(e) to denote the result of applying substitution �
to expression e: for each variable x each occurrence of x in expression e is replaced
by �(x).

We presuppose a fixed interpretation function, denoted by [[. . .]], which maps
closed syntactic objects to values within their corresponding semantic domain.
Semantic objects are typeset in boldface, e.g., the semantics of expression 1 + 1 is
2. We denote data equivalence by e ⇡ f , which is true if, and only if, [[e]] = [[f]].
Note that this presentation deviates from the mCRL2 semantics, which uses model
class semantics [55, Section 15.1.5].

We denote a vector of length n + 1 by ~d = hd0, . . . , dni. Two vectors are
equivalent, denoted by hd0, . . . , dni ⇡ he0, . . . , eni, if and only if their elements are
pairwise equivalent, i.e., di ⇡ ei for all 0 i n. For a vector of data expressions
with their corresponding sorts hd0 : D0, . . . , dn : Dni, we write ~d : ~D. Let ~d.i denote
the i

th element of ~d. Finally, we define Vars(~d) = {d0, . . . , dn}.

14

2.2 Formal Process Algebraic Definitions

2.2.2 Multi-actions and Transition Systems

A multi-set over a set A is a set with multiplicity for each element in A. Formally,
a multi-set is a total function m : A! N, where m(a) is the multiplicity of a. As
notation we use H. . .I for a multi-set where the multiplicity of each element is either
written next to it or omitted when it is one. Elements with multiplicity 0 are omitted.
For instance, Ha : 2, bI over set {a, b, c} has elements a and b with multiplicity two
and one respectively. For multi-sets m and m

0 over set A, we write m ✓ m
0 if and

only if m(a) m
0(a) for all a 2 A. Multi-sets m + m

0 and m �m
0 are defined

pointwise: (m+m
0)(a) = m(a) +m

0(a) and (m�m
0)(a) = max(m(a)�m

0(a), 0)
for all a 2 A.

Let ⇤ be the set of action labels (as defined in the act sections). For simplifi-
cation of presentation we assume every action has one data parameter. We use
Da to indicate the sort of action label a 2 ⇤, Da denotes the semantic domain of
Da. The set of actions {a(e) | a 2 ⇤, e 2 Da} is denoted by . A multi-action is a
multi-set over . The set of all multi-actions is denoted by ⌦.

Definition 2.1. A labelled transition system is a tuple L = (S ,Act ,!) where S
is a set of states, Act ✓ ⌦ and ! ✓ S ⇥ Act ⇥ S is a labelled transition relation.
Let s ↵�! t denote that (s,↵, t) 2 !.

Definition 2.2. Multi-action expressions are defined as follows.

↵ ::= ⌧ | a(e) | ↵|↵

Constant ⌧ represents the empty multi-action, a 2 ⇤ is an action label, and e is
an expression of sort Da. Let M denote the set of all multi-action expressions.
The semantics of a multi-action expression ↵, given a substitution �, is denoted
by [[↵]]� and is a multi-action which is an element of ⌦. It is defined inductively
as follows: [[⌧]]� = HI, [[a(e)]]� = Ha([[�(e)]])I and [[↵|�]]� = [[↵]]� + [[�]]�. If ↵ is a
closed expression then the substitution is typically omitted.

Note that ⌧ is considered an unobservable action. A ⌧ -transition may change
state and thus change what observable behaviour can be seen from future transitions
but the ⌧ -transition itself is not observable.

2.2.3 Linear Process Expressions

An mCRL2 specification is linearised before other tools can be applied. Lineari-
sation brings the process expression into a normal form, yielding an LPS [55, 56].
Linearisation removes parallel composition and communication operators, whilst
preserving bisimulation. An LPS contains the same sections as a regular mCRL2
specification with the difference that there is just one linear process which is called
a Linear Process Equation (LPE).

We introduce the mCRL2 operators in two steps. We first introduce LPEs. In
the next section we move on to communication between multiple processes.

Let PN be a set of process names.

15

Preliminaries

Definition 2.3 ([83]). An LPE is an equation of the form:

P (~d : ~D) =
X

e0:E0

c0 ! ↵0 . P (~g0) + . . . +
X

en:En

cn ! ↵n . P (~gn) , (2.1)

here P 2 PN is the process name, ~d is a vector of variables which we refer to as
process parameters, and each:

• Ei is a sort ranged over by sum variable ei (where ei /2 Vars(~d)),

• ci is the enabling condition, a Boolean expression s.t. FV(ci) ✓ Vars(~d)[{ei},

• ↵i is a multi-action expression ⌧ or a1(f1)| . . . |an(fn) such that each ak 2 ⇤
and fk is an expression of sort Dak such that FV(fk) ✓ Vars(~d) [{ei},

• ~gi is an update expression of sort ~D, satisfying FV(~gi) ✓ Vars(~d) [{ei}.

The +-operator denotes a non-deterministic choice, also called alternative
composition. Each choice in an LPE is called a summand. We use +i2I for a finite
set of indices I ✓ N as a generalised form of alternative composition, to distinguish
it from

P
d:D, which denotes alternative quantification. The

P
-operator describes

a non-deterministic choice among the possible values of the bounded sum variable.
We generalise the action sorts and the sum operator in LPEs; we permit ourselves
to use multiple data parameters in actions a(f0, . . . , fk) and sum over multiple
data domains

P
e0:E0,...,el:El

, respectively.
Let P be the set of expressions P (~◆), where P 2 PN and ~◆ is a vector of closed

expressions of sort ~D (the sort of P). We assume there is a defining equation as
in Equation 2.1 for every P 2 PN . The labelled transition system induced by an
LPE is then formally defined as follows.

Definition 2.4 ([83]). To associate an LTS (P,⌦,!) to process expressions in
P, we define the transition relation ! as follows: for each LPE P (~d : ~D) =
+i2I

P
ei:Ei

ci ! ↵i . P (~gi) and for all indices i 2 I, closed expressions ~◆ : ~D and

substitutions � such that for all j, �(~d.j) = ~◆.j there is a transition P (~◆)
[[↵i]]����!

P (�(~gi)) if and only if [[�(ci)]] = true.

2.2.4 Communication Between Processes

We proceed by defining a language to express parallelism and interaction of LTSs;
the operators are taken from mCRL2 [55].

Definition 2.5. Let Comm be the set of all possible communication expressions of
the form a0| . . . |an ! c where a0, . . . , an, c 2 ⇤ are action labels. Let St be a set
of constants representing states. We introduce the operators communication, allow,
hide and parallel composition:

S ::= s | �C(S) | rA(S) | ⌧I(S) | S k S .

16

2.2 Formal Process Algebraic Definitions

Here, s 2 St is a state, C ✓ Comm is a finite set of communication expressions,
A ✓ 2⇤!N is a non-empty finite set of finite multi-sets of action labels, and I ✓ ⇤
is a non-empty finite set of action labels. Let S denote the set of expressions that
can be constructed by the grammar above, which is parametrised with the set of
constants St.

Definition 2.5 is parametrised with a set of states. In particular, it can be
parametrised with the states in an LTS associated to an LPE. Later we will also
apply operators to combine LTSs of components.

Note that the mCRL2 language allows a more general kind of process specifi-
cation in which the operators used in LPEs (alternative composition, sequential
composition, summation, conditional expressions and recursion) and the operators
of Definition 2.5 can be combined. Moreover, there are a few more operators that
we will not discuss.

Definitions 2.6 and 2.7, respectively, define the communication and hiding
functions on multi-actions. They will be used to define the semantics of the
communication and hiding operators in Definition 2.8.

Definition 2.6 ([83]). We define �C : ⌦! ⌦, where C ✓ Comm, as follows:

�;(!) = !

�C(!) = �C\C1
(�C1(!)) for C1 ⇢ C

�{a0|...|an!c}(!) =

8
><

>:

Hc(d)I + �{a0|...|an!c}(! � Ha0(d), . . . , an(d)I)

if Ha0(d), . . . , an(d)I ✓ !
! otherwise

So, for example, note that �{a|b!c}(a|d|b) = c|d. Two restrictions are necessary
for �C to be well-defined. We require that the left-hand sides of the communications
do not share labels. For example, �{a|b!c,a|d!c}(a|d|b) would be problematic as it
could evaluate to both b|c and d|c. Furthermore, the action label on the right-hand
side must not occur in the left-hand side of any other communication. For example,
�{a!c,c!a}(a) would not be well defined because it could evaluate to both a and c.

Definition 2.7 ([83]). Let ! 2 ⌦ and I ✓ ⇤. We define ✓I(!) as the multi-set !0

defined as:

!
0(a(d)) =

(
0 if a 2 I

!(a(d)) otherwise

Given a multi-action expression ↵ we write ↵ to denote the multi-set of action
labels that occur in ↵, i.e. we remove the data expressions from the multi-action
expression. Formally, a(e) = HaI, ⌧ = HI and ↵|� = ↵+ �. We define ! for ! 2 ⌦
in a similar way.

Definition 2.8. Let (St,Act ,!1) be an LTS. We associate an LTS (S,⌦,!) to
expressions of S, where S is parametrised with constants St. The relation �! is the

17

Preliminaries

least relation including the transition relation !1 and the rules in the Structural
Operational Semantics (SOS) below. For any !,!0 2 ⌦, expressions P, P

0
, Q,Q

0 of
S and sets C ✓ Comm, A ✓ 2⇤!N and I ✓ ⇤:

(Par)
P

!�! P
0

Q
!

0
�! Q

0

P kQ !+!0
���! P

0 kQ0
(Hide)

P
!�! P

0

⌧I(P)
✓I(!)���! ⌧I(P 0)

(Par-l)
P

!�! P
0

P kQ !�! P
0 kQ

(Par-r)
Q

!�! Q
0

P kQ !�! P kQ0

(Comm)
P

!�! P
0

�C(P)
�C(!)����! �C(P 0)

(Allow)
P

!�! P
0

rA(P)
!�! rA(P 0)

! 2 A [{HI}

2.2.5 Bisimulation

We define two well-known equivalence relations on LTSs: strong bisimulation [100]
and branching bisimulation [52]. They allow us to reason about the equivalence of
LTSs. Moreover, the mCRL2 toolset contains a tool to minimise an LTS modulo
an equivalence relation.

Definition 2.9. Let (S,Act ,�!) be an LTS. We call a relation R ✓ S ⇥ S, a
strong bisimulation relation if, and only if, it is symmetric and for all (s, t) 2 R
the following condition holds: if s ↵�! s

0, then there exists a state t
0 such that t ↵�! t

0

and (s0, t0) 2 R. Two states s and t are strongly bisimilar, denoted by s $ t, if
and only if, a strong bisimulation relation R exists such that (s, t) 2 R.

Let �!⇤ denote the reflexive transitive closure of �!, i.e. s �!⇤
t if and only if t

is reachable from s. Similarly, let ⇣ denote the reflexive transitive closure of the
binary relation HI�!. Let s

(!)��! t be an abbreviation of s !�! t _ (! = HI ^ s = t).

Definition 2.10. Let (S,Act ,�!) be an LTS. We call a relation R ✓ S ⇥ S, a
branching bisimulation relation if and only if it is symmetric and for all (s, t) 2 R,
the following condition holds: if s ↵�! s

0 then there are states t
0 and t

00 such that
t ⇣ t

0 (↵)��! t
00 and (s, t0) 2 R and (s0, t00) 2 R.

Two states s and t are branching bisimilar, denoted by s $b t, if and only if, a
branching bisimulation relation R exists such that (s, t) 2 R.

2.3 The Modal µ-calculus

There are several logics that can be used to specify requirements. Examples include
Hennessy-Milner Logic (HML) [66], Linear Time Logic (LTL) [105], Computation
Tree Logic (CTL) [28], CTL⇤ [36] and the modal µ-calculus (Lµ). The modal

18

2.3 The Modal µ-calculus

µ-calculus subsumes the expressiveness of the other mentioned logics [29]. The
mCRL2 toolkit supports verification of Lµ formulas.

The modal µ-calculus can be viewed as a fixed point extension of HML. In
HML one can characterise the capabilities of a state to execute actions using modal
operators [_]_ and h_i_. Essentially, this permits to reason about the transitions
emanating from a state.

Example 2.11. The HML formula haitrue expresses that some outgoing a-labelled
transition exists. The formula [b]haitrue expresses that for every outgoing b-labelled
transition we end up in a state with an outgoing a-labelled transition.

Fixed points add the power of recursion to these basic facilities. Intuitively,
this allows us to reason about finite or infinite sequences or trees of transitions and
the capabilities of the states visited along such sequences or trees. The resulting
logic, i.e., HML with fixed points, is referred to as the modal µ-calculus. For an
in-depth treatment of this logic, we refer to, e.g., [75].

Our syntax of the modal µ-calculus is given in the context of a set of recursion
variables V. The set � of formulas of Lµ is generated by the following grammar
(with X ranging over a set of variables V , and � ranging over the set of multi-actions
⌦):

' ::= X | > | ? | ' ^ ' | ' _ ' | h�i' | [�]' | µX.' | ⌫X.' .

The binding precedence of the operators is as usual: the box and diamond operators
bind strongest, followed by ^, _ and finally the fixed point operators, which bind
weakest. The least fixed point operator is denoted by µ and the greatest fixed
point operator by ⌫. We permit ourselves to write

V
�2A

�(�) and
W
�2A

�(�) for a set

of actions A ✓ ⌦, as generalisations of the binary conjunction and disjunction.

Definition 2.12. Let (St,Act ,!) be an LTS. We proceed to give a denotational
semantics for our logic by associating with every formula ' the subset J'K# ✓ St of
states in which ' holds. Since formulas may contain free variables, J'K# is relative
to an assignment # : V �! 2St that provides an interpretation of recursion variables
X 2 V as subsets of St. We define J·K# recursively as follows:

JXK# = #(X);

J>K# = St;

J?K# = ;;
J' ^ K# = J'K# \ J K#;

J' _ K# = J'K# [J K#;

Jh�i'K# = {s 2 St | 9t 2 St such that s ��! t and t 2 J'K#};

J[�]'K# = {s 2 St | 8t 2 St such that s ��! t. t 2 J'K#};

JµX.'K# =
\

{F ✓ St | J'K#[X:=F] ✓ F)}; and

J⌫X.'K# =
[

{F ✓ St | F ✓ J'K#[X:=F])}.

19

Preliminaries

The interpretation of a formula ' is independent of the valuation # in case it
contains no unbound recursion variables (i.e., all occurrences of a recursion variable
are within the scope of a least or greatest fixed point). We simply write J'K when
referring to the semantics of such a formula, as it yields the same set of states for
every possible environment # used to interpret '.

Example 2.13. Greatest fixed point formulas typically characterise invariant
properties, whereas least fixed point formulas characterise liveness properties. For
instance, the Lµ formula ⌫X. haiX ^ [b]?, asserts the existence of an infinite a-path
along which no b-action can be executed. This is an invariant property along the
path. On the other hand, the formula µX. haiX _ hbi> asserts that there is a finite
path of a-labelled transitions, leading to a state in which a b-labelled transition is
enabled.

The logic used by mCRL2 is an extension of the µ-calculus. It allows us to use
action formulas and regular formulas in the box and diamond operator, e.g. in the
formula h>⇤

.ai?, > matches any multi-action and the star indicates a sequence of
zero or more actions so the formula expresses that there does not exist a trace ending
in an a-labelled transition. Additionally, mCRL2 allows for data parameters in
the fixed points, e.g. µX(n := 0). haiX(n+ 1) _ (n < 5 ^ hbi>), states that there
is an a-path of length at most 4 leading to a state in which a b-labelled transition
is enabled. These extensions are described in the mCRL2 book [55]. We do not
describe them here formally as it would complicate matters and we only require
the formal definition of the modal µ-calculus without action formulas and data
parameters in later chapters.

2.4 Tools and Workflows in mCRL2

The toolset associated to the mCRL2 language offers a wide variety of tools for
analysis and verification. To aid the reader in understanding upcoming chapters
we discuss the tools that are used in our verification workflow. For up to date
information on the mCRL2 toolset we refer to the website1. Figure 2.1 provides a
visual representation of the workflow.

Any workflow with an mCRL2 model starts with the tool mcrl22lps, which
linearises the model. Computing the LPS typically only takes a few seconds.

To verify a modal µ-calculus formula, a Parametrised Boolean Equation System
or PBES [58] needs to be constructed and solved. There are two ways to construct
a PBES:

• From the LTS. From the LPS we can compute the LTS associated to the LPS
using lps2lts. The LTS can optionally be minimised w.r.t. a behavioural
equivalence (e.g. branching bisimulation). Using lts2pbes we can construct
the PBES from the LTS and a µ-calculus formula.

1www.mcrl2.org

20

www.mcrl2.org

2.4 Tools and Workflows in mCRL2

• From the LPS. The tool lps2pbes generates a PBES from a µ-calculus
formula and the LPS. Solving the PBES will indirectly explore (part of) the
state space.

There are also two ways to solve a PBES:

• Using pbessolve, which provides a verdict (true/false) and, optionally, an
evidence file (dis)proving the formula. The evidence contains the minimal
fragment of the LTS (dis)proving the formula. The evidence file can also
contain the entire state space.

• Using pbessolvesymbolic, which only provides a verdict. This tool repre-
sents states symbolically instead of explicitly, which is typically much more
efficient. It is only effective on PBESs generated from an LPS.

In some instances the state space associated to a model is too large to explore
with the explicit tools. If we still want to compute how large the state space
is, we can use the tool lpsreach, which uses the same symbolic techniques as
pbessolvesymbolic.

LPS LTS

-calculus
formula

Minimised LTS

PBES

mCRL2 model

verdict +
evidence file

verdict

state space
information

Figure 2.1: Main workflows for requirement verification in mCRL2.

21

Chapter 3
A Formalisation of SysML State
Machines in mCRL2

Then you will know the truth, and
the truth will set you free.

John 8:32

This chapter reports on our formalisation of the semi-formal modelling lan-
guage SysML in the formal language mCRL2. The goal of our formalisation is
to unlock formal verification and model-based testing for SysML models. The
formalisation focuses on a fragment of SysML used in the railway standardisation
project EULYNX. It comprises the semantics of state machines, communication
between components via ports, and an action language called Atego Structured
Action Language (ASAL). It turns out that the generic execution model of SysML
state machines can be elegantly specified using the rich data and process languages
of mCRL2. The generic model can be configured with a formal description of a
specific set of state machines in a straightforward manner.

The EULYNX standard is under development, and it is likely that also in the
future it will be subject to changes. Moreover, EULYNX models are large and
consist of many diagrams. Hence, it is impractical to rely on manual translations
from the EULYNX SysML models to mCRL2. To facilitate that model-checking
and model-based test techniques will become an integral aspect of maintaining the
EULYNX standard, it is imperative that the translation from EULYNX SysML
to mCRL2 is automated. Another benefit of having an automated translation is
that, once the translation itself is debugged and has proven itself in use, no human
errors are introduced in the formalisation.

The modelling and testing cluster of EULYNX has developed a modelling
standard [38] to achieve a consistent modelling style. Additionally it (informally)
defines the dialect-specific constructs used in EULYNX models such as ASAL,

23

A Formalisation of SysML State Machines in mCRL2

which are linked to the PTC Windchill tool1. SysML contains ambiguities, which
are mostly left unresolved by the EULYNX modelling standard. Consequently,
FormaSig delivers an interpretation of EULYNX SysML. FormaSig points out
ambiguities to the EULYNX modelling cluster and provides suggestions on how
to resolve them, with the hope that the semantics of our formalisation and the
semantics defined in the modelling standard converge.

Implementing an automated translation from SysML to mCRL2 is a non-trivial
undertaking, most notably hampered by the lack of a complete and comprehensive
formal semantics for SysML and the complexity of the informally described SysML
execution model. Furthermore, also due to the lack of a fixed formal semantics, there
are many dialects of SysML. A particular variation point is the action language,
the language used to specify guards and the effects of transitions. In EULYNX
SysML all communication is performed via ports, which are referenced as variables
in the action language. The action language itself is ASAL.

Our formalisation consists of three parts. The first part is a generic, compre-
hensive formalisation of the operational semantics of UML state machines, which
form the basis of EULYNX SysML state machines. This part involves formalising
the notion of state hierarchy and transition selection. The second part adds an
interpretation of the particular communication mechanism via ports that is used in
EULYNX SysML. The third part defines an execution model for the ASAL action
language. In this chapter, we generalise to a class of action languages that reference
ports as variables. The resulting mCRL2 specification can straightforwardly be
turned into an actual formal model interpreting a particular EULYNX SysML
interface by populating the relevant data types with some static details from the
SysML model and generating a suitable number of instantiations of predefined pro-
cesses. We have implemented a tool to do this. The resulting mCRL2 specification
can be used for model checking and model-based testing and serves as the formal
model central to the FormaSig approach (see Figure 1.1).

The semantics of UML/SysML state machines has been formalised in prior
academic work. A number of papers describe a translation from UML state
machines to PROMELA (the input language of the SPIN model checker [68])
[80, 84, 85, 99, 111]. Our formalisation of transition selection draws inspiration
from [85]. In [86] a structural operational semantics is presented along with a
custom verification tool USM2C. The AVATAR [101] tool offers a SysML-style
environment with particular focus on verifying security properties. It offers a
translation to UPPAAL [5] and ProVerif [7]. Other translations and formalisations
include a translation from xUML class diagrams and state machines to mCRL2
[61, 62], a translation from SysML Block Definition Diagrams and state machines
to NuSMV [115], a formalisation of UML state machines using structured graph
transformations [76] and a formalisation of UML state machines in Object-Z [74].
In [67] a model-to-model transformation on Block Definition Diagrams and state
machines into a single notation is proposed; from this unified model a transition
relation can be derived. In [102, 103] a formal semantics is directly associated with

1https://www.ptc.com/en/products/windchill/integrity/

24

https://www.ptc.com/en/products/windchill/integrity/

3.1 Introduction to SysML IBDs and State Machines

SysML diagrams and used for model-based testing. In [107] a translation is given
from sequence diagrams to mCRL2.

Our approach to formalisation differs from earlier work in how the formalisation
is achieved. In other approaches, the semantics is given by the transformation
rules, or the formalisation and transformation to a formal language are distinct. In
our approach, we specify the generic semantics in the target formal language itself
(mCRL2) resulting in a partial model which can be instantiated with a specific
configuration using the data language. Another difference is that our formalisation
includes a communication mechanism using ports.

The OMG organisation, which manages the UML and SysML standards, has
also released “Precise Semantics of UML State Machines (PSSM)” [98], which gives
an informal but very precise semantics. Our formalisation differs in at least one
way from PSSM. According to the PSSM standard a completion event is generated
when a state is ‘completed’, for composite states this is the case when all parallel
regions have reached the final state and for a simple state it is considered completed
when its entry behaviour has finished executing. We do not create such completion
events in order to prevent cluttering the event queue. Instead, transitions relying
on a completion event have completion of the source state as an extra guard. PSSM
also provides an extensive compliance test suite. Executing this test suite on our
models would require an extensive adapter, which we have not built. PSSM only
specifies the semantics of a single state machine, which does not solve ambiguities
related to the concurrent execution of communicating state machines.

In Section 3.1 we give a rough sketch of the syntax of Internal Block Diagrams
(IBDs) and state machines as well as the execution semantics of state machines.
Section 3.2 details the formalisation strategy. Sections 3.3 to 3.7 treat the semantics
of UML state machines and its formalisation in mCRL2, including the role of the
action language and some mCRL2 snippets that are illustrative of the formalisation.
The model itself is available on Zenodo [12]. In Section 3.8 we extend the UML
semantics with EULYNX SysML specific communication over ports. In Section 3.9
we detail how to instantiate the model with a configuration. Section 3.10 discusses
some adaptions for the specifics of EULYNX semantics. In Section 3.11 we present
some conclusions.

3.1 Introduction to SysML IBDs and State Ma-

chines

In this section we cover the basics of the two SysML diagram types that are relevant
for our formalisation. Additionally, we present some features that are specific to
EULYNX.

3.1.1 Internal Block Diagrams

IBDs are used to describe the ports of EULYNX components. Ports are essentially
variables, with a name and a type. Ports are defined as either an input port,

25

A Formalisation of SysML State Machines in mCRL2

denoted by an arrow-in-a-box pointing into the block, or as an output port, denoted
by an arrow-in-a-box that points outwards. A component cannot change the value
of its input ports.

Figure 3.1 presents the IBD of the F_SCI_P_SR component, which intermedi-
ates between the interlocking and point hardware. Its header provides the name of
the component, and the area below the header lists input ports (‘T1_Cd_Move_-
Point’, for example) and output ports (such as ‘T2_Msg_Point_Position’).

The IBD in Figure 3.1 declares ten pulse ports: four input pulse ports, rec-
ognizable by their ‘PulsedIn’ type, and six output pulse ports, recognizable by
their ‘PulsedOut’ type. Pulse ports are specific to PTC/EULYNX. Their name is
always prefixed by a ‘T’ and they can have the value ‘TRUE’ or ‘FALSE’, just like
Boolean ports, but they automatically reset themselves from ‘TRUE’ to ‘FALSE’.
The idea is that the receiver can act on the change from ‘FALSE’ to ‘TRUE’, i.e.
it simulates message passing. They are frequently accompanied by data trigger
ports, of which the names are always prefixed with ‘DT’ and has the same number
as the corresponding pulse port. For example, when the T1_Cd_Move_Point
pulse port of F_SCI_P_SR becomes ‘TRUE’, it means that the value of the
DT1_Move_Point_Target port is (temporarily) valid and can be used to choose
new behaviour. Data trigger ports add parameters to the messages. EULYNX is in
the process of replacing these pulse and data trigger ports with signals, a standard
SysML construct to model message passing. In this thesis we will not consider
signals.

IBDs can also be used to define how EULYNX components are interconnected.
For an example, see Figure 3.2. In such an IBD, the main block of the IBD does not
define an individual component, but rather a context in which the ports of multiple
components are connected by (data) flows. Two ports can only be connected to
each other by a flow if they have the same type and opposite directions. An output
port may be connected to multiple input ports, if they have the same type; input
ports, on the other hand, may be connected to at most one output port. Input
ports take on the data value of the output port to which they are connected.

Figure 3.1: IBD that defines the ports of the ‘F_SCI_P_SR’ component of the EULYNX
Point interface. Ports have a name, a data type, and a direction (‘in’ or ‘out’).

26

3.1 Introduction to SysML IBDs and State Machines

We go over the elements of Figure 3.2. As stated in the header, the diagram
defines the context called ‘SCI-P PDI SR’. The area below the header contains the
components that are included in this context; among them is the component from
Figure 3.1, F_SCI_P_SR, which is connected to the component S_SCI_P_SR
with five flows. F_SCI_P_SR and S_SCI_P_SR have flows that lead to two
other components, as well as to two objects on the edge of the diagram, labelled
‘SAP_SubS_EIL’ and ‘SAP_SubS_P’; these are interface flow ports, and can be
used to combine contexts.

If a port of a component is not connected to another port (anywhere in the
specification), it is connected to the environment. For an input port, this implies
that its value can change non-deterministically at any moment. Supposing that
the IBD in Figure 3.2 is the only IBD of a specification, the T20_Point_Position
port of the F_SCI_P_SR component is manipulated by the environment. This
does not hold for the two T1_Cd_Move_Point ports, because they are connected
to each other.

3.1.2 State Machine Diagrams

Figure 3.3 shows an example of a state machine, with names of the various
constructions added in blue. In this section, we briefly discuss the informal
semantics of each construction as it is described in the UML standard [95]. In
Chapter 3 we explore the semantics in more depth.

The basic constituents of state machines are states and transitions. Initial states,
choice states, final states, junctions, forks and joins are also called pseudostates. The
UML state machine formalism derives its expressiveness from these pseudostates,

Figure 3.2: IBD that defines how certain Point components are interconnected; a so-called
“context”.

27

A Formalisation of SysML State Machines in mCRL2

the possibility to have states and transitions nested within states and the possibility
to have transitions even cross state borders. Transitions may have a trigger, a
guard and an effect. The trigger of a transition (which is optional) is an event ; it
can be a change event (notation when(x)) or a timeout event (notation after(x)).

The modeller can define behaviour that is executed upon entering or exiting a
simple or composite state. Exit behaviour is executed when a transition from the
state is fired and before the effect of that transition. Entry behaviour is executed
after the effect of a transition by which the state is entered. Simple and composite
states can also have internal transitions, which represent activities triggered by
events that do not change state (see, e.g., the state Failed in Figure 3.3).

Junctions and choice vertices allow more concise specification of transitions
that induce the same behaviour. The choice vertex c1 in Figure 3.3 combines two
transitions from Checking which share the common behaviour A:=1. Junctions
serve a similar purpose (see junction j1 in Figure 3.3). The difference between
junctions and choice vertices is that for junctions the guards of outgoing transitions
need to be checked before taking a transition to the junction, whereas for choice
vertices the guards are checked when arriving at the vertex.

A state can contain other states, in which case it is called a composite state
and the states it encloses are called substates. A composite state can have a final
state (see, e.g., the state Failed in Figure 3.3). Transitions from the border of
a composite state can be fired regardless of the current substate, except when
the transition does not have a trigger, in which case the current substate of the
composite state must be a final state. A composite state may also have multiple
parallel regions. Each region has an initial state and can perform local transitions
independently of other regions. A transition ending at the border of a composite
state with parallel regions will let each region start from its initial state. A fork

Starting reactor

Booting

Initial1

Starting controller

[reactor_ready]/[controller_state
= "booted"]

Booted
Timeout

after(20s)

/m := "error";

Initial3

fork1

join0

Failed

initial vertex

fork vertex

join vertex

effect

trigger
guard

composite state

simple state
Entry/m := booted;
Exit/A := 10;

entry behaviour
exit behaviour

final state

Initial4

final1

after(5s)/m := "error";
internal transition

[broken]

[!broken]

choice
c1

transition

parallel regions

Checking

/A := 1;

Initial2

j1
junction /m := "retry"

Figure 3.3: Example showing all state machine constructs supported in EULYNX SysML.

28

3.2 Strategy to Formalisation

indicates that a transition ends on specific states in multiple regions. Conversely, a
join can begin from specific states in parallel regions.

Due to the presence of composite states, a state machine is not just in a single
state but in a collection of states, a state configuration. A state configuration is
stable when it does not contain pseudostates. Transitions have a single beginning
and end state. A state machine may combine several transitions (as is the case with
joins, forks and junctions) to perform a bigger step from one state configuration to
another, which we will call a step. Events that occur are stored in an event pool
until they are either used to trigger a transition or discarded. A step is enabled
when the specified trigger (if any) is in the event pool and all guards of transitions
involved in the step evaluate to true. State machines have run-to-completion
semantics: a state machine selects a step to execute and will completely finish
executing the behaviour of the step and entry and exit behaviour before it considers
performing a new step. Parallel regions may start a step simultaneously when both
steps have the same trigger; in that case the state machine performs a multi-step.
The behaviour of the steps in the multi-step may interleave.

3.2 Strategy to Formalisation

There are two common approaches for building a translation from an informal
language to a formal language:

1. Formalise the syntax and semantics of the informal language separate from
the target language (e.g. using operational rules, logic and set theory) and
then define a translation to the target formalism which preserves the given
semantics.

2. Define a translation to the target formalism and let the translation together
with the semantic interpretation of the formal language be the semantics of
the informal language. It can vary how close the representation in the target
language is compared to the representation in the source language.

We have opted to use the latter strategy. We define the structure semantics directly
of state machines in mCRL2, resulting in a generic model that can be instantiated
for a specific SysML model. The semantic interpretation of IBDs is indirectly
defined in a transformation to mCRL2. A benefit of our approach is that it provides
a large degree of flexibility. It allows for an iterative process in which the semantic
interpretation is adjusted, for example to improve scalability or to align with the
interpretation of the EULYNX consortium.

The data specification of the generic model for state machines defines mCRL2
sorts for all the structural elements of state machines and defines operations on
them to define when a transition is enabled, what behaviour is executed along a
transition, etcetera. A generic StateMachine process expression defines the dynamic
behaviour of a state machine. The generic mCRL2 model is not complete. A full
model is created by combining the generic model with a specific configuration. The
configuration consists of three parts:

29

A Formalisation of SysML State Machines in mCRL2

• An encoding of the structure of a specific set of state machines in the mCRL2
data types defined in the generic model;

• An initial process expression spawning the correct number of StateMachine
processes and passing the structure of the state machines as a parameter;

• Processes to enforce correct communication between the ports of state ma-
chines. The StateMachine processes are agnostic to how the ports are
connected. It is explained later how correct communication is enforced.

Our approach has brought us a high degree of modularity. There are several
choices to be made w.r.t. the semantics (e.g., w.r.t. the granularity of interleaving,
run-to-completion semantics, syntax and semantics of the action language) and
we want to set up our specification in such a way that parts of it can be easily
modified or replaced. A particular concern is that the specific details of a concrete
state machine to be translated are separated from the generic semantics.

The mCRL2 model specifying the semantics of SysML state machines is available
in the Zenodo repository accompanying this thesis [12].

3.3 Abstract Action Language

The UML standard [95] is not prescriptive of the action language used to specify
guards and the effect of transitions. In the spirit of modularity we have designed
the generic mCRL2 encoding in such a way that it can be easily configured with a
specific action language. EULYNX uses the Atego Structured Action Language
(ASAL) [106]. In this section we will explain the setup in the generic mCRL2
model and how it can be configured with a specific action language.

Let Instruction be an mCRL2 sort containing all action language expressions.
Let VarName be a sort containing all variable names. It is assumed that there is a
single data domain for variables: the sort Value.

In order to formalise the action language semantics it may be necessary to
include additional data structures, e.g., a program stack or a valuation of local
variables. To encapsulate such additional data structures we introduce the notion
of execution frame, represented by the mCRL2 sort ExcFrame, which is assumed
to consist of all data necessary to execute programs of the action language. We do
not assume that execution of behaviour is atomic. We allow that two components
interleave their execution of behaviour when they are both taking a transition. We
abstract from the granularity of interleaving and simply allow an execution frame e

to make a step to an execution frame e
0, where e

0 may still have behaviour waiting
to be executed.

To define the semantics of the action language, mCRL2 equations need to
be added for the following mappings. We assume a subset of action language
expressions represent predicates, which can be evaluated using checkPredicate.
We assume the existence of a sort ValueStorage which stores the value associated
with each variable.

30

3.3 Abstract Action Language

sort
VarValuePair = struct VarValuePair(getVariable:VarName , getValue:Value);
Instructions = List(Instruction);

map
initializeExcFrame: Instructions#ValueStorage -> ExcFrame;
executeExcFrameCode: ExcFrame -> ExcFrame;
checkPredicate: Instructions#ValueStorage -> Bool;
isFinished: ExcFrame -> Bool;
globalValuation: ExcFrame -> ValueStorage;
varUpdates: ExcFrame -> List(VarValuePair);
resetVariableUpdates: ExcFrame -> ExcFrame;
getValue: ValueStorage#VarName -> Value;
setValue: ValueStorage#VarName#Value -> ValueStorage;

The mapping varUpdates is assumed to retrieve all updates to variables that
occurred during the execution of the execution frame. This field is needed for
deriving change events, described at the end of Section 3.6.

ASAL has several data types: Boolean, Pulse, Integer and String. They are
modelled in the mCRL2 model with the structured sort Value. Value_Custom

value is used to represent Strings, Custom_Value is an enumeration sort containing
a constant for every concrete String in the collection of state machines. The sort
could in the future be easily extended with more complex data structures.
Value = struct

Value_Int(Int)
| Value_Bool(Bool)
| Value_Custom(Custom_Value);

Example 3.1. We consider a very basic action language consisting of the constants
true and false and a variable assignment operator: V := e, where V is a VarName

and e is either true or false. The following mCRL2 code defines all the necessary
sorts and mappings.
sort

Value = Bool;
Instruction = struct

Assignment(VarName , Value)
| Constant(Value);

ExcFrame = struct ExcFrame(Instructions , List(VarValuePair), ValueStorage);
ValueStorage = VarName -> Value;

var
inst: Instructions;
i: Instruction;
upd: List(VarValuePair);
vn: VarName;
v: Value;
vs: ValueStorage;
b: Bool;

eqn
initializeExcFrame(inst , vs) = ExcFrame(inst , [], vs);
executeExcFrameCode(ExcFrame(Assignment(vn , v) |> inst , upd))

= ExecuteExcFrameCode(
ExcFrame(inst , upd <| VarValuePair(vn, v), setValue(vs ,vn ,v));

executeExcFrameCode(ExcFrame ([], upd , vs)) = ExcFrame ([], upd , vs);
checkPredicate ([Constant(b)], vs) = b;
isFinished(ExcFrame(inst , upd , vs)) = #inst == 0;
globalValuation(ExcFrame(inst , upd , vs)) = vs;
varUpdates(ExcFrame(inst , upd , vs)) = upd;
resetVariableUpdates(ExcFrame(inst , upd , vs)) = ExcFrame(inst , [], vs);
getValue(vs, vn) = vs(vn);
setValue(vs, vn , v) = vs[vn -> v];

31

A Formalisation of SysML State Machines in mCRL2

Suppose we have a concrete action language program we want to execute
containing two consecutive variable assignments.
[Assignment(V1 , true), Assignment(V2, false)]

To execute the program we need to initialise an execution frame and supply a
valuation. Let eval be some ValueStorage that maps both V1 and V2 to false.
We obtain the following execution frame.
ExcFrame ([Assignment(V1, true), Assignment(V2, false)], [], eval)

Applying executeExcFrameCode to it will yield a transformed execution frame.
ExcFrame ([], [VarValuePair(V1, true), VarValuePair(V2 , false)],

eval[V1 -> true])

Using the mapping isFinished we can see the execution frame has finished
executing the code. We can extract the updated valuation with the mapping
globalValuation and the assignments to variables with varUpdates. Note that
if we wanted to execute only one instruction at a time (because we want to allow
more interleavings) we could simply update executeExcFrameCode.

3.4 Representing State Machines in mCRL2

In this section we present how the structural elements of a state machine are
represented in our generic mCRL2 model. In particular we describe various notions
of states and transitions.

We assume that StateName and CompName have been declared as mCRL2
enumeration sorts, enumerating, respectively, all state names and all state machine
identifiers occurring in the SysML model under consideration.

We proceed by introducing the sort StateInfo, which is either a triple with
constructor SimpleState or with constructor CompositeState, both with projec-
tion functions parent, entryAction and exitAction, or it stores a single data
element together with a constructor (JoinVertex, JunctionVertex, etc.).
StateInfo = struct

SimpleState(
parent: StateName ,
entryAction: Instructions ,
exitAction: Instructions)

| CompositeState(
parent: StateName ,
entryAction: Instructions ,
exitAction: Instructions)

| JoinVertex(parent: StateName)
| JunctionVertex(parent: StateName)
| ForkVertex(parent: StateName)
| InitialState(parent: StateName)
| FinalState(parent: StateName)
| ChoiceVertex(parent: StateName);

The parent of a state is stored to represent the hierarchy of states induced by
composite states. A state’s parent is the first enclosing composite state. We assume
that the sort StateName has a special element root; states that are not enclosed
in a composite state have root as their parent. For example the states ‘Initial1’
and ‘Starting Controller’ in Figure 3.3 respectively have the following StateInfo.

32

3.4 Representing State Machines in mCRL2

InitialState(root)
SimpleState(Booting , [], [])

Our framework supports change events and timeout events, see the definition of
the sort Event below. The event type none is reserved for transitions without a
trigger. Time is currently not modelled explicitly in our framework, even though
mCRL2 does support it. Explicit timing would result in a significantly larger state
space, while it is often not relevant for the verification of properties; indeed, this is
the case in the context of EULYNX. Instead, transitions with a timeout event as
trigger can fire non-deterministically. The generation of change events is discussed
at the end of Section 3.6.
Event = struct none

| ChangeEvent(getTriggerExpr:Instructions)
| TimeoutEvent;

The sort Transition (given below) is used to specify the transitions of a state
machine. The Boolean internal is used to differentiate between selfloops and
internal transitions. The latter do not induce entry and/or exit behaviour.
Transition = struct Transition(

source:StateName ,
trigger:Event ,
guard:Instructions ,
effect:Instructions ,
target:StateName ,
internal:Bool);

We also define the sort StateMachine, which aggregates all the information we
need of a state machine.
StateMachine = struct StateMachine(

transitions:List(Transition),
initialState:StateName ,
states:List(StateName),
stateInfo: StateName -> StateInfo ,
initialValuation: VarName -> Value);

The initialState designates the initial state in the root of the state machine
(i.e. the initial state that is not contained in a composite state). The projection
functions states and stateInfo retrieve which states are present in the state
machine and the associated StateInfo, respectively. The function stateInfo only
needs to be defined for the state names that occur in that state machine.

Due to the hierarchy of states, a state machine is ‘in’ a collection of states, a
state configuration. A state configuration can be represented as a tree structure
where the top node is not enclosed in a composite state. Parallel regions introduce
nodes with multiple children. The mCRL2 excerpt below gives the definition of
state configurations in the model.
StateConfig = struct StateConfig(

rootState:StateName ,
substates:List(StateConfig));

An example configuration of the state machine depicted in Figure 3.3 is
StateConfig(

Booting , [
StateConfig(Initial2 ,[]),

33

A Formalisation of SysML State Machines in mCRL2

StateConfig(Initial3 ,[])
]).

3.5 Preprocessing Transitions

As explained in Section 3.1, state machines make a step from one state configuration
to another. Such a step may consist of firing multiple transitions, which is the
case with junctions, joins and forks. We could in theory perform step selection
by performing a reachability analysis on the transitions in mCRL2, starting from
the transitions that stem from the states of the current state configuration. We
anticipate that this would make step selection computationally expensive. Instead,
we opt to preprocess Transitions into Steps, eliminating junctions, forks and joins.
The definition of Step is given below, as well as the mapping that derives Steps
from Transitions. The effect of the step is a ComposedBehaviour. It allows us
to create a partially ordered set of behaviour, which is needed for defining steps in
the context of parallel regions (see Figure 3.5). A helper mapping transforms a list
of Instructions to a ComposedBehaviour.

sort
Step = struct Step(

source: StateConfig ,
trigger: Event ,
guard: List(Instructions),
effect: ComposedBehaviour ,
target: StateConfig ,
internal: Bool ,
arrowEnd: StateName);

ComposedBehaviour = List(InstructionOrPar);
InstructionOrPar = struct

Instruction(getInstruction:Instruction)
| ParBehaviours(parBehaviours:List(ComposedBehaviour));

map
transitionsToSteps: StateMachine -> List(Step);
InstructionsToComposedBehavior: Instructions -> ComposedBehavior;

The mCRL2 code specifying the transformation from Transitions to Steps consists
of over 200 lines. Avoiding too much detail we illustrate which transformations are
done.

From States to State Configurations

The first transformation using mCRL2 equations is to create a Step object for
every Transition by adding the ancestors to the source and target state (see
Figure 3.4). For simple transitions, of which the transition’s start and end are
not pseudostates, no more transformations are necessary. Note that we leave out
parallel regions in defining transitions when they do not actively contribute to the
step. If we were to include all the parallel regions in the source and target of
Steps we would have to compute all combinations.

34

3.5 Preprocessing Transitions

A

B

C

t[g]/e

initial0

Transition(
A,
t,
g,
e,
C,
false)

Step(
StateConfig(A,[]),
t,
[g],
InstructionsToComposedBehavior(e),
StateConfig(B,[C]),
false ,
C)

Figure 3.4: Example step between simple states.

Forks and Joins

A fork has one incoming transition and multiple outgoing transitions to states
in different parallel regions of a composite state. The incoming and outgoing
transitions should be traversed atomically and can only be fired when the guards
on all the transitions are true. The action language behaviour of the outgoing
transitions is performed in parallel. We preprocess forks into steps by combining
the incoming and outgoing transitions (see Figure 3.5). Note that in the case of a
fork the step does not have a single arrowEnd. We assume that StateName has a
special element multiple which is used in the case of forks.

A join has multiple incoming transitions from states in different parallel regions
and has one outgoing transition. The semantics and preprocessing of joins is
symmetrical, the incoming and outgoing transitions and their guards are combined.
This transformation is only correct under the assumption that both the incoming
and outgoing transitions do not, respectively, come from or go to other pseudo
states. In other words, we do not allow the combination of several joins or forks,
or combinations of joins/forks and junctions.

B

C D

A

t[g1]/e1

[g2]/e2[g3]/e3

fork0

Step(
StateConfig(A,[]),
t,
[g1 ,g2,g3],
e1 ++ [ParBehaviours(e2 ,e3)],
StateConfig(B,

[StateConfig(C,[]),
StateConfig(D ,[])])

false ,
multiple)

Figure 3.5: Example steps to and from a fork.

Adding Initial States

Steps ending in a composite state should start in the corresponding initial state.
In a preprocessing step we add the initial state in the target (see Figure 3.6).

35

A Formalisation of SysML State Machines in mCRL2

A

B

C

t[g]/e1

intial0

Step(
StateConfig(A,[]),
t,
[g],
e1,
StateConfig(B,[initial0]),
false ,
B)

Figure 3.6: Example step to a composite state.

Adding Final States

Final states indicate that the enclosing state is finished. Transitions with a
composite state as source without a trigger are only enabled when every parallel
region of the composite state is in a final state. For transitions with a trigger
there is no such requirement. We preprocess steps from composite states without a
trigger by adding final states to the source state configuration (see Figure 3.7).

A

B

C

t[g1]/e1

final0

[g2]/e2

Step(
StateConfig(B,[final0]),
none ,
[g2],
e2 ,
StateConfig(A,[]),
false ,
A)

Step(
StateConfig(B,[]),
t,
[g1],
e1 ,
StateConfig(A,[]),
false ,
A)

Figure 3.7: Example steps from a composite state.

Removing Junctions

Junctions may have multiple incoming and outgoing transitions. The interpretation
is that a step can be taken from any of the states with a transition to the junction
to any state with an incoming transition from the junction. The combined step
is fired atomically, the guards of both the incoming and outgoing transition need
to be evaluated beforehand. Junctions are removed in a preprocessing step by
introducing a step for each path over the junction, combining the guards (see
Figure 3.8). Junctions may be combined, i.e. transitions between junctions are
allowed as long as there are no cycles.

36

3.6 Step Selection

A

B C

t[g1]/e1

[g2]/e2 [g3]/e3

Step(
StateConfig(A,[]),
none ,
[g1 ,g2],
e1 ++ e2 ,
StateConfig(B,[]),
false ,
B)

Step(
StateConfig(A,[]),
t,
[g1 ,g3],
e1 ++ e3,
StateConfig(C,[]),
false ,
C)

Figure 3.8: Example steps involving a junction.

3.6 Step Selection

Given a state configuration and a set of steps we can reason about which steps are
enabled for firing. We go over the restrictions for firing steps, which are checked in
several data equations.

The most basic requirement for selecting a step is that the source of the step must
match the current state configuration. This is checked by filterPossible, defined
below. The helper function getAllStatesConfig returns the set of all states that
are in a state configuration. Another helper function called containsPseudoState

checks whether a state configuration contains a pseudostate. Due to the run-to-
completion semantics we only select a new step when we have reached a stable
state configuration (i.e., a state configuration without pseudostates). For this
reason we add the condition that if the current state configuration contains a
pseudostate then we will only consider transitions from a pseudostate. The helper
function matchState checks whether the source state configuration is contained in
the current state configuration.
map

filterPossible: List(Step)# StateConfig#StateMachine -> List(Step);
matchState:StateConfig#StateConfig -> Bool;

var
sc , sc1 , sc2: StateConfig;
step: Step;
steps: List(Step);
sm:StateMachine;

eqn
filterPossible ([], sc, sm) = [];
filterPossible(step |> steps , sc, sm) = filterPossible(steps ,sc ,sm)

++ if(matchState(sc ,source(step))
&& (containsPseudoState(sc,sm)

=> containsPseudoState(source(step),sm)),
[step], []);

matchState(sc1 ,sc2) = (getAllStatesConfig(sc2)
- getAllStatesConfig(sc1))=={};

Another requirement is that the guard evaluates to true and the trigger matches
the current event that is being processed. These two checks are performed by
filterEnabled.
map

filterEnabled: List(Step)#List(Event)# ValueStorage -> List(Step);
vars

tr: Step;
trs: List(Step);
e_list: List(Event);

37

A Formalisation of SysML State Machines in mCRL2

vars: ValueStorage;
eqn

filterEnabled ([],e_list ,vars) = [];
filterEnabled(tr |> trs ,e_list ,vars) =

if(trigger(tr) in e_list && forall g:Instructions.
g in guard(tr) => checkPredicate(g,vars),[tr],[])

++ filterEnabled(trs ,e_list ,vars);

Another rule is that steps for which the source is lower (i.e. more deeply nested) in
the state hierarchy have a higher priority than steps for which the source is higher
in the state hierarchy. The mapping filterPriority selects the steps with the
highest priority among the input. Note that there may be multiple steps on the
same priority level, so the mapping may return multiple steps. The state machine
makes a non-deterministic choice between these steps, as we will see in Section 3.7.
filterPriority: List(Step) -> List(Step);

As mentioned earlier, a state machine can also perform a multi-step if multiple
steps with the same trigger event are enabled in parallel regions. To be more
precise: the state machine selects a multi-step consisting of the maximal set of
non-conflicting steps, where non-conflicting means that no two steps in the set
exit the same state. The mapping multiStepPossibilities computes all such
multi-steps given a set of steps.
multiStepPossibilities: List(Step) -> List(List(Step));

Due to the way we have constructed Steps the target field of a transition is not
always a complete state configuration (unaffected parallel regions are missing).
To construct the new state configuration computeNextState takes the target of a
transition and adds the parallel regions of the current state configuration that are
unaffected (i.e. not exited).
computeNextState: StateConfig#Step -> StateConfig;

Function computeNextState recurses through the tree structure of the current and
target state configuration. For each encountered composite state it copies over
unaffected parallel regions. A region is unaffected when the region was not present
in the source of the step (it was not an active participant of the step) and it is not
exited by the step.

The behaviour of performing a step, i.e. an instance of ComposedBehaviour, is
the behaviour of the step itself combined with possible exit and entry behaviour.
For internal transitions no state is entered or exited. The snippet below shows the
definition of determineBehaviourStep.
map

getEntryBehaviour: StateMachine#StateConfig#Step -> ComposedBehaviour;
getExitBehaviour: StateMachine#StateConfig#Step -> ComposedBehaviour;
determineBehaviourStep: StateMachine#Step#StateConfig -> ComposedBehaviour;

var
sm: StateMachine;
cur: StateConfig;
st: Step;

eqn
(! internal(st)) -> determineBehaviourStep(sm ,st,cur) =

getExitBehaviour(sm,cur ,st)
++ effect(st)

38

3.7 StateMachine Process

++ getEntryBehaviour(sm,cur ,st);
internal(st) -> determineBehaviourStep(sm,st,cur) = effect(st);

Both getEntryBehaviour and getExitBehaviour compute the new state configu-
ration after firing the transition and which states are entered/exited; subsequently
they determine the order in which behaviour needs to be executed and construct a
ComposedBehaviour. The order of composing entry behaviour is outside-in (top
level states first) and the order of composing exit behaviour is inside-out (nested
states first). To determine the order both functions recurse through the new state
configuration. For states that are on the same level (in parallel regions) the action
language behaviours are put in parallel.

We use a mapping computeExecutionOptions to compute all the options for
what behaviour from a ComposedBehaviour can be executed next. If the head of
the composed behaviour is a sequential composition of instructions it will return
one execution option with all instructions up to the end of the composed behaviour
or up to a parallel composition (whatever comes first). If the head of the composed
behaviour is a parallel composition then we get multiple options corresponding to
each parallel branch.
sort

ExecutionOption = struct ExecutionOption(
getCodeToExecute:Instructions ,
getRemainingBehavior:ComposedBehavior);

map
computeExecutionOptions: ComposedBehavior -> List(ExecutionOption);

A change event is generated when the content of a when(x) trigger becomes
true. When a variable is updated we need to check which change events need
to be generated. For this purpose we introduce the sort Monitor. A monitor
stores an action language expression and the previous evaluation result. When
we update a variable we can check which change events are generated using
deriveChangeEvents. The mapping updateMonitors updates the valuation stored
in the monitors.
sort

Monitor = struct Monitor(getExpression:Instructions , getValuation:Bool);
map

deriveChangeEvents: List(Monitor)# ValueStorage -> List(Event);
updateMonitors: List(Monitor)# ValueStorage -> List(Monitor);

var
vars: ValueStorage;
mon: Monitor;
mons: List(Monitor);

eqn
deriveChangeEvents(mon |> mons ,vars) =
if(checkPredicate(getExpression(mon),vars) && !getValuation(mon),

[ChangeEvent(getExpression(mon))], []) ++ deriveChangeEvents(mons ,vars);
deriveChangeEvents ([],vars) = [];

3.7 StateMachine Process

The state machine process uses the data operations that we described in earlier
sections and uses them to specify the observable actions of a single state machine,

39

A Formalisation of SysML State Machines in mCRL2

which are visible in the LTS associated to the mCRL2 model. For now we will
present a slightly simplified version, which we will extend when we incorporate
SysML specific communication in Section 3.8. Below we present the parameters
of the process and the declaration of the observable actions (which includes the
parameters of those actions).
act

discardEvent: CompName#Event;
selectMultiStep: CompName#Event#List(Step);
executeStep: CompName#Step;
executeBehaviour: CompName;

proc
StateMachine(

ID:CompName ,
SM:StateMachine ,
sc:StateConfig ,
eq:List(Event),
ms:List(Step),
behav:ComposedBehaviour ,
mon:List(Monitor),
vars:ValueStorage ,
exc:ExcFrame) = ...

The UML standard does not define in what order events are processed. Our
modular approach allowed us to experiment with various options. In the end we
opted to process events in FIFO order, hence the event queue eq is a list of events.
When events were processed in arbitrary order we saw several safety concerns in
EULYNX models. In particular, we saw that messages from a previous connection
attempt could be processed at a later point, allowing a connection to be established
while there was an error (such as a mismatching checksum).

The StateMachine process consists of an alternative composition where each
summand performs one action and then recurses (with updated parameters). The
observable actions are chosen to reflect decisions in the run-to-completion cycle.

When both ms and behav are empty a new multi-step should be considered.
If no step is enabled by the head of the event queue the process can perform
a discardEvent action and remove it from the event queue, as specified below.
The mapping filterPossible checks which transitions are possible from the
current state configuration. The mapping filterEnabled filters those transitions
to transitions that have the specified event as trigger and whose guard evaluates to
true. Hence, in the case that a transition has both a triggering event and a guard
specified then both conditions need to be met before the transition can be fired.
Note that mCRL2 allows for an abbreviated, assignment-like syntax in which only
the parameters to be updated need to be mentioned in a recursive call; all other
parameters of the process remain the same.
+ (#ms == 0 && #behav == 0 && exc == EmptyExcFrame

&& #eq != 0 && !containsPseudoState(sc,SM(comp))
&& #filterEnabled(filterPossible(steps ,sc ,SM(comp)), head(eq), vars) == 0)

-> discardEvent(ID ,head(eq)). StateMachine(eq = tail(eq))

Alternatively, we can select a multi-step with a selectMultiStep action.
+ (#ms == 0 && #behav == 0 && exc == EmptyExcFrame) ->

(sum multi:List(Step). %step may consist of multiple transitions
(

40

3.7 StateMachine Process

multi in multistepPossibilities(
filterPriority(

filterEnabled(
filterPossible(steps , sc, SM(comp)),

[none ,TimeoutEvent] ++ if(#eq > 0, [head(eq)], []), vars)))
) -> (selectMultiStep(id,trigger(head(multi)),multi)

.StateMachine(
eq = if(#eq > 0 && trigger(head(multi)) == head(eq),tail(eq),eq),
ms = multi)))

We can now perform an executeStep action to start executing one of the
selected steps, which updates sc and puts the composed behaviour of the step in
behav.
+ (# behav == 0 && exc == EmptyExcFrame) -> sum n:Nat. (n < #ms)

-> executeStep(id,ms.n). StateMachine(
ms = removeSteps(ms ,[ms.n]),
behav = determineBehaviourStep(SM(comp),ms.n,sc),
sc = computeNextState(sc ,ms.n)

)

The process selects one of the execution options calculated by the mapping
computeExecutionOptions and initialises an ExcFrame which is stored in exc.
The process calls executeExcFrameCode and performs an executeBehaviour ac-
tion until the execution frame is finished. Every time code is executed (and thus
possibly variables are updated), it is checked whether change events can be derived.
When the execution frame is finished we compute a new execution option.
Statemachine (...) =
...
+ (# behav != 0 && exc == EmptyExcFrame)

-> sum eo:ExecutionOption.
(eo in computeExecutionOptions(behav) && #getCodeToExecute(eo) > 0) ->

StateMachineExecuteCode(
exc = initializeExcFrame(getCodeToExecute(eo),vars),
behav = getRemainingBehavior(eo))

+ (exc != EmptyExcFrame) -> StateMachineExecuteCode ();

%Auxilary process with the same parameters as StateMachine
StateMachineExecuteCode (...) =

executeBehaviour(id). StateMachine(
vars = globalValuation(executeExcFrameCode(exc)),
exc = if(! isFinished(executeExcFrameCode(exc)),

executeExcFrameCode(exc),
EmptyExcFrame),

eq = eq ++ deriveChangeEventsMultUpdates(mon ,vars ,
varUpdates(executeExcFrameCode(exc))),

mon = updateMonitors(mon ,globalValuation(executeExcFrameCode(exc))));

When the execution of behav is finished we select a next step from ms. When there
are no more steps to execute the process is ready to select a new multi-step.

Depending on the kind of analysis that will be performed on the resulting LTS
we might want different observable actions. If we would want to verify something
regarding the state configuration we might want to add a self loop signalling the
current state configuration. Alternatively, we might want to hide some actions by
renaming them to ⌧ , indicating that they are unobservable.

Example 3.2. Consider the state machine below.

41

A Formalisation of SysML State Machines in mCRL2

State1
Initial1

/VarA := true;

The LTS induced by this state machine is given below, where C1 is the name of
the component, s1 is the Step from the initial state and s2 is the Step representing
the selfloop. For both steps the corresponding selectMultiStep action has a
parameter none indicating that they do not require an event to trigger them.

selectMultiStep(C1,none,[s1]) executeStep(C1,s1)

selectMultiStep(C1,none,[s2])

executeStep(C1,s2)
exe

cut
eBe

hav
iou

r(C
1)

3.8 SysML Specific Communication

Specific to the EULYNX dialect of SysML is that there are ports over which
communication takes place. The interfaces are specified by IDBs, which specify
the ports of components and their connections.

As mentioned earlier, we focus on the semantics of a set of communicating state
machines. We assume that we have the following communication structure between
state machines. Each component has a set of ports, which are subdivided into
input and output ports. An output port can be connected to multiple input ports.
Both input and output ports need not be connected at all, in which case they are
intended to interact with the environment. One more assumption on the action
language is that ports are treated as variables: changing the variable associated to
an output port leads to a communication, which updates the variable associated to
the input port of the receiver.

The sort Component extends state machines with extra information. The sort
CompName defines a finite enumeration of identifiers for components. The sort
CompPortPair forms a unique identifier for a port, combining the name of a port
and the name of the component it belongs to.
CompPortPair = struct CompPortPair(getComp: CompName , getPort: VarName);
Component = struct Component(

name: CompName ,
SM: StateMachine ,
in_ports: List(VarName),
out_ports:List(VarName));

To take communication between state machines into account, we modify the
StateMachine process of Section 3.7 by replacing the state machine parameter

42

3.8 SysML Specific Communication

with a comp parameter, adding a message queue parameter mq and adding some
extra actions:
act

sendComp ,sendI ,send: CompPortPair#Value;
receiveI ,receiveComp ,receive: CompPortPair#Value;

proc
StateMachine (..., comp:Component , mq:List(VarValuePair)) = ...

When executing an execution frame it is checked whether there are updates to
output ports, which are then stored in output queue mq. The call to StateMachine

in StateMachineExcetuteCode has the following addition.
mq = distillPortUpdates(varUpdates(executeExcFrameCode(exc)),comp ,vars)

The mapping distillPortUpdates uses the port information in comp to check
which variable updates are of ports (instead of local variables).

When mq is not empty the process can perform a sendComp action, communi-
cating the update.
+ (#mq > 0)

-> sendComp(CompPortPair(id, getVariable(head(mq))), getValue(head(mq)))
.StateMachine(mq = tail(mq))

At any point in time the process can receive messages via a receiveComp action.
+ sum v:Value ,p:VarName. receiveComp(CompPortPair(ID ,p),v)

.StateMachine(vars = setValue(vars ,p,v),
eq = eq ++ deriveChangeEvents(mon , setValue(vars ,p,v)),
mon = updateMonitors(mon , setValue(vars ,p,v)))

We want to ensure that when a value is sent on an output port, it is received by
all (and only) connected input ports. This is enforced by the Messaging process
and the allow and communication operators in the initialisation process. The
Messaging process is specific to a particular configuration and contains a summand
for each communication channel. Below we give the initial process expression
and an example of an instantiation of the Messaging process in which port P1 is
connected to P2, and P3 is connected to both P4 and P5.
proc Messaging =

sum v: Value. sendI(CompPortPair(C1,P1),v)
|receiveI(CompPortPair(C2,P2),v). Messaging

+ sum v: Value. sendI(CompPortPair(C1,P3),v)
|receiveI(CompPortPair(C2,P4),v)
|receiveI(CompPortPair(C3,P5),v). Messaging

init allow ({ selectMultiStep , discardEvent , executeStep , executeBehaviour ,
send|receive , send|receive|receive},
comm({

sendComp|sendI -> send ,
receiveI|receiveComp -> receive},

Messaging || Environment
|| StateMachine (...)|| StateMachine (...) ...));

The central idea is that individual components need not know how ports are
connected. Instead, Messaging provides a ‘meeting place’ with which the sender
and receivers synchronize. As an example, suppose some component C1 sends some
value v on port P1 that should be received by two receivers C2 and C3 on ports
P2 and P3, respectively. The Messaging process and the StateMachine process
of the sender and the two receivers can perform the multi-action

43

A Formalisation of SysML State Machines in mCRL2

sendComp(C1,P1,v)| receiveI(C1,P1 ,v)|sendI(C2 ,P2 ,v)
|sendI(C3,P3,v)| receiveComp(C2 ,P2,v)| receiveComp(C3 ,P3 ,v).

This is transformed by the communication operator to send(C1,P1,v)

|receive(C2,P2,v)|receive(C3,P3,v).
Ports that are not connected to any other port are exposed to the environment,

i.e., adjacent systems not included in the model. Input ports exposed to the
environment can expect inputs at any moment in time. We model the environment
with the Environment process, which depends on the configuration, just like the
Messaging process. An example of an instantiation is given below. For each port
open to the environment (input ports as well as output ports) a summand is needed.
For input ports a restriction is needed to enforce that only values of the correct
data type can be sent. Note that a connection between the environment and an
exposed port must also be created in the Messaging process.
Environment =

%output port , environment receives anything
sum v: Value. receiveComp(CompPortPair(ENV_C1 , P1), v). Environment ()
%boolean input port
+ sum v: Value. (v in [Value_Bool(true), Value_Bool(false)])

-> sendComp(CompPortPair(ENV_C1 , P2), v). Environment ()

3.9 Configuration and Automatic Translation

In the previous sections, we have discussed the generic parts of the mCRL2 model;
in this section, we describe how to configure the model with a specific configuration.

First, the enumerations StateName, CompName and VarName need to be instan-
tiated. The action language needs to be defined: the sorts Value and
Instruction need to be defined. Also the semantics of the action language needs
to be defined by extending the sort ExcFrame and giving defining equations for the
mappings listed in Section 3.3. Finally, the initial process expression needs to be
given, in accordance with the structure described in Section 3.8. The Environment

and Messaging processes must be instantiated appropriately. For every state
machine an instantiation of the StateMachine process needs to be added.

The models of the case studies, from Chapter 5, are available in the Zenodo
repository [12]. They are concrete instantiations of the generic model.

Manually configuring the generic mCRL2 model with a configuration would
be time consuming and error prone. Instead, we have created a tool named
sysml2mcrl2, which automatically creates an mCRL2 model based on a collection
of SysML diagrams. This tool is implemented in Java.

Unfortunately, EULYNX SysML models, which are created in the tool PTC
Windchill modeller, cannot be exported to a format that is easy to import in other
tools. There is an XML export option but the output does not conform to the
OMG metamodel. Instead, EULYNX SysML diagrams need to be transcribed to
jEULYNX, an internal Java DSL specifically made for our purposes. This DSL has
been designed and implemented by Djurre van der Wal, who is also part of the
FormaSig project.

44

3.10 EULYNX Adaptations to the mCRL2 Formalisation

The tool sysml2mcrl2 has three main features:

• It performs a number of sanity checks on the input to detect inconsistencies
within and between diagrams;

• It combines all the IBDs and produces a global overview of the connections
between ports.

• For ports that are not connected to any other port (they are open to the
environment), it allows the user to specify the initial value and restrictions
on what values can be received.

We will not explain the internal workings of jEULYNX or sysml2mcrl2. The
source code is available in the Zenodo repository accompanying this thesis [12].

3.10 EULYNX Adaptations to the mCRL2 Formal-

isation

To accommodate verification of EULYNX models we have enriched the mCRL2
model that encodes the semantics of SysML state machines. We needed to adjust
the semantics to accommodate pulse ports, which are Boolean-valued ports with
a semantics deviating from other data types. Suppose that we have some pulse
output port X connected to input port Y. When a state machine sets port X to
the value true, then port X will automatically revert to false after a brief time,
and so will Y. The exact semantics of this mechanism is imprecise in EULYNX
specifications. Our models do not model time explicitly, but we can capture the
semantics of pulse ports in an alternative way. Our interpretation is that X and Y
are true only in one atomic moment, during the communication from X to Y. The
sender and receiver may use pulse ports to trigger change events: if the receiver has
a transition with trigger ‘when(Y)’, a change event is placed in the event queue.

Variables, including ports, should have an initial value as otherwise it might not
be possible to evaluate ASAL expressions referencing those variables. In EULYNX,
all output ports and local variables are initialised in the transition from the initial
state in the root of the state machine. Input ports can then be initialised by
looking up the initial value of the connected output port. However, ports need not
be connected, because they can interact with the environment (systems outside
the scope). Input ports open to the environment are therefore not initialised in
EULYNX specifications. The sysml2mcrl2 tool allows manual specification of the
initial value of these ports.

For input ports open to the environment it is also not clear what values can be
received while the system is running. Our default interpretation is that any value
of the data type of the port is allowed. The sysml2mcrl2 tool also allows us to
disable or restrict selected input ports. For ports with data type ‘String’ a finite
number of concrete strings needs to be provided.

45

A Formalisation of SysML State Machines in mCRL2

3.11 Concluding Remarks

One of the main benefits of our generic formalisation of the semantics of SysML
in mCRL2 is that it facilitates a straightforward automated translation. To have
an automated translation from SysML to mCRL2 we only need to implement a
tool that extracts the configuration data from a SysML model and outputs the
mCRL2 code as described in Section 3.9. The implementation of this tool will not
be discussed in this thesis.

The UML standard does not give guidelines about the degree of interleaving
in the execution of action language expressions. This ambiguity affects both
the interleaving between state machines and the interleaving between parallel
action language behaviours in a step. A choice has to be made, presenting the
following trade-off. The finest mode of interleaving would break action language
behaviour execution down to single instructions (such as looking up the value of a
variable). Choosing this interleaving model would allow the most detailed analysis.
The coarsest mode would implement a run-to-completion semantics for parallel
behaviour, reducing the state space.

A benefit of our approach is that we can easily experiment with variations on
the semantics. The variation of the interleaving of action language behaviour can
for example easily be achieved by modifying the ExecuteExcFrameCode mapping.
We have also experimented with the event queue; concluding that a FIFO order is
important for the safety of EULYNX (see Section 3.7).

A final benefit of directly formalising in mCRL2 (compared to formalising in
plain mathematics) is that the mCRL2 toolkit acts as an IDE. The parser and type
checker of the editor point out the most basic mistakes. Moreover, the model can
be simulated when provided with a configuration of a simple set of state machines.
This provides an additional way of testing whether the semantics is as intended.

Concluding, we have shown how we have formalised the semantics of (SysML)
state machines directly in mCRL2. The generic mCRL2 model is flexible and
could be adjusted for a wide range of action languages. The step to an automated
translation using our model is small and has been achieved in FormaSig.

46

Chapter 4
Scalability

Great is our Lord, and of great
power: his understanding is infinite.

Psalm 147:5, KJV

The mCRL2 toolset [24] has been used in various industrial applications [21,
73, 108]. A recurring challenge is that industrial models are often complex and
consist of many concurrent components. Hence, the state spaces induced by such
models are typically huge, hindering verification efforts. The size of the state space
tends to scale exponentially with the number of components. This is a well known
phenomenon often referred to as the state space explosion problem.

For EULYNX models we face the same challenge. EULYNX SysML models
typically consist of 6-10 parallel components. When we apply the translation
defined in Chapter 3 we obtain models that are not amenable to formal verification.
The least complex EULYNX SysML models induce a state space consisting of
several billions of states whilst for more complex models we cannot even compute
the size of the state space. Techniques are needed to reduce the state space before
we can even consider model checking.

One of the main causes of the state space explosion with mCRL2 models
obtained with our SysML-to-mCRL2 translation is the communication between
components (and messages arriving at ports open to the environment). Most
communication is asynchronous; the sender sends a value along a port, which
triggers a change event at the recipient, this event is then stored in an event queue
until it is either used to trigger a transition or discarded. Models can have input
ports which are not connected to an output port and thus open to the environment.
Every state in the state space has transitions representing a message arriving from
the environment. Without limiting the environment in sending messages the state
space induced by FormaSig models is infinite as the environment can always add
one more event to the event queue of a component. The mCRL2 toolset can only
perform model checking for finite state spaces, though there is some research into

47

Scalability

model checking with infinite data domains in mCRL2 [91]. The state space can
be restricted by bounding the event queue, disallowing reception of messages until
some events are processed. The downside of this approach is that some behaviour
that was permitted by the original SysML model is not present in the mCRL2
model and can therefore not be analysed during model-checking.

As SysML is not formal and allows for multiple interpretations there is some
degree of freedom in how we define the semantics. Some interpretations lead to
bigger state spaces than others. We can reduce the state space by adapting the
formalisation as presented in the previous chapter. Additionally, we may be able
to make some assumptions on what behaviour is possible from the environment.
We use the following techniques to reduce the state space, which are discussed in
more detail later in this chapter:

1. Disable input ports open to the environment that are actually configuration
parameters. Some ports represent configuration parameters, such as the
length of a certain timeout, we set these ports to a fixed value.

2. Abstract from specific values for input ports open to the environment. For
some input ports multiple values can be received but they are all treated in
the same way (mostly, they are sent as-is over the EULYNX connection). For
these ports we abstract from specific values and use a dummy value.

3. Bundle messages on pulse ports and their accompanying data parameter
ports.

4. Reset data parameter ports to a dummy value when the pulse has been
handled.

5. Restrict the environment by disabling inputs when the total number of events
in the system is above a certain threshold.

6. Split the SysML models into separate groups of components and analyse
them separately.

The first four techniques do not meaningfully change what behaviour is possible.
The last two techniques, however, do. By restricting the environment we lose many
states that are, according to the specification, reachable. By splitting models we
lose how the two parts restrict each other’s behaviour. This is necessary to still get
some partial information about the quality of the models.

Another way to reduce the size of the state space, is to minimise it modulo an
equivalence relation, such as strong bisimulation [100] or branching bisimulation
[52]. For some models the state space induced by the model is too large to generate,
while the size of the minimised state space is small enough to allow model checking.
For such models compositional minimisation is a helpful technique. As the name
suggests, the technique applies minimisation not at the top level but at the level of
components. The model is split into several submodels representing the components
of the system. The state spaces of the components are minimised and then combined
to construct a behaviourally equivalent but smaller state space.

48

Compositional minimisation is not a novel technique and has a history going
back to the early 1990s [53]. The CADP toolset [42] includes the tool EXP.OPEN,
which computes the parallel composition of a network of state spaces. These
existing techniques are not directly applicable in the context of mCRL2, since they
do not support the mCRL2 concept of multi-action.

In [79] a technique is described to maximally minimise during compositional
minimisation. They analyse the actions that occur in the parallel components
of a process algebraic specification and in a given µ-calculus formula. Based on
this information it is determined which actions can be hidden, which components
can be minimised modulo divergence preserving branching bisimulation and which
components must be minimised modulo strong bisimulation. This technique is
implemented on top of the CADP toolset.

Many papers on the topic of compositional minimisation focus on interface
specifications, which model the interfaces between the separated components [43,
54, 78]. They solve a common complication with compositional minimisation: the
state spaces of the components can be much larger than the state space of the
entire system. We observed this phenomenon for our models as well, but it was
solved by techniques 3 and 4 (mentioned above), which bundle pulses and their
data parameters in a single message (see Section 4.1.2 for more information).

Compositional state space generation has recently been added to the mCRL2
toolset in the form of the tools lpscleave and lpscombine that, respectively,
decompose and recombine a model [83]. Cleaving an LPS P produces two new
LPSs, L and R, both containing part of the behaviour. The LPS is cleaved based on
a partitioning of the data parameters of P , specified by the user. Subsequently the
state spaces associated to L and R can be computed and minimised with respect
to strong bisimilarity, yielding, say, L0 and R

0. The tool lpscombine combines L
0

and R
0 to the final state space, ensuring that the result is strongly bisimilar to P .

One of the complications these tools have to overcome is dealing with the multi-
action semantics of mCRL2 [55]. Since ⌧ is the identity element for multi-actions,
i.e. a|⌧ = a, ⌧ actions can arbitrarily communicate with other components in
a parallel composition. If components had ⌧ -transitions, lpscombine would be
unsound. To prevent this phenomenon, lpscleave replaces all occurrences of ⌧ ’s
by a visible action tag in L and R. The recombination process of lpscombine

abstracts again from this visible action.
Many behavioural equivalences (such as branching bisimilarity) include a special

treatment of ⌧ -transitions [45]. If a process has many ⌧ -transitions, like our
FormaSig models, then minimisation with respect to notions of bisimilarity that
treat ⌧ -transitions as unobservable yields a much smaller state space. Since, by
construction, L and R do not contain ⌧ -transitions we cannot effectively use
minimisation with respect to branching bisimilarity on the level of components.

Our contribution is an extension of the theory of [83] in which we add support for
intermediate branching bisimulation minimisation. In short, this is achieved by first
hiding the tag action labels in the cleaved processes (turning many transitions into
⌧ -labelled transitions), then minimising the state space and finally reintroducing
the tag labels that were hidden in the first step (to avoid communicating ⌧ -actions).

49

Scalability

In effect, we treat tag as unobservable whilst computing the branching bisimulation
quotient. The extension is proven correct. The techniques can be generalised to
other process algebras using multi-actions.

Compositional minimisation turns out to be a very effective technique to
minimise FormaSig models. In our models there is a natural notion of component
(a state machine), and, due to the way the semantics of state machines is defined
in mCRL2, these components exhibit quite some internal behaviour. Hence, a
significant reduction of the size of the state spaces associated with the components
can be achieved by branching bisimulation minimisation. The state space of
recombining is several order of magnitude smaller than the original state space
associated to the model.

The rest of this chapter is organised as follows. Section 4.1 presents the various
techniques to reduce the state space by adapting the semantics. Section 4.2
summarises the cleave and combine method. In Section 4.3 the theory is extended
to support branching bisimulation. Section 4.5 presents a number of benchmarks
to measure the effectiveness of our state space reduction techniques. The chapter
is concluded by Section 4.6, which summarises the achievements and presents some
future work.

4.1 Adapting the Translation to Reduce the State

Space

As mentioned in the introduction we found a number of techniques to reduce
the state space by adapting the model. The techniques are diverse; some adapt
the generic interpretation of SysML whereas others allow the modeller to add
assumptions on the environment that are specific to the SysML model.

We start with the latter type in Section 4.1.1, where we explore how we can
restrict what messages can arrive at input ports open to the environment. In
Section 4.1.2 we present an adaption of the generic semantics in which a pulse and
its associated data parameters ports are combined in a single message. Section 4.1.3
discusses limits on the event queues and assumptions regarding the synchronicity
of communication. Finally, in Section 4.1.4 we present how we can abstract from
certain components and how that affects what behaviour is possible.

4.1.1 Disabling Configuration Ports and Abstraction

Ports that are not connected to any block within the modelling scope of the system
are open to the environment. For example, since the core interlocking logic is not
part of EULYNX, ports modelling the interface to the core interlocking are open
to the environment.

Without specific domain knowledge we cannot safely make assumptions on the
behaviour of the environment. By default we can expect any value on input ports
open to the environment in accordance with the type of the port. For example, a
port with type ‘String’ could expect any string. However, in some cases we can

50

4.1 Adapting the Translation to Reduce the State Space

(and should) restrict what kind of values are to be expected from the environment.
For example, in the EULYNX point interface the commanded position can only be
‘left’ or ‘right’. Some input ports may actually represent parameters of the system
that cannot change during execution, e.g. the EULYNX level crossing interface
has a parameter indicating whether it should close after a connection timeout (the
setting may differ between countries). We have added the ability to restrict inputs
from the environment in our translation framework. The user can provide a list of
concrete values that can be sent to a specific port.

In other cases the exact value that is received from the environment is irrelevant
as they are all handled in the exact same manner, in which case we can abstract
from the value and substitute it with a dummy value. As an example, the EULYNX
SCI-LX level crossing interface can receive a number of distinct commands on the
same port from the core interlocking which the modelled system simply forwards
as-is to the field element (which is outside the scope of EULYNX). We do not want
to disable the port as we do want to verify that the command is always delivered
but we can abstract from the specific value.

4.1.2 Pulse Packs and Resetting Parameter Ports

In the SysML variant supported by our translation, messages with data fields are
modelled using multiple ports. Data parameter ports (prefixed with ‘DT’) represent
the data parameters. After all data parameter ports are set to the correct value by
the sender, a pulse is sent on a pulse port (prefixed with ‘T’).

We observed that setting these data parameters separately significantly increases
the state space, for two reasons. As each communication is a separate transition in
the LTS, many interleavings occur with other behaviour in the system. Moreover,
both the sender and the receiver store the value that was last sent on each data
parameter port, even when this value is no longer relevant. A good example of
the effect is in the block S_SCI_LC_SR of the EULYNX SCI-LC level crossing
interface1. The block essentially forwards messages (with data parameters) between
the core interlocking and the level crossing object controller. The following internal
transition is from the state TRANSMIT_COMMANDS_OR_MESSAGES of the
S_SCI_LC_SL block (to improve readability we shortened the port names):
when(T105_Status)/
DT5_Status := DT105_Status;
T5_Status := TRUE;

Two transitions in the LTS are needed to send what is essentially a single message.
The values of DT5_Status and DT105_Status are remembered (until a new message
is processed) even though the information is no longer relevant.

To optimise our model we introduced the concept of pulse pack, which is a
composite message where all the data parameters are packed into a pulse on a
pulse port. This change removes the interleavings that were present in the original
model, which are unrealistic for packet based communication anyway. In the

1The relevant diagram can be found on page 26 of EULYNX document Eu.Doc.108 v1.0.

51

Scalability

mCRL2 model the Value struct is extended with a constructor for pulse packs
which contains a list of data parameter port names and their assigned values.
Value = struct

· · ·
| Value_Pulse_Pack(params: List(VarValuePair)) ?is_pulse_pack

An additional optimisation is that we reset the data parameters to their initial
value when they are no longer relevant. The sender resets its data parameter ports
at the moment the pulse pack is sent. The receiver stores the values of the data
parameter ports with the change event. The values are discarded when the event is
discarded, or the transition, that was triggered by the event has finished executing.

Whether combining the pulse and the associated data parameters and resetting
the parameter ports meaningfully changes the behaviour depends on how these
ports are used. If a component uses the value of a data parameter port even
when there is no accompanying pulse, then the transformation is invalid. In the
context of EULYNX it is valid, since the modelling standard specifies that all
data parameters should be set before a pulse is sent, and the value of the data
parameter ports is only valid at the moment the pulse is received. In the future,
EULYNX intends to replace pulse ports and data parameter ports with signals,
which also combine all values in a single message. Resetting data parameter ports
to a default value is valid since the modelling standard forbids using the values of
data parameter ports later on. It specifies that if the value of a data parameter
port is to be remembered for later use, then it should be stored in a local variable
of the state machine (prefixed with ‘Mem’). If such rules are not present, a static
analysis could be performed to determine for which ports it is safe to use pulse
packs and reset the parameter ports.

4.1.3 Buffered Communication and the Environment

Without limiting the environment in sending messages, the state space induced by
FormaSig models is infinite as the environment can always add an extra event to
the event queue of a component.

A simple solution is to put a bound on the event queues; a component can then
only receive a message if the event queue is not full. A downside of this approach
is that the model no longer corresponds to the SysML specification. Additionally,
it can introduce deadlocks. When two components both have a full event queue
and are in a run-to-completion in which they need to send a message to each other
they can no longer make progress.

A way to avoid these deadlocks is to (also) restrict the environment. By
restricting when the environment can send a message it is possible to make the
state space finite without introducing deadlocks. We have added an optional
restriction on the environment that it can only send a message when the total
number of messages in the system is below a certain threshold. This is implemented
in the mCRL2 model using multi-actions. Sending a message from the environment
is performed in synchronisation with all the state machines. The state machines

52

4.1 Adapting the Translation to Reduce the State Space

send the length of their event queue and the environment has a guard restricting
the sum of these lengths.

Communication over ports in SysML is asynchronous: the sending component
can always send and the receiver processes places the result of the communication
in the event queue. For communication over a network (between the object
controller and the interlocking) asynchronous communication is the only logical
option. However, within a physical component synchronous communication could
also be achieved. Our framework allows marking some ports as synchronous.
For synchronous ports the sending component blocks until the receiver is able
to communicate. When the communication takes place the receiving component
immediately selects a step based on change events or discards the change events
when they do not enable any transition. This form of communication bypasses the
event queue, decreasing the state space.

An option that is particularly interesting is to mark input ports open to the
environment as synchronous. This way there is no sending party that needs to
block further execution and we prevent putting events in the event queue that will
be discarded in the next step anyway.

These optimisations change the semantics and influence the verification. The
altered model contains a subset of the traces that are allowed by the SysML model.

4.1.4 Splitting Models

As the state space tends to grow exponentially with the number of components it
is profitable to try to reduce the number of components in the analysis. SysML
models are modular as the components behave independently, only interacting by
message passing. We can abstract from certain components and remove them from
the SysML model. The ports that are disconnected by removing a component
become open to the environment.

For EULYNX models there is a natural way of splitting the components as
each interface consists of a generic part and an interface specific part. They can
be considered as different layers of the EULYNX protocol, which are only loosely
coupled with few interactions between the layers. The requirements that we have
identified for the various EULYNX interfaces can all be verified by only considering
the components of one of the layers.

Since ports open to the environment are maximally permissive we do not lose
any behaviour. We would have weak trace inclusion from the complete model to a
partial model if we were to hide all the transitions belonging to behaviour that is
not in the partial model. For every trace in the complete model there is a similar
trace in the partial model, containing only the actions in which the components of
the partial model participate.

We will now make it more precise when a component participates and charac-
terise the trace inclusion. Let C be the set of components of the complete model.
Let P ✓ C be the set of components in the partial model. Any transition has a set
of participants. For any transition there are two cases:

53

Scalability

• If a component performs an internal transition from the set below the com-
ponent is the only participant.

{discardEvent, selectMultiStep, executeBehaviour, executeStep,
inState, inEventPool, resetVariables, varVal}

• If components communicate by sending a value along a port, the sending
component and all the receivers participate.

For an action in the trace of the complete model there are three options:

• All participants are in P : the same action is in the trace of the partial model.

• None of the participants are in P (all participants are components from which
we have abstracted): the action is not in the trace of the partial model.

• Some of the participants are in the partial model and some of the participant
are not. This is only the case when there is a communication between
components that are in the partial model and components that are not. In
this case a similar action is in the trace of the partial model; the send/receive
contribution of the participant that is not in the partial model is replaced by
a send/receive of the environment.

Trace inclusion holds only in one direction; the partial model may contain more
traces than the original model. Components restrict each other’s behaviour. By
making some components part of the environment these restrictions are lifted as the
environment is maximally permissive. Splitting models may then remove deadlocks
present in the combined behaviour.

4.2 Compositional Minimisation

We proceed by exploring compositional minimisation in mCRL2, starting with
an overview of the results of an earlier paper defining the theory of cleaving and
combining [83]. Note that this section relies heavily on the definitions given in
Section 2.2. This section defines a way to split an LPE (see Section 2.2.3), provides
requirements on this split, defines a recombination process and provides a theorem
stating that the recombined process is strongly bisimilar to the original process. In
the next section we extend the theory to branching bisimulation.

Example 4.1. Consider the following LPE, which we use as a running example.
Note that states P (0, false) and P (1, false), and states P (0, true) and P (1, true) are
branching bisimilar.

54

4.2 Compositional Minimisation

P(m : Nat, n : Bool) =
0 : (m ⇡ 0)! ⌧ . P(1, n)
1 : + (m ⇡ 1)! a . P(2, n)
2 : + (m ⇡ 1)! ⌧ . P(2, n)
3 : + (¬n)! b . P(m, true)
4 : + (m ⇡ 1 ^ ¬n)! c . P(2, true)

P (1, false)

P (0, false) P (0, true)

P (1, true)

P (2, false) P (2, true)

HbI

HbI

HbI

HI HI

HcI
HaI HI HaI HI

Suppose we want to split it into two LPEs, of which one controls parameter m and
the other parameter n. Summands 0 to 3 can be split easily as they only depend on
parameters of one of the two components. Summand 4, however, poses a challenge
as it depends on both m and n. The two LPEs need to synchronise for the execution
of this summand.

Before we define how to split an LPE we need to define projection on vectors. Let
I ✓ 0, . . . , n. We define the I-projection of {d0, . . . , dn}, denoted by hd0, . . . , dni|I
as the vector hdi0 , . . . , di`i where ` is the largest natural number such that i0 <

i` < . . . < i` n and ik 2 I for 0 k `. For a vector of data expressions and
their domains ~d : ~D we denote the projection by ~d|I : ~D|I .

Below, we define the notion of a separation tuple. Intuitively, a separation tuple
defines how to split off part of the process parameters and summands of an LPE.
To split an LPE into two parts we need two separation tuples.

Definition 4.2 ([83]). Let P (~d : ~D) = +i2I

P
ei:Ei

ci ! ↵i . P (~gi) be an LPE.
A separation tuple for P is a 6-tuple (U,K, J, c

U
,↵

U
,~h

U) where U ✓ N is a set
of parameter indices, K ✓ J ✓ I are two sets of summand indices, and c

U
,↵

U

and ~hU are functions with domain J \K and as codomains the sets of conditions,
multi-actions and synchronisation expressions, respectively. A synchronisation
expression is just a vector of variables, they represent process parameters that we
will synchronise on. We require that for all i 2 (J \K) it holds that FV(cU (i)) [
FV(↵U (i)) [FV(~hU (i)) ✓ Vars(~d) [{ei}, and for all i 2 K it holds that FV(ci) [
FV(↵i) [FV(~gi|U) ✓ Vars(~d|U) [{ei}.

A separation tuple induces an LPE, where U
c = N \ U , as follows:

PU (~d|U : ~D|U) = +
i2(J\K)

X

ei:Ei,
~d|Uc :~D|Uc

c
U (i)! ↵

U (i)|synci
U
(~hU (i)) . PU (~gi|U)

+ +
i2K

X

ei:Ei

ci ! ↵i|tag . PU (~gi|U)

We assume that action labels synci
U
, for any i 2 I, and label tag do not occur in

the original LPE.

In Definition 4.2 the set J contains the summand indices of all summands
featured in the separation tuple, of which the subset K contains the local summands
and subset J \K the summands needing synchronisation.

55

Scalability

Example 4.3. Consider the LPE P from Example 4.1 again. Suppose we decom-
pose P using the separation tuples

(V , {0, 1, 2}, {0, 1, 2, 4}, {4 7! m ⇡ 1}, {4 7! HcI}, {4 7! hi})

and

(W, {3}, {3, 4}, {4 7! ¬n}, {4 7! HI}, {4 7! hi}),

where V = {0} and W = {1} are sets of parameter indices. These separation tuples
induce the following LPEs:

PV (m : Nat) = (m ⇡ 0)! ⌧ |tag . PV (1)

+ (m ⇡ 1)! a|tag . PV (2)

+ (m ⇡ 1)! ⌧ |tag . PV (2)

+ (m ⇡ 1)! c|sync4
V
. PV (2)

PW (n : Bool) = (¬n)! b|tag . PW (true)

+ (¬n)! ⌧ |sync4
W

. PW (true)

Summands 0 to 3 of the original LPE P are local; they only depend on local process
parameters. The tag labels are added to prevent local summands from unintended
communications in the parallel composition. We revisit the necessity of the tag
action in Example 4.6. Summand 4 of P , which depends on both m and n is split
across PV and PW , which will need to synchronise on the sync4 labels. The LTSs
induced by the LPEs are given in Example 4.7.

Note that Definition 4.2 does not specify how to split an LPE into two sensible
separation tuples. To correctly split an LPE, a number of requirements need to be
fulfilled. Two separation tuples form a cleave if and only if the requirements listed
in [83, Definition 4.6] hold. The definition of the notion of cleave is only needed
in proofs that are not repeated in this thesis. We will only restate the relevant
theorem, hence there is no need to repeat the definition of cleave here. Separation
tuples that are a cleave can be recombined in such a way that the result is strongly
bisimilar to the original LPE (Theorem 4.4 below, the main result of [83]). The
separation tuples from Example 4.3 constitute a cleave.

Theorem 4.4 states both how a cleaved LPE can be recombined and that the
recombined process is strongly bisimilar to the original LPE. A proof of this theorem
is provided in [82].

Theorem 4.4 ([83]). Let P (~d : ~D) = +i2I

P
ei:Ei

ci ! ↵i . P (~gi) be an LPE
and let (V,KV

, J
V
, c

V
,↵

V
, h

V) and (W,K
W
, J

W
, c

W
,↵

W
, h

W) be a cleave for this
LPE. Let PV and PW be the LPEs induced by the separation tuples. For every
closed expression ~◆ : ~D we get the following correspondence between the original
process P (~◆) and the cleaved and recombined process:

P (~◆) $ ⌧{tag}(r{↵i | i2I}[{↵i|tag | i2(KV [KW)}(

⌧{synci | i2I}(�{synciV |synciW! synci | i2I}(PV (~◆|V)) k PW (~◆|W))))

56

4.2 Compositional Minimisation

Let us review the purpose of each operator in the recombining process expression.
Note that each multi-action in PV (~◆|V) and PW (~◆|W) includes either a tag or sync
label. Also note that due to the multi-action semantics, PV (~◆|V) k PW (~◆|W) can
make any combination of steps from PV (~◆|V) and PW (~◆|W). The outer hide operator
simply hides all tag labels. The allow operator is parametrised with an allow set,
which contains each multi-action ↵i of the summands of the original LPE; it also
contains multi-actions ↵i|tag if ↵i is the action in one of the local transitions. Any
other action is blocked. In particular, multi-actions containing two tags or a sync
label are blocked. The communication and inner operators ensure that matching
sync labels communicate and are subsequently hidden.

In the proofs of Section 4.3 we need that the multiset consisting of a single tag
action is always allowed by the allow operator. The allow operator in the process
expression of Theorem 4.4 only includes a tag action if there exists an i 2 I such
that ↵V (i) = ⌧ or ↵W (i) = ⌧ . Corollary 4.5 (below) states that we can always add
the tag action to the allow set.

Corollary 4.5. Let P (~d : ~D) = +i2I

P
ei:Ei

ci ! ↵i . P (~gi) be an LPE and let
(V,KV

, J
V
, c

V
,↵

V
, h

V) and (W,K
W
, J

W
, c

W
,↵

W
, h

W) be a cleave for this LPE.
Let PV and PW be the LPEs induced by the separation tuples. For every closed
expression ~◆ : ~D we get the following correspondence between the original process
P (~◆) and the cleaved and recombined process:

P (~◆) $ ⌧{tag}(r{tag}[{↵i | i2I}[{↵i|tag | i2(KV [KW)}(

⌧{synci | i2I}(�{synciV |synciW! synci | i2I}(PV (~◆|V)) k PW (~◆|W))))

Proof. Let P
0(~◆) be an LPE which includes all summands of P (~◆) and adds a

dummy summand (false)! ⌧.P (g), where g is some arbitrary update expression.
Clearly P (~◆) and P

0(~◆) are strongly bisimilar. Let the added summand be the last
summand with index n. Then there is a cleave of P 0(~◆) consisting of the separation
tuples (V [{n},KV [{n}, JV

, c
V
,↵

V
, h

V) and (W,K
W
, J

W
, c

W
,↵

W
, h

W). By
Theorem 4.4 we have the following correspondence:

P
0(~◆) $ ⌧{tag}(r{↵i | i2(I[{n})}[{↵i|tag | i2(KV [KW[{n})}(

⌧{synci | i2(I[{n})}(�{synciV |synciW! synci | i2(I[{n})}(PV (~◆|V)) k PW (~◆|W))))

The allow set can be rewritten to {tag} [{↵i | i 2 I} [{↵i|tag | i 2 (KV [K
W)}.

The extension from I to I [{n} in the hiding and communication operators does
not change the behaviour as PV [{n}(~◆|V [{n}) and PW (~◆|W) cannot produce syncn

actions. By transitivity of strong bisimulation we obtain:

P (~◆) $ ⌧{tag}(r{tag}[{↵i|i2I}[{↵i|tag|i2(KV [KW)}(

⌧{synci|i2I}(�{synciV |synciW! synci|i2I}(PV (~◆|V)) k PW (~◆|W))))

57

Scalability

From now on we use the following shorthand for convenience, which is only a
well defined process expression in the context of a process and its cleave, which
define ↵, I, V and W .

C(P) := ⌧{tag}(r{tag}[{↵i | i2I}[{↵i|tag | i2(KV [KW)}(

⌧{synci | i2I}(�{synciV |synciW! synci | i2I}(P))))

Since strong bisimulation is a congruence for the operators used to construct C,
processes PV (~◆|V) and PW (~◆|W) can be replaced by any strongly bisimilar process
expression or LTS. The theory is implemented in two tools. Given a set of process
parameters the tool lpscleave correctly cleaves an LPS into two LPSs. Recall that
an LPS consists of both an LPE and a data specification. The tool lpscombine
applies the operators in the context C to two LPSs or LTSs.

4.3 Extension to Branching Bisimilarity

The difficulty of supporting branching bisimulation reduction of component LPEs
lies in the fact that transitions local to a component are made visible by adding a
tag label. These tag labels are necessary to prevent ⌧ -transitions from arbitrarily
communicating with other summands, as explained in the following example.

Example 4.6. Suppose the component LPEs PV and PW from Example 4.3 did not
have added tag actions. As can be seen below, C(PV (1) k PW (false)) can perform a b-
labelled transition to C(PV (2) k PW (true)), which cannot be mimicked by P (1, false)
as the only b-labelled transition it can perform leads to a state from which an a-
labelled transition is enabled. The b-labelled transition stems from a synchronisation
between the summands (m ⇡ 1)! ⌧ . PV (2) and (¬n)! b . PW (true).

P (1, false)

P (0, false) P (0, true)

P (1, true)

P (2, false) P (2, true)

C(PV (1) k PW (false))

C(PV (0) k PW (false)) C(PV (0) k PW (true))

C(PV (1) k PW (true))

C(PV (2) k PW (false)) C(PV (2) k PW (true))

HbI

HbI

HbI

HI HI

HcI
HaI HI HaI HI

HbI

HbI

HbI

HI HI

HcI
HaI HI HaI HI

HbI

HbI

Hence, in the absence of tag labels, the process expressions P (1, false) and C(PV (1) k
PW (false)) are not strongly bisimilar, and therefore also not branching bisimilar.
This is problematic for minimisation modulo branching bisimilarity because a side
effect of the tag actions is that there are no ⌧ -labelled transitions. Hence, we do
not get a larger reduction than with strong bisimulation minimisation.

58

4.3 Extension to Branching Bisimilarity

The solution to minimising modulo branching bisimulation without having
communicating ⌧ ’s in the parallel composition is presented in Theorem 4.11 below.
Intuitively, the theorem states that we can replace a component P of a cleaved
process by a process P

0 if P and P
0 are branching bisimilar after abstraction from

tag-actions. We illustrate this with an example.

Example 4.7. Below we give the LTSs of PV and PW from Example 4.3.

PV (0) PV (1) PV (2) PW (false) PW (true)
HtagI Ha, tagI

HtagI

Hc, sync4V I

Hb, tagI

Hsync4W I

Below we show three subsequent transformations on PV : hiding tag actions, min-
imising modulo branching bisimulation and adding a tag action to each transition
that does not have a sync label.

s0 s1 s2 t0 t1 u0 u1

HI HaI

HI

Hc, sync4V I

HaI

HI

Hc, sync4V I

Ha, tagI

HtagI

Hc, sync4V I

Below we show the reachable part of the labelled transition system of C(u0 k
PW (false)). Note that the LTS is branching bisimilar to the original LPE P (see
Example 4.6), and also smaller.

C(u0 k PW (false)) C(u0 k PW (true))

C(u1 k PW (false)) C(u1 k PW (true))

HbI

HbI

HcI
HaI HI HaI HI

Before we present Theorem 4.11, which generalises and formalises the substitu-
tion of PW (false) with u0 we performed in Example 4.7, we present two definitions
and two lemmas to relate transitions possible in process expressions of the form
C(P k Q) and the transitions possible from the parallel components P and Q.

For a process expression P , let A(P) denote the alphabet of P , i.e., A(P) =
{! 2 ⇤ | P �!⇤

P
0 !�! P

00}.

Definition 4.8. A process expression P is a tag/sync process expression if, and
only if, every label in A(P) contains exactly one tag or sync label:

8!2A(P)((
X

a2{tag}[{synciV |i2N,V✓N}!(a)) = 1).

59

Scalability

Recall S from Definition 2.5, which denotes the set of all process expressions. Let
Sts(V) ✓ S, with V ✓ N, denote the set of all tag/sync process expressions where
each sync action has subscript V .

Note that any LPE induced by a cleave is a tag/sync process. The lemma below
relates ⌧ -labelled paths from ⌧{tag}(P) and C(P k Q).

Lemma 4.9. Let there be some LPE and cleave providing the context for C. Let
P and Q be tag/sync process expressions. Then we have that

⌧{tag}(P) ⇣ ⌧{tag}(P
0) implies C(P k Q) ⇣ C(P 0 k Q)

Proof. The proof is by induction on the length of a sequence of ⌧ -transitions from
⌧{tag}(P) to ⌧{tag}(P 0). In the base case, when the length of that sequence is 0,
there is nothing to prove. In the step case we declare a variable k 2 N denoting
the length of the path. The induction hypothesis is stated below.

⌧{tag}(P) = ⌧{tag}(P0)
HI�! · · · HI�! ⌧{tag}(Pk) implies C(P0 k Q) ⇣ C(Pk k Q)

Now consider a sequence

⌧{tag}(P) = ⌧{tag}(P0)
HI�! · · · HI�! ⌧{tag}(Pk+1) = ⌧{tag}(P

0)

of length k + 1. By the induction hypothesis C(P0 k Q) ⇣ C(Pk k Q). In
accordance with the operational rules Pk

Htag:nI����! Pk+1, with n 2 N. Note that by
the assumption that P is a tag/sync-process (and Pk as well, since it is reachable
from P) we have that n = 1. Since HtagI is in the allow set of C, it follows that
C(Pk k Q)

HI�! C(Pk+1 k Q). Hence C(P0 k Q) ⇣ C(Pk+1 k Q).

The next lemma relates transitions of C(P k Q) and P and Q.

Lemma 4.10. Let L(~d : ~D) = +i2I

P
ei:Ei

ci ! ↵i . L(~gi) be an LPE and
let (V,KV

, J
V
, c

V
,↵

V
, h

V) and (W,K
W
, J

W
, c

W
,↵

W
, h

W) be a cleave. Let P 2
Sts(V) and Q 2 Sts(W) be tag/sync process expressions. For every transition
C(P k Q)

!�! C(P 0 k Q0) we have that either

• P
!+HtagI�����! P

0 and Q = Q
0;

• Q
!+HtagI�����! Q

0 and P = P
0 or

• P
!1+HsynciV (~d)I���������! P

0
, Q

!2+HsynciW (~d)I����������! Q
0
,!1 + !2 = !.

Proof. Suppose C(P k Q)
!�! C(P 0 k Q0). Unfolding the shorthand C:

⌧{tag}(r{tag}[{↵i | i2I}[{↵i|tag | i2(KV [KW)}(⌧{synci | i2I}(

�{synciV |synciW! synci | i2I}(P k Q))))
!�! ⌧{tag}(

r{tag}[{↵i | i2I}[{↵i|tag | i2(KV [KW)}(

⌧{synci | i2I}(�{synciV |synciW! synci | i2I}(P
0 k Q0))))

60

4.3 Extension to Branching Bisimilarity

The last rule applied in the derivation of this transition must be Hide, with
the following premise, for some n 2 N:

r{tag}[{↵i | i2I}[{↵i|tag | i2(KV [KW)}(⌧{synci | i2I}(

�{synciV |synciW! synci | i2I}(P k Q)))
!+Htag:nI������!

r{tag}[{↵i | i2I}[{↵i|tag | i2(KV [KW)}(

⌧{synci | i2I}(�{synciV |synciW! synci | i2I}(P
0 k Q0)))

The last rule applied in the derivation of this transition must be Allow, with
the following premise, and the restriction that !1 2 {J↵K | ↵ 2 {tag} [{↵i | i 2
I} [{↵i|tag | i 2 (KV [K

W)}}:

⌧{synci | i2I}(�{synciV |synciW! synci | i2I}(P k Q))
!1�!

⌧{synci | i2I}(�{synciV |synciW! synci | i2I}(P
0 k Q0))

The last rule applied in the derivation of this transition must be Hide, with
the following premise.

�{synciV |synciW! synci | i2I}(P k Q)
!1+!2����! �{synciV |synciW! synci | i2I}(P

0 k Q0)

There is the restriction that !2 consists solely of sync actions, i.e. for all a such
that !2(a) > 0 we have that a 2 {synci | i 2 N}.

The last rule applied in the derivation of this transition must be Com, with the
following premise.

P k Q !1+!3+!4�������! P
0 k Q0

It is required that !3 and !4 consist of complementing sync actions:

For all a such that !3(a) > 0 : a 2 {synci
V
| i 2 N}

For all a such that !4(a) > 0 : a 2 {synci
W

| i 2 N}
For all i 2 N and ~d 2 DsynciV

: !3(sync
i

V
(~d)) = !4(sync

i

W
(~d))

Note that P 2 Sts(V) and Q 2 Sts(W) are tag/sync process expressions. Hence,
for any derivation with as conclusion P

!
0
�! P

0 or Q
!

0
�! Q

0 we have that !0 must
contain either one tag action or one sync action. We can distinguish three cases for
the rule applied in the derivation of P k Q !1+!3+!4�������! P

0 k Q0:

• Par: due to the restrictions on the multiset !1 + !3 + !4 and the fact
that P and Q are tag/sync process expressions we can exclude a number of
possibilities: P and Q cannot both contribute a tag action (since !1 contains
at most one) and it cannot be the case that either P or Q contributes a tag
action and the other a sync action (as syncs must come in matching pairs).
The only possibility is that P and Q contribute matching sync actions and !1

is split in some way: P
!

1
1+HsynciV (~d)I���������! P

0
, Q

!
2
1+HsynciW (~d)I����������! Q

0
,!

1
1 + !

2
1 = !.

61

Scalability

• ParL: Only P contributes to the derivation. Since P cannot make a step
with matching sync actions it must make a step with a single tag action:
P

!+HtagI�����! P
0 and Q = Q

0.

• ParR: Only Q contributes to the derivation. Since Q cannot make a step
with matching sync actions it must make a step with a single tag action:
Q

!+HtagI�����! Q
0 and P = P

0.

We are now ready to prove the main contribution of this chapter. The theorem
states that, in the context C(P k Q), we can swap out component LPE P with
some process expression L if ⌧{tag}(P) $b ⌧{tag}(L).

Theorem 4.11. Let P (~d : ~D) =+i2I

P
ei:Ei

ci ! ↵i . P (~gi) be an LPE and let
(V,KV

, J
V
, c

V
,↵

V
, h

V) and (W,K
W
, J

W
, c

W
,↵

W
, h

W) be a cleave. Let ~◆ : ~D be an
arbitrary closed expression. Let L 2 Sts(V) and R 2 Sts(W) be tag/sync process ex-
pressions such that ⌧{tag}(PV (~◆|V))$b ⌧{tag}(L) and ⌧{tag}(PW (~◆|W))$b ⌧{tag}(R).
We then have

P (~◆) $b C(L k R).

Proof. By Theorem 4.4, we have: P (~◆) $ C(PV (~◆|V) k PW (~◆|W)) and therefore
P (~◆) $b C(PV (~◆|V) k PW (~◆|W)). It therefore suffices to show that C(PV (~◆|V) k
PW (~◆|W)) $b C(L k R), which we prove by showing that

R = {(C(P k Q), C(P 0 k Q0)) | P, P 0 2 Sts(V) ^Q,Q
0 2 Sts(W) tag/sync

process expressions s.t. ⌧{tag}(P)$b ⌧{tag}(P
0)^⌧{tag}(Q)$b ⌧{tag}(Q

0)}

is a branching bisimulation relation. Note that PV (~◆|V) and PW (~◆|W) are tag/sync
process expressions. To check the transfer conditions of the pairs in R we pick ar-
bitrary process expressions P, P 0

, Q and Q
0 meeting the conditions of the definition

of R.

Suppose C(P k Q)
!�! C(P 00 k Q00). By Lemma 4.10 there are three options for

the contributions of P and Q.

• P
!+HtagI�����! P

00 and Q = Q
0. Since ⌧{tag}(P) $b ⌧{tag}(P

0), there exist S and
S
0 such that

⌧{tag}(P
0) ⇣ ⌧{tag}(S)

(!)��! ⌧{tag}(S
0)

with both ⌧{tag}(P) $b ⌧{tag}(S) and ⌧{tag}(P 00) $b ⌧{tag}(S
0).

By Lemma 4.9 we have that C(P 0 k Q0) ⇣ C(S k Q0). Since P
0 is a tag/sync

process, so is S; hence a single tag action is hidden by the application of

62

4.4 Minimisation

the rule Hide in the derivation of the transition ⌧{tag}(S)
(!)��! ⌧{tag}(S

0).

Therefore S
(!+HtagI)������! S

0. Hence C(S k Q
0)

(!)��! C(S0 k Q
0). Due to our

definition of R, ⌧{tag}(P) $b ⌧{tag}(S) and ⌧{tag}(P 00) $b ⌧{tag}(S
0) we have

that

(C(P k Q), C(S k Q0)) 2 R and (C(P 00 k Q), C(S0 k Q0)) 2 R.

The transfer conditions of Definition 2.10 are hereby satisfied.

• Q
!+HtagI�����! Q

0 and P = P
0: completely symmetric to the first case.

• P
!1+HsynciV (~d)I���������! P

00
, Q

!2+HsynciW (~d)I����������! Q
00, and ! = !1 + !2. Since we have

that ⌧{tag}(P) $b ⌧{tag}(P
0) there must exist S and S

0 such that

⌧{tag}(P
0) ⇣ ⌧{tag}(S)

!1+HsynciV (~d)I���������! ⌧{tag}(S
0)

with ⌧{tag}(P)$b ⌧{tag}(S) and ⌧{tag}(P 00)$b ⌧{tag}(S
0). Furthermore, since

⌧{tag}(Q) $b ⌧{tag}(Q
0) there must exist T and T

0 such that

⌧{tag}(Q
0) ⇣ ⌧{tag}(T)

!2+HsynciW (~d)I����������! ⌧{tag}(T
0)

with ⌧{tag}(Q) $b ⌧{tag}(T) and ⌧{tag}(Q00) $b ⌧{tag}(T
0).

By Lemma 4.9 we have that C(P 0 k Q0) ⇣ C(S k T). Since S
!1+HsynciV (~d)I���������! S

0

and T
!2+HsynciW (~d)I����������! T

0 (the restrictions on the alphabet of P 0 and Q
0 prohibit

extra tags in the multi-actions), we have that C(S k T) !1+!2����! C(S0 k T 0).
Due to the definition of R we also have that

(C(P k Q), C(S k T)) 2 R and (C(P 00 k Q00), C(S0 k T 0)) 2 R.

The transfer conditions of Definition 2.10 are satisfied.

4.4 Minimisation

Theorem 4.11 establishes sufficient conditions for correct replacement of a com-
ponent; we are interested in replacing a component by one that is minimal with
respect to branching bisimilarity. In this section we will formalise the process
shown in Example 4.7, in which we hide the tag actions, minimise the LTS and
reintroduce tag actions for all transitions that do not have a sync label.

Definition 4.12. We extend the process algebra of Definition 2.5 with a tagging
operator TH(P), where H ✓ ⇤ is a non-empty finite set of action labels. Let
the extended grammar be denoted by St and let St denote the set of all process
expressions that can be constructed from the grammar.

63

Scalability

Definition 4.13. We presuppose some LTS (St,⌦,!1). We associate an LTS
(St,⌦,!) to expressions of St, where St is parametrised with constants St. The
relation �! is the least relation including the transition relation !1, the rules of
Definition 2.8 and the rules below. For any ! 2 ⌦, expressions P, P

0 2 St and
H ✓ ⇤:

P
!�! P

0

TH(P)
!�! TH(P 0)

! \H 6= ;
P

!�! P
0

TH(P)
!+HtagI�����! TH(P 0)

! \H = ;

When the tagging operator is enclosed by a hiding operator that hides tag
actions, the tagging operator has no effect, see Lemma 4.14.

Lemma 4.14. For all H ✓ ⇤ and P 2 S: ⌧{tag}(P) $ ⌧{tag}(TH(P)).

Proof. Trivial. For any step P
!�! P

0, both ⌧{tag}(P)
!�HtagI�����! ⌧{tag}(P

0) and

⌧{tag}(TH(P))
!�HtagI�����! ⌧{tag}(TH(P 0)).

Theorem 4.15 (below) states that the procedure of hiding, minimising and
tagging yields components that can be composed in context C whilst preserving
branching bisimilarity. Processes L and R can be chosen to be minimal with respect
to branching bisimilarity.

Theorem 4.15. Let P (~d : ~D) =+i2I

P
ei:Ei

ci ! ↵i . P (~gi) be an LPE and let
(V,KV

, J
V
, c

V
,↵

V
, h

V) and (W,K
W
, J

W
, c

W
,↵

W
, h

W) be a cleave. Let ~◆ : ~D be
an arbitrary closed expression. Let L and R be process expressions such that they
are branching bisimilar to ⌧{tag}(PV (~◆|V)) and ⌧{tag}(PW (~◆|W)), respectively. Let
H = {synci

V
| i 2 N} [{synci

W
| i 2 N}.

P (◆) $b C(TH(L) k TH(R))

Proof. Note that TH(L) and TH(R) are tag/sync processes: both have either a tag
or sync label in every reachable transition. By Lemma 4.14

⌧{tag}(TH(L)) $ ⌧{tag}(L) and ⌧{tag}(TH(R)) $ ⌧{tag}(R).

As L $b ⌧{tag}(PV (~◆|V)) and R $b ⌧{tag}(PW (~◆|W)) we have that

⌧{tag}(TH(L)) $b ⌧{tag}(PV (~◆|V)) and ⌧{tag}(TH(R)) $b ⌧{tag}(PW (~◆|W)).

The requirements of Theorem 4.11 are satisfied, finishing the proof.

The tool lpscombine has been extended with the option to automatically add
a tag label to every transition that does not contain a sync label in the LTSs it is
combining.

64

4.5 Experimental Results

4.5 Experimental Results

In this section we report on the effect of the state space reduction techniques
discussed in this chapter on several FormaSig models. Besides presenting statistics
on the size of the state space we also compare compositional minimisation to
another technique that aims to support model checking of large models: symbolic
model checking. The models used for the experiments in this section, along with
instructions on how to replicate our results, can be found in the Zenodo repository
[12].

4.5.1 Pulse Packs

With pulse packs, the state space of a model with just the S_SCI_LC_SR block
of the EULYNX SCI-LC interface contains 46,347 states. Without pulse packs
the state space contains at least 5 · 108 states. We were not able to explore the
entire state space within a day. The symbolic tool lpsreach also was not able to
compute the size of the state space as it needs parallelism to obtain performance
benefits with the symbolic techniques. The state space becomes so large because
for the component in isolation all its input data parameter ports are open to
the environment and can be set to any value at any time. When the component
is put into composition with other components its inputs are restricted by the
behaviour of the connected components. Pulse packs and resetting parameter ports
are therefore essential to apply compositional minimisation as we need to be able
to efficiently compute the state space of a single component.

4.5.2 Compositional Minimisation

Component #states #states
(modulo $)

#states
(modulo $b)

scpPrim 150 76 31

scpSec 174 73 24

prim 259 104 38

sec 636 137 37

est 561 212 77

smi 1788 166 51

flc 20,127 10,052 2,373

slc 17,378 11,011 2,058

functions 432,954 64,639 19,940

Table 4.1: Metrics on the state spaces of components of the full SCI-LC interface.

65

Scalability

In the mCRL2 model resulting from the translation of the EULYNX interface,
the state machines can be recognised as components, and thus there is a natural
partitioning of the parameters resulting in a suitable cleave. Branching bisimulation
minimisation is effective on these components (see Table 4.1). The reason is that
the transitions related to transition selection and execution (selectMultiStep,
executeStep, executeBehaviour and discardEvent) can be hidden. Moreover,
these transitions are local to the components so they are not labelled with a sync
label, creating potential for minimisation if the transition is inert.

We ran our experiments on the generic part of the interfaces, on the interface-
specific parts of the point interface (SCI-P) and the level crossing interface (SCI-LC),
on the combined generic and specific parts of the level crossing interface (full SCI-
LC) and on an alternative version of the level crossing interface used in some
countries (SCI-LX).

The tools lpscleave and lpscombine always work on two components. To
support multiple components we cleave recursively, in each step splitting off one
component; Combining is performed in reverse order. The workflow is depicted in
Figure 4.1.

Monolithic LPS

Comp2 LPS

Comp1 LPS Comp1 LTS

Comp2 LTS

Combined LTS

Comp1
minimised LTS

Comp2
minimised LTS

Figure 4.1: Workflow for compositional minimisation.

Table 4.2 shows how much the state space is reduced using branching bisimula-
tion minimisation, the number of states for the monolithic models are computed
using the symbolic exploration tool lpsreach, which is part of the mCRL2 toolset.
The reduction achieved by intermediate minimisation is 3 to 6 orders of magnitude
and scales with the number of components. For the full SCI-LC model, neither
lpsreach nor the compositional approach is able to explore it within a day. For
most models, intermediate strong bisimulation minimisation was not sufficient to
make state space generation tractable. We were only able to obtain the state space
of the generic model, which consists of 1.09696⇥ 109 states.

Table 4.3 shows how much time each step of the compositional approach takes.
Linearisation and cleaving are quick operations. State space exploration and
minimisation of components can be performed in parallel, making it independent of

66

4.5 Experimental Results

Model #states
monolithic

#states
compositional

Reduction
factor

#compo-
nents

generic 4.9023⇥ 1010 1.1050⇥ 106 4.4363⇥ 104 6

SCI-LC
specific

2.7121⇥ 1012 2.5961⇥ 109 1.0556⇥ 103 3

SCI-LX 1.3353⇥ 1012 1.2540⇥ 106 1.0649⇥ 106 6

SCI-P
specific

1.2129⇥ 1012 1.4563⇥ 107 8.3294⇥ 104 3

full SCI-
LC

> 3⇥ 1018 unknown unknown 9

Table 4.2: Metrics reduction factor by intermediate branching bisimulation minimisation.

the number of components. The time to combine the LTSs depends on the size of
the final LTS. Any LTS small enough for model checking (less than a billion states)
can be generated within approximately a day. All benchmarks were performed on a
machine equipped with four 12-core Intel Xeon Gold 6136 CPUs and 3TB of RAM.

Model Linearisation
+ cleaving

Generating
+ minimising
LTSs

Combining
LTSs

Total

generic 5s 166s 65s 236s

SCI-LC
specific

9s 2,883s 93,744s 96,636s

SCI-LX 7s 181s 273s 460s

SCI-P
specific

3s 557s 369s 929s

Table 4.3: Metrics state space exploration compositional approach.

Requirement Verification. In an earlier case study of the EULYNX point
interface [21] we hit the limits of the model checking capabilities of mCRL2. For
the SCI-P specific model we could not generate the entire state space. mCRL2
offers both symbolic model checking [81] and explicit state model checking. The
symbolic tools do not explore the state space explicitly; they therefore typically
provide much better scalability. A benefit of the explicit tools is that they can
provide counterexamples [30, 116]. For the point interface we used the symbolic

67

Scalability

model checking tools but they were still not able to verify any of the requirements.
Below we review whether compositional minimisation combined with the explicit

state model-checking tools offer better performance than the symbolic model-
checking tools. In mCRL2, a formula is verified by constructing and subsequently
solving a PBES from the combination of the formula and the LPS or LTS. Table
4.4 shows the time it takes to verify the formula [true⇤]htrueitrue, expressing
that every reachable state has some outgoing transition; which we can check for
all models since it does not depend on specific action labels. The symbolic tool
pbessolvesymbolic is applied to a PBES derived from the LPS. The explicit
tools are applied to a PBES obtained from the LTS, which was obtained from
the compositional approach. Statistics of the explicit tool are provided with and
without counterexample generation enabled. The tools add PBES equations to
be able to extract a counterexample at the end, which slows down the solver
significantly, as can be seen.

Model symbolic explicit explicit + counter

generic >7 days 112s 3,169s

SCI-LC specific >7 days >7 days >7 days

SCI-LX >7 days 116s 4,210s

SCI-P specific >7 days 1,854s 69,621s

Table 4.4: Metrics on the time needed for verification using various approaches.

For more involved properties our experience is similar; The explicit verification
tool paired with compositional minimisation outperforms the symbolic model
checking tool, with the extra benefit of providing counterexamples. The explicit
tools cannot be used without compositional minimisation due to the size of the
state spaces (see Table 4.2).

Applied on the examples considered in [83] to illustrate the effect of decomposi-
tional strong bisimulation minimisation, the extension to branching bisimulation
minimisation presented here does not lead to significantly smaller components.
The reason is that the components in those examples have hardly any internal
behaviour.

4.5.3 Restricting the Environment

In Section 4.1.3 we proposed several ways to limit the state space explosion due
to communication with the environment. One way is to make communication
synchronous, any message from the environment is immediately used to trigger
a transition, or discarded. Another way is to let the environment only send a
message when there is no event already in the queue of one of the components, i.e.
the environment waits until the system is idle. Table 4.5 shows the results of these

68

4.6 Conclusion

measures on the state space of the SCI-LX level crossing interface. Note that the
model is not exactly the same as in previous experiments. This experiment was
performed later in the project with a newer version of the toolchain.

Model #states
monolithic

#states
compositional

SCI-LX, no restrictions 1.2876⇥ 1010 7.1980⇥ 107

SCI-LX + synchronous environment 2.6021⇥ 109 3.9482⇥ 107

SCI-LX + wait until idle 3.7755⇥ 107 2.4280⇥ 106

SCI-LX + synchronous environment
+ wait until idle

3.7755⇥ 107 2.4280⇥ 106

Table 4.5: Metrics on the effect of environment restrictions on the state space. For each
model variant compositional branching bisimulation minimisation was used.

Synchronous communication with the environment yields a small reduction of
the state space, possibly because the SCI-LX model does not have many ports
open to the environment. Making the environment wait until the system is idle
does yield a sizeable reduction of factor 30. Combining the two does not lead to a
further reduction.

4.6 Conclusion

We have shown that we are able to reduce the state space induced by the formalised
EULYNX models by several orders of magnitude. The extension of lpscombine
should also be effective for other models with similar features. When only commu-
nications between components are renamed to ⌧ , component-based minimisation
does not reduce the state space. In our models three factors come together enabling
a large reduction in the state space:

1. All ⌧ transitions are local to a single component;

2. Most ⌧ transitions are inert;

3. It is difficult to adapt the model to prevent inert ⌧ transitions.

It is likely that other behavioural equivalences (such as weak bisimulation and
divergence preserving branching bisimulation) can also be used to safely minimise
the LTS of components in which tag actions have been hidden. Extending the the-
ory further would entail repeating the proof of Theorem 4.11 for other behavioural
equivalences, which is left as future work.

69

Chapter 5
Case Studies

If the highest aim of a captain were
to preserve his ship, he would keep
it in port forever.

Thomas Aquinas

In the preceding chapters we presented a formal verification toolchain for SysML
models. This is not just an academic matter; there are concrete EULYNX models
to analyse. In fact, many (academic) advancements regarding scalability stem
from attempts to verify requirements for EULYNX models. In this chapter we
go through a number of case studies considering different EULYNX interfaces.
This chapter serves multiple purposes. Firstly, it demonstrates the strength of
our toolchain, and its limitations. Secondly, it collects all our findings regarding
shortcomings in the EULYNX standard. Lastly, and perhaps most importantly, it
shows the lessons learned during verification: how we refined requirements through
an iterative process and how the subtleties of SysML semantics can introduce
issues.

Within FormaSig we restricted ourselves to the following interfaces: SCI-P
(point), SCI-LX (the variant of level crossing used by DB) and SCI-LC (the variant
of level crossing used by ProRail). The common prefix ‘SCI’ denotes ‘Secure
Control Interface’. EULYNX also defines maintenance (SMI) and diagnostics (SDI)
interfaces, which are outside the scope of FormaSig.

The case studies have been performed over an extensive time period, using
various versions of the toolchain. In writing this thesis the case studies were
revisited, using the latest version of the toolchain. With the exception of the
analysis of the generic and point interface (see [20, 21]) the material in this chapter
has not been published elsewhere.

For documentation and replication purposes the mCRL2 models and µ-calculus
formulas used in the case studies can all be found in a Zenodo repository [12]. This
repository also includes instructions on how to run the verifications.

71

Case Studies

Interface
name

Field element Document Section

Generic All Eu.Doc.20, version 3.1 5.4
SCI-P Point/Switch Eu.Doc.36, version 2.7 5.5
SCI-LX Level crossing Eu.Doc.111, version 1.0 5.3
SCI-LC Level crossing Eu.Doc.108, version 1.0 5.6

Table 5.1: Overview of the case studies. The document column indicates from which
EULYNX document the SysML diagrams are sourced.

The remainder of this chapter is structured as follows. In Section 5.1 we present
the general structure of (the SysML models of) EULYNX interfaces. Section 5.2
explains the common verification approach consisting of the method of requirements
elicitation and the toolchain used. Table 5.1 shows which EULYNX interface is
treated in which section. In Section 5.7 we discuss the limitations of our analysis.
Section 5.8 concludes the chapter with a retrospective of the lessons learned.

5.1 Structure EULYNX Interfaces and Models

The messages exchanged over the network, the logic of the object controller and the
interfacing logic of the interlocking constitute the EULYNX standard (see Figure
5.1). Note that the electrical connections between the object controller and the
actual hardware is left unspecified.

object control ler
logic

EULYNX scope

Inter locking
logic I / O Hardware

(lights, sensors, motors)I / O

Figure 5.1: Scope of EULYNX interfaces. The connection between the interlocking and
the object controller is packet-based and runs over an IP network. The
connection between the object controller and the field element is not specified
by EULYNX but typically electrical.

The communication between the interlocking and the object controller is dis-
tributed over three layers (see Figure 5.2). The first layer manages a channel
that follows the RaSTA protocol. RaSTA is a safety-focused rail network protocol,
described in a DIN standard [114]. The second layer extends the first layer with
functionality for identifying the version of EULYNX running on the device on the
other side. It also reports general failure modes, such as power loss. The first and
second layer are shared by all interfaces. There are two variants of the generic layer

72

5.1 Structure EULYNX Interfaces and Models

namely a variant for subsystems (i.e. field elements) and a variant for adjacent
systems (e.g. for the interlocking-interlocking interface). The third layer is specific
to the interface at hand (point, light signal, etcetera).

Interface-specif ic

Generic Object
control ler

logic

RaSTA

I / O

Figure 5.2: Layers of communication between the interlocking and the object controller.

Each layer of a EULYNX interface consists of a number of components which
are represented as blocks in the IBDs. See Figure 5.3 for an example of a component
decomposition. Some blocks model behaviour of the interlocking whilst other blocks
model behaviour of the object controller. The RaSTA protocol is actually not
modelled explicitly in EULYNX. The interface to RaSTA is modelled but there are
no components modelling the behaviour of RaSTA. It is part of the environment
with which EULYNX may interact. We modelled the behaviour of RaSTA ourselves
with blocks S_SCI_SCP_Prim_SR and F_SCI_SCP_Sec_SR, to be able to
analyse the interaction between RaSTA and EULYNX. Our modelling of RaSTA
can be found in the Zenodo repository [12].

Point

Point-specific

RaSTA

Generic

Interlocking

:F_SMI_EfeS_SR

:F_P3_Gen

:F_EST_EfeS_SR

:S_SCI_P_SR :F_SCI_P_SR

:S_SCI_SCP_Prim_SR :F_SCI_SCP_Sec_SR

:S_SCI_EfeS_Prim_SR :F_SCI_EfeS_Sec_SR

Figure 5.3: Structure of the components of the EULYNX Point interface. Arrows indicate
communication channels between components.

73

Case Studies

5.2 Common Approach

Before we move on to the specifics of each case study we discuss our approach
regarding the strategy to requirement elicitation and the strategy to reduce the
state space.

5.2.1 Requirements Elicitation

The EULYNX standard specifies, through sequence diagrams, several scenarios
for each interface. The state machines of the interface should at least admit the
correct execution of these scenarios. They can be interpreted as requirements.
However, to assess the quality of the EULYNX standard, we need to verify stronger
requirements: rather than one scenario, we need to verify that properties hold
along all execution paths of the system. The system should never be allowed to
perform behaviour that leads to hazardous situations. Eliciting such requirements
is an explicit concern of the FormaSig project, as good requirements are essential
to assess the quality of EULYNX specifications.

A challenge in formulating pertinent requirements is that the prerequisite
knowledge is, currently, split between the academic partners of FormaSig and the
infrastructure managers: only the former possess the skills to formulate formal
requirements, and only the latter possess the signalling domain knowledge. To
overcome this challenge, we adopted an iterative process of requirement elicitation.
We started out by gathering background information and identifying hazards by
interviewing signalling experts. These general hazards were translated to require-
ments in natural language. We then attempted to verify the refined requirements
using the mCRL2 model checker. For requirements that did not hold for the model
we assessed whether the model contains an error or the requirement is too strong.
In the latter case we refined the requirement.

For example, we derived the following requirement: “When component F_EST-
_EfeS_SR signals to component F_SCI_EfeS_Sec_SR that the object controller
is not ready for a connection by sending a message on port ‘T18_Not_Ready_-
For_PDI_Connection’, then component F_SCI_EfeS_Sec_SR is not allowed to
be in the state ‘PDI_CONNECTION_ESTABLISHED’ until a message on port
‘T21_Ready_For_PDI_Connection’ is received.” By formalising the requirement
in the µ-calculus and checking whether the mCRL2 model satisfied this requirement,
we found a counterexample in which the communication over port ‘T18_Not_-
Ready_For_PDI_Connection’ happens while F_SCI_EfeS_Sec_SR is in the
state ‘PDI_CONNECTION_ESTABLISHED’. Clearly, the component needs some
time to process the message and move out of the state ‘PDI_CONNECTION_-
ESTABLISHED’.

We weakened the requirement to “When component F_EST_EfeS_SR signals
to component F_SCI_EfeS_Sec_SR that the object controller is not ready for a
connection by sending a message on port ‘T18_Not_Ready_For_PDI_Connection’,
then component F_SCI_EfeS_Sec_SR will always eventually move out of the state
‘PDI_CONNECTION_ESTABLISHED’ and not establish a connection again until

74

5.2 Common Approach

a message on port ‘T21_Ready_For_PDI_Connection’ is received.”.
When we are confident that the formula captures the intended purpose, but it

still does not hold for the model we go back to the signalling engineer to discuss the
results. An important tool in understanding why a requirement does not hold is
the counterexample functionality in mCRL2 [30, 116], which provides the fragment
of the LTS (dis)proving the formula. Sometimes the counterexample is not very
useful because it contains a very large part of the LTS but other times it reflects a
concrete scenario that can also be easily communicated to the signalling engineer.

For the SCI-LX interface the requirements have been derived by us, by in-
specting the SysML model. For the other interfaces we formalised requirements in
collaboration with railway experts from ProRail, and for the generic interface also
with experts from DB.

5.2.2 Adding Selfloops

The semantics of mCRL2 is action-based and thus abstracts from the contents of a
state; states are only distinguished by their transitions. The logic, which in the
case of the mCRL2 toolset is the modal µ-calculus, also only refers to transitions.
For models that are derived from state-based formalisms, such as SysML, it can
be desirable to also consider the contents of a state. A way to achieve this is by
adding selfloops to states, which exposes information in the states in the labels of
transitions. We added the following three types of selfloops.

1. A selfloop showing which SysML states components are in: inState(c, s),
where c is the name of a component and s the name of a state machine state.

2. A selfloop showing which events are in the event queue: inEventPool(c, e),
where c is the name of a component and e an event.

3. A selfloop showing that some event queue is full: eventPoolFull, which has
no parameters. This allows us to check for deadlocks due to two components
with a full event queue trying to send a message to each other. Such deadlocked
states can be identified by the formula

[>⇤]<eventPoolFull>>.

4. A selfloop showing the valuation of variables: varVal(c, n, v), where c is
the name of a component, n the name of the variable and v the value assigned
to it.

States that were behaviourally equivalent may become distinct by the selfloops.
Hence, by adding the selfloops the minimised state space becomes bigger.

A more in depth study on LTSs in which the states contain information in the
form of global variables, is performed in Chapter 7.

75

Case Studies

5.2.3 Common Verification Approach

For each interface we use a similar verification approach. We discuss the general
approach in this section. In each case study we present additional measures to
reduce the state space.

For each interface we enable pulse packs and the resetting of data parameter
ports to their initial value once a pulse pack has been handled (as discussed in
Section 4.1.2). We also split the generic and specific parts of each interface, with
the exception of the SCI-LX interface. We use the compositional minimisation
approach of Chapter 4 to generate the LTS.

By reducing the state space modulo branching bisimulation we remove diver-
gence (i.e. infinite internal activity) if there is any. This is a concern for the
preservation of properties, especially for liveness requirements. In our toolchain we
hide all the actions related to SysML transition selection and execution, but do
not hide communication between components. For the SysML models considered
in this chapter, any loop of behaviour involves visible communication. Hence our
models do not contain divergence in the first place so minimising modulo branching
bisimulation does not remove divergence. This might not be the case for future
applications of our toolchain.

A number of bash scripts automate running the verifications. The scripts
orchestrate the mCRL2 toolset. The mCRL2 model is first linearised, then the
LTS is computed with compositional minimisation and, finally, for each µ-calculus
formula in a designated folder a PBES is constructed and subsequently solved. The
LTSs of components are explored in parallel and requirements are also verified in
parallel. These scripts (and instructions on how to run them), the mCRL2 models
and the µ-calculus formulas can be found in the Zenodo repository [12].

The following invocations of mCRL2 tools are used to generate the state space,
assuming a SysML model with three parallel state machines.

mcrl22lps model.mcrl2 model.lps

lpssuminst model.lps model.2.lps -f -rjittyc

lpssumelm model.2.lps model.3.lps

lpsrewr model.3.lps model.linearized.lps

lpscleave model.lps comp0.lps rest.lps -m -a -c -t -fc0

-psc_StateMachine,eq_StateMachine,mon_StateMachine,

vars_StateMachine,ms_StateMachine,behav_StateMachine,

exc_StateMachine,mq_StateMachine,head_mq_StateMachine,

reset_StateMachine

lpscleave rest.lps comp1.lps comp2.lps -m -a -c -t -fc1

-psc_StateMachine1,eq_StateMachine1,mon_StateMachine1,

vars_StateMachine1,ms_StateMachine1,behav_StateMachine1,

exc_StateMachine1,mq_StateMachine1,head_mq_StateMachine1,

reset_StateMachine1

lps2lts --cached -rjittyc comp0.lps comp0.lts

lps2lts --cached -rjittyc comp1.lps comp1.lts

lps2lts --cached -rjittyc comp2.lps comp2.lts

76

5.2 Common Approach

ltsconvert comp0.lts comp0.min.lts -ebranching-bisim

ltsconvert comp1.lts comp1.min.lts -ebranching-bisim

ltsconvert comp2.lts comp2.min.lts -ebranching-bisim

lpscombine comp1.min.lts comp2.min.lts combined12.lts

--introduce-tags -l -fc1

lpscombine comp0.min.lts combined12.lts statespace.lts

--introduce-tags -l -fc0

ltsconvert statespace.lts statespace.min.lts -ebranching-bisim

To verify a formula with or without counterexample generation we use the following
sequence of commands respectively.

lts2pbes statespace.min.lts -p -c --formula=req.mcf req.pbes

pbessolve req.pbes --in=pbes --file=statespace.min.lts

-rjittyc -s2

lts2pbes statespace.min.lts -p --formula=req.mcf req.pbes

pbessolve req.pbes --in=pbes -rjittyc -s2

Running the verifications does not require many CPU cores but does require a
significant amount of RAM. We have observed memory usage in excess of 2TB.

5.2.4 Sanity Checks

Potentially the mCRL2 model is flawed due to mistakes made while entering the
SysML diagrams in the translation framework or due to flaws in the automated
translation. Verifying “sanity check” requirements is one way to test whether the
mCRL2 model is as intended. An easy requirement is that all SysML states are
reachable. This requirement can detect, and has detected, many flaws such as
missing transitions, wrong evaluations of guards, etcetera that have the effect that
certain SysML states are unreachable. In Section 5.7 we discuss more ways to
validate that the mCRL2 model is correct. Below we provide the reachability
requirement for the SCI-LX level crossing interface. To check it inState selfloops
need to be added for every state.

ID SANITY_LX_1

Summary Every SysML state is reachable

Detailed
description

Sanity check whether all SysML states are reachable in the
mCRL2 model. Some errors in the jEULYNX encoding or
translation can be caught in this manner. Pseudostates
are excluded as they are often skipped over when taking a
compound transition.

77

Case Studies

µ-calculus formula
8 c:CompName ,s:StateName. val(

c 2 [BEQ_prim ,BEQ_prim_LX ,BEQ_scpPrim ,BEQ_scpSeec ,
BEQ_seec ,BEQ_seec_LX]

^ s 2 states(SMDefs(c))
^ (is_simple(stateInfo(SMDefs(c))(s))

_ is_composite(stateInfo(SMDefs(c))(s)))
) => <>⇤.inState(c,s)>>

Initially, this sanity check formula did not hold for the SCI-LX model. The
tool mCRL2 produces a counterexample showing which part of the state space
invalidates the formula. Unfortunately, the counterexample was not very helpful as
it simply contained the entire state space. As mentioned the inState selfloops are
enabled for all state names. Using ltsinfo -a we were able to determine which
inState labels were unreachable. This revealed that the states PDI_VERSION_-
UNEQUAL and PDI_CHECKSUM_UNEQUAL were not reachable in one of the
components. The version and checksum are both parameters set by the environment
for components at the interlocking and field element side. Our restrictions on the
environment only allowed them to have the same version and checksum information.
We relaxed the restrictions and allowed the level crossing to switch between two
version and checksum values, allowing both the flow where they are equal and
where they differ. With this change the formula holds. This shows that such
general ‘sanity’ requirements are a way to find model/configuration errors.

Note that for the final model we did not enable all inState selfloops. Hence,
the formula does not hold for the model as it is in the Zenodo repository [12].

5.3 Adjacent Level Crossing Interface (SCI-LX)

The SCI-LX interface is the odd one out in our analysis. Unlike the other interfaces
SCI-LX is not a subsystem interface but an adjacent system interface. The generic
layer of EULYNX for adjacent systems is less complex. The SCI-LC interface is
the subsystem variant for the level crossing. DB Netz uses SCI-LX, Prorail uses
SCI-LC.

The functionality of the level crossing interface is comparable to other interfaces.
The interlocking can send commands to the level crossing and the level crossing
reports its status. The commands are related to (de)activation. When the level
crossing is activated it follows a sequence of ringing a bell, flashing lights and
closing the barriers. What this activation looks like exactly differs per country and
location and is outside the scope of EULYNX. Status reports from the level crossing
report on the current activation status, possible failures and obstacle detection
information for level crossings that support it.

The SCI-LX interface consists of 8 blocks in total, which includes the generic
layer. Figure 5.4 gives an overview of the blocks and their relations and shows

78

5.3 Adjacent Level Crossing Interface (SCI-LX)

several layers in the specification. Blocks ‘scpSec’ and ‘scpPrim’ together model
the RaSTA connection. Blocks ‘sec’ and ‘prim’ are generic blocks defining the
connection management between adjacent EULYNX systems; they interface with
the RaSTA protocol and handle errors such as mismatched protocol versions,
telegram errors, etcetera. The bottom four blocks model the specifics of the
LX interface. The blocks ‘S_SCI_LX_Sec_National_SR’ and ‘S_SCI_LX_-
Prim_National_SR’ are not part of the EULYNX standard as they are country
specific.

prim
:S_SCI_AdjS_Prim_SR

sec
:S_SCI_AdjS_Sec_SR

prim_LX
:S_SCI_LX_Prim_SR

sec_LX
:S_SCI_LX_Sec_SR

S_SCI_LX_Prim_National_SRS_SCI_LX_Sec_National_SR

scpPrim
:S_SCI_SCP_Prim_SR

scpSec
:S_SCI_SCP_Sec_SR

RasTA

Generic

LX specific

Interlocking Level crossing

Figure 5.4: An overview of the blocks in the SCI-LX interface. Arrows indicate the
existence of port connections between those blocks.

As ProRail does not implement SCI-LX, and DB has not yet made their
implementation of these country specific blocks available to us we consider the
country specific blocks to be part of the environment. The main functionality of
‘sec_LX’ and ‘prim_LX’ is forwarding commands from the interlocking to the
level crossing and status reports from the level crossing to the interlocking between
‘S_SCI_LX_Sec_National_SR’ and ‘S_SCI_LX_Prim_National_SR’.

Due to the omission of these country specific blocks, and the fact that the
generic adjacent interface contains fewer components, we can combine both the
generic and interface specific layers in one model and still perform verification.

5.3.1 Requirements

We have derived three requirements for the LX interface. In general we have tried
to distil the intended behaviour of the system as a whole by looking at the state
machines of individual components. For example, the SysML model clearly specifies

79

Case Studies

that when certain errors occur, the connection is aborted and the other side is
notified. We derived that the intended behaviour is that when an error occurs, both
the level crossing and the interlocking close the connection before reattempting a
new connection, i.e. it should not be the case that either the object controller or
interlocking is in a state reflecting that the connection is still up while it is actually
not the case.

(No) Deadlock. The first requirement for the LX interface is that a connection
always remains possible in the future. It should not be the case that the protocol
gets stuck and can never reach a state again where a connection is established.

ID REQ_LX_1

Summary A connection always remains possible.

Detailed
description

It always remains possible to reach a state where the com-
ponents ‘prim’, ‘sec’, ‘prim_LX’ and ‘sec_LX’ are in their
state PDI_CONNECTION_ESTABLISHED.

µ-calculus formula
[>⇤]([>⇤]<eventPoolFull >> _ <>⇤ >(

<inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED)>>
^ <inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)>>
^ <inState(BEQ_prim_LX ,PDI_CONNECTION_ESTABLISHED)>>
^ <inState(BEQ_seec_LX ,PDI_CONNECTION_ESTABLISHED)>>))

Close Connection After Errors. When either the interlocking or the level
crossing enters an error state, then the connection should be closed, and subse-
quently both need to enter their state PDI_CONNECTION_CLOSED before they
reattempt a connection.

Both the interlocking and level crossing have a ‘point of no return’ after which
they can move to PDI_CONNECTION_ESTABLISHED without interaction from
the other side. For the interlocking this is after receiving the message T25_Msg_-
Status_Report_Completed. For the level crossing this is after receiving message
T24_Msg_Status_Report_Completed. We needed to adjust the mCRL2 model
by adding inEventPool selfloops to be able to express these properties more easily.

80

5.3 Adjacent Level Crossing Interface (SCI-LX)

ID REQ_LX_2

Summary Being in an error state implies that the connection is closed.

Detailed
description

When component prim or sec is in a state PDI_INIT_-
TIMEOUT, PDI_VERSION_UNEQUAL, PDI_CHECK-
SUM_UNEQUAL, PDI_PROTOCOL_ERROR or PDI_-
TELEGRAM_ERROR then the components ‘prim’ and
‘sec’ must both enter their state PDI_CONNECTION_-
CLOSED before they can reach the state PDI_CONNEC-
TION_ESTABLISHED.

µ-calculus formula
[>⇤](((9 s:StateName. (val(s 2 [PDI_INIT_TIMEOUT , PDI_VERSION_UNEQUAL ,

PDI_CHECKSUM_UNEQUAL , PDI_PROTOCOL_ERROR , PDI_TELEGRAM_ERROR]))
^ (<inState(BEQ_prim ,s)>> _ <inState(BEQ_seec ,s)>>))

^ (8 s:StateName. val(s 2 [CHECKING_PRIM_STATUS ,
PDI_CONNECTION_ESTABLISHED]) => [inState(BEQ_seec ,s)]?)

^ [inEventPool(BEQ_seec ,ChangeEventWithDataParams(
[ASALA_PushGlobalVar(T25_Msg_Status_Report_Completed)] ,[]))]?

^ (8 s:StateName. val(s 2 [CHECKING_SEC_STATUS ,SENDING_PRIM_STATUS ,
WAITING_FOR_INIT_COMPLETION ,PDI_CONNECTION_ESTABLISHED])
=> [inState(BEQ_prim ,s)]?)

^ [inEventPool(BEQ_prim ,ChangeEventWithDataParams(
[ASALA_PushGlobalVar(T24_Msg_Status_Report_Completed)] ,[]))]?)
=> 8 c:CompName. (val(c 2 [BEQ_prim , BEQ_seec]))
=> (⌫X(closed: Bool = ?). ((<inState(c,PDI_CONNECTION_CLOSED)>>

^ [>]X(>))
_ ([inState(c,PDI_CONNECTION_CLOSED)]? ^ [>]X(closed)))

^ ((val(closed)) _ [inState(c,PDI_CONNECTION_ESTABLISHED)]?)))

Exchanging Status Updates and Commands. The main functionality of the
LX interface (besides connection management) is exchanging messages. Below we
formulate a requirement that these messages are actually delivered. Note that we
abbreviate actions of the shape send(c,p,v)|receive(c2,cp,v) to send(c,p,v)

in this thesis. The sending port is a unique identifier for the communication channel.
We could therefore indeed omit the receive actions in the formulas if we would
also hide the receive actions in the LTS.

ID REQ_LX_3

Summary Status updates and commands are delivered on the other
side.

81

Case Studies

Detailed
description

When the component ‘prim_LX’ receives a message T20_-
Internal_Input whilst the connection is established it will
result in an output T21_Internal_Output by ‘sec_LX’.
The message may only be dropped if the connection is
terminated before the message is delivered. Similarly, when
‘sec_LX’ receives a message T20_Internal_Input whilst the
connection is established it will result in an output T21_-
Internal_Output by ‘prim_LX’.

µ-calculus formula
%Messages from the level crossing are delivered to the interlocking
[>⇤](8 v:Value. [send(CompPortPair(ENV_prim_LX , T20_Internal_Input),

Value_Pulse_Pack ([VarValuePair(DT20_Type ,v)]))](
(<inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED)>>

^ <inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)>>
^ <inState(BEQ_prim_LX ,PDI_CONNECTION_ESTABLISHED)>>
^ <inState(BEQ_seec_LX ,PDI_CONNECTION_ESTABLISHED)>>)

=> (⌫X.(
%As long as the message has not been delivered recurse using X
[(¬(9 v2:Value. send(CompPortPair(BEQ_seec_LX , T21_Internal_Output),

Value_Pulse_Pack ([VarValuePair(DT21_Type ,v2)]))))]X
%There must exist a path ending in a delivered message
^ (<(¬(9 v2:Value.send(CompPortPair(BEQ_seec_LX ,T21_Internal_Output),

Value_Pulse_Pack ([VarValuePair(DT21_Type ,v2)]))))*
.send(CompPortPair(BEQ_seec_LX , T21_Internal_Output),

Value_Pulse_Pack ([VarValuePair(DT21_Type ,v)]))>>))
%Or Prim_LX is destined to leave PDI_CONNECTION_ESTABLISHED
_ ((<(¬(9 c:CompName , p1 ,p2:VarName , v2:Value.

send(CompPortPair(c,p2),v2)))⇤>
([inState(BEQ_prim_LX ,PDI_CONNECTION_ESTABLISHED)]?))

%Or Sec_LX is destined to leave PDI_CONNECTION_ESTABLISHED
_ (<(¬(9 c:CompName , p1 ,p2:VarName , v2:Value.

send(CompPortPair(c,p2),v2)))⇤>
([inState(BEQ_seec_LX ,PDI_CONNECTION_ESTABLISHED)]?))

%Or there is a component which is deadlocked due to a full event pool
_ ([>⇤]<eventPoolFull >>)))))

%Symmetric requirement for messages from interlocking to level crossing
...

5.3.2 Verification Approach

To restrict the state space whilst maximising the behaviour covered in our analysis
we have settled on the following configuration of the translation.

Optimisation Settings. Ports open to the environment are made synchronous
but there is no restriction on when the environment can send a message. inEventPool
selfloops are enabled for two events, that are referenced by requirement REQ_-
LX_2. In addition, as mentioned earlier, an action eventPoolFull without data

82

5.3 Adjacent Level Crossing Interface (SCI-LX)

Requirement Result Time
no counter

Time
counterexample

REQ_LX_1 true 108m

REQ_LX_2 false 126m 1,496m

REQ_LX_3 true 789m

Table 5.9: Verification results for the SCI-LX interface. The last two columns respec-
tively show the time in minutes to verify a requirement with and without the
counterexample generation feature. In both cases the time needed by the tools
lts2pbes and pbessolve is combined.

parameters is used to detect deadlocks. Eleven inState selfloops are enabled, as
they are referenced by the requirements.

Restrictions Configuration Ports. The configuration ports are disabled as
they cannot change value during execution. The ports to configure timeout values
are set to a fixed value (the specific value is irrelevant as we abstract from time
in the mCRL2 model). The ports to configure whether checksum data is used
are set to true. Similarly to the generic subsystem model there are also ports to
configure version and checksum data. For the ‘sec’ component these are set to fixed
values, “V1” and “D1” respectively. To include all scenarios where the version and
checksum are the same or differ, the ‘prim’ component can switch between version
“V1” and “V2” and checksum data “D1” and “D2”.

5.3.3 Results

Linearising, and compositionally constructing the state space took 91 minutes,
resulting in an LTS with 16.8 million states. Verifying the requirements (in parallel)
without counterexample generation took 13 hours. Table 5.9 shows the results for
the final model. Some requirements did not hold initially, revealing flaws in the
model.

Model checking requirement REQ_LX_2 revealed a mistake in the SysML
model. The counterexample revealed an issue in the modelling of the RaSTA
blocks. The state machines of the RaSTA blocks, which we obtained from signalling
engineers, did not behave as specified by the RaSTA specification. We adjusted the
state machines to closely reflect the behaviour of RaSTA, while still abstracting
from details such as sequence numbers. As these state machines are not part of
EULYNX this does not imply a mistake in EULYNX specifications.

Adjusting the state machines of RaSTA triggered us to inspect the interface
between EULYNX and RaSTA more closely. This inspection resulted in the
discovery of a discrepancy in the ‘sec’ side of both the generic adjacent specification
and the generic subsystem specification, i.e. the issue is present in all EULYNX

83

Case Studies

interfaces. The ‘sec’ blocks in the generic interfaces have three ports to interface
with RaSTA:

• 2 input: SCP_Connection_Established and SCP_Connection_Terminated,

• 1 output: Terminate_SCP_Connection

They do not have an output port to signal that the connection should be established,
which is present for the ‘prim’ side. However, the RaSTA specification specifies that
the RaSTA protocol starts in the “Closed” state. An “Open Connection” request is
needed to move to the state “Down”, from which a connection can be established.
In order to make the interface modelled in EULYNX compatible with the interface
that RaSTA offers, an extra port Establish_SCP_Connection is needed, in the
same way the prim side has such a port.

Requirement REQ_LX_1 does not hold for the model: there exists a deadlock
in the model, stemming from the combined behaviour of the SCP blocks and the
generic adjacent blocks. Hence, it is not only relevant for the LX interface but
for all EULYNX interfaces using the adjacent system approach. More specifically,
the blocks S_SCI_SCP_Prim_SR and S_SCI_AdjS_Prim_SR can end up in
deadlock. When the block S_SCI_AdjS_Prim_SR enters the state PDI_CON-
NECTION_CLOSED it sends a pulse on port T6_Establish_SCP_Connection
to the SCP/RaSTA layer. The RaSTA layer sets up the connection and responds
with T5_SCP_Connection_Established. If RaSTA fails to establish a connection,
due to a timeout, S_SCI_AdjS_Prim_SR is never notified of this failure and
cannot take a new initiative to establish a connection, hence we have reached a
deadlock. Further investigation showed that the exact same construction is used in
the subsystem variant of the generic EULYNX layer.

We notified engineers from ProRail and DB about our findings. Engineers from
DB proposed to resolve the issues with RaSTA by adding the following note: “It is
assumed that the SCP layer handles each connection error by itself after sending
the trigger on T6_Establish_SCP_Connection. A retriggering of SCP connection
is not the responsibility of the SCI layer”. By inspecting the RaSTA specification
we learned this remedy is not in compliance with the RaSTA standard. A custom
implementation of RaSTA would be needed.

The assumptions on RaSTA should also be made more precise as it still leaves
ambiguities. Is the RaSTA layer also allowed to automatically reconnect when an
error occurs after T5_SCP_Connection_Established has been sent? EULYNX
specifications seem to suggest that a new message on port T6_Establish_SCP_-
Connection is needed.

Furthermore, EULYNX specifications should not only make a note on the
interface between the ‘prim’ component and RaSTA but also between the ‘sec’
component and RaSTA. On that side of the interface a slightly different assumption
needs to be made: the RaSTA implementation on the server side of the RaSTA
protocol should never wait for an ‘open connection’ event to establish a connection.

The RaSTA specification contains an event-state matrix, specifying in detail
how each event should be handled in each state. We recommend specifying the

84

5.3 Adjacent Level Crossing Interface (SCI-LX)

exact changes that need to be made to the event-state matrix of RaSTA to make a
RaSTA implementation EULYNX compliant. Presumably, an extra state “RETRY”
needs to be added for the client side of RaSTA (the ‘prim’ side of EULYNX).

For the server side of RaSTA (the ‘sec’ side of EULYNX) the following assump-
tion could be made: any event-state combination that leads to a transition to
the ‘closed’ state should instead go to the ‘down’ state. Additionally, any such
transition to the ‘down’ state should also result in setting the sequence number
(SNT) to a random value, which is normally done after an ‘open connection’ event.

We have implemented the change to the RaSTA blocks as suggested by DB.
Requirement REQ_LX_1 holds under these assumptions. REQ_LX_2 does not
hold for the adjusted model. The counterexample shows that while component
sec is still in the state PDI_PROTOCOL_ERROR the RaSTA block on the sec
side can already re-establish a RaSTA connection because it can always establish
a connection. To be more specific, the counterexample produced by the mCRL2
toolset shows the following sequence of events:

1. Blocks ‘prim’ and ‘sec’ are initialising a connection and the RaSTA connection
is up.

2. A protocol error occurs on the ‘sec’ side.

3. ‘sec’ moves to PDI_PROTOCOL_ERROR.

4. ‘sec’ signals to RaSTA that the connection needs to be closed.

5. The RaSTA connection closes.

6. ‘prim’ is notified of the closed RaSTA connection.

7. ‘prim’ signals to RaSTA to re-establish a connection.

8. ‘sec’ is notified that the RaSTA connection is closed

9. A new RaSTA connection is established.

10. ‘prim’ is notified that the RaSTA connection is up and moves to ESTAB-
LISHING_PDI_CONNECTION.

11. ‘sec’ moves to PDI_CONNECTION_CLOSED.

12. ‘sec’ is notified that the RaSTA connection is up.

13. ‘sec’ moves to ESTABLISHING_PDI_CONNECTION.

Requirement REQ_LX_2 is violated as the ‘prim’ component does not go
to PDI_CONNECTION_CLOSED between ‘sec’ being in the state PDI_PRO-
TOCOL_ERROR and ‘prim’ reaching the state PDI_CONNECTION_ESTAB-
LISHED. They do both first close the connection before another attempt is made,
so this is not a serious issue.

85

Case Studies

We propose an alternative remedy that does not require modifications to
RaSTA. We propose to let S_SCI_SCP_Prim_SR send a pulse on T5_SCP_-
Connection_Terminated when it moves from the state START to the state CLOSED.
Additionally, add an internal transition to the state PDI_Connection_Closed of
block S_SCI_AdjS_Prim_SR which resends a pulse on T6_Establish_SCP_-
Connection when it receives the pulse T5_SCP_Connection_Terminated. When
the connection fails the RaSTA block moves to a state “closed” and will not open
the connection again until a new message Establish_SCP_Connection is received.
We have implemented this remedy in SysML. All formulas hold for the adjusted
model. The SCI-LX and generic models in Zenodo both use the remedy where
RaSTA is adjusted with a RETRY state, as that most closely resembles the current
modelling by EULYNX.

5.4 Generic Subsystem Interface

The main role of the generic interface is connection management. Initialising the
connection consists of a number of steps. Firstly, a RaSTA connection is established.
Secondly, the interlocking and object controller message each other to request a
connection and exchange the version of the EULYNX protocol that they are using.
Finally, the interface specific layer is prompted to send an initial status update.
When the interface specific layer has finished the initial status report, it reports
this to the generic layer. After these initialisation steps, the connection is fully
established and the interface specific layer of the interlocking and object controller
can freely exchange messages.

During initialisation or when the connection is established, the connection
can be aborted by either side. When they encounter an error (which can occur
non-deterministically in the model), such as a power failure or timeout, they move
to an error state and notify the other side by closing the RaSTA connection. The
connection can then be re-established using the normal procedure.

The division in components is depicted in Figure 5.5. The role of each component
is described below.

• The components F_SCI_SCP_Sec_SR and S_SCI_SCP_Prim_SR man-
age the RaSTA connection on the side of the object controller and on the
side of the interlocking, respectively.

• The components S_SCI_EfeS_Prim_SR and F_SCI_EfeS_Sec_SR initiate
and manage the connection.

• The component F_EST_EfeS_SR defines interaction with generic electronics,
which includes boot-up behaviour and failure modes.

• The component F_SMI_EfeS_SR is used for maintenance access.

86

5.4 Generic Subsystem Interface

Subsystem (object controller)

Interface specific

RaSTA

Generic

Inter locking

:F_SMI_EfeS_SR

:F_EST_EfeS_SR

:S_SCI_SCP_Prim_SR :F_SCI_SCP_Sec_SR

:S_SCI_EfeS_Prim_SR :F_SCI_EfeS_Sec_SR

Figure 5.5: Structure of the components of the EULYNX generic subsystem interface.
Arrows indicate communication channels between components.

5.4.1 Requirements

The main hazard related to the connection management is that a connection is
wrongly established or maintained. The reason that this would pose a risk is that
the interlocking would continue to think it has a connection with the field element
while it is no longer updated on the status of the field element. A secondary hazard
is that a connection is prevented from being established at all. This might not be
a direct safety hazard but could disrupt train services.

We can derive the following hazards for the generic interface:

1. A connection is still established/maintained despite one of the following
errors.

• The object controller and interlocking are using a different version of
the protocol;

• A checksum sent during initialisation does not match;

• A protocol error;

• A telegram error;

• A timeout during initialisation;

• There is no operating voltage;

• A hardware error;

• The other side of the connection has closed the connection.

2. A deadlock or livelock prevents the system from establishing a connection.

87

Case Studies

These two hazards are addressed with multiple requirements, which are listed
below. The second hazard is addressed by requirement REQ_PDI_4. The other
requirements expand the first hazard by specifying different scenarios in which
the object controller or interlocking is not allowed to establish a connection. Note
that the numbering of requirements starts at 2. Requirement REQ_PDI_1 was
scrapped because it was too trivial.

The identified hazards and requirements are based on discussions with signalling
engineers and a list of requirements formulated by signalling engineers from DB.

ID REQ_PDI_2

Summary Do not establish a connection when the interlocking and
object controller use a different protocol version.

Detailed
description

Whilst establishing a connection, in the case that the object
controller sees that the interlocking uses a different version of
the protocol, it sends a message to the interlocking notifying
the failed version check and moves to the state not ready
for a connection.

µ-calculus formula
[>⇤.send(CompPortPair(BEQ_seec ,T13_Msg_PDI_Version_Check),

Value_Pulse_Pack ([VarValuePair(DT13_Checksum_Data ,
Value_Custom(STR_NotApplicablee)),

VarValuePair(DT13_Result ,Value_Custom(STR_Not_Match))]))]
%The object controller moves to the state Not_Ready_For_Connection
%before it is allowed to succesfully establsish a connection
((⌫X. ([inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)]? ^ [>]X)

_ <inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>>)
%The interlocking moves to the state Connection_closed
%before it is allowed to succesfully establsish a connection
^ (⌫X. ([inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED)]? ^ [>]X)

_ <inState(BEQ_prim ,PDI_CONNECTION_CLOSED)>>))

ID REQ_PDI_3

Summary Disconnect when a checksum fails during initialisation.

Detailed
description

Whilst establishing a connection, in the case that the inter-
locking receives an incorrect checksum (indicating a mal-
formed message) from the object controller in the Msg_-
PDI_Version_Check message, the interlocking terminates
the connection.

88

5.4 Generic Subsystem Interface

µ-calculus formula
[>⇤.inState(BEQ_prim ,PDI_CHECKSUM_UNEQUAL)]

%The object controller moves to the state Not_Ready_For_Connection
%before it is allowed to succesfully establsish a connection
((⌫X. ([inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)]? ^ [>]X)

_ <inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>>)
%The interlocking moves to the state Connection_closed
%before it is allowed to succesfully establsish a connection
^ (⌫X. ([inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED)]? ^ [>]X)

_ <inState(BEQ_prim ,PDI_CONNECTION_CLOSED)>>))

ID REQ_PDI_4

Summary A connection always remains possible.

Detailed
description

As long as there is no telegram error (the reception of a
malformed message, which may occur non-deterministically
in the model) it always remains possible in the future to
reach the state PDI_Connection_Established at both the
interlocking and object controller side.

µ-calculus formula
[>⇤](%in any state

%we either have that PDI_Connection_Impermissible is inevitable
(<inState(BEQ_prim ,PDI_CONNECTION_IMPERMISSIBLE)>>

_ <inState(BEQ_seec ,PDI_CONNECTION_IMPERMISSIBLE)>>
_ <inState(BEQ_prim ,PDI_TELEGRAM_ERROR)>>
_ <inState(BEQ_seec ,PDI_TELEGRAM_ERROR)>>)

%or we can eventually establish a connection
_ (<>⇤ >(

<inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED)>>
^ <inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)>>)))

ID REQ_PDI_5

Summary Close the connection when a protocol or telegram error
occurs.

Detailed
description

At the moment a protocol error or telegram error occurs at
either the side of the object controller or the interlocking,
both the interlocking and the object controller will eventu-
ally move to PDI_Connection_Closed before reattempting
a connection.

89

Case Studies

µ-calculus formula
[>⇤]((

(<inState(BEQ_seec ,PDI_TELEGRAM_ERROR)>>
_ <inState(BEQ_seec ,PDI_PROTOCOL_ERROR)>>)

=> (⌫X. ([inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)]? ^ [>]X)
_ <inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>>)

) ^ ((<inState(BEQ_prim ,PDI_TELEGRAM_ERROR)>>
_ <inState(BEQ_prim ,PDI_PROTOCOL_ERROR)>>)

=> (⌫X. ([inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED)]? ^ [>]X)
_ <inState(BEQ_prim ,PDI_CONNECTION_CLOSED)>>)))

Requirement REQ_PDI_6 below has a slightly weaker variant called REQ_-
PDI_6_1. This will be further explained in Section 5.4.3.

ID REQ_PDI_6

Summary Close connection when the object controller is unfit to oper-
ate.

Detailed
description

When F_EST_EfeS_SR, which monitors the hardware of
the object controller, signals it is not ready for a connection,
the object controller will move to not ready for connection
and only reattempts a connection after receiving a message
ready for connection.

µ-calculus formula
[>⇤.send(CompPortPair(BEQ_eest ,T18_Not_Ready_For_PDI_Connection),

Value_Pulse_Pack ([]))](
%when in PDI_connection established , move to not ready for connection
((<inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)>>)

=> (µX. (([¬(9 c:CompName ,s:StateName. inState(c,s))]X)
_ [inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)]?)))

%do not establish a connection until allowed again by F_EST_EfeS_SR
^ (⌫X. [¬send(CompPortPair(BEQ_eest ,T21_Ready_For_PDI_Connection),

Value_Pulse_Pack ([]))]X
^ (<inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>>
=> ([(¬send(CompPortPair(BEQ_eest ,T21_Ready_For_PDI_Connection),

Value_Pulse_Pack ([])))⇤]
[inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)]?))))

90

5.4 Generic Subsystem Interface

Variant ID REQ_PDI_6_1

Variant
summary

Do not establish a new connection when the object controller
is unfit to operate.

Detailed
description
variant

When F_EST_EfeS_SR, which monitors the hardware of
the object controller, signals it is not ready for a connection,
and the object controller has moved out of the state PDI_-
CONNECTION_ESTABLISHED no new connection will
be established until a new message from F_EST_EfeS_SR
indicates that the object controller is ready again.

µ-calculus formula
[>⇤.send(CompPortPair(BEQ_eest ,T18_Not_Ready_For_PDI_Connection),

Value_Pulse_Pack ([]))]
(⌫X. [¬send(CompPortPair(BEQ_eest ,T21_Ready_For_PDI_Connection),

Value_Pulse_Pack ([]))]X
^ (<inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>>
=> ([(¬send(CompPortPair(BEQ_eest ,T21_Ready_For_PDI_Connection),

Value_Pulse_Pack ([])))⇤]
[inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)]?)))

ID REQ_PDI_7

Summary Abort connection attempt when a timeout occurs during
initialisation.

Detailed
description

When S_SCI_EfeS_Prim_SR does not reach the state
PDI_Connection_Established after entering state Estab-
lishing_PDI_Connection within the time D2_Con_tmax_-
PDI_Connection, both S_SCI_EfeS_Prim_SR and F_-
SCI_EfeS_Sec_SR reach PDI_Connection_Closed before
reattempting a connection.

µ-calculus formula
[>⇤](<inState(BEQ_prim ,PDI_INIT_TIMEOUT)>> =>

%The interlocking moves to the state Connection_closed
%before it is allowed to succesfully establsish a connection
(⌫X. ([inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED)]? ^ [>]X)

_ <inState(BEQ_prim ,PDI_CONNECTION_CLOSED)>>))

91

Case Studies

ID REQ_PDI_8

Summary When the object controller or interlocking closes the con-
nection then so does the other side.

Detailed
description

When S_SCI_EfeS_Prim_SR and F_SCI_EfeS_Sec_SR
are both in state PDI_Connection_Established, and one
leaves that state, the other will eventually leave the state
as well.

µ-calculus formula
[>⇤]((

<inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED)>>
^ <inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)>>

) =>[>](((¬<inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED)>>)
=> µX. [¬(9 c:CompName ,s:StateName. inState(c,s))]X

_ (<inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)>>))
^ ((¬<inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)>>)

=> µX. [¬(9 c:CompName ,s:StateName. inState(c,s))]X
_ (<inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED)>>))))

5.4.2 Verification Approach

Recall the options to restrict the state space discussed in Section 4.1. To restrict
the state space whilst maximising the behaviour covered by our analysis we have
settled on the following configuration of the translation.

Optimisation Settings. Ports open to the environment are made synchronous
but there is no restriction on when the environment can send a message, see
Section 4.1.3. inEventPool selfloops are disabled as they are not referenced by
the requirements. All inState selfloops are enabled as many state names are
referenced by the requirements.

Restrictions Configuration Ports. The configuration ports are disabled as
they cannot change value during execution. There are ports that configure timeout
values are set to a fixed value (the specific value is irrelevant as we abstract from
time in the mCRL2 model). The ports to configure whether checksum data is used
are set to true. Also the port D20_Con_MDM_Used, which enables interaction
with the SMI component, is set to true. There are also ports to configure version
and checksum data. For the F_SCI_EfeS_Sec_SR component these are set to
fixed values, “V1” and “D1” respectively. To include all scenarios where the version
and checksum are the same or differ, the S_SCI_EfeS_Prim_SR component can
switch between version “V1” and “V2” and checksum data “D1” and “D2”.

Other Restrictions Environment Ports. We have disabled the port T22_-
Content_Telegram_Error for both the S_SCI_EfeS_Prim_SR and F_SCI_EfeS-

92

5.4 Generic Subsystem Interface

Requirement Result Time
no counter

Time
counterexample

REQ_PDI_2 true 80m

REQ_PDI_3 true 89m

REQ_PDI_4 false 47m 713m

REQ_PDI_5 true 87m

REQ_PDI_6 false 118m 998m

REQ_PDI_6_1 true 87m

REQ_PDI_7 true 49m

REQ_PDI_8 true 135m

Table 5.20: Verification results for the generic interface. The last two columns respectively
show the time in minutes to verify a requirement with and without the
counterexample generation feature. In both cases the time needed by the
tools lts2pbes and pbessolve is combined.

_Sec_SR component. The behaviour upon receiving a message on this port is
identical to the behaviour upon receiving a message on T21_Formal_Telegram_-
Error, this port is enabled).

5.4.3 Results

Linearising, and compositionally constructing the state space took 50 minutes,
resulting in an LTS with 12.6 million states. Table 5.20 shows the results of
verification and the running time for each requirement.

Requirement REQ_PDI_4, stating that a connection always remains possible,
does not hold. The counterexample shows that two components can deadlock
when trying to send a message to each other. Sending a message usually results in
adding an event to the event queue (see [17]). The event queue mostly acts as a
communication buffer, though state machines may also add events to their own
queue by triggering change events. The event queue of state machines is finite in
our models; when the event queue of a state machine is full, communication is no
longer possible. When two components with a full event queue want to send a
message to each other, they get into a deadlock. In EULYNX it is assumed that
event queues are unbounded. However, unbounded event queues would cause an
infinite state space due to communications from the environment and therefore
make model checking unfeasible. Moreover, an event queue of arbitrary length can
always be filled due to communications from the environment. Hence, increasing
the size of the event queue will not remove the deadlock. We conjecture that in a
model that includes timing, the probability of a deadlock is inversely proportional
to the size of the event queue. However, it would be even better if the system is

93

Case Studies

designed to be more robust against bursts of communication. We have made the
recommendation to EULYNX to explicitly specify what happens when a buffers
becomes full. Note that the formula for requirement REQ_LX_1, which was
formulated at a later point in time than REQ_PDI_4, leaves out runs of the
system ending up in a deadlock due to full event queues.

Requirement REQ_PDI_6 – stating that when the object controller is not
ready for a connection, the connection is closed and not established again until
it is ready – also does not hold. The counterexample produced by the explicit
state tools shows us that a component may not always eventually move to PDI_-
CONNECTION_CLOSED due to a loop of behaviour of another component.
The other component loops by receiving a value from the environment over and
over again. The requirement might hold under a mild component-based progress
assumption, such as justness [18, 49], which excludes unrealistic computations in
which a component never gets the chance to make progress. Requirement REQ_-
PDI_6_1, which just checks whether a new connection is not established, does
hold. We will revisit this requirement in Chapter 6, where we will embed a justness
assumption in the formula.

5.5 Point Interface (SCI-P)

A railway point, also known as a ‘turnout’ or ‘switch’, is a mechanical safety-critical
installation enabling trains to be guided from one set of rails to another (see Figure
5.6). Although implementations of points are country-specific, they all consist
of one or more movable elements, which are controlled by point machines and
monitored by sensors. Point machines are essentially engines moving the movable
parts of a point. The positions of the movable elements determine the position of
the point itself, namely ‘left’ or ‘right’ (see Figure 5.7), or ‘neither’ when changing
from one to the other.

Figure 5.6: Point at Broomhill station, Scot-
land. Licensed under the
Creative Commons Attribution-
Share Alike 4.0 International li-
cense [117].

Figure 5.7: Schematic view of point posi-
tions, with movable elements in
red. The left picture shows a
point in the ‘left’ position, the
right picture shows a point in the
‘right’ position.

94

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5.5 Point Interface (SCI-P)

In traditional points, the motors and sensors of the point machines are directly
connected to the interlocking. With EULYNX a local object controller steers the
point machines. The object controller provides a EULYNX compliant interface to
the interlocking.

The two functions of the point-specific EULYNX interface are steering the
point to a requested position and reporting the current position of the point to the
interlocking. The output from the object controller to the point machines is either
‘left’, ‘right’ or ‘stop’. The point machines, in turn, send back the current position
of the point. The position can have three possible values, ‘end position right’, ‘end
position left’ or ‘no end position’. Since each point machine detects and reports its
own position, there may not be consensus between point machines on the point
position, in which case the object controller reports a ‘no end position’ message to
the interlocking.

Division in Components. The EULYNX point specific interface is modelled
using three components, see Figure 5.8. A pair of interlocking/object controller
components (S_SCI_P_SR and F_SCI_P_SR) implement the exchange of point-
specific commands and messages. Component F_SCI_P_SR relays point-specific
messages to F_P3_Gen and ensures that the position is reported in the initialisation
phase. The remaining component F_P3_Gen interacts with the point machines
(which are outside the scope of EULYNX). The component F_P3_Gen performs
two tasks in parallel: it monitors the current positions of the point machines and
reports the information to F_SCI_P_SR, and it steers the point to the position
that was most recently received from F_SCI_P_SR. When the generic layer
reports a loss of connection or another failure, F_P3_Gen stops reporting the
position or moving the point.

5.5.1 Requirements

The two main hazards related to points are derailments and train-train collisions.
The hazard of derailment has many aspects. Physical failures of the track might

Point

Point specific

Generic

Inter locking

:F_P3_Gen:S_SCI_P_SR :F_SCI_P_SR

Figure 5.8: Structure of the components of the EULYNX point specific interface. Arrows
indicate communication channels between components.

95

Case Studies

lead to derailment. A high speed in a tight curve could lead to derailment. Another
possible cause is when a train goes over a point that is not in a proper (left or
right) end position. Since the object controller of the point controls the movement
of the point and informs the interlocking on the current position, correct behaviour
of the point object controller is essential to prevent derailments.

Since points determine the routes of trains, correct behaviour of the object
controller is also essential in preventing train-train collisions. The considerations
for the object controller are again the correct control of the movement and re-
porting of the position. The principle for movement of the point is that only the
interlocking knows when it is safe to move a point, so only the interlocking can
initiate a movement. Two principles apply to reporting the position of the point:
the interlocking should always be kept up to date concerning the position of a
point; and when the position of a point is unknown, it is always assumed not to
have an end position (meaning that it is unsafe to drive over the point).

We can derive the following hazards for the point specific interface:

1. The object controller reports an end position that is not accurate.

2. The object controller initiates a movement that was not expected by the
interlocking.

These two hazards are addressed by the following requirements and are based on
interviews with signalling engineers. Note that REQ_P_1 has a variant called
REQ_P_1_1 which will be discussed in Section 5.5.3.

ID REQ_P_1

Summary The object controller must report changes in position.

Detailed
description

The position of the point is determined by combining the
input from the point machines. When all point machines
report right the position is right. When all point machines
report left the position is left. In any other case the point
does not have an end position. When the position of the
point is different from the last reported position, the new
position must be reported to the interlocking. This obliga-
tion is lifted if communication with the interlocking is not
possible due to a connection problem, power failure, etc. If
the object controller cannot report the changed position,
the connection with the interlocking must be closed, so that
the interlocking knows that the position is unknown.

96

5.5 Point Interface (SCI-P)

µ-calculus formula
[> ⇤]((%when the point is in an end position

<inState(BEQ_pe51 , ALL_LEFT)>> _ <inState(BEQ_pe51 , ALL_RIGHT)>>
) => % When point machine reports end position ’none ’:

([send(CompPortPair(ENV_pe51 , D21_PM1_Position),
Value_Custom(STR_NO_END_POSITION))]

(µX. [¬(9 st: StateName , c: CompName . inState (c,st))]X
_ <send(CompPortPair(BEQ_sp , T20_Point_Position),

Value_Pulse_Pack ([VarValuePair(DT20_Point_Position ,
Value_Custom(STR_NO_END_POSITION))])) >>

_ <inState(BEQ_pe51 , WAITING_FOR_INITIALISING)>>
_ [inState(BEQ_fp , PDI_CONNECTION_ESTABLISHED)] ?
_ [inState(BEQ_sp , PDI_CONNECTION_ESTABLISHED)] ?)))

Variant ID REQ_P_1_1

Variant
summary

The object controller must report changes in position when
there are no messages coming from the environment.

Detailed
description
variant

The same as the original requirement with the difference
that the status update must always eventually happen when
we only consider paths where the environment does not send
inputs to the system.

µ-calculus formula
[>⇤]((%when the point is an end postion

<inState(BEQ_pe51 , ALL_LEFT)>> _ <inState(BEQ_pe51 , ALL_RIGHT)>>
) => % When point machine reports end position ’none ’:

([send(CompPortPair(ENV_pe51 , D21_PM1_Position),
Value_Custom(STR_NO_END_POSITION))]

% We examine all paths for which the environment is silent
(µX. [¬(9 st:StateName , c, env: CompName , p1, p2: VarName , v: Value.
(val(env 2 [ENV_sp , ENV_fp , ENV_pe51])

^ send(CompPortPair(env , p2), v))
_ inState(c,st) _ eventPoolFull)]X
%eventually no_end_position is reported to the interlocking
_ <send(CompPortPair(BEQ_sp , T20_Point_Position),

Value_Pulse_Pack ([VarValuePair(DT20_Point_Position ,
Value_Custom(STR_NO_END_POSITION))]))>>

%or the connection is no longer up
_ <inState(BEQ_pe51 ,WAITING_FOR_INITIALISING)>>
_ [inState(BEQ_fp ,PDI_CONNECTION_ESTABLISHED)]?
_ [inState(BEQ_sp ,PDI_CONNECTION_ESTABLISHED)]?
_ [>⇤]<eventPoolFull >>)))

97

Case Studies

ID REQ_P_2

Summary The object controller must not change position unless com-
manded by the interlocking.

Detailed
description

The object controller may only instruct the point machines
to move when a move is commanded by the interlocking. A
movement command from the interlocking gives an authori-
sation to initiate movement in a certain position that ends
when either a timeout occurs, the end position is reached
or a movement command for the opposing position is sent.

µ-calculus formula
⌫X(allowed: Bool = ?, direction: Value = Value_Custom(STR_LEFT)).

[send(CompPortPair(BEQ_sp ,T1_Cd_Move_Point),
Value_Pulse_Pack ([VarValuePair(DT1_Move_Point_Target ,

Value_Custom(STR_LEFT))]))]
X(>,Value_Custom(STR_LEFT))

^[send(CompPortPair(BEQ_sp ,T1_Cd_Move_Point),
Value_Pulse_Pack ([VarValuePair(DT1_Move_Point_Target ,

Value_Custom(STR_RIGHT))]))]
X(>,Value_Custom(STR_RIGHT))

^ [send(CompPortPair(BEQ_fp ,T3_Msg_Timeout),
Value_Pulse_Pack ([]))]X(?,direction)

^ [send(CompPortPair(BEQ_sp ,T2_Msg_Point_Position),
Value_Pulse_Pack ([VarValuePair(DT2_Point_Position ,direction)]))]

X(?,direction)
^ ((val(¬allowed _ (direction 6= Value_Custom(STR_RIGHT)))) =>

[send(CompPortPair(BEQ_pe51 ,D11_Move_Right),Value_Bool(>))]?)
^ ((val(¬allowed _ (direction 6= Value_Custom(STR_LEFT)))) =>

[send(CompPortPair(BEQ_pe51 ,D10_Move_Left),Value_Bool(>))]?)
^ [¬(send(CompPortPair(BEQ_sp ,T1_Cd_Move_Point),

Value_Pulse_Pack ([VarValuePair(DT1_Move_Point_Target ,
Value_Custom(STR_LEFT))])))

^ ¬(send(CompPortPair(BEQ_sp ,T1_Cd_Move_Point),
Value_Pulse_Pack ([VarValuePair(DT1_Move_Point_Target ,

Value_Custom(STR_RIGHT))])))
^ ¬(send(CompPortPair(BEQ_fp ,T3_Msg_Timeout),Value_Pulse_Pack ([])))
^ ¬(send(CompPortPair(BEQ_sp ,T2_Msg_Point_Position),

Value_Pulse_Pack ([VarValuePair(DT2_Point_Position ,direction)])))]
X(allowed ,direction)

5.5.2 Verification Approach

To restrict the state space whilst maximising the behaviour covered in our analysis
we have settled on the following configuration of the translation.

Optimisation Settings. Ports open to the environment are made synchronous
but there is no restriction on when the environment can send a message. inEventPool
selfloops are disabled as they are not referenced by the requirements. Four inState
selfloops are enabled, as they are referenced by the requirements: “ALL_LEFT",
“ALL_RIGHT", “WAITING_FOR_INITIALISING", “PDI_CONNECTION_ES-
TABLISHED".

98

5.5 Point Interface (SCI-P)

Requirement Result Time
no counter

Time
counterexample

REQ_P_1 false 35m 461m

REQ_P_1_1 true 75m

REQ_P_2 false 103m 500m

Table 5.24: Verification results for the SCI-P interface. The last two columns respectively
show the time in minutes to verify a requirement with and without the
counterexample generation feature. In both cases the time needed by the
tools lts2pbes and pbessolve is combined.

Restrictions Configuration Ports. The configuration ports are disabled as
they cannot change value during execution. We configured it to use a single point
machine (D13_PM2_Activation is to “INACTIVE”). There is a configuration port
for a country code which we set to the Dutch code. This means that some behaviour
is disabled. In particular there is no functionality for trailed points. The timeout
value for moving the point is set to a fixed value (the specific value is irrelevant as
our models abstract from time).

Other Restrictions Environment Ports. There are two ports communicating
the state of the generic layer to the point, which, in the point model are ports
open to the environment. Many values that are sent to these ports lead to the
same behaviour in the point specific layer. We could therefore have restricted
what values can be sent to these ports. However, in the context of compositional
minimisation, restricting these ports would not help as states that have the same
behaviour with a different value for these environment ports will be bisimilar.

5.5.3 Results

Linearising, and compositionally constructing the state space took 37 minutes,
resulting in an LTS with 9.5 million states. The two requirements do not hold for
the model (see Table 5.24). We will go over these unsatisfied requirements and see
why they do not hold.

Requirement REQ_P_1, which states that changes to the position of the
point will always eventually be reported to the interlocking, does not hold. The
counterexample shows that the environment introduces loops of behaviour where a
message is sent and immediately discarded. A weakened requirement REQ_P_1_1,
which only considers paths in which the environment does not send inputs, does
hold for the model. We will revisit this requirement in Chapter 6, where we will
embed a justness assumption in the formula.

For REQ_P_2 we get the following following sequence of events as counterex-
ample.

99

Case Studies

1. The interlocking requests the object controller to move the point to the left
position.

2. The interlocking requests the object controller to move the point to the right
position.

3. The object controller initiates a movement to the left (the command to the
right is not processed yet).

This kind of behaviour is possible due to the asynchronous communication, which
is realistic for communication over an IP network.

It is not obvious which weaker requirement would hold for the model. We could
maintain a list of commands from the interlocking that may lead to movements of
the point. But it is not clear (by observing the outputs of the object controller)
when a command is popped from that list as the object controller may consume a
movement command without moving the point when it is already in the correct
position. Another problem that arises is that from the perspective of the interlocking
it is unclear when the object controller has processed all commands and will not
initiate a new movement.

Eventually the object controller will have processed all the commands and not
initiate a new movement. We have, by hand, tried to find the worst case scenario
based on the observations from trying to verify the µ-calculus formula. We found
the following scenario, which is depicted in Figure 5.9. Note that RaSTA has a
timeout value (Tmax); when no messages have been received in that timeframe the
connection is closed. We represent time in the scenario with the variable T . We
conclude that only after 2⇥ Tmax time after the last movement command we can
assume that the object controller will not initiate a new movement. This is an extra
requirement for the interlocking that should be made explicit by EULYNX, either in
text or by modelling it in SysML. The point specific component of the interlocking
could be adjusted to only report an end position to the core interlocking 2⇥ Tmax

time after the last movement command was sent.

5.6 Subsystem Level Crossing Interface (SCI-LC)

The SCI-LX interface is the adjacent system interface, used, among others, by
DB Netz AG. The SCI-LC interface is the subsystem variant of the level crossing
interface used, among others, by ProRail. The main behaviour specified in the
SCI-LX interface is message passing between the core interlocking and the level
crossing protection facility outside the scope of EULYNX.

The SCI-LC interface contains a lot more behaviour than the SCI-LX interface.
The SCI-LC object controller contains logic to decide when a status update is
sent to the interlocking. Additionally, it can choose to ignore commands from the
interlocking when it is set to the state ‘isolated’, or deactivate the level crossing
when the connection with the interlocking is lost. The SysML model is then also a
lot bigger than the SCI-LX SysML model.

100

5.6 Subsystem Level Crossing Interface (SCI-LC)

Interlocking Object controller Point machine

T = 0

T = Tmax

T = 2 ⇥ Tmax

Command(left) Move(left)

Report(left)Report(left)
Command(right)

Move(right)

Command(left)

Move(left)
RaSTA Heartbeat

Report(no end position)

Rep
or
t(n

o
en

d
po

sit
ion

)

Figure 5.9: Scenario in the point interface where after the interlocking commanding the
left position and the object controller reporting the left position the point can
still move.

The object controller is connected to the Level Crossing Protection Facility
(LCPF), which is an installation that may consist of barriers, warning bells, warning
lights and sensors to detect whether the barriers are closed. The object controller
can steer the LCPF to three activation levels:

1. Deactivated: warning signals stop and traffic is free to cross the tracks;

2. Pre-activated: warning signals indicate that the LCPF will soon be activated
(this activation level is optional);

3. Activated: the level crossing is closing/closed; a train may pass once the the
crossing is fully closed for traffic.

It can differ between countries and even between installations how the LCPF
behaves when it is (pre)-activated. Typically, when it is pre-activated it will begin

101

Case Studies

ringing bells and flashing lights. When it is activated it will close the barriers (if
they are present) to prevent traffic from reaching the tracks. The object controller
can observe two protection levels: protected and unprotected.

Division in Components. The SCI-LC specific interface is modelled using three
components, see Figure 5.10. A pair of interlocking/object controller components
(S_SCI_LC_SR and F_SCI_LC_SR) implement the exchange of SCI-LC specific
commands and messages. Component F_LC_Functions_SR contains most of the
behaviour and interacts with the LCPF. The LCPF comprises of the sensors and
actuators to close the barriers, warning lights, etcetera. The LCPF is outside the
scope of EULYNX. The state machine belonging to F_LC_Functions_SR contains
4 parallel regions with the following functions.

• Monitoring a closure timer. The timer is set by another parallel region when
the LCPF is activated. This region then monitors whether the timer is
overrun.

• Monitoring and controlling the LCPF. This parallel region contains the logic
to (de)activate the LCPF as commanded by the interlocking and reports the
current functional status to the interlocking.

• Status reporting. This component monitors status messages coming from the
LCPF and reports them to the interlocking. These status messages include
obstacle detection (if this function is supported) and failure reports.

• Handling local operations. The level crossing can be put in a ‘local’ mode by
the interlocking. In this mode the level crossing can be controlled by a local
operator. This parallel region handles the local operations and the handover
of control between the interlocking and the local operator.

The state machine of F_LC_Functions_SR contains five sub state machines,
making it a relatively large component.

Level crossing

SCI-LC specific

Generic

Inter locking

:F_LC_Functions_SR:S_SCI_LC_SR :F_SCI_LC_SR

Figure 5.10: Structure of the components of the EULYNX SCI-LC interface. Arrows
indicate communication channels between components.

102

5.6 Subsystem Level Crossing Interface (SCI-LC)

5.6.1 Requirements

The main safety consideration with level crossings is train-vehicle and train-person
collisions; this is the reason level crossing protection facilities exist in the first place.
A hazardous situation arises when the LCPF is deactivated when it should be
activated due to an approaching train. It can also be dangerous when the LCPF is
activated for too long; at some point waiting traffic becomes impatient and might
try to cross the tracks regardless of the warning signals.

As with the other EULYNX interfaces two general requirements are that the
object controller should only change the state of the field element when commanded
to do so by the interlocking and it should always accurately report the status of
the field element. The requirements REQ_LC_1 and REQ_LC_2 make these
general requirements specific to the level crossing interface.

ID REQ_LC_1

Summary The object controller does not change the activation level
of the LCPF without a command from the interlocking.

Detailed
description

The object controller will only change the activation level
of the LCPF to the activation level last commanded by
the interlocking. For activating the level crossing there
are two exceptions: the component F_LC_Functions_-
SR is in the state INITIAL_OUTPUT_STATES or IN_-
STATE_PDI_CONNECTION_CLOSED. For deactivating
the level crossing there is one exception: the component
F_LC_Functions_SR is in the state IN_STATE_PDI_-
CONNECTION_CLOSED. Note: when the PDI connection
is closed the level crossing is first activated and after a set
timeout deactivated again.

103

Case Studies

µ-calculus formula
%0 = no command , 1= activation , 2= preactivation , 3= deactivation
⌫X(latest_command: Int = 0).

[send(CompPortPair(ENV_slc , T1_Realise_Activation),
Value_Pulse_Pack ([VarValuePair(DT1_Realise_Activation ,

Value_Custom(STR_Activation))]))]X(1)
^ [send(CompPortPair(ENV_slc , T1_Realise_Activation),

Value_Pulse_Pack ([VarValuePair(DT1_Realise_Activation ,
Value_Custom(STR_Pree_Activation))]))]X(2)

^ [send(CompPortPair(ENV_slc , T2_Realise_Deactivation),
Value_Pulse_Pack ([]))]X(3)

^ [¬(9 v:Value. send(CompPortPair(ENV_slc , T1_Realise_Activation), v)
_ send(CompPortPair(ENV_slc , T2_Realise_Deactivation), v))]

X(latest_command)
^ ((val(latest_command 6= 1)

^ [inState(BEQ_functions , IN_STATE_PDI_CONNECTION_CLOSED)]?
^ [inState(BEQ_functions , INITIAL_OUTPUT_STATES)]?)
=> [send(CompPortPair(BEQ_functions , T31_Activate_LCPF),

Value_Pulse_Pack ([]))]?)
^ ((val(latest_command 6= 2))

=> [send(CompPortPair(BEQ_functions , T33_Pre_Activate_LCPF),
Value_Pulse_Pack ([]))]?)

^ ((val(latest_command 6= 3)
^ [inState(BEQ_functions , IN_STATE_PDI_CONNECTION_CLOSED)]?)
=> [send(CompPortPair(BEQ_functions , T32_Deactivate_LCPF),

Value_Pulse_Pack ([]))]?)

ID REQ_LC_2

Summary The object controller always accurately reports the status
of the LCPF.

Detailed
description

The object controller tracks the activation status of the
LCPF (activated, pre-activated or deactivated). It also
tracks the protection status of the LCPF (protected or
unprotected). These two are combined in “Functional_-
Status” reports to the interlocking, which can be

• Activated and protected,

• Activated and unprotected,

• Deactivated and unprotected,

• Or Pre-activated.

Each functional status report by the component F_LC_-
Functions_SR should accurately reflect the activation level
and protection status of the LCPF.

104

5.6 Subsystem Level Crossing Interface (SCI-LC)

µ-calculus formula
%0 = deactivation , 1=activation , 2= preactivation
⌫X(latest_command:Int = 1, protected:Bool = ?).

[send(CompPortPair(BEQ_functions , T31_Activate_LCPF),
Value_Pulse_Pack ([]))]X(1, protected)

^ [send(CompPortPair(BEQ_functions , T32_Deactivate_LCPF),
Value_Pulse_Pack ([]))]X(0, ?)

^ [send(CompPortPair(BEQ_functions , T33_Pre_Activate_LCPF),
Value_Pulse_Pack ([]))]X(2, protected)

^ [send(CompPortPair(ENV_functions , T30_Status_LCPF),
Value_Pulse_Pack ([VarValuePair(DT30_Status_LCPF ,

Value_Custom(STR_Proteecteed))]))]X(latest_command , >)
^ [send(CompPortPair(ENV_functions , T30_Status_LCPF),

Value_Pulse_Pack ([VarValuePair(DT30_Status_LCPF ,
Value_Custom(STR_Unproteecteed))]))]X(latest_command , ?)

^ (val(latest_command 6= 1 _ ¬protected)
=> [send(CompPortPair(BEQ_functions , T5_Msg_LC_Functional_Status),

Value_Pulse_Pack ([VarValuePair(
DT105_Report_LC_Functional_Status ,
Value_Custom(STR_Activateed_and_proteecteed))]))]?)

^ (val(latest_command 6= 1 _ protected)
=> [send(CompPortPair(BEQ_functions , T5_Msg_LC_Functional_Status),

Value_Pulse_Pack ([VarValuePair(
DT105_Report_LC_Functional_Status ,
Value_Custom(STR_Activateed_and_unproteecteed))]))]?)

^ (val(latest_command 6= 0)
=> [send(CompPortPair(BEQ_functions , T5_Msg_LC_Functional_Status),

Value_Pulse_Pack ([VarValuePair(
DT105_Report_LC_Functional_Status ,
Value_Custom(STR_Deeactivateed_and_unproteecteed))]))]?)

^ [¬((9 p:VarName.
val(p 2 [T31_Activate_LCPF , T32_Deactivate_LCPF ,

T33_Pre_Activate_LCPF])
^ send(CompPortPair(BEQ_functions , p), Value_Pulse_Pack ([])))

_ (9 s:Custom_Value. val(s 2 [STR_Proteecteed , STR_Unproteecteed])
^ send(CompPortPair(ENV_functions , T30_Status_LCPF),

Value_Pulse_Pack ([VarValuePair(DT30_Status_LCPF ,
Value_Custom(s))]))))]X(latest_command ,protected)

A level crossing can be isolated by the interlocking, after which it will no longer
respond to (de)activation commands and will not activate the level crossing when
the connection is lost. Only when the interlocking explicitly sends a command to
de-isolate the level crossing it will operate normally again. This mode is useful when
an interlocking is turned off for maintenance, in which case no trains can run so the
level crossing need not be activated when the connection is lost. The requirement
has a weaker variant called REQ_LC_3_1 that will be further discussed in Section
5.6.3

105

Case Studies

ID REQ_LC_3

Summary The object controller does not enter or leave the state ISO-
LATED without a command from the interlocking. When
the interlocking commands to enter or leave the state ISO-
LATED it always eventually does so.

Detailed
description

The object controller starts in a state where it is not isolated.
When the object controller receives a command to isolate it
must always eventually do so by setting Mem_Last_LC_-
State to “Isolated”. When the object controller receives a
command to de-isolate it must always eventually do so by
changing Mem_Last_LC_State to another value. When
the generic layer signals that its state is BOOTING or NO_-
OPERATING_VOLTAGE then the object controller must
also always eventually de-isolate itself by changing Mem_-
Last_LC_State to another value.

µ-calculus formula
⌫X(isolated: Bool = ?).

[¬((9 str:Custom_Value.
val(str 2 [STR_Isolatee_LC_eenablee , STR_Isolatee_LC_disablee])
^ send(CompPortPair(BEQ_slc , T104_Cd_Isolate_LC),

Value_Pulse_Pack ([VarValuePair(DT4_Cd_Isolate_LC ,
Value_Custom(str))])))

_ send(CompPortPair(ENV_functions , D50_EST_EfeS_State),
Value_Custom(STR_BOOTING))

_ send(CompPortPair(ENV_functions , D50_EST_EfeS_State),
Value_Custom(STR_NO_OPERATING_VOLTAGE)))

]X(isolated)
^ (val(¬isolated) => (µY.

[¬(eventPoolFull _ (9 c:CompName , s:StateName. inState(c,s))
_ (9 v:Value. varVal(BEQ_functions , Mem_Last_LC_State , v)))]Y

_ [varVal(BEQ_functions , Mem_Last_LC_State ,
Value_Custom(STR_Isolateed_LC))]?))

^ (val(isolated) => (µY. [¬(eventPoolFull
_ (9 c:CompName , s:StateName. inState(c,s))
_ (9 v:Value. varVal(BEQ_functions , Mem_Last_LC_State , v)))]Y
_ <varVal(BEQ_functions , Mem_Last_LC_State ,

Value_Custom(STR_Isolateed_LC))>>))
^ [send(CompPortPair(BEQ_slc , T104_Cd_Isolate_LC),

Value_Pulse_Pack ([VarValuePair(DT4_Cd_Isolate_LC ,
Value_Custom(STR_Isolatee_LC_eenablee))]))]X(>)

^ [send(CompPortPair(BEQ_slc , T104_Cd_Isolate_LC),
Value_Pulse_Pack ([VarValuePair(DT4_Cd_Isolate_LC ,

Value_Custom(STR_Isolatee_LC_disablee))]))]X(?)
^ [(send(CompPortPair(ENV_functions , D50_EST_EfeS_State),

Value_Custom(STR_BOOTING))
_ send(CompPortPair(ENV_functions , D50_EST_EfeS_State),

Value_Custom(STR_NO_OPERATING_VOLTAGE)))
]X(?)

106

5.6 Subsystem Level Crossing Interface (SCI-LC)

Variant ID REQ_LC_3_1

Variant
summary

The object controller does not enter or leave the state ISO-
LATED without a command from the interlocking. When
the interlocking commands to enter or leave the state ISO-
LATED while the SCI-LC specific layer is ready to handle
the command it always eventually does so.

Detailed
description
variant

The same as the original requirement with the difference that
a command should only be handled when F_SCI_LC_SR is
in the state TRANSMIT_COMMANDS_OR_MESSAGES
and F_LC_Functions_SR is in the state OPERATIONAL.

µ-calculus formula
⌫X(isolated: Bool = ?).

[¬((9 str:Custom_Value.
val(str 2 [STR_Isolatee_LC_eenablee , STR_Isolatee_LC_disablee])
^ send(CompPortPair(BEQ_slc , T104_Cd_Isolate_LC),

Value_Pulse_Pack ([VarValuePair(DT4_Cd_Isolate_LC ,
Value_Custom(str))])))

_ send(CompPortPair(ENV_functions , D50_EST_EfeS_State),
Value_Custom(STR_BOOTING))

_ send(CompPortPair(ENV_functions , D50_EST_EfeS_State),
Value_Custom(STR_NO_OPERATING_VOLTAGE)))

]X(isolated)
^ (val(¬isolated) => (µY. [¬(eventPoolFull

_ (9 c:CompName , s:StateName. inState(c,s))
_ (9 v:Value. varVal(BEQ_functions , Mem_Last_LC_State , v)))]Y

_ [varVal(BEQ_functions , Mem_Last_LC_State ,
Value_Custom(STR_Isolateed_LC))]?))

^ (val(isolated) => (µY. [¬(eventPoolFull
_ (9 c:CompName , s:StateName. inState(c,s))
_ (9 v:Value. varVal(BEQ_functions , Mem_Last_LC_State , v)))]Y

_ <varVal(BEQ_functions , Mem_Last_LC_State ,
Value_Custom(STR_Isolateed_LC))>>))

^ ((<inState(BEQ_flc , TRANSMIT_COMMANDS_OR_MESSAGES)>>
^ <inState(BEQ_functions , OPERATIONAL)>>
^ <inState(BEQ_functions , DEACTIVATED)>>

) => [send(CompPortPair(BEQ_slc , T104_Cd_Isolate_LC),
Value_Pulse_Pack ([VarValuePair(DT4_Cd_Isolate_LC ,

Value_Custom(STR_Isolatee_LC_eenablee))]))]X(>))
^ ((<inState(BEQ_flc , TRANSMIT_COMMANDS_OR_MESSAGES)>>

^ <inState(BEQ_functions , OPERATIONAL)>>
) => [send(CompPortPair(BEQ_slc , T104_Cd_Isolate_LC),

Value_Pulse_Pack ([VarValuePair(DT4_Cd_Isolate_LC ,
Value_Custom(STR_Isolatee_LC_disablee))]))]X(?))

^ (¬(<inState(BEQ_flc , TRANSMIT_COMMANDS_OR_MESSAGES)>>
^ <inState(BEQ_functions , OPERATIONAL)>>
_ ([inState(BEQ_functions , DEACTIVATED)]? ^ val(¬isolated))

) => [(9 v:Value. send(CompPortPair(BEQ_slc , T104_Cd_Isolate_LC), v))]
X(isolated))

^ [(send(CompPortPair(ENV_functions , D50_EST_EfeS_State),
Value_Custom(STR_BOOTING))

_ send(CompPortPair(ENV_functions , D50_EST_EfeS_State),
Value_Custom(STR_NO_OPERATING_VOLTAGE)))]X(?)

107

Case Studies

Requirement Result Time
no counter

Time
counterexample

REQ_LC_1 true 10m

REQ_LC_2 false 10m 49m

REQ_LC_3 false 13m 71m

REQ_LC_3_1 true 19m

Table 5.29: Verification results for the SCI-LC interface. The last two columns respectively
show the time in minutes to verify a requirement with and without the
counterexample generation feature. In both cases the time needed by the
tools lts2pbes and pbessolve is combined.

5.6.2 Verification Approach

To restrict the state space whilst maximising the behaviour covered in our analysis
we have settled on the following configuration of the translation.

Optimisation Settings. Ports open to the environment are restricted by enforc-
ing that there is no event in the event queue of any of the components. This strong
restriction is needed to reduce the state space to such a level that verification is
feasible. Five inState selfloops are enabled, as they are referenced by the require-
ments: “IN_STATE_PDI_CONNECTION_CLOSED", “INITIAL_OUTPUT_-
STATES", “ISOLATED", “OPERATIONAL", and “TRANSMIT_COMMANDS_-
OR_MESSAGES". One varVal loop is enabled for Mem_Last_LC_State.

Restrictions Configuration Ports. The configuration ports are disabled as
they cannot change value during execution. We configured them to enable a closure
timer, connection loss timer, isolation and pre-activation. We have disabled obstacle
detection. Timeout values are set to a fixed value; the specific value is irrelevant as
our models abstract from time.

5.6.3 Results

Linearising, and compositionally constructing the state space took 103 minutes,
resulting in an LTS with 2.7 million states. Verifying the requirements (in parallel)
without counterexample generation took 22 minutes. The results are summarised
in Table 5.29.

Requirement REQ_LC_1 holds for the model but likely only because of the
optimisation options that we selected, in particular due to the restriction that the
environment only sends a message when there is no event in any event queue. We
expect the same issues as we saw with the point. When the interlocking sends
multiple conflicting commands to the field element and the first and last command
are the same, then it is unclear whether the object controller has processed all

108

5.6 Subsystem Level Crossing Interface (SCI-LC)

commands or may still change the status of the field element by processing the
remaining commands.

The counterexample for requirement REQ_LC_2 reveals that the object con-
troller can report an inaccurate status of the LCPF, a serious issue. By examining
the SysML model with the counterexample in mind we discovered that it can report
‘Activated and protected’ whilst it is actually ‘Deactivated and unprotected’ and
vice versa.

The problem lies in the fact that in multiple places (de)activating the LCPF
and setting a local variable ‘Mem_Last_LC_State’ happens in two different states
with a SysML transition (without guard or trigger in between), see Figure 5.11.
This transition may never be taken since, as an alternative, a transition may be
fired on higher level when the PDI connection is lost/re-established. The following
sequence of events then becomes possible.

Figure 5.11: Fragment of the state machine belonging to the component F_LC_Func-
tions_SR.

1. The connection between the interlocking is lost and the object controller has
as a result activated the LCPF. The variable Mem_Last_LC_State is set to
“Activated and protected”.

2. The connection loss deactivation timer expires.

3. The object controller moves to the state DEACTIVATE_LCPF (as seen in
Figure 5.11) and deactivates the LCPF. Note that Mem_Last_LC_State
has not yet been updated at this point.

4. The connection with the interlocking is re-established.

5. The object controller moves to the state OPERATIONAL. Since Mem_-
Last_LC_State is still set to “Activated and protected” it moves to the
substate PROTECTED (without reactivating the LCPF).

6. The object controller reports the functional states “Activated and protected”
to the interlocking.

109

Case Studies

The final requirement also does not hold for the model. The counterexample
generated by the toolset shows that a command to (de)isolate the level crossing
can be discarded when the command arrives at the object controller when it is not
(yet) ready to process it because the object controller blocks specific to the level
crossing are still in the state for establishing a connection with the interlocking.
One might think that such a run is unrealistic: how can a command already be
sent when one side is still in the process of establishing the connection? However,
the following scenario is allowed by the model due to the subdivision in blocks.

1. Starting point: the connection between the object controller and the inter-
locking is not established.

2. They establish a connection. The generic blocks are now in a state reflecting
that the connection is established but the blocks specific to the level crossing
are not (yet).

3. At the interlocking side the level crossing specific layer is notified of the
established connection.

4. The interlocking sends a command to (de)isolate the level crossing.

5. The object controller discards this message in the level crossing specific layer
as it is not yet ready to process the command.

6. The level crossing specific layer is notified that the connection is established
but the message was already discarded.

This scenario is unlikely (but not impossible) in practice because the generic blocks
would notify the level crossing specific blocks in a fraction of a second. An adjusted
requirement, REQ_LC_3_1, which allows discarding of commands in this scenario,
does hold for the model.

5.7 Limitations and Threats to Validity

Model checking allows for exhaustive verification of the model, in our case the
mCRL2 model derived from the EULYNX SysML models. This does not guar-
antee that there are no errors in the EULYNX specification, even if all relevant
requirements are identified and pass verification. The verified mCRL2 model does
not cover everything from the EULYNX specifications. Some things are only
documented in text and are not modelled in SysML, such as the bit-level encoding
of EULYNX messages; they are outside the scope of analysis.

The mCRL2 model could not account for all such details even if we added them
manually; some level of abstraction is necessary to keep the size of the induced state
space manageable. For example, integer overflows and whether byte encoding is
big endian or little endian need to be abstracted from. Errors or underspecification
on these fronts will not be caught by model checking. This is not necessarily a

110

5.7 Limitations and Threats to Validity

downside of our approach, it is a common engineering practice to use abstraction
to reason about higher level designs.

A specific concern in FormaSig is that the mCRL2 model is more precise than
the SysML model, and at some points less permissive. We have tried to take the
most permissive interpretation of the SysML models but this is not always possible
due to the state space explosion problem. We need to keep the size of buffers very
small and do not allow all interleavings in ASAL execution, making the model
more restrictive. As a result, the SysML model, which is the authoritative model,
allows for more behaviour than the mCRL2 model. Hence, our analysis does not
cover all allowed behaviour.

Besides these limitations we should also ask ourselves whether we can trust the
outcomes of the tools at all: can bugs create false positives or false negatives in
the verification results? We can identify the following possible points of failure:

1. The translation from SysML to mCRL2;

2. The encoding of SysML models in our framework;

3. The formalisation of requirements in the modal µ-calculus;

4. The mCRL2 toolset.

For all points of failure it holds that false negative outcomes of model checking
are not very severe, although they can be cumbersome to identify. If a µ-calculus
formula evaluates to false, we simply check the counterexample provided by the
tools and manually check whether we can replay the scenario on the original SysML
model.

1. Translation from SysML to mCRL2. Establishing that the translation
from SysML to mCRL2 is fully correct is difficult due to the complexity of the
resulting mCRL2 model. At the moment we verify the mCRL2 model produced by
our translation framework by stepping through a part of the model using lpsxsim,
checking whether the behaviour is as intended. Additionally, we verify that all
SysML states are reachable using a µ-calculus formula.

On a more fundamental level, correctness of the translation cannot be mathe-
matically established without a formal semantics of SysML independent from our
formalisation in mCRL2. In our approach the translation is the formalisation. We
can merely assess whether the formalisation in mCRL2 and the translation tool
sysml2mcrl2 work as intended.

2. Encoding the SysML Models. The measures taken to check the translation
framework will also catch errors in the encoding of the SysML models. Moreover,
the translation framework itself performs a number of sanity checks, such as whether
state machine diagrams contain states that are not connected to the initial state
via transitions, or states without outgoing transitions.

111

Case Studies

Model #States State space
generation

Time no
counter

Time
counterexample

SCI-LX 16.8⇥ 106 91m 789m 1,496m

Generic 12.6⇥ 106 50m 118m 998m

SCI-P 9.5⇥ 106 37m 103m 500m

SCI-LC 2.6⇥ 106 103m 19m 71m

Table 5.30: Summary of the verification effort for each interface. The last two columns
respectively show the maximum time in minutes to verify a requirement with
and without the counterexample generation feature. As the verifications are
performed in parallel the longest running time is the bottleneck for the total
verification time.

3. Formalization of Requirements. A risk in formulating (formal) require-
ments is that they may not express what you intended. A formula may even be
trivially true or false due to a mistake in the formulation. We have tested the
correctness of some formulas by injecting a fault in the model corresponding to what
the requirement expresses, with the expectation that the formula becomes false.
This adds a layer of redundancy, improving confidence in the results [22]. Future
work, which will be discussed in the next section, includes research towards formal
(visual) requirements languages that can be understood by signalling engineers,
allowing them to validate the formalised requirements.

4. mCRL2 Toolset. The correctness of our findings relies on the correctness of
the mCRL2 toolset. Verifying the correctness of the mCRL2 toolset is outside the
scope of this thesis.

5.8 Conclusion

The approach to scalability as described in the previous chapter has proven to be
effective: we are able to verify requirements for EULYNX models in a reasonable
time frame but not on an ordinary office machine due to the amount of RAM
required. Since the optimisations that alter the semantics are optional, we can
evaluate more paths of the system for smaller EULYNX interfaces, whilst being
able to handle the larger interfaces. Table 5.30 provides a summary of the time it
took to run the verifications.

Compared to an earlier case study of the point interface [21], which was
performed in 2021, the performance of our toolchain has improved a lot. Back
then, we were forced to use the pbessolvesymbolic tool to verify requirements,
which is currently not able to produce counterexamples. Moreover, even with the
symbolic tool, we were not able to verify whether requirement REQ_P_2 holds

112

5.8 Conclusion

for the model. Now, we are able to check all requirements with counterexample
generation within a day.

The optimisations that we use can alter the outcome of model checking. This
begs the question what conclusions we can draw from the verification outcomes. If
a formula does not hold we can inspect a counterexample and examine whether
there is indeed a flaw in the model. Hence, the activity of model checking improves
the quality of the model. If a formula does hold we cannot consider it to be a
definitive proof as some runs of the systems have been excluded. It does, however,
increase the confidence in the correctness of the system as more runs of the system
are analysed than a human ever could and without the possibility of human error.

Analysing the specification from different perspectives and/or abstraction levels
can help to uncover more issues. The issues with RaSTA were discovered in the
SCI-LX case study. Before, we had already performed a case study of the generic
subsystem interface [20, 21]. In this earlier case study we removed the RaSTA
components (RaSTA was made part of the environment) to reduce the state space.
This was not necessary for the SCI-LX case study allowing us to analyse the
interaction with RaSTA. In hindsight, we could have discovered the issue with
RaSTA already in the generic subsystem case study by creating a second model in
which RaSTA was included and the components that do not directly interact with
RaSTA were not.

An aspect that has not received much attention in this chapter is that obtaining
the right requirements is a challenging task in which our iterative approach was
crucial; the requirements and models are too subtle to use a waterfall workflow,
feedback loops are necessary. For many requirements it took a number of iterations
to formalise the requirement correctly and cover all corner cases.

In EULYNX the object controller and interlocking are broken down into multiple
components that handle a specific function. This way of modelling increases the
state space. Moreover, a number of the requirements failed due to reasons related
to asynchronous communication between components and how events are scheduled.
EULYNX should critically evaluate whether asynchronicity is desirable within the
object controller and interlocking, especially since (PLC) implementations will be
much more deterministic.

Communication between the interlocking and the object controller will always
be asynchronous in nature. As we have seen with REQ_P_2 and REQ_LC_1
this can lead to issues. As discussed in Section 5.5.3 these issues could be mitigated
by letting the interlocking wait for some time until it is ensured that all commands
are processed. An alternative mitigation approach is to add sequence numbers
to the commands from the interlocking. When the object controller processes a
command it could report it back to the interlocking with an acknowledgement
message, making it transparent for the interlocking when all movement commands
have been processed. Since RaSTA already implements sequence numbers it could
also be specified that RaSTA acknowledges a sequence number when the message
has been processed, instead of when the message has arrived in the queue as the
RaSTA specification dictates.

The case studies have proven useful for both the academic and industrial

113

Case Studies

stakeholders of FormaSig. The railway infrastructure managers have been provided
with valuable feedback on errors and omissions in their specifications. From the
academic perspective it was useful to evaluate how well our tools and techniques
could handle real specifications. In fact most of the scalability measures we have,
including compositional branching bisimulation minimisation, have been developed
with the purpose of being able to handle a EULYNX specification of which the
state space was at times too large to handle.

114

Chapter 6
Verifying Liveness Requirements for
Just Paths

He guards the paths of the just and
protects those who are faithful to
Him.

Proverbs 2:8

Every process-algebraic specification of a distributed algorithm or system
includes unrealistic finite or infinite computations in which some component never
makes progress [33]. Since such unrealistic computations typically violate liveness
properties, their mere existence is in the way of a proof that all realistic computations
do satisfy these properties. Unrealistic computations are then often excluded from
consideration by imposing additional assumptions such as progress and (strong)
fairness. See [49] for a comprehensive overview of such assumptions.

Progress states that when at least one action is enabled, one of them will
eventually be taken. The system will not just stall. As an example, the process
expression a.P will always perform an a action. Without assuming progress any
liveness property stating that always eventually some action is performed would
not hold. Progress is a natural assumption and is typically made implicitly.

As we have seen in Chapter 5, progress is not sufficient for some of the require-
ments we want to verify. In the counterexample for requirement REQ_PDI_6
we saw that the requirement does not hold due to a loop of behaviour of other
components.

(Strong) fairness is a much stronger assumption than progress. An infinite path
is strongly fair if every action that is infinitely often enabled is eventually taken.
As an example, a process P with P

def
= a.P + b.P will always perform both a and b

actions. Fairness is an assumption we are not willing to make for mCRL2 models
derived from SysML models. If a state in a state machine has multiple enabled
transitions we also want to consider the case where it always takes only one of the

115

Verifying Liveness Requirements for Just Paths

transitions. As EULYNX specifications do not specify how events are scheduled we
do not want to make assumptions that are too strong. An extra consideration is
that an implementation will likely be more deterministic than the model.

Van Glabbeek and Höfner have proposed justness [48] as a criterion that is just
strong enough to exclude many unrealistic computations, but not too strong:

“Once a transition is enabled that stems from a set of parallel com-
ponents, one (or more) of these components eventually partake in a
transition.” [49]

This is an assumption that we consider to be safe to make in our context. Every
state machine should be able to make progress.

The question then arises how we can incorporate such a justness assumption in
the verification of liveness requirements (in the context of mCRL2). A challenge
is that not every participation in a transition truly affects a component. For
example, the inState selfloops in our models cannot be regarded as an action of
the component, otherwise any (liveness violating) infinite path can be made just
by inserting some inState transitions. A similar situation arises when modelling
shared variables. In a process-algebraic specification shared variables are compo-
nents (processes) themselves, and hence reading the value of a shared variable
is modelled as an interaction of the component that reads and the component
that models the variable. Hence, an unrealistic infinite computation in which one
component continuously wants to assign a new value to the variable, but never
actually does, can, nevertheless, be just because another component time and again
reads the value of the variable.

Recent work by Van Glabbeek and coauthors suggests that the liveness property
for Peterson’s mutual exclusion algorithm [104], stating that any process that
wants to enter the critical section will eventually enter it, cannot be analysed in
CCS and related formalisms [33, 48] due to this contention of reading and writing
variables. To counteract this problem, it is proposed in [33] to extend the syntax
and semantics of CCS with a so-called signal emission operator, providing an
alternative mechanism to communicate information about the state of a component
(e.g., a variable) to other components. Although adding this operator does not
increase the absolute expressiveness of the calculus, it does facilitate a refined
definition of justness. In this refined definition, the reading of a signal is given
special treatment by which computations such as the one described above are not
considered just, and thus excluded from consideration.

Our contributions

The signal emission operator is a non-standard process-algebraic construction. It
is not part of the specification formalism of mCRL2, nor, to the best of our knowl-
edge, of the specification formalism of any other process-algebra based automated
verification tool. The question arises whether the addition of such an operator is
essential. If so, a non-trivial overhaul of established verification tools is called for.
Our first contribution is to show that it is not, if one is willing to pay a small price:

116

there is no general formal definition of justness for the entire calculus; the formal
definition must be tuned to the process expression under consideration. When
aiming for an automated verification, this is indeed a negligible price, since one is
just interested in the process expression that models the system under verification.

Semantically, the signal emission operator simply adds a self-loop labelled with
a signal to the state representing the process expression to which it is applied. A
signal is just a special type of label, so the self-loop can easily be specified by other
means (e.g., using recursion) if a particular subset of the set of labels is designated
as signals. Because the choice of an appropriate set of signals depends on how
those labels are used in the process expression at hand, the formal definition of
justness needs to be specific for a particular process expression.

In the absence of tools supporting the verification under justness of specifications
such as Peterson’s algorithm, establishing that a specification meets a property
remains a manual activity. This is problematic, as the complexity of a typical
specification easily leads to cases being missed in the analysis. Therefore, to conduct
a convincing automated verification of a property of an algorithm, we not only
need to specify the algorithm in a process-algebra based formalism; we also need to
formulate the property in a suitable modal logic. Moreover, in the verification of
the property, justness has to be taken into account. It is unclear, however, whether
this can be achieved without changing the verification algorithms that are used to
evaluate the validity of a modal-logic formula with respect to the labelled transition
system associated with the process expression. A complication is, for instance, that
the definition of justness refers to a notion of component, which naturally exists at
the level of the syntactic representation of the system (i.e., the process expression),
but not at the labelled transition-system level.

Our second contribution is derived from the observation that with the ACP-
style communication mechanism [6] of mCRL2, which is more general than the
communication mechanism of CCS, Peterson’s algorithm can be specified in such
a way that justness can be defined referring to labels rather than to components.
The idea is to achieve a partitioning of the set of labels that reflects the component
structure of the process expression. It is then possible to reformulate justness
referring to labels, rather than to components. We generalise the observation
regarding Peterson’s algorithm and formulate general syntactic conditions that
ensure that such a partitioning is possible.

Our third contribution is a template modal µ-calculus formula that expresses
a typical liveness property, asserting that on all just paths, an action, say a,
is eventually followed by another, say b. This template formula can easily be
instantiated by a user wishing to carry out a liveness verification of an algorithm,
and only requires information concerning which actions are designated as signals. As
a result, standard, off-the-shelf tooling such as mCRL2 can be used to automatically
verify liveness properties of algorithms such as Peterson’s mutual exclusion protocol.
In case such verifications fail, evidence can be provided [30, 116], helping the user
to pinpoint the root cause.

The final contribution is an application in the verification of EULYNX interfaces.
We show in a general way how liveness requirements can be verified with the

117

Verifying Liveness Requirements for Just Paths

mCRL2 toolset for models which are an instantiation of the generic mCRL2 model
as presented in Chapter 3. We also revisit two liveness requirements from Chapter
5 that did not hold. During the case studies we already suspected that a justness
or fairness assumption might make them true. It turns out that for these two
requirements a justness assumptions is sufficient.

This chapter is organised as follows. In Section 6.1, following [47], we take the
notion of labelled transition system with concurrency (LTSC) as technical starting
point, and present a definition of justness for it. In Section 6.2 we present a process
calculus that is very similar to CCS, except that it has the more general ACP-style
communication mechanism. Inspired by the LTSC-semantics that van Glabbeek
gives for CCS and its extension with signals in [47], we propose an LTSC-semantics
for the process calculus. Then, in Section 6.3 we recapitulate in more detail the
argument presented in [33] that Peterson’s algorithm cannot be rendered in the
process calculus in such a way that all unrealistic paths are excluded by assuming
justness. In Section 6.4 we then include a semantic treatment of special labels
that take the role of signals. In Section 6.5, we define when an LTSC admits
a label-based treatment of justness, proposing a subclass of LTSCs that have a
concurrency-consistent labelling. In Section 6.6, we present sufficient conditions on
process expressions ensuring that the associated LTSC has a concurrency-consistent
labelling. Process expressions satisfying these syntactic conditions are amenable to
verifications that take justness into account. In Section 6.7 we formalise a general
liveness property under justness assumptions for an LTSC that has a concurrency-
consistent labelling. In Section 6.8 we comment on the actual verification of the
liveness property for Peterson’s algorithm with the mCRL2 toolset. In Section
6.9 we treat the application of liveness verification with a justness assumption in
FormaSig. In Section 6.10 we present some conclusions.

6.1 Justness

We recap the definition of labelled transition system with concurrency and the
associated notion of just path from [47].

We presuppose disjoint sets A and S of actions and signals, respectively, and let
L = A [S. Elements of L are generally referred to as labels. A labelled transition
system (LTS) is a tuple (St ,Tr , src, target , `) with St and Tr sets of states and
transitions, respectively, src, target : Tr ! St and ` : Tr ! L. Note that this is an
alternative notation for an LTS compared to Definition 2.1 and contains the same
information. We need this alternative notation to refer to transitions explicitly.

We call a transition t 2 Tr a signal transition if its label is a signal and it does
not change state, i.e., if `(t) 2 S and src(t) = target(t); otherwise, t is called an
action transition.

Remark 6.1. Van Glabbeek mentions in [47] that signal transitions are not
supposed to change state, but does not include it as an explicit requirement. Rather,
in his work, it is a consequence of the operational semantics of the process calculi
under consideration that transitions labelled with signals indeed never change state.

118

6.1 Justness

The syntax and operational semantics of our process calculus admit, by design,
process specifications that give rise to transitions labelled with signals that do change
state. We prefer that such transitions are not treated as signal transitions in the
notion of justness. To this end it is convenient to include the requirement explicitly.

Signal transitions are disregarded in the definition of the notion of path. A path in
a transition system (St ,Tr , src, target , `) is a finite or infinite alternating sequence
s0t1s1t2s2 · · · of states and action transitions, starting with a state and if it is
finite also ending with a state, satisfying src(ti) = si�1 and target(ti) = si for all
relevant i. We say that a state s

0 is reachable from a state s if there exists a path
that starts with s and ends with s

0. We say that a transition t is reachable from a
state s if, and only if, there is a state s

0 that is reachable from s and src(t) = s
0.

Labelled transition systems abstract entirely from the notion of component. For
the definition of justness, the notion of component is relevant, at least to the extent
that it should be possible to determine that, whenever some transition is enabled,
eventually the component (or set of components) from which the transition stems,
makes progress. For the formalisation of justness, it turns out to be sufficient
to consider labelled transition systems enriched with a concurrency relation on
transitions [47]. We first give the formal definition of labelled transition system
with concurrency; the requirements on the concurrency relation are explained after
the definition.

Definition 6.2. A labelled transition system with concurrency (LTSC) is a
tuple (St ,Tr , src, target , `, •̂) consisting of an LTS (St ,Tr , src, target , `) and a
concurrency relation •̂ ✓ Tr ⇥ Tr such that

1. •̂ is irreflexive on action transitions (i.e., if t is an action transition, then
t 6̂ • t), and

2. if t is an action transition and ⇡ is a path from src(t) to s 2 St such that
t •̂ v for all transitions v occurring on ⇡, then there is an action transition
u such that src(u) = s, `(u) = `(t) and t 6̂ • u.

Intuitively, transitions are concurrent if they stem from different (sets of) com-
ponents, and they interfere if they have a component in common. It is then
natural to require that the concurrency relation on transitions is irreflexive: a
transition cannot be concurrent with itself. Furthermore, if some component (or
set of components) can perform some activity, represented by a transition t in
the labelled transition system, then after executing transitions concurrent with
t—which, by assumption, then stem from different components than t—it should
still be possible for the component to perform that same activity. The activity can
be represented by a different transition u in the labelled transition system, but this
transition should not be concurrent with t (it should interfere with t, i.e., t 6̂ • u)
and should have the same label.

As explained in [47], justness is a completeness criterion: it is used to specify
which paths should be considered representing a complete computation of the
system. For completeness one wants to distinguish between so-called blocking

119

Verifying Liveness Requirements for Just Paths

actions and non-blocking actions. Intuitively, a blocking action is not entirely under
the control of the system that is being specified; it may depend on interaction with
the environment. A non-blocking action is thought to be completely under control
of the system. A complete computation may end in a state in which only blocking
actions are enabled, but not in a state in which non-blocking actions are enabled.
The definition of justness takes a set of blocking actions as parameter.

Definition 6.3. Let B ✓ A be a set of blocking actions. A path ⇡ in an LTSC is
B-just if for every action transition t with `(t) /2 B and src(t) 2 ⇡, a transition u

occurs in the suffix of ⇡ starting at src(t) such that t 6̂ • u.

The example below illustrates the concept of justness.

Example 6.4. Consider a situation in which Alice drinks coffee and eats a croissant
in a small cafe, and Bob is engaged in a series of phone calls. The situation can be
modelled by the following LTSC:

s0 s1 s2

co↵ee croissant

phone phone phone

Suppose that all labels in the above LTSC are non-blocking actions. In case all
actions only interfere with themselves, the infinite path consisting of only phone
transitions from state s0 is not ;-just since the co↵ee transition is enabled in s0 but
no interfering transition is ever taken on this path. In case the phone transitions
in s0, s1 and s2 do interfere with the co↵ee transition and the croissant transition—
for instance because Bob is also the waiter who serves Alice, preferring to make
phone calls instead of taking her orders—then the same infinite path is ;-just.

6.2 Process Calculus

In [33], the authors claim that information exchanged through signals is essential
for the characterisation of just paths in the context of Peterson’s mutual exclusion
algorithm; without signals, paths representing unrealistic executions of Peterson’s
algorithm are considered just. In [33], justifications for the claim are presented in
the context of CCS. First, a version of CCS without signals is considered, Peterson’s
algorithm is modelled, and then it is shown that justness does not exclude all
unrealistic computations. Then, Peterson’s algorithm is modelled in a variant of
CCS with signals, and it is shown that the corresponding notion of justness works
well for Peterson’s algorithm. We retrace their steps and in this section introduce a
very simple process calculus to specify LTSCs that, as we show in the next section,
indeed illustrates the phenomenon observed by the authors. In Section 6.4, we
shall also introduce signals, but without changing the syntax of the calculus.

A special feature of our calculus, compared to CCS as considered in [33, 47],
is that it includes an ACP-style communication mechanism [6]: We presuppose a

120

6.2 Process Calculus

binary communication function on the set of labels L, i.e., a partial function

� : L⇥ L* L

that is

• commutative: �(�1,�2) is defined if, and only if, �(�2,�1) is defined, and if
both are defined, then we have �(�1,�2) = �(�2,�1); and

• associative: �(�1, �(�2,�3)) is defined if, and only if, �(�(�1,�2),�3) is
defined, and if both are defined then �(�1, �(�2,�3)) = �(�(�1,�2),�3).

This communication function defines which actions may communicate, and what
is the result of that communication. Thus, communication transitions are not all
labelled with the same action, as they are in CCS (in CCS all transitions that are
the result of communications are labelled with ⌧). The advantage is that transitions
that involve multiple components can be labelled such that from the label it can
be determined which components are involved.

We proceed to introduce the syntax of our process calculus and associate an
LTSC with it. The LTSC we get is in line with the LTSC that Van Glabbeek
associates with CCS in [47], though our way of defining it deviates somewhat from
van Glabbeek’s in [47], as we shall explain below. For now, we presuppose that the
set of signals is empty, i.e., L = A. (In Section 6.4, we shall consider the general
case in which the set of signals S is not empty and adapt the structural operational
semantics accordingly.) For the purpose of recursion, we also presuppose a set I of
agent identifiers. The set P of process expressions is generated by the following
grammar, with A ranging over I, � ranging over L, and H ranging over subsets of
L:

P,Q ::= 0 | �.P | P +Q | P kQ | @H(P) | A . (6.1)

The constructs 0, �. and + are familiar from basic CCS, respectively denoting
inaction, action prefix and non-deterministic choice. The construct k stands for
ACP-style parallel composition. It represents the arbitrary interleaving of the
behaviour of its components, and additionally allows its components to execute
communication steps in accordance with the communication function �: if the left
component of the parallel composition can execute label �1 and the right component
can execute label �2 and �(�1,�2) is defined, then the parallel composition can
execute �(�1,�2). The process calculus includes encapsulation operator @H (similar
to the restriction operator in CCS) by which the execution of certain labels can
be blocked, and thus communication between components can be enforced. The
behaviour of the agent identifiers is defined through a recursive specification E,
which is a set of defining equations

A
def
= P ,

with P a process expression, including precisely one such equation for every A 2 I.

121

Verifying Liveness Requirements for Just Paths

We now proceed to associate an LTSC (St ,Tr , src, target , `, •̂) with our process
calculus. The set of states St of this LTSC is the set of process expressions P, as
usual. To define a suitable set Tr of transitions, as in [47], we take the collection of
derivations in a formal proof system based on the structural operational semantics
of the process calculus. We deviate from [47] in how we define the concurrency
relation. In [47], Van Glabbeek inductively associates a set of synchrons with
a derivation, which can be thought of as extracting from the derivation all the
required component information necessary to define a concurrency relation. We
prefer to annotate the transition relation defined by the structural operational
semantics with component information directly.

First, we associate with a process expression P its static component architecture,
which is determined by the top-level occurrences of k and @H in P . Let C = {l,r};
we shall refer to a component in a process expression P as a sequence in C⇤ (the
empty sequence will be denoted by ✏). We recursively associate with every process
expression P a set of components C(P) ✓ C⇤ as follows:

• if P = 0, P = �.P
0 for some � 2 L, P = P1 + P2, or P = A for some A 2 I,

then C(P) = {✏};

• C(P1 k P2) = l B C(P1) [r B C(P2), and C(@H(P)) = C(P).

If X ✓ C⇤, then l B X = {l� | � 2 X} and r B X = {r� | � 2 X}. Note that
every � 2 C(P) uniquely identifies a component of P : we denote this component
by P |

�
.

We keep track of which components contribute to a transition in the structural
operational semantics for our process calculus, presented in Table 6.1. It defines a
transition relation �,↵�! on process expressions, which is not only endowed with a
label � 2 L, but also with a set ↵ ✓ C⇤ of components.
The rule (Pref) expresses that a prefix �.P can do a �-labelled transition to P ;
furthermore, �.P is by itself a component. So the set of components associated
with the transition is {✏}. The rules (Sum-l) and (Sum-r) express that a non-
deterministic choice P + Q can execute a �-labelled transition from P or from
Q. Also P +Q is by itself a component, denoted by ✏. So the set of components
associated with the transition is {✏}. The rule (Rec) expresses that a process
name A with defining equation A

def
= P can perform any transition P can make.

Also A is by itself a component, denoted by ✏.
The rules (Par-l), (Par-r) and (Comm) express, respectively, that a parallel

composition P kQ can execute a transition of the components of P , a transition of
the components of Q, or execute a transition in which both components of P and Q

are involved. In the latter case, the communication function � must be defined on
the labels of the transitions of P and Q and the combined transition is labelled with
the result of applying the communication function to these labels. In the case of an
application of (Par-l) or (Par-r), the sets of components involved in the resulting
transitions need to be updated by prefixing all components suitably with l or r,
respectively. In the case of an application of (Comm), the involved components
of P are prefixed with l, and the involved components of Q are prefixed with r.

122

6.2 Process Calculus

(Pref)
�.P

�,{✏}�! P

(Rec) P
�,↵�! P

0
A

def
= P

A
�,{✏}�! P

0

(Sum-l) P
�,↵�! P

0

P +Q
�,{✏}�! P

0
(Sum-r)

Q
�,↵�! Q

0

P +Q
�,{✏}�! Q

0

(Par-l) P
�,↵�! P

0

P kQ �,lB↵�! P
0 kQ

(Par-r)
Q

�,↵�! Q
0

P kQ �,rB↵�! P kQ0

(Comm)
P

�1,↵1�! P
0

Q
�2,↵2�! Q

0
�(�1,�2) = �

P kQ �,lB↵1[rB↵2�! P
0 kQ0

(Enc) P
�,↵�! P

0
� /2 H

@H(P)
�,↵�! @H(P 0)

Table 6.1: Structural operational semantics.

Finally, the rule (Enc) expresses that @H blocks transitions labelled with � 2 H;
the set of components is simply inherited.

The example below illustrates the operational rules, and how they can be used
to construct derivations.

Example 6.5. The recursive specification given below models the second situation
of Example 6.4, i.e., the situation in which Alice orders coffee and a croissant, and
Bob is her waiter.

Bob
def
= co↵ee

r
.Bob + croissantr.Bob + phone.Bob , and

Alice
def
= co↵ee

s
.croissants.0 ,

Assume that � is a communication function satisfying

�(co↵eer , co↵ees) = co↵ee and �(croissantr , croissants) = croissant .

Then we can derive the following transition with conclusion Bob
co↵eer,{✏}�! Bob,

with source process Bob, target process Bob, and label co↵ee
r
:

(Rec)

(Sum-l)

(Pref)

co↵ee
r
.Bob

co↵eer,{✏}�! Bob

co↵ee
r
.Bob + croissantr.Bob + phone.Bob

co↵eer,{✏}�! Bob

Bob
co↵eer,{✏}�! Bob

123

Verifying Liveness Requirements for Just Paths

In a similar vein, we can derive a transition that has as conclusion Alice
co↵ees,{✏}�!

croissants.0, and which allows us to derive a transition witnessing the communica-
tion that can take place between Alice and Bob:

(Comm)

...

Bob
co↵eer,{✏}�! Bob

...

Alice
co↵ees,{✏}�! croissants.0

Bob kAlice co↵ee,{l,r}�! Bob k croissants.0

The above derivation shows that both Alice and Bob contribute equally to the
transition that results in Alice drinking a cup of coffee.

Now we let Tr be the set of all derivations1 that can be constructed using the
structural operational rules in Table 6.1, and we define src, target and ` by
stipulating that if t 2 Tr is a derivation and P

�,↵�! P
0 is its conclusion, then

src(t) = P , target(t) = P
0 and `(t) = �. Furthermore, we write comp(t) to denote

the set of components ↵ contributing to t.
It remains to define the concurrency relation •̂. We define that transitions t

and u are concurrent (notation: t •̂ u) if comp(t) \ comp(u) = ;, i.e., if none of
the components contributing to t are contributing to u.

Lemma 6.6. For all transitions t and v, if src(t) = src(v) and t •̂ v, then there
exists a transition u with src(u) = target(v), `(u) = `(t) and comp(u) = comp(t).

Proof. By induction on v; for a detailed proof see Lemma 44 in Appendix A of the
journal paper [18].

Proposition 6.7. The structure P = (St ,Tr , src, target , `, •̂) with components
as defined above is an LTSC.

Proof. From the rules in Table 6.1 it is immediate that whenever P
�,↵�! P

0, then
↵ 6= ;. So for every t 2 Tr we have that comp(t)\ comp(t) = ↵ 6= ;. It follows that
t 6̂ • t and hence •̂ is irreflexive. That •̂ also satisfies the second requirement of
Definition 6.2 follows with a straightforward induction on the length of ⇡ using
Lemma 6.6.

6.3 Modelling Peterson’s Algorithm

Peterson’s algorithm for mutual exclusion provides a classical solution to enable
two processes to use a shared resource in a mutually exclusive manner. In the
algorithm, the shared resource is referred to as the critical section. The algorithm
ensures that at all times only one of the two processes is in the critical section.
A desired liveness property of a mutual exclusion algorithm is that whenever one

1The notion of derivation with respect to a set of derivation rules can be defined inductively
as usual; we omit it here.

124

6.3 Modelling Peterson’s Algorithm

of the two processes wishes to enter the critical section, then it will eventually
do so. In this section, we shall discuss how Peterson’s algorithm can be modelled
in the process calculus introduced in the previous section. Then, we shall recap
the argument, already presented in [33], that the notion of justness associated
with the process calculus is too weak to exclude all unrealistic paths violating the
liveness property. In the next section, we shall refine the definition of justness in
order to facilitate an exhaustive verification under this notion of justness of the
aforementioned liveness property using the mCRL2 toolset.

Process A

repeat forever8
>>>>>><

>>>>>>:

`1 noncritical section
`2 readyA := >
`3 turn := B
`4 await (readyB = ? _ turn = A)
`5 critical section
`6 readyA := ?

Process B

repeat forever8
>>>>>><

>>>>>>:

m1 noncritical section
m2 readyB := >
m3 turn := A
m4 await (readyA = ? _ turn = B)
m5 critical section
m6 readyB := ?

Figure 6.1: Peterson’s algorithm (pseudocode)

Peterson’s algorithm is shown in Figure 6.1. Processes A and B communicate
via shared variables. By setting Boolean variables readyA and readyB , respectively,
they signal to the other process their wish to enter the critical section. In addition,
a shared variable turn is used to keep track of whose turn it is to enter the
critical section next; the idea is that a process, before entering its critical section,
courteously always first grants access to the other process. This way of using turn
is essential for ensuring both deadlock freedom and mutual exclusion.

In a message-passing process calculus, global variables are modelled as separate
processes with which other processes can interact. Processes modelling a variable
keep track of the value of the variable and can communicate with other processes
in read and write operations. In our model, to read a variable, the variable that
is being read performs an action s_rdval

var and the process that reads the variable
performs an action r_rdval

var . Together they communicate to a transition labelled
with rdval

var . A similar communication, labelled with asgnval
var , is defined to write to

a variable. To cover all the interactions with variables in Peterson’s algorithm we
define the communication function �Pet in such a way that it satisfies the following
equations and is undefined otherwise:

�Pet(r_asgnb

P , s_asgnb

P) = asgnb

P (b 2 {>,?}, P 2 {RA,RB}) ,

�Pet(r_rdb

P , s_rdb

P) = rdb

P (b 2 {>,?}, P 2 {RA,RB}) ,

�Pet(r_asgnt

T , s_asgnt

T) = asgnt

T (t 2 {A,B}) , and
�Pet(r_rd t

T , s_rd t

T) = rd t

T (t 2 {A,B}) .

(6.2)

We model the behaviour of the three variables readyA, readyB and turn with
process identifiers RAb, RBb and T t (with the superscripts referring to the current

125

Verifying Liveness Requirements for Just Paths

value of the variable), defined by the following equations:

RAb = r_asgn>
RA.RA

> + r_asgn?
RA.RA

? + s_rdb

RA.RA
b (b 2 {>,?}) ,

RBb = r_asgn>
RB .RB

> + r_asgn?
RB .RB

? + s_rdb

RB .RB
b (b 2 {>,?}) ,

and T t = r_asgnA
T .TA + r_asgnB

T .TB + s_rd t

T .T t (t 2 {A,B}) .

Our specification uses labels noncritA, noncritB, critA, critB, to represent
exiting the noncritical and critical sections, respectively. Process identifiers procA
and procB model the behaviour of processes A and B . They are defined by the
following equations (using the abbreviation (�1 + �2).P for �1.P + �2.P):

procA = noncritA.s_asgn>
RA.s_asgnB

T .(r_rd?
RB + r_rdA

T).

critA.s_asgn?
RA.procA

procB = noncritB.s_asgn>
RB .s_asgnA

T .(r_rd?
RA + r_rdB

T).

critB.s_asgn?
RB .procB

Together, the process definitions form the recursive specification EPet consisting
of eight process identifiers: procA, procB , RA>, RA?, RB>, RB?, TA and TB.
With the set H defined by

H = {s_asgnb

P , r_asgnb

P , s_rdb

P , r_rdb

P | b 2 {>,?}, P 2 {RA,RB}}
[{s_asgnt

T , r_asgnt

T , s_rd t

P , r_rd t

T | t 2 {A,B}} ,

we can now specify Peterson’s algorithm with the process expression

Pet = @H(procA k (procB k (RA? k (RB? k TA)))) .

Remark 6.8. Our specification of Peterson’s algorithm is almost identical to the
CCS model presented in [33]. The difference is in how communication is defined.
CCS presupposes a standard communication function by which an action a can
communicate with its co-named action ā, resulting in a special action ⌧ . In our
setting, the exact same behaviour as defined by the specification in [33] would
be obtained by using, instead of the communication function � defined above, a
communication function �CCS defined by

�CCS(r_asgnb

P , s_asgnb

P) = ⌧ (b 2 {>,?}, P 2 {RA,RB})
�CCS(r_rdb

P , s_rdb

P) = ⌧ (b 2 {>,?}, P 2 {RA,RB})
�CCS(r_asgnt

T , s_asgnt

T) = ⌧ (t 2 {A,B})
�CCS(r_rd t

T , s_rd t

P) = ⌧ (t 2 {A,B}) .

(6.3)

To get an appropriate notion of just path starting from Pet , we define the set of
blocking actions

B = {noncritA,noncritB}

126

6.4 Signals

Let ⇡ denote the unique path starting with Pet such that if all states are omitted
from it then we obtain the following sequence of labels:

noncritA.(noncritB.asgn>
RB .asgn

A

T .rd?
RA.critB.asgn?

RB)
1

.

The path ⇡ violates the liveness criterion as process A wants to enter the critical
section but is never able to, waiting to write to the variable readyA. It is deemed
unrealistic, as process B reading readyA intuitively cannot prevent process A from
writing it. To assess whether ⇡ is just we need to examine whether every action
transition t with `(t) /2 B and src(t) 2 ⇡, a transition u occurs in the suffix of ⇡
starting at src(t) such that t 6̂ • u. The only component of interest here is procA

as all other components partake in infinitely many transitions. Let t denote some
transition labelled with asgn>

RA, with src(t) 2 ⇡. There always exists a transition u

labelled with rd?
RA in the suffix of ⇡ starting at src(t). The components partaking

in t are l and rrl and the components partaking in u are rl and rrl. Hence, due
to the overlap, t 6̂ • u; the path violating the liveness property is just.

A more refined definition of the concurrency relation is needed to specify
that certain interactions, such as reading a variable, do not interfere with other
interactions with the same component. This requires distinguishing between
components contributing passively to a transition and components really affected
by a transition.

6.4 Signals

In the previous section it was observed that the specification of Peterson’s algorithm
in the proposed process calculus does not yield the appropriate notion of just path,
at least not with the given semantics. The culprit is a combination of two aspects.
First, shared variables need to be modelled as separate processes. Second, the
process calculus does not offer a facility to distinguish between the activities of
reading and writing a variable while, intuitively, if some component reads the value
of a variable then this should not prevent another process from writing a new value
to it.

The solution proposed in [33] is to extend the syntax of CCS with a signal
emission operator, in order to treat signals differently in the definition of the
concurrency relation. A separate set S of signals is presupposed, and the signal
emission operator adds a �-labelled self-loop to a state if it can emit signal � 2 S.
Variables, modelled as processes, then emit their values in the form of signals, and
reading the value of a variable can then be treated as not affecting the variable. As
a consequence, paths on which some component wants to write to a variable but
never succeeds because the variable is perpetually read by some other component
are not considered just.

Adding a signal emission operator solves the problem uniformly: with every
process expression of the process calculus an appropriate notion of just path is
associated: if a component only contributes to a transition by emitting a signal, then
this contribution is considered passive. A disadvantage of the solution, however,

127

Verifying Liveness Requirements for Just Paths

is that it requires an addition to the syntax of the calculus. As a consequence,
standard verification technology such as the mCRL2 toolset, which does not include
a signal emission operator, cannot be used to perform verifications taking justness
into account.

Here we opt for a different solution, which does not require an addition to
the syntax of the process calculus. Instead, it suffices to distinguish a separate
set of signals S and tune the notion of justness to take signals into account. We
need to modify the structural operational semantics, giving signals a special status:
whenever a transition labelled with a signal indeed does not change state, then it
is considered to be a signal. But this modification of the structural operational
semantics is only necessary to get an appropriate definition of the concurrency
relation. In Sections 6.5 and 6.6, we shall propose sufficient conditions on a
process expression (and the underlying recursive specification) that ensure that all
transitions labelled with signals are indeed signal transitions. This, in combination
with the use of an appropriate communication function that preserves component
information, will eventually obviate the need for explicitly defining a concurrency
relation on transitions, because it can be deduced from the labelling.

Henceforth we allow S to be non-empty. The syntax of the process calculus
(see Equation (6.1) on p. 121) remains the same. In the structural operational
semantics, however, we distinguish between components contributing actively
and components contributing passively to a transition. A component contributes
passively to a transition if another component reads one of its signals, i.e., the
component participates with a transition that is labelled with a signal and this
transition does not change the state of the component. The modified structural
operational semantics in Table 6.2 defines a transition relation �,↵,&�! on process
expressions, which is endowed with a label � 2 L, a set ↵ ✓ C⇤ of active components
and a set & ✓ C⇤ of signalling components.

Note that �.P 6= P , and therefore a transition emanating from a prefix always
changes state. Thus, according to the rule (Pref), the transition from a prefix
has an active component ✏ and no signalling components.
If an identifier A is the source of a transition that has A also as its target, and this
transition is labelled with a signal, then this transition has a signalling component
✏ and no active components; otherwise, the transition has an active component ✏
and no signalling components.

Due to the presence of recursion, it may also happen that P +Q is both the
source and the target of a transition, and if such a transition is labelled with a
signal, then we want to treat it as a signal transition. This is reflected in (Sum-l)

and (Sum-r) by distinguishing whether the target of the transition equals P +Q

and is labelled with a signal: if so, then the transition has no active components
and a signalling component ✏; otherwise, the transition has an active component ✏
and no signalling components.

In an application of (Par-l), both the active and signalling components of the
premise are prefixed with an l; in an application of (Par-r), they are prefixed
with an r; in an application of (Comm) the components of the left premise are

128

6.4 Signals

(Pref)
�.P

�,{✏},;�! P

(Rec) P
�,↵,&�! P

0
A

def
= P

A
�,↵

0
,&

0
�! P

0

⇢
↵
0 = ;, & 0 = {✏} if � 2 S and P

0 = A

↵
0 = {✏}, & 0 = ; otherwise

(Sum-l) P
�,↵,&�! P

0

P +Q
�,↵

0
,&

0
�! P

0

⇢
↵
0 = ;, & 0 = {✏} if � 2 S and P

0 = P +Q

↵
0 = {✏}, & 0 = ; otherwise

(Sum-r)
Q

�,↵,&�! Q
0

P +Q
�,↵

0
,&

0
�! Q

0

⇢
↵
0 = ;, & 0 = {✏} if � 2 S and Q

0 = P +Q

↵
0 = {✏}, & 0 = ; otherwise

(Par-l) P
�,↵,&�! P

0

P kQ �,lB↵,lB&�! P
0 kQ

(Par-r)
Q

�,↵,&�! Q
0

P kQ �,rB↵,rB&�! P kQ0

(Comm)
P

�1,↵1,&1�! P
0

Q
�2,↵2,&2�! Q

0
�(�1,�2) = �

P kQ �,lB↵1[rB↵2,lB&1[rB&2�! P
0 kQ0

(Enc) P
�,↵,&�! P

0
� /2 H

@H(P)
�,↵,&�! @H(P 0)

Table 6.2: Structural operational semantics taking signals into account.

prefixed with an l and those of the right premise are prefixed with an r. In an
application of (Enc), both the sets of active and signalling components are simply
inherited from the premise.

Example 6.9. Consider the recursive specification of Peterson’s algorithm—and
in particular the specification of RA?—given in the previous section. Suppose that
s_rd?

RA 2 S but rd?
RA, r_rd?

RA /2 S. Then we have the following (fragment of a)
derivation:

(Comm)

(Rec)

...

RA? s_rd?
RA,;,{✏}�! RA? r_rd?

RA.0
r_rd?

RA,{✏},;�! 0

(Pref)

RA? k r_rd?
RA.0

rd?
RA,{r},{l}�! RA? k 0

The component RA? contributes a signal transition, and hence does not actively
contribute to the communication. As a consequence, the path we identified earlier
as constituting a liveness violation to Peterson’s algorithm is, with the revised
semantics, no longer just.

129

Verifying Liveness Requirements for Just Paths

We now associate a revised LTSC with our process calculus as follows. Its set of
states St is again the set of process expressions. Its set of transitions Tr is the
set of all derivations in accordance with the new structural operational semantics
in Table 6.2. Again, if t 2 Tr is a derivation with conclusion P

�,↵,&�! P
0, then

src(t) = P , target(t) = P
0 and `(t) = �. We define the concurrency relation using a

refined notion of component, in which we distinguish between necessary participants
and affected components. The set of necessary participants of a transition t, denoted
by npc(t), is defined as

npc(t) = ↵ [& ,

and the set of affected components of t, denoted by afc(t), is defined as

afc(t) = ↵ .

We define that transitions t and u are concurrent (notation: t •̂ u) if none of the
components necessary for t are affected by u, i.e., if npc(t) \ afc(u) = ;.

To satisfy the requirements on •̂ that it is irreflexive on action transitions, it
is important that the set of affected components afc(t) of an action transition t

is non-empty, for otherwise npc(t) \ afc(t) = ;. The following example illustrates
that we need to formulate some mild restrictions on the communication function
for this.

Example 6.10. Consider the recursive specification consisting of the following
two defining equations:

A
def
= �1.A , and

B
def
= �2.B ,

and suppose that � is a communication function satisfying

�(�1,�2) = �(�2,�1) = �3 .

Furthermore, suppose that �1,�2 2 S, while �3 2 A. Then we have the following
derivation:

(Comm)

(Rec)

(Pref)

�1.A
�1,{✏},;�! A

A
�1,;,{✏}�! A

�1.B
�2,{✏},;�! B

(Pref)

B
�2,;,{✏}�! B

(Rec)

A kB �3,;,{l,r}�! A kB
Since �3 2 A, this derivation is an action transition, but the set of affected
components is empty. The culprit in this example is that communication between
the two signals �1 and �2 results in an action �3.

We can exclude the situation as described in the preceding example by requiring
that the communication of two signals never results in an action. It is convenient
and natural to also require the converse: the communication of an action with
another label should never result in a signal.

130

6.4 Signals

Definition 6.11. A communication function � is signal-respecting if and only if
for all �1 and �2, such that �(�1,�2) is defined, it is the case that �(�1,�2) 2 S if
and only if �1,�2 2 S.

Lemma 6.12. If the communication function � is signal-respecting, then a transi-
tion t is a signal transition if, and only if, afc(t) = ;.

Proof. By induction on t; for a detailed proof see Lemma 45 in Appendix A of the
journal paper [18].

In the following corollary, which is an immediate consequence of the preceding
lemma, we establish that •̂ satisfies condition 1 of Definition 6.2.

Corollary 6.13. If the communication function � is signal-respecting, then •̂ is
irreflexive on action transitions, i.e., for all action transitions t we have t 6̂ • t.

Proof. Let t be an action transition. Then, by Lemma 6.12, afc(t) 6= ;. Since
afc(t) ✓ npc(t), it follows that npc(t) \ afc(t) 6= ;, and hence t 6̂ • t.

Lemma 6.14. For all transitions t and v, if src(t) = src(v) and npc(t)\afc(v) = ;,
then there exists a transition u with src(u) = target(v), `(u) = `(t) and npc(u) =
npc(t). If � is signal-respecting and t is an action transition, then so is u.

Proof. By induction on v; for a detailed proof see Lemma 46 in Appendix A of the
journal paper [18].

It follows from the preceding lemma that the relation •̂ associated with our
process calculus satisfies condition 2 of Definition 6.2, as established in the following
corollary.

Corollary 6.15. If � is signal-respecting, t is an action transition and ⇡ is a
path from src(t) to some process expression P such that t •̂ v for all transitions v

occurring on ⇡, then there is an action transition u such that src(u) = P , `(u) = `(t)
and t 6̂ • u.

Proof. Straightforward induction on the length of ⇡ using Lemma 6.14.

From Corollaries 6.13 and 6.15 we get the following proposition.

Proposition 6.16. Let � be signal-respecting, let St = P, let Tr be the set
of all derivations of transitions in accordance with the operational semantics,
stipulating that if t 2 Tr is a derivation with conclusion P

�,↵,&�! P
0, then src(t) = P ,

target(t) = P
0 and `(t) = �, npc(t) = ↵ [& and afc(t) = ↵, and defining •̂ by

t •̂ u if, and only if, npc(t) \ afc(u) = ;. Then

P = (St ,Tr , src, target , `, •̂)

is an LTSC.

131

Verifying Liveness Requirements for Just Paths

Example 6.17. Returning to the running example of Peterson’s algorithm we
reconsider the path that violates liveness. First, we define the signal actions and
check whether the communication function is signal-respecting.

S = {s_rdb

P | b 2 {>,?}, P 2 {RA,RB}} [{s_rd t

T | t 2 {A,B}}

It is easy to see that the communication function �, defined in Equation (6.2) on
p. 125, is signal-respecting. Taking the LTSC as defined in Proposition 6.16 we
re-examine the liveness violating path ⇡ presented at the end of Section 6.3, which
gives rise to the following sequence of labels:

noncritA.(noncritB.asgn>
RB .asgn

A

T .rd?
RA.critB.asgn?

RB)
1
.

Let t and u be any two transitions with labels asgn>
RA and rd?

RA, respectively. Then
npc(t) = {l,rrl} and afc(u) = {rl}. Therefore npc(t) \ afc(u) = ; and thus
t •̂ u. We conclude that path ⇡ contains transition t, src(t) 2 ⇡, for which there
does not exist a transition v in the suffix of ⇡ such that t 6̂ • v. The path ⇡ is
therefore not just and can be ruled out. Note that this does not constitute a proof
of liveness, we have only reasoned about a single path. To prove liveness we need to
prove that there does not exist another liveness violating path that is just.

6.5 Concurrency-consistent Labelling

The semantics we associated with our process calculus in the previous section
enables reasoning about just paths without the need for additional operators in the
language. This allows one to manually analyse, e.g., the required liveness property
of Peterson’s algorithm in a standard process algebra, by reasoning directly about
the relevant just paths in the LTSC under analysis. Our aim, however, is to
facilitate the automated verification of liveness properties for just paths, using
toolsets such as mCRL2. Such toolsets are based on labelled transition systems
without a concurrency relation. Moreover, in these toolsets, properties need to
be expressed in a modal logic that has modalities that refer to labels, and not to
individual transitions.

Our specification of Peterson’s algorithm is such that it allows a characterisation
of its just paths in terms of labels rather than referring to individual transitions in
the LTSC. This is possible, because the labelling of transitions reachable from Pet
is consistent with the concurrency relation on those transitions.

In this section, we formally define when an LTSC has a concurrency-consistent
labelling, and we prove that LTSCs with a concurrency-consistent labelling allow a
characterisation of just paths in terms of labels instead of individual transitions. In
the next section, we shall provide a sufficient syntactic criterion on specifications
in our process calculus that ensure that the associated LTSC has a concurrency-
consistent labelling, and we argue that our specification of Peterson’s algorithm
satisfies this syntactic criterion.

132

6.6 Syntactic Conditions

Definition 6.18. An LTSC (St ,Tr , src, target , `, •̂) has a concurrency-consis-
tent labelling if for every t 2 Tr , `(t) 2 S implies src(t) = target(t), and there
exists a binary relation •̂ on the set of labels L such that for all transitions
t, u 2 Tr we have that t •̂ u if, and only if, `(t) •̂ `(u).

Clearly, there is no harm in the overloading of the symbol •̂. In an LTSC with a
concurrency-consistent labelling the relation on L is uniquely determined by the
relation on Tr . Furthermore, it will be clear from the context whether we mean the
relation on transitions or the relation on labels. For an LTSC with concurrency-
consistent labelling, we can reformulate the notion of B-justness referring to labels
instead of transitions. A label � 2 L is enabled in a state s 2 St if there is a
transition t with src(t) = s and `(t) = �. An action � 2 A is eliminated on
a path ⇡ if there is a transition t on ⇡ such that � 6̂ • `(t). In an LTSC with
a concurrency-consistent labelling, action transitions are not labelled by signals,
so a non-blocking action transition is labelled by an element of the complement
B = A\B of B relative to A.

Proposition 6.19. Let (St ,Tr , src, target , `, •̂) be an LTSC with a concurrency-
consistent labelling. Let B ✓ A be a set of blocking actions. A path ⇡ is then B-just
if, and only if, for every state s on ⇡ and every � 2 B enabled in s, � is eliminated
in the suffix of ⇡ starting at s.

Proof. Let ⇡ be a path in (St ,Tr , src, target , `, •̂).
To prove the implication from left to right, suppose that ⇡ is B-just and suppose

that � 2 B is enabled in some state s on ⇡. Then there is an action transition t with
src(t) = s and `(t) = �, so, by B-justness, a transition u occurs in the suffix of ⇡
starting at src(t) = s such that t 6̂ •u. Since the LTSC has a concurrency-consistent
labelling, it follows that � = `(t) 6̂ • `(u), and hence � is eliminated on the suffix of
⇡ starting at s.

To prove the implication from right to left, let t be an action transition such that
`(t) /2 B and src(t) 2 ⇡. Then `(t) is enabled and, since t is an action transition
and the LTSC has a concurrency-consistent labelling, it follows that `(t) 2 B, so �
is eliminated in the suffix of ⇡ starting at src(t). So there is a transition u in the
suffix of ⇡ starting at src(t) such that `(t) 6̂ • `(u). Hence, since the LTSC has a
concurrency-consistent labelling, t 6̂ • u, confirming that ⇡ is B-just.

6.6 Syntactic Conditions

The LTSC P associated with the process calculus in Section 6.4 does not have a
concurrency-consistent labelling, simply because there exist process expressions
(e.g., �.0 with � 2 S) that give rise to state-changing transitions labelled with
signals. In automated verification, however, we are often only interested in the
restriction of P to the set of process expressions reachable from some initial process
expression; for example, when verifying Peterson’s algorithm we are only interested
in states and transitions reachable from Pet . We shall now first formally define
the LTSC associated with a process expression P and then formulate sufficient

133

Verifying Liveness Requirements for Just Paths

syntactic conditions that guarantee that this LTSC has a concurrency-consistent
labelling, all in the context of a specific communication function.

Definition 6.20. Let P be a process expression. The LTSC associated with P

has as set of states the set of all process expressions reachable from P in P, as
transitions the set of all transitions reachable from P , and functions src, target , `
and relation •̂ obtained by restricting those of P to the set of transitions reachable
from P .

In Section 6.4, the concurrency relation •̂ on transitions was derived from assign-
ments npc : Tr ! 2C

⇤
and afc : Tr ! 2C

⇤
of necessary participants and affected

components to individual transitions. It is convenient to formulate sufficient condi-
tions in terms of assignments npc

`
: L! 2C

⇤
and afc

`
: L! 2C

⇤
of necessary and

affected components to labels, respectively, satisfying for every transition t

npc(t) = npc
`
(`(t)), and (6.4)

afc(t) = afc
`
(`(t)) . (6.5)

It is not possible to satisfy these equations in general: an appropriate assignment of
components to labels largely depends on the process expression under consideration.
Moreover, it may not even be possible to define npc

`
: L! 2C

⇤
and afc

`
: L! 2C

⇤

in such a way that the equations above are satisfied for all reachable transitions.

Example 6.21. Consider the specification Pet of Peterson’s algorithm presented
in Section 6.3, and consider the state reached from Pet by first executing noncritA
and then executing noncritB. In that state, two transitions are enabled: let us
denote by t the transition corresponding to the activity of process A assigning the
value > to the variable readyA (this is statement `2 in Figure 6.1) and let us
denote by u the transition corresponding to the activity of process B assigning
the value > to the variable readyB (this is statement m2 in Figure 6.1). Then
npc(t) = {l,rrl} and npc(u) = {rl,rrrl}. Now observe that, in the context
of the CCS communication function �CCS, defined in Equation (6.3) on p. 126,
we have that `(t) = `(u) = ⌧ , and hence it is not possible to define a mapping
npc

`
: L ! 2C

⇤
satisfying Equation (6.4). Note that with the communication

function �, defined in Equation (6.2) on p. 125 the problem disappears, since t and
u have distinct labels asgn>

RA and asgn>
RB , respectively.

The goal in this section is to formulate sufficient conditions on the communication
function � and a process expression P that allow us to define npc

`
and afc

`
satisfying

Equations (6.4) and (6.5) for all transitions t reachable from P . Furthermore, we
show that our specification of Peterson’s algorithm satisfies these restrictions.

We first formulate some basic requirements on npc
`

and afc
`
, expressing that

the set of affected components associated with a label is included in the set of
necessary components, and that signals do not have active components.

Definition 6.22. Let C ✓ C⇤ be a finite set of static components. A C-assignment
is a pair (npc

`
, afc

`
) of mappings npc

`
, afc

`
: L! 2C such that

134

6.6 Syntactic Conditions

1. afc
`
(�) ✓ npc

`
(�) for all � 2 L; and

2. afc
`
(�) = ; for all � 2 S.

In the following example, we define a C(Pet)-assignment for our specification of
Peterson’s algorithm.

Example 6.23. Recall that the set of components C(Pet) associated with Pet is

C(Pet) = {l, rl, rrl, rrrl, rrrr} .

To define the mappings npc
`
, afc

`
: L! 2C it is convenient to first associate with

every component � 2 C(Pet) a set of labels L� ✓ L. We have

Ll = {noncritA, s_asgn>
RA, s_asgnB

T , r_rd?
RB , r_rdA

T ,

critA, s_asgn?
RA} ,

Lrl = {noncritB, s_asgn>
RB , s_asgnA

T , r_rd?
RA, r_rdB

T ,

critB, s_asgn?
RB} ,

Lrrl = {r_asgn>
RA, r_asgn?

RA, r_rd>
RA, r_rd?

RA} ,

Lrrrl = {r_asgn>
RB , r_asgn?

RB , r_rd>
RB , r_rd?

RB} , and

Lrrrr = {r_asgnA
T , r_asgnB

T , r_rdA
T , r_rdB

T} .

Now we can define, for all � 2 C(Pet) and all � 2 L�:

npc
`
(�) = {�}, and afc

`
(�) =

⇢
{�} if � 2 A, and
; if � 2 S .

On the other elements of L, the results of communications, npc
`

and afc
`

are
defined as follows:

npc
`
(asgnb

RA) = afc
`
(asgnb

RA) = {l,rrl} (b 2 {>,?}) ,

npc
`
(asgnb

RB) = afc
`
(asgnb

RB) = {rl,rrrl} (b 2 {>,?}) ,

npc
`
(asgnB

T) = afc
`
(asgnB

T) = {l,rrrr} ,

npc
`
(asgnA

T) = afc
`
(asgnA

T) = {rl,rrrr} ,

npc
`
(rdb

RA) = {rl,rrl}, afc
`
(rdb

RA) = {rl} (b 2 {>,?}) ,

npc
`
(rdb

RB) = {l,rrrl}, afc
`
(rdb

RB) = {l} (b 2 {>,?}) ,

npc
`
(rdA

T) = {l,rrrr}, afc
`
(rdA

T) = {l} , and
npc

`
(rdB

T) = {rl,rrrr}, afc
`
(rdB

T) = {rl} .

It is easy to verify that (npc
`
, afc

`
) satisfies the requirements of Definition 6.22 and

hence is a C(Pet)-assignment.

We could now proceed to prove directly that the C(Pet)-assignment in the preceding
example satisfies Equations (6.4) and (6.5) and conclude that the LTSC associated

135

Verifying Liveness Requirements for Just Paths

with Pet has a concurrency-consistent labelling. We prefer to proceed more
generally, however, and define a subclass of process expressions together with
assumptions on the underlying recursive specification that guarantee that an
assignment satisfying Equations (6.4) and (6.5) exists. It will be easy to verify that
Pet is a process expression in the subclass, and that the recursive specification EPet

satisfies the assumptions, from which it will follow that the C(Pet)-assignment above
indeed satisfies Equations (6.4) and (6.5). In fact, it can be checked automatically
whether a process expression is in the subclass and the underlying recursive
specification satisfies the assumptions.

We consider parallel compositions of sequential components. These sequential
components should have disjoint alphabets and respect the use of signals. Moreover,
the communication function should support a consistent assignment of components
to labels. Below, we shall first formulate sufficient conditions on a sequential
process expression and its underlying sequential recursive specification that ensure
that transitions labelled with signals do not change state in the LTSC associated
with the process expression. Then, we associate with every sequential process
expression its (reachable) alphabet and its (reachable) action alphabet, so that
we can formulate the requirement that the alphabets of components are disjoint.
And finally we shall define when an assignment is consistent with a communication
function.

Sequential Components. The set of sequential process expressions is generated
by the following grammar (with A ranging over I and � ranging over L):

S ::= 0 | �.S | S + S | A .

By a sequential recursive specification E we mean a set of defining equations

A
def
= SA ,

with SA a sequential process expression, including precisely one such equation for
every A 2 I.

A sequential process expression S is syntactically guarded if all occurrences
of process identifiers in S are within the scope of an action prefix. A sequential
recursive specification E is syntactically guarded if for every defining equation
A

def
= SA in E it holds that SA is syntactically guarded.

Respect for Signals. Let E be a sequential recursive specification, and let us
denote, for all A 2 I, by SA the right-hand side of the defining equation for A in
E. We say that A 2 I is signalling if SA has a subexpression �.A with � 2 S. A
process identifier A 2 I is signal-respecting if

1. for every subexpression �.S0 of SA with � 2 S it holds that S
0 = A and the

occurrence of the subexpression is not in the scope of another prefix, and

2. for every subexpression S1+S2 of SA it holds that S1 and S2 are not signalling
process identifiers.

136

6.6 Syntactic Conditions

E is signal-respecting if it is syntactically guarded and all process identifiers in I
are signal-respecting. A sequential process expression S is signal-respecting with
respect to a signal-respecting sequential recursive specification E if S does not have
subexpressions of the form �.S

0 with � 2 S, and for every subexpression S1 + S2 it
holds that S1 and S2 are not signalling process identifiers.

Example 6.24. It is straightforward to check that EPet is a syntactically guarded
sequential recursive specification and that it is signal-respecting.

Lemma 6.25. Let E be a signal-respecting recursive specification and let t be a
transition such that src(t) is a signal-respecting sequential process expression. Then
target(t) is again a signal-respecting sequential process expression, and t is a signal
transition if, and only if, `(t) 2 S.

Proof. To establish that target(t) is again a signal-respecting sequential process
expression, we first note that if A

def
= SA is the equation in E defining some

process identifier A, and SA

�,↵,&�! S
0, then S

0 is signal-respecting. For by syntactic
guardedness, S

0 is a subexpression of SA, by the first requirement satisfied by
signal-respecting process identifiers S0 cannot have subexpressions of the form �.S

00

with � 2 S, and by the second requirement satisfied by signal-respecting process
identifiers, whenever S1 + S2 is a subexpression of S0, then S1 and S2 cannot be
signalling process identifiers. We can now argue that target(t) is a signal-respecting
sequential process expression with a straightforward induction on the structure of
src(t).

It remains to show that t is a signal transition if, and only if, `(t) 2 S.
For the implication from left to right, note that if t is a signal transition, then,

by definition, `(t) 2 S.
For the converse implication, suppose that `(t) 2 S; we need to establish

that src(t) = target(t). To this end, we first establish with induction on the
structure of S that if S is a signal-respecting process expression, � 2 S and
S

�,↵,&�! S
0, then S = A for some process identifier A. Clearly, S cannot be 0.

Furthermore, since signal-respecting sequential process expressions do not have
subexpressions of the form �.S

00 with � 2 S, we cannot have that S = �.S
00

for some process expression S
00. Note that if we had S = S1 + S2, then either

S1
�,↵,&�! S

0 or S2
�,↵,&�! S

0, so by the induction hypothesis either S1 or S2 would
be a signalling process identifier, contradicting the assumption that for every
subexpression S1 + S2 of S it holds that S1 and S2 are not signalling process
identifier. It follows that S = A for some (signalling) process identifier A. Hence,
assuming that (A

def
= SA) 2 E, t has a subderivation t

0 with src(t0) = SA and
`(t0) 2 S. From the first requirement satisfied by signal-respecting process identifiers
it now follows that target(t) = target(t0) = A.

Alphabet. We also wish to associate with each sequential process expression
S its alphabet L(S) and its action alphabet A(S), the sets of labels of transitions
and action transitions reachable from S, respectively. To this end, we first define

137

Verifying Liveness Requirements for Just Paths

L(A) for all process identifiers defined in E, using two auxiliary notions. First,
we associate with every sequential process expression S its non-recursive alphabet
L0(S) inductively by: L0(0) = ;, L0(A) = ; for all A 2 I, L0(�.S) = {�} [L0(S),
and L0(S1 + Ss) = L0(S1) [L0(S2). Second, we define on I a binary relation . by
A .A

0 if A def
= S in E and A

0 occurs in S, and denote by .⇤ the reflexive-transitive
closure of .. Then we can define the alphabet L(A) of A by

L(A) =
[

{L0(S) | A .
⇤
A

0 and A
0 def
= S} .

Now, we inductively extend L(_) to all sequential process expressions defining
L(0) = ;, L(�.S) = {�} [L(S), and L(S1 + S2) = L(S1) [L(S2). Furthermore,
we define A(S) = L(S) \A.

Lemma 6.26. Let E be a sequential recursive specification and let S be a sequential
process expression over E. If S0 is a sequential process expression reachable from
S, then L(S0) ✓ L(S) and A(S0) ✓ A(S).

Proof. We first consider the special case that there is a transition t with src(t) = S

and target(t) = S
0 and prove with induction on t that L(S0) ✓ L(S).

If the last rule applied in t is (Pref), then we have S = �.S
0 and hence

L(S0) ✓ {�} [L(S0) = L(S).
If the last rule applied in t is (Sum-l), then there exist S1 and S2 such that

S = S1 +S2, and t has a subderivation t
0 with src(t0) = S1 and target(t0) = S

0. By
the induction hypothesis we have that L(S0) ✓ L(S1) ✓ L(S1) [L(S2) = L(S).

If the last rule applied in t is (Sum-r), then there exist S1 and S2 such that
S = S1 +S2, and t has a subderivation t

0 with src(t0) = S2 and target(t0) = S
0. By

the induction hypothesis we have that L(S0) ✓ L(S2) ✓ L(S1) [L(S2) = L(S).
If the last rule applied in t is (Rec), then S = A for some process identifier

A 2 I with defining equation (A
def
= SA) 2 E, and t has a subderivation t

0 with
src(t0) = SA and target(t0) = S

0. By the induction hypothesis, L(S0) ✓ L(SA); it
therefore remains to show that L(SA) ✓ L(A). We have:

L(SA) = L0(SA) [
[

{L(A0) | A .A
0}

= L0(SA) [
[

{L0(SA00) | A .A
0
.
⇤
A

00}

=
[

{L0(SA0) | A .
⇤
A

0}

= L(A) .

(In the second equality we have used that A .
⇤
A

00 for all A0 such that A .A
0. In

the third equality we have used the definition of L(A).)
Now, if S0 is reachable from S, then the statement of the lemma follows with

a straightforward induction on the number of transitions in a path from S to
S
0. Furthermore, it is then immediate from the definition of action alphabet that

A(S0) ✓ A(S).

138

6.6 Syntactic Conditions

Parallel-sequential Processes. Presupposing a signal-respecting sequential
recursive specification E, a parallel-sequential process expression over E is a process
expression generated by the following grammar (with S ranging over sequential
process expressions and H ✓ L):

P ::= S | P k P | @H(P) .

Lemma 6.27. Let E be a sequential recursive specification and let P be a parallel-
sequential process expression over E. If P 0 is reachable from P , then C(P 0) = C(P)
and P

0|
�

is reachable from P |
�

for all � 2 C(P).

Proof. With induction on t it can be established that if t is a transition such that
src(t) = P and target(t) = P

0, then C(P 0) = C(P) and P
0|
�
= P |

�
for all � 2 C(P).

The details are worked out in the proof of Lemma 47 in Appendix B of the journal
paper [18].

Then, if P 0 is reachable from P , the statement of the lemma follows with a
straightforward induction on the number of transitions in a path from P to P

0.

Since a communication function � is required to be commutative and associative,
it induces a partial function � : Mf (L)* L, where Mf (L) denotes the set of all
finite multisets over L. We define �([�0, . . . ,�n]) with induction on n as follows:

1. If n = 0, then �([�0, . . . ,�n]) = �0.

2. If n = 1, then �([�0, . . . ,�n]) = �(�0,�n) if �(�0,�n) is defined, and undefined
otherwise.

3. If n � 1, then �([�0, . . . ,�n+1]) = �(�([�0, . . . ,�n]),�n+1) in the case that
both �([�0, . . . ,�n]) and �(�([�0, . . . ,�n]),�n+1) are defined, and undefined
otherwise.

It is straightforward to prove, with induction on n � 1, that for all �0, . . . ,�n
and for all 0 k < n that �(�(�0, . . . ,�k), �(�k+1, . . . ,�n)) = �(�0, . . . ,�n); we
shall use this fact in the proof of the next lemma, which relates transitions of a
parallel-sequential process with transitions of its components.

Lemma 6.28. Let t be a transition, let npc(t) = {�0, . . . ,�n}, and suppose that
src(t) is a parallel-sequential process expression. Then t has subderivations t0, . . . , tn
such that src(ti) is a sequential process expression and src(ti) = src(t)|

�i
for all

0 i n, and `(t) = �([`(t0), . . . , `(tn)]) (where [`(t0), . . . , `(tn)] denotes the
multiset over L consisting of `(t0), . . . , `(tn)).

Proof. We proceed by induction on t.
If the last rule applied in t is (Pref), (Sum-l), (Sum-r), or (Rec), then

npc(t) = {✏}, src(t) = src(t)|
✏
, and `(t) = �([`(t)]). Moreover, from the syntax

definition of parallel-sequential processes it is clear that src(t) is a sequential process
expression.

If the last rule applied in t is (Par-l), then t has a subderivation t
0 such that

npc(t) = lBnpc(t0), so there exist static components �0
0, . . . ,�

0
n

such that �i = l�
0
i

139

Verifying Liveness Requirements for Just Paths

for all 0 i n. By the induction hypothesis, t0, and hence t, has subderivations
t0, . . . , tn such that src(ti) is a sequential process expression, src(ti) = src(t0)|

�
0
i
=

src(t)|
�

for all 0 i n and `(t) = `(t0) = �([`(t0), . . . , `(tn)]).
If the last rule applied in t is (Par-r), then the proof proceeds analogously.
If the last rule applied in t is (Comm), then t has subderivations t0 and t

00 such
that npc(t) = lBnpc(t0)[rBnpc(t00). Since npc(t0) and npc(t00) cannot be empty,
we have that n � 1 and there exist static components �0

0, . . . ,�
0
n

and a 0 k < n

such that npc(t0) = {�0
0, . . . ,�

0
k
} and npc(t00) = {�0

k+1, . . . ,�n}. By the induction
hypothesis, t0 and t

00, and hence t, have subderivations t0, . . . , tn such that src(ti)
is a sequential process expression for all 0 i n, src(ti) = src(t0)|

�
0
i
= src(t)|

�i

for all 0 i k, `(t0) = �([`(t0), . . . , `(tk)]), src(ti) = src(t00)|
�
0
i
= src(t)|

�i
for all

k < i n, and `(t00) = �([`(tk+1), . . . , `(tn)]). Furthermore, we have that

`(t) = �(`(t0), `(t00)) = �(�([`(t0), . . . , `(tk)]), �([`(tk+1), . . . , `(tn)]))

= �([`(t0), . . . , `(tn)]) .

Finally, if the last rule applied in t is (Enc), then t has a subderivation t
0 with

npc(t0) = {�0, . . . ,�n} and `(t0) = `(t), so it follows immediately by the induction
hypothesis that there exist subderivations t0, . . . , tn of t0 and hence of t such that
src(ti) = src(t0)|

�i
= src(t)|

�i
and `(t) = `(t0) = �([`(t0), . . . , `(tn)]).

Definition 6.29. Let C ✓ C⇤ be a finite set of static components. A C-assignment
(npc

`
, afc

`
) is consistent with a communication function � if it satisfies, for all

�1,�2,�3 2 L such that �(�1,�2) = �3:

1. npc
`
(�1) [npc

`
(�2) = npc

`
(�3); and

2. afc
`
(�1) [afc

`
(�2) = afc

`
(�3).

Example 6.30. Consider the specification of Peterson’s algorithm, it is straightfor-
ward to verify that the C(Pet)-assignment (npc

`
, afc

`
) presented in Example 6.23

is consistent with the communication function �. Consider, by way of example, the
equation

�(r_asgn>
RA, s_asgn>

RA) = asgn>
RA ,

which is part of the definition of �. We confirm as follows that indeed the conditions
of Definition 6.29 are satisfied:

npc
`
(r_asgn>

RA) [npc
`
(s_asgn>

RA) = {l,rrl} = npc
`
(asgn>

RA),

afc
`
(r_asgn>

RA) [afc
`
(s_asgn>

RA) = {l,rrl} = afc
`
(asgn>

RA).

If npc
`
: L ! 2C associates with every label a subset of components in C and

C
0 ✓ C, then we denote by L(C 0) the alphabet of C 0, i.e.,

L(C 0) = npc
`

�1(C 0) = {� 2 L | npc
`
(�) = C

0} ,

140

6.6 Syntactic Conditions

and by A(C 0) the action alphabet of C 0, i.e.,

A(C 0) = afc
`

�1(C 0) = {� 2 L | afc
`
(�) = C

0} .

Note that by condition 2 of Definition 6.22 we have A(C 0) ✓ A.

Theorem 6.31. Let E be a signal-respecting sequential recursive specification,
let P be a parallel-sequential process expression over E, and let (npc

`
, afc

`
) be a

C(P)-assignment. If L(P |
�
) ✓ L({�}) and A(P |

�
) ✓ A({�}) for all � 2 C(P) and

� is signal-respecting and consistent with (npc
`
, afc

`
), then (npc

`
, afc

`
) satisfies the

Equations (6.4) and (6.5) for every transition t reachable from P .

Proof. Let t be a transition reachable from P . Then src(t) = P
0 for some parallel-

sequential process expression P
0 reachable from P . By Lemma 6.27 we have

C(P 0) = C(P) and we have P
0|
c

is reachable from P |
c

for all c 2 C(P). So, without
loss of generality, we may assume that src(t) = P .

Let npc(t) = {�0, . . . ,�n}. By Lemma 6.28, t has subderivations t0, . . . , tn such
that src(ti) is a sequential process expression and src(ti) = src(t)|

�i
for 0 i n,

and `(t) = �([`(t0), . . . , `(tn)]). Since, for all 0 i n, `(ti) 2 L(P |
�i
) ✓ L({�i}),

we have npc
`
(`(ti)) = {�i}, and hence, by condition 1 of Definition 6.29,

npc(t) = {�i | 0 i n} =
[

0in

npc
`
(`(ti)) = npc

`
(`(t)) .

Since E is a signal-respecting recursive specification and src(ti) is a signal-respecting
sequential process expression, by Lemma 6.25 ti is a signal transition if, and only
if, `(ti) 2 S. Since, on the one hand, afc

`
(`(ti)) = ; for all `(ti) 2 S, and, on the

other hand, L(P |
�
) \A ✓ A({�}) we have

afc(t) = {�i | 0 i n and �i 2 A}

=
[

{afc
`
(`(ti)) | 0 i n and `(ti) 2 A} = afc

`
(`(t)) .

This completes the proof of the theorem.

If E, P , � and (npc
`
, afc

`
) satisfy the requirements of the preceding theorem, then

the relation •̂ on labels given by �1 •̂ �2 if, and only if, npc
`
(�1) \ afc

`
(�2) = ;

satisfies the requirements of Definition 6.18. So we get the following corollary.

Corollary 6.32. Let E be a signal-respecting sequential recursive specification, let
P be a parallel-sequential process expression over E, and let (npc

`
, afc

`
) be a C(P)-

assignment such that L(P |
�
) ✓ L({�}) and A(P |

�
) ✓ A({�}) for all � 2 C(P) and

� is signal-respecting and consistent with (npc
`
, afc

`
). Then the LTSC associated

with P has a concurrency-consistent labelling.

Example 6.33. In Example 6.30 we have established that all the conditions of
Corollary 6.32 are satisfied for EPet , �, Pet and the C(Pet)-assignment (npc

`
, afc

`
)

defined in Example 6.23, so the LTSC associated with Pet has a concurrency-
consistent labelling.

141

Verifying Liveness Requirements for Just Paths

6.7 Expressing Liveness

A mathematically rigorous method for establishing the correctness of a (finite
model of a) system is by means of model checking. Given a process expression
specifying a system, the behaviour of that system can be scrutinised by verifying
which requirements, expressed in a modal logic, hold true and which ones fail to
hold. Among the modal logics that can be used to express such requirements is the
modal µ-calculus. This is one of the most expressive logics available, subsuming
logics such as HML, LTL, CTL and CTL⇤, and it is typically used in tool suites
for analysing labelled transition systems, such as the mCRL2 toolset [24] and
CADP [42]. We recall this logic in Section 6.7.1.

Liveness requirements typically assert that (conditionally or unconditionally)
something good must inevitably happen. Phrasing such properties in the modal µ-
calculus is rather standard, but it is less clear whether the logic permits expressing
liveness properties restricted to just paths only. This is partly due to the fact that
justness is a predicate on paths, whereas the modal µ-calculus is a state-based
formalism, and partly due to the ‘dynamic’ nature of justness, which checks along
a path for enabledness of actions and their future elimination. In particular this
dynamic nature rules out a ‘static’ encoding such as the one presented in [35] for
dealing with fairness, as it assumes an a priori fixed—i.e., static—collection of
constraints that need to hold infinitely often for a path to be fair.

We show that liveness requirements of the form ‘along every just path, every a

action is inevitably followed by a b action’ can indeed be expressed in the modal
µ-calculus. Other path-based properties can be defined along the same lines. We
discuss the liveness property in Section 6.7.2.

6.7.1 The Modal µ-Calculus

The modal µ-calculus (Lµ) was already introduced in Section 2.3. Since we use
an LTSC here we need to make slight adjustments. Let (St ,Tr , src, target , `, •̂)
be a finite LTSC over L with a concurrency-consistent labelling. We proceed to
give a denotational semantics for our logic by associating every formula ' with the
subset J'K# ✓ St of states in which it holds. We reuse Definition 2.12 but alter the
definition of Jh�i'K# and J[�]'K# as follows:

Jh�i'K# = {s 2 St | 9t 2 Tr . s = src(t) and `(t) = � and
target(t) 2 J'K#}

J[�]'K# = {s 2 St | 8t 2 Tr . if s = src(t) and `(t) = � then
target(t) 2 J'K#}

6.7.2 Expressing Liveness along Just Paths

There are different liveness properties that one might be interested in. A basic
liveness property is ‘whenever some non-blocking action a happens, then inevitably
also b happens’; this property will be referred to as a-b-liveness. We generalise

142

6.7 Expressing Liveness

this notion to (A,�)-(B,)-liveness: ‘whenever � holds and some action a 2 A
happens, then inevitably also some action b 2 B happens or becomes true’. A
state is said to satisfy (A,�)-(B,)-liveness exactly when all paths emanating from
that state satisfy (A,�)-(B,)-liveness. Note that we can express a-b-liveness with
({a},>)-({b},?)-liveness. The generalisation from a-b-liveness to (A,�)-(B,)-
liveness is first described in this work; it is a necessary extension to accommodate
liveness properties encountered in the verification of EULYNX interfaces. We
require that � and are closed Lµ formulas. An Lµ formula that asserts that this
property holds along all paths in a given deadlock-free LTS is the following

⌫X. (
V
�2A

[�]X ^ (� =) (
V

a2A
([a]µY . (_

V
�2A\B

[�]Y))))).

Restricting (A,�)-(B,)-liveness to just paths requires that somehow the concept
of justness is woven into this formula. We explain in several steps how this can be
achieved.

In order to facilitate our reasoning, we consider the dual problem of character-
ising an (A,�)-(B,)-liveness violation along some just path. While this problem
is technically equally difficult, it is conceptually simpler since we are now only
concerned with constructing a formula that describes the existence of a just path.
Notice that a (just) path constitutes a violation to (A,�)-(B,)-liveness precisely
when (1) this path has a suffix starting at a state s

0, reached by an A-labelled
transition from a state in which � holds, along which no action b 2 B ever takes
place and never holds and (2) the path is just.

Our approach to characterising states that admit a violating path (should one
exist) is based on the following observations. We can characterise states that admit
a just, (B,)-free path. Given any such state, we can characterise the states
reaching it via a path ending with an A-labelled transition, i.e. any a-labelled
transition with a 2 A. Any just path can be prefixed by an arbitrary finite path,
resulting in a new just path (see Proposition 6.35 below).

For the remainder of this section we fix a finite LTSC (St ,Tr , src, target , `, •̂)
with a concurrency-consistent labelling.

Definition 6.34. Let ⇡ = s0t1s1t2 . . . be a finite or infinite path. The path is
(B,)-free when s 62 J K for every state s on ⇡ and `(t) 62 B for every transition t

on ⇡.

The justness rephrasing of Proposition 6.19 requires one to reason about the
enabled actions of a state. Let En(s) be the set of enabled non-blocking actions:
En(s) = {� 2 B | 9t 2 Tr : src(t) = s and `(t) = �}.

Proposition 6.35. Let ⇡ be a B-just path. Then the path s0t1s1 . . . tn⇡ is B-just.

Proof. Let ⇡0 = s0t1s1t2 . . . tn⇡ be a path such that ⇡ is B-just, and let s⇡ be the
starting state of ⇡. To prove that ⇡0 is B-just, by Prop. 6.19 it suffices to prove
that for all states on ⇡0 any enabled non-blocking action is eliminated in the suffix
starting in that state. Suppose s is a state on ⇡

0 and � 2 En(s). We distinguish
two cases.

143

Verifying Liveness Requirements for Just Paths

• Case s does not occur in the prefix s0t1s1t2 . . . tn. Then s occurs in ⇡ and
since ⇡ is B-just, � is eliminated in the suffix of ⇡ (and therefore also in the
suffix of ⇡0), starting in s.

• Case s occurs in the prefix s0t1s1t2 . . . tn. Towards a contradiction, assume
that � is not eliminated in the suffix of ⇡0 starting in s. Let t be the transition
such that `(t) = � and src(t) = s. Since � is not eliminated in the suffix of ⇡0

starting in s and s⇡ is reachable from s, by condition 2 of Def. 6.2, there must
be an action transition u such that src(u) = s⇡ and `(t) = � = `(u). But
then � 2 En(s⇡) and, since ⇡ is B-just, � is eliminated in ⇡. Contradiction.
Consequently, � is eliminated in the suffix of ⇡0 starting in s.

The suffixes of a just path are again just. This is formalised by the following
proposition.

Proposition 6.36. Let ⇡ = s0t1s1t2 . . . be a finite or infinite path. If ⇡ is B-just
then also any suffix of ⇡ is B-just.

Proof. Let ⇡ be a B-just path and let ⇡0 be a suffix of ⇡. Pick some state s in ⇡0

and an action � 2 En(s). Since s is in ⇡0, s is also in ⇡. Consequently, � must be
eliminated by some action in the suffix of ⇡ starting at s. Since s is in ⇡0, the suffix
of ⇡ starting at s also is a suffix of ⇡0.

We next lift the notion of just path to the level of states: a state is just whenever
it is the start of a just path. Note that we are interested in characterising states
that admit a just path constituting an (A,�)-(B,)-liveness violation; such paths
must have suffixes that are void of B-actions and for which in every state does
not hold. For this reason, we characterise the set of states admitting a liveness
violating B-just path in the following definition.

Definition 6.37. We define J(A \B,) as follows:

J(A \B,) = {s 2 St | there is a (B,)-free B-just path ⇡ starting in s}

As we explained at the beginning of this section, we tackle our problem in two
steps. First we show that formula invariant, see Table 6.3, characterises the states
that admit a just path along which never holds and no B-action ever happens;
i.e., those are essentially the states in the set J(A \B,). Then we continue by
characterising states that have a path ending in a state where � holds and an
A-labelled transition to a state in J(A \B,) is enabled. That is, we show that
the formula that characterises the set of states that admit an (A,�)-(B,)-liveness
violation are exactly those states satisfying formula violate of Table 6.3.

Before we prove our claim that invariant exactly characterises states admitting
just, (B,)-free paths we first prove an auxiliary lemma. This auxiliary lemma
claims that elim(�) captures exactly those states that have a (B,)-free path that
eliminates action �, and leads to a set of states represented by Y .

144

6.7 Expressing Liveness

violate = µW. ((� ^
W
�2A
h�iinvariant) _

W
�2A
h�iW)

invariant = ⌫Y. ¬ ^
V

�2B
(h�i>) elim(�))

elim(�) = µQ. ¬ ^ (
W

�02#�\B
h�0iY _

W
�02A\(#�[B)

h�0iQ)

where #� = {�0 | � 6̂ • �
0}

Table 6.3: Template formula that characterises the set of states that admit a just path
violating (A,�)-(B,)-liveness. Subformula invariant characterises the set of
states that admit a just, (B,)-free path. The user provides the sets A and
B, the relation •̂, the formulas � and and the sets of actions A and B to
instantiate/generate the formula for checking a concrete LTSC.

Lemma 6.38. For all environments #, states s 2 St , actions � 2 A and sets
F ✓ St such that F ✓ J¬ K, we have s 2 Jelim(�)K#[Y :=F] if, and only if, a state
in F can be reached from s via a finite (B,)-free path ending with an action that
eliminates � and all preceding actions do not eliminate �.

Proof. Let # be an arbitrary environment. Let R denote the set of states that
emit a finite (B,)-free path ending in a state of F , ending with an action that
eliminates � and on which all preceding actions do not eliminate �. We first show,
by mutual set inclusion, that R is a fixed point of the transformer Telim defined
below:

Telim(F 0) = J¬ K \ (

{s 2 St | 9t 2 Tr : src(t) = s ^ `(t) 2 #� \B ^ target(t) 2 F} [
{s 2 St | 9t 2 Tr : src(t) = s ^ `(h) 2 A \ (#� [B) ^ target(t) 2 F 0})

• Pick an arbitrary state s 2 R. We must show that s 2 Telim(R). Let ⇡ be a
path that witnesses s 2 R. Note that this path has at least one transition
since it ends with a transition eliminating �. For every state s

0 in ⇡ it holds
that s

0 2 J¬ K, so also s 2 J¬ K. We proceed with a case distinction on
the length of the path ⇡. Suppose ⇡ has length 1: ⇡ = s t0 s1. Then by
the definition of R we have that `(t0) 2 #� \B and s1 2 F . We conclude
that s 2 Telim(R). Next, suppose that the path ⇡ has length greater than 1:
⇡ = s t0 ⇡

0. The path ⇡0 is then also a (B,)-free path ending with an action
that eliminates � and ending in a state of F . Hence, the first state in ⇡0, say
s1, is also in R. Moreover, by the definition of R, t0 does not eliminate �:
`(t0) 2 A \ (#� [B). We conclude that s 2 Telim(R).

145

Verifying Liveness Requirements for Just Paths

• Pick an arbitrary state s 2 Telim(R). We must show that s 2 R. By the
definition of Telim we derive that s 2 J¬ K. We proceed with a case distinction.
Suppose there is some transition t0 such that src(t0) = s, target(t0) = s1 2 F
and `(t0) 2 #� \ B. By our assumption that F ✓ J¬ K we have that
s1 2 J¬ K. The path s t0 s1 is a (B,)-free path ending with an action
that eliminates �; hence s 2 R. Next, suppose there is some transition t0

such that src(t0) = s, target(t0) 2 R and the label does not eliminate �:
`(t0) 2 A \ (#� [B). Then target(t0) has some path ⇡ witnessing that
target(t0) 2 R. The path s t0 ⇡ then witnesses that s 2 R.

We conclude that R is indeed a fixed point of Telim. We next show that R is
the least fixed point of Telim; that is, for any F 0 satisfying Telim(F 0) = F 0, we
have R ✓ F 0. Let F 0 be a fixed point of Telim, and choose s 2 R. Our aim is to
show that s 2 F 0. There is some path ⇡ = s t0 s1 . . . sn�1 tn�1 sn witnessing that
s 2 R. We proceed by induction on the length of the path ⇡. The base case is
the case where n = 1. The path ⇡ is then just s t0 s1 with `(t0) 2 #� \ B and
{s, s1} ✓ J¬ K. From this we can conclude that s 2 Telim(F 0) and since F 0 is a
fixed point of Telim also s 2 F 0. For the step case we assume that s1 2 R implies
that s1 2 F 0 (induction hypothesis). It follows from the definition of R and the
fact that s 2 R that also s1 2 R. Hence, by the induction hypothesis we have that
s1 2 F 0. We will proceed to show that then also s 2 F 0. Since s 2 R we know that
s 2 J¬ K and since t0 is not the last transition (the path ⇡ has at least length 2) it
follows that `(t0) 2 A \ (#� [B). Then s 2 Telim(F 0) and since F 0 is a fixed point
of Telim also s 2 F 0.

We continue by substantiating the claim that invariant characterises the states
admitting just, (B,)-free paths. For the sake of conciseness, let J be a shorthand
for J(A \B,). The following lemma states that invariant exactly characterises
the set of states J .

Lemma 6.39. For all s 2 St we have s 2 J if and only if s 2 JinvariantK.

Proof. Let # be an arbitrary environment. We first show, by showing mutual set
inclusion, that J is a fixed point of the transformer Tinvariant defined below:

Tinvariant(F) =
\

�2A
{s 2 St | s 2 J¬ K ^ (� 2 En(s)) s 2 Jelim(�)K#[Y :=F])}

• Pick an arbitrary state s 2 J . Let ⇡ be a path that witnesses s 2 J . Then
for every state s

0 in ⇡ it holds that s0 2 J¬ K. Pick an arbitrary action � 2 A
and assume that � 2 En(s). We must show that s 2 Jelim(�)K#[Y :=J] holds.
From the fact that ⇡ witnesses s 2 J , we obtain that there must be some
first transition t on ⇡ such that � 6̂ • `(t), i.e., `(t) 2 #�, and by Prop. 6.36,
target(t) 2 J . With the help of Lemma 6.38 we can conclude the desired
s 2 Jelim(�)K#[Y :=J].

• Pick a state s 2 Tinvariant(J). Suppose En(s) = ;. Then state s itself is a
just path with s 2 J¬ K and hence s 2 J . Next, suppose En(s) 6= ; and let

146

6.7 Expressing Liveness

� 2 En(s). Then also s 2 J¬ K and s 2 Jelim(�)K#[Y :=J]. By Lemma 6.38,
there must be some (B,)-free finite path s = s0 t0 s1 t1 . . . tj sj+1 such that
transition tj eliminates � and sj+1 2 J . By Prop. 6.35, then also the path
witnessing sj+1 2 J , prefixed with s0 t0 s1 t1 . . . tj , is a just path witnessing
s 2 J .

We conclude that, indeed, J is a fixed point of Tinvariant. We next show that J is
the greatest fixed point of Tinvariant; that is, for any F satisfying Tinvariant(F) = F ,
we have F ✓ J . Let F be a fixed point of Tinvariant, and choose s 2 F . Our aim
is to show that s 2 J . First, observe that since F is a fixed point of Tinvariant and
s 2 F , we can conclude s 2 Tinvariant(F).

We construct a just, (B,)-free path starting in state s by eliminating all
actions enabled in s in an arbitrary but fixed order as follows. Let L denote the
set of enabled actions in s. In case L = ;, the state s itself witnesses s 2 J
and we are done. Otherwise, fix a total ordering < on L. Pick the least action
� 2 L. Since s 2 Tinvariant(F), also s 2 Jelim(�)K#[Y :=F] holds. Consequently, by
Lemma 6.38, there is a finite (B,)-free path s0 t0 s1 t1 . . . tj s� such that transition
tj eliminates � and s� 2 F . Denote the set of enabled actions in s� by L�. Note
that L� contains at least those actions of L that are not eliminated on any path
from s to s� (it may, however, contain actions that are eliminated on some path
from s to s�, but these actions were then not eliminated on all paths from s to s�

witnessing s 2 Jelim(�)K#[Y :=F]). We now repeat this construction by choosing the
least �0 2 {�00 2 L� \ L | � < �

00}, leading to a state s�0 , etcetera, until we have
constructed a finite path that eliminates all obligations in L and ends in a state
s
0 2 F . Note that this construction terminates since |L| |L| <1.

This means that for any state s 2 F , we can construct a finite (B,)-free path
to another state in F , say s

0, such that all actions from En(s) are eliminated on
that path; and for all states along this path all non blocking actions that are not yet
eliminated are still enabled in s

0 due to Corollary 6.15. Since this holds invariantly
for all states in F , this construction can be repeated to yield a finite (B,)-free
just path or (in case it can be continued indefinitely) an infinite (B,)-free just
path starting in s. Hence, s 2 J and therefore F ✓ J .

We illustrate the correspondence between invariant and J on the example we
provided earlier.

Example 6.40. Reconsider Example 6.4, in which Alice drinks coffee and subse-
quently eats a croissant, Bob is engaged in a series of phone calls, and none of
their activities interfere; see the following LTSC:

s0 s1 s2

co↵ee croissant

phone phone phone

Suppose we claim that whenever Alice orders coffee, she eventually also orders a
croissant. A counterexample to such a claim consists of a just path that contains

147

Verifying Liveness Requirements for Just Paths

a co↵ee event but is free of croissant actions following this co↵ee event. A state
admits such a violating, croissant-less path if and only if it satisfies formula
invariant.

We argue that in this case, s1 does not satisfy formula invariant. To this
end, we first show that s1 does not satisfy elim(croissant). Notice that the set
#croissant \ {croissant} = {co↵ee}, while the set A \ (#croissant [{croissant})
is the set {phone}. Formula elim(croissant) therefore effectively holds in s1 if and
only if formula hphoneiQ holds in state s1. Due to the self-loop, this is the case
exactly when state s1 satisfies elim(croissant). Since this chain of reasoning must
be continued indefinitely and we are looking for the least solution to Q, we must
conclude that s1 does not satisfy elim(croissant). As an immediate consequence
we find that s1 also does not satisfy invariant since croissant is one of the enabled
actions in that state. Observe that this is in line with the fact that s1 does not
admit a croissant-free just path.

We now return to the original problem of characterising those states that have
a just path that violates (A,�)-(B,)-liveness. So far, we have established that
formula invariant characterises those states that admit a (B,)-free, just path.
A state that admits a path violating (A,�)-(B,)-liveness is therefore one that
admits a finite path that, via an A-labelled transition from a state in which �

holds, leads to a state satisfying invariant. Given the similarities with the formula
for elim, we claim, without further proof, that formula violate indeed describes the
set of states that admit an (A,�)-(B,)-liveness violating just path.

Theorem 6.41. Let (St ,Tr , src, target , `, •̂) be a finite LTSC with a concurrency-
consistent labelling. Then all just paths starting in state s 2 St satisfy (A,�)-
(B,)-liveness if, and only if, s /2 JviolateK.

Example 6.42. We continue our previous example, showing that, indeed, the claim
that whenever Alice orders coffee, she eventually also orders a croissant, holds true
in state s0.

We find that s0 satisfies violate if, and only if, it satisfies hco↵eeiinvariant,
hco↵eeiviolate, hphoneiviolate, or hcroissantiviolate. Notice that there is no croissant
action enabled in s0, so s0 cannot satisfy hcroissantiviolate. In order for s0 to
satisfy hphoneiviolate, we require s0 to again satisfy violate. Like before, such a
cyclic chain of reasoning does not permit us to conclude that s0 satisfies violate.
Therefore, the only way to show that s0 satisfies violate is to show that s0 satisfies
hco↵eeiinvariant. But as we may conclude from our previous example, also this will
fail since s1 does not satisfy invariant, which is required when we are to conclude
that s1 satisfies invariant. We can therefore conclude that state s0 does not satisfy
violate. Since the LTSC has a concurrency-consistent labelling, we may conclude
by Theorem 6.41 that our liveness claim holds and Alice enjoys a croissant after
drinking coffee.

Example 6.43. In Example 6.30, we concluded that all the conditions of Corol-
lary 6.32 are satisfied for EPet , �, Pet and the C(Pet)-assignment (npc

`
, afc

`
), so

148

6.8 Automated Liveness Analysis in mCRL2

the LTSC associated with Pet has a concurrency-consistent labelling. As a conse-
quence, by Theorem 6.41 we can therefore conclude that the formula in Table 6.3,
with B = {noncritA,noncritB}, A = {noncritA}, � = >, B = {critA} and
 = ? expresses noncritA-critA-liveness.

6.8 Automated Liveness Analysis in mCRL2

A complete mCRL2 specification of Peterson’s algorithm can be found in the
Zenodo repository. The recursive specification EPet presented in Section 6.3 served
as the starting point and the reader will easily recognise it under the mCRL2
keyword proc. That the mCRL2 specification looks somewhat more involved than
the specification presented in Section 6.3 is because we have used some convenient
extra features of mCRL2. Before we comment on these extra features, we emphasise
that the use of these features is by no means essential. We could have also verified
liveness for all just paths with the mCRL2 toolset with a specification that almost
literally corresponds to the one presented in Section 6.3.

In an mCRL2 specification, labels can be parametrised with data, defined
by means of an algebraic specification. In our specification we have included an
enumerated type of which the elements correspond to the labels of Peterson’s
specification. This allows us to define, in a natural way, the functions npc

`

and afc
`

as mappings npc and afc, respectively, on the Label datatype. We
then define a predicate interfere(a,a’) that evaluates to true if, and only if,
npc

`
(a) \ afc

`
(a’) 6= ; using the mappings npc and afc. In a similar vein, a

predicate blocking(a) defines whether a is blocking or not.
The correspondence between labels and the data values representing them is

achieved by turning the labels of Pet into multi-actions, ‘labelling’ the original
actions with a parametrised action label(<action>), where <action> identifies
the original action. For instance, we represent the label critA using data value
a_critA. In the equation defining procA, we have, instead of the occurrence of
critA appearing in procA in Section 6.3, a multi-action critA|label(a_critA).
We can then choose to either hide the labels of the form label(<label>), or
hide the labels representing those in the specification of Peterson’s algorithm in
Section 6.3. The former allows us to generate a labelled transition system that is
identical to that associated with Pet ; the latter yields a labelled transition system
in which transitions are labelled with actions of the form label(<label>).

The toolset accepts the first-order modal µ-calculus of [59], which generalises
the logic Lµ. With the labels available as a datatype and using the predicates
interfere and blocking, we can express the formula expressing liveness for all
just paths as an almost direct instantiation (with {noncritA} for A, > for �,
{critA} for B, and ? for) of the formula in Table 6.3. The formula we have
used to verify that the mCRL2 specification of Peterson’s algorithm satisfies the
required liveness property is listed below. The extra features of mCRL2 described
above facilitate writing the generalised disjunctions and conjunctions as existential
and universal quantifications. Note, however, that, since the quantifications are

149

Verifying Liveness Requirements for Just Paths

over finite sets, they can be replaced by finite disjunctions and conjunctions.
¬ µ W. (

<label(a_noncritA)>(
⌫ Y. 8 a:Label .(val(¬blocking(a)) && <label(a)>>) =>

µ Q. (
(9 a’: Label.val(interfere(a,a’)

^ (a’ 6= a_critA)) ^ <label(a’)>Y)
_

(9 a’: Label.val(¬interfere(a,a’)
&& (a’ 6= a_critA)) && <label(a’)>Q)

)
)

_ 9 a:Label.<label(a)>W)

Figure 6.2: Non-just liveness counterexample generated by the mCRL2 toolset.

Verifying whether the mCRL2 specification of Peterson’s algorithm satisfies
noncritA-critA-liveness requires under half a second using the toolset and results
in an affirmative verdict.2 This once more confirms the manual correctness proof
of [33]. If we modify the specification of the mapping afc by including c_ReadyA

in afc(a_read_readyA), c_ReadyB in afc(a_read_readyB), and c_Turn in both
afc(a_read_turnA) and afc(a_read_turnB), then the toolset produces the coun-
terexample shown in Figure 6.2. Note that the modification corresponds to not
treating these actions as signals and that the counterexample represents the non-just
path discussed in Section 6.3.

2The mCRL2 sources can be found in the academic example directory of the mCRL2 repos-
itory, which can be obtained from https://github.com/mCRL2org/mCRL2, revision b45856d9a.
Additionally they can be found in the Zenodo repository [12].

150

https://github.com/mCRL2org/mCRL2

6.9 Application for mCRL2 Models Derived from SysML Models

6.9 Application for mCRL2 Models Derived from

SysML Models

In the context of EULYNX interfaces we are also interested in verifying liveness
requirements; in Chapter 5 discussing case studies, we have presented several such
requirements. In particular we conjectured that requirement REQ_PDI_6 and
REQ_P_1, which did not hold, might hold under a justness assumption. In
Section 6.9.1 we will present how we can verify liveness properties with a justness
assumption for mCRL2 models which are instantiations of the generic SysML
semantics model from Chapter 3. Additionally, we will revisit the aforementioned
requirements in Section 6.9.2. The models and requirements, along with instructions
on how to replicate our results, can be found in the Zenodo repository [12].

6.9.1 Formulating (A,�)-(B,)-liveness

To instantiate the (A,�)-(B,)-liveness formula (Table 6.3) we need to supply the
set of action labels A, the set of signal labels S, the set of blocking actions B and
the relation •̂. The pair of action sets A and B, and the formulas � and are
specific to a requirement and will be presented in the next section.

Defining the Labels

The notation and terminology around actions and labels has in this chapter been
slightly different than in Chapter 2, mostly because of the multi-action semantics
of mCRL2. We will work towards expressing which multi-actions are in A, S, and
B. The set of action labels, using the terminology and notation of Chapter 2, is as
follows:

⇤ = {discardEvent, selectMultiStep, executeBehaviour,
executeStep, inState, inEventPool, resetVariables,

varVal, send, receive}

Restating some definitions from Chapter 2: the set of actions {a(e) | a 2 ⇤, e 2 Da}
is denoted by , where Da denotes the semantic domain of the sort of action label
a. The set of all multi-sets over is denoted by ⌦.

Note that for ⌧ labelled transitions we cannot determine which component(s)
are affected. We can therefore not hide the internal actions related to transition
selection.

The set A and S will be defined as subsets of ⌦. Not every multi-action in ⌦
should be included in A or S, some multi-actions are not possible due to the allow
operator. In particular, except for the send and receive actions, every allowed
multi-action consists of only one action. The following action labels are used in
signals: inEventPool, resetVariables, and varVal. The rest are used in actions.

S = {Ha(e)I 2 ⌦ | a 2 {inState, inEventPool, varVal} and e 2 Da}

151

Verifying Liveness Requirements for Just Paths

A = {! 2 ⌦ \ S | (! = Ha(e)I with e 2 Da and a 2 {discardEvent,
selectMultiStep, executeBehaviour,

executeStep, resetVariables})
_ (!(send) = 1 and #! = !(send) + !(receive) > 1)}

Defining the Concurrency Relation

The mCRL2 model contains a sort CompName listing the names of components.
Some of the component names identify the environment. Whether there is one
environment name or multiple depends on how the generic model is instantiated.
Our automated translation tool introduces two CompNames for every component:
one to be used in a StateMachine process and one to be used by the environment
when communicating with that component. Let C denote the set of CompNames used
in a StateMachine process. Every action in has the name of a component among
its data parameters. This component name is either in C or a name used by the
environment. We define the mapping Comp : ! C [{env} as Comp(a(e)) = c

if c 2 C and it occurs in e and Comp(a(e)) = env otherwise.
We will only consider inputs from the environment to be blocking. We could

also consider certain selectMultiStep actions to be blocking when they are not
dependent on a timeout or event. Since it is not clear when such transitions are
blocking we will consider them non-blocking. Note that violate becomes weaker as
we consider more actions to be blocking.

B = {! 2 A | 9send(~d)2!Comp(send(~d)) = env}

As before, we specify the relation •̂ by specifying the sets of necessary partic-
ipants npc

`
and affected components afc

`
for each label in A. For two labels �1

and �2 we have that �1 •̂ �2 if, and only if, npc
`
(�1) \ afc

`
(�2) = ;.

We distinguish two cases which cover all the labels in A:

1. For the transition labels related to SysML transition selection and execution
a single component is affected. For every ! 2 A, if ! = Ha(~d)I with

a 2 {discardEvent, selectMultiStep, executeBehaviour,
executeStep, resetVariables}

then we define npc
`
(!) = afc

`
(!) = {Comp(a(~d))}.

2. For communications between state machines both the sender and receivers
are affected. For every ! 2 A, if for every a 2 ! we have that a = send or
a = receive then we define

npc
`
(!) = afc

`
(!) = (

[

a(~d)2!

{Comp(a(~d))}) \ {env}.

152

6.9 Application for mCRL2 Models Derived from SysML Models

With these definitions the LTSC is concurrency-consistent. Every signal is a
selfloop and the condition that for all transitions t, u 2 Tr we have that t •̂ u if,
and only if, `(t) •̂ `(u) is trivially satisfied since we defined •̂ in terms of the
labels.

Replacing all actions in the model with label actions as described in Section
6.3 is difficult for our models. Especially because of our use of send|receive multi-
actions. The occurrence of such multi-actions should be replaced with a single label
action containing the CompNames of the sender and all receivers. Instead we provide
an alternative template formula for liveness requirements tailored to FormaSig
models, which can be found below. The template formula is kept (somewhat)
concise by lifting the elimination of actions to the elimination of components: if
a non-blocking action is enabled for some component then that component will
eventually perform an action. This transformation is sound because an action
� is eliminated exactly when one of the participating components performs an
action. In the formula we use some overloading: A and B are action formulas3
capturing the sets A and B. In the formula, ENV should be replaced with a list
of CompNames that are used to denote the environment.
¬(µW. (%violate

<>>W _ (� ^ <A>(
%invariant
⌫Y. ¬ ^ (8 c:CompName .(

val(¬(c 2 [ENV_sp ,ENV_fp ,ENV_pe51])) => ((<(
(9 e:Event. discardEvent(c, e))
_ (9 e:Event , sc:StateConfig. selectMultiStep(c,e,sc))
_ (9 sc:StateConfig. executeStep(c,sc))
_ (executeBehaviour(c))
_ (resetVariables(c))
_ (9 v:Value. 9 p,p2:VarName. 9 c2:CompName.

val(¬(c2 2 ENV))
^ send(CompPortPair(c2,p2),v)| receive(CompPortPair(c,p),v))

_ (9 v:Value ,p,p2:VarName ,c2:CompName.
receive(CompPortPair(c2,p2),v)|send(CompPortPair(c,p),v))

)>>) =>
%elim
µ Q. ¬ ^ (

(<¬B ^ (
(9 e:Event. discardEvent(c, e))

_ (9 e:Event , sc:StateConfig. selectMultiStep(c,e,sc))
_ (9 sc:StateConfig. executeStep(c,sc))
_ (executeBehaviour(c))
_ (resetVariables(c))
_ (9 v:Value. 9 p,p2:VarName. 9 c2:CompName.
send(CompPortPair(c2,p2),v)| receive(CompPortPair(c,p),v))

_ (9 v:Value. 9 p,p2:VarName. 9 c2:CompName.
receive(CompPortPair(c2,p2),v)|send(CompPortPair(c,p),v))

)>Y)
_ (9 c2:CompName. val(c2 6= c) ^ <¬B ^ (

(9 e:Event. discardEvent(c2, e))
_ (9 e:Event , sc:StateConfig. selectMultiStep(c2,e,sc))
_ (9 sc:StateConfig. executeStep(c2,sc))
_ (executeBehaviour(c2))
_ (resetVariables(c2))
_ (9 v:Value. 9 p,p2:VarName. 9 c3:CompName.

val(¬(c3 == c))
^ send(CompPortPair(c3,p2),v)| receive(CompPortPair(c2,p),v))

_ (9 v:Value. 9 p,p2:VarName. 9 c3:CompName.

3https://mcrl2.org/web/user_manual/language_reference/mucalc.html

153

https://mcrl2.org/web/user_manual/language_reference/mucalc.html

Verifying Liveness Requirements for Just Paths

val(¬(c3 == c))
^ receive(CompPortPair(c3,p2),v)|send(CompPortPair(c2,p),v))

)>Q)
))))))))

We have now defined everything needed to instantiate an (A,�)-(B,)-liveness
formula for FormaSig models, except of course for A, B, � and .

6.9.2 Revisiting Requirements

Let us consider requirement REQ_PDI_6 for the generic EULYNX interface (see
Section 5.4): ‘When F_EST_EfeS_SR signals it is not ready for a connection,
the object controller will move to not ready for connection and only reattempts
a connection after receiving a message ready for connection’. This requirement
consists of two parts, the latter of which is cover by REQ_PDI_6_1. We will focus
on the requirement that the object controller needs to move to a state where it is
not ready for a connection. We can capture it in a (A,�)-(B,)-liveness formula
with the following definitions. The values for A and � express that the component
BEQ_eest signals that the object controller is not ready for a connection whilst
the PDI connection is established.
A = {send(CompPortPair(BEQ_eest ,T18_Not_Ready_For_PDI_Connection),

Value_Pulse_Pack ([]))
|receive(CompPortPair(BEQ_seec ,T18_Not_Ready_For_PDI_Connection),

Value_Pulse_Pack ([]))}
� = <inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED)>>

By picking B to be empty we express that always eventually must hold. The
formula expresses that the system is in a deadlock due to full event pools or the
component BEQ_seec is in the state NOT_READY_FOR_CONNECTION or
BEQ_seec is in the state PDI_CONNECTION_IMPERMISSIBLE.
B = {}
 = (⌫X. <eventPoolFull >> ^

V
�2A

[�]X)

_ <inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>>
_ <inState(BEQ_seec ,PDI_CONNECTION_IMPERMISSIBLE)>>

The formula holds for the EULYNX generic interface mCRL2 model. The original
formula without the justness assumption did not.

Similarly, consider requirement REQ_P_1 for the EULYNX point interface (see
Section 5.5): ‘The object controller must report changes in position, in particular
when it was in an end position and it no longer is’. We capture this requirement
as an (A,�)-(B,)-liveness formula with the following definitions. The values for
A and � express that the object controller perceives that the point is no longer in
an end position whilst it was previously in the left or right end position.
A = {receive(CompPortPair(BEQ_pe51 , D21_PM1_Position),

Value_Custom(STR_NO_END_POSITION))
|send(CompPortPair(ENV_pe51 , D21_PM1_Position),

Value_Custom(STR_NO_END_POSITION))}
� = <inState(BEQ_pe51 , ALL_LEFT)>> _ <inState(BEQ_pe51 , ALL_RIGHT)>>

The values for B and express that always eventually it is reported to the
interlocking that the point is no longer in an end position or a deadlock due to full
event pools is reached or the connection is lost.

154

6.10 Conclusions

B = {receive(CompPortPair(ENV_sp , T20_Point_Position),
Value_Pulse_Pack ([VarValuePair(DT20_Point_Position ,

Value_Custom(STR_NO_END_POSITION))]))
|send(CompPortPair(BEQ_sp , T20_Point_Position),

Value_Pulse_Pack ([VarValuePair(DT20_Point_Position ,
Value_Custom(STR_NO_END_POSITION))]))}

 = (⌫X. <eventPoolFull >> ^
V

�2A
[�]X)

_ <inState(BEQ_pe51 ,WAITING_FOR_INITIALISING)>>
_ [inState(BEQ_fp ,PDI_CONNECTION_ESTABLISHED)]?
_ [inState(BEQ_sp ,PDI_CONNECTION_ESTABLISHED)]?

This formula holds for the point mCRL2 model, whereas the original without the
justness assumption did not.

6.10 Conclusions

To facilitate the automated verification of liveness properties, we have proposed
a notion of concurrency-consistent labelling for labelled transition system with
concurrency together with a formulation of justness in terms of states and actions.
We have presented sufficient conditions on a process specification in a calculus with
ACP-style communication that guarantee that the associated labelled transition
system with concurrency has a concurrency-consistent labelling. Moreover, for
LTSCs with a concurrency-consistent labelling we have shown how to formalise a
liveness property under justness assumptions in the modal µ-calculus.

We have built on the firm foundation laid by Van Glabbeek in [47], but had
to slightly deviate from it to enable a special treatment of signal transitions in
a regular process calculus. Furthermore, we essentially relied on the ACP-style
communication mechanism in our calculus.

We have achieved our original goal of verifying two liveness requirements for
EULYNX interfaces with a justness assumption. In both cases, justness proved to
be strong enough to rule out unrealistic liveness violating computations.

We have also applied the theory to Peterson’s mutual exclusion algorithm and
have shown that it can be specified in such a way that the associated LTSC has a
concurrency-consistent labelling. Using the mCRL2 toolset we were able to verify
that the specification satisfies the required liveness property for all just paths.
We conjecture that similar specifications can be realised for the generalisation of
Peterson’s algorithm to N processes [104], and for Lamport’s bakery algorithm [77];
it remains to confirm liveness properties for all just paths for these specifications
with the mCRL2 toolset.

We see several directions in which our current work can be extended. For
example, it would be useful to automate the verification of the syntactic conditions
that guarantee that a specification induces an LTSC that has a concurrency-
consistent labelling. A more challenging task is to identify to which extent the
fragment of the process calculus can be extended without losing the guarantee
that the LTSCs associated with expressions in that fragment have a concurrency-
consistent labelling. We believe it may even be possible to check sufficient conditions
for the LTSC to have a concurrency-consistent labelling by phrasing appropriate

155

Verifying Liveness Requirements for Just Paths

modal µ-calculus formulas. Finally, open issues in the context of justness are the
definitions of component-preserving variants of behavioural equivalences. A variant
of strong bisimilarity [100], called enabling preserving bisimilarity [44] has already
been presented by Van Glabbeek et al., but to our knowledge there are no variants
of other behavioural equivalences in the linear time – branching time spectrum [46].
A particularly interesting equivalence would be divergence-preserving branching
bisimilarity [50], because it deals with abstraction and is the coarsest congruence
included in branching bisimilarity that distinguishes livelock from deadlock and is
compatible with parallel composition [51].

156

Chapter 7
Global Variables in Process
Algebras

You can see God from anywhere if
your mind is set to love and obey
Him.

A. W. Tozer

Communication between parallel components in real world systems takes many
forms: packets over a network, inter-process communication, communication via
shared memory, communication over a bus, etcetera. Process algebras usually offer
an abstract message passing feature. Not all forms of communication fit well in a
message passing paradigm, in particular, global variables and other forms of shared
memory do not fit in well. In some cases it would be desirable to have global
variables as first class citizens. To illustrate this we introduce a small example.

Example 7.1. Consider a traffic light and a car approaching a junction. If the
light is green the car performs an action drive and moves past the junction. If the
light is red the car performs an action brake and stops. Once the traffic light is
green again the car performs the action drive. The specification should result in
the following LTS.

drive

changered

brake

changegreen changegreen changered changeredchangegreen

drive

It would be natural to model the car and the traffic light as two parallel com-

157

Global Variables in Process Algebras

ponents. The car and the traffic light need to communicate so that the car can
make a decision to drive or brake depending on the current state of the traffic
light. Typically, such global information is modelled by introducing an extra parallel
component that maintains the global information, in this case the colour of the
traffic light. However, taking that approach we obtain a different LTS, which has
an extra transition modelling the communication of car and traffic light with the
extra component. Moreover, one must take care that decisions to drive or brake are
made on the basis of up-to-date information, e.g., by implementing a protocol that
locks the additional component. In many cases it is realistic that the observed value
is no longer up to date and in some cases we are also interested in analysing the
consequences of this. In other cases however, we might want to abstract from such
complications. When the information is constantly available to the observers, as is
the case with a traffic light, we have even more reason to not introduce separate
transitions communicating the global information.

In some process algebras it is possible to define a communication function
that specifies that a drive action is the result of a communication between two
actions of parallel components, e.g. a drive_if_green action from the car and
a signal_green action from the traffic light. This is somewhat unnatural as the
traffic light does not really actively participate in the driving of the car. Moreover,
if we introduce a second car that only wants to drive when the traffic light is red we
would need to change the communication function, even though the communication
of information does not essentially change. It would be better to let the colour of
the traffic light be in a global variable. In that way the behaviour of the traffic light
and cars acting upon information from the traffic light are independent, we obtain
a better separation of concerns.

We are also interested in global variables from the viewpoint of verification. The
semantics of mCRL2 (and almost every other process algebra) is action-based and
thus abstracts from the contents of a state; states are only distinguished by their
transitions. The logic (the modal µ-calculus in the case of the mCRL2 toolset) also
only refers to transitions. For models that are derived from state based formalisms
(such as SysML) it can be desirable to also consider the contents of a state. As we
saw in the case studies chapter, we added selfloops ‘annotating’ states with data
(e.g. inState selfloops showing the current SysML state configuration), which we
used to formulate certain requirements. Adding such selfloops is somewhat strange
as these transitions do not actually represent a step the system can take. It would
be better if the states could directly be annotated with data and if we could refer
to that data in the logic.

Example 7.2. Reconsider the example of the traffic light and suppose that we
want to check the property “The action ‘drive’ only takes place when the traffic
light is green”. Formulating this property in a logic such as the Hennessy-Milner
Logic (HML) or the modal µ-calculus is a bit awkward. You need to express that
between any drive action and the last preceding changegreen action there has not
been a changered action, but there could be any number of other actions. In the
modal µ-calculus extended with regular formulas (as used by the mCRL2 toolset)

158

7.1 A Simple Process Algebra with Global Variables

this can be expressed in the following way, where we assume the signal is green in
the initial state.

[> ⇤ . changered . (¬changegreen) ⇤ . drive]?

It would be more convenient if states were annotated with the value of the traffic
light which could be referenced in the logic. Suppose that we have some operator
(v = d) which holds for states where variable v has value d. Next suppose that there
is some global variable light which can take the values green and red. We could
then formulate the property concisely in the following way.

hdrivei> =) (light = green)

The goal in this chapter is to set a first step towards the integration of global
variables in mCRL2. With this direction in mind we propose and study (i) a
simple process calculus with global variables (ii) a modal logic that can refer to
the values of global variables and (iii) an encoding allowing us to use existing tools.
We propose a simple process calculus where every component of the system can
access the current values of global variables directly. We define appropriate notions
of equivalence for our process calculus. Our first contribution is an extension of
HML with two new operators that is strong enough to differentiate non-equivalent
process expressions. Our second contribution is a transformation of LTSs with
global data embedded in the state to LTSs with ‘plain’ states and an encoding of
our extended logic in standard HML. This encoding is such that the translated
formula holds for a state in the transformed LTS if, and only if, the original formula
holds for the corresponding state in the original LTS. For our final contribution
we study shared (non-global) data and how this can be tracked using a dedicated
operator in the process algebra.

This chapter is organised as follows. In Section 7.1 we define a simple process
algebra with global variables. In Section 7.2 we give appropriate notions of
equivalence for our process algebra. We continue by defining an extension of HML
in Section 7.3 and relating it to our equivalence notions. In Sections 7.4 and 7.5 we
show how to check extended HML formulas by transforming both the LTS and the
formula, and how this approach relates to our use of selfloops for the verification
of EULYNX interfaces. Our final contribution, on the topic of scoped variables, is
presented in Section 7.6. In Section 7.7 we relate our work to earlier publications
on global data in process algebras. Finally, in Section 7.8 we conclude the chapter.

7.1 A Simple Process Algebra with Global Vari-

ables

In this section we introduce a process algebra with global variables and its semantics.
In this chapter we assume, for convenience, a single data domain D. We use V to
denote a finite set of global variable names.

159

Global Variables in Process Algebras

We presuppose a set of actions A and define a set of transition labels L def
=

A [{↵(v, d) | v 2 V ^ d 2 D}. The special action ↵ denotes the assignment
of a variable. In this chapter we consistently use Latin letters (a, b, . . . 2 A) to
denote action labels and Greek letters (� 2 L) to denote transition labels. We also
presuppose a set of process names N . The set of process expressions P is generated
by the following grammar containing action prefix, inaction, choice, parallelism,
encapsulation, recursion and conditionals:

P := �.P | � | P + P | P k P | @B(P) | X | (v = d) �! P,

where � 2 L, B ✓ A, X 2 N , v 2 V and d 2 D. Inaction, �, is similar to the
process constant 0 in, for example, CCS [89] and TCP [1]. Our process algebra
supports recursion; we define a recursive specification E defining the process names.
Let a recursive equation be an equation of the form X

def
= t with X 2 N and t a

process expression in P. A recursive specification contains one recursive equation
X

def
= t for every X 2 N . Every recursive specification should be guarded. This

means that every occurrence of a process name in t is in the scope of an action prefix.
For communication between parallel processes we use an ACP style communication
function. We presuppose a binary communication function on the set of actions,
i.e., a partial function � : A ⇥A * A that is commutative and associative. We
only allow handshakes (communication between two parties): if for some action
labels a and b it is the case that c = �(a, b) then �(c, d) is undefined for every d.

Let V be the set of all functions V ! D, i.e. the set of all valuations. Let
V 2 V; we denote by V [v 7! d] the assignment defined, for all v0 2 V by:

V [v 7! d](v0) =

⇢
d if v0 = v

V (v0) if v0 6= v

We now want to associate an LTS with the process algebra. As the behaviour
of a process expression depends on the valuation of global variables, a state is a
pair hP, V i of a process expression P and a valuation function V .

Definition 7.3. We associate the LTS (P ⇥ V ,L,!) to our process algebra. The
transition relation ! is the least relation on states satisfying the rules below.

160

7.1 A Simple Process Algebra with Global Variables

ha.P, V i a�! hP, V i h↵(v, d).P, V i ↵(v,d)����! hP, V [v 7! d]i

hP, V i ��! hP 0
, V

0i

h(v = d)! P, V i ��! hP 0
, V

0i
V (v) = d

hP, V i ��! hP 0
, V

0i

hX,V i ��! hP 0
, V

0i
X

def
= P

hP, V i ��! hP 0
, V

0i

hP +Q, V i ��! hP 0
, V

0i

hQ, V i ��! hQ0
, V

0i

hP +Q, V i ��! hQ0
, V

0i

hP, V i ��! hP 0
, V

0i

hP kQ, V i ��! hP 0 kQ, V
0i

hQ, V i ��! hQ0
, V

0i

hP kQ, V i ��! hP kQ0
, V

0i

hP, V i a�! hP 0
, V i hQ, V i b�! hQ0

, V i
hP kQ, V i c�! hP 0 kQ0

, V i
�(a, b) = c

hP, V i ��! hP 0
, V

0i

h@B(P), V i ��! h@B(P 0), V 0i
� /2 B

Note that we only allow processes to synchronise on actions and not on as-
signments. This design decision was made since assignments change the valuation
function, whereas actions cannot change the valuation. When two processes syn-
chronise on assignments of the same variable then it is not clear what the resulting
effect on the value of the variable should be.

The LTS contains all states associated to the process algebra, which is infinitely
large. In this chapter we regularly draw the reachable states in the LTS from some
specific state, which we call an LTS fragment.

Example 7.4. Consider the interaction between a car and a traffic light controller
(TLC). The TLC sets the colour of a traffic light which the driver of the car acts
upon. There is one global variable t and the data domain consists of two elements
D = {green, red}. The recursive specification consists of two process equations,
given below.

Car
def
= ((t = green) �! drive.�) + ((t = red) �! brake.((t = green)! drive.�))

TLC def
= ((t = green) �! ↵(t, red).TLC) + ((t = red) �! ↵(t, green).TLC)

Using the derivation rules we can derive the LTS fragment reachable from hCAR k
TLC, V i, where V (t) = green. Note that this LTS fragment is isomorphic to
the one presented in Example 7.1, modulo the different names for the transitions
changing the global variable.

161

Global Variables in Process Algebras

hCarkTLC, V i

hCarkTLC, V [t 7! red]i h(t = green) ! drive.�

kTLC, V [t 7! red]i

h(t = green) ! drive.�

kTLC, V i

h�kTLC, V [t 7! red]i

h�kTLC, V i

drive

↵(t, red)

brake

↵(t,
green)

↵(t, green) ↵(t, red)
↵(t,
red)

↵(t, green)

drive

7.2 Behavioural Equivalences

Behavioural equivalences are an essential concept in the field of process algebra.
They enable us to reason about the equivalence of states and process expressions.
This is critical to prove the soundness of axioms and correctness of state space
reduction techniques. Note that strong bisimilarity (Definition 2.9) and branching
bisimilarity (Definition 2.10) can still be applied in the context of global variables.
They may however, not be the best fit. We will examine behavioural equivalence
relations described in the literature that explicitly take the data in states in
consideration.

The values of global variables may be essential to the modelled system and
we may want to refer to them during verification. Strong bisimulation does not
distinguish states based on the valuation of global variables; strongly bisimilar
states may not have the same valuation. State-based bisimilarity [90], defined
below, also distinguishes states based on their valuation of global variables. States
that are state-based bisimilar are also strongly bisimilar.

Definition 7.5. State-based bisimilarity: A relation Rsb ✓ (P ⇥ V)⇥ (P ⇥ V) is
a state-based bisimulation relation if and only if for all states hP, V1i and hQ, V2i
and labels � we have (hP, V1i, hQ, V2i) 2 Rsb implies that V1 = V2 and

• for all process expressions P
0 and valuation functions V

0: hP, V1i
��! hP 0

, V
0i

implies there exists a process expression Q
0 such that hQ, V2i

��! hQ0
, V

0i and
(hP 0

, V
0i, hQ0

, V
0i) 2 Rsb,

• for all process expressions Q
0 and valuation functions V

0: hQ, V2i
��! hQ0

, V
0i

implies there exists a process expression P
0 such that hP, V1i

��! hP 0
, V

0i and
(hP 0

, V
0i, hQ0

, V
0i) 2 Rsb.

Two states hP, V1i and hQ, V2i are state-based bisimilar, denoted by hP, V1i $sb
hQ, V2i,

if, and only if, there exists a state-based bisimulation relation Rsb such that
(hP, V1i, hQ, V2i) 2 Rsb.

It is desirable that a behavioural equivalence is a congruence: if process ex-
pressions P and Q are behaviourally equivalent it should imply that they are

162

7.2 Behavioural Equivalences

interchangeable in any larger process expression and paired with any valuation.
State-based bisimilarity is not defined at the level of process expressions though,
but on states. Below we provide the definition of process-congruence [90], which
takes into account that states contain data.

Definition 7.6. Process-congruence: A relation ⇠ ✓ (P ⇥ V) ⇥ (P ⇥ V) is a
process-congruence with respect to an n-ary process function f if and only if for
all process expressions {(pi, qi) 2 P ⇥ P | 0 i < n} and for all V 2 V such that
hpi, V i ⇠ hqi, V i (for all 0 i < n), we then also have that hf(p0, . . . pn�1), V i ⇠
hf(q0, . . . qn�1), V i. The relation ⇠ is a process-congruence for a process algebra
if, and only if, it is a process-congruence with respect to all the operators of the
signature of the process algebra.

State-based bisimilarity and strong bisimilarity are not a process-congruence
for our process algebra, which we demonstrate with the following example.

Example 7.7. Consider process expressions P = (v = 0) ! a.� and Q = a.�.
Note that P and Q are simply abbreviations of process expressions, not process
names. Let V map a global variable v to 0 and D = {0, 1}. The fragments of the
LTS reachable from hP, V i and hQ, V i are shown in Figure 7.1.

hP, V i

hQ, V i

h�, V i

h�, V i

a

a

Figure 7.1: Two LTS fragments depicting the states reachable from hP, V i and hQ,V i

The states hP, V i and hQ, V i are clearly state-based bisimilar. We might be
tempted to think that P and Q are interchangeable but that is not the case. The
problem arises when we add a parallel component that can assign a different value
to the global variable. Let us consider the process expression R = ↵(v, 1).�. The
fragments of the LTS reachable from hP kR, V i and hQ kR, V i are shown in Figure
7.2. The states hP k R, V i and hQ k R, V i are not state-based bisimilar. Hence,
state-based bisimilarity is not a process-congruence for our process algebra.

163

Global Variables in Process Algebras

hP kR, V i h� kR, V i

hP k �, V [v 7! 1]i h� k �, V [v 7! 1]i

hQ kR, V i h� kR, V i

hQ k �, V [v 7! 1]i h� k �, V [v 7! 1]i

a

↵(v, 1)
↵(v, 1)

a

↵(v, 1)
↵(v, 1)

a

Figure 7.2: Two LTS fragments depicting the states reachable from hP kR, V i and hQ k
R, V i

To reason about the equivalence of process expressions we use the notion of
stateless-bisimilarity, as defined in [90] and stated below. In essence, stateless-
bisimilarity relates process expressions that behave the same under any valuation.
The deduction system of our process algebra is in process-tyft format from which
it follows that stateless-bisimilarity is a congruence [90].

Definition 7.8. Stateless-bisimilarity: A relation Rsl ✓ P ⇥ P is a stateless
bisimulation relation if, and only if, for all labels � and process expressions P and
Q such that (P,Q) 2 Rsl the following two conditions hold:

• for all process expressions P
0 and valuation functions V, V

0 2 V: hP, V i ��!
hP 0

, V
0i implies there exists a process expression Q

0 such that hQ, V i ��!
hQ0

, V
0i and (P 0

, Q
0) 2 Rsl,

• for all process expressions Q
0 and valuation functions V, V

0 2 V: hQ, V i ��!
hQ0

, V
0i implies there exists a process expression P

0 such that hP, V i ��!
hP 0

, V
0i and (P 0

, Q
0) 2 Rsl.

Two process expressions P and Q are stateless bisimilar, denoted by P $
sl

Q, if,
and only if, there exists a stateless bisimulation relation Rsl such that (P,Q) 2 Rsl.

We can now examine equivalence on both the level of process expressions
with stateless bisimilarity and on the level of states with state-based bisimilarity.
For any two process expressions P and Q we have that if P $

sl
Q then also

hP, V i $
sb
hQ, V i for all valuations V 2 V [90].

164

7.3 Extending Hennessy-Milner Logic

7.3 Extending Hennessy-Milner Logic

In order to reason about properties of a process expression or system specification
we define a logic. Standard HML [66] is insufficient for our purpose, for two reasons.
The first reason is that we would like to refer to global variables in the logic
making the formulation of some properties much more convenient, as explained
in the Introduction. The second reason for extending the logic is that we want
a correspondence between the logic and the behavioural equivalences. There is a
nice correspondence between strong bisimilarity and HML: two states in an LTS
are strongly bisimilar if, and only if, they satisfy the same HML formulas [66].
This correspondence is often called the Hennessy-Milner theorem. This theorem
proves that a state space can be minimised modulo strong bisimulation whilst
preserving all properties. We would like a similar correspondence between the logic
and state-based and stateless bisimilarity.

We extend HML with a check operator (v = e). This operator evaluates to true
if and only if global variable v has value e. This results in the following syntax for
our logic HMLcheck:

� := > | ¬� | � ^ � | hT i� | (v = e)

where T is a non-empty finite set of transition labels, v 2 V and e 2 D. The dual
operators can be formulated using negation.

? = ¬>
� _ = ¬(¬� ^ ¬)
[T]� = ¬(hT i¬�)

The semantics of the standard HML operators is as usual. Let � be a formula,
let (S,L,�!) be an LTS. We inductively define the interpretation of �, notation
J�K, where J�K contains all states u 2 S where � is true.

J>K = S

J¬�K = S \ J�K

J� ^ �0K = J�K \ J�0K

JhT i�K = {u 2 S | 9u0 2 J�K,� 2 T : u
��! u

0}

The semantics of (v = e) is only defined for the LTS, (P ⇥ V,L,!), where the
states contain global variables.

Jv = eK = {hP, V i 2 P ⇥ V | V (v) = e}

We proceed by working towards a relation between the behavioural equivalences
and the logic. First, we introduce the notion of image-finiteness.

Definition 7.9. Image-finiteness: A state s is image finite if, and only if, the set
{t | s ��! t} is finite for every label �.

165

Global Variables in Process Algebras

Theorem 7.10, below, expresses that states are state-based bisimilar if and only
if they satisfy the same HMLcheck formulas. Recall that we defined the reachability
of states in Section 2.2.

Theorem 7.10. Let hP, V i and hQ, V i be states in LTS (P ⇥ V,L,�!) and let all
states reachable from hP, V i and hQ, V i be image-finite. Then hP, V i $

sb
hQ, V i if

and only if for all HMLcheck formulas � we have that hP, V i 2 J�K , hQ, V i 2 J�K.

Proof. We prove the two implications separately. To prove the implication from
left to right assume P $

sb
Q. We prove that for all HMLcheck formulas � we have

that hP, V i 2 J�K if and only if hQ, V i 2 J�K by induction on the structure of �.
Base cases

• � = >: J>K = P ⇥ V so hP, V i 2 J>K and hQ, V i 2 J>K.

• � = (v = e): Jv = eK = {hR, V
0i 2 P ⇥ V | V 0(v) = e} so both hP, V i and

hQ, V i are in Jv = eK if and only if V (v) = e.

Step

• � = ¬�0: J¬�0K = (P⇥V)\ J�0K. By the induction hypothesis hP, V i 2 J�0K if
and only if hQ, V i 2 J�0K. Then also hP, V i 2 J�K if and only if hQ, V i 2 J�K.

• � = �
0 ^ �00: J�0 ^ �00K = J�0K \ J�00K. By the induction hypothesis hP, V i 2

J�0K if and only if hQ, V i 2 J�0K and hP, V i 2 J�00K if and only if hQ, V i 2 J�00K.
Then also hP, V i 2 J�K if and only if hQ, V i 2 J�K.

• � = hT i�0: JhT i�0K = {u 2 P⇥V | 9u0 2 J�0K,� 2 T : u
��! u

0}. As P $
sb

Q

there exists some state hP 0
, V

0i such that hP, V i ��! hP 0
, V

0i if and only if
there exists a state hQ0

, V
0i such that hQ, V i ��! hQ0

, V
0i. If such states

and transition do not exist there is nothing left to prove. If they do exist
then P

0 $
sb

Q
0. By the induction hypothesis hP 0

, V
0i 2 J�0K if and only if

hQ0
, V

0i 2 J�0K. Hence, hP, V i 2 J�K if and only if hQ, V i 2 J�K.

For the implication from right to left, assume that hP, V i and hQ, V i satisfy exactly
the same formulas in HMLcheck. We shall prove that hP, V i $

sb
hQ, V i. To this

end, note that it is sufficient to show that the relation

Rsb = {(hX,Zi, hY, Zi) | hX,Zi, hY, Zi 2 P ⇥ V and hX,Zi and hY, Zi
satisfy the same HMLcheck formulas}

is a state-based bisimulation relation. Assume that hT, V 0iRsbhU, V 0i and there ex-
ists some state hT 0

, V
00i and label � such that hT, V 0i ��! hT 0

, V
00i. We shall

now argue that there is a state hU 0
, V

00i such that hU, V 0i ��! hU 0
, V

00i and
hT 0

, V
00iRsbhU 0

, V
00i. Since Rsb is symmetric, this suffices to establish that Rsb is

a state-based bisimulation relation.

166

7.3 Extending Hennessy-Milner Logic

Now assume, towards a contradiction, that there is no hU 0
, V

00i such that
hU, V 0i ��! hU 0

, V
00i and hU 0

, V
00i satisfies the same HMLcheck formulas as hT 0

, V
00i.

Since hU, V 0i is image-finite, the set of processes that hU, V 0i can reach by perform-
ing a �-labelled transition is finite, say {hU1, V1i, . . . , hUn, Vni} with n 2 N. For ev-
ery i 2 {1 . . . n}, there exists a formula �i such that hT 0

, V
00i 2 J�iK and hUi, Vii /2

J�iK or there exists a variable v such that Vi(v) 6= V
00(v). Note that if there

exists a v such that Vi(v) 6= V
00(v) then there is also a distinguishing formula �i:

(v = V
00(v)).

We are now in a position to construct a formula that is satisfied by hT, V 0i but
not by hU, V 0i, contradicting our assumption that hT, V 0i and hU, V 0i satisfy the
same formulas. The formula

h{�}i(�1 ^ �2 ^ · · · ^ �n)

is satisfied by hT, V 0i but not by hU, V 0i.

Process expressions a.� and (v = 0) �! a.� are not stateless bisimilar but in
the case that we have a valuation function V that maps v to 0 then states ha.�, V i
and h(v = 0) �! a.�, V i cannot be distinguished using HMLcheck. A challenge here
is that the logic is defined on states whereas stateless bisimilarity is defined on
process expressions. We would like to be able to distinguish process expressions
using the logic though, especially for systems where the global variables are not
under direct control of the system but form a context in which the modelled system
(the process expression) operates.

We introduce a set operator # (v := e) to the logic, which sets the value of
a global variable v to e. Depending on whether we include the check operator,
the set operator or both, we will refer to the logic with HMLcheck, HMLset or
HMLcheck+set, respectively. Again, the semantics of this new operator is only
defined for the LTS, (P ⇥ V,L,!), where the states contain global variables.

J# (v := e)�K = {hP, V i 2 P ⇥ V | hP, V [v 7! e]i 2 J�K}

Note that the set operator allows us to distinguish ha.�, V i and h(v = 0) �!
a.�, V i even if V (v) = 0. The formula # (v := 1)h{a}i> distinguishes them. We
will use the notation # (V), V 2 V, to set the value of all global variables to the
value specified by V . This is a shorthand for a sequence of regular set operations.
Note that the number of global variables is finite and the order of set operations is
irrelevant in the sequence of set operations as each sets a different variable.

Before we can evaluate the correspondence between HMLcheck+set and stateless
bisimilarity we must lift the notions of reachability and image-finiteness to process
expressions.

Definition 7.11. (Reachability process expressions) Process expression P
0 is reach-

able from a process expression P , denoted by P �!⇤
P

0, if, and only if, there are
processes P = P0, . . . , Pn = P

0 and labels �0, . . . ,�n�1 such that for all 0 i < n

there exists Vi, V
0
i
2 V such that hPi, Vii

�1�! hPi+1, V
0
i
i.

167

Global Variables in Process Algebras

Definition 7.12. (Image-finiteness process expressions) A process expression P is
image finite if and only if for every valuation V the state hP, V i is image-finite.

Theorem 7.13, below, states that process expressions are stateless bisimilar if and
only if all states containing that process expression satisfy the same HMLcheck+set

formulas.

Theorem 7.13. Let P and Q be process expressions such that all process expressions
reachable from P and Q are image-finite. Then P $

sl
Q if and only if for all

valuations V 2 V and all HMLcheck+set formulas � we have that hP, V i 2 J�K ,
hQ, V i 2 J�K.

Proof. We prove the two implications separately. To prove the implication from
left to right assume P $

sl
Q. We prove that for all HMLcheck+set formulas � and

valuations V we have that hP, V i 2 J�K if and only if hQ, V i 2 J�K by induction on
the structure of �.
Base cases

• � = >: J>K = P ⇥ V so hP, V i 2 J>K and hQ, V i 2 J>K.

• � = (v = e): Jv = eK = {hR, V
0i 2 P ⇥ V | V 0(v) = e} so both hP, V i and

hQ, V i are in Jv = eK if and only if V (v) = e.

Step

• � = ¬�0: J¬�0K = (P⇥V)\ J�0K. By the induction hypothesis hP, V i 2 J�0K if
and only if hQ, V i 2 J�0K. Then also hP, V i 2 J�K if and only if hQ, V i 2 J�K.

• � = �
0 ^ �00: J�0 ^ �00K = J�0K \ J�00K. By the induction hypothesis hP, V i 2

J�0K if and only if hQ, V i 2 J�0K and hP, V i 2 J�00K if and only if hQ, V i 2 J�00K.
Then also hP, V i 2 J�K if and only if hQ, V i 2 J�K.

• � = hT i�0: JhT i�0K = {u 2 P ⇥ V | 9u0 2 J�0K,� 2 T : u
��! u

0}. As
P $

sl
Q there exists some state hP 0

, V
0i such that hP, V i ��! hP 0

, V
0i if and

only if there exists a state hQ0
, V

0i such that hQ, V i ��! hQ0
, V

0i. If such
states and transition do not exist there is nothing left to prove. If they do
exist P

0 $
sl

Q
0. By the induction hypothesis hP 0

, V
0i 2 J�0K if and only if

hQ0
, V

0i 2 J�0K. Hence, hP, V i 2 J�K if and only if hQ, V i 2 J�K.

• � = # (v := e)�0: J{hR, V
0i 2 P ⇥ V | hR, V

0[v 7! e]i 2 J�K}K. Then hP, V i 2
J�K if and only if hP, V [v 7! e]i 2 J�0K and hQ, V i 2 J�K if and only if
hQ, V [v 7! e]i 2 J�0K. By the induction hypothesis hP, V [v 7! e]i 2 J�0K
if and only if hQ, V [v 7! e]i 2 J�0K. Hence, hP, V i 2 J�K if and only if
hQ, V i 2 J�K.

For the implication from right to left, assume that for all V 2 V it holds that
hP, V i and hQ, V i satisfy exactly the same formulas in HMLcheck+set. We shall

168

7.4 Verifying HMLcheck Formulas Using Selfloops

prove that P $
sl
Q. To this end, note that it is sufficient to show that the relation

Rsl = {(T, U) | T, U 2 P and for all V 2 V, hT, V i and hU, V i
satisfy the same HMLcheck+set formulas}

is a stateless bisimulation relation. Assume that TRslU and hT, V 0i ��! hT 0
, V

00i
for some valuation V

0. We shall now argue that there is a process U
0 such that

hU, V 0i ��! hU 0
, V

00i and T
0RslU

0. Since Rsl is symmetric, this suffices to establish
that Rsl is a stateless bisimulation relation.

Now assume, towards a contradiction, that there is no hU 0
, V

00i such that
hU, V 0i ��! hU 0

, V
00i and for all valuations V 2 V, hU 0

, V i satisfies the same
HMLcheck+set formulas as hT 0

, V i. Since hU, V 0i is image-finite, the set of pro-
cesses that hU, V 0i can reach by performing a �-labelled transition is finite, say
{hU1, V1i, . . . , hUn, Vni} with n 2 N. For every i 2 {1 . . . n}, there exist a formula
�i and valuation V

0
i

such that hT 0
, V

0
i
i 2 J�iK and hUi, V

0
i
i /2 J�iK or there exists

a variable v such that Vi(v) 6= V
00(v). Note that if there exists a v such that

Vi(v) 6= V
00(v) then there is also a distinguishing formula �i: (v = V

00(v)).
We are now in a position to construct a formula that is satisfied by hT, V 0i but

not by hU, V 0i, contradicting our assumption that hT, V 0i and hU, V 0i satisfy the
same formulas. The formula

h{�}i(# (V 0
1)�1^ # (V 0

2)�2 ^ · · ·^ # (V 0
n
)�n)

is satisfied by hT, V 0i but not by hU, V 0i.

We now have a logic with an operator to conveniently refer to the contents of
global variables and which corresponds to the appropriate behavioural equivalences.

7.4 Verifying HML
check

Formulas Using Selfloops

We would like to have tools to verify HMLcheck formulas for a given LTS in practice.
Adjusting existing model-checking algorithms would be cumbersome. In this section
we will show that we can check a formula by translating it to a plain HML formula
and transforming the LTS by ‘annotating’ each state with value selfloops labelling
them with the value each variable has. We first illustrate the intent with an
example.

Example 7.14. Consider the two following LTS fragments. The states in the top
LTS fragment have an explicit valuation in the states. The states in the bottom
LTS fragment have been obtained by transforming the top LTS fragment and do
not have an explicit valuation, but do have value-labelled selfloops representing the
valuation of the global variables in the original LTS. Suppose we want to verify the
formula [a](v = 1) for state hP, V i, with V (v) = 0. This formula holds if and only
if for state s the formula [a]hvalue(v, 1)i> holds.

169

Global Variables in Process Algebras

hP, V i

s

h�, V [v 7! 1]i

t

a

a

value(v, 0) value(v, 1)

The selfloops labelled with value provide information on the values of global
variables in every state, which we will exploit in the translation of HMLcheck

formulas. Given a HMLcheck formula we replace each occurrence of the check
operator of the shape (v = e) with hvalue(v, e)i>, where v 2 V and d 2 D.

Definition 7.15. Let ✓ denote the translation form HMLcheck formulas to HML,
which we define inductively, where v and e range over V and D, respectively:

✓(>) = >,
✓(v = e) = hvalue(v, e)i>,
✓(¬�) = ¬✓(�),
✓(�1 ^ �2) = ✓(�1) ^ ✓(�2),
✓(hT i�) = hT i✓(�).

Let LV denote the extended set of transition labels:

LV = L [{value(v, d) | v 2 V, d 2 D}

We proceed by defining a transformation ⇤ on the LTS.

Definition 7.16. Let (S1 ⇥ V,L,�!1) be an LTS. Then ⇤((S1 ⇥ V,L,�!1)) =
((S2,LV ,�!2), F) where:

1. F : (S1 ⇥ V)! S2 is a bijective function;

2. for all v 2 V, d 2 D we have that s
value(v,d)������!2 t if and only if s = t and

F
�1(s) = hP, V i such that V (v) = d;

3. and for all states s, t 2 S2 and labels � 2 L we have that s ��!2 t if and only
if F�1(s)

��!1 F
�1(t).

Note that a bijective function F : (S1⇥V)! S2 always exists, the identity function
suffices. In our definition it is purposely left opaque what the contents of S2 is and
how F is defined as they are irrelevant.

Theorem 7.17, below, is the culmination of this section. It states that trans-
formed formulas hold for states in the transformed LTS if and only if the original
formula holds in the corresponding state in the original LTS.

170

7.5 Relation to FormaSig

Theorem 7.17. Let (S1 ⇥ V,L,�!1) be an LTS and let ⇤((S1 ⇥ V,L,�!1)) =
((S2,LV ,�!2), F). Let hP, V i 2 S1 ⇥ V and t 2 S2 and suppose F (hP, V i) = t. For
every HMLcheck formula � we have that hP, V i 2 J�K if and only if t 2 J✓(�)K.

Proof. We prove by structural induction on � that hP, V i 2 J�K if and only if
t 2 J✓(�)K with the induction hypothesis that for any pair of states s 2 S1 ⇥ V and
u 2 S2 such that F (s) = u, any subformula �0 of � holds for s if and only if ✓(�0)
holds for u.
Base cases

• � = >: J>K = S1 ⇥ V so hP, V i 2 J>K. J✓(>)K = J>K = S2 so t 2 J✓(>)K.

• � = (v = e): Jv = eK = {hU, V 0i 2 S1⇥V | V 0(v) = e} so hP, V i is in Jv = eK

if and only if V (v) = e. Since F (hP, V i) = t we can derive that t value(v,e)������!2 t

if and only if V (v) = e. ✓((v = e)) = hvalue(v, e)i> so we conclude that
t 2 J✓(�)K if and only if V (v) = e.

Step

• � = ¬�0: J¬�0K = S1 ⇥ V \ J�0K so hP, V i 2 J�K if and only if hP, V i /2 J�0K.
By the induction hypothesis t 2 J✓(�0)K if and only if hP, V i 2 J�0K. ✓(¬�0) =
S2 \ J�0K. Hence, t 2 J✓(�)K if and only if hP, V i 2 J�K.

• � = �
0 ^ �00: J�0 ^ �00K = J�0K \ J�00K. ✓(�0 ^ �00) = ✓(�0) ^ ✓(�00), so

J✓(�0 ^ �00)K = J✓(�0)K \ J✓(�00)K. By the induction hypothesis hP, V i 2 J�0K
if and only if t 2 J✓(�0)K and hP, V i 2 J�00K if and only if t 2 J✓(�00)K. Hence
hP, V i 2 J�0 ^ �00K if and only if t 2 J✓(�0 ^ �00)K.

• � = hT i�0: JhT i�0K = {u 2 S1⇥V | 9u0 2 J�0K,� 2 T : u
��!1 u

0}. ✓(hT i�0) =
hT i✓(�0) so J✓(hT i�0)K = {u 2 S2 | 9u0 2 J�0K,� 2 T : u

��!2 u
0}. We have

that hP, V i 2 J�K if and only if there exists a state u and a label � 2 T

such that hP, V i ��!1 u and u 2 J�0K. Since F (hP, V i) = t we know that
there exists some state t

0 such that F (u) = t
0 and t

��!2 t
0 if and only if

hP, V i ��!1 u. By the induction hypothesis t0 2 J✓(�0)K if and only if u 2 J�0K.
By the semantics of the diamond operator we conclude that t 2 J✓(�)K if and
only if hP, V i 2 J�K.

7.5 Relation to FormaSig

FormaSig models do not truly have global data or even shared data. All the
data is local to a specific state machine. Components cannot observe or act upon
the data of other components. The common ground is that we want states to

171

Global Variables in Process Algebras

contain data that we can inspect whilst model checking. We are interested in the
state of a component: the SysML state the component is in, the contents of the
communication buffer and the valuation of local variables.

The attentive reader might have noticed that the value-labelled selfloops of the
preceding sections are very similar to some of the selfloops that are used in FormaSig
models: inState, varVal and inEventPool. They also serve a very similar purpose;
with the formula hinState(c, s)i> we can check whether component c is in state s.

The logic used by mCRL2, an extension of the modal µ-calculus, demands some
extra carefulness when introducing selfloops. It allows us to use action formulas
in the box and diamond operator, e.g. in the formula [a.>]?, > matches any
multi-action so the formula expresses that after any a-labelled transition we end
up in a state without outgoing transitions. The formula might no longer hold after
we introduce selfloops. To repair the formula we need to exclude the selfloops.
Assuming there are only inState selfloops we can repair the formula as follows.

[a.¬(9c:CompName,s:StateName inState(c, s))]?

The second action formula will now match any multi-action that is not the singleton
multi-action inState.

7.6 Scoped Variables

So far we have considered variables that are global, and moreover every variable v

is accessible globally and exists in every state. Suppose we want to have more fine
grained control by sharing a variable only between specific parallel components.

We begin by discussing important earlier work on this subject. In [1] propo-
sitional signals and a state operator are presented. A state operator tracks the
state of something, say the current colour of a traffic light. To update the state, a
mapping e↵ect is used that, given an action and the current state, produces the
next state. By example, if the traffic light is red and the action change should turn
it to green then e↵ect(change, red) = green. To make the current state known to
parallel processes, propositional signals are used. A mapping sig associates a set of
propositions to the current state. Sticking to the example of the traffic light we
could define sig(red) = r^¬g. These signals can be picked up by parallel processes
using a guard, for example (g)! drive. By default the propositional signals are
global, but a signal hiding operator can be used to create scoping.

The theory is elegant and flexible but in practise we would not want to specify
the states, and e↵ect function. It would even be impossible to specify explicitly
when we would use the state operator to model a variable with an infinite data
domain. For our simple process language with only comparisons in guards it would
be rather straightforward to generate the states of the state operator and the
functions e↵ect and sig . There would be a state for every element in the data
domain. For every action label e↵ect is the identity function and for an assign
action ↵ we update the state according to the value being set. We could introduce

172

7.6 Scoped Variables

a propositional signal for every element of the data domain and let sig ensure that
the signal corresponding to the current value is emitted.

Keeping in mind that the end goal is integrating shared (or global) variables
in mCRL2 we should also evaluate whether the state operator is suitable in that
setting. In mCRL2 a wide range of Boolean expressions is allowed as a guard, so we
should also be able to reference multiple shared variables. Suppose for example that
we have a guard x+y = 10 where x and y are integer-valued shared variables. Let us
also suppose that the variables have a different scope, i.e. they should be specified
with distinct state operators. Both state operators could communicate their value
by means of a propositional signal, e.g. the signals x6 and y4 communicating
x = 6 and y = 4, for which the guard holds. There are, however, infinitely many
combinations for x and y for which the guard evaluates to true so even this simple
guard cannot be finitely specified.

Moreover, in mCRL2, actions can have data parameters. We should also be
able to use shared variables in these action parameters. Similarly, we should be
able to use shared variables in recursion. Complex expressions on the data should
be possible. As an example, suppose there is an integer-valued shared variable p;
then the following process definition expresses that if a local variable myPos is
smaller than p then the process Player can jump to position p indicating with an
action parameter how far he jumped.

Player(myPos : Int) = (myPos < p)! jump(p�myPos).P layer(p);

Based on these observations we propose an alternative way of modelling shared
variables. We extend the syntax as presented in Section 7.1 with a new operator: the
shared variable operator Gx,v, where x 2 V and v 2 D. The shared variable operator

in Gx,v(P) declares a variable x in the process P . When P
↵(x,v0)����! P

0 the change

of valuation updates the shared variable operator: Gx,v(P)
↵(x,v0)����! Gx,v0(P 0).

To define how a variable is substituted with its value we introduce an auxiliary
substitution operator SV , where V 2 V. A transition SV ((v = e) ! P)

��! P
0 is

only possible when V (v) = e (and P
��! P

0). Let the set of process expressions
generated by the extended grammar be denoted by Ps.

We now want to associate an LTS with the process algebra. Valuation functions
are now partial functions V : V ,! D. Let ✏ 2 V denote the valuation function that
is undefined for every variable. Let V |V 0 denote the valuation function for which
for all v 2 V, V |V 0(v) = V

0(v) if V 0(v) is defined and V |V 0(v) = V (v) otherwise.
The set of states of the LTS is Ps. The transition relation is the least relation on
states satisfying the rules of the structural operational semantics (see Table 7.1).
The SOS rules are in path format so bisimulation is a congruence on the algebra.

Example 7.18. Let us revisit the example of a car and a traffic light controller.
We first define the recursive specification:

173

Global Variables in Process Algebras

Car := (t = g)! a.Car + (t = r)! b.Car

TLC := (t = g)! ↵(t, r).TLC + (t = r)! ↵(t, g).TLC

The process expression that captures the interaction between the car and the traffic
light controller is the following: Gt,r(Car k TLC).

The following derivation shows how the shared variable operator is updated when
the traffic light turns green.

S✏[t!r](↵(t, g).TLC)
↵(t,g)����! TLC S✏[t!r](t) = r

S✏[t!r]((t = r)! ↵(t, g).TLC)
↵(t,g)����! TLC

S✏[t!r]((t = g)! ↵(t, r).TLC
+(t = r)! ↵(t, g).TLC)

↵(t,g)����! TLC

S✏[t!r](TLC)
↵(t,g)����! TLC

S✏[t!r](Car k TLC)
↵(t,g)����! Car k TLC

Gt,r(Car k TLC)
↵(t,g)����! Gt,g(Car k TLC)

Conditionals referencing variables that are not declared are always evaluated
negatively. Transitions labelled with variable assignments outside the scope of a
matching G operator can be fired but will not update anything. In most settings
it does not make sense to use variables that are out of scope so we may want to
restrict ourselves to process expressions where every reference to a variable is in
the scope of a G operator.

The set of free variables of a process expression P is denoted by FV(P) and is
defined inductively below.

FV(a.P) = FV(P)
FV(↵(v, d).P) = {v} [FV(P)
FV(�) = ;
FV(P +Q) = FV(P) [FV(Q)
FV(P k Q) = FV(P) [FV(Q)
FV(@B(P)) = FV(P)
FV((v = e)! P) = {v} [FV(P)

FV(X) = FV(P), if X def
= P

FV(SV (P)) = FV(P)
FV(Gv,d(P)) = FV(P) \ {v}

A process expression P is closed if and only if FV(P) = ;. Note that we do not
consider the process expression SV (↵(v, d).P) to be closed; it is only closed when
variables are in the scope of a shared variable operator. The lemma below states
that any process expression reachable from a process expression that is closed is

174

7.7 Related Work

also closed. Hence, a static analysis can be done on the specification guaranteeing
that in every state of the state space all shared variables are in scope. It is a mild
syntactic restriction.

Lemma 7.19. For any closed process expression P 2 Ps all reachable process
expressions P

0 2 Ps, P �!⇤
P

0, are also closed.

Proof. From the definition of FV and the conclusions of the SOS rules it follows
that for any transition P1

��! P2, it is the case that FV(P2) ✓ FV(P1) so we also
have that P2 is closed if P1 is closed. The statement in the lemma follows from
straightforward induction on the length of the path from P to P

0.

A significant benefit of shared variables over global variables is that it is purely
process based and event based; we can abstract from the contents of a state, all
the information is embedded in the process expression and strong bisimulation is a
congruence of the process algebra. In the process algebra with propositional signals
this is not the case; the signals are emitted globally by default, and a state consists
of a process expression and a valuation. A significant downside is directly related
to the benefit: we cannot inspect the contents of a state during model checking.
We might add selfloops like in Section 7.4 but we cannot do that in a generic way
since a variable may be declared multiple times.

7.7 Related Work

In the early days of process algebra, doing away with global variables in favour of
message passing and local variables was an important paradigm shift [2]. Since
then there have, nevertheless, been some efforts to reintroduce notions of globally
available data.

In the previous section we have already discussed propositional signals and the
state operator. Other approaches, such as the one presented in [109, Chapter 19],
model global variables as separate parallel processes and use a protocol to ensure
only one process accesses a global variable at a time. This approach introduces
extra internal steps, which increases the state space. Moreover, it introduces
divergence when a process locks a global variable, reads the value, concludes that
it cannot make a step and unlocks the variable again.

Formalisms based on Concurrent Constraint Programming (CCP) [110] have
global data at their core. In CCP a central store houses a set of constraints.
Concurrent processes may tell a constraint, adding it to the global store or ask
a constraint, checking whether it is entailed by the constraints in the store. An
ask will block until other processes have added sufficient constraints to the store.
Process calculi based on the coordination language LINDA [93] also use global
data. In these process calculi there is a global set of data elements. Similarly
to CCP, processes may tell a data element (adding it to the global set) or ask a
data element (checking whether it is in the set). Additionally, processes may get
an element, removing it from the data set. LINDA does not have a concept of

175

Global Variables in Process Algebras

variables, just a central set of data elements. To the best of our knowledge process
calculi based on CCP or LINDA do not allow asking a constraint/data element
and acting upon the information in a single step.

7.8 Conclusion

In this chapter we have presented a simple process calculus with global variables
and studied various aspects of it. To start we examined appropriate notions
of equivalence: stateless bisimulation for process expressions and state-based
bisimulation for states. Then, for our first contribution we presented a logic
extending HML with a check and a set operator and proved that HMLcheck is strong
enough to differentiate states that are not state-based bisimilar and HMLcheck+set

is strong enough to differentiate process expressions that are not stateless bisimilar.
As a second contribution we showed a way to verify requirements referencing
data variables using traditional tools by adding selfloops. Finally, we explored an
alternative approach with shared variables.

176

7.8 Conclusion

�.P
��! P SV (�.P)

��! P

P
��! P

0

@B(P)
��! @B(P

0)
� /2 B

SV (P)
a�! P

0

SV (@B(P))
a�! @B(P

0)
a /2 B

P
��! P

0

P +Q
��! P

0

SV (P)
��! P

0

SV (P +Q)
��! P

0

Q
��! Q

0

P +Q
��! Q

0

SV (Q)
��! Q

0

SV (P +Q)
��! Q

0

P
��! P

0

P kQ ��! P
0 kQ

SV (P)
��! P

0

SV (P kQ)
��! P

0 kQ

Q
��! Q

0

P kQ ��! P kQ0

SV (Q)
��! Q

0

SV (P kQ)
��! P kQ0

P
a�! P

0
Q

b�! Q
0

P kQ c�! P
0 kQ0

�(a, b) = c
SV (P)

a�! P
0

SV (Q)
b�! Q

0

SV (P kQ)
c�! P

0 kQ0
�(a, b) = c

P
��! P

0

X
��! P

0
X

def
= P

SV (P)
��! P

0

SV (X)
��! P

0
X

def
= P

SV [x!v](P)
a�! P

0

SV (Gx,v(P))
a�! Gx,v(P

0)

SV [x!v](P)
↵(x,v0)����! P

0

SV (Gx,v(P))
↵(x,v0)����! Gx,v0(P 0)

SV (P)
��! P

0
V (v) = e

SV ((v = e) ! P)
��! P

0

SV |V 0(P)
a�! P

0

SV (SV 0(P))
a�! P

0

S✏[x!v](P)
a�! P

0

Gx,v(P)
a�! Gx,v(P

0)

S✏[x!v](P)
↵(x,v0)����! P

0

Gx,v(P)
↵(x,v0)����! Gx,v0(P 0)

Table 7.1: Structural operational semantics for Ps expressions.

177

Chapter 8
Conclusions and Future Work

Life is not a problem to be solved,
but a reality to be experienced.

Søren Kierkegaard

The main goal of the FormaSig project was to enable formal verification and
model-based testing of EULYNX models (see Figure 1.1). The main research
question addressed in this thesis, as stated in Chapter 1 is how can we formalise
the semantics of EULYNX SysML and effectively verify requirements for industrial
models?

A partially automated translation has been achieved from the EULYNX SysML
dialect to mCRL2, giving a formal interpretation to the original models. The
process of formalisation uncovered some ambiguities, as was expected. We have
reported them to the Modelling and Testing cluster of EULYNX. Our formalisation
resolves these ambiguities.

To be able to handle industrial (EULYNX) models, improvements in the
scalability of verification were needed. The techniques discussed in Chapter 4 have
been developed over the course of several years. Together they brought a dramatic
improvement in performance. We are now able to handle most EULYNX models
in contrast to a few years ago.

For a number of interfaces we have also achieved the goal of formal verification.
In collaboration with ProRail and DB Netz AG requirements have been formulated,
which in turn have been formalised as modal µ-calculus formulas and verified using
the mCRL2 toolkit. These verification efforts have uncovered multiple errors and
missing assumptions, which have been communicated to ProRail and DB Netz AG.

SysML is state-based whereas mCRL2 is action-based. This gave some challenges
in formulating requirements as we need to refer to the SysML states. This issue
was overcome by adding inState selfloops. In Chapter 7 we explored ways to
integrate the state-based and action-based worlds in a comprehensive manner.

Another challenge arose when verifying liveness requirements. The LTS permits

179

Conclusions and Future Work

infinite runs of the system where one or more components never get the turn to take
a transition. Such runs may violate a liveness requirement but are not realistic. By
adding a justness assumption we were able to rule out unrealistic liveness violating
paths without resorting to assumptions like fairness, which themselves may not be
realistic.

The research on justness and global variables was not linked to FormaSig
initially. The work on justness even started in a project some time before the start
of my PhD. This demonstrates the interconnectedness of research. Even in my own
research one project was, unexpectedly, directly applicable in another. Hopefully,
the contents of this thesis will also prove useful to others.

In the remainder of this chapter we reflect on the state of formal methods in
the railway domain (Section 8.1). We also suggest a number of ideas for future
research directions to improve the tools discussed in this thesis (Section 8.2), and
in general (Section 8.3).

8.1 Formal Methods in the Railway Domain

In FormaSig, as with many other applications of formal methods in the railway do-
main, there is a cooperation between railway infrastructure managers and academic
institutions. The former possess the domain knowledge but not the mathematical
knowledge and, conversely, the academic institutions possess the expertise on formal
methods but lack domain knowledge. As a result, the infrastructure managers are
happy with the contributions of formal methods in finding flaws but do not fully
understand the formal models and are not able to modify them or assess their
quality. Since they are responsible for the quality and safety of signalling systems
and need to be able to assess the quality of specifications (in internal reviews) they
are reluctant to make a formal model the authoritative specification. Instead, a
semi-formal SysML model or natural language specification is authoritative. Even
SysML is considered somewhat problematic as not every signalling engineer is able
to fully comprehend the models, especially the state machines. For this reason
some infrastructure managers translate the EULYNX SysML models to natural
language for their national requirements in tendering processes.

In FormaSig, formal methods are applied to an existing specification, as is more
often the case in collaborations between infrastructure managers and academia.
The existing models are, however, not optimised for verification. EULYNX models
break down functionality into many different (parallel) components, leading to a
huge state space. We conjecture that if these models were created with the goal
of formal verification in mind the state space would be (much) smaller. Ideally,
modelling in SysML and verifying with mCRL2 would go hand in hand. Working
in tandem also creates a form of redundancy, lowering the chance of defects in the
final product [22].

We conclude that formal methods are, despite their long history, not yet
standard practice in the railway signalling domain. This might be improved if rail
infrastructure managers would obtain in-house knowledge of formal methods, just

180

8.2 Ideas for Future Extensions of FormaSig Tools

like they have in-house electrical engineering experts. Then they would have people
who can judge the quality of a formal analysis and who can incorporate formal
methods during the inception of new projects.

We do believe formal methods could be beneficial w.r.t. the challenges faced
by the railway infrastructure managers. The complexity of systems is increased
by switching from instant communication over copper wiring to packet based
asynchronous communication. Formal methods can help uncover issues arising
from this, as demonstrated in this thesis.

It can also help in contracting suppliers. By creating specifications using a formal
language (many) ambiguities are eliminated, which should speed up implementation
as less back and forth discussions are needed. Additionally, model checking ensures
that the specification delivered to the supplier is correct. The chance of finding
ambiguities or flaws in a late stage is therefore reduced. This is extra important for
(European) standards. Ambiguities and flaws may be resolved slightly differently
in different projects and require patches to the standard, creating a patchwork of
implementations, which hinders interoperability. Model-based testing could also
help to test more thoroughly and thereby catch potential problems still before
deployment.

The challenges faced by the railway domain in designing correct protocols
are similar to other domains. The software and protocols used in, for example,
aeroplanes and in the oil and gas industry are also safety critical. Our knowledge of
these other domains is too limited to make a thorough comparison. We conjecture
that high-tech companies such as Intel [41], Amazon [92] and Facebook [32] are
relatively quick at adopting formal methods. They have the benefit of having less
governmental oversight dictating in what way correctness should be established
and are therefore more flexible to adopt new technologies. Furthermore, they are
financially extremely motivated to have correct software and have a large financial
capacity to explore new ways to improve their products. An example of a public
organisation that has a lot of experience with formal methods is NASA. They have
the Langley Formal Methods Research Program and organise an annual symposium
on the topic: the NASA Formal Methods Symposium (NFM).

8.2 Ideas for Future Extensions of FormaSig Tools

Over the years many ideas have popped up in the context of FormaSig to make
verification of EULYNX SysML models more convenient. Unfortunately there is
not enough time in a PhD project to pursue every idea. Below a list is given of
unexplored ideas.

Visualise Counterexamples. Evidence provided by the mCRL2 toolkit is
presented as an LTS with labels from the mCRL2 model. In the future we would
like to improve usability by converting these evidence LTSs to UML sequence
diagrams. This may not always be possible (or beneficial) as the evidence LTS may
contain the entire state space. We suspect that some common evidence structures

181

Conclusions and Future Work

such as simple traces and lassos (loops, possibly with a trace leading up to it) are
well suited for conversion to sequence diagrams.

Simple Requirements Language. At the moment, formulating formal require-
ments is a somewhat cumbersome process. To verify requirements, they need
to be formulated as µ-calculus formulas. These formulas are not readable for
signalling engineers. Identifying and formulating requirements is therefore a time
consuming process involving back and forth translation between natural language
and µ-calculus formulas. There is a substantial body of research in creating formal
requirements languages that are more intuitive. Some requirements languages
are based on structured text, i.e. requirements are sentences built out of spe-
cific keywords, where each keyword has a formal interpretation. For example,
the requirement “Whenever component X is in state Y, then always eventually
Component A will be in state B”, might be a requirement where “whenever ...
then”, “always eventually”, etcetera have a formal interpretation. There are also
visual requirements languages, such as live sequence charts [23, 27], which capture
requirements in a format close to UML sequence diagrams. The visual/textual
requirements language should be translated automatically to µ-calculus formulas.
We think that having such an intuitive requirements language would benefit the
communication between formal methods experts and signalling engineers.

Simulator Based on the mCRL2 Model. In the EULYNX project, software
simulators of the interface are derived semi-automatically using tools provided
by the PTC modelling toolkit. Most signalling engineers are not aware of (the
subtleties of) the semantics of SysML models. These simulators let signalling
engineers play around with the behaviour defined in the model, validating that
it is in accordance with their expectations (see Figure 8.1). The semantics PTC
gives to these simulators is not properly defined and might deviate from the formal
semantics of our mCRL2 model. Ideally, the simulator would behave exactly
the same as the more accurate mCRL2 model. A solution might be to built a
simulator on top of the mCRL2 model. It would be even better if the UML/SysML
community decides on a formal semantics of the language which should then be
implemented by the vendors of SysML tools, such as PTC and our toolchain.

Fully Automatic Formalisation. At the moment the SysML models need to
be manually converted to jEULYNX, which is cumbersome and error prone. It
would be better to load the SysML models directly, which is hindered by the fact
that the PTC tool used by EULYNX does not allow for XMI exports that are
compliant with the OMG standard. An XMI to XMI conversion tool could be
developed. Once SysML v2 is introduced and adopted by PTC loading the models
may become easier as SysML v2 introduces a textual format besides the graphical
diagram format [96].

182

8.3 Miscellaneous Ideas for Future Research Directions

Figure 8.1: A view of the GUI of the Point simulator. Inputs are located on the left,
outputs on the right, and simulation controls at the bottom.

8.3 Miscellaneous Ideas for Future Research Direc-

tions

Research typically both answers questions and uncovers new questions and chal-
lenges. Below several ideas for (research) directions are listed.

Integration of Global Variables in Existing Tools. Possible future work is to
integrate the concept of global variables in existing more advanced process algebras
and their associated toolsets, for several reasons. Building upon existing algebras
makes it accessible to a wide range of users and unlocks tool support. Moreover,
process algebras supporting complex data operations in guards could more fully
exploit the benefits of global variables. It would be interesting to incorporate global
variables in the mCRL2 toolset.

A challenge in incorporating global variables in mCRL2 is formed by the
concept of multi-actions. In particular, a solution needs to be found for colliding
assignments: what is the value of a variable when a transition labelled with a
multi-action consisting of two assignment actions ↵(v, d)|↵(v, e) is performed? We
would probably want to prevent such transitions from happening, for which we
see two possible solutions. The first option is to prevent it at the semantic level
by disallowing the hiding or communication of assignment actions and adapting
the SOS rules to rule out colliding assignments. Another option is to enforce
restrictions on the syntactic level, to only define a semantic interpretation to some
subset of well-formed process expressions. For example we could enforce that for
each variable only one parallel component can change it; for every state P reachable
from the initial state, every variable v 2 V and every sub-expression of the shape

183

Conclusions and Future Work

Q kR in P we have that Q �!⇤
Q

0 ↵(v,d)����! Q
00 or R �!⇤

R
0 ↵(v,d)����! R

00, but not both.

Debugging Rewrite Specifications in mCRL2. In the formalisation of state
machine behaviour we have made extensive use of the data language offered by
mCRL2. These data equations are used as rewrite rules by the tools to rewrite
data expressions to a normal form (e.g., by rewriting guards in an LPS to true or
false). Such a rewrite specification is in itself a ‘software’ artefact that may contain
bugs.

The parser catches bugs related to mismatching types. Other, (subtle) mistakes
in data equations can be hard to debug. We encountered the following two classes
of bugs.

1. A mapping may not produce the intended output for every input. In some
cases this will lead to an error whilst exploring the state space, e.g. because
a guard does not evaluate to true or false. In other cases there is no error
but the LTS is not as intended. When the LTS is large and the bug only
occurs in specific corner cases this is hard to discover.

2. The rewrite specification may not terminate, e.g. because there exists a loop
in the rewrite path. This manifests itself as a stall or crash whilst linearising
or exploring the state space (without giving any feedback to the user).

Common debugging techniques from programming could be used in this setting.
Unit tests and breakpoints would be beneficial in finding the first class of bugs. In
general it is undecidable to check whether a rewrite specification is terminating,
but through static analysis some cases of non-termination might be detected. It
would also be helpful to be able to step through the term rewriting path; ideally
with a cycle detection tool. The rewrite engine is highly optimised so modifying it
with debugging tools is not desirable; a second unoptimised rewrite engine with
debugging tools would make more sense, analogous to how many compilers allow
optimised compilation as well as unoptimised compilation with debug symbols.

An Authoritative Semantic Interpretation of SysML. Semi-formality is
both a strength and a weakness of SysML. It allows designing an architecture
without committing to details. On the other hand, verifying whether a design
meets the requirements is hampered. As discussed in Chapter 3 there have been
many scientific papers on the subject of formalising and verifying SysML models.
Each paper focusses on a specific subset of diagrams and a specific action language
and has its own formalisation approach.

It would be desirable to formalise a large subset of SysML without committing
to implementation details. A way to achieve this is to formally capture what
degrees of freedom there are, as we have done with the action language in our
formalisation. You can mathematically specify that there is some set of action
language expressions and some mapping to evaluate them without committing to
a specific action language. Many variation points in SysML could be specified in

184

8.3 Miscellaneous Ideas for Future Research Directions

such a way, e.g. the event pool. Common options (such as a FIFO queue for the
event pool, and OCL for the action language) could also be formally specified.

The different diagram types offer different viewpoints on a system and should
also be formalised in a different way. Behavioural diagrams such as State Machines
and Activity Diagrams could be given a semantic interpretation in terms of a (timed)
LTS. For structural diagrams (such as IBDs and Block Definition Diagrams) it
should be formalised how a set of diagrams can be combined into a comprehensive
system overview. The semantic interpretation of such a system overview combined
with the behavioural diagrams defining the behaviour of components could again be
expressed in terms of a (timed) LTS. These definitions could again be parametrised
giving multiple options for the concurrency model. For sequence diagrams it could
be formalised when its behaviour is included in the system (as defined by the
structural and behavioural diagrams).

Such a formalisation of SysML is a massive effort that cannot be undertaken
by a small group of researchers. A large collaborative effort of multiple universities
(and companies) would be needed. Ideally it would be done in close collaboration
with the OMG group, resulting in an official authoritative document, as is the case
with PSSM.

The same approach could be applied to UML, which shares many of its diagram
types with SysML.

185

Bibliography

Beware you be not swallowed up in
books! An ounce of love is worth a
pound of knowledge.

John Wesley

[1] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equa-
tional Theories of Communicating Processes. Cambridge Tracts in Theoreti-
cal Computer Science. Cambridge University Press, 2009. doi: 10.1017/
CBO9781139195003 (cit. on pp. 160, 172).

[2] J.C.M. Baeten. “A brief history of process algebra”. In: Theoretical Computer
Science 335.2-3 (May 2005), pp. 131–146. doi: 10.1016/j.tcs.2004.07.
036 (cit. on p. 175).

[3] Maarten Bartholomeus, Bas Luttik, and Tim A. C. Willemse. “Modelling
and Analysing ERTMS Hybrid Level 3 with the mCRL2 Toolset”. In: Formal
Methods for Industrial Critical Systems - 23rd International Conference,
FMICS 2018, Maynooth, Ireland, September 3-4, 2018, Proceedings. Ed. by
Falk Howar and Jiri Barnat. Vol. 11119. Lecture Notes in Computer Science.
Springer, 2018, pp. 98–114. doi: 10.1007/978-3-030-00244-2_7 (cit. on
p. 3).

[4] Davide Basile, Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi,
Franco Mazzanti, Andrea Piattino, Daniele Trentini, and Alessio Ferrari. “On
the Industrial Uptake of Formal Methods in the Railway Domain - A Survey
with Stakeholders”. In: Integrated Formal Methods - 14th International
Conference, IFM 2018, Maynooth, Ireland, September 5-7, 2018, Proceedings.
Ed. by Carlo A. Furia and Kirsten Winter. Vol. 11023. Lecture Notes in
Computer Science. Springer, 2018, pp. 20–29. doi: 10.1007/978-3-319-
98938-9_2 (cit. on p. 3).

187

https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1007/978-3-030-00244-2_7
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/978-3-319-98938-9_2

BIBLIOGRAPHY

[5] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson,
and Wang Yi. “Developing UPPAAL over 15 years”. In: Softw. Pract. Exp.
41.2 (2011), pp. 133–142. doi: 10.1002/spe.1006 (cit. on p. 24).

[6] Jan A. Bergstra and Jan Willem Klop. “Algebra of Communicating Processes
with Abstraction”. In: Theor. Comput. Sci. 37 (1985), pp. 77–121. doi:
10.1016/0304-3975(85)90088-X (cit. on pp. 11, 117, 120).

[7] Bruno Blanchet. “Automatic verification of correspondences for security
protocols”. In: J. Comput. Secur. 17.4 (2009), pp. 363–434. doi: 10.3233/
JCS-2009-0339 (cit. on p. 24).

[8] Stefan Blom, Wan J. Fokkink, Jan Friso Groote, Izak van Langevelde, Bert
Lisser, and Jaco van de Pol. “µCRL: A Toolset for Analysing Algebraic
Specifications”. In: Computer Aided Verification, 13th International Con-
ference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings. Ed. by
Gérard Berry, Hubert Comon, and Alain Finkel. Vol. 2102. Lecture Notes
in Computer Science. Springer, 2001, pp. 250–254. doi: 10.1007/3-540-
44585-4_23 (cit. on p. 3).

[9] Andrea Bonacchi, Alessandro Fantechi, Stefano Bacherini, and Matteo
Tempestini. “Validation process for railway interlocking systems”. In: Sci.
Comput. Program. 128 (2016), pp. 2–21. doi: 10.1016/j.scico.2016.04.
004 (cit. on p. 3).

[10] Mark Bouwman. Liveness analysis in process algebra: simpler techniques
to model mutex algorithms. Tech. rep. Available at http://www.win.tue.

nl/~timw/downloads/bouwman_seminar.pdf. Eindhoven University of
Technology, 2018 (cit. on p. 8).

[11] Mark Bouwman. “A model-based test platform for rail signalling systems”.
Master’s thesis. Eindhoven University of Technology, 2019 (cit. on p. 207).

[12] Mark Bouwman. Replication package for the PhD thesis “Supporting Railway
Standardisation with Formal Verification". 2023. doi: 10.5281/zenodo.
7852535 (cit. on pp. 6, 25, 30, 44, 45, 65, 71, 73, 76, 78, 150, 151).

[13] Mark Bouwman and Rick Erkens. “Term Rewriting Based On Set Automaton
Matching”. In: CoRR abs/2202.08687 (2022). arXiv: 2202.08687 (cit. on
p. 207).

[14] Mark Bouwman, Bob Janssen, and Bas Luttik. “Formal Modelling and
Verification of an Interlocking Using mCRL2”. In: Formal Methods for
Industrial Critical Systems - 24th International Conference, FMICS 2019,
Amsterdam, The Netherlands, August 30-31, 2019, Proceedings. Ed. by Kim
Guldstrand Larsen and Tim A. C. Willemse. Vol. 11687. Lecture Notes in
Computer Science. Springer, 2019, pp. 22–39. doi: 10.1007/978-3-030-
27008-7_2 (cit. on pp. 3, 206).

188

https://doi.org/10.1002/spe.1006
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.3233/JCS-2009-0339
https://doi.org/10.3233/JCS-2009-0339
https://doi.org/10.1007/3-540-44585-4_23
https://doi.org/10.1007/3-540-44585-4_23
https://doi.org/10.1016/j.scico.2016.04.004
https://doi.org/10.1016/j.scico.2016.04.004
http://www.win.tue.nl/~timw/downloads/bouwman_seminar.pdf
http://www.win.tue.nl/~timw/downloads/bouwman_seminar.pdf
https://doi.org/10.5281/zenodo.7852535
https://doi.org/10.5281/zenodo.7852535
https://arxiv.org/abs/2202.08687
https://doi.org/10.1007/978-3-030-27008-7_2
https://doi.org/10.1007/978-3-030-27008-7_2

BIBLIOGRAPHY

[15] Mark Bouwman, Maurice Laveaux, Bas Luttik, and Tim A. C. Willemse.
“Decompositional Branching Bisimulation Minimisation of Monolithic Pro-
cesses”. In: Formal Aspects of Component Software - 18th International
Conference, FACS 2022, Virtual Event, November 10-11, 2022, Proceedings.
Ed. by Silvia Lizeth Tapia Tarifa and José Proença. Vol. 13712. Lecture
Notes in Computer Science. Springer, 2022, pp. 161–182. doi: 10.1007/978-
3-031-20872-0_10 (cit. on pp. 7, 207).

[16] Mark Bouwman, Bas Luttik, Wouter Schols, and Tim A. C. Willemse.
“A process algebra with global variables”. In: Proceedings Combined 27th
International Workshop on Expressiveness in Concurrency and 17th Work-
shop on Structural Operational Semantics, EXPRESS/SOS 2020, and 17th
Workshop on Structural Operational Semantics, 31 August 2020. Ed. by
Ornela Dardha and Jurriaan Rot. Vol. 322. EPTCS. 2020, pp. 33–50. doi:
10.4204/EPTCS.322.5 (cit. on pp. 9, 206).

[17] Mark Bouwman, Bas Luttik, and Djurre van der Wal. “A Formalisation of
SysML State Machines in mCRL2”. In: Formal Techniques for Distributed
Objects, Components, and Systems - 41st IFIP WG 6.1 International Con-
ference, FORTE 2021, Held as Part of the 16th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2021, Valletta,
Malta, June 14-18, 2021, Proceedings. Ed. by Kirstin Peters and Tim A. C.
Willemse. Vol. 12719. Lecture Notes in Computer Science. Springer, 2021,
pp. 42–59. doi: 10.1007/978-3-030-78089-0_3 (cit. on pp. 7, 93, 206).

[18] Mark Bouwman, Bas Luttik, and Tim A. C. Willemse. “Off-the-shelf auto-
mated analysis of liveness properties for just paths”. In: Acta Informatica
57.3-5 (2020), pp. 551–590. doi: 10.1007/s00236-020-00371-w (cit. on
pp. 8, 94, 124, 131, 139, 206).

[19] Mark Bouwman, Bas Luttik, and Tim A. C. Willemse. “Off-the-Shelf Auto-
mated Analysis of Liveness Properties for Just Paths - (Extended Abstract)”.
In: Formal Techniques for Distributed Objects, Components, and Systems -
41st IFIP WG 6.1 International Conference, FORTE 2021, Held as Part
of the 16th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings.
Ed. by Kirstin Peters and Tim A. C. Willemse. Vol. 12719. Lecture Notes
in Computer Science. Springer, 2021, pp. 182–187. doi: 10.1007/978-3-
030-78089-0_11 (cit. on p. 207).

[20] Mark Bouwman, Djurre van der Wal, Bas Luttik, Mariëlle Stoelinga, and
Arend Rensink. “What is the point: Formal analysis and test generation for
a railway standard”. In: 30th European Safety and Reliability Conference,
ESREL 2020 and 15th Probabilistic Safety Assessment and Management
Conference, PSAM15 2020. Research Publishing Services. 2020, pp. 921–928
(cit. on pp. 71, 113, 206).

189

https://doi.org/10.4204/EPTCS.322.5
https://doi.org/10.1007/978-3-030-78089-0_3
https://doi.org/10.1007/s00236-020-00371-w
https://doi.org/10.1007/978-3-030-78089-0_11
https://doi.org/10.1007/978-3-030-78089-0_11

BIBLIOGRAPHY

[21] Mark Bouwman, Djurre van der Wal, Bas Luttik, Mariëlle Stoelinga, and
Arend Rensink. “A Case in Point: Verification and Testing of a EULYNX
Interface”. In: Formal Aspects Comput. 35.1 (2023), 2:1–2:38. doi: 10.1145/
3528207 (cit. on pp. 8, 47, 67, 71, 112, 113, 206).

[22] Mark van den Brand and Jan Friso Groote. “Software engineering: Re-
dundancy is key”. In: Sci. Comput. Program. 97 (2015), pp. 75–81. doi:
10.1016/j.scico.2013.11.020 (cit. on pp. 112, 180).

[23] Matthias Brill, Werner Damm, Jochen Klose, Bernd Westphal, and Hartmut
Wittke. “Live Sequence Charts: An Introduction to Lines, Arrows, and
Strange Boxes in the Context of Formal Verification”. In: Integration of
Software Specification Techniques for Applications in Engineering, Priority
Program SoftSpez of the German Research Foundation (DFG), Final Report.
Ed. by Hartmut Ehrig, Werner Damm, Jörg Desel, Martin Große-Rhode,
Wolfgang Reif, Eckehard Schnieder, and Engelbert Westkämper. Vol. 3147.
Lecture Notes in Computer Science. Springer, 2004, pp. 374–399. doi:
10.1007/978-3-540-27863-4_21 (cit. on p. 182).

[24] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux,
Thomas Neele, Erik P. de Vink, Wieger Wesselink, Anton Wijs, and Tim
A. C. Willemse. “The mCRL2 Toolset for Analysing Concurrent Systems -
Improvements in Expressivity and Usability”. In: Tools and Algorithms for
the Construction and Analysis of Systems - 25th International Conference,
TACAS 2019. Vol. 11428. Lecture Notes in Computer Science. Springer,
2019, pp. 21–39. doi: 10.1007/978-3-030-17465-1_2 (cit. on pp. 2, 5, 11,
47, 142).

[25] Bureau of Transportation Statistics. Transportation Fatalities by Mode.
[Online; accessed April 3, 2023]. 2023 (cit. on p. 1).

[26] Stanley Burris and Hanamantagouda P. Sankappanavar. A course in uni-
versal algebra. Vol. 78. Graduate texts in mathematics. Springer, 1981. isbn:
978-0-387-90578-5 (cit. on p. 13).

[27] Ming Chai, Haifeng Wang, Tao Tang, and Hongjie Liu. “Runtime verification
of train control systems with parameterized modal live sequence charts”. In:
J. Syst. Softw. 177 (2021), p. 110962. doi: 10.1016/j.jss.2021.110962
(cit. on p. 182).

[28] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic”. In: Logics of
Programs, Workshop, Yorktown Heights, New York, USA, May 1981. Ed. by
Dexter Kozen. Vol. 131. Lecture Notes in Computer Science. Springer, 1981,
pp. 52–71. doi: 10.1007/BFb0025774 (cit. on p. 18).

[29] Sjoerd Cranen, Jan Friso Groote, and Michel A. Reniers. “A linear translation
from CTL* to the first-order modal µ-calculus”. In: Theor. Comput. Sci.
412.28 (2011), pp. 3129–3139. doi: 10.1016/j.tcs.2011.02.034 (cit. on
p. 19).

190

https://doi.org/10.1145/3528207
https://doi.org/10.1145/3528207
https://doi.org/10.1016/j.scico.2013.11.020
https://doi.org/10.1007/978-3-540-27863-4_21
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1016/j.jss.2021.110962
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1016/j.tcs.2011.02.034

BIBLIOGRAPHY

[30] Sjoerd Cranen, Bas Luttik, and Tim A. C. Willemse. “Evidence for Fixpoint
Logic”. In: 24th EACSL Annual Conference on Computer Science Logic, CSL
2015, September 7-10, 2015, Berlin, Germany. Ed. by Stephan Kreutzer.
Vol. 41. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015,
pp. 78–93. doi: 10.4230/LIPIcs.CSL.2015.78 (cit. on pp. 11, 67, 75, 117).

[31] Fokko van Dijk, Wan J. Fokkink, Gea Kolk, Paul van de Ven, and Bas van
Vlijmen. “EURIS, a Specification Method for Distributed Interlockings”. In:
Computer Safety, Reliability and Security, 17th International Conference,
SAFECOMP’98, Heidelberg, Germany, October 5-7, 1998, Proceedings. Ed.
by Wolfgang D. Ehrenberger. Vol. 1516. Lecture Notes in Computer Science.
Springer, 1998, pp. 296–305. doi: 10.1007/3-540-49646-7_23 (cit. on
p. 3).

[32] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
“Scaling static analyses at Facebook”. In: Commun. ACM 62.8 (2019), pp. 62–
70. doi: 10.1145/3338112 (cit. on p. 181).

[33] Victor Dyseryn, Rob J. van Glabbeek, and Peter Höfner. “Analysing Mutual
Exclusion using Process Algebra with Signals”. In: Proceedings EXPRESS/-
SOS 2017. Ed. by Kirstin Peters and Simone Tini. Vol. 255. EPTCS. 2017,
pp. 18–34. doi: 10.4204/EPTCS.255.2 (cit. on pp. 115, 116, 118, 120,
125–127, 150).

[34] Rob van Ee and Marcel van Ee. Ongevallen op Nederlands Spoor. Uitgeverij
De Alk BV, 1997. isbn: 9789060130674 (cit. on p. 1).

[35] E. Allen Emerson and Chin-Laung Lei. “Modalities for Model Checking:
Branching Time Logic Strikes Back”. In: Sci. Comput. Program. 8.3 (1987),
pp. 275–306 (cit. on p. 142).

[36] E. Allen Emerson and A. Prasad Sistla. “Deciding Full Branching Time
Logic”. In: Inf. Control. 61.3 (1984), pp. 175–201. doi: 10.1016/S0019-
9958(84)80047-9 (cit. on p. 18).

[37] Marie-Aude Esteve, Joost-Pieter Katoen, Viet Yen Nguyen, Bart Postma,
and Yuri Yushtein. “Formal correctness, safety, dependability, and perfor-
mance analysis of a satellite”. In: 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. Ed. by Martin
Glinz, Gail C. Murphy, and Mauro Pezzè. IEEE Computer Society, 2012,
pp. 1022–1031. doi: 10.1109/ICSE.2012.6227118 (cit. on p. 3).

[38] EULYNX Partners. EULYNX modelling standard Eu.Doc.30 v4.0. Norm.
2022 (cit. on p. 23).

[39] Alessandro Fantechi. “Twenty-Five Years of Formal Methods and Railways:
What Next?” In: Software Engineering and Formal Methods - SEFM 2013
Collocated Workshops: BEAT2, WS-FMDS, FM-RAIL-Bok, MoKMaSD,
and OpenCert, Madrid, Spain, September 23-24, 2013, Revised Selected
Papers. Ed. by Steve Counsell and Manuel Núñez. Vol. 8368. Lecture Notes

191

https://doi.org/10.4230/LIPIcs.CSL.2015.78
https://doi.org/10.1145/3338112
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.1016/S0019-9958(84)80047-9
https://doi.org/10.1016/S0019-9958(84)80047-9
https://doi.org/10.1109/ICSE.2012.6227118

BIBLIOGRAPHY

in Computer Science. Springer, 2013, pp. 167–183. doi: 10.1007/978-3-
319-05032-4_13 (cit. on p. 3).

[40] Alessio Ferrari and Maurice H. ter Beek. “Formal Methods in Railways: A
Systematic Mapping Study”. In: ACM Comput. Surv. 55.4 (2023), 69:1–69:37.
doi: 10.1145/3520480 (cit. on p. 3).

[41] Limor Fix. “Fifteen Years of Formal Property Verification in Intel”. In: 25
Years of Model Checking - History, Achievements, Perspectives. Ed. by Orna
Grumberg and Helmut Veith. Vol. 5000. Lecture Notes in Computer Science.
Springer, 2008, pp. 139–144. doi: 10.1007/978-3-540-69850-0_8 (cit. on
p. 181).

[42] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
“CADP 2011: a toolbox for the construction and analysis of distributed
processes”. In: Int. J. Softw. Tools Technol. Transf. 15.2 (2013), pp. 89–107.
doi: 10.1007/s10009-012-0244-z (cit. on pp. 49, 142).

[43] Hubert Garavel, Frédéric Lang, and Laurent Mounier. “Compositional Ver-
ification in Action”. In: Formal Methods for Industrial Critical Systems -
23rd International Conference, FMICS 2018, Maynooth, Ireland, September
3-4, 2018, Proceedings. Ed. by Falk Howar and Jiri Barnat. Vol. 11119.
Lecture Notes in Computer Science. Springer, 2018, pp. 189–210. doi:
10.1007/978-3-030-00244-2_13 (cit. on p. 49).

[44] Rob van Glabbeek, Peter Höfner, and Weiyou Wang. “Enabling Preserving
Bisimulation Equivalence”. In: 32nd International Conference on Concur-
rency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference. Ed.
by Serge Haddad and Daniele Varacca. Vol. 203. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 33:1–33:20. doi: 10.4230/LIPIcs.
CONCUR.2021.33 (cit. on p. 156).

[45] Rob J. van Glabbeek. “The Linear Time - Branching Time Spectrum II”.
In: CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings. Ed. by Eike Best.
Vol. 715. Lecture Notes in Computer Science. Springer, 1993, pp. 66–81.
doi: 10.1007/3-540-57208-2_6 (cit. on p. 49).

[46] Rob J. van Glabbeek. “The Linear Time - Branching Time Spectrum I”. In:
Handbook of Process Algebra. Ed. by Jan A. Bergstra, Alban Ponse, and Scott
A. Smolka. North-Holland / Elsevier, 2001, pp. 3–99. doi: 10.1016/b978-
044482830-9/50019-9 (cit. on p. 156).

[47] Rob J. van Glabbeek. “Justness - A Completeness Criterion for Capturing
Liveness Properties (Extended Abstract)”. In: FoSSaCS. Vol. 11425. Lecture
Notes in Computer Science. Springer, 2019, pp. 505–522 (cit. on pp. 118–122,
155).

192

https://doi.org/10.1007/978-3-319-05032-4_13
https://doi.org/10.1007/978-3-319-05032-4_13
https://doi.org/10.1145/3520480
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.4230/LIPIcs.CONCUR.2021.33
https://doi.org/10.4230/LIPIcs.CONCUR.2021.33
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.1016/b978-044482830-9/50019-9

BIBLIOGRAPHY

[48] Rob J. van Glabbeek and Peter Höfner. “CCS: It’s not fair! - Fair schedulers
cannot be implemented in CCS-like languages even under progress and
certain fairness assumptions”. In: Acta Inf. 52.2-3 (2015), pp. 175–205. doi:
10.1007/s00236-015-0221-6 (cit. on pp. 8, 116).

[49] Rob J. van Glabbeek and Peter Höfner. “Progress, Justness, and Fairness”.
In: ACM Comput. Surv. 52.4 (2019), 69:1–69:38 (cit. on pp. 94, 115, 116).

[50] Rob J. van Glabbeek, Bas Luttik, and Nikola Trcka. “Branching Bisimilarity
with Explicit Divergence”. In: Fundam. Inform. 93.4 (2009), pp. 371–392
(cit. on p. 156).

[51] Rob J. van Glabbeek, Bas Luttik, and Nikola Trcka. “Computation Tree
Logic with Deadlock Detection”. In: Logical Methods in Computer Science
5.4 (2009) (cit. on p. 156).

[52] Rob J. van Glabbeek and W. P. Weijland. “Branching Time and Abstraction
in Bisimulation Semantics”. In: J. ACM 43.3 (1996), pp. 555–600. doi:
10.1145/233551.233556 (cit. on pp. 18, 48).

[53] Susanne Graf and Bernhard Steffen. “Compositional Minimization of Finite
State Systems”. In: Computer Aided Verification, 2nd International Work-
shop, CAV ’90, New Brunswick, NJ, USA, June 18-21, 1990, Proceedings.
Ed. by Edmund M. Clarke and Robert P. Kurshan. Vol. 531. Lecture Notes in
Computer Science. Springer, 1990, pp. 186–196. doi: 10.1007/BFb0023732
(cit. on p. 49).

[54] Susanne Graf, Bernhard Steffen, and Gerald Lüttgen. “Compositional Min-
imisation of Finite State Systems Using Interface Specifications”. In: Formal
Aspects Comput. 8.5 (1996), pp. 607–616. doi: 10.1007/BF01211911 (cit. on
p. 49).

[55] Jan Friso Groote and Mohammad Reza Mousavi. Modeling and Analysis of
Communicating Systems. MIT Press, 2014 (cit. on pp. 5, 11, 14–16, 20, 49).

[56] Jan Friso Groote, Alban Ponse, and Yaroslav S. Usenko. “Linearization
in parallel pCRL”. In: J. Log. Algebraic Methods Program. 48.1-2 (2001),
pp. 39–70. doi: 10.1016/S1567-8326(01)00005-4 (cit. on p. 15).

[57] Jan Friso Groote, Sebastiaan F. M. van Vlijmen, and Jan W. C. Koorn.
“The safety guaranteeing system at station Hoorn-Kersenboogerd”. In: COM-
PASS’95 Proceedings of the Tenth Annual Conference on Computer Assur-
ance Systems Integrity, Software Safety and Process Security’. IEEE. 1995,
pp. 57–68 (cit. on p. 3).

[58] Jan Friso Groote and Tim A. C. Willemse. “Parameterised boolean equation
systems”. In: Theor. Comput. Sci. 343.3 (2005), pp. 332–369. doi: 10.1016/
j.tcs.2005.06.016 (cit. on p. 20).

[59] Jan Friso Groote and Tim A.C. Willemse. “Model-checking processes with
data”. In: Sci. Comput. Program. 56.3 (2005), pp. 251–273 (cit. on p. 149).

193

https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1145/233551.233556
https://doi.org/10.1007/BFb0023732
https://doi.org/10.1007/BF01211911
https://doi.org/10.1016/S1567-8326(01)00005-4
https://doi.org/10.1016/j.tcs.2005.06.016
https://doi.org/10.1016/j.tcs.2005.06.016

BIBLIOGRAPHY

[60] Dennis Guck, Joost-Pieter Katoen, Mariëlle IA Stoelinga, Ted Luiten, and
Judi Romijn. “Smart railroad maintenance engineering with stochastic model
checking”. In: 2nd International Conference on Railway Technology: Research,
Development and Maintenance (2014) (cit. on p. 3).

[61] Helle Hvid Hansen, Jeroen Ketema, Bas Luttik, Mohammad Reza Mousavi,
and Jaco van de Pol. “Towards model checking executable UML specifications
in mCRL2”. In: ISSE 6.1-2 (2010), pp. 83–90. doi: 10.1007/s11334-009-
0116-1 (cit. on p. 24).

[62] Helle Hvid Hansen, Jeroen Ketema, Bas Luttik, Mohammad Reza Mousavi,
Jaco van de Pol, and Osmar Marchi dos Santos. “Automated Verification of
Executable UML Models”. In: Formal Methods for Components and Objects
- 9th International Symposium, FMCO 2010, Graz, Austria, November 29 -
December 1, 2010. Revised Papers. Vol. 6957. Lecture Notes in Computer
Science. Springer, 2010, pp. 225–250. doi: 10.1007/978-3-642-25271-
6_12 (cit. on p. 24).

[63] Anne E. Haxthausen and Jan Peleska. “Formal Development and Verification
of a Distributed Railway Control System”. In: IEEE Trans. Software Eng.
26.8 (2000), pp. 687–701. doi: 10.1109/32.879808 (cit. on p. 3).

[64] Anne E. Haxthausen and Jan Peleska. “Model Checking and Model-Based
Testing in the Railway Domain”. In: Formal Modeling and Verification of
Cyber-Physical Systems, 1st International Summer School on Methods and
Tools for the Design of Digital Systems, Bremen, Germany, September 2015.
Ed. by Rolf Drechsler and Ulrich Kühne. Springer, 2015, pp. 82–121. doi:
10.1007/978-3-658-09994-7_4 (cit. on p. 3).

[65] Anne E. Haxthausen, Jan Peleska, and Ralf Pinger. “Applied Bounded Model
Checking for Interlocking System Designs”. In: Software Engineering and
Formal Methods - SEFM 2013 Collocated Workshops: BEAT2, WS-FMDS,
FM-RAIL-Bok, MoKMaSD, and OpenCert, Madrid, Spain, September 23-24,
2013, Revised Selected Papers. Ed. by Steve Counsell and Manuel Núñez.
Vol. 8368. Lecture Notes in Computer Science. Springer, 2013, pp. 205–220.
doi: 10.1007/978-3-319-05032-4_16 (cit. on p. 3).

[66] Matthew Hennessy and Robin Milner. “Algebraic Laws for Nondeterminism
and Concurrency”. In: J. ACM 32.1 (1985), pp. 137–161. doi: 10.1145/
2455.2460 (cit. on pp. 18, 165).

[67] Christoph Hilken, Jan Peleska, and Robert Wille. “A Unified Formulation
of Behavioral Semantics for SysML Models”. In: MODELSWARD 2015 -
Proceedings of the 3rd International Conference on Model-Driven Engineer-
ing and Software Development, ESEO, Angers, Loire Valley, France, 9-11
February, 2015. Ed. by Slimane Hammoudi, Luís Ferreira Pires, Philippe
Desfray, and Joaquim Filipe. SciTePress, 2015, pp. 263–271. doi: 10.5220/
0005241602630271 (cit. on p. 24).

[68] Gerard J. Holzmann. The SPIN Model Checker - primer and reference
manual. Addison-Wesley, 2004. isbn: 978-0-321-22862-8 (cit. on p. 24).

194

https://doi.org/10.1007/s11334-009-0116-1
https://doi.org/10.1007/s11334-009-0116-1
https://doi.org/10.1007/978-3-642-25271-6_12
https://doi.org/10.1007/978-3-642-25271-6_12
https://doi.org/10.1109/32.879808
https://doi.org/10.1007/978-3-658-09994-7_4
https://doi.org/10.1007/978-3-319-05032-4_16
https://doi.org/10.1145/2455.2460
https://doi.org/10.1145/2455.2460
https://doi.org/10.5220/0005241602630271
https://doi.org/10.5220/0005241602630271

BIBLIOGRAPHY

[69] Linh Vu Hong, Anne E. Haxthausen, and Jan Peleska. “Formal modelling
and verification of interlocking systems featuring sequential release”. In: Sci.
Comput. Program. 133 (2017), pp. 91–115. doi: 10.1016/j.scico.2016.
05.010 (cit. on p. 3).

[70] Yi-Ling Hwong, Jeroen J. A. Keiren, Vincent J. J. Kusters, Sander J. J.
Leemans, and Tim A. C. Willemse. “Formalising and analysing the control
software of the Compact Muon Solenoid Experiment at the Large Hadron
Collider”. In: Sci. Comput. Program. 78.12 (2013), pp. 2435–2452. doi:
10.1016/j.scico.2012.11.009 (cit. on p. 3).

[71] Phillip James, Faron Moller, Nguyen Hoang Nga, Markus Roggenbach,
Steve A. Schneider, and Helen Treharne. “Techniques for modelling and
verifying railway interlockings”. In: Int. J. Softw. Tools Technol. Transf. 16.6
(2014), pp. 685–711. doi: 10.1007/s10009-014-0304-7 (cit. on p. 3).

[72] Phillip James and Markus Roggenbach. “Automatically Verifying Railway
Interlockings using SAT-based Model Checking”. In: Electron. Commun. Eur.
Assoc. Softw. Sci. Technol. 35 (2010). doi: 10.14279/tuj.eceasst.35.547
(cit. on p. 3).

[73] Jeroen J. A. Keiren and Martijn Klabbers. “Modelling and verifying IEEE
Std 11073-20601 session setup using mCRL2”. In: Electron. Commun. Eur.
Assoc. Softw. Sci. Technol. 53 (2012). doi: 10.14279/tuj.eceasst.53.793
(cit. on p. 47).

[74] Soon-Kyeong Kim and David A. Carrington. “A Formal Model of the UML
Metamodel: The UML State Machine and Its Integrity Constraints”. In: ZB
2002: Formal Specification and Development in Z and B, 2nd International
Conference of B and Z Users, Grenoble, France, January 23-25, 2002,
Proceedings. Vol. 2272. Lecture Notes in Computer Science. Springer, 2002,
pp. 497–516. doi: 10.1007/3-540-45648-1_26 (cit. on p. 24).

[75] Dexter Kozen. “Results on the propositional µ-calculus”. In: Theoretical
Computer Science 27.3 (1982), pp. 333–354. issn: 16113349. doi: 10.1007/
BFb0012782 (cit. on p. 19).

[76] Sabine Kuske. “A Formal Semantics of UML State Machines Based on
Structured Graph Transformation”. In: UML 2001 - The Unified Modeling
Language, Modeling Languages, Concepts, and Tools, 4th International
Conference, Toronto, Canada, October 1-5, 2001, Proceedings. Vol. 2185.
Lecture Notes in Computer Science. Springer, 2001, pp. 241–256. doi:
10.1007/3-540-45441-1_19 (cit. on p. 24).

[77] Leslie Lamport. “A New Solution of Dijkstra’s Concurrent Programming
Problem”. In: Commun. ACM 17.8 (1974), pp. 453–455. doi: 10.1145/
361082.361093 (cit. on p. 155).

195

https://doi.org/10.1016/j.scico.2016.05.010
https://doi.org/10.1016/j.scico.2016.05.010
https://doi.org/10.1016/j.scico.2012.11.009
https://doi.org/10.1007/s10009-014-0304-7
https://doi.org/10.14279/tuj.eceasst.35.547
https://doi.org/10.14279/tuj.eceasst.53.793
https://doi.org/10.1007/3-540-45648-1_26
https://doi.org/10.1007/BFb0012782
https://doi.org/10.1007/BFb0012782
https://doi.org/10.1007/3-540-45441-1_19
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/361082.361093

BIBLIOGRAPHY

[78] Frédéric Lang. “Refined Interfaces for Compositional Verification”. In: Formal
Techniques for Networked and Distributed Systems - FORTE 2006, 26th IFIP
WG 6.1 International Conference, Paris, France, September 26-29, 2006. Ed.
by Elie Najm, Jean-François Pradat-Peyre, and Véronique Donzeau-Gouge.
Vol. 4229. Lecture Notes in Computer Science. Springer, 2006, pp. 159–174.
doi: 10.1007/11888116_13 (cit. on p. 49).

[79] Frédéric Lang, Radu Mateescu, and Franco Mazzanti. “Compositional ver-
ification of concurrent systems by combining bisimulations”. In: Formal
Methods Syst. Des. 58.1-2 (2021), pp. 83–125. doi: 10.1007/s10703-021-
00360-w (cit. on p. 49).

[80] Diego Latella, István Majzik, and Mieke Massink. “Automatic Verification
of a Behavioural Subset of UML Statechart Diagrams Using the SPIN
Model-checker”. In: Formal Asp. Comput. 11.6 (1999), pp. 637–664. doi:
10.1007/s001659970003 (cit. on p. 24).

[81] Maurice Laveaux, Wieger Wesselink, and Tim A. C. Willemse. “On-The-
Fly Solving for Symbolic Parity Games”. In: Tools and Algorithms for
the Construction and Analysis of Systems - 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part II. Ed. by Dana Fisman and Grigore Rosu. Vol. 13244.
Lecture Notes in Computer Science. Springer, 2022, pp. 137–155. doi:
10.1007/978-3-030-99527-0_8 (cit. on p. 67).

[82] Maurice Laveaux and Tim A. C. Willemse. “Decompositional Minimisation of
Monolithic Processes”. In: CoRR abs/2012.06468 (2020). arXiv: 2012.06468
(cit. on p. 56).

[83] Maurice Laveaux and Tim A. C. Willemse. “Decomposing Monolithic Pro-
cesses in a Process Algebra with Multi-actions”. In: Proceedings 14th In-
teraction and Concurrency Experience, ICE 2021, Online, 18th June 2021.
Ed. by Julien Lange, Anastasia Mavridou, Larisa Safina, and Alceste Scalas.
Vol. 347. EPTCS. 2021, pp. 57–76. doi: 10.4204/EPTCS.347.4 (cit. on
pp. 16, 17, 49, 54–56, 68).

[84] Johan Lilius and Ivan Paltor. “vUML: A Tool for Verifying UML Models”.
In: The 14th IEEE International Conference on Automated Software Engi-
neering, ASE 1999, Cocoa Beach, Florida, USA, 12-15 October 1999. IEEE
Computer Society, 1999, pp. 255–258. doi: 10.1109/ASE.1999.802301
(cit. on p. 24).

[85] Johan Lilius and Ivn Porres Paltor. “The semantics of UML state machines”.
In: (1999) (cit. on p. 24).

[86] Shuang Liu, Yang Liu, Étienne André, Christine Choppy, Jun Sun, Bimlesh
Wadhwa, and Jin Song Dong. “A Formal Semantics for Complete UML
State Machines with Communications”. In: Integrated Formal Methods, 10th
International Conference, IFM 2013, Turku, Finland, June 10-14, 2013.

196

https://doi.org/10.1007/11888116_13
https://doi.org/10.1007/s10703-021-00360-w
https://doi.org/10.1007/s10703-021-00360-w
https://doi.org/10.1007/s001659970003
https://doi.org/10.1007/978-3-030-99527-0_8
https://arxiv.org/abs/2012.06468
https://doi.org/10.4204/EPTCS.347.4
https://doi.org/10.1109/ASE.1999.802301

BIBLIOGRAPHY

Proceedings. Vol. 7940. Lecture Notes in Computer Science. Springer, 2013,
pp. 331–346. doi: 10.1007/978-3-642-38613-8_23 (cit. on p. 24).

[87] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of
abstract data types. Wiley, 1996. isbn: 978-0-471-95067-7 (cit. on p. 13).

[88] Bjørnar Luteberget and Christian Johansen. “Efficient verification of railway
infrastructure designs against standard regulations”. In: Formal Methods
Syst. Des. 52.1 (2018), pp. 1–32. doi: 10.1007/s10703-017-0281-z (cit. on
p. 3).

[89] Robin Milner. Communication and concurrency. PHI Series in computer
science. Prentice Hall, 1989. isbn: 978-0-13-115007-2 (cit. on p. 160).

[90] Mohammad Reza Mousavi, Michel A. Reniers, and Jan Friso Groote. “No-
tions of bisimulation and congruence formats for SOS with data”. In: Inf.
Comput. 200.1 (2005), pp. 107–147. doi: 10.1016/j.ic.2005.03.002
(cit. on pp. 162–164).

[91] Thomas Neele, Tim A. C. Willemse, and Jan Friso Groote. “Solving Parame-
terised Boolean Equation Systems with Infinite Data Through Quotienting”.
In: FACS. Vol. 11222. Lecture Notes in Computer Science. Springer, 2018,
pp. 216–236 (cit. on p. 48).

[92] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,
and Michael Deardeuff. “How Amazon web services uses formal methods”.
In: Commun. ACM 58.4 (2015), pp. 66–73. doi: 10.1145/2699417 (cit. on
p. 181).

[93] Rocco De Nicola and Rosario Pugliese. “A Process Algebra Based on
LINDA”. In: COORDINATION. Vol. 1061. Lecture Notes in Computer
Science. Springer, 1996, pp. 160–178. doi: 10.1007/3-540-61052-9_45
(cit. on p. 175).

[94] Mogens Nielsen, Klaus Havelund, Kim Ritter Wagner, and Chris George.
“The RAISE Language, Method and Tools”. In: Formal Aspects Comput. 1.1
(1989), pp. 85–114. doi: 10.1007/BF01887199 (cit. on p. 3).

[95] Object Managament Group. OMG Unified Modeling Language, version 2.5.1.
Norm. 2017 (cit. on pp. 4, 27, 30).

[96] Object Managament Group. Systems Modeling Language (SysML) v2 Re-
quest For Proposal (RFP). OMG Document: ad/2017-12-02. Norm. 2017
(cit. on p. 182).

[97] Object Managament Group. OMG Systems Modeling Language, version 1.6.
Norm. 2019 (cit. on p. 4).

[98] Object Managament Group. Precise Semantics of UML State Machines
(PSSM), version 1.0. Norm. 2019 (cit. on p. 25).

197

https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/s10703-017-0281-z
https://doi.org/10.1016/j.ic.2005.03.002
https://doi.org/10.1145/2699417
https://doi.org/10.1007/3-540-61052-9_45
https://doi.org/10.1007/BF01887199

BIBLIOGRAPHY

[99] Ivan Paltor and Johan Lilius. “Formalising UML State Machines for Model
Checking”. In: UML’99: The Unified Modeling Language - Beyond the Stan-
dard, Second International Conference, Fort Collins, CO, USA, October
28-30, 1999, Proceedings. 1999, pp. 430–445. doi: 10.1007/3-540-46852-
8_31 (cit. on p. 24).

[100] David M. R. Park. “Concurrency and Automata on Infinite Sequences”. In:
Theoretical Computer Science, 5th GI-Conference, Karlsruhe, Germany,
March 23-25, 1981, Proceedings. Ed. by Peter Deussen. Vol. 104. Lecture
Notes in Computer Science. Springer, 1981, pp. 167–183. doi: 10.1007/
BFb0017309 (cit. on pp. 18, 48, 156).

[101] Gabriel Pedroza, Ludovic Apvrille, and Daniel Knorreck. “AVATAR: A
SysML Environment for the Formal Verification of Safety and Security
Properties”. In: 11th Annual International Conference on New Technologies
of Distributed Systems, NOTERE 2011, Paris, France, 9-13 May 2011.
IEEE, 2011, pp. 1–10. doi: 10.1109/NOTERE.2011.5957992 (cit. on p. 24).

[102] Jan Peleska and Wen-ling Huang. “Industrial-Strength Model-Based Testing
of Safety-Critical Systems”. In: FM 2016: Formal Methods - 21st Interna-
tional Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings.
Ed. by John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, and
Anna Philippou. Vol. 9995. Lecture Notes in Computer Science. 2016, pp. 3–
22. doi: 10.1007/978-3-319-48989-6_1 (cit. on p. 24).

[103] Jan Peleska, Wen-ling Huang, and Uwe Schulze. Test automation support.
Technical report D34.1, COMPASS Comprehensive Modelling for Advanced
Systems of Systems. Ed. by John S. Fitzgerald and Peter Gorm Larsen.
http://www.compass-research.eu/deliverables.html. 2013 (cit. on
p. 24).

[104] Gary L. Peterson. “Myths About the Mutual Exclusion Problem”. In: Inf.
Process. Lett. 12.3 (1981), pp. 115–116. doi: 10.1016/0020- 0190(81)
90106-X (cit. on pp. 116, 155).

[105] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977. IEEE Computer Society, 1977, pp. 46–57. doi:
10.1109/SFCS.1977.32 (cit. on p. 18).

[106] PTC. ASAL structured action language (SySim. [Online; accessed April 7,
2023]. 2023 (cit. on p. 30).

[107] Daniela Remenska, Jeff Templon, Tim A. C. Willemse, Philip Homburg,
Kees Verstoep, Adrian Casajus Ramo, and Henri E. Bal. “From UML to
Process Algebra and Back: An Automated Approach to Model-Checking
Software Design Artifacts of Concurrent Systems”. In: NASA Formal Meth-
ods. Vol. 7871. Lecture Notes in Computer Science. Springer, 2013, pp. 244–
260 (cit. on p. 25).

198

https://doi.org/10.1007/3-540-46852-8_31
https://doi.org/10.1007/3-540-46852-8_31
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1109/NOTERE.2011.5957992
http://www.compass-research.eu/deliverables.html
https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1109/SFCS.1977.32

BIBLIOGRAPHY

[108] Daniela Remenska, Tim A. C. Willemse, Kees Verstoep, Jeff Templon, and
Henri E. Bal. “Using model checking to analyze the system behavior of
the LHC production grid”. In: Future Gener. Comput. Syst. 29.8 (2013),
pp. 2239–2251. doi: 10.1016/j.future.2013.06.004 (cit. on p. 47).

[109] A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer
Science. Springer, 2010. doi: 10.1007/978- 1- 84882- 258- 0 (cit. on
p. 175).

[110] Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden. “Semantic
Foundations of Concurrent Constraint Programming”. In: POPL. ACM
Press, 1991, pp. 333–352. doi: 10.1145/99583.99627 (cit. on p. 175).

[111] Timm Schäfer, Alexander Knapp, and Stephan Merz. “Model checking UML
state machines and collaborations”. In: Electron. Notes Theor. Comput. Sci.
55.3 (2001), pp. 357–369. doi: 10.1016/S1571-0661(04)00262-2 (cit. on
p. 24).

[112] Steve A. Schneider and Helen Treharne. “CSP theorems for communicating
B machines”. In: Formal Aspects Comput. 17.4 (2005), pp. 390–422. doi:
10.1007/s00165-005-0076-7 (cit. on p. 3).

[113] Danielle Stewart, Jing Liu, Darren D. Cofer, Mats Per Erik Heimdahl,
Michael W. Whalen, and Michael Peterson. “AADL-Based safety analysis
using formal methods applied to aircraft digital systems”. In: Reliab. Eng.
Syst. Saf. 213 (2021), p. 107649. doi: 10.1016/j.ress.2021.107649
(cit. on p. 3).

[114] VDE. Electric signalling systems for railways – Part200: Safe transmission
protocol according to DIN EN50159 (DIN VDE V 0831-159). DIN VDE V
0831-200. Norm. June 2015 (cit. on p. 72).

[115] Hongli Wang, Deming Zhong, Tingdi Zhao, and Fuchun Ren. “Integrating
Model Checking With SysML in Complex System Safety Analysis”. In: IEEE
Access 7 (2019), pp. 16561–16571. doi: 10.1109/ACCESS.2019.2892745
(cit. on p. 24).

[116] Wieger Wesselink and Tim A. C. Willemse. “Evidence Extraction from
Parameterised Boolean Equation Systems”. In: Proceedings of the 3rd Inter-
national Workshop on Automated Reasoning in Quantified Non-Classical
Logics (ARQNL 2018) affiliated with the International Joint Conference
on Automated Reasoning (IJCAR 2018), Oxford, UK, July 18, 2018. Ed.
by Christoph Benzmüller and Jens Otten. Vol. 2095. CEUR Workshop
Proceedings. CEUR-WS.org, 2018, pp. 86–100 (cit. on pp. 11, 67, 75, 117).

[117] Wikimedia Commons. File:Facing points Broomhill.jpg. [Online; accessed
July 9, 2021]. 2021 (cit. on p. 94).

199

https://doi.org/10.1016/j.future.2013.06.004
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1145/99583.99627
https://doi.org/10.1016/S1571-0661(04)00262-2
https://doi.org/10.1007/s00165-005-0076-7
https://doi.org/10.1016/j.ress.2021.107649
https://doi.org/10.1109/ACCESS.2019.2892745
https://commons.wikimedia.org/wiki/File:Facing_points_Broomhill.jpg

Summary

This thesis, titled “Supporting Railway Standardisation with Formal Verification”,
has been written in the context of the FormaSig project. This project involves a
collaboration between academia and railway infrastructure managers to use formal
methods to support the development of the EULYNX standard. This standard uses
the SysML modelling language to define the interfaces of the various components
of a signalling system (signal, point, level crossing, etcetera). The aim of the
FormaSig project is to define a formal interpretation of the standard such that
delivered components conforming to the standard provably satisfy a collection of
safety properties. The idea is to associate with each SysML model a formal mCRL2
model. Then mCRL2’s model checker can be used to establish that the model
satisfies the required safety properties, and automated model-based test technology
can be used to thoroughly test compliance to the model of actual implementations.
This thesis focusses on the aspects of formalisation and verification.

The first contribution is a formalisation of SysML in mCRL2. The approach
taken is to generically define the structure and semantics of SysML state machines
in mCRL2. This generic model forms the basis of a translation tool that encodes a
set of concrete SysML diagrams in the mCRL2 data language.

A challenge in model checking is scalability; the state space of a model tends to
scale exponentially with the number of parallel components. Our second contribu-
tion is an inventory of techniques to reduce the size of the state space induced by
mCRL2 models obtained through our SysML to mCRL2 translation. We found that
the most effective technique for our models is compositional minimisation. With
this technique the state space of the entire (monolithic) model is not computed in
one go. Instead, the model is first split into components; in our case a SysML state
machine is a component. The state space of each component is computed and then
minimised modulo an equivalence relation. These minimised state spaces are finally
combined to construct the state space of the entire model. The existing theory is
extended to support branching bisimulation minimisation, greatly increasing its
effectiveness.

The next contribution of this thesis is to discuss the application of the afore-
mentioned translation and scalability techniques to several concrete EULYNX
interfaces. For each interface (safety) requirements are formulated and verified
using the mCRL2 toolset. The verification efforts identified errors and omissions
in the standard and this led to improvements of the standard. The case studies

201

Summary

have also led to improvements of the toolchain.
The case studies reveal that we sometimes want to verify liveness requirements

stating that something good always eventually happens. For such requirements,
assumptions are often needed on how events are scheduled. These range from
very basic assumptions to rather strong assumptions that may not be realistic. A
recently introduced notion is that of ‘justness’. In short, it is the assumption that
once an action is enabled that stems from a set of parallel components then one (or
more) of these components will eventually partake in an action. This seems to be a
realistic assumption that is just strong enough for many liveness requirements. This
thesis contributes a way to verify liveness requirements with a justness assumption
for mCRL2 models. Moreover, it is applied in the aforementioned case studies.

Besides justness, the cases studies reveal another need: the concept of global
variables. The semantics of mCRL2 is action-based and thus abstracts from the
contents of a state; states are only distinguished by their transitions. The logic (the
modal µ-calculus in the case of the mCRL2 toolset) also only refers to transitions.
For models that are derived from state based formalisms (such as SysML) it can
be desirable to also consider the contents of a state. For some requirements for
FormaSig models we need to specify that the system always (or never) ends up in a
specific SysML state. The final contribution in this thesis is a process algebra with
global variables and a logic allowing references to these variables. This enables
the inspection of these global variables during verification and thus allows for
requirements referencing both the transitions and the contents of states. Moreover,
in some settings, it allows for a more natural form of communication between
parallel components (compared to message passing). The theory is applied to
formulate requirements in FormaSig.

202

Samenvatting

De titel van dit proefschrift kan worden vertaald als “Het Gebruik van Formele
Methoden in de Ondersteuning van Standaardisatie Binnen de Spoorwegen”. Dit
proefschrift is tot stand gekomen binnen de context van het FormaSig project. Dit
project behelst een samenwerking van de academische wereld en de spoorwegen om
met behulp van formele methoden de ontwikkeling van de EULYNX standaard te
ondersteunen. Deze standaard gebruikt de SysML modelleertaal om de interfaces
tussen verscheidene onderdelen in het seinwezen te specificeren (seinen, wissels,
spoorwegovergangen, et cetera). Het doel van het FormaSig project is een formele
interpretatie van de standaard te definiëren zodat geleverde componenten die aan
de standaard voldoen, aantoonbaar voldoen aan een verzameling veiligheidseigen-
schappen. Het idee is om van elk SysML model een formeel mCRL2 model af
te leiden. Vervolgens kunnen de verificatietools van mCRL2 worden gebruikt om
te bewijzen dat het model voldoet aan de veiligheidseisen en kunnen test cases
afgeleid uit het model worden gebruikt om de conformiteit van daadwerkelijke
implementaties met het model grondig te testen. Dit proefschrift focust op de
formalisatie en verificatie aspecten.

De eerste bijdrage is een formalisatie van SysML in mCRL2. In de gekozen
aanpak definiëren we de structuur en semantiek van SysML state machines op
generieke wijze in mCRL2. Dit generieke model vormt de basis voor een vertaaltool
die een set concrete SysML diagrammen in de datataal van mCRL2 kan encoderen.

Een uitdaging bij formele verificatie is schaalbaarheid; de toestandsruimte van
een model schaalt vaak exponentieel met het aantal parallelle componenten. De
tweede bijdrage is een inventarisatie van technieken om de omvang van de toe-
standsruimte van mCRL2-modellen, verkregen door onze vertaling van SysML naar
mCRL2, te verkleinen. Het blijkt dat de meest effectieve techniek voor onze model-
len compositionele minimalisatie is. Bij deze techniek wordt de toestandsruimte van
het gehele (monolithische) model niet in één keer berekend. In plaats daarvan wordt
het model eerst opgesplitst in componenten; in ons geval is een SysML state ma-
chine een component. De toestandsruimte van elke component wordt berekend en
vervolgens geminimaliseerd volgens een equivalentierelatie. Deze geminimaliseerde
toestandsruimten worden uiteindelijk gecombineerd om de toestandsruimte van
het gehele model te construeren. De bestaande theorie is uitgebreid om branching
bisimulatie minimalisatie te ondersteunen, waardoor de effectiviteit ervan sterk
toeneemt.

203

Samenvatting

De volgende bijdrage van dit proefschrift is de toepassing van de bovengenoemde
vertaal- en schaalbaarheidstechnieken op verschillende concrete EULYNX inter-
faces en het bespreken van de lessen die daaruit volgen. Voor elke interface zijn
(veiligheids)eisen geformuleerd en geverifieerd met behulp van de mCRL2 toolset.
Verificatie heeft fouten en omissies in de standaard aan het licht gebracht en dit
heeft geleid tot verbeteringen van de standaard. De casestudy’s hebben ook geleid
tot verbeteringen van de toolchain.

Uit de casestudy’s blijkt dat we soms liveness eisen willen verifiëren die stellen
dat er uiteindelijk altijd iets wenselijks gebeurt. Voor dergelijke eisen zijn vaak
aannames nodig over de volgorde van gebeurtenissen. Deze variëren van zeer
rudimentaire aannames tot vrij sterke aannames die wellicht niet realistisch zijn.
Een recent geïntroduceerd begrip is dat van justness. Kort gezegd is dit de aanname
dat, zodra een actie mogelijk is die voortkomt uit een verzameling parallelle
componenten, één (of meer) van deze componenten uiteindelijk zal deelnemen aan
een actie. Dit lijkt een realistische aanname te zijn die net sterk genoeg is voor veel
liveness eisen. De bijdrage in deze dissertatie is een methode die verificatie van
liveness eisen met een justness aanname mogelijk maakt voor mCRL2 modellen.
Bovendien wordt het toegepast in de bovengenoemde casestudy’s.

Naast justness brengen de casestudy’s nog een andere behoefte aan het licht:
het concept van globale variabelen. De semantiek van mCRL2 is gebaseerd op
acties en abstraheert dus van de inhoud van een toestand; toestanden worden alleen
onderscheiden door hun transities. De logica (de modale µ-calculus in het geval
van de mCRL2 toolset) verwijst ook alleen naar transities. Voor modellen die zijn
afgeleid van toestandsgebaseerde formalismen (zoals SysML) kan het wenselijk zijn
ook de inhoud van een toestand in beschouwing te nemen. Bij sommige eisen voor
EULYNX modellen moeten we uitdrukken dat het systeem altijd (of nooit) in een
specifieke SysML-toestand terechtkomt. De laatste bijdrage in dit proefschrift is
een procesalgebra met globale variabelen en een logica die verwijzingen naar deze
variabelen toestaat. Dit maakt de inspectie van deze globale variabelen tijdens
verificatie mogelijk en maakt het dus mogelijk eisen te formuleren die verwijzen
naar zowel de transities als de inhoud van toestanden. Bovendien maakt het in
sommige settings een meer natuurlijke vorm van communicatie mogelijk tussen
parallelle componenten (in vergelijking met message passing). De theorie wordt
toegepast om eisen te formuleren in FormaSig.

204

Curriculum Vitae

Mark Bouwman was born in Dordrecht, where he grew up.
After high school he moved to Leuven to study theology. The
following year he switched to the Computer Science bachelor
program at Eindhoven University of Technology. In his last
year he was also praeses/chairman of the Navigators student
association. After finishing his BSc degree he continued
at the same university with the Computer Science master
program. During his studies he showed particular interest
in information security technology, program verification and
model checking. The research for his master’s thesis was
carried out at Siemens under the supervision of dr. Bob
Janssen (Siemens) and dr.ir. Bas Luttik (TU/e). The

research focussed on both model checking and model-based testing of railway
interlocking systems.

At the invitation of Bas Luttik, Mark started as a PhD candidate at the Formal
System Analysis group in Eindhoven. His project was funded by ProRail and
DB Netz AG and focussed on developing verification technology for the European
EULYNX project. During his time as a PhD candidate Mark made several side
steps to research on global variables in process algebras, justness and efficient
term rewriting. His dissertation is titled “Supporting Railway Standardisation with
Formal Verification”.

205

List of Publications

Mark Bouwman has the following publications.

Journal Publications

• Mark Bouwman, Bas Luttik, and Tim A. C. Willemse. “Off-the-shelf auto-
mated analysis of liveness properties for just paths”. In: Acta Informatica
57.3-5 (2020), pp. 551–590. doi: 10.1007/s00236-020-00371-w

• Mark Bouwman, Djurre van der Wal, Bas Luttik, Mariëlle Stoelinga, and
Arend Rensink. “A Case in Point: Verification and Testing of a EULYNX
Interface”. In: Formal Aspects Comput. 35.1 (2023), 2:1–2:38. doi: 10.1145/
3528207

Conference Proceedings

• Mark Bouwman, Bob Janssen, and Bas Luttik. “Formal Modelling and
Verification of an Interlocking Using mCRL2”. In: Formal Methods for
Industrial Critical Systems - 24th International Conference, FMICS 2019,
Amsterdam, The Netherlands, August 30-31, 2019, Proceedings. Ed. by Kim
Guldstrand Larsen and Tim A. C. Willemse. Vol. 11687. Lecture Notes in
Computer Science. Springer, 2019, pp. 22–39. doi: 10.1007/978-3-030-

27008-7_2

• Mark Bouwman, Bas Luttik, Wouter Schols, and Tim A. C. Willemse. “A
process algebra with global variables”. In: Proceedings Combined 27th In-
ternational Workshop on Expressiveness in Concurrency and 17th Work-
shop on Structural Operational Semantics, EXPRESS/SOS 2020, and 17th
Workshop on Structural Operational Semantics, 31 August 2020. Ed. by
Ornela Dardha and Jurriaan Rot. Vol. 322. EPTCS. 2020, pp. 33–50. doi:
10.4204/EPTCS.322.5

• Mark Bouwman, Djurre van der Wal, Bas Luttik, Mariëlle Stoelinga, and
Arend Rensink. “What is the point: Formal analysis and test generation for
a railway standard”. In: 30th European Safety and Reliability Conference,
ESREL 2020 and 15th Probabilistic Safety Assessment and Management
Conference, PSAM15 2020. Research Publishing Services. 2020, pp. 921–928

• Mark Bouwman, Bas Luttik, and Djurre van der Wal. “A Formalisation of
SysML State Machines in mCRL2”. In: Formal Techniques for Distributed
Objects, Components, and Systems - 41st IFIP WG 6.1 International Con-
ference, FORTE 2021, Held as Part of the 16th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2021, Valletta,
Malta, June 14-18, 2021, Proceedings. Ed. by Kirstin Peters and Tim A. C.
Willemse. Vol. 12719. Lecture Notes in Computer Science. Springer, 2021,
pp. 42–59. doi: 10.1007/978-3-030-78089-0_3

https://doi.org/10.1007/s00236-020-00371-w
https://doi.org/10.1145/3528207
https://doi.org/10.1145/3528207
https://doi.org/10.1007/978-3-030-27008-7_2
https://doi.org/10.1007/978-3-030-27008-7_2
https://doi.org/10.4204/EPTCS.322.5
https://doi.org/10.1007/978-3-030-78089-0_3

• Mark Bouwman, Bas Luttik, and Tim A. C. Willemse. “Off-the-Shelf Auto-
mated Analysis of Liveness Properties for Just Paths - (Extended Abstract)”.
In: Formal Techniques for Distributed Objects, Components, and Systems
- 41st IFIP WG 6.1 International Conference, FORTE 2021, Held as Part
of the 16th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings.
Ed. by Kirstin Peters and Tim A. C. Willemse. Vol. 12719. Lecture Notes in
Computer Science. Springer, 2021, pp. 182–187. doi: 10.1007/978-3-030-
78089-0_11

• Mark Bouwman, Maurice Laveaux, Bas Luttik, and Tim A. C. Willemse.
“Decompositional Branching Bisimulation Minimisation of Monolithic Pro-
cesses”. In: Formal Aspects of Component Software - 18th International
Conference, FACS 2022, Virtual Event, November 10-11, 2022, Proceedings.
Ed. by Silvia Lizeth Tapia Tarifa and José Proença. Vol. 13712. Lecture
Notes in Computer Science. Springer, 2022, pp. 161–182. doi: 10.1007/978-
3-031-20872-0_10

Master Thesis

• Mark Bouwman. “A model-based test platform for rail signalling systems”.
Master’s thesis. Eindhoven University of Technology, 2019

Technical Reports (Non-Refereed)

• Mark Bouwman and Rick Erkens. “Term Rewriting Based On Set Automaton
Matching”. In: CoRR abs/2202.08687 (2022). arXiv: 2202.08687

https://doi.org/10.1007/978-3-030-78089-0_11
https://doi.org/10.1007/978-3-030-78089-0_11
https://arxiv.org/abs/2202.08687

Titles in the IPA Dissertation Series since 2020

M.A. Cano Grijalba. Session-Based
Concurrency: Between Operational and
Declarative Views. Faculty of Science
and Engineering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of
Science, Mathematics and Computer
Science, RU. 2020-02

R.A. van Rozen. Languages of
Games and Play: Automating Game
Design & Enabling Live Programming.
Faculty of Science, UvA. 2020-03

B. Changizi. Constraint-Based Analy-
sis of Business Process Models. Faculty
of Mathematics and Natural Sciences,
UL. 2020-04

N. Naus. Assisting End Users in
Workflow Systems. Faculty of Science,
UU. 2020-05

J.J.H.M. Wulms. Stability of
Geometric Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2020-06

T.S. Neele. Reductions for Parity
Games and Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2020-07

P. van den Bos. Coverage and Games
in Model-Based Testing. Faculty of Sci-
ence, RU. 2020-08

M.F.M. Sondag. Algorithms for Co-
herent Rectangular Visualizations. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2020-09

D. Frumin. Concurrent Separation
Logics for Safety, Refinement, and Se-
curity. Faculty of Science, Mathematics
and Computer Science, RU. 2021-01

A. Bentkamp. Superposition for
Higher-Order Logic. Faculty of Sci-
ences, Department of Computer Sci-
ence, VU. 2021-02

P. Derakhshanfar. Carving Infor-
mation Sources to Drive Search-based
Crash Reproduction and Test Case Gen-
eration. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2021-03

K. Aslam. Deriving Behavioral Spec-
ifications of Industrial Software Com-
ponents. Faculty of Mathematics and
Computer Science, TU/e. 2021-04

W. Silva Torres. Supporting Multi-
Domain Model Management. Faculty
of Mathematics and Computer Science,
TU/e. 2021-05

A. Fedotov. Verification Techniques
for xMAS. Faculty of Mathematics and
Computer Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled
Automated Reasoning. Faculty of
Mathematics and Computer Science,
TU/e. 2022-02

M. Safari. Correct Optimized GPU
Programs. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2022-03

M. Verano Merino. Engineering
Language-Parametric End-User Pro-
gramming Environments for DSLs. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2022-04

G.F.C. Dupont. Network Security
Monitoring in Environments where Dig-
ital and Physical Safety are Critical.
Faculty of Mathematics and Computer
Science, TU/e. 2022-05

T.M. Soethout. Banking on Do-
main Knowledge for Faster Transac-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2022-06

P. Vukmirović. Implementation of
Higher-Order Superposition. Faculty of
Sciences, Department of Computer Sci-
ence, VU. 2022-07

J. Wagemaker. Extensions of (Con-
current) Kleene Algebra. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2022-08
R. Janssen. Refinement and Partial-
ity for Model-Based Testing. Faculty
of Science, Mathematics and Computer
Science, RU. 2022-09

M. Laveaux. Accelerated Verifica-
tion of Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2022-10
S. Kochanthara. A Changing Land-
scape: On Safety & Open Source in Au-
tomated and Connected Driving. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2023-01
L.M. Ochoa Venegas. Break the
Code? Breaking Changes and Their Im-

pact on Software Evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2023-02

N. Yang. Logs and models in engineer-
ing complex embedded production soft-
ware systems. Faculty of Mathematics
and Computer Science, TU/e. 2023-03

J. Cao. An Independent Timing Anal-
ysis for Credit-Based Shaping in Ether-
net TSN. Faculty of Mathematics and
Computer Science, TU/e. 2023-04

K. Dokter. Scheduled Protocol Pro-
gramming. Faculty of Mathematics and
Natural Sciences, UL. 2023-05

J. Smits. Strategic Language Work-
bench Improvements. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2023-06

A. Arslanagić. Minimal Structures
for Program Analysis and Verification.
Faculty of Science and Engineering,
RUG. 2023-07

M.S. Bouwman. Supporting Railway
Standardisation with Formal Verifica-
tion. Faculty of Mathematics and Com-
puter Science, TU/e. 2023-08

	1 Introduction
	1.1 Formal Verification
	1.2 EULYNX
	1.3 FormaSig
	1.4 Contributions and Structure

	2 Preliminaries
	2.1 Introduction to mCRL2
	2.2 Formal Process Algebraic Definitions
	2.3 The Modal -calculus
	2.4 Tools and Workflows in mCRL2

	3 A Formalisation of SysML State Machines in mCRL2
	3.1 Introduction to SysML IBDs and State Machines
	3.2 Strategy to Formalisation
	3.3 Abstract Action Language
	3.4 Representing State Machines in mCRL2
	3.5 Preprocessing Transitions
	3.6 Step Selection
	3.7 StateMachine Process
	3.8 SysML Specific Communication
	3.9 Configuration and Automatic Translation
	3.10 EULYNX Adaptations to the mCRL2 Formalisation
	3.11 Concluding Remarks

	4 Scalability
	4.1 Adapting the Translation to Reduce the State Space
	4.2 Compositional Minimisation
	4.3 Extension to Branching Bisimilarity
	4.4 Minimisation
	4.5 Experimental Results
	4.6 Conclusion

	5 Case Studies
	5.1 Structure EULYNX Interfaces and Models
	5.2 Common Approach
	5.3 Adjacent Level Crossing Interface (SCI-LX)
	5.4 Generic Subsystem Interface
	5.5 Point Interface (SCI-P)
	5.6 Subsystem Level Crossing Interface (SCI-LC)
	5.7 Limitations and Threats to Validity
	5.8 Conclusion

	6 Verifying Liveness Requirements for Just Paths
	6.1 Justness
	6.2 Process Calculus
	6.3 Modelling Peterson's Algorithm
	6.4 Signals
	6.5 Concurrency-consistent Labelling
	6.6 Syntactic Conditions
	6.7 Expressing Liveness
	6.8 Automated Liveness Analysis in mCRL2
	6.9 Application for mCRL2 Models Derived from SysML Models
	6.10 Conclusions

	7 Global Variables in Process Algebras
	7.1 A Simple Process Algebra with Global Variables
	7.2 Behavioural Equivalences
	7.3 Extending Hennessy-Milner Logic
	7.4 Verifying HMLcheck Formulas Using Selfloops
	7.5 Relation to FormaSig
	7.6 Scoped Variables
	7.7 Related Work
	7.8 Conclusion

	8 Conclusions and Future Work
	8.1 Formal Methods in the Railway Domain
	8.2 Ideas for Future Extensions of FormaSig Tools
	8.3 Miscellaneous Ideas for Future Research Directions

	Bibliography
	Summary
	Samenvatting

