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Abstract

Cyber-physical systems consist of a mechanism interacting with the world (physical
component), which is monitored and controlled by a computational (cyber) compo-
nent. Many cyber-physical systems are safety-critical: failures or malfunctions may
have serious consequences to people’s lives or the environment. Therefore, correct
functioning of cyber-physical systems is vital.

A cyber-physical system is steered by a supervisory controller (supervisor). The
supervisor is responsible for the high-level control strategy, making sure all compo-
nents cooperate and the system properly performs its tasks. This thesis contributes to
synthesis-based engineering of supervisors. Synthesis-based engineering is centered
around the use of mathematical models. These models describe the uncontrolled system
behavior (what the system can do) and a model of the requirements (what the system
should (not) do). By applying supervisor synthesis to these models a supervisor is
algorithmically obtained. This supervisor is correct-by-construction: when the system
is steered by this supervisor, the requirements are always adhered to, and some more
desirable behavioral properties are satisfied. The modeling and synthesis framework
is called supervisory control theory.

This thesis makes several contributions to synthesis-based engineering. These con-
tributions aid the ease of use, applicability, and efficiency of supervisory control theory.
The contributions are toward three separate aspects of supervisory control theory, and
are summarized as follows:

1. Transformational approaches in supervisory control.

Typically, cyber-physical systems evolve over time. For example, a new bicycle detec-
tion sensor may be added to an existing traffic light system. As a result, the supervisor
will progress to several iterations. Consequently, algorithmic computations that are
applied to the system during synthesis-based engineering, need to be applied for each
iteration. Traditionally, the computations are repeated from scratch for each iteration.
These computations may take a long time to complete.

In the transformational approach, results from previous computations are reused in
new computations when the system evolves. For example, supervisor synthesis has been
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applied for some base system. Now, at a later point in time, the system is modified and
a variant system is created. Instead of performing supervisor synthesis from scratch
for this variant system, in the transformational approach the supervisor of the base
system is transformed into a supervisor for the variant system. Which transformation
operations need to be performed, depends on how the system has been modified. In this
thesis, transformational approaches are studied for supervisor synthesis and supervisor
localization.

2. Supervisory control for product lines.

A product line describes a collection of products that share commonalities, but also
allow variability between them. For example a coffee machine that has variants that do
or do not have the ability to pour milk or tea. There may be many possible configurations
for a product in a product line. In this thesis, we study how to apply synthesis-
based engineering for product lines. Feature models are used to represent the system’s
configurations. Behavior and requirements are modeled, and these are made dependent
on the presence of features. The resulting model is suitable for supervisor synthesis, and
the obtained supervisor can correctly control the system for all possible configurations.
Furthermore, in this work we pay special attention to the case where the system
may dynamically reconfigure, i.e., components may enter or leave the system during
runtime.

3. Efficient symbolic supervisor synthesis.

When the size of a system grows, the computational effort required for supervisor
synthesis grows exponentially. To mitigate this, the system can symbolically be rep-
resented using binary decision diagrams (BDDs), and supervisor synthesis can be
applied to this symbolic representation. Minor changes in how symbolic synthesis is
algorithmically performed, or the settings with which it is initiated, can have a major
impact on the required time and memory for the computation. In this thesis, several
approaches are studied to efficiently perform symbolic supervisor synthesis. They are:
(1) a variable ordering heuristic, that based on the model picks an order in which the
variables appear in the BDD, to reduce the BDD size and therefore the required mem-
ory; (2) an edge ordering heuristic, that picks an order in which the edges are evaluated
during synthesis to reduce the computation time; and (3) an algorithm that efficiently
applies state exclusion requirements by restricting transitions prior to synthesis. The
methods are supported by elaborate experimental evaluation.



Samenvatting

Cyber-fysieke systemen bestaan uit een mechanisme dat in wisselwerking staat met
de wereld (fysiek component), dat wordt gecontroleerd en bestuurd door een com-
putationeel (cyber) component. Veel cyber-fysieke systemen zijn veiligheidskritisch:
storingen kunnen ernstige gevolgen hebben voor het leven van mensen of voor het
milieu. Daarom is correcte werking van cyber-fysieke systemen van vitaal belang.

Een cyber-fysiek systeem wordt aangestuurd door een supervisor. De supervisor
is verantwoordelijk voor de hoog niveau controlestrategie en zorgt ervoor dat alle
componenten samenwerken en het systeem zijn taken naar behoren uitvoert. Dit proef-
schrift draagt bij aan de op synthese gebaseerde ontwikkeling van supervisors. Op
synthese gebaseerde ontwikkeling draait om het gebruik van wiskundige modellen.
Deze modellen beschrijven het ongecontroleerde gedrag (wat het systeem kan doen)
en gedragseisen (wat het systeem (niet) mag doen). Door supervisor synthese toe te
passen op deze modellen, wordt een supervisor algoritmisch verkregen. Wanneer het
systeem door deze supervisor wordt aangestuurd, wordt altijd aan de eisen voldaan
en ook aan een aantal overige wenselijke gedragseigenschappen wordt voldaan. Het
wiskundige raamwerk voor modellering en synthese wordt supervisory control theorie
genoemd.

Dit proefschrift levert verscheidene bijdragen aan synthese gebaseerde engineering.
Deze bijdragen bevorderen het gebruiksgemak, de toepasbaarheid, en de efficiëntie
van supervisory control theorie. De bijdragen hebben betrekking op drie afzonderlijke
aspecten van de theorie en zijn als volgt samengevat:

1. Transformationele aanpakken in supervisory control theorie.

Doorgaans evolueren cyber-fysieke systemen in de loop van tijd. Denk bijvoorbeeld
aan een nieuwe detectiesensor voor fietsen die toegevoegd wordt aan een bestaand stop-
lichtensysteem. Dit betekent dat de supervisor meerdere iteraties doorloopt. Als gevolg
moeten algoritmische berekeningen voor elke iteratie opnieuw worden toegepast. Deze
berekeningen kunnen lang duren en traditioneel worden ze voor elke iteratie helemaal
opnieuw uitgevoerd.

In de transformationele aanpak worden resultaten van eerdere berekeningen herge-
bruikt in nieuwe berekeningen wanneer het systeem evolueert. Bijvoorbeeld, supervisor
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synthese is toegepast voor een bepaald basis systeem. Op een later tijdstip wordt het
systeem aangepast en ontstaat er een variant systeem. In plaats van supervisor synthese
helemaal opnieuw uit te voeren voor dit variant systeem, wordt in de transformationele
aanpak de supervisor van het basis systeem getransformeerd in een supervisor voor het
variant systeem, afhankelijk van hoe het systeem is aangepast. In dit proefschrift wor-
den transformationele aanpakken bestudeerd voor supervisor synthese en supervisor
lokalisatie.

2. Supervisory control voor productlijnen.

Een productlijn beschrijft een verzameling producten die gemeenschappelijke ken-
merken hebben, maar waartussen ook variatie mogelijk is. Bijvoorbeeld een koffiema-
chine waar varianten van bestaan die wel of niet thee of melk kunnen schenken.
Er kunnen veel mogelijke configuraties zijn voor een product in een productlijn. In
dit proefschrift bestuderen we hoe op synthese gebaseerde ontwikkeling kan worden
toegepast op productlijnen. Feature modellen worden gebruikt om de configuraties in
de productlijn te representeren. Gedrag en eisen worden gemodelleerd en afhankelijk
gemaakt van de aanwezigheid van componenten. Het resulterende model is geschikt
voor supervisor synthese en de verkregen supervisor kan het systeem correct besturen
voor alle mogelijke configuraties. Bovendien besteden we in dit werk speciale aandacht
aan het geval waarin het systeem dynamisch kan herconfigureren, dat willen zeggen
dat componenten tijdens runtime het systeem kunnen binnenkomen of verlaten.

3. Efficiënte symbolische supervisor synthese.

Wanneer de omvang van een systeem groeit, neemt de rekenkracht die nodig is voor
supervisor synthese exponentieel toe. Om hiermee om te gaan, kan het systeem symbo-
lisch worden gerepresenteerd met behulp van binaire beslissingsdiagrammen (Engels:
binary decision diagrams, BDDs) en kan supervisor synthese worden toegepast op
deze symbolische representatie. Kleine veranderingen in de manier waarop het sym-
bolische synthese algoritme wordt uitgevoerd, of in de instellingen waarmee het wordt
geı̈nitieerd, kunnen van grote invloed zijn op de benodigde rekentijd en geheugen. In
dit proefschrift worden verschillende benaderingen bestudeerd om symbolische super-
visor synthese efficiënt uit te voeren. Dit zijn: (1) een variabele ordeningsheuristiek, die
op basis van het model een volgorde kiest waarin de variabelen in de BDD verschijnen,
om de BDD-grootte en dus het vereiste geheugen te verkleinen; (2) een transitie or-
deningsheuristiek, die een volgorde kiest waarin transities tijdens synthese worden
geëvalueerd om de rekentijd te verkorten; en (3) een algoritme dat op efficiënte wijze
situatie-uitsluitingseisen toepast door transities voorafgaand aan synthese te beperken.
De methodes worden ondersteund door uitgebreide experimentele evaluatie.
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Chapter 1
Introduction

This thesis is placed in the context of cyber-physical systems engineering, which we
discuss first in this introductory chapter. We explain several engineering approaches
and introduce supervisory control theory, which is the theoretical framework this thesis
is based on. Research questions are posed in the subsequent section. The contributions
of this thesis, that tackle the research questions, are discussed next. Finally in this
chapter, a short outline of the thesis is presented.

1.1 Engineering of cyber-physical systems

A cyber-physical system consists of a mechanism interacting with the world (physical
component), which is monitored and controlled by a computational (cyber) component.
Cyber-physical systems can be found in nearly all industrial sectors. Some examples
are:

1. Medical systems, for example the Preceyes’ surgical robot used for eye operations
(de Smet et al. 2018), or Philips Medical System’s MRI scanner (Theunissen et al.
2014);

2. Manufacturing systems, for example ASML’s lithography machine used in semi-
conductor manufacturing (van der Sanden et al. 2015), a lithium-ion battery man-
ufacturing system (Liu et al. 2021), or a pick-and-place robot used in PCB manu-
facturing as displayed in Figure 1.1;

3. Infrastructural systems, for example the Algera complex that consists of a waterway
lock and movable bridge (Reijnen et al. 2020), or the Eerste Heienoord tunnel
(Moormann et al. 2020);

4. Distribution systems, for example autonomous vehicles in a warehouse (D'Andrea
and Wurman 2008; Basile et al. 2019);

5. Agricultural systems, for example MIT’s distributed robot garden (Correll et al.
2009), or a greenhouse with automated environment control (Yoo et al. 2007);

1



2 1 Introduction

Figure 1.1: Example of a cyber-physical system: A pick-and-place robot is taking a
picture of a tray to locate the slot in which it is about to place the electronic component
it is holding. Picture taken by Sander Thuijsman in 2017 at Applied Micro Electronics
“AME” BV, Eindhoven, The Netherlands.

6. Transportation systems, for example automated driving systems in cars (Selvaraj
et al. 2022), or control systems in airplanes (Demirci 2021);

7. Energy systems, for example power distribution (Li et al. 2019), or power conver-
sion (Guerin et al. 2012).

Many of these systems can be considered safety-critical: a failure or malfunction may
lead to death, serious injury, environmental harm, or damages to property. Therefore,
the correct functioning of cyber-physical systems is vital.

1.1.1 Engineering approaches

There are several layers in the control structure of a cyber-physical system, as is
schematically presented in Figure 1.2. On the lowest level are the mechanical compo-
nents. These mechanical components are typically steered by actuators and monitored
by sensors. A low-level controller directly manages the actuation and sensing signal,
and can perform tasks like trajectory tracking or signal processing. The supervisory
controller (supervisor) steers the low-level controllers and receives information from
them. The supervisor is responsible for the high-level control strategy, making sure all
components cooperate and the system properly performs its tasks.

While not depicted in Figure 1.2, also the supervisory control layer may be dis-
tributed over a set of supervisors, and there may be hierarchy within each layer.

Each layer shown in Figure 1.2 has its own design approaches. In this work, we
focus on the design of supervisory controllers. Traditionally, supervisory controller
design is performed as depicted in Figure 1.3(a). Essentially, controllers are first
specified in documents. These documents state functional and safety requirements,
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Mechanical component ...

Supervisory controller

Low-level controller

Actuator Sensor

... ...

.. .. .. .. .. ....

Figure 1.2: Control architecture of a cyber-physical system.
Drawing inspired from Fokkink et al. (2023).

and which signals the supervisor should actuate, depending on the sensor signals.
Through programming, the controller is manually implemented on a physical system.
Finally, the implementation is verified and validated by means of testing, to ensure the
requirements are adhered to. When at the implementation stage something is revealed
to not work, this is often a fault in the design documents, which then have to be updated.

There are several downsides to this traditional approach of engineering. Some
examples are: (1) It is difficult to write down requirements in a (textual) document,
often these requirements can be interpreted in multiple ways. Also, (2) frequently the set
of requirements is inconsistent or incomplete. For example, not all possible hardware
failures are taken into account. (3) Cyber-physical systems are designed by multi-
disciplinary teams. Engineers from different domains use different technical languages.
A software engineer making the controller implementation may not always understand
the requirements constructed by system engineers. (4) When the implementation is
updated, the design documentation may not be amended at the same time, leading to
outdated documentation. Finally, (5) verification and validation can only be performed
once the controller is implemented. Mistakes or improvement areas are only discovered
late during the engineering process. These downsides make traditional engineering of
supervisory controllers a labor-intensive and error-prone process, particularly for large
or complex systems.

Essentially, many of the downsides of traditional engineering arise from the large gap
between the specification and implementation. By applying model-based engineering,
this gap is bridged by using models, as depicted in Figure 1.3(b). As an intermediate
step between specification and implementation, a mathematical model of the controller
is made. This model unambiguously specifies how the controller acts in every situation.
The model can be used for verification and validation. Once a satisfactory model is
obtained, it can be implemented. This can be done through manual implementation,
or, since it is now known how the controller should act in every situation, code
for the controller can be generated automatically. Many of the downsides mentioned



4 1 Introduction

Design documents

Requirements

Controller design

Implementation of
the controller

Manual implementation

Verification and validation

Feedback

(a) Traditional engineering.

Controller model

Manual 
modeling Implementation of

the controller

Manual
implementation or

code generation
Design documents

Requirements

Controller design

Verification and validation

Feedback Feedback

(b) Model-based engineering.

Model-based 
specification

Model of  
uncontrolled system

Model of control
requirements

Controller model Implementation of
the controller

Manual
implementation or

code generation

Verification and validation

Supervisor 
synthesis

Feedback Feedback

(c) Synthesis-based engineering.

Figure 1.3: Engineering approaches for supervisory controller development.
Drawings are strongly inspired from: https://eclipse.org/escet/v0.9/
cif/synthesis-based-engineering/approaches/index.html.

for traditional engineering are addressed using model-based engineering. Up-to-date
models can act as a single source of truth, and therefore aid in the communication
between engineers. These models also force engineers to specify how the system
should act in every situation. Verification and validation can now be performed earlier
in the engineering process using the models, making model-based engineering more
efficient than traditional engineering. Nevertheless, model-based engineering still has
its downsides: (1) There is little traceability between the model and documents. It
can be unclear why certain parts of the model are as they are. This makes it difficult
to know how to update the model when the system requirements change. Also, (2)
the documentation might still be ambiguous or wrongly translated to the controller
model, or (3) become out of date with respect to the model. Finally, (4) when faults are
recognized in verification and validation, it may be unclear how to update the model
to address the issue.

Figure 1.3(c) shows the synthesis-based engineering approach. Just like model-
based engineering, a mathematical controller model is at the core of synthesis-based

https://eclipse.org/escet/v0.9/cif/synthesis-based-engineering/approaches/index.html
https://eclipse.org/escet/v0.9/cif/synthesis-based-engineering/approaches/index.html
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engineering. However, in the synthesis-based approach the controller model is not
manually constructed. Instead, a model is made of the uncontrolled system (what
the system can do) and a model is made of requirements (what the system should
(not) do). By applying supervisor synthesis to these models, a control strategy is
algorithmically obtained. The supervisory controller that results from synthesis is
correct-by-construction: the specified requirements are always adhered to. Essentially,
the model-based specification is the single source of truth, replacing the text-based
documentation of the previous engineering approaches. The controller model can
easily be kept up to date since it can be derived automatically. Using mathematical
models rather than textual documents removes ambiguity from the specification. By
applying supervisor synthesis, the error-prone and time-consuming task of manual
control design is avoided, and replaced by structured design of formal models, thereby
leading to controllers for which we can give much better guarantees on their correct
functioning.

After obtaining the supervisor model, and verifying and validating its functioning,
further analysis can be performed to optimize the behavior. E.g., to produce products
as quickly as possible. See Ghallab et al. (2016); Ware and Su (2016); van Putten et al.
(2020); and Vilela and Hill (2022) for some examples. There are various methods to
go from a supervisor model to a deployed supervisory controller in a cyber-physical
system. We refer to Fabian and Hellgren (1998); de Queiroz and Cury (2002); Reijnen
et al. (2021); and Thuijsman et al. (2023b) for some examples.

Despite many use cases in literature showcasing the benefits of synthesis-based
engineering, e.g., in Forschelen et al. (2012); Theunissen et al. (2014); van der Sanden
et al. (2015); Korssen et al. (2018); Basile et al. (2019); Reijnen et al. (2020); Moormann
et al. (2020); and Selvaraj et al. (2022), industrial acceptance of supervisory control
theory is still scarce. Cao et al. (2002) and Wonham et al. (2018) point to a lack of
experience among engineers with applying the supervisory control framework, lack of
software suitable for industry, and poor algorithmic scalability when considering large
systems as reasons for the scarcity of industrial acceptance.

1.1.2 Supervisory control theory

Supervisory control theory, also named the Ramadge-Wonham framework as a result of
its introduction in Ramadge and Wonham (1987, 1989), is the mathematical framework
that the models and algorithms of synthesis-based engineering are based on. In this
section, we give a high-level overview of supervisory control theory.

For the design of supervisory controllers, certain details about how actions are per-
formed, e.g., implementation details of low-level controllers, are inessential. Therefore,
for the purpose of designing the supervisory controller, the system can be abstractly
viewed as a discrete-event system. In a discrete-event system, the possible states of
the system are described by a countable set, and transitions between these states are
instantaneous. These transitions can be associated with events that indicate behavior



6 1 Introduction

or actions in the system that change the state. States, events, and transitions can be
modeled using automata.

In Figure 1.4, a graphical representation of an automaton is given, that models the
gripper of the pick-and-place robot of Figure 1.1. States are drawn by circles, with their
name in them, and transitions are drawn by arrows, with an event label displayed next
to them. Initially, the gripper is in state Open, shown by the dangling incoming arrow.
Event close can occur, upon which the automaton goes to the Closing state. Even-
tually, the gripper finishes moving (finished moving), and the automaton transitions to
state Closed.

Open

Opening

Closing

Closed

close
finished moving

open
finished moving

Figure 1.4: Gripper automaton for pick-and-place robot.

A point of importance in supervisory control theory is the controllability of events.
The supervisory controller can restrict when the gripper is allowed to close, so event
close is controllable. In the automaton drawing in Figure 1.4 we display this using
a solid arrow for the transition labeled by close. However, after this command is
performed, the supervisory controller has no influence on when the gripper actually
finishes the action. Finishing of the action occurs when the force sensor notices the
item has been picked, and the low-level controller stops powering the gripper. The
supervisory controller is only notified about this event, but cannot restrict it from
occurring, therefore finished moving is an uncontrollable event. In the automaton
drawing in Figure 1.4 we display this using a dashed arrow for the transitions labeled
by finished moving.

Another essential factor in supervisory control theory is the marking of states.
Marked states are also often called accepting, final, or desired states in literature.
A marked state typically indicates a situation in which the system is stable or has
finished a task. For the gripper of the pick-and-place robot, state Open is a marked
state because in this state the gripper is ready to grab another component. Graphically,
this is displayed in Figure 1.4 by using a double circle for this state.

In supervisory control theory, two models are made for a system. The first is a model
of the uncontrolled system, also called plant, which contains all possible behavior that
the system can do, even if some of that behavior is undesirable, e.g., would result
in collisions. The second model is a requirements specification, that defines what
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behavior is desirable, and what behavior is undesirable. For example, for the pick-and-
place robot we can model the gripper using the states mentioned above, and also the
robot arm that can move between positions. In the uncontrolled system, the gripper
and robot arm may move independently from each other. As a requirement, we can
specify that the robot arm is only allowed to move away from the picking position after
the gripper has finished moving.

By performing supervisor synthesis on the plant and requirement models, a su-
pervisor model is obtained. By construction, some desirable behavioral properties are
satisfied when this supervisor steers the system, which are: safety, nonblockingness,
controllability, and maximal permissiveness. Safety indicates that the requirements
are always adhered to. Nonblockingness indicates that the system can always go to a
marked state. Controllability indicates that the supervisor only restricts controllable
events from occurring, and uncontrollable events can always take place as is the case
in the plant. Maximal permissiveness indicates that the supervisor restricts no more
behavior than strictly necessary to satisfy safety, controllability, and maximal permis-
siveness, i.e., the supervisor never unnecessarily disallows an event from occurring.

1.2 Research questions

The following research questions are addressed in this thesis. The aim of answering the
questions is to improve ease of use, applicability, and efficiency in supervisory control
theory.

Research question 1

Lehman (1996) has defined the laws of software evolution. These describe what changes
typically occur during a software’s lifetime. The laws themselves have evolved over
the years, but the law of continuing change has consistently been a part of them.
This law states that software controlling a cyber-physical system must continually be
adapted, otherwise its functioning becomes progressively less satisfactory. In other
words, systems evolve over time. An example of a system that evolves over time could
be an existing traffic light system to which a new bicycle detection sensor is added.

Conventionally, supervisory control theory starts from a clean sheet. Information
from previous iterations in the controller’s lifetime is not used. In this thesis it is
investigated how to make use of the information from these previous instances, to
address the following question:

How can supervisory control theory be efficiently applied to systems that evolve
over time?
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Research question 2

Modern-day companies often do not design just a product, they design a product line.
This is a set of products that share a lot of commonalities, but also allow variability
between them. For example, when you buy a certain type of coffee machine, there may
be many optional components, like the ability to pour milk or tea. As a result, a system
may have many possible unique configurations, each of which needs to be correctly
controlled. Furthermore, in some circumstances the configuration may dynamically
change during runtime, e.g., the component that pours milk is installed on a coffee
machine that is already deployed. It is unrealistic to design supervisors one by one for
all product configurations in a large product family, especially when these also need
to deal with reconfiguration between these configurations. This leads to the following
research question:

How can supervisory control theory be efficiently applied to a product family with
dynamic reconfiguration?

Research question 3

When the size of a system grows, the computational effort required for supervisor syn-
thesis grows exponentially. A way to mitigate this, is by symbolically representing the
models using binary decision diagrams (BDDs), and performing supervisor synthesis
on this symbolic representation. As a result, symbolic supervisor synthesis can deal
with much larger systems than conventional non-symbolic synthesis. Nevertheless, mi-
nor changes in how the synthesis algorithm is performed, and the settings with which
it is initiated, can have a major impact on the amount of time and memory required to
perform synthesis. Since the scalability of synthesis is a major hurdle in its industrial
acceptance, it is of practical benefit to seek ways to reduce its computational effort,
which leads to the following research question:

How can BDDs be efficiently applied in symbolic supervisor synthesis in order to
reduce the computational effort?

1.3 Contributions

This thesis has the following main contributions. These contributions address the above
research questions in respective order.
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Contribution 1: Transformational approaches in supervisory control

For two algorithms that are common in supervisory control theory, transformational
approaches are investigated. The idea is to reuse results from a previous computation to
more efficiently produce the new output, rather than performing the new computation
completely from scratch.

In this setup, it is assumed that some algorithm (e.g., supervisor synthesis) has
already been performed for a base system. Now, at a later point in time, the base
system is modified and a variant system is created. Consequently, the result obtained
for the base system (e.g., a supervisor), may not be valid anymore for the variant system.
Instead of performing the same algorithm for the variant system, a transformational
version of the algorithm can be used, that uses the result of the base system as a starting
point. We prove that the transformational versions of the algorithms produce the same
results as the conventional versions of the algorithms.

In this thesis a transformational supervisor synthesis algorithm and a transfor-
mational supervisor localization algorithm are discussed. Supervisor localization is
an algorithmic approach to divide a single (large) supervisor automaton into several
smaller supervisor automata, to obtain a behaviorally equivalent decomposed control
structure.

The purpose of the transformational algorithms is to reduce the computation time
relative to their basic version. By means of experiments on industrial systems, the
computational benefit is evaluated.

In Figure 1.5 a sketch is provided that shows how the contributed approach compares
to the conventional method. In the conventional method, we see that a car is modeled
and on which a computation, e.g., supervisor synthesis, is applied. The car evolves over
time, we see that first an (actively controlled) spoiler is added, and later also a headlight.
Conventionally, the entire computation is repeated from scratch every time. By using
a transformational method, the output from the previous computation is reused and
transformed to more efficiently obtain the output for the adapted instances of the car.

(a) Conventional. (b) Contribution.

Figure 1.5: Contribution 1: Instead of starting each computation from scratch every
time a system is updated, in the transformational approach previous results are used in
new computations.
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Contribution 2: Supervisory control for product lines

A framework for engineering supervisory controllers for product lines with dynamic
feature configuration is presented. The approach consists of the following steps:

1. Modeling a product line using a feature model. A feature model defines which
combinations of features are considered valid product configurations in a product
line.

2. Representing the feature model in extended finite automata. This is prerequisite,
because we apply supervisory controller synthesis that is based on automata spec-
ifications.

3. Capturing dynamic configuration of features in the models. We pay special at-
tention to the situation where features might enter or leave the system during
runtime.

4. Modeling uncontrolled system behavior such that it properly takes the current
configuration into account. A component-wise specification of the system behavior
is made, where the component behavior is linked to the presence of features in the
configuration.

5. Modeling behavioral requirements depending on the presence of features. The
requirements of the behavior are dependent on the current configuration. Addi-
tionally, different requirements may apply when the system is in a transitional
phase between valid configurations.

6. Applying supervisory controller synthesis. A correct-by-construction supervisory
controller is obtained from the developed models. It can control all configurations
in the product line, as well as dynamic reconfiguration between those.

The framework is demonstrated by an industrial use case.
Figure 1.6 sketches how this contribution compares to the conventional method.

There is a product line that contains many unique configurations of a car. Conven-
tionally, the synthesis-based engineering approach needs to be performed for each
instance. Using the contribution, the product line can be specified in one model, and

(a) Conventional. (b) Contribution.

Figure 1.6: Contribution 2: Instead of designing controllers one by one, a supervisor
is obtained that can control an entire product line.
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synthesis is only performed once. Furthermore, dynamic configuration is possible, so
the supervisory controller can deal with the situation that, e.g., a headlight is added
to a car that is already deployed. Note that in this case all possible configurations are
known a priori, which is a different assumption as is made in Contribution 1, where
the system’s instances are not know beforehand.

Contribution 3: Reducing the computational effort of symbolic
supervisor synthesis

Two BDD-based metrics are introduced that express the computational effort of a
symbolic supervisor synthesis in a deterministic and platform-independent way. These
metrics can be used to analyze the efficiency of the synthesis algorithm. Based on
this analysis, modifications can be made to the way the BDDs are handled during
synthesis, improving the synthesis efficiency. In this thesis the following three methods
are discussed that reduce the computational effort of symbolic supervisor synthesis:

1. The BDD size is heavily dependent on the variable order (the order in which
the variables appear when traversing the BDD from top to bottom). A variable
ordering heuristic algorithm is introduced that finds a variable order for which low
computational effort is expected.

2. The order in which edges are analyzed impacts the computational effort of synthe-
sis. Some edge ordering heuristics are analyzed. The edge ordering heuristic that
performs best on average is recommended.

3. One may specify a requirement that reaching a particular set of states is not
allowed. A method is introduced that efficiently enforces such requirements during
synthesis.

All methods are supported by extensive experimentation using a variety of models
from literature.

Figure 1.7 provides a sketch that presents the contribution. During synthesis, the
system is symbolically represented as a BDD: the tree-like structure in the middle
of Figures 1.7(a) and 1.7(b). By applying the proposed techniques, the BDD size is
smaller, indicating that supervisor synthesis is now more efficient.

(a) Conventional. (b) Contribution.

Figure 1.7: Contribution 3: Efficiency of symbolic supervisor synthesis is improved by
reducing BDD sizes.
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1.4 Thesis outline

The above contributions are discussed in the following chapters. Transformational
supervisor synthesis and transformational supervisor localization are respectively dis-
cussed in Chapters 2 and 3. To improve readability, the (elaborate) proofs for trans-
formational supervisor synthesis are placed in the appendix at the end of this thesis.
Supervisory control for product lines is studied in Chapter 4. In Chapter 5 the reduc-
tion of computational effort of symbolic supervisor synthesis is investigated. Finally,
conclusions are provided in Chapter 6.

Since each chapter uses mathematical definitions relevant for that part of the re-
search, mathematical preliminaries are provided separately for each chapter. For in-
stance, Chapters 2 and 3 use finite state automata as a mathematical framework, as
they are easy to understand and very commonly used in supervisory control theory.
In Chapters 4 and 5, extended finite state automata are used, which are finite state
automata augmented with variables, because the use of the variables is required for the
methods described in those chapters.

Each chapter is strongly based on a scientific journal paper, to which we refer in a
footnote on the first page of the chapter. Minor modifications are made to fit the paper
in this thesis’ format, but otherwise the contents are kept consistent.



Chapter 2
Transformational supervisor

synthesis

Abstract Supervisory controller synthesis is a means to compute correct-by-
construction controllers for discrete-event systems. As these systems and their re-
quirements evolve over time, an updated supervisor needs to be computed each time
an adaptation takes place. We consider the case that a supervisor has been synthesized
for a given model, after which this model is (slightly) adapted. We investigate if we
can make use of the previous synthesis result, in order to more efficiently compute the
supervisor for the adapted model. We introduce model deltas as a means to describe
the difference between pairs of models. Using the model deltas, a notion of atomic
adaptations is introduced. For these atomic adaptations, algorithms are provided to
compute the supervisor for the adapted model in a transformational manner from the
previous synthesis result, rather than performing a completely new synthesis. These
atomic adaptations can be iterated over, to transformationally compute a supervisor
for model deltas that contain a number of atomic adaptations. To improve efficiency,
it is shown how atomic adaptations can be grouped together based on their required
computations and be processed at the same time. A running example is used to support
the explanations on the functioning of the algorithms. The efficiency of the method is
evaluated by means of both an academic and an industrial use case. Unfortunately these
experiments point out that the transformational approach is less efficient than basic
supervisor synthesis, and therefore the transformational approach is not recommended.

2.1 Introduction

Supervisory control theory, as introduced by Ramadge and Wonham (1987, 1989), is
a model-based approach to control discrete-event (dynamic) systems. Given a plant

This chapter is strongly based on: Thuijsman, Sander B.; Reniers, Michel A.: Transformational
supervisor synthesis for evolving systems. In: Discrete Event Dynamic Systems 32 (2022), Nr. 2, p.
317–358. Springer Science and Business Media LLC. – URL https://doi.org/10.1007/
s10626-021-00354-0. – Note: A Correction to this article is in press, this chapter contains the
corrected results.
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model (that defines all possible system behavior) and a requirement specification
(which defines what plant behavior is allowed), a supervisor can be computed algorith-
mically (synthesized) that restricts the plant’s behavior so that it is in accordance with
the requirements. Depending on the synthesis algorithm, the supervised system has
some useful properties, such as safety, nonblockingness, controllability and maximal
permissiveness. The benefit of supervisory control theory has been shown in literature
for varying fields of industry. Some examples where it is applied to controller design
are; A patient support table of a magnetic resonance imaging scanner in Theunissen
et al. (2014), chemical process control in Rawlings et al. (2014), lithography machines
in van der Sanden et al. (2015), a waterway lock and movable bridge combination in
Reijnen et al. (2020), construction robotics in Rosa et al. (2020), and tactical planning
for automated vehicles in Krook et al. (2020). Despite the advantages of applying this
technique, and the examples thereof shown in case studies, industrial acceptance is
still scarce compared to other topics of control theory. Wonham et al. (2018) point to
the state space explosion as one of the barriers to industrial acceptance. When the
size of the system grows, the time and space (memory) required for synthesis grows
exponentially.

We consider the situation sketched in Figure 2.1; A supervisor has been synthesized
for a particular specification of plant and requirements. Later, a (slight) adaptation
is made to the specification, so that we are going to need a new supervisor. In state
of practice, a completely new synthesis would be performed on the adapted model.
We investigate how to reuse the initial model and synthesis result, in order to more
efficiently synthesize a new supervisor, while the supervisor’s desired properties are
retained.

The reuse of artifacts during (software) development is considered in (software)
Product Line Engineering (PLE). Pohl et al. (2005) define: ‘Software product line
engineering is a paradigm to develop software applications using platforms and mass
customisation.’ By reusing domain artifacts and exploiting product line variability,
companies can employ PLE to increase product individualization, reduce development
costs, reduce time-to-market, and enhance product quality. Pohl et al. (2005) point to
model-based software development as an ideal candidate for employing PLE.
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Figure 2.1: Schematic overview synthesis for evolving system.
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Within the context of PLE, Schaefer et al. (2012) characterize Delta Modeling as a
modular approach to model the variability of a system using transformations. A model
delta explicitly specifies an adaptation that can be applied to some base model, in order
to form a variant model. A particular variant model can be obtained by selecting one
or more model deltas and applying them to the base model one-by-one.

Regarding adaptations that are made to software over time, Lehman (1996) has
defined the laws of software evolution; these describe what changes typically occur
during a software’s lifetime. The laws themselves have evolved over the years, but the
law of continuing change has consistently been a part of them. This law states that
software controlling a cyber-physical system must continually be adapted, otherwise
its functioning becomes progressively less satisfactory.

In this chapter, we elaborate on a Transformational Supervisor Synthesis (TSS)
method. This type of synthesis uses a base model, its synthesis result and model delta
to obtain a supervisor. This supervisor is the same as the would-be supervisor if a
completely new synthesis was performed for the variant model, which is defined by
the base model and model delta. Note that in this problem statement the model delta is
unknown before performing synthesis on the base model. This is a realistic constraint,
following from Lehman’s law of continuing change, as well as in the case of iterative
and incremental development (Larman and Basili 2003), where system and requirement
definitions are adapted during controller development. We introduce a supervisor
synthesis algorithm that outputs relevant data that can be used for TSS. We present a
notion for model delta, which defines adaptations made between two models, and use
this notion to identify atomic adaptations, that are the smallest possible model deltas.
For different types of atomic adaptations, we provide TSS algorithms that use the result
from a previous synthesis to transformationally compute a supervisor. We show how
we can iterate over these atomic adaptations to transformationally obtain a supervisor
when multiple atomic adaptations specify the difference between any base and variant
model. To improve the efficiency, we will then present an algorithm that groups atomic
adaptations together based on their required computations and processes them at the
same time. These algorithms are then first applied in an academic experiment in order
to analyze their effectiveness. Next, an industrial case study is presented for evolution
of a controller that is used in lithography machines. Finally, conclusions are provided
based on these results.

Related work:

This work is based on, and can be seen as an extension to, Thuijsman and Reniers
(2020), where the TSS method was first introduced. The extension we present here
includes more elaborate examples and explanations, an additional industrial case study,
as well as theorems and their accompanying proofs. The algorithms we present here
have been updated with respect to Thuijsman and Reniers (2020), some modifications
were made on account of obtaining correct results, others for the sake of improving
computational efficiency. Tijsse Claase (2020) is also closely related, in which a first
attempt of applying TSS to symbolic supervisor synthesis is made, where binary
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decision diagrams are used to represent the system for efficient supervisor synthesis
(Fei et al. 2014).

Within the research area of discrete-event systems, PLE is mostly considered in
the topic of formal verification or model checking. For example, efficient verification
of linear-time temporal logic for variability-intensive systems in Classen et al. (2010)
or feature-oriented modular verification of software product lines in ter Beek and
de Vink (2014). Khan (2013) investigates evolving Algebraic Petri Nets, how to perform
verification on the parts of the system that are affected by the property that is analyzed,
and how to identify evolutions that require verification. In ter Beek et al. (2016) and
Reniers and Thuijsman (2020), PLE has been applied in supervisory control. In these
works a supervisory controller is synthesized for all possible product configurations
given by a feature model. The output is one controller with multiple initial locations,
where each initial location corresponds to a product configuration. In Reniers and
Thuijsman (2020), runtime evolution of the system behavior over the configurations is
studied. In contrast to this work, we do not assume a priori knowledge of the possible
system configurations and the evolution takes place at design time.

2.2 Preliminaries

We consider finite state automaton 𝐴 defined as a 5-tuple: 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚),
where 𝑋 is the finite set of states, of which 𝑋0 ⊆ 𝑋 is the set of initial states and 𝑋𝑚 ⊆ 𝑋

is the set of marked states. Σ is the finite set of events, also called the alphabet, which
is partitioned into sets of controllable and uncontrollable events, respectively Σ𝑐 and
Σ𝑢. Σ∗ denotes all possible finite strings using events in Σ. −→ is the finite set of
transitions, a transition is a 3-tuple: (𝑥or, 𝜎, 𝑥tar) ∈ 𝑋 × Σ × 𝑋 , specifying a transition
from origin state 𝑥or to target state 𝑥tar over event 𝜎. We denote the existence of a
transition (𝑥or, 𝜎, 𝑥tar) ∈−→ by: 𝑥or

𝜎−−→ 𝑥tar. Likewise, the existence of a sequence of
transitions over intermediate states can be addressed by: 𝑥or

𝑠−−→ 𝑥tar, for 𝑠 ∈ Σ∗.
The synchronous product of automata 𝐴1 = (𝑋1, Σ1,−→1, 𝑋0,1, 𝑋𝑚,1) and 𝐴2 =

(𝑋2, Σ2,−→2, 𝑋0,2, 𝑋𝑚,2) is defined as: 𝐴1 | |𝐴2 = (𝑋1 × 𝑋2, Σ1 ∪ Σ2,−→12, 𝑋0,1 ×
𝑋0,2, 𝑋𝑚,1 × 𝑋𝑚,2), where −→12 is constructed by:

((𝑥or,1, 𝑥or,2), 𝜎, (𝑥tar,1, 𝑥tar,2)) ∈−→12,

if 𝜎 ∈ Σ1 ∩ Σ2, 𝑥or,1
𝜎−−→1 𝑥tar,1, 𝑥or,2

𝜎−−→2 𝑥tar,2

((𝑥or,1, 𝑥2), 𝜎, (𝑥tar,1, 𝑥2)) ∈−→12,

if 𝜎 ∈ Σ1 \ Σ2, 𝑥or,1
𝜎−−→1 𝑥tar,1

((𝑥1, 𝑥or,2), 𝜎, (𝑥1, 𝑥tar,2)) ∈−→12,

if 𝜎 ∈ Σ2 \ Σ1, 𝑥or,2
𝜎−−→2 𝑥tar,2

(2.1)
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For a given automaton 𝐴, we apply supervisor synthesis to generate a supervisor
subautomaton 𝑆 of 𝐴 that is reachable, coreachable, controllable, and maximally
permissive.

An automaton 𝑆 = (𝑌, Σ𝑆 ,−→𝑆 , 𝑌0, 𝑌𝑚) is a subautomaton of 𝐴 = (𝑋, Σ,−→
, 𝑋0, 𝑋𝑚) if 𝑌 ⊆ 𝑋 , Σ𝑆 = Σ, −→𝑆 ⊆−→, 𝑌0 ⊆ 𝑋0, and 𝑌𝑚 ⊆ 𝑋𝑚. In this work, the
subautomata we encounter are restricted to −→𝑆 =−→∩(𝑌 × Σ ×𝑌 ), 𝑌0 = 𝑌 ∩ 𝑋0, and
𝑌𝑚 = 𝑌 ∩ 𝑋𝑚.

A state 𝑥𝑟 ∈ 𝑋 is reachable if it can be reached from some initial state; 𝑥0
𝑠−−→ 𝑥𝑟 for

some 𝑥0 ∈ 𝑋0, 𝑠 ∈ Σ∗. A state 𝑥𝑐𝑟 ∈ 𝑋 is coreachable if from it a marked state can be
reached; 𝑥𝑐𝑟

𝑠−−→ 𝑥𝑚 for some 𝑥𝑚 ∈ 𝑋𝑚, 𝑠 ∈ Σ∗. Supervisor automaton 𝑆 is called (co-)
reachable for plant automaton 𝐴, if all its states can be defined as such. An automaton
for which all reachable states are coreachable is commonly called nonblocking in
literature. We say that for automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), supervisor automaton
𝑆 = (𝑌, Σ𝑆 ,−→𝑆 , 𝑌0, 𝑌𝑚) is controllable if −→ ∩(𝑌 × Σ𝑢 × 𝑋) ⊆ −→𝑆 . If 𝑆 is
controllable, the states in 𝑌 are also called controllable. Maximally permissive says
that 𝑆 is the maximal subautomaton of 𝐴 for which coreachability, reachability, and
controllability are ensured. Meaning the supervisor does not disable any transitions
that do not strictly need to be disallowed.

In addition to the properties of the supervisor mentioned above, problem formula-
tions for supervisor synthesis often include a safety constraint; Along with the plant,
some requirement specification on the plant’s behavior is given. The supervisor should
restrict the behavior of the plant so that the requirement specification is always sat-
isfied. In such a case, a plantified requirement automaton can be constructed by in-
troducing a non-coreachable sink state. Transitions that are not in accordance with
the specification are redirected to this sink state. Given a requirement automaton
𝑅 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), the plantified requirement automaton is obtained as follows
(Flordal et al. 2007):

𝑅⊥ = (𝑋 ∪ {⊥}, Σ,−→⊥, 𝑋0, 𝑋𝑚), (2.2)

where ⊥ ∉ 𝑋 is the new sink state and

−→⊥=−→∪{(𝑥, 𝜎𝑢,⊥)|𝑥 ∈ 𝑋, 𝜎𝑢 ∈ Σ𝑢, �(𝑥tar ∈ 𝑋)𝑥 𝜎𝑢−−−→ 𝑥tar}.

A safe supervisor can be obtained by synthesizing a coreachable and controllable
supervisor on the synchronous product of the plant automata and plantified requirement
automata, as proven in Flordal et al. (2007). Other ways of specifying requirements can
be plantified as well. For example state exclusion requirements discussed in Markovski
et al. (2010) are plantified by removing excluded controllable transitions from the plant,
and directing the excluded uncontrollable transitions to the sink state. Therefore, in this
work we will consider synthesizing a coreachable supervisor for a single automaton,
without loss in generality regarding safety constraints or networks of automata.

We allow automata to be non-deterministic. In the case of non-determinism, we
allow the supervisor to be able to select from which of the initial states the system
is allowed to start, and disable individual controllable transitions as a result of the
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removal of unsafe states. So if in the plant a state has two outgoing transitions over
the same controllable event, the supervisor subautomaton may contain this state with
only one of these outgoing transitions. This is unlike some traditional supervisory
control definitions, by for example Ramadge and Wonham (1989) or Cassandras and
Lafortune (2021), where multiple outgoing events over the same event cannot be
disabled individually. The distinction between these paradigms is further discussed in
Flordal et al. (2007). This interpretation is required for our method as we may encounter
non-deterministic automata as intermediate results. However, if the automata that we
input to our synthesis algorithms are deterministic, as we will show the same result
as in traditional synthesis is obtained, and the supervisor can be practically deployed
without needing to perform the operations mentioned at the start of this paragraph.

Example 2.1 Running example

We will consider the plant automaton 𝑃 of Figure 2.2 and requirement automaton 𝑅

of Figure 2.3 as a running example throughout this chapter. A solid or dashed arrow
respectively indicates a transition by a controllable or an uncontrollable event. The
initial states are indicated by the incoming arrows, and the marked states are indicated
by a double circle. 𝑅 has alphabet Σ = {𝑎, 𝑏}, so it does not synchronize on events 𝑐
and 𝑑. Requirement automaton 𝑅 has been plantified according to (2.2), resulting in the
plantified requirement automaton 𝑅⊥ in Figure 2.4, which has the same alphabet as 𝑅.
Constructing the synchronous product 𝑃 | |𝑅⊥ yields automaton 𝐴 of Figure 2.5. Note
that for the remainder of this chapter, when we discuss model deltas to this example,
they are always to automaton 𝐴 directly, not to 𝑃 and 𝑅 with an implied delta on 𝐴.

𝑝0 𝑝1 𝑝2 𝑝3 𝑝4
𝑎

𝑏

𝑏 𝑐 𝑑

Figure 2.2: Plant automaton 𝑃.

𝑟0 𝑟1
𝑎

𝑏

Figure 2.3: Requirement automaton 𝑅.

𝑟0 𝑟1 ⊥𝑎

𝑏

𝑏

Figure 2.4: Plantified requirement automaton 𝑅⊥.
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𝑝0𝑟0 𝑝1𝑟0 𝑝2𝑟0 𝑝3𝑟0 𝑝4𝑟0

𝑝0𝑟1 𝑝1𝑟1 𝑝2𝑟1 𝑝3𝑟1 𝑝4𝑟1

𝑝0⊥ 𝑝1⊥ 𝑝2⊥ 𝑝3⊥ 𝑝4⊥

𝑎
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𝑏 𝑐 𝑑
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𝑐 𝑑

𝑐 𝑑

Figure 2.5: Automaton 𝐴 = 𝑃 | |𝑅⊥.

2.2.1 Supervisor synthesis algorithm

In Algorithm 2.1 a supervisor synthesis algorithm is presented. It is the same as the
algorithm introduced in Ouedraogo et al. (2011), however, since we consider Finite
State Automata rather than Extended Finite Automata, we have rewritten the algorithm
assuming there are no data-variables. We also omitted the use of forbidden states in
the algorithm, as we plantify the requirements. In Ouedraogo et al. (2011) predicates
are constructed that define sets of states, here we represent these sets of states directly.
In case the plant behavior is given by multiple plant automata, the input automaton
for this algorithm can be obtained by calculating the synchronous product of the plant
automata. We present this algorithm using function calls to other algorithms to facilitate
reuse of these (sub-)algorithms later in this chapter.

The algorithm uses a fixpoint computation, provided in Algorithm 2.2, which itera-
tively calculates a set of coreachable states 𝐺, followed by a set of bad states 𝐵, that are
non-coreachable or have a sequence of uncontrollable transitions to a non-coreachable
state. The calculation to obtain 𝐺 and 𝐵 is done by means of a Backward Reachability
Search (BRS), given in Algorithm 2.3, for which Lemma 2.1 holds. This is a Breadth
First Search algorithm taken from Kleinberg and Tardos (2005) that has a worst-case
time complexity of O(|𝑋 | + | −→ |). All found states are added to 𝑋𝜔 . The state space
is searched in layers. For each state in the current layer, all undiscovered states that
have a transition to this state are added to the next layer. After all states in the current
layer have been evaluated, the algorithm moves to evaluating the states in the next
layer. These steps are repeated until no more new states are found. The algorithm is
slightly adapted from Kleinberg and Tardos (2005) to allow a set of starting states,
instead of a singular starting state. Also, at the start of the algorithm the transitions are
pruned, so that only transitions between states in the input state set 𝑋 are considered.
Transitions from states in the starting set 𝑋𝛼 are also removed, as these states are
already discovered as the starting set, so analyzing these transitions is not necessary.
The functioning of this algorithm is well known so Lemma 2.1 is not proven here.
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Algorithm 2.1 Supervisor Synthesis (SS)
Input: Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚)
Output: Supervisor 𝑆 = (𝑌, Σ,−→𝑆 , 𝑌0, 𝑌𝑚), good states 𝐺

1: (𝑌, 𝐺) =computeFixpoint(𝐴)
2: 𝑆 = (𝑌, Σ,−→∩ (𝑌 × Σ × 𝑌 ), 𝑋0 ∩ 𝑌, 𝑋𝑚 ∩ 𝑌 )
3: return (𝑆, 𝐺)

Algorithm 2.2 Compute Fixpoint (computeFixpoint)
Input: Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚)
Output: Supervisor states 𝑌 , good states 𝐺

1: 𝐺′ = 𝑋

2: repeat
3: 𝐺 = 𝐺′

4: 𝐺′ = BRS(𝐺, Σ,−→, 𝑋𝑚)
5: 𝐵 = BRS(𝐺, Σ𝑢𝑐,−→, 𝐺 \ 𝐺′)
6: 𝐺′ = 𝐺 \ 𝐵
7: until 𝐺′ = 𝐺

8: 𝑌 = FRS(𝐺, Σ,−→, 𝑋0)
9: return (𝑌, 𝐺)

Lemma 2.1 For state set 𝑋 , alphabet Σ, set of transitions −→, and starting state set
𝑋𝛼; BRS(𝑋, Σ,−→, 𝑋𝛼) contains all states in 𝑋 from which a state in 𝑋𝛼 ∩ 𝑋 can be
reached, using transitions in −→, over states in 𝑋 , that have an event in Σ.

The bad states 𝐵 are removed from 𝐺. The removal of these states can induce other
states to become non-coreachable. Therefore, the algorithm repeats these steps until
no further states get removed. At this point, the set of remaining states is defined as
good states 𝐺, which is the maximal set of controllable and coreachable states, see
Lemma 2.2. Proof for Lemma 2.2 is provided in Ouedraogo et al. (2011).

Lemma 2.2 For automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and (𝑌, 𝐺) = computeFix
point(𝐴); 𝐺 is the maximal controllable and coreachable set of states in 𝑋 .

Then, in order to generate a reachable supervisor, a Forward Reachability Search
(FRS) (Algorithm 2.4, Lemma 2.3) is carried out from the set of initial states, resulting
in states𝑌 . Essentially BRS is performed with all transitions reversed to search forward
instead of backward. Same as for BRS, the accompanying lemma is not proven here. 𝑌
is the maximal controllable, coreachable, and reachable subset of 𝑋 , see Lemma 2.4.

Lemma 2.3 For state set 𝑋 , alphabet Σ, set of transitions −→, and starting state set
𝑋𝛼; FRS(𝑋, Σ,−→, 𝑋𝛼) contains all states in 𝑋 that can be reached from a state in
𝑋𝛼 ∩ 𝑋 , using transitions in −→, over states in 𝑋 , that have an event in Σ.

Lemma 2.4 For automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and (𝑌, 𝐺) = computeFix
point(𝐴); 𝑌 is the maximal controllable, coreachable, and reachable set of states in
𝑋 .
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Algorithm 2.3 Backward Reachability Search (BRS)
Input: State set 𝑋 , alphabet Σ, finite set of transitions −→, starting set 𝑋𝛼

Output: State set 𝑋𝜔 in 𝑋 from which a sequence of transitions −→ exists through
states in 𝑋 , using events in Σ, to a state in 𝑋𝛼 ∩ 𝑋

1: −→𝑝= {(𝑥or, 𝜎, 𝑥tar) ∈−→ |(𝑥or ∈ 𝑋 ∧ 𝑥tar ∈ 𝑋) ∧ 𝑥or ∉ 𝑋𝛼 ∧ 𝜎 ∈ Σ}
2: 𝑋𝜔 = 𝑋𝛼 ∩ 𝑋

3: currentlayer = 𝑋𝛼 ∩ 𝑋

4: while currentlayer ≠ ∅
5: nextlayer = ∅
6: for all 𝑥 ∈ currentlayer do
7: for all {(𝑥or, 𝜎, 𝑥tar) ∈−→𝑝 |𝑥tar = 𝑥} do
8: if 𝑥or ∉ 𝑋𝜔

9: 𝑋𝜔 = 𝑋𝜔 ∪ {𝑥or}
10: nextlayer = nextlayer ∪{𝑥or}
11: end if
12: end for
13: end for
14: currentlayer = nextlayer
15: end while
16: return 𝑋𝜔

Algorithm 2.4 Forward Reachability Search (FRS)
Input: State set 𝑋 , alphabet Σ, finite set of transitions −→, starting set 𝑋𝛼

Output: State set 𝑋𝜔 in 𝑋 to which a sequence of transitions −→ exists through states
in 𝑋 , using events in Σ, from a state in 𝑋𝛼 ∩ 𝑋

1: −→−1= {(𝑥tar, 𝜎, 𝑥or) | (𝑥or, 𝜎, 𝑥tar) ∈−→}
2: 𝑋𝜔 =BRS(𝑋, Σ,−→−1, 𝑋𝛼)
3: return 𝑋𝜔

Proof 𝑌 is the maximal reachable set in 𝐺, following from Lemma 2.3. It is shown
by Lemma 2.2 that 𝐺 is the maximal controllable and coreachable subset of 𝑋 . Thus,
the maximal reachable subset 𝑌 in 𝐺 is the maximal controllable, coreachable, and
reachable subset of 𝑋 . □

Together, 𝑌 , alphabet Σ, the transitions of 𝐴 between the states in 𝑌 , the initial
states in 𝑌 , and the marked states in 𝑌 define the supervisor automaton 𝑆. Supervisor
𝑆 is the maximal subautomaton of 𝐴 that is reachable, coreachable, controllable; see
Theorem 2.1. The algorithm always computes a supervisor automaton. If there are
no reachable, coreachable, and controllable states then the supervisor automaton will
contain no states, and hence no transitions.

Theorem 2.1 For automaton 𝐴, and (𝑆, 𝐺) = SS(𝐴); 𝑆 is maximally permissive,
controllable, coreachable, and reachable with respect to 𝐴.
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Proof By construction, 𝑆 is the maximal subautomaton of 𝐴 over states in 𝑌 . 𝑌 is the
maximal controllable, coreachable and reachable set of states in 𝐴 (Lemma 2.4). It
follows that 𝑆 is maximally permissive, controllable, coreachable, and reachable with
respect to 𝐴. □

Next to supervisor 𝑆, the synthesis algorithm outputs good state set 𝐺, in order to
facilitate reuse of this set in other computations. Note that this state set is computed
anyways during synthesis, it is not computed specifically for the facilitation of reuse.

Example 2.2

When applying the supervisor synthesis algorithm to automaton 𝐴 of Figure 2.5,
first the supervisor states and good states are calculated by computeFixpoint
(Algorithm 2.2). The supervisor states are {𝑝0𝑟0, 𝑝2𝑟0}, the good states are {𝑝0𝑟0, 𝑝1𝑟0,
𝑝2𝑟0, 𝑝3𝑟0, 𝑝2𝑟1, 𝑝3𝑟1}. Next, the supervisor automaton is constructed, which provides
the supervisor automaton given in Figure 2.6.

𝑝0𝑟0 𝑝2𝑟0

𝑏

Figure 2.6: Supervisor 𝑆, for (𝑆, 𝐺) = SS(𝐴).

For convenience we also provide a visualization of automaton A, where the states are
color coded depending on their containment in the state sets resulting from synthesis, in
Figure 2.7. Supervisor states (𝑌 ) (that are also good states by definition) are displayed
white, good states that are not supervisor states (𝐺\𝑌 ) are displayed grey, and non-good
states (𝑋 \ 𝐺) are displayed black.

𝑝0𝑟0 𝑝1𝑟0 𝑝2𝑟0 𝑝3𝑟0 𝑝4𝑟0

𝑝0𝑟1 𝑝1𝑟1 𝑝2𝑟1 𝑝3𝑟1 𝑝4𝑟1

𝑝0⊥ 𝑝1⊥ 𝑝2⊥ 𝑝3⊥ 𝑝4⊥
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Figure 2.7: Automaton 𝐴, color coded by synthesis result.
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2.3 Model delta

For the purpose of TSS we wish to model the difference between the base and variant
model. We can represent any adaptation from base to variant automaton as model delta
as 10-tuple: Δ = (𝑋+, 𝑋− , Σ+, Σ− , −→+, −→− , 𝑋+

0 , 𝑋
−
0 , 𝑋

+
𝑚, 𝑋

−
𝑚), which for each of

the sets in the 5-tuple definition of automaton 𝐴, defines the added (+) and removed
(−) elements of that set. Σ+ and Σ− are both partitioned into sets of controllable and
uncontrollable events that are added or removed. The following constraints apply to
the model delta:

1. Any removed element within the model delta, must exist in the base model:
𝑋− ⊆ 𝑋, Σ− ⊆ Σ, −→− ⊆ −→, 𝑋−

0 ⊆ 𝑋0, 𝑋
−
𝑚 ⊆ 𝑋𝑚.

2. Any added element within the model delta, must not yet exist in the base model:
𝑋+ ∩ 𝑋 = ∅, Σ+ ∩ Σ = ∅, −→+ ∩ −→= ∅, 𝑋+

0 ∩ 𝑋0 = ∅, 𝑋+
𝑚 ∩ 𝑋𝑚 = ∅.

3. Elements cannot simultaneously be added and removed: 𝑋− ∩ 𝑋+ = ∅, Σ− ∩Σ+ =

∅, −→− ∩ −→+ = ∅, 𝑋−
0 ∩ 𝑋+

0 = ∅, 𝑋−
𝑚 ∩ 𝑋+

𝑚 = ∅.
4. The initial and marked states of the variant model must exist in the variant state

set: 𝑋+
0 ⊆ (𝑋 ∪ 𝑋+) \ 𝑋− , 𝑋+

𝑚 ⊆ (𝑋 ∪ 𝑋+) \ 𝑋− .
5. Transitions must go to-and-from states, by defined events: −→′ ⊆ 𝑋 ′ × Σ′ × 𝑋 ′,

where 𝑋 ′ = (𝑋 ∪ 𝑋+) \ 𝑋− , Σ′ = (Σ ∪Σ+) \Σ− , and −→′= (−→∪ −→+)\ −→− .

When these constraints are met, we call the model delta valid. Note that the third
condition directly follows from the first two conditions.

Note that, e.g., 𝑥 𝛿 ∈ 𝑋+
0 only indicates that 𝑥 𝛿 is a new initial state, but not

(necessarily) a newly added state. If one wants to add a new state to the system, that is
also an initial state, the model delta should contain both 𝑥 𝛿 ∈ 𝑋+ and 𝑥 𝛿 ∈ 𝑋+

0 .
Given base automaton 𝐴 and model delta Δ, variant automaton 𝐴′ is constructed

by: 𝐴′ = (𝑋 ′, Σ′,−→′, 𝑋 ′
0, 𝑋

′
𝑚), where: 𝑋 ′ = (𝑋 ∪ 𝑋+) \ 𝑋− , Σ′ = (Σ ∪ Σ+) \ Σ− ,

−→′= (−→∪ −→+)\ −→− , 𝑋 ′
0 = (𝑋0 ∪ 𝑋+

0 ) \ 𝑋
−
0 , 𝑋

′
𝑚 = (𝑋𝑚 ∪ 𝑋+

𝑚) \ 𝑋−
𝑚. For a valid

model delta, and well-defined base automaton, the constructed variant automaton is
well-defined.

Furthermore, for any pair of well-defined automata (𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), 𝐴′ =
(𝑋 ′, Σ′,−→′, 𝑋 ′

0, 𝑋
′
𝑚)), a valid model delta is constructed as follows: 𝑋+ = 𝑋 ′ \ 𝑋 ,

𝑋− = 𝑋 \ 𝑋 ′, Σ+ = Σ′ \ Σ, Σ− = Σ \ Σ′, −→+=−→′ \ −→, −→−=−→ \ −→′,
𝑋+

0 = 𝑋 ′
0 \ 𝑋0, 𝑋−

0 = 𝑋0 \ 𝑋
′
0, 𝑋+

𝑚 = 𝑋 ′
𝑚 \ 𝑋𝑚, 𝑋−

𝑚 = 𝑋𝑚 \ 𝑋 ′
𝑚.

The change of controllability of an event can be modeled by removing all transitions
that are labeled by this event, and adding these transitions back with an added event
with modified controllability.

We may address a model delta with only its non-empty part. So if we mention a
model delta with 𝑋+

0 = {𝑥 𝛿}, and no other information, this implies that the other
elements in the model delta tuple are empty. In the remainder of this chapter, when
considering a model delta Δ it is implied that this is a model delta from base automaton
𝐴 to variant automaton 𝐴′.
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2.4 Atomic adaptations

In this section we consider atomic adaptations, where the difference between the base
and variant model can be described by a single, indivisible change in the automaton
specification. Formally we can say that a model delta Δ is an atomic adaptation when
only one of the tuple-elements is a set of size one, and all other elements are empty;
|𝑋+ | + |𝑋− | + |Σ+ | + |Σ− | + | −→+ | + | −→− | + |𝑋+

0 | + |𝑋−
0 | + |𝑋+

𝑚 | + |𝑋−
𝑚 | = 1.

We consider several types of atomic adaptations, e.g., removing a transition, or
adding the marked property to a state, for which we provide an atomic TSS algorithm.
The purpose of these algorithms is to calculate the supervisor states and good states of
the variant automaton, using the base automaton, its synthesis result, and model delta.
Theorem 2.2 holds for the algorithms. Essentially, the properties of the supervisor
((co-)reachability, controllability, and maximal permissiveness) are retained during
atomic TSS. For sake of cohesion, proofs of Theorem 2.2 for each algorithm are given
separately in Appendix A.

Theorem 2.2 Given base automaton A, fixpoint result (𝑌, 𝐺) = computeFixpoint
(𝐴), and atomic adaptation Δ for which the atomic TSS algorithm is given, the atomic
TSS algorithm provides a supervisor state set 𝑌 ′ and good state set 𝐺′ such that they
are equal to the fixpoint result of the variant automaton; (𝑌 ′, 𝐺′) = computeFix
point(𝐴′).

Figure 2.8 shows an overview of the atomic TSS method. It is similar to Figure 2.1,
only now the names of the artifacts and algorithms that have been introduced are shown.
The overview shows that the fixpoint for the variant supervisor can be computed in
two ways, either by (1) performing computeFixpoint on the variant automaton
directly, or by (2) performing atomic TSS using the base automaton, base supervisor
fixpoint, and atomic model adaptation. Either way, the fixpoint result is the same.

Base Automaton
A

Variant Automaton
A'

Base Supervisor
Fixpoint

Y, G

Variant Supervisor
Fixpoint

Y', G'

Variant Supervisor
Fixpoint

Y', G' =
atomic

Figure 2.8: Inputs and outputs for atomic TSS for atomic adaptation Δ.

In the following subsections we consider adding or removing the initial property
to some state, adding or removing the marked property to some state, and adding or
removing a transition respectively. For the cases of removed or added states and events
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no algorithms are provided. These atomic adaptations are discussed in Section 2.4.7.
After presenting the atomic TSS algorithms in this section, we will show how we can
iterate over them in Section 2.5, where we are also going to group atomic adaptations
together to process them at once.

The algorithms are strongly based on Thuijsman and Reniers (2020). In some
places minor modifications are made for sake of correctness and efficiency. Some of
these modifications are discussed in Tijsse Claase (2020). Note that these modifications
influence the experimental results presented in Thuijsman and Reniers (2020), however
only to a small enough extent that they do not influence the conclusions made on those
results. All algorithms are also modified to compute the supervisor state set 𝑌 instead
of the supervisor 𝑆, leading to shorter notations. 𝑆 can simply be computed from 𝑌 , as
in line 2 of Algorithm 2.1.

2.4.1 Added initial property

We assume the situation that (𝑌, 𝐺) = computeFixpoint(𝐴) has been calculated
for base automaton 𝐴. Some state of base automaton 𝐴 has been made an initial state,
which is the only adaptation to create variant automaton 𝐴′. In Algorithm 2.5 the
atomic TSS algorithm is provided to compute supervisor states 𝑌 ′ and good states 𝐺′

for the variant model, given 𝐴, 𝑌 , 𝐺, and the state with added initial property 𝑥 𝛿 . The
algorithm uses a switch statement, where the value of a variable, in this case 𝑥 𝛿 , is
tested for multiple cases. Once a case match is found, the statements associated with
the particular case are executed. In case no match is found, the default statements are
executed. For all atomic TSS algorithms the switch cases are mutually exclusive, which
means that for the given atomic adaptation only one switch case holds, or none and
then the default statement is executed.

Algorithm 2.5 Atomic Transformational Supervisor Synthesis for Added Initial Prop-
erty (TSSAIP)
Input: Base automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), supervisor states 𝑌 , good states 𝐺,

state with added initial property 𝑥 𝛿 ∈ 𝑋+
0

Output: Variant supervisor states 𝑌 ′, variant good states 𝐺′

1: switch 𝑥 𝛿

2: case 𝑥 𝛿 ∈ 𝐺 \ 𝑌 do
3: 𝑌 ′ = FRS(𝐺, Σ,−→, 𝑌 ∪ {𝑥 𝛿})
4: 𝐺′ = 𝐺

5: default do
6: 𝑌 ′ = 𝑌, 𝐺′ = 𝐺

7: end switch
8: return (𝑌 ′, 𝐺′)
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In Algorithm 2.5 it can be seen that two cases are considered, the first being that
𝑥 𝛿 is in 𝐺 \ 𝑌 . A state in 𝐺 \ 𝑌 is coreachable and controllable in the base model.
It was not reachable in the base model, as in that case it would be part of 𝑌 . Due to
addition of the initial property, we now know that 𝑥 𝛿 is reachable, so it should become
part of 𝑌 ′. It is possible that more states in 𝐺 \ 𝑌 have become reachable due to 𝑥 𝛿

being reachable, so an FRS is carried out over states 𝐺. We already know that states
in 𝑌 were reachable, and they will remain reachable in the variant model. As we do
not want to reinvest computational effort in finding these states in 𝑌 again, the FRS is
already initiated with states 𝑌 in the starting set along with 𝑥 𝛿 , essentially we already
start closer to the fixpoint that we wish to find. States in 𝑋 \ 𝐺 are not considered, as
they remain non-coreachable or non-controllable in the variant model. In our running
example, we can consider the adaptation to make 𝑝3𝑟1 initial, which would fit under
this particular case. As 𝑝2𝑟1 is a reachable good state from 𝑝3𝑟1, both 𝑝3𝑟1 and 𝑝2𝑟1
will be added to the supervisor states𝑌 to construct the supervisor states for the variant
model 𝑌 ′.

Alternatively, 𝑥 𝛿 may be in 𝑋 \𝐺. As we just noted, the adaptation of initial states
does not influence the set of coreachable and controllable states. So in this case, we
already performed the FRS over the same set 𝐺 to compute𝑌 . As 𝐺 did not change, the
supervisor and good states remain the same for the variant model. In our example we
can consider making 𝑝4𝑟1 an initial state as such an adaptation. In that variant model,
𝑝4𝑟1 will remain a non-good state in 𝑋 \ 𝐺′.

Finally, 𝑥 𝛿 may be in 𝑌 . If this is the case, just like in the previous example the
default statement will be executed. 𝑥 𝛿 was already found in the FRS of the base model,
so also all reachable states from 𝑥 𝛿 in 𝐺 are included in 𝑌 . Thus, the supervisor states
and good states remain the same for the variant model. In the running example, making
𝑝2𝑟0 an initial state would be of this case.

2.4.2 Removed initial property

We consider a similar situation as the previous section, only this time the initial property
has been removed from a state instead of added. The atomic TSS algorithm for this
case is shown in Algorithm 2.6.

In the first case of the algorithm, an initial state in 𝑌 is removed. This might lead
to some states in 𝑌 being unreachable in the variant model. However the good states
𝐺 are not influenced by the initial states, so they remain the same. Also unreachable
states will remain unreachable. So an FRS is carried out over the previously reachable
states 𝑌 , from the new set of initial states for the variant model to compute 𝑌 ′. In
the running example, the removal of initial property from 𝑝0𝑟0 would fit in this case.
Consequently, there are no initial states left in 𝑌 , so for the variant model there are no
supervisor states; 𝑌 ′ = ∅. The good states remain the same.

The other case is that the removed initial state is not in 𝑌 , considered under the
default statement of Algorithm 2.6. Actually we know that in this case the removed
initial state is in 𝑋 \𝐺, as states in 𝐺 \𝑌 could not be an initial state, they would already
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have been in 𝑌 as a reachable state in 𝐺. As 𝑥 𝛿 is not in the maximal controllable and
coreachable set in this case, it does not matter if it is reachable, or initial. It will not
be part of the good states and supervisor states. In the running example this could be
demonstrated by the removal of the initial property from state 𝑝4𝑟0.

Algorithm 2.6 Atomic Transformational Supervisor Synthesis for Removed Initial
Property (TSSRIP)
Input: Base automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), supervisor states 𝑌 , good states 𝐺,

state with removed initial property 𝑥 𝛿 ∈ 𝑋−
0

Output: Variant supervisor states 𝑌 ′, variant good states 𝐺′

1: switch 𝑥 𝛿

2: case 𝑥 𝛿 ∈ 𝑌 do
3: 𝑌 ′ = FRS(𝑌, Σ,−→, 𝑋0 \ {𝑥 𝛿})
4: 𝐺′ = 𝐺

5: default do
6: 𝑌 ′ = 𝑌, 𝐺′ = 𝐺

7: end switch
8: return (𝑌 ′, 𝐺′)

2.4.3 Added marked property

In Algorithm 2.7 the atomic TSS algorithm is provided for the case that a state was
given the marked property in the model delta from 𝐴 to 𝐴′.

In the first case the circumstance is considered that a non-good state is now marked.
This means that some non-good states may become good and/or supervisor states
because they are coreachable in the variant model. All states that were supervisor
states and good states will remain so. So a fixpoint computation is instantiated where
the supervisor states are already added as marked states and initial states, so this part
of the states does not have to be found again in the reachability searches. In the running
example we could consider the case that 𝑝1𝑟1 was made a marked state. During the first
iteration of the fixpoint computation it will be found as a good state, as it is marked. It
will however be removed from the good states since it has an uncontrollable transition
to a bad state. So for this specific example the supervisor and good states will remain
the same from base to variant model.

If the state with added marked property is a good state, it was already coreachable,
as well as all good states that can reach this state. So giving it a marked property is
not going to change the coreachability. Thus the supervisor states and the good states
remain the same. In the running example, this would be the case if for instance 𝑝1𝑟0
was added to the set of marked states.
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Algorithm 2.7 Atomic Transformational Supervisor Synthesis for Added Marked
Property (TSSAMP)
Input: Base automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), supervisor states 𝑌 , good states 𝐺,

state with added marked property 𝑥 𝛿 ∈ 𝑋+
𝑚

Output: Variant supervisor states 𝑌 ′, variant good states 𝐺′

1: switch 𝑥 𝛿

2: case 𝑥 𝛿 ∈ 𝑋 \ 𝐺 do
3: (𝑌 ′, 𝐺′) = computeFixpoint((𝑋, Σ,−→, 𝑌 ∪ 𝑋0, 𝑌 ∪ 𝑋𝑚 ∪ {𝑥 𝛿}))
4: default do
5: 𝑌 ′ = 𝑌, 𝐺′ = 𝐺

6: end switch
7: return (𝑌 ′, 𝐺′)

2.4.4 Removed marked property

Now the case is considered that a marked state in the base model, is not a marked state
in the variant model. The atomic TSS algorithm for this case is given in Algorithm 2.8.

In the first case the removal of a marked state in 𝐺 \𝑌 is considered. The supervisor
states𝑌 will remain the same, as 𝑥 𝛿 is not reachable from such a state, the removal of its
marked property does not influence their coreachability. Some good states might not be
good states for the variant model, as they may not be coreachable anymore. Therefore
a fixpoint computation is performed, with all supervisor states already added as initial
states and marked states, so this part of the state space does not have to be searched
anymore. In the running example we can consider removing the marked property from
𝑝2𝑟1. Consequently, the supervisor for the variant model will remain the same, but

Algorithm 2.8 Atomic Transformational Supervisor Synthesis for Removed Marked
Property (TSSRMP)
Input: Base automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), supervisor states 𝑌 , good states 𝐺,

state with removed property 𝑥 𝛿 ∈ 𝑋−
𝑚

Output: Variant supervisor states 𝑌 ′, variant good states 𝐺′

1: switch 𝑥 𝛿

2: case 𝑥 𝛿 ∈ 𝐺 \ 𝑌
3: (𝑌 ′, 𝐺′) = computeFixpoint((𝐺, Σ,−→, 𝑌 ∪ 𝑋0, (𝑌 ∪ 𝑋𝑚) \ {𝑥 𝛿}))
4: case 𝑥 𝛿 ∈ 𝑌

5: (𝑌 ′, 𝐺′) = computeFixpoint((𝐺, Σ,−→, 𝑋0, 𝑋𝑚 \ {𝑥 𝛿}))
6: default do
7: 𝑌 ′ = 𝑌, 𝐺′ = 𝐺

8: end switch
9: return (𝑌 ′, 𝐺′)
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𝑝2𝑟1 and 𝑝3𝑟1 are not good states for the variant model as they are not coreachable
anymore.

The second case considers the situation that the removed marked state is in𝑌 . A new
fixpoint computation is performed for the variant model, only the non-good states are
not taken into account, as the removal of a marked state will not increase the maximal
set of coreachable and controllable states. In the example we can consider removing
the marked property of state 𝑝2𝑟0. As a result, there will be no supervisor states in the
variant model, 𝑌 ′ = ∅, and only 𝑝2𝑟1 and 𝑝3𝑟1 remain in 𝐺′.

The final case will occur when the marked property is removed from a non-good
state. This does not influence the coreachability and controllability of the good states,
as they must be coreachable for marked states in 𝐺. Also the reachable part of the good
states remains the same. So the variant model has the same supervisor states and good
states as the base model.

2.4.5 Added transition

Now we consider the case that only a single transition has been added to the base
automaton 𝐴 to create variant automaton 𝐴′. So all elements in Δ are empty except
−→+ which only contains the transition (𝑥or, 𝜎, 𝑥tar). Algorithm 2.9 computes the
supervisor and good states for the variant model according to the type of adaptation
that is made.

The first case considers an added transition from a state in 𝑌 to a state in 𝐺 \ 𝑌 .
The target and origin state where already coreachable and controllable, so this is not
influenced by the addition of the transition. However the target state is now reachable,
which it was not before. To find all good states that are now reachable, an FRS is
performed to compute the variant supervisor states. The good states remain the same.
In the running example we can consider the addition of a transition from 𝑝0𝑟0 to 𝑝3𝑟1.
In that case, 𝑝3𝑟1 and 𝑝2𝑟1 would become supervisor states in the variant model in the
addition to the states already in 𝑌 . The good states remain unchanged.

Next, the addition of an uncontrollable transition from a good state to a non-
good state is considered. The target state was non-coreachable or non-controllable, so
transitions to this state need to be disabled. Because an uncontrollable transition is
added, it cannot be disabled by the supervisor. This means that the origin state is not
a good state anymore, and we wish to remove it for the variant model. The state is
made non-coreachable by removing all outgoing transitions from it, and removing it
from the set of marked states in case it was a marked state. The fixpoint computation
is then performed on the state space spanned by the good states, with the origin state
of the added transition as non-coreachable. In the running example this could be an
added uncontrollable transition from 𝑝2𝑟1 to 𝑝2⊥. For that adaptation 𝑝2𝑟1 and 𝑝3𝑟1
would be removed from the good states to construct the variant good states, and the
supervisor states remain the same.

In case the origin state is not a good state, adding the transition that is not a self-
loop (𝑥or ≠ 𝑥tar) might influence the coreachability of this and other non-good states.



30 2 Transformational supervisor synthesis

Algorithm 2.9 Atomic Transformational Supervisor Synthesis for Added Transition
(TSSAT)
Input: Base automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), supervisor states 𝑌 , good states 𝐺,

added transition (𝑥or, 𝜎, 𝑥tar) ∈−→+

Output: Variant supervisor states 𝑌 ′, variant good states 𝐺′

1: switch (𝑥or, 𝜎, 𝑥tar)
2: case 𝑥or ∈ 𝑌 ∧ 𝑥tar ∈ 𝐺 \ 𝑌 do
3: 𝑌 ′ = FRS(𝐺, Σ,−→∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑌 )
4: 𝐺′ = 𝐺

5: case 𝑥or ∈ 𝐺 ∧ 𝑥tar ∈ 𝑋 \ 𝐺 ∧ 𝜎 ∈ Σ𝑢 do
6: (𝑌 ′, 𝐺′) = computeFixpoint((𝐺, Σ,−→ ∩((𝐺 \ {𝑥or}) × Σ × 𝐺), 𝑋0 \

{𝑥or}, 𝑋𝑚 \ {𝑥or}))
7: case 𝑥or ∈ 𝑋 \ 𝐺 ∧ 𝑥or ≠ 𝑥tar
8: (𝑌 ′, 𝐺′) = computeFixpoint((𝑋, Σ,−→∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑌∪𝑋0, 𝑌∪𝑋𝑚))
9: default do

10: 𝑌 ′ = 𝑌, 𝐺′ = 𝐺

11: end switch
12: return (𝑌 ′, 𝐺′)

States that were supervisor states in the base model will remain so. Thus, a fixpoint
computation is performed over the entire state set, where the supervisor states are added
to the marked and initial states so that this part of the state space does not need to be
searched to reduce computational effort. For the running example we can consider the
case that a transition is added from 𝑝4𝑟1 to 𝑝2𝑟0, in that case the supervisor states will
remain the same, and 𝑝4𝑟1 is added to the good states to construct the variant good
states.

In all other cases, the supervisor states and good states remain the same. For
example the addition of a transition from-and-to a supervisor state, all states that are
good states will remain coreachable and controllable, and states in 𝐺 \ 𝑌 will remain
non-reachable. In the example this could be a transition from 𝑝2𝑟0 to 𝑝0𝑟0. Another
example is adding a self-loop to a non-good state not influencing its non-coreachability
or non-controllability. In the running example this may be a transition from 𝑝4𝑟1 to
𝑝4𝑟1.

2.4.6 Removed transition

Here we consider the case that only a single transition has been removed from base
automaton 𝐴 to create variant automaton 𝐴′. Algorithm 2.10 computes the supervisor
states and good states for the variant model according to the state sets the origin and
target state of this transition belong to, and the controllability of the transition.
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Algorithm 2.10 Atomic Transformational Supervisor Synthesis for Removed Transi-
tion (TSSRT)
Input: Base automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), supervisor states 𝑌 , good states 𝐺,

removed transition (𝑥or, 𝜎, 𝑥tar) ∈−→−

Output: Variant supervisor states 𝑌 ′, variant good states 𝐺′

1: switch (𝑥or, 𝜎, 𝑥tar)
2: case 𝑥or ∈ 𝑌 ∧ 𝑥tar ∈ 𝑌 ∧ 𝑥or ≠ 𝑥tar do
3: (𝑌 ′, 𝐺′) = computeFixpoint((𝐺, Σ,−→ \{(𝑥or, 𝜎, 𝑥tar)}, 𝑋0, 𝑋𝑚))
4: case 𝑥or ∈ 𝐺 \ 𝑌 ∧ 𝑥tar ∈ 𝐺 ∧ 𝑥or ≠ 𝑥tar do
5: (𝑌 ′, 𝐺′) = computeFixpoint((𝐺, Σ,−→ \{(𝑥or, 𝜎, 𝑥tar)}, 𝑌∪𝑋0, 𝑌∪𝑋𝑚))
6: case 𝑥or ∈ 𝑋 \ 𝐺 ∧ 𝑥tar ∈ 𝑋 \ 𝐺 ∧ 𝜎 ∈ Σ𝑢 ∧ 𝑥or ≠ 𝑥tar do
7: (𝑌 ′, 𝐺′) = computeFixpoint((𝑋, Σ,−→ \{(𝑥or, 𝜎, 𝑥tar)}, 𝑌∪𝑋0, 𝐺∪𝑋𝑚))
8: default do
9: 𝑌 ′ = 𝑌, 𝐺′ = 𝐺

10: end switch
11: return (𝑌 ′, 𝐺′)

Let us consider a removed transition, that is not a self-loop, for which 𝑥or and 𝑥tar
both were in 𝑌 . This case is considered first in Algorithm 2.10. It is possible that due
to the removal of this transition, 𝑥or and other states in 𝐺 might not be coreachable
anymore. Also 𝑥tar might not be reachable anymore. However, bad states and non-
reachable states will remain as such. Therefore, a fixpoint computation is performed
for the variant model, only for the states in𝐺 of the base model. As this synthesis is on a
reduced state-set, it will require less effort to perform than a completely new synthesis
on the variant model. In the running example this could be the removal of transition
(𝑝0𝑟0, 𝑏, 𝑝2𝑟0), which would lead to no supervisor states for the variant automaton.
𝑝0𝑟0 would also be removed from the good state set to construct the good states 𝐺′.

Next, we consider a removed transition from a state 𝑥or in 𝐺 \ 𝑌 to a state 𝑥tar in
𝐺, that is not a self-loop. 𝑥or, and other good states, might become non-coreachable
after removal of this transition. However, as these states are not reachable from the
supervisor states, these will remain the same for the variant model. To find the set of
good states for the variant model, a fixpoint computation is performed over the good
states, where the supervisor states are added to the marked and initial states so that this
part of the state space is not searched. For the running example, removing transition
(𝑝3𝑟1, 𝑐, 𝑝2𝑟1) would fall under this case. As a result the supervisor states remain the
same from the base to the variant model, but 𝑝3𝑟1 is removed from the good states to
construct the variant good states 𝐺′.

As a third case in Algorithm 2.10, an uncontrollable transition is removed with
origin and target state as not good states. It is possible that the origin state and other
states were not good states due to the existence of this transition. We need to perform
some additional fixpoint computation in order to find these states. However, we know
that all good states that have been found already, will remain good states for the
variant model. The same goes for supervisor states. Therefore, computeFixpoint
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is instantiated with the good states added as marked states, and the supervisor states
added as initial states. In the running example the removal of transition (𝑝0𝑟1, 𝑏, 𝑝2⊥)
would fall under this case. In that circumstance, the supervisor states and good states
would remain the same for the variant model as the base model.

Finally, for all other cases the supervisor states and good states remain the same
between variant and base model. For example, we remove transition (𝑥or, 𝜎, 𝑥tar) from
base model 𝐴, for which 𝑥or ∈ 𝑋 \𝐺 and 𝑥tar ∈ 𝑌 . We know that in 𝐴, the state 𝑥or was
coreachable, as the removed transition existed to a state in𝑌 . As (coreachable state) 𝑥or
does not exist in the set of good states 𝐺, it must be non-controllable. We can reason
that the removal of this transition is not going to make it controllable. Thus,𝑌 and 𝐺 of
the base automaton remain the same for the variant automaton. This is also observed
in Algorithm 2.10.

2.4.7 Other atomic adaptations

Some atomic adaptations were not discussed in the algorithms above. These atomic
adaptations are: adding a state, removing a state, adding an event, and removing an
event. When these model deltas occur as an atomic adaptation, they do not influence
the supervisor states or good states. For example, an added state only influences the
synthesis result if there are added transitions towards or from it. Or an event can only
be removed, if there are no transitions that are labeled by that event. Otherwise the
model delta is not an atomic adaptation, or it is not a valid model delta. Proofs for
Lemma 2.5 are provided in Appendix A.

Lemma 2.5 For an atomic adaptation that is an: added state, removed state, added
event, or removed event, the supervisor states 𝑌 ′ of the variant model are equal to the
supervisor states 𝑌 of the base model, and the good states 𝐺′ of the variant model are
equal to the good states 𝐺 of the base model.

2.5 Transformational Supervisor Synthesis for any model delta

In this section we will not restrict the model delta to atomic cases anymore; any valid
model delta of any size is allowed. A method that iterates over all atomic adaptations
is discussed in Section 2.5.1. A method that groups these atomic adaptations together
based on their required computation and processes them at the same time is shown in
Section 2.5.2.
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2.5.1 Iterative Transformational Supervisor Synthesis

In Figure 2.9 a modified version of Figure 2.8 is shown, which provides a visualization
of the idea on which Iterative TSS (ITSS) is based. A non-atomic model delta describes
the difference between the base and the variant model. This model delta is split into
atomic adaptations, on which the atomic TSS algorithms can be applied, and the variant
supervisor fixpoint is computed by iterating over these atomic adaptations.

Algorithm 2.11 provides an ITSS algorithm, that iterates over the atomic adaptations
in the model delta one-by-one. Each time an atomic adaptation is applied using the
results of Section 2.4, and 𝑌 ′ and 𝐺′ are computed accordingly. After an adaptation
has been applied, the tuples 𝑋 ′

0, 𝑋
′
𝑚, −→′ are updated, so that if we were to construct

an intermediate automaton 𝐴′ = (𝑋 ′, Σ′,−→′, 𝑋 ′
0, 𝑋

′
𝑚), this automaton is up-to-date

for the adaptations applied until that point. This intermediate automaton is then used
in the input for the next atomic TSS algorithm. Before iterating over the atomic TSS
algorithms, the added states and events are added to the base supervisor and automaton.
After the iterations, the set of removed events is removed from the supervisor, as at
this point no transitions with this event are left in the supervisor, following from the
restrictions specified in Section 2.3. Because 𝐴′ will not have transitions to-or-from
the removed states, and the removed states are not initial or marked, the set of removed
states will not be a part of 𝑌 ′ (or 𝐺′) at this point of the algorithm. So they do not need
to be removed from the supervisor. Algorithm 2.11 also outputs the variant automaton
𝐴′ of which it produces the synthesis result.

Theorem 2.3 holds for Algorithm 2.11. It is similar to Theorem 2.2 for the atomic
model adaptations, only modified to apply for a supervisor automaton 𝑆, rather than
supervisor states 𝑌 . It also considers that the algorithm provides the correct variant
automaton as output. The proof for Theorem 2.3 on Algorithm 2.11 can be found in
Appendix B.

Theorem 2.3 Given base automaton A, model deltaΔ, synthesis result (𝑌, 𝐺) = comp
uteFixpoint(𝐴), and (𝑆, �̂�, �̂�) = ITSS(𝐴,𝑌, 𝐺,Δ); then 𝑆 = 𝑆′, �̂� = 𝐺′, and
�̂� = 𝐴′, for (𝑆′, 𝐺′) = SS(𝐴′).

Base Automaton
A

Variant Automaton
A'

Base Supervisor
Fixpoint

Y, G

Variant Supervisor
Fixpoint

Y', G'=

atomic

Y', G'

atomic

Y', G'

atomic

Y', G'

. . .

atomic
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Figure 2.9: ITSS for non-atomic Δ.
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Algorithm 2.11 Iterative Transformational Supervisor Synthesis (ITSS)
Input: Base automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), supervisor states 𝑌 , good states 𝐺,

model delta Δ = (𝑋+, 𝑋− , Σ+, Σ− ,−→+,−→− , 𝑋+
0 , 𝑋

−
0 , 𝑋

+
𝑚, 𝑋

−
𝑚)

Output: Variant supervisor 𝑆′ = (𝑌 ′, Σ′,−→′
𝑆
, 𝑌 ′

0 , 𝑌
′
𝑚), good states 𝐺′, variant au-

tomaton 𝐴′ = (𝑋 ′, Σ′,−→′, 𝑋 ′
0, 𝑋

′
𝑚)

1: 𝑋 ′ = 𝑋 ∪ 𝑋+, Σ′ = Σ ∪ Σ+, −→′=−→, 𝑋 ′
0 = 𝑋0, 𝑋

′
𝑚 = 𝑋𝑚

2: 𝑌 ′ = 𝑌, 𝐺′ = 𝐺

3: for all 𝑥 𝛿 ∈ 𝑋+
0 do

4: (𝑌 ′, 𝐺′) =TSSAIP((𝑋 ′, Σ′,−→′, 𝑋 ′
0, 𝑋

′
𝑚), 𝑌 ′, 𝐺′, 𝑥 𝛿)

5: 𝑋 ′
0 = 𝑋 ′

0 ∪ {𝑥 𝛿}
6: end for
7: for all 𝑥 𝛿 ∈ 𝑋−

0 do
8: (𝑌 ′, 𝐺′) =TSSRIP((𝑋 ′, Σ′,−→′, 𝑋 ′

0, 𝑋
′
𝑚), 𝑌 ′, 𝐺′, 𝑥 𝛿)

9: 𝑋 ′
0 = 𝑋 ′

0 \ {𝑥
𝛿}

10: end for
11: for all 𝑥 𝛿 ∈ 𝑋+

𝑚 do
12: (𝑌 ′, 𝐺′) =TSSAMP((𝑋 ′, Σ′,−→′, 𝑋 ′

0, 𝑋
′
𝑚), 𝑌 ′, 𝐺′, 𝑥 𝛿)

13: 𝑋 ′
𝑚 = 𝑋 ′

𝑚 ∪ {𝑥 𝛿}
14: end for
15: for all 𝑥 𝛿 ∈ 𝑋−

𝑚 do
16: (𝑌 ′, 𝐺′) =TSSRMP((𝑋 ′, Σ′,−→′, 𝑋 ′

0, 𝑋
′
𝑚), 𝑌 ′, 𝐺′, 𝑥 𝛿)

17: 𝑋 ′
𝑚 = 𝑋 ′

𝑚 \ {𝑥 𝛿}
18: end for
19: for all (𝑥or, 𝜎, 𝑥tar) ∈−→+ do
20: (𝑌 ′, 𝐺′) =TSSAT((𝑋 ′, Σ′,−→′, 𝑋 ′

0, 𝑋
′
𝑚), 𝑌 ′, 𝐺′, (𝑥or, 𝜎, 𝑥tar))

21: −→′=−→′ ∪{(𝑥or, 𝜎, 𝑥tar)}
22: end for
23: for all (𝑥or, 𝜎, 𝑥tar) ∈−→− do
24: (𝑌 ′, 𝐺′) =TSSRT((𝑋 ′, Σ′,−→′, 𝑋 ′

0, 𝑋
′
𝑚), 𝑌 ′, 𝐺′, (𝑥or, 𝜎, 𝑥tar))

25: −→′=−→′ \{(𝑥or, 𝜎, 𝑥tar)}
26: end for
27: 𝑆′ = (𝑌 ′, Σ′ \ Σ− ,−→∩ (𝑌 ′ × Σ × 𝑌 ′), 𝑋 ′

0 ∩ 𝑌 ′, 𝑋 ′
𝑚 ∩ 𝑌 ′)

28: 𝐴′ = (𝑋 ′ \ 𝑋− , Σ′ \ Σ− ,−→′, 𝑋 ′
0, 𝑋

′
𝑚)

29: return (𝑆′, 𝐺′, 𝐴′)

Order of applying atomic adaptations

There are some restrictions to the order in which the atomic adaptations can be applied
during iterative TSS. Essentially, when an atomic adaptation is applied, this atomic
adaptation needs to be a valid model delta. Let us consider the following model delta
for the running example:

• 𝑋+ = {𝑝5𝑟0},
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• Σ+ = {𝑒},
• −→+= {(𝑝4𝑟0, 𝑒, 𝑝5𝑟0)},
• 𝑋− = ∅, Σ− = ∅,−→−= ∅, 𝑋+

0 = ∅, 𝑋−
0 = ∅, 𝑋+

𝑚 = ∅, 𝑋−
𝑚 = ∅.

This model delta represents an added transition with an added event (𝑒) to an added
state (𝑝5𝑟0) from an existing state (𝑝4𝑟0). The model delta can be split into three
atomic parts. We observe that the added state and added event need to be added to
the automaton first, before the added transition can be added. Otherwise, the transition
goes to an undefined state, or uses an undefined event, which means the model delta is
not valid.

Therefore, the added states and added events are added first. Now, any state with
added or removed initial property and any state with added or removed marked property
will exist in this intermediate automaton. Also all added and removed transitions will
go between defined states by defined events. Thus these atomic adaptations can be
applied in any order. Once these adaptations have been applied, there will be no more
transitions towards removed states, or transitions over removed events. Then finally
the removed states and removed events can be removed, resulting in the final variant
automaton.

The functioning of the atomic TSS algorithms is based on the assumption that the
atomic adaptation is a valid model delta by the definitions in Section 2.3. To support
the correct functioning of Algorithm 2.11, proof that each atomic adaptation that is
applied is a valid model delta is given in Appendix B.

Note that even though the atomic adaptations of added/removed initial property,
added/removed marked property, and added/removed transition can be applied in any
order to come up with the same supervisor, the order in which they are applied may
impact the computational efficiency. We do not optimize this order here, as the optimal
order is likely highly dependent on the particular model and model delta. Therefore
the adaptations are applied in the order shown in Algorithm 2.11, where the atomic
TSS algorithms appear in the order in which they are introduced in Section 2.4.

2.5.2 Grouped Transformational Supervisor Synthesis

We observe that Algorithm 2.11 might not be very efficient when many atomic adap-
tations need to be considered. The main issue is that the SS and FRS algorithms are
repeatedly called for input sets that are considerably similar to each other. This may
notably occur when the plant description is given by a set of automata {𝑃1, 𝑃2, ..., 𝑃𝑛}.
For our synthesis purpose, we take the synchronous product 𝐴 = 𝑃1 | |𝑃2 | |...| |𝑃𝑛, as
mentioned in Section 2.2. If one of the automata 𝑃𝑖 is adapted in an atomic manner,
this might result in the model delta Δ to contain many atomic adaptations, due to
synchronicity. A lot of these atomic adaptations in the synchronous system will be of
the same type, e.g., an added transition in 𝑃𝑖 can induce many added transitions in 𝐴.
Therefore, we want to consider some adaptations at the same time as a group, rather
than applying them one-by-one.
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We partition the model delta into two disjoint subsets;Δ×⊎Δ◦ = Δ, where⊎ denotes
the disjoint union of the sets that are in the same field of both tuples. Δ× contains all
atomic adaptations that, when applying the respective atomic TSS algorithm, require
the SS or FRS algorithm. Δ◦ contains all other possible atomic adaptations outside
Δ× , these require no reachability searches. As a result of the construction of the
atomic TSS algorithms, all atomic adaptations in Δ◦ fit under the default cases of these
algorithms, and all adaptations in Δ× match one of the (non-default) case statements in
these algorithms. Formally, we can compute Δ× = (𝑋+,× , 𝑋−,× , Σ+,× , Σ−,× , −→+,× ,
−→−,× , 𝑋+,×

0 , 𝑋
−,×
0 , 𝑋

+,×
𝑚 , 𝑋

−,×
𝑚 ) for a model delta Δ = (𝑋+, 𝑋− , Σ+, Σ− , −→+, −→− ,

𝑋+
0 , 𝑋

−
0 , 𝑋

+
𝑚, 𝑋

−
𝑚) as follows:

• 𝑋+,× = ∅, 𝑋−,× = ∅, Σ+,× = ∅, Σ−,× = ∅
• −→+,×= {(𝑥or, 𝜎, 𝑥tar) | (𝑥or ∈ 𝑌 ∧ 𝑥tar ∈ 𝐺 \ 𝑌 ) ∨ (𝑥or ∈ 𝐺 ∧ 𝑥tar ∈ 𝑋 \ 𝐺 ∧ 𝜎 ∈

Σ𝑢) ∨ (𝑥or ∈ 𝑋 \ 𝐺 ∧ 𝑥or ≠ 𝑥tar)}
• −→−,×= {(𝑥or, 𝜎, 𝑥tar) | (𝑥or ∈ 𝑌 ∧ 𝑥tar ∈ 𝑌 ∧ 𝑥or ≠ 𝑥tar) ∨ (𝑥or ∈ 𝐺 \ 𝑌 ∧ 𝑥tar ∈

𝐺 ∧ 𝑥or ≠ 𝑥tar) ∨ (𝑥or ∈ 𝑋 \ 𝐺 ∧ 𝑥tar ∈ 𝑋 \ 𝐺 ∧ 𝜎 ∈ Σ𝑢 ∧ 𝑥or ≠ 𝑥tar)}
• 𝑋

+,×
0 = 𝑋+

0 ∩ (𝐺 \ 𝑌 )
• 𝑋

−,×
0 = 𝑋−

0 ∩ 𝑌

• 𝑋
+,×
𝑚 = 𝑋+

𝑚 ∩ (𝑋 \ 𝐺)
• 𝑋

−,×
𝑚 = 𝑋−

𝑚 ∩ 𝐺

Δ◦ is then constructed by all atomic adaptations in Δ outside Δ× .
When performing Grouped TSS (GTSS), we first want to apply all atomic adap-

tations in Δ◦, as we can observe in the atomic TSS algorithms that no reachability
searches need to be performed, and the supervisor states and good states remain un-
changed. After all atomic adaptations in Δ◦ have been applied, we find the first atomic
adaptation in Δ× for which, if we were to apply ITSS with model delta Δ× , one of the
case conditions in Algorithms 2.5-2.10 holds. Instead of performing the correspond-
ing case statements on only this atomic adaptation, within the case operation we first
construct a set Δ∼, that contains all atomic adaptations in Δ× for which that same case
condition in the same atomic TSS algorithm holds. So for example, if we have Δ× with
nonempty set 𝑋+,×

0 ∩ (𝐺 \𝑌 ), then 𝑋
+,×
0 ∩ (𝐺 \𝑌 ) is a set Δ∼. In addition to just atomic

adaptations, the rationale applied in Algorithms 2.5-2.10 still holds for sets Δ∼. So, we
take set Δ∼, and apply the respective case operation on this set, rather than doing this
for each atomic adaptation one-by-one. This might influence the supervisor states and
good states. Because the partitioning in Δ× and Δ◦ of Δ depends on those state sets,
Δ◦ might be nonempty if we recompute it for the atomic adaptations in Δ that have not
been applied yet. Thus, we once more apply adaptations in Δ◦, and reiterate until all
adaptations have been applied.

Figure 2.10 visualizes the grouped TSS method. First, all atomic adaptations are
applied that require no reachability search. Then, a set of atomic adaptations Δ∼ is
applied at once. This repetition continues until the entire model delta is applied. At
this point, the fixpoint for the variant supervisor has been found.

Algorithm 2.12 functions as described above. The added events and added states
are added in line 1. After these have been applied, they are removed from the model
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Figure 2.10: GTSS for non-atomic Δ.

Algorithm 2.12 Grouped Transformational Supervisor Synthesis (GTSS)
Input: Base automaton 𝐴 = (𝑋, Σ,−→, 𝑋𝑚, 𝑋0), base supervisor 𝑆 = (𝑌, Σ,−→𝑆

, 𝑌0, 𝑌𝑚), good states 𝐺, model delta Δ = (𝑋+, 𝑋− , Σ+, Σ− ,−→+,−→−

, 𝑋+
0 , 𝑋

−
0 , 𝑋

+
𝑚, 𝑋

−
𝑚)

Output: Variant supervisor 𝑆′ = (𝑌 ′, Σ′,−→′
𝑆
, 𝑌 ′

0 , 𝑌
′
𝑚), good states 𝐺′, variant au-

tomaton 𝐴′ = (𝑋 ′, Σ′,−→′, 𝑋 ′
0, 𝑋

′
𝑚)

1: 𝑋 ′ = 𝑋 ∪ 𝑋+, Σ′ = Σ ∪ Σ+, −→′=−→, 𝑋 ′
0 = 𝑋0, 𝑋

′
𝑚 = 𝑋𝑚

2: Δ = (∅, 𝑋− , ∅, Σ− ,−→+,−→− , 𝑋+
0 , 𝑋

−
0 , 𝑋

+
𝑚, 𝑋

−
𝑚)

3: 𝑌 ′ = 𝑌, 𝐺′ = 𝐺

4: repeat
5: Compute (Δ× ,Δ◦ = (𝑋+,◦, 𝑋−,◦, Σ+,◦, Σ−,◦,−→+,◦,−→−,◦, 𝑋+,◦

0 , 𝑋
−,◦
0 , 𝑋

+,◦
𝑚 ,

𝑋
−,◦
𝑚 )) for Δ, 𝑌 ′, and 𝐺′

6: −→′= (−→∪ −→+,◦)\ −→−,◦, 𝑋 ′
0 = (𝑋0 ∪ 𝑋

+,◦
0 ) \ 𝑋−,◦

0 , 𝑋 ′
𝑚 = (𝑋𝑚 ∪ 𝑋

+,◦
𝑚 ) \

𝑋
−,◦
𝑚

7: Δ = (∅, 𝑋− , ∅, Σ− ,−→+ \ −→+,◦,−→− \ −→−,◦, 𝑋+
0 \ 𝑋

+,◦
0 , 𝑋−

0 \ 𝑋
−,◦
0 , 𝑋+

𝑚 \
𝑋
+,◦
𝑚 , 𝑋−

𝑚 \ 𝑋−,◦
𝑚 )

8: Compute (𝑌 ′, 𝐺′,−→′, 𝑋 ′
0, 𝑋

′
𝑚) by applying one set of adaptations Δ∼ in Δ× at

once
9: Remove Δ∼ from Δ

10: until Δ = (∅, 𝑋− , ∅, Σ− , ∅, ∅, ∅, ∅, ∅, ∅)
11: 𝑆′ = (𝑌 ′, Σ′ \ Σ− ,−→∩ (𝑌 ′ × Σ × 𝑌 ′), 𝑋 ′

0 ∩ 𝑌 ′, 𝑋 ′
𝑚 ∩ 𝑌 ′)

12: 𝐴′ = (𝑋 ′ \ 𝑋− , Σ′ \ Σ− ,−→′, 𝑋 ′
0, 𝑋

′
𝑚)

13: return (𝑆′, 𝐺′, 𝐴′)

delta. As stated in Section 2.4.7, these adaptations do not influence the supervisor
states and good states, seen in line 3. The model delta is partitioned in Δ× and Δ◦

as specified earlier in this section. All adaptations in Δ◦ are applied in line 6, and
subsequently removed from the model delta in line 7. Note that 𝑌 ′ and 𝐺′ remain
unchanged. In line 8 a set of atomic adaptations Δ∼ is applied;𝑌 ′ and 𝐺′ are calculated
accordingly, and −→′, 𝑋 ′

0, and 𝑋 ′
𝑚 are consequently updated. The calculation of𝑌 ′ and

𝐺′ is done by using slightly modified versions of Algorithms 2.5-2.10 that accept sets
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of atomic adaptations. To avoid redundancy, we only provide the modified version of
Algorithm 2.5 in the example below. The other atomic TSS algorithms are converted
in the same manner. The set of atomic adaptations that has been applied, is removed
from Δ in line 9. Now Δ× and Δ◦ are calculated once again, because the partitioning
of the model delta is dependent on 𝑌 ′ and 𝐺′ which are now modified. The steps are
repeated until all atomic adaptations to−→′, 𝑋 ′

0, and 𝑋 ′
𝑚 have been applied. Finally, the

supervisor automaton for the variant model and the variant automaton are constructed
in lines 11 and 12 respectively.

Theorem 2.4 is proven for Algorithm 2.12 in Appendix C. In Appendix C also the
proof is given that Algorithm 2.12 respects the order of applying adaptations discussed
in Section 2.5.1.

Theorem 2.4 Given base automaton A, model deltaΔ, synthesis result (𝑌, 𝐺) = comp
uteFixpoint(𝐴), and (𝑆, �̂�, �̂�) =GTSS(𝐴,𝑌, 𝐺,Δ); then 𝑆 = 𝑆′, �̂� = 𝐺′, and
�̂� = 𝐴′, for (𝑆′, 𝐺′) =SS(𝐴′).

Example 2.3

Let us consider the case that Δ contains three atomic adaptations, all are states with
added initial property; 𝑋+

0 = {𝑥 𝛿,1, 𝑥 𝛿,2, 𝑥 𝛿,3}, with 𝑥 𝛿,1 ∈ 𝐺\𝑌 , 𝑥 𝛿,2 ∈ 𝐺\𝑌 , 𝑥 𝛿,3 ∈ 𝑌 .
In our running example this could be states 𝑝3𝑟0, 𝑝3𝑟1, and 𝑝2𝑟0 respectively. 𝑥 𝛿,1 and
𝑥 𝛿,2 require FRS, seen in line 3 of Algorithm 2.5, so they are in Δ× . 𝑥 𝛿,3 triggers
the default case in Algorithm 2.5, and thus it is in Δ◦. Therefore, 𝑥 𝛿,3 is applied first,
resulting in:

• 𝑋 ′
0 = 𝑋 ′

0 ∪ {𝑥 𝛿,3}
• 𝑋+

0 = 𝑋+
0 \ {𝑥 𝛿,3}

Note that 𝑌 ′ and 𝐺′ are not influenced as 𝑥 𝛿,3 is in Δ◦.
Now all adaptations inΔ◦ have been applied. 𝑋+

0 = {𝑥 𝛿,1, 𝑥 𝛿,2} remains in the model
delta. As 𝑥 𝛿,2 and 𝑥 𝛿,3 are both of the same case (line 2 of Algorithm 2.5), they are
in a set Δ∼ = {𝑥 𝛿,1, 𝑥 𝛿,2}. Consequently, these atomic adaptations will simultaneously
be applied. 𝑌 ′ and 𝐺′ are calculated in a modified version of Algorithm 2.5, given in
Algorithm 2.13. 𝑋 ′

0 and 𝑋+
0 are updated as follows:

• 𝑋 ′
0 = 𝑋 ′

0 ∪ Δ∼

• 𝑋+
0 = 𝑋+

0 \ Δ∼

After applying these adaptations, all atomic model adaptations in the model have
been applied and the model delta is empty, and 𝑌 ′ and 𝐺′ are the fixpoint result for
the variant automaton 𝐴′. For the running example, the good states would remain the
same, 𝐺′ = 𝐺, and 𝑌 ′ would be {𝑝0𝑟0, 𝑝2𝑟0, 𝑝3𝑟0, 𝑝3𝑟1, 𝑝2𝑟1}.
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Algorithm 2.13 Grouped Transformational Supervisor Synthesis for Added Initial
Property
Input: Base automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), supervisor states 𝑌 , good states 𝐺,

added initial states 𝑋+
0

Output: Variant supervisor states 𝑌 ′, variant good states 𝐺′

1: switch 𝑋+
0

2: case 𝑋+
0 ∩ (𝐺 \ 𝑌 ) ≠ ∅ do

3: Δ∼ = 𝑋+
0 ∩ (𝐺 \ 𝑌 )

4: 𝑌 ′ = FRS(𝐺, Σ,−→, 𝑌 ∪ Δ∼)
5: 𝐺′ = 𝐺

6: default do
7: 𝑌 ′ = 𝑌, 𝐺′ = 𝐺

8: end switch
9: return (𝑌 ′, 𝐺′)

2.6 Experiments

As stated before, we can deal with any valid base automaton and model delta, so the
TSS algorithm will always find a supervisor for the variant model. However, there
are no guarantees that by applying TSS, we will find the supervisor more efficiently
relative to simply performing a completely new synthesis. Therefore, we perform some
experiments to investigate the potential reduction in computational effort by applying
TSS.

For the experiments, a proof-of-concept implementation of the above synthesis
algorithms and models of the case studies we describe below have been made in
Matlab1.

Before discussing case studies, we provide some practical notes in Section 2.6.1.
In Section 2.6.2 we consider the Transfer Line model as an academic case study, and
in Section 2.6.3 we consider a Lithography Machine Wafer Logistics controller as an
industrial case study.

2.6.1 Practical notes

A proof-of-concept Matlab implementation of the above algorithms has been made.
One modification from Thuijsman and Reniers (2020) to this chapter, is that now a linear

1 The algorithms and models can be found here: https://github.com/sbthuijsman/
JDEDS_TSS

https://github.com/sbthuijsman/JDEDS_TSS
https://github.com/sbthuijsman/JDEDS_TSS
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complexity reachability search algorithm is used instead of quadratic. This is to enable
a more realistic effort comparison between SS and TSS since linear search algorithms
are more widely used than quadratic. In Thuijsman and Reniers (2020), a counter in the
reachability search algorithms was introduced to express and compare the time effort
of performing synthesis. After implementing the new reachability search algorithms, it
was found that the previously used metric was not representative anymore of the time
effort of performing synthesis. Experiments were performed with counters at several
locations in the code, however none of these counters gave a proper representation
of the time effort. Therefore, wall-clock time is used here to represent the time effort
of performing synthesis. In order to enable fair comparisons between running times,
obvious inefficient parts of the algorithm were improved. Still, using wall clock time
instead of a counter makes the results more dependent on the implementation. The
experiments were performed on an HP ZBook Studio G4 laptop, using an Intel i7
processor clocked at 2.8 GHz. Regarding memory, Matlab used around 1 GB of
memory, regardless of the model size. Filesizes to store the automata and model deltas
ranged from a few KB to a few MB.

Each synthesis algorithm requires a monolithic automaton as input, and the trans-
formational synthesis algorithms require a model delta to the variant automaton. In
practice, these inputs may not be readily available. E.g., the monolithic automaton 𝐴

needs to be constructed from a component-wise specification, as discussed in Sec-
tion 2.2. This is also the case for the conducted experiments. The inputs are computed
in preparation of the experiments. We assume that for the transformational method,
the input automaton 𝐴 is maintained for the next iteration. For each transformational
synthesis, 𝐴′ is constructed beforehand in order to compute the model delta. Note that
𝐴′ also needs to be constructed for the baseline case of performing a completely new
synthesis. Computing the model delta is done by simple matrix subtractions and re-
quires negligible computational effort. The preparatory computations are not included
in the computational effort measurements, because this matches the experiments to
the monolithic level discussed in the theoretical part and because computing the syn-
chronous product is required for all methods.

The construction of 𝐴 can be done by computing the complete synchronous product
as shown in Equation 2.1. Practically however, often only the reachable part of 𝐴

is constructed. Note that the computed supervisor is the same, as it only contains
reachable states. The good state set 𝐺 is influenced by only using the reachable part of
𝐴. Even when all states in 𝑋 are reachable, it is still beneficial to store set 𝐺 next to 𝑌 .
When states are removed from 𝐺 during synthesis, not all states in 𝐺 may be reachable
anymore through states in 𝐺. The model delta may be impacted by considering only
the reachable parts of the automata or not. Also the computational effort of performing
transformational or non-transformational supervisor synthesis may be impacted. Note
that the transformational synthesis method works for both cases, as it allows for any
pair of automata 𝐴 and 𝐴′, independent of how they are constructed. We consider both
options in the case studies below.
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2.6.2 Transfer Line

We first consider the Transfer Line model from Wonham and Cai (2019) as an academic
case study. In this model, products are being processed by two machines. Machine
M1 takes products from the environment, and processes them. After processing, M1
places the product in buffer B1, which can hold up to three products. Machine M2
takes products from B1, processes them, and places them in buffer B2, which can hold
only one product. Test unit TU takes products from B2, and tests them. If the product
is accepted, it is released from the system. If the product is rejected, it goes back to B1.
M1, M2, and TU start by a controllable event, and terminate by an uncontrollable event.
Same as in Wonham and Cai (2019), M1, M2, and TU are modeled by plant automata
and B1 and B2 by requirement automata. These automata are shown in Figure 2.11.
The synchronous product over all automata is taken. For plantification, a single sink
state is added to this synchronous product, to which all uncontrollable transitions are
created whenever one of the requirement automata blocks an uncontrollable event of
the plant. The resulting base automaton TL has 65 states and 200 transitions. Supervisor
synthesis (Algorithm 2.1) for this base automaton requires 0.59 milliseconds, which is
the mean runtime of 100 executions of SS.

The following five variant automata, TL′
1 to TL′

5, have been generated by making
adaptations to TL.

• TL′
1: Reduced capacity of B1 to two products: state 𝑥3 of automaton 𝐵1 removed,

and transitions (𝑥2, stop M1, 𝑥3), (𝑥2, reject, 𝑥3), (𝑥3, start M2, 𝑥2) removed.
• TL′

2: Increased capacity of B2 to two products: added a state 𝑥2 and transitions
(𝑥1, stop M2, 𝑥2), (𝑥2, start TU, 𝑥1) to B2.

• TL′
3: B1 initially holds one product instead of zero: removed initial property of state

𝑥0, and added initial property to state 𝑥1 in automaton B1.
• TL′

4: TU may send the product to B2 upon completion: added event ‘retest’, added
transition (𝑥1, retest, 𝑥2) to TU, and added transition (𝑥0, retest, 𝑥1) to B2.

𝑥0 𝑥1

start M1

stop M1

(a) M1.

𝑥0 𝑥1 𝑥2 𝑥3

stop M1,
reject

start M2

stop M1,
reject

start M2

stop M1,
reject

start M2

(b) B1.

𝑥0 𝑥1

start M2

stop M2

(c) M2.

𝑥0 𝑥1

stop M2

start TU

(d) B2.

𝑥0 𝑥1

start TU

accept, reject

(e) TU.

Figure 2.11: Transfer Line automata.
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• TL′
5: Capacity of B1 and B2 is two products each: removed state 𝑥3 and transitions

(𝑥2, stop M1, 𝑥3), (𝑥2, reject, 𝑥3), (𝑥3, start M2, 𝑥2) from B1, state 𝑥2 and transitions
(𝑥1, stop M2, 𝑥2), (𝑥2, start TU, 𝑥1) are added to B2.

As the TSS methods are on a monolithic state space, these adaptations for the indi-
vidual automata are converted to adaptations on the synchronous state space for the
experiments, as discussed in Section 2.6.1. For the base model and each variant model,
all states constructed during the synchronous product (Equation 2.1) are reachable.
Therefore, for these results it does not matter if 𝐴 is completely constructed as in
Equation 2.1, or only the reachable part. The experiment cases we presented are the
same as presented in Thuijsman and Reniers (2020), however the experiments are
executed differently as pointed out in Section 2.6.1.

For each of the variant automata, the number of states and transitions, as well as the
sizes of the nonempty sets in the model delta, are given in Table 2.1. One might expect
that for constructing TL′

1 only states and transitions would be removed. However, it can
be observed that some transitions have been added. These are new transitions towards
the sink state, as the buffer now may overflow from different states. For each variant
model, a supervisor has been synthesized three times. First, doing a completely new
synthesis by applying SS given in Algorithm 2.1, the second and third by using the
synthesis result of the base automaton and applying ITSS (Algorithm 2.11), and GTSS
(Algorithm 2.12) respectively. For each model, the three synthesized supervisors have

Table 2.1: Experimental results of performing SS, ITSS, and GTSS on five variant
models of the Transfer Line model.

Evolution Variant
model size

Model delta
size

Var. model runtime [ms] % change
GTSS

from SSSS ITSS GTSS

TL to TL′
1

|𝑋′ | = 49
| −→′ | = 148

|𝑋− | = 16
| −→+ | = 16
| −→− | = 68

0.41 15.08 2.40 487

TL to TL′
2

|𝑋′ | = 97
| −→′ | = 308

|𝑋+ | = 32
| −→+ | = 124
| −→− | = 16

0.63 53.35 4.22 573

TL to TL′
3

|𝑋′ | = 65
| −→′ | = 200

|𝑋+
0 | = 1

|𝑋−
0 | = 1 0.41 0.24 0.36 -13

TL to TL′
4

|𝑋′ | = 65
| −→′ | = 232

|Σ+ | = 1
| −→+ | = 32 0.39 7.16 1.11 184

TL to TL′
5

|𝑋′ | = 73
| −→′ | = 228

|𝑋+ | = 24
|𝑋− | = 16
| −→+ | = 108
| −→− | = 80

0.47 56.55 5.44 1058
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the exact same automaton specification. For each of the syntheses, the runtime is shown
in milliseconds in Table 2.1. This is the mean over 100 runs for each synthesis. The
rightmost column shows the percentage change in runtime of using GTSS compared to
SS. A positive value indicates an increase in computational effort, and a negative value
indicates a reduction. Note that the efficiency of the TSS algorithms will be influenced
by the order in which the adaptations are applied, this has not been optimized for the
experiments as this would entail a completely new study.

We observe that in most cases applying ITSS requires considerably more runtime
than applyingSS. This was already addressed in Section 2.5, and led to the introduction
of theGTSS algorithm. We observe that for this use case, for most variant modelsGTSS
requires considerably less runtime than ITSS, but still requires more runtime than SS.
Regardless, the absolute runtimes are very low for this small Transfer Line system. To
further investigate the efficiency of the transformational algorithms, a larger system is
studied next, in Section 2.6.3.

2.6.3 Lithography Machine Wafer Logistics

Next we present an industrial case study. This case study is performed using models
from ASML. ASML is the world-leading manufacturer of lithography machines, which
are used in the semiconductor industry to produce integrated circuits. These circuits
are printed on silicon wafers. The movement of these wafers through the machine
is called the Wafer Logistics, which is studied in van der Sanden et al. (2015) and
van der Schriek (2018). The controller of the Wafer Logistics is constructed using
Analytical Software Design (ASD) (Broadfoot and Hopcroft 2003). van der Schriek
(2018) presents a study on how these ASD models of the components of the Wafer
Logistics controller evolve over time. In this study equivalent automata models are
constructed in CIF (van Beek et al. 2014), CIF is part of the Eclipse Supervisory
Control Engineering Toolkit™), that are suitable for supervisory controller synthesis.
These automata models are constructed for the variation points that the ASD models
evolved to over a number of years. We use these automata models here, to investigate
the efficiency of TSS in this industrial setting.

The control of the Wafer Logistics is modular, i.e., the various physical components
are steered by multiple supervisory controllers. Together these controllers and compo-
nents operate in synchrony to achieve the desired behavior. Since TSS is a monolithic
method, for these experiments we just consider synthesizing a supervisory controller
for a single component. Component B of van der Schriek (2018) is selected to perform
the experiments on, based on its large but manageable state space size, the number of
variation points, and the variety within the model deltas. The first 11 variation points
of this model are taken, to investigate 10 adaptations. Opposed to the Transfer Line
experiment, where each variant model was an adaptation of the same base model, we
now consider incremental adaptations. So we start with the evolution from 𝐵1 to 𝐵2,
then from 𝐵2 to 𝐵3, from 𝐵3 to 𝐵4, and so on. To provide an indication of the model
size, 𝐵1 contains 5 plant automata, that respectively have:
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1. 2 states and 2 transitions,
2. 2 states and 4 transitions,
3. 2 states and 3 transitions,
4. 15 states and 72 transitions,
5. 16 states and 128 transitions.

Model 𝐵1 also contains 4 requirement automata, that respectively have:

1. 2 states and 2 transitions,
2. 2 states and 2 transitions,
3. 3 states and 5 transitions,
4. 3 states and 5 transitions.

Additionally 3 state transition exclusion invariant requirements (Markovski et al. 2010)
are specified. After computing the synchronous product (Equation 2.1), and adding a
sink state for plantification, 𝐵1 has 69 121 states and 1 038 228 transitions. Performing
SS (Algorithm 2.1) requires 129 milliseconds, which is the mean over 100 executions
of SS.

Unlike the Transfer Line model, for the models of Component B not all states are
reachable when automaton 𝐴 is constructed by Equation 2.1. We perform two studies,
in Section 2.6.3.1 we consider the case that the complete automaton is used as an input
to the synthesis algorithms and in Section 2.6.3.2 we consider that only the reachable
part of the automaton is used as input.

2.6.3.1 Complete state space

In this section we perform synthesis on the complete state space that is constructed
by taking the synchronous product of the Component B Wafer Logistics model. The
experimental results are presented in Table 2.2. ITSS has not been performed, as its
inefficiency compared to GTSS has been discussed in Section 2.5.2, and shown in the
Transfer Line experiments. Each runtime value is the mean over 100 syntheses. We
observe that for all evolutions in this case study, applying GTSS is less efficient than
applying SS to compute the supervisor for the variant model.

2.6.3.2 Reachable state space

In this section we perform synthesis using only the reachable part of the synchronous
product of the Component B Wafer Logistics model. The complete state space of
model B1 consists of 69 121 states and 1 038 228 transitions. The reachable part of this
automaton has 59 185 states and 888 780 transitions. Note that also the model delta
sizes are influenced by only considering the reachable part of the base and variant
model automata. The results are shown in Table 2.3. Each runtime value is the mean
over 100 syntheses. Once more, for all evolutions in this experiment applying GTSS
is less efficient than applying SS to compute the supervisor for the variant model.
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Compared to the experiment on the complete state space, discussed in Section 2.6.3.1,
the absolute time to perform synthesis is reduced for both SS and GTSS.

Table 2.2: Experimental results of performing SS and GTSS for evolution of the
complete Component B Wafer Logistics model.

Evolution Variant
model size

Model delta
size

Var. model runtime [ms] % change
GTSS

from SSSS GTSS

𝐵1 to 𝐵2 |𝑋′ | = 69 121
| −→′ | = 1 042 548

|Σ+ | = 1
| −→+ | = 4 320 138 140 1

𝐵2 to 𝐵3 |𝑋′ | = 77 761
| −→′ | = 1 154 772

|𝑋+ | = 8 640
|Σ+ | = 8

| −→+ | = 112 224
153 1256 723

𝐵3 to 𝐵4 |𝑋′ | = 73 441
| −→′ | = 1 102 980

|𝑋− | = 4 320
|Σ− | = 1

| −→− | = 51 792
147 1126 668

𝐵4 to 𝐵5 |𝑋′ | = 73 441
| −→′ | = 1 121 412

|Σ+ | = 4
| −→+ | = 18 432 146 230 58

𝐵5 to 𝐵6 |𝑋′ | = 73 441
| −→′ | = 1 121 412

|Σ+ | = 1
|Σ− | = 1

| −→+ | = 4 320
| −→− | = 4 320

147 270 83

𝐵6 to 𝐵7 |𝑋′ | = 73 441
| −→′ | = 1 130 052

|Σ+ | = 3
|Σ− | = 1

| −→+ | = 12 960
| −→− | = 4 320

147 318 117

𝐵7 to 𝐵8 |𝑋′ | = 78 337
| −→′ | = 1 200 980

|𝑋+ | = 4 896
|Σ+ | = 5
|Σ− | = 1

| −→+ | = 75 824
| −→− | = 4 896

156 973 522

𝐵8 to 𝐵9 |𝑋′ | = 73 441
| −→′ | = 1 102 980

|𝑋− | = 4 896
|Σ− | = 10

| −→− | = 98 000
146 1650 1031

𝐵9 to 𝐵10 |𝑋′ | = 78 337
| −→′ | = 1 200 980

|𝑋+ | = 4 896
|Σ+ | = 10

| −→+ | = 98 000
155 960 521

𝐵10 to 𝐵11 |𝑋′ | = 83 233
| −→′ | = 1 267 012

|𝑋+ | = 4 896
|Σ+ | = 4

| −→+ | = 66 032
165 773 368
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Table 2.3: Experimental results of performing SS and GTSS for evolution of the
reachable part of the Component B Wafer Logistics model.

Evolution Variant
model size

Model delta
size

Var. model runtime [ms] % change
GTSS

from SSSS GTSS

𝐵1 to 𝐵2 |𝑋′ | = 59 185
| −→′ | = 892 460

|Σ+ | = 1
| −→+ | = 3 680 94 109 16

𝐵2 to 𝐵3 |𝑋′ | = 66 545
| −→′ | = 988 252

|𝑋+ | = 7 360
|Σ+ | = 8

| −→+ | = 95 792
106 1065 901

𝐵3 to 𝐵4 |𝑋′ | = 62 865
| −→′ | = 944 036

|𝑋− | = 3 680
|Σ− | = 1

| −→− | = 44 216
100 848 751

𝐵4 to 𝐵5 |𝑋′ | = 62 865
| −→′ | = 959 732

|Σ+ | = 4
| −→+ | = 15 696 100 188 88

𝐵5 to 𝐵6 |𝑋′ | = 62 865
| −→′ | = 959 732

|Σ+ | = 1
|Σ− | = 1

| −→+ | = 3 680
| −→− | = 3 680

101 182 80

𝐵6 to 𝐵7 |𝑋′ | = 62 865
| −→′ | = 967 092

|Σ+ | = 3
|Σ− | = 1

| −→+ | = 11 040
| −→− | = 3 680

100 227 126

𝐵7 to 𝐵8 |𝑋′ | = 67 033
| −→′ | = 1 027 520

|𝑋+ | = 4 168
|Σ+ | = 5
|Σ− | = 1

| −→+ | = 64 596
| −→− | = 4 168

108 771 616

𝐵8 to 𝐵9 |𝑋′ | = 62 865
| −→′ | = 944 036

|𝑋− | = 4 168
|Σ− | = 10

| −→− | = 83 484
99 1266 1175

𝐵9 to 𝐵10 |𝑋′ | = 67 033
| −→′ | = 1 027 520

|𝑋+ | = 4 168
|Σ+ | = 10

| −→+ | = 83 484
107 814 663

𝐵10 to 𝐵11 |𝑋′ | = 71 201
| −→′ | = 1 083 780

|𝑋+ | = 4 168
|Σ+ | = 4

| −→+ | = 56 260
112 649 478
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2.6.4 Correction

Current chapter is based on Thuijsman and Reniers (2022). Unfortunately, the algo-
rithmic implementation to obtain the experimental results presented in Thuijsman and
Reniers (2022) was flawed. Although the algorithms were still functionally correct,
because of the flawed implementation their computational efficiency was significantly
worse than that of a proper implementation. Since we aim to improve computational ef-
ficiency, and use experiments to indicate that improvement, the implementation should
be properly efficient. Note that the theoretical parts of Thuijsman and Reniers (2022)
are still correct, the flaw only affects the timing measurements in the experimental part
of the paper. The current chapter contains the results using an improved implemen-
tation. A Correction to Thuijsman and Reniers (2022) is in press. In this section, we
explain the flaw and discuss what can be learned from comparing the efficiency of the
two implementations.

The reachability search algorithms (Algorithms 2.3 and 2.4) were not properly
implemented. This is because an improper data structure was used to store the transition
relation. In the flawed implementation, an edge list structure was used: a list of triples,
each specifying an origin state, event, and target state. Using an edge list, each time
the neighbors of some state are evaluated (i.e., lines 6-7 in Algorithm 2.3), an iteration
is performed over all transitions, leading to a complexity of O(|𝑋 | · | −→ |) for the
algorithm overall. Instead, the transition relation should be stored using an adjacency
list: each index in the list corresponds to a state index and stores all neighbors of that
state. When an adjacency list is used, no iteration is required to find the neighbors of a
state, and a complexity of O(|𝑋 | + | −→ |) for the reachability search can be obtained
(Kleinberg and Tardos 2005).

The implementation has been corrected. The code repository2 has been updated
accordingly. We have repeated the experiments from Thuijsman and Reniers (2022).
Tables 2.1, 2.2, and 2.3 respectively present the updated results relative to Tables 1, 2,
and 3 in Thuijsman and Reniers (2022).

Note that both SS and TSS complete the experimental cases much quicker using the
improved implementation. Nevertheless, it is interesting to note that in Thuijsman and
Reniers (2022), using the flawed implementation, generally TSS was more efficient
than SS, and after correcting generally SS was more efficient than TSS. There are two
reasons that explain why TSS becomes less efficient relative to SS when using the
improved implementation instead of the flawed one:

1. TSS generally divides the synthesis problem into multiple smaller syntheses and
reachability searches. Such a divide-and-conquer strategy can generally be ex-
pected to be more effective for algorithms with a higher (worst-case) complexity.
For example, consider a problem of size 𝑛 = 100, and an algorithm that solves
this problem in 𝑛2 steps, monolithically solving requires 1002 = 104 steps. If we
can divide this problem into ten subproblems, each of size 10, then the problem
can be solved in 10 · 102 = 103 steps, which is more efficient than the monolithic

2 https://github.com/sbthuijsman/JDEDS_TSS

https://github.com/sbthuijsman/JDEDS_TSS
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solution. However, if we have an algorithm that solves the problem in 𝑛 steps, both
the monolithic and divided solution require 100 steps. So, dividing the problem
becomes less effective when lowering the algorithm’s complexity. Hence, the ef-
ficiency of TSS relative to SS became worse when lowering the complexity of the
reachability searches.

2. Operations necessary for TSS but not SS, such as evaluating the switch-cases in
the atomic TSS algorithms, relatively take more time when using the adjacency
list implementation. Note that just speeding up the reachability search already
increased the time these overhead operations take relative to the total computation
time. Furthermore, operations to change the transition function, that are likely
more frequently performed in TSS than SS, are less efficient for the adjacency
list implementation relative to the edge list implementation. For example, in the
flawed implementation just a single edge list was maintained to keep track of the
current system instance, but in the improved implementation three adjacency lists
(all transitions, all transitions reverse, and all uncontrollable transitions reverse)
need to be maintained throughout.

2.7 Conclusions

Supervisory controller synthesis is a means to compute correct-by-construction con-
trollers for discrete-event systems. As these systems evolve over time, we want to be
able to efficiently generate a supervisor each time the system is adapted. We consider
the case that a supervisor has been synthesized for a given base model, after which this
base model is adapted to some variant model. Model deltas are used to describe the
difference between the base and the variant model. A notion of atomic adaptations is
introduced, where the model delta can be described by a single, indivisible change in
the automaton specification. For these atomic model adaptations, algorithms are pro-
vided to compute the supervisor for the variant model in a transformational manner.
The atomic model adaptations can be iterated over to transformationally compute a
supervisor for any model delta that contains a number of atomic model adaptations.
It is discussed why, and shown in experiments that, only purely iterating over these
atomic adaptations is not efficient. Therefore a method is presented where groups of
adaptations are considered. Indeed it is experimentally shown that the grouped method,
GTSS, was more efficient than the iterative method, ITSS.

Even though GTSS may be more efficient than ITSS, the experiments show that
GTSS still remains less efficient than the basic SS method. Perhaps when the model
delta is very small, or the model delta is such that (almost) no calculations need to
be performed, i.e., for some model delta Δ× as constructed in Section 2.5.2 is empty,
then possibly TSS may outperform basic SS. However, as the experiments point out,
this is in practice typically not the case. Therefore, based on these results, it is not
recommended to apply TSS as presented in this chapter, but rather just use the basic
SS method, also for systems under evolution.



Chapter 3
Transformational supervisor

localization

Abstract Supervisor localization can be applied to distribute a monolithic supervi-
sor into local supervisors. Performing supervisor localization can be computationally
costly. In this work, we consider systems that evolve over time. We study how to reuse
the results from a previous supervisor localization, to more efficiently compute local
supervisors when the system is adapted. We call this approach transformational su-
pervisor localization, and present algorithms for the procedure. The efficiency of the
procedure is experimentally evaluated.

3.1 Introduction

Supervisory control theory, as introduced by Ramadge and Wonham (1987), is a model-
based approach to control discrete-event (dynamic) systems. Typically, cyber-physical
systems are modeled. By applying supervisor synthesis on a model of an uncontrolled
system (plant) and system requirements, a correct-by-construction supervisor is ob-
tained. This supervisor enables/disables events such that the requirements are always
adhered to, and some more behavioral properties apply to the controlled system such as:
nonblockingness, controllability, and maximal permissiveness (Cassandras and Lafor-
tune 2021). The most straightforward approach is monolithic supervisor synthesis,
which computes a single global supervisor that controls all components and enforces
all requirements.

Large, global controllers may be undesirable in practice. As such, many modern
control systems are distributed over a number of agents (Moormann et al. 2021). These
agents may act locally based on their own observations and control strategies. Through
supervisor localization (SL), introduced by Cai and Wonham (2010), local supervisors
for the individual agents are computed from the monolithic supervisor, that together

This chapter is strongly based on: Thuijsman, Sander B.; Cai, Kai; Reniers, Michel A.: Transforma-
tional supervisor localization. In: IEEE Control Systems Letters 7 (2023), p.1682–1687. IEEE. – URL
https://doi.org/10.1109/LCSYS.2023.3278248
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Figure 3.1: Control architecture using local supervisors.

achieve the same controlled behavior as the monolithic supervisor. Figure 3.1 shows a
control architecture of a system using three local supervisors, which is a modification
from the monolithic control architecture shown in Figure 1.2. The controlled behavior
of the system using local supervisors is the same as that of the system using a monolithic
supervisor. However, each of the local supervisors is smaller and relates to only a part
of the system, improving the interpretability and maintainability of the control system.

SL is an extension to supervisor reduction, introduced by Su and Wonham (2004),
which converts a supervisor automaton to a smaller automaton (with less states) that is
control equivalent to the original automaton. We present preliminaries on supervisor
localization/reduction in Section 3.2.

In this work, we slightly modify the SL algorithm from Su and Wonham (2004)
and Cai and Wonham (2010) to be able to initialize it in a way such that it has to
do less calculations/loops, which benefits the method that we are going to introduce.
Furthermore, because it is desirable to obtain small (in terms of number of states) local
supervisors, we show that the local supervisors obtained by SL are maximally reduced.
These novel extensions to SL are presented in Section 3.3.

In Chapter 2 a transformational supervisor synthesis approach was introduced.
Such a transformational approach deals with cyber-physical systems that evolves over
time For a system that evolves over time, results of previous computations, such
as synthesis, may not be valid anymore once the system is adapted. In this case,
transformational methods can be applied that reuse the output of previous calculations
to more efficiently compute the result of some algorithm, rather than computing it from
scratch. The general idea is that the previous result is transformed into the new result,
using knowledge on how the system is adapted.

In this chapter, we investigate transformational supervisor localization (TSL). We
assume a base model, on which (T)SL has already been performed. The base model
is adapted such that a variant model is obtained. The goal is to use the localization
output of the base model, to more efficiently compute local supervisors for the variant
model. The formal problem definition is given in Section 3.4. We present algorithms
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for TSL and prove their correctness in Section 3.5. The computational benefit of TSL
is evaluated by a use case in Section 3.6.

3.2 Preliminaries

In the following we discuss the preliminaries on SL. We first provide automata defini-
tions for plant and (monolithic) supervisor. The plant is assumed to be a composition
of agents. The goal is to generate local supervisors that each supervise an agent. This
is done by grouping states of the monolithic supervisor into cells, that are consistent
in the enablement and disablement of events controlled by the respective agent. These
cells are the states of the local supervisor. Together, the behavior of the system under
control by the local supervisors is the same as that of the monolithic supervisor. For
details we refer to Cai and Wonham (2010).

The plant is defined by a finite state automaton 𝐺 = (𝑄, Σ, 𝛿, 𝑞0, 𝑄𝑚), where 𝑄 is
the finite state set, Σ is the finite event set, 𝑞0 is the initial state, and 𝑄𝑚 is the subset of
marked states. 𝛿 : 𝑄 × Σ → 𝑄 is the (partial) transition function. We denote 𝛿(𝑞, 𝜎)!
if 𝛿(𝑞, 𝜎) is defined. We extend this notation to 𝛿 : 𝑄 × Σ∗ → 𝑄, and write 𝛿(𝑞, 𝑠) for
𝑠 ∈ Σ∗ to indicate sequences of transitions. We consider the case that 𝐺 is formed by a
composition of 𝑛 agents, that each have local events: ¤⋃

𝑘∈{1,...,𝑛}Σ𝑘 = Σ, from which
a subset are locally controllable Σ𝑐,𝑘 ⊆ Σ𝑘 . So, agent 𝑘 has local events Σ𝑘 , from
which Σ𝑐,𝑘 are the locally controllable events. We assume a monolithic supervisor is
provided for plant 𝐺, defined by finite state automaton 𝑆 = (𝑋, Σ, b, 𝑥0, 𝑋𝑚). For the
purpose of the algorithms in this work, we assume the states are numbered/indexed,
i.e., 𝑋 = {𝑥0, 𝑥1, ...}.

We use the following functions from Cai and Wonham (2010):

• 𝐸 : 𝑋 → 2Σ, where 𝐸 (𝑥) = {𝜎 ∈ Σ |b (𝑥, 𝜎)!}.
• 𝐷𝑘 : 𝑋 → 2Σ𝑐,𝑘 , and 𝐷𝑘 (𝑥) = {𝜎 ∈ Σ𝑐,𝑘 |¬b (𝑥, 𝜎)! ∧ (∃𝑠 ∈ Σ∗) : (b (𝑥0, 𝑠) =

𝑥 ∧ 𝛿(𝑞0, 𝑠𝜎)!)}.
• 𝑀 : 𝑋 → {0, 1}, where 𝑀 (𝑥) = 1 iff 𝑥 ∈ 𝑋𝑚.
• 𝑇 : 𝑋 → {0, 1}, where 𝑇 (𝑥) = 1 iff (∃𝑠 ∈ Σ∗) : (b (𝑥0, 𝑠) = 𝑥 ∧ 𝛿(𝑞0, 𝑠) ∈ 𝑄𝑚).

𝐸 indicates events enabled by the supervisor in state 𝑥. 𝐷𝑘 indicates the events from
Σ𝑐,𝑘 disabled by the supervisor in state 𝑥. 𝑀 determines if a state is marked in 𝑆, and
𝑇 determines if some corresponding state is marked in 𝐺.

We define control consistency relation R𝑘 ⊆ 𝑋×𝑋 (for agent 𝑘): for every 𝑥, 𝑥′ ∈ 𝑋 ,
(𝑥, 𝑥′) ∈ R𝑘 iff:

𝐸 (𝑥) ∩ 𝐷𝑘 (𝑥′) = ∅ = 𝐸 (𝑥′) ∩ 𝐷𝑘 (𝑥) (3.1)
𝑇 (𝑥) = 𝑇 (𝑥′) =⇒ 𝑀 (𝑥) = 𝑀 (𝑥′) (3.2)

Cover C𝑘 = {𝑋𝑖 ⊆ 𝑋 |𝑖 ∈ 𝐼𝑘}, where 𝐼𝑘 is an index set suitable to the amount of sets
𝑋𝑖 in cover C𝑘 , is called a control cover with respect to some Σ𝑘 iff:
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(𝑖) (∀𝑖 ∈ 𝐼𝑘 ,∀𝑥, 𝑥′ ∈ 𝑋𝑖) (𝑥, 𝑥′) ∈ R𝑘

(𝑖𝑖) (∀𝑖 ∈ 𝐼𝑘 ,∀𝜎 ∈ Σ)
[ (
(∃𝑥 ∈ 𝑋𝑖)b (𝑥, 𝜎)!

)
=⇒(

(∃ 𝑗 ∈ 𝐼𝑘) (∀𝑥′ ∈ 𝑋𝑖)b (𝑥′, 𝜎)! =⇒ b (𝑥′, 𝜎) ∈ 𝑋 𝑗

) ]
If a control cover C is a partition on 𝑋 , it is called a control congruence.
In this work we frequently address a singleton cover C = {{𝑥}|𝑥 ∈ 𝑋}, which

trivially always is a control congruence.
We call a set of states in a cover a cell. In our notation we use [𝑥]C to refer to the

set of states contained in the same cell as 𝑥 in cover C, or simply [𝑥] if there is no
ambiguity.

Given a control congruence C𝑘 , a local supervisor 𝐿𝑂𝐶𝑘 is computed as follows
(simplified from Su and Wonham (2004)): 𝐿𝑂𝐶𝑘 = (C𝑘 , Σ, [𝑘 , 𝑦0,𝑘 , 𝑌𝑚,𝑘), where:
[𝑘 : C𝑘 × Σ → C𝑘 , with [𝑘 (𝜋1, 𝜎) = 𝜋2 iff (∃𝑥 ∈ 𝜋1) : b (𝑥, 𝜎) ∈ 𝜋2; 𝑦0,𝑘 = [𝑥0]; and
𝑌𝑚,𝑘 = {[𝑥] |𝑥 ∈ 𝑋𝑚}. A local supervisor is deterministic as a result of condition (ii)
for the control cover.

The set of local supervisors {𝐿𝑂𝐶𝑘 |1≤𝑘≤𝑛} constructed in this way is control
equivalent to 𝑆 with respect to 𝐺 (Cai and Wonham 2010):

𝐿 (𝐺) ∩
⋂

1≤𝑘≤𝑛𝐿 (𝐿𝑂𝐶𝑘) = 𝐿 (𝑆) ∩ 𝐿 (𝐺) (3.3)

𝐿𝑚 (𝐺) ∩
⋂

1≤𝑘≤𝑛𝐿𝑚 (𝐿𝑂𝐶𝑘) = 𝐿𝑚 (𝑆) ∩ 𝐿𝑚 (𝐺) (3.4)

𝐿 (𝐴) and 𝐿𝑚 (𝐴) respectively denote the language and the marked language of au-
tomaton 𝐴 (Cassandras and Lafortune 2021).

3.3 Supervisor localization

In the process of SL, for each agent, a control congruence is computed and subse-
quently the local supervisor is generated. We can use the definitions and functions
from Section 3.2 to perform the localization algorithm, shown in Algorithm 3.1, which
makes calls to Algorithm 3.2 (Cai and Wonham 2010)1. Note that, e.g., the 𝑋 on line
1 implicitly originates from automaton 𝑆. A ‘continue’ ends current execution and the
function goes to the next iteration of the nearest enclosing for-loop. A ‘return’ ends
current call to the algorithm and the specified values are returned to the parent routine.

1 Relative to Su and Wonham (2004) and Cai and Wonham (2010) some minor changes have been
made to lines 1,2, and 7 of Algorithm 3.2 for correctness.
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Algorithm 3.1 localize
Input: 𝐺, 𝑆, Σ𝑐,𝑘 , initial C𝑘

Output: Control congruence C𝑘

1: for 𝑖 = 0 to |𝑋 | − 2 do
2: if 𝑖 > min({𝑚 |𝑥𝑚 ∈ [𝑥𝑖]}) then continue; end
3: for 𝑗 = 𝑖 + 1 to |𝑋 | − 1 do
4: if 𝑗 > min({𝑚 |𝑥𝑚 ∈ [𝑥 𝑗 ]}) then continue; end
5: 𝑊 = ∅
6: (flag,𝑊) = check merge(𝑥𝑖 , 𝑥 𝑗 ,𝑊, 𝑖, b, C𝑘)
7: if flag then
8: C𝑘 =

{
[𝑥] ∪⋃{[𝑥′] |{(𝑥, 𝑥′), (𝑥′, 𝑥)} ∩𝑊 ≠ ∅}

���[𝑥], [𝑥′] ∈ C𝑘

}
9: end

10: end
11: end
12: return C𝑘

Algorithm 3.2 check merge

Input: 𝑥𝑖 , 𝑥 𝑗 , waiting list 𝑊 , 𝑖, b, C𝑘

Output: mergeability Boolean flag, 𝑊
1: for all 𝑥𝑝 ∈ [𝑥𝑖] ∪

⋃{[𝑥] |{(𝑥, 𝑥′
𝑖
), (𝑥′

𝑖
, 𝑥)} ∩𝑊 ≠ ∅, 𝑥′

𝑖
∈ [𝑥𝑖]} do

2: for all 𝑥𝑞 ∈ [𝑥 𝑗 ] ∪
⋃{[𝑥] |{(𝑥, 𝑥′

𝑗
), (𝑥′

𝑗
, 𝑥)} ∩𝑊 ≠ ∅, 𝑥′

𝑗
∈ [𝑥 𝑗 ]} do

3: if {(𝑥𝑝 , 𝑥𝑞), (𝑥𝑞 , 𝑥𝑝)} ∩𝑊 ≠ ∅ then continue; end
4: if (𝑥𝑝 , 𝑥𝑞) ∉ R𝑘 then return (false,𝑊); end
5: 𝑊 = 𝑊 ∪ {(𝑥𝑝 , 𝑥𝑞)}
6: for all 𝜎 ∈ 𝐸 (𝑥𝑝) ∩ 𝐸 (𝑥𝑞)
7: if [b (𝑥𝑝 , 𝜎)]=[b (𝑥𝑞 , 𝜎)] or {(b (𝑥𝑝 , 𝜎), b (𝑥𝑞 , 𝜎)), (b (𝑥𝑞 , 𝜎), b (𝑥𝑝 , 𝜎))}

∩𝑊 ≠ ∅ then continue; end
8: if min({𝑚 |𝑥𝑚 ∈ [b (𝑥𝑝 , 𝜎)]}) < 𝑖 or min({𝑚 |𝑥𝑚 ∈ [b (𝑥𝑞 , 𝜎)]}) < 𝑖 then

return (false,𝑊); end
9: (flag,𝑊) = check merge(b (𝑥𝑝 , 𝜎), b (𝑥𝑞 , 𝜎),𝑊, 𝑖, b, C𝑘)

10: if not flag then return (false,𝑊); end
11: end
12: end
13: end
14: return (true,𝑊)

Example 3.1

We consider the supervisor automaton shown in Figure 3.2(a). The states are rep-
resented by circles. The dangling incoming arrow indicates 𝑥0 is the initial state.
Transitions are shown by arrows between states with the respective event label. To
simplify the examples, no states are marked and all events are controllable.
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(a) Supervisor.

 a 
 c 

 d,e  b 

(b) Local supervisor.

Figure 3.2: Automata of Example 3.1.

We consider the case that there is an agent (numbered 1) whose set of local control-
lable events includes all events, i.e.,Σ𝑐,1=Σ1=Σ={𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Let us consider the case
that the supervisor disables event 𝑐 in state 𝑥0, and disables event 𝑎 in state 𝑥2. There
are no disablements in the other states, i.e., the supervisor permits the same events as
the plant in those states. So, 𝐷1 (𝑥0)={𝑐}, 𝐷1 (𝑥2)={𝑎}, 𝐷1 (𝑥1)=𝐷1 (𝑥3)=𝐷1 (𝑥4)=∅.

To compute the local supervisor, we perform the localization algorithm initialized
with a singleton cover {{𝑥0}, ..., {𝑥4}}. First, mergeability of 𝑥0 and 𝑥1 is checked.
These states are not mergeable, since event 𝑐 is disabled in 𝑥0 but enabled in 𝑥1.
Also 𝑥0 and 𝑥2 are not mergeable. 𝑥0 is mergeable with 𝑥3 and they are subsequently
merged. Next, {𝑥0, 𝑥3} is merged with 𝑥4 to form cell {𝑥0, 𝑥3, 𝑥4}. Finally 𝑥1 and 𝑥2
are merged, and no more merges are possible so the algorithm terminates. Using the
resulting control congruence, a local supervisor is constructed, which is displayed in
Figure 3.2(b).

In Cai and Wonham (2010) the localization algorithm is initiated with a singleton
cover. However, in this work we will also initialize the algorithm with non-singleton
covers, to benefit the efficiency of the transformational method that we are going to
introduce. We present Lemma 3.1 on this initialization.

Lemma 3.1 If Algorithm 3.1 is initiated with a control congruence C𝑘,𝑖𝑛𝑖𝑡 , the output
cover C𝑘 is a control congruence.

Proof Correctness of Algorithm 3.1 initiated by a singleton cover is proven in Su and
Wonham (2004). The singleton cover is a special instance of a control congruence. The
same proof of Su and Wonham (2004) applies here, when we generalize the algorithm
to be initialized with any control congruence. □

It is desirable to have small (in terms of number of states) local supervisors. There-
fore, we want to compute control congruences which cannot be reduced further, i.e.,
any further merging of cells would result in an invalid control cover. We call such a
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cover maximally reduced, see Definition 3.1. Reducedness of the control congruences
obtained by Algorithm 3.1 is addressed in Lemma 3.2.

Definition 3.1 Cover C𝑘 is maximally reduced w.r.t. 𝐺, 𝑆, Σ𝑐,𝑘 iff ∀𝜋1, 𝜋2 ∈ C𝑘 , if
𝜋1≠𝜋2, then (C𝑘 \ {𝜋1, 𝜋2}) ∪ {𝜋1 ∪ 𝜋2} is not a control congruence w.r.t. 𝐺, 𝑆, Σ𝑐,𝑘 .

Lemma 3.2 C𝑘 obtained by Algorithm 3.1, is maximally reduced w.r.t. 𝐺, 𝑆, Σ𝑐,𝑘 .

Proof Algorithm 3.1 iterates over all pairs of states, and only skips pairs of states
when mergeability between some pair of states contained in the respective cells has
already been checked. Thus, if Algorithm 3.1 outputs a control congruence containing
individual cells 𝜋1 and 𝜋2, then mergeability has been checked between some pair of
states 𝑥1 ∈ 𝜋1, 𝑥2 ∈ 𝜋2. Let us say 𝑥1, 𝑥2 respectively were in cells 𝜌1, 𝜌2 at the point
their mergeability was checked. Since 𝑥1 and 𝑥2 were not merged, check merge
has returned false for this evaluation, which means that some pair of states 𝑥3, 𝑥4
respectively in 𝜌1, 𝜌2 were not mergeable. Since Algorithm 3.1 only merges cells (i.e.,
never splits a cell), we know that for the resulting control congruence 𝑥3 ∈ 𝜌1 ⊆ 𝜋1
and 𝑥4 ∈ 𝜌2 ⊆ 𝜋2. Since 𝑥3 and 𝑥4 are not mergeable, 𝜋1 and 𝜋2 cannot be merged to
form a control congruence. □

Note that Lemma 3.2 does not mean that the smallest control congruence is found
by Algorithm 3.1. A control congruence (and resulting local supervisor) is generally
non-unique, and which is found by Algorithm 3.1 depends on the order in which
mergeability of the states is checked, which depends on their indexing. Unfortunately,
finding a control congruence with the smallest number of cells is an NP-hard problem
Su and Wonham (2004).

Lemmas 3.1 and 3.2 are applicable for supervisor localization (Cai and Won-
ham 2010) and supervisor reduction (Su and Wonham 2004) (which also uses Algo-
rithms 3.1 and 3.2, i.e., not only applicable to the transformational approach we present
next.

3.4 Problem definition

We assume a base system 𝐺 consisting of 𝑛 agents, a supervisor 𝑆, and a partition
¤⋃
𝑘∈{1,...,𝑛}Σ𝑐,𝑘 = Σ𝑐 ⊆ Σ of controllable events. This base system has been localized,

i.e., a control congruence C𝑘 was obtained for each agent 𝑘 .
Now the system changes to variant system 𝐺′ consisting of 𝑛′ agents, a supervisor

𝑆′, and a partition of controllable events ¤⋃
𝑘∈{1,...,𝑛′ }Σ

′
𝑐,𝑘

= Σ′
𝑐 ⊆ Σ′. We compute C′

𝑘

and 𝐿𝑂𝐶′
𝑘

for all 𝑘 from 1 to 𝑛′ based on the control congruences of the base system,
rather than starting localization from scratch. We call this procedure transformational
supervisor localization (TSL). TSL is to correctly localize the variant system, as
defined in Problem 3.1. Note that in this problem definition, any adaptation can be
made to the base system (that generates a well-defined variant system).
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Problem 3.1 Use C𝑘 for 𝑘 from 1 to 𝑛 of the base system 𝐺, 𝑆 to transformationally
compute new local supervisors 𝐿𝑂𝐶′

𝑘
for all 𝑘 from 1 to 𝑛′ that are control equivalent

(Equations 3.3 and 3.4) to 𝑆′ with respect to 𝐺′.

Since a set of local supervisors can be constructed from a set of control covers, in
our work we mainly focus on finding control covers (in this case, control congruences)
for the variant system in a transformational approach.

Furthermore, it is desirable to have small local supervisors. Therefore, TSL will
compute maximally reduced control covers to use in the construction of the local
supervisors.

3.5 Transformational supervisor localization

In this section, we first discuss an algorithm that is used to transform a cover C𝑘 to a
control congruence in case the system has been adapted. Next, we use this algorithm
in the general procedure used for TSL.

3.5.1 Isolating conflicts

We consider the case that a control congruence C𝑘 has been computed for some
base system 𝑆 = (𝑋, Σ, b, 𝑥0, 𝑋𝑚), 𝐺 = (𝑄, Σ, 𝛿, 𝑞0, 𝑄𝑚). Now the system is adapted
to form variant system 𝑆′ = (𝑋 ′, Σ′, b′, 𝑥′0, 𝑋

′
𝑚), 𝐺′ = (𝑄′, Σ′, 𝛿′, 𝑞′0, 𝑄

′
𝑚). In our

notation, we use 𝐸 ′, 𝐷′
𝑘
, ... to indicate that the function 𝐸 , 𝐷𝑘 , ... are applied to the

variant automaton. I.e., 𝐸 ′ is a function 𝐸 ′ : 𝑋 ′ → 2Σ′ .
Algorithm 3.3 constructs a control congruence C′

𝑘
based on C𝑘 . First, states that

are removed from 𝑋 to create 𝑋 ′ are removed from the cells they were in in C𝑘 . New
states are added as singleton cells. Next, the algorithm looks for states 𝑥 that do not
satisfy condition (i) or (ii) of a control cover from Section 3.2 anymore with a state 𝑥′

in the same cell. If such a state 𝑥 is found, it is isolated: it is removed from its initial
cell and placed in a singleton cell. Note that conditions (i) and (ii) are always satisfied
for states in a singleton cell. Finally, all states that induce such a control consistency
conflict are isolated, and the resulting cover is a control congruence.

We first present Example 3.2 to demonstrate the functioning of Algorithm 3.3. Next,
we prove correctness of Algorithm 3.3 in Theorem 3.1.

Example 3.2

Let us consider the case the system of Example 3.1 is adapted. In addition to the
disablements 𝐷1 (𝑥0)={𝑐}, 𝐷1 (𝑥2)={𝑎} in the base system, the variant system has an
additional disablement: 𝐷1 (𝑥3)={𝑎}. As a result, for the variant system (𝑥0, 𝑥3) ∉ R1.
Therefore, the cover found in Example 3.1 is not valid anymore. This conflict is found
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in line 6 of Algorithm 3.3, and subsequently 𝑥0 (or 𝑥3 depending on order of iteration)
is removed from its previous cell and placed in a singleton cell. No more conflicts
exist in the resulting cover. Constructing a local supervisor for this cover yields the
automaton shown in Figure 3.3.

 a 

 c 
e b

c,d

Figure 3.3: Isolated state 𝑥0.

Algorithm 3.3 isolate
Input: C𝑘 , 𝑆, 𝐺′, 𝑆′, Σ′

𝑐,𝑘

Output: C′
𝑘

1: C′
𝑘
= {𝜋 \ (𝑋 \ 𝑋 ′) |𝜋 ∈ C𝑘} ∪

⋃{{𝑥}|𝑥 ∈ 𝑋 ′ \ 𝑋}
2: flag = true
3: while flag do
4: flag = false
5: for all 𝑥 ∈ 𝑋 ′ ∩ 𝑋 do
6: if ∃𝑥′ ∈ [𝑥]C′

𝑘
:
(
(𝑥, 𝑥′) ∉ R′

𝑘
∨ (∃𝜎 ∈ 𝐸 ′ (𝑥) ∩ 𝐸 ′ (𝑥′)) : ( [b′ (𝑥, 𝜎)]C′

𝑘
≠

[b′ (𝑥′, 𝜎)]C′
𝑘
)
)

then
7: flag = true
8: C′

𝑘
= (C′

𝑘
\ {[𝑥]C′

𝑘
}) ∪ {[𝑥]C′

𝑘
\ {𝑥}} ∪ {{𝑥}}

9: end
10: end
11: end
12: return C′

𝑘

Theorem 3.1 Given 𝑁 = |𝑋 ∩ 𝑋 ′ |, Algorithm 3.3 terminates, has a worst case time
complexity of O(|Σ |·𝑁3), and the generated cover C′

𝑘
is a control congruence w.r.t.

𝐺′, 𝑆′, Σ′
𝑐,𝑘

.

Proof A state in a singleton cell is trivially control consistent. If in the for-loop (lines
5-10) a state is found that is not control consistent with another state in the same cell,
it is placed in a singleton cell and removed from its original cell, and the algorithm
iterates over all states in 𝑋 ∩ 𝑋 ′ again. Eventually, since 𝑁 is finite, there are no more
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non-control consistent states, the for-loop terminates with flag = false, the while-loop
breaks, and the algorithm terminates.

Checking the if-condition on line 6 has a worst case cost of |Σ |·𝑁 . The for-loop (lines
5-10) is performed 𝑁 times in worst case. The while-loop (lines 3-11) is performed 𝑁

times in worst case. Therefore, the time complexity is O(|Σ |·𝑁3).2
The while-loop only breaks when conditions (i) and (ii) are both met for all states

in 𝑋 ∩ 𝑋 ′. Also all states in 𝑋 ′ \ 𝑋 are control consistent as they are placed in singleton
cells. There is no overlap between cells in C′

𝑘
as all cells in 𝑋 ′ \ 𝑋 are placed in

singleton cells and no merges are performed for states in 𝑋 ∩ 𝑋 ′, which are initially
partitioned by C𝑘 . Thus, C′

𝑘
is a control congruence w.r.t. 𝐺′, 𝑆′, Σ′

𝑐,𝑘
. □

3.5.2 General procedure

In this section we present the TSL procedure, show in Theorem 3.2 that TSL solves
Problem 3.1, and in Theorem 3.3 that the resulting control congruences are maximally
reduced.

The TSL procedure is sketched in pseudo-code in Algorithm 3.4. We assume a
mapping M : {1, ..., 𝑛′} → {0, ..., 𝑛}, that maps every agent in the variant system
to either an agent of the base system, or to ‘0’. If M(𝑘)=0, it means no base control
cover is selected and the inital control congruence is set to a singleton cover. In case
M(𝑘) is nonzero, control congruence CM(𝑘 ) is selected from the base system to
perform isolate to find an initial control congruence. After performing isolate,
the resulting cover might not be maximally reduced. This is why, after performing
isolate, the cover is used to initialize localize in order to merge cells whenever
possible. The reasoning for the TSL procedure is that isolate produces a control
congruence in which generally states will already be merged into cells, limiting the
work that needs to be done during localize. This is demonstrated in Example 3.3.
TSL also returns covers {𝐶′

𝑘
|1 ≤ 𝑘 ≤ 𝑛′} so that they can be used in a next TSL if the

system is further adapted.

Example 3.3

This is a continuation of Example 3.2, in which a variant system was presented to
the base system of Example 3.1, and isolate was performed to compute a control
congruence for the variant system, yielding the local supervisor of Figure 3.3. However,
the cover can be further reduced, resulting in a local supervisor with fewer states. We
performlocalize initialized with the cover found in Example 3.2. {𝑥0} cannot merge
with {𝑥1, 𝑥2} for multiple reasons: 𝑥1 and 𝑥2 both enable event 𝑐, which is disabled in
𝑥0, and 𝑥0 enables event 𝑎, which is disabled in 𝑥2. {𝑥0} cannot merge with {𝑥3, 𝑥4}

2 To achieve this cost in implementation, instead of storing cells as state sets, a cell index number is
stored for each state. A state can be isolated by simply assigning it with a new cell index. Since all
cells are non-overlapping, comparing whether two cells are the same can be done by comparing the
cell index of one state from each cell.
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as 𝑥0 enables 𝑎, which is disabled in 𝑥3 in the variant system. {𝑥1, 𝑥2} can be merged
with {𝑥3, 𝑥4}: there are no conflicts. After merging these cells, no further merges are
possible, leading to control congruence {{𝑥0}, {𝑥1, 𝑥2, 𝑥3, 𝑥4}}. Constructing a local
supervisor for this cover yields the automaton in Figure 3.4.

 a 
 e b,c,d

Figure 3.4: Local supervisor of variant system.

Algorithm 3.4 TSL
Input: {C𝑘 |1 ≤ 𝑘 ≤ 𝑛}, 𝑆, 𝐺′, 𝑆′, {Σ′

𝑐,𝑘
|1 ≤ 𝑘 ≤ 𝑛′}, M

Output: {𝐿𝑂𝐶′
𝑘
|1 ≤ 𝑘 ≤ 𝑛′}, {𝐶′

𝑘
|1 ≤ 𝑘 ≤ 𝑛′}

1: for 𝑘 = 1 to 𝑛′ do
2: if M(𝑘) ≠ 0 then
3: C′

𝑘,𝑖𝑛𝑖𝑡
= isolate(CM(𝑘 ) , 𝑆, 𝐺

′, 𝑆′, Σ′
𝑐,𝑘

)
4: else
5: C′

𝑘,𝑖𝑛𝑖𝑡
= {{𝑥}|𝑥 ∈ 𝑋 ′}

6: end
7: C′

𝑘
= localize(𝐺′, 𝑆′, Σ′

𝑐,𝑘
, C′

𝑘,𝑖𝑛𝑖𝑡
)

8: Compute 𝐿𝑂𝐶′
𝑘

based on C′
𝑘

9: end
10: return {𝐿𝑂𝐶′

𝑘
|1 ≤ 𝑘 ≤ 𝑛′}, {𝐶′

𝑘
|1 ≤ 𝑘 ≤ 𝑛′}

Theorem 3.2 Algorithm 3.4 terminates, has worst case complexity O(𝑛′·|Σ′ |·|𝑋 ′ |4),
and solves Problem 3.1.

Proof Algorithm 3.4 terminates because isolate (Theorem 3.1) and localize
(Su and Wonham 2004; Cai and Wonham 2010) terminate.

In worst case, isolate is called 𝑛′ times, and its complexity is O(|Σ′ |·|𝑋 ∩ 𝑋 ′ |3)
(Theorem 3.1). localize is called 𝑛′ times, and its complexity is O(|Σ′ |·|𝑋 ′ |4) (Su
and Wonham 2004; Cai and Wonham 2010). Therefore, the complexity of TSL is
O(𝑛′·|Σ′ |·|𝑋 ′ |4).

For each agent in the variant system, localize is initiated with a control con-
gruence, since line 3 constructs a control congruence (Theorem 3.1) and the singleton
cover constructed in line 5 is a control congruence. Thus, the covers computed by
localize are control congruences following from Lemma 3.1. It is shown in Cai
and Wonham (2010) that local supervisors constructed from control congruences sat-
isfy Problem 3.1. □
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Clearly, SL and TSL have the same complexity. The idea is that TSL is quicker in
practice, when the variant system is sufficiently similar to the base system. Unfortu-
nately, at the moment we cannot predict whether TSL will be quicker than SL. We
present some experiments in Section 3.6 to study the computational benefit in practice.

In addition to correctness of the result, TSL also produces maximally reduced
control congruences.

Theorem 3.3 All C′
𝑘
∈ {C′

𝑘
|1 ≤ 𝑘 ≤ 𝑛′} obtained by Algorithm 3.4 are maximally

reduced w.r.t. 𝐺′, 𝑆′, Σ′
𝑐,𝑘

.

Proof Every control congruence C′
𝑘

that is returned by Algorithm 3.4 is constructed
by performing Algorithm 3.1. Control congruences constructed by Algorithm 3.1 are
maximally reduced (Lemma 3.2). Thus, the theorem holds. □

3.6 Case study: Cat and Mouse Tower

As a case study to evaluate the efficiency of TSL relative to SL, we take the Cat and
Mouse Tower (CMT) model. This model is an extension of the cat and mouse example
in Ramadge and Wonham (1989) by adding multiple floors. The CMT model was first
published online as a part of a special session on benchmarking of software tools held
during the 9th Workshop on Discrete Event Systems in 20083. In literature, the CMT
model first appears in Ma and Wonham (2008), Miremadi et al. (2008), and Moor et al.
(2008), each in the proceedings of the mentioned conference.

In the CMT model, there are 𝑛 floors, and on each floor of the tower there are five
rooms as shown in Figure 3.5. Cats and mice can move between the rooms as indicated
by the arrows. Between each floor there is a connection for both cats and mice. This
connection is between room 𝑗 of floor 5 · 𝑖 + 𝑗 to room 𝑗 of floor 5 · 𝑖 + 𝑗 + 1, for 𝑖 ∈ N0,
𝑗 ∈ {1, 2, 3, 4, 5}, and 5 · 𝑖 + 𝑗 < 𝑛. So room 1 floor 1 is connected to room 1 floor
2; room 2 floor 2 is connected to room 2 floor 3; and so forth, essentially forming a
spiraling staircase. All doors can be controlled, except for the bidirectional cat door
between rooms 2 and 4. There are 𝑘 cats and 𝑘 mice, and consequently each room can
also hold between 0 and 𝑘 cats and/or mice. The cats start in room 1 of floor 1, and the
mice start in room 5 of floor 𝑛. The requirement of this system is that there can never
be a cat and a mouse in the same room at the same time.

As base system, we take a tower with four floors, one cat, and one mouse. The
monolithic supervisor of this system has 362 states and 1159 transitions. For localiza-
tion, we consider each floor as a separate agent. An agent controls all events of the cat
and mouse that originate in that floor, e.g., the floor 1 agent controls all doors on that
floor, and the movements from floor 1 room 1 to floor 2 room 1 (but not the other way
around; these are controlled by the floor 2 agent).

We construct five variant systems (each modifies the base system directly, i.e., the
adaptations are not cumulative):

3 http://www.alessandro-giua.it/WODES/WODES08/pages/benchmark.php

http://www.alessandro-giua.it/WODES/WODES08/pages/benchmark.php
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Figure 3.5: CMT room layout of a floor (Ramadge and Wonham 1989).

1. Removed cat door from room 3 to room 4 on floor 2.
2. Made all doors controllable.
3. Added requirement that cats should never reach floor 4.
4. Removed room 5 of floor 1.
5. Added a room 6 to floor 1 with bidirectional controllable doors for cat and mouse

to room 5 of floor 1.

The models and a proof-of-concept implementation of the algorithms have been
made in Matlab4. We performed SL for the base system, and SL and TSL for each
variant system. For TSL, each agent (floor) of the variant system is mapped to the same
floor in the base system. A standard personal computer with i7 processor was used.
Matlab used less than 2 GB of memory. Since we draw conclusions on relative and not
absolute runtimes, the conclusions are not influenced by the hardware. Because the
results are influenced by state indexing order, the experiments are performed for ten
random index orders and mean values over those runs are presented.

In the left side of Table 3.1 we compare the computation time in seconds of
performing SL and TSL for the agents in the variant system. To provide further detail,
we show how much time of performing TSL is spent on the isolate and localize
portion of the procedure. The percentage change comparing TSL to SL is displayed,
where a negative or positive value respectively indicates how much quicker or slower
TSL is compared to SL.

In the right side of Table 3.1 we compare the number of cells between the result
of SL and TSL for the agents in the variant system. The numbers under ‘initial guess’
indicate the number of cells of C′

𝑘
after line 1 of isolate, before any states are

isolated. The numbers under ‘isolated’ indicate the number of cells after completing
isolate, but before localize is performed.

For the first variant system, we observe that no states need to be isolated dur-
ing isolate and no further merges of cells can be performed when performing
localize initialized by the control cover of the base system. Compared to perform-
ing SL initialized by a singleton cover, TSL is much quicker. For the second variant
system, there is much less computational benefit. Here, a local system is found where

4 All used models and algorithms can be found here: https://github.com/sbthuijsman/
TSL.

https://github.com/sbthuijsman/TSL
https://github.com/sbthuijsman/TSL
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Table 3.1: CMT experimental results, 4 floors, mean of ten measurements for each
computation.

mean runtime mean # cells

variant
system agent SL [s] isolate[s]

initialized
localize

[s]

TSL [s]
(sum)

%
change SL initial

guess isolated TSL

1
(362 states,
1142 trans.)

1 1.22 0.05 0.15 0.20 -83% 11.6 11.6 11.6 11.6
2 1.11 0.04 0.21 0.25 -78% 14.3 14.3 14.3 14.3
3 1.16 0.04 0.15 0.18 -84% 13.7 13.7 13.7 13.7
4 2.47 0.06 0.08 0.14 -94% 10.9 10.9 10.9 10.9

2
(375 states,
1214 trans.)

1 1.84 0.03 1.73 1.76 -4% 11.5 23.9 295.6 18.8
2 1.10 0.05 1.26 1.30 +18% 15.0 27.8 231.6 22.1
3 1.32 0.04 1.21 1.26 -5% 14.7 27.5 232.7 21.7
4 3.78 0.03 1.92 1.95 -48% 11.1 24.3 292.7 17.2

3
(270 states,
853 trans.)

1 0.78 0.04 0.10 0.14 -82% 9.4 8.8 8.8 8.8
2 0.71 0.02 0.09 0.11 -85% 12.8 14.1 14.1 13.9
3 0.88 0.03 0.10 0.12 -86% 10.8 14.3 14.7 13.9
4 6.90 0.04 3.68 3.72 -46% 2.5 10.0 10.0 9.0

4
(309 states,
986 trans.)

1 2.19 0.05 0.65 0.69 -68% 8.9 11.2 11.2 10.6
2 0.82 0.03 0.10 0.12 -85% 12.8 14.3 14.3 14.3
3 0.79 0.03 0.15 0.17 -78% 13.9 14.1 14.1 14.1
4 1.78 0.04 0.08 0.13 -93% 10.6 11.4 11.4 11.4

5
(403 states,
1304 trans.)

1 2.23 0.05 1.49 1.54 -31% 12.1 51.5 327.4 14.7
2 1.41 0.05 0.66 0.71 -50% 14.6 55.2 269.4 15.9
3 1.79 0.05 0.61 0.66 -63% 14.3 55.1 262.0 14.4
4 4.59 0.03 1.49 1.52 -67% 11.2 52.4 323.2 11.7

TSL is slower than SL, i.e., in this case localization is quicker when initialized by a
singleton cover. At the moment, we have no way to predict when this will be the case.
We observe that for this system a lot of states need to be isolated for all subsystems.
Even so, isolation is performed relatively quickly. Because the isolated cover is rela-
tively close to the singleton cover (which has 375 cells), TSL runtimes are relatively
close to the SL runtimes. Another observation is that TSL computes covers with more
cells than SL, because it starts with a coarser cover which limits the cell merges that
can be made during localize. For variant systems 3, 4, and 5 TSL is consistently
quicker than SL, even though for variant system 5 a lot of states require to be isolated.

The same experiments have been performed for larger instances of CMT, with 6
floors (842 states) and 8 floors (1525 states). The results are shown in Tables 3.2 and 3.3.
Since the runtimes of these larger systems is considerably longer, each computation
is only performed once, and the runtime of that computation is shown. The same
conclusions can be made for these larger instances. Respectively, the average percentage
change over all local systems for CMT with 4, 6, and 8 floors, were −61%, −54%, and
−57%.
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From a monolithic point of view the adaptations made to the CMT system are
considerable (reflected in the change in number of states and transitions). Regardless,
these experiments suggest that TSL is more efficient than performing SL from scratch.

3.7 Conclusions

We presented a TSL procedure, that reuses control congruences from a previous SL
to more efficiently compute these control congruences for a system once it is adapted.
Correctness of the algorithms is shown, and examples are provided. The method is
evaluated by means of some experiments on the CMT system. For the experiments on
this parameterized model, the runtime of TSL is shown to be generally lower than SL.
For future work it would be interesting to evaluate the efficiency of TSL using more
models.

From a high level TSL uses the same setup as Transformational Supervisor Synthesis
(TSS), which is discussed in Chapter 2. They use the output of a computation on
a base system to compute output for some variant system. Regardless, the specific
functioning of TSL is very different than that of TSS, and the same goes for their
nontransformational counterparts SL and SS. Therefore, the efficiency of TSL relative
to SL cannot be related to the efficiency of TSS relative to SS.
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Table 3.2: CMT experimental results, 6 floors, one measurement for each computation.

runtime # cells

variant
system agent SL [s] isolate[s]

initialized
localize

[s]

TSL [s]
(sum)

%
change SL initial

guess isolated TSL

1
(842 states,
2975 trans.)

1 54.1 0.4 13.3 13.7 -75% 12 12 12 12
2 16.0 0.2 1.6 1.8 -89% 16 16 16 16
3 37.1 0.3 3.9 4.1 -89% 13 13 13 13
4 32.1 0.3 1.2 1.5 -95% 12 12 12 12
5 72.5 0.4 0.5 0.9 -99% 12 12 12 12
6 57.1 0.5 0.6 1.1 -98% 7 7 7 7

2
(864 states,
3004 trans.)

1 20.9 0.1 22.8 23.0 10% 15 32 791 22
2 53.1 0.1 23.1 23.2 -56% 14 35 753 26
3 58.5 0.1 21.4 21.5 -63% 12 33 756 19
4 37.3 0.1 25.1 25.2 -32% 12 37 706 29
5 18.5 0.1 22.3 22.4 21% 18 35 748 25
6 49.6 0.1 25.2 25.3 -49% 15 36 729 29

3
(420 states,
1502 trans.)

1 5.3 0.1 1.8 1.9 -64% 7 7 7 7
2 4.9 0.1 0.5 0.6 -89% 16 13 13 13
3 6.0 0.1 0.6 0.7 -89% 12 14 15 14
4 84.1 0.1 4.4 4.5 -95% 2 14 14 12
5 112.0 0.1 67.0 67.2 -40% 1 15 15 1
6 111.8 0.1 82.2 82.3 -26% 1 12 12 1

4
(759 states,
2707 trans.)

1 17.9 0.2 72.0 72.2 303% 14 12 12 12
2 13.7 0.1 2.1 2.3 -84% 21 18 18 18
3 14.8 0.1 1.0 1.1 -93% 21 21 21 21
4 44.9 0.3 0.4 0.6 -99% 12 13 13 13
5 27.8 0.3 0.8 1.1 -96% 13 13 13 13
6 21.8 0.2 6.3 6.4 -70% 13 14 14 14

5
(903 states,
3230 trans.)

1 59.4 0.2 39.1 39.3 -34% 13 72 798 15
2 19.4 0.1 14.1 14.3 -26% 20 80 632 19
3 24.4 0.2 6.5 6.6 -73% 17 78 670 17
4 40.5 0.2 6.4 6.6 -84% 18 78 694 21
5 19.4 0.2 2.2 2.3 -88% 22 84 543 23
6 378.1 0.1 99.0 99.1 -74% 10 72 828 11



3.7 Conclusions 65

Table 3.3: CMT experimental results, 8 floors, one measurement for each computation.

runtime # cells

variant
system agent SL [s] isolate[s]

initialized
localize

[s]

TSL [s]
(sum)

%
change SL initial

guess isolated TSL

1
(1525 states,
5407 trans.)

1 2978.8 2.9 7.3 10.2 -100% 9 9 9 9
2 1445.2 1.9 3.7 5.6 -100% 11 11 11 11
3 172.0 0.8 5.5 6.3 -96% 14 14 14 14
4 550.3 0.4 9.6 10.0 -98% 23 23 23 23
5 305.0 0.5 7.4 7.9 -97% 20 20 20 20
6 654.6 1.5 5.7 7.2 -99% 11 11 11 11
7 97.2 0.4 4.2 4.6 -95% 23 23 23 23
8 294.9 0.5 27.2 27.7 -91% 18 18 18 18

2
(1547 states,
5446 trans.)

1 2822.4 0.2 426.5 426.7 -85% 11 34 1452 26
2 389.0 0.2 144.3 144.6 -63% 18 38 1372 29
3 277.9 0.3 185.7 186.0 -33% 21 47 1124 40
4 647.4 0.2 247.5 247.7 -62% 15 37 1367 34
5 2517.3 0.3 216.9 217.2 -91% 17 46 1130 39
6 2066.4 0.2 421.8 422.0 -80% 13 34 1448 18
7 325.2 0.2 1217.8 1218.0 275% 18 41 1296 27
8 2855.3 0.2 2233.9 2234.1 -22% 10 32 1472 10

3
(570 states,
2032 trans.)

1 37.4 0.3 17.4 17.8 -52% 8 8 8 8
2 25.1 0.1 2.2 2.2 -91% 11 20 20 20
3 29.1 0.1 2.6 2.7 -91% 12 21 21 21
4 440.1 0.2 521.1 521.2 18% 2 13 13 12
5 729.9 0.2 422.9 423.1 -42% 1 13 13 1
6 728.4 0.3 570.4 570.8 -22% 1 8 8 1
7 729.4 0.2 433.9 434.1 -40% 1 16 16 1
8 729.6 0.2 436.6 436.8 -40% 1 14 14 1

4
(1412 states,
5043 trans.)

1 3166.3 1.4 51.9 53.2 -98% 5 10 10 10
2 101.7 0.4 11.5 11.9 -88% 23 21 21 21
3 97.8 0.3 18.9 19.1 -80% 26 26 26 26
4 162.4 1.3 4.0 5.3 -97% 22 13 13 13
5 186.4 0.7 195.0 195.7 5% 25 27 914 40
6 118.7 0.3 59.6 59.9 -50% 25 25 25 25
7 2294.9 1.7 316.7 318.4 -86% 13 12 12 12
8 156.2 0.3 4.3 4.6 -97% 20 23 23 23

5
(1606 states,
5748 trans.)

1 3795.8 0.6 3432.6 3433.1 -10% 10 89 1553 11
2 132.1 0.4 25.1 25.5 -81% 28 108 1128 27
3 279.2 0.3 137.1 137.5 -51% 17 97 1408 16
4 145.7 0.5 29.6 30.1 -79% 29 109 1000 28
5 196.4 0.3 30.3 30.6 -84% 18 99 1327 18
6 1431.3 0.2 1277.1 1277.4 -11% 12 93 1484 12
7 245.0 0.4 71.6 71.9 -71% 27 108 1055 27
8 4696.0 0.4 4232.9 4233.3 -10% 9 90 1542 9





Chapter 4
Supervisory control for dynamic
feature configuration in product

lines

Abstract In this chapter a framework for engineering supervisory controllers for
product lines with dynamic feature configuration is proposed. The variability in valid
configurations is described by a feature model. Behavior of system components is
achieved using (extended) finite automata and both behavioral and dynamic configura-
tion constraints are expressed by means of requirements as is common in supervisory
control theory. Supervisory controller synthesis is applied to compute a behavioral
model in which the requirements are adhered to. For the challenges that arise in
this setting, multiple solutions are discussed. The solutions are exemplified in the CIF
toolset using a model of a coffee machine. A use case of the much larger Body Comfort
System product line is performed to showcase feasibility for industrial-sized systems.

4.1 Introduction

In present day development of systems and products, reuse of both software and hard-
ware components is sought to reduce development and production costs, and shorten
time-to-market. The goal of software/system product line engineering is to facilitate
reuse throughout all phases of systems engineering (Pohl et al. 2005). Adoption of this
paradigm requires identification of the core assets of the products in the domain in or-
der to exploit their commonality and manage their variability, often defined in terms of
features. A feature is defined as a logical unit of behavior specified by a set of functional
and non-functional requirements (Bosch 2000) or a distinguishable characteristic of
a concept (system, component, etc.) that is relevant to some stakeholder (Czarnecki
and Eisenecker 2000). Feature models may be used to define which combinations of
features are considered valid product configurations (Benavides et al. 2010).

This chapter is strongly based on: Thuijsman, Sander B.; Reniers, Michel A.: Supervisory control for
dynamic feature configuration in product lines. In: Transactions on Embedded Computing Systems
(2023). ACM Press. – URL https://doi.org/10.1145/3579644. – In press.
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In literature there has been much attention for correct configuration of product
lines (Benavides et al. 2010). Behavioral correctness is studied only recently, since
Classen et al. (2010). Typically the approaches that are used for guaranteeing a proper
functioning product lines (i.e., correct with respect to its requirements or specifications)
are verification technologies such as theorem provers (Classen et al. 2013), model
checkers (Baier and Katoen 2008), and correct-by-construction approaches such as
supervisory controller synthesis (ter Beek et al. 2016). In ter Beek et al. (2016), for
the first time supervisory controller synthesis (Ramadge and Wonham 1987) has been
considered for constructing supervisory controllers for an product line described by a
feature model.

Supervisory control theory, as introduced by Ramadge and Wonham (1987), is a
model-based approach to control discrete-event systems. In this framework a model
is created of the uncontrolled system, and behavioral requirements are specified that
define what behavior is allowed. Using these models, a supervisory controller can
be computed algorithmically (synthesized), such that it restricts the behavior of the
system to always be in accordance with the requirements. Depending on the synthesis
algorithm, the behavior of the system under control is guaranteed to have some useful
properties, such as safety, nonblockingness, controllability, and maximal permissive-
ness. The benefits of supervisory control theory have been demonstrated in industrial
use cases, such as for example supervisory control of lithography machines in van der
Sanden et al. (2015), health-care systems in Theunissen et al. (2014), automotive ap-
plications in Korssen et al. (2018), and infrastructural systems in Reijnen et al. (2020).
Typically, the models that are input to supervisory controller synthesis are discrete-
event system models such as (extended) finite automata (Cassandras and Lafortune
2021; Sköldstam et al. 2007).

The contribution of this work is a model-based framework for the supervisory
control of product lines. This approach consists out of the following steps:

1. Representing the feature model in extended finite automata. This is prerequisite,
because we apply supervisory controller synthesis that is based on automata spec-
ifications.

2. Capturing dynamic configuration of features in the models. In this work, we pay
additional attention to the situation where features might enter or leave the system
during runtime.

3. Modeling uncontrolled system behavior such that it properly takes the current
configuration into account. A component-wise specification of the system behavior
is given, where the component behavior is linked to the presence of features in the
configuration.

4. Modeling behavioral requirements depending on presence of features. The require-
ments of the behavior are dependent on the current configuration. Additionally,
different requirements may apply when the system is in a transitional phase in
between valid configurations.

5. Applying supervisory controller synthesis. A correct-by-construction supervisory
controller is obtained from the developed models.
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For most of these steps, there are multiple solutions and it depends on the case at
hand which one is most appropriate. We mention the alternatives and illustrate them.
To exemplify the method discussed in this chapter, we use the coffee machine system
from ter Beek and de Vink (2014) as a running example. Modeling of automata and
supervisory controller synthesis is performed using the tool CIF (van Beek et al. 2014;
Fokkink et al. 2023). Scalability and applicability of the approach is later demonstrated
using the Body Comfort System (BCS) from Lity et al. (2013).

4.1.1 Related work

This work is based on, and can be seen as an extension to, ter Beek et al. (2016)
and Thuijsman and Reniers (2020). The basis of the approach we present here was
first introduced in ter Beek et al. (2016), where feature models are modeled in CIF,
behavioral models of the system components are defined, and a supervisory controller
is obtained that takes into account the possible configurations as defined by the feature
model. In Thuijsman and Reniers (2020), this work was extended by also considering
the setting of dynamic configuration, where components are allowed to enter and
leave the system. Relative to ter Beek et al. (2016) and Thuijsman and Reniers (2020),
the extension we present here includes more modeling possibilities, considerations,
explanations, and examples. Additionally, this work also provides a case study of the
large BCS use case, showcasing applicability for industrial-sized product line systems.

Below we mention some more related work, which we divide into the following
categories: (1) works that study dynamic reconfiguration during run-time, but do not
apply supervisory control theory, (2) works that apply supervisory control theory for
multiple configurations during design-time, (3) works that apply supervisory control
for dynamic reconfiguration during run-time. Our work fits the latest category. How-
ever, our work differentiates from the mentioned works, as in none of them dynamic
feature configuration in relation to supervisory control engineering with a clear sep-
aration of uncontrolled system behavior and specification of behavioral and dynamic
reconfiguration requirements is discussed.

4.1.1.1 Dynamic configuration during run-time

In Kogekar et al. (2004) an approach for dynamic software reconfiguration in sensor
networks is presented. The dynamic reconfiguration is based on formal constraints in
terms of quality-of-service parameters that are measured at runtime.

Dynamic runtime variability of software product lines in embedded automotive soft-
ware systems is applied to create adaptable and reconfigurable software architectures
in Shokry and Babar (2008). Also Rosenmüller et al. (2011) discusses reconfiguration
with the purpose of determining an optimal configuration at runtime. In both papers the
dynamic configuration is under control, which is typically not the case in the present
chapter.
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In Shen et al. (2011), a feature-oriented method is proposed to support runtime vari-
ability reconfiguration by introducing an intermediate level between feature variations
and implementations.

Gharsellaoui et al. (2021) deal with reconfiguration of real-time embedded systems
to cope with hardware/software faults.

Sharifloo et al. (2016) argue that it is not reasonable to anticipate all relevant context
changes during design-time and therefore propose a model that combines learning of
adaptation rules with evolution of the configuration space, which can be applied during
run-time.

4.1.1.2 Supervisory control and design-time system configuration

In Chapter 2, the assumption is made of no a-priori knowledge of the possible system
configurations. Computation of a supervisory controller for an updated system, given
knowledge over the base system, is studied.

In Basile (2019), priced featured automata were translated to extended finite au-
tomata and the structure of the product line was used to greatly reduce the number of
supervisory controller syntheses required to solve game-based energy problems.

In Kahraman and Cleophas (2021) feature models are used to generated product
instances for the model-based engineering tool LSAT. LSAT is a tool used to design
supervisory controllers, but it cannot perform supervisory controller synthesis (van der
Sanden et al. 2021).

In Verbakel et al. (2021) a method to obtain supervisory controllers for a product
family is discussed through the use of a configurator, where synthesis is applied after
selection of parameterized components.

4.1.1.3 Supervisory control and dynamic configuration during run-time

Basile et al. (2020) apply supervisor synthesis to featured modal contract automata.
They synthesize orchestrations, that match service requests to service offers, for all
valid products in a product line, by joining the orchestrations of a small subset of the
valid products. By means of a composition operation, the product line can dynamically
be updated and new services can join composite services.

4.1.2 Structure

In Section 4.2 we introduce feature models and the CIF language. Using the CIF
language, we show how feature models can be represented in automata format in
Section 4.3. In Section 4.4, the use of automata to represent dynamically configured
feature models is discussed. Modeling of component behavior in the setting of dynamic
configuration is discussed in Section 4.5. In Section 4.6, the modeling of behavioral
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requirements that are dependent on the current configuration is discussed. Supervisory
controller synthesis is applied in Section 4.7. An industrial-sized use case is discussed
in Section 4.8. Section 4.9 concludes the chapter.

4.2 Preliminaries

4.2.1 Feature Models

A feature model (Heymans et al. 2008) is a graph with a collection of nodes representing
features, and a number of relations between these features, called feature constraints.
The feature constraints that can be expressed are summarized in Table 4.1, which is
taken from ter Beek et al. (2016). The right column provides logical formulas that
express how presence of the features (denoted by the 𝐹𝑖) is restricted by the different
types of constraints.

Table 4.1: Different feature constraints of a feature model (ter Beek et al. 2016).

Constraint Formula

root 𝐹0 𝐹0 ⇐⇒ true

mandatory
𝐹1

𝐹2

𝐹1 ⇐⇒ 𝐹2

optional
𝐹1

◦
𝐹2

𝐹2 =⇒ 𝐹1

alternative
𝐹

𝐹1 𝐹2 𝐹𝑛

(𝐹1 ⇐⇒ (¬𝐹2 ∧ · · · ∧ ¬𝐹𝑛 ∧ 𝐹))
∧ · · · ∧

(𝐹𝑛 ⇐⇒ (¬𝐹1 ∧ · · · ∧ ¬𝐹𝑛−1 ∧ 𝐹))

or
𝐹

𝐹1 𝐹2 𝐹𝑛

𝐹 ⇐⇒ (𝐹1 ∨ 𝐹2 ∨ · · · ∨ 𝐹𝑛)

requires 𝐹1 //------ 𝐹2 𝐹1 =⇒ 𝐹2

excludes 𝐹1 oo //------ 𝐹2 ¬ (𝐹1 ∧ 𝐹2)



72 4 Supervisory control for dynamic feature configuration in product lines

For any valid configuration a root feature needs to be present. Mandatory features
are required to be present when their parents are, and optional features may be present
when their parents are. For a set of alternative features, exactly one is present when
their parent is present. And for a set of or features, at least one is present when their
parent is present. It can also be defined that the presence of a certain feature requires
or excludes another feature to be present.

In an extended feature model (Benavides et al. 2005), attributes can be assigned to
features. An example of such an attribute could be the weight or price of a feature.
Attributes are typically defined by a name, domain (such as integers, enumerations,
etc.), and a value. Attribute constraints can be expressed using attributes of features.
A constraint could be a maximal value for the total weight or price of the system. We
may use the term feature model to refer to both ‘normal’ and extended feature models
when the type of feature model is not relevant or clear from the context.

Example 4.1 Feature model for a coffee machine

We consider the product line for a coffee machine from ter Beek and de Vink (2014).
An extended feature model that captures the allowed configurations for this product
line is presented in Figure 4.1. In the solid boxes, the features’ names are shown with
an abbreviation. We observe that the coffee machine always contains a sweet, coin,
and beverage feature. Optionally, the machine may also be able to sound a ringtone or
return change. The machine accepts euro or alternatively dollar coins. The machine
always offers coffee as a beverage, but may optionally also offer cappuccino or tea. If
the machine offers cappuccino, it cannot accept dollar coins. When the machine offers
cappuccino, it is required the machine comes equipped with the ringtone feature.

Figure 4.1 also shows dashed boxes, in which the feature attributes are shown with
a name, domain, and value. Some features have no attribute, and some features have a
cost attribute. The cost is valued by an integer, and the cost values are between 3 and

Machine 
M

Ringtone 
R

Change 
X

Beverage 
B

Coin 
O

Sweet 
S

Cappuccino 
P

Tea 
T

Coffee 
C

Dollar 
D

Euro 
E

Name: cost 
Domain: int 
Value: 10

Name: cost 
Domain: int 
Value: 3

Name: cost 
Domain: int 
Value: 5

Name: cost 
Domain: int 
Value: 7

Name: cost 
Domain: int 
Value: 5

Name: cost 
Domain: int 
Value: 5

Name: cost 
Domain: int 
Value: 5

Name: cost 
Domain: int 
Value: 5

Figure 4.1: Feature model of the coffee machine (ter Beek and de Vink 2014).
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10. The total machine cost is the sum of costs of all features that have a cost attribute.
Using the attributes, one can formulate an attribute constraint, e.g., the total machine
cost must be less than or equal to 30.

The feature model represents 20 valid configurations. If we include the previously
mentioned cost constraint, there are 16 valid configurations.

4.2.2 CIF

There are two tool suites that support supervisory controller synthesis for models
expressed as extended finite automata: Supremica (Åkesson et al. 2006) and CIF (van
Beek et al. 2014; Fokkink et al. 2023). In ter Beek et al. (2016), it has been shown how
the CIF language and tool set can be used for synthesizing a supervisory controller
that is suited for an product line. The approach uses the concept of algebraic variables
extensively, which is not available in Supremica.

CIF, part of the Eclipse Supervisory Control Engineering Toolkit (Eclipse ES-
CET™)1, is a language and tool set that supports model-based engineering of super-
visory controllers involving modeling, (visualized) simulation, synthesis, verification,
and code generation (Fokkink et al. 2023). In the past years CIF has been applied to
many industrial-size case studies (van der Sanden et al. 2015; Theunissen et al. 2014;
Korssen et al. 2018; Reijnen et al. 2020). Although CIF allows modeling of real-valued
variables that evolve continuously over time (as described by differential equations),
for the purpose of this work our attention is restricted to discrete-event models.

Discrete-event models of the uncontrolled system (also called plant) can be devel-
oped in the form of a collection of extended finite automata (Sköldstam et al. 2007). The
automata that comprise the plant synchronize over shared events and interact through
the reading of each others’ (discrete and finite) variables, and thus the global system
behavior is achieved taking the synchronous product (Cassandras and Lafortune 2021).
An automaton consists of locations and edges between these locations. The edges are
labeled by an event, a guard, and an update. The guard describes a condition (in terms
of the variables) that enables the occurrence of the event associated with the edge. The
update describes how the values of the variables change in such a transition. In CIF
variables are declared inside an automaton and follow the ‘global read, local write’
principle, which means that each variable may be inspected in any of the automata,
but may only be adapted in its defining automaton. A CIF automaton has at least one
initial location, and variables have at least one initial value. The state of an automa-
ton is defined by its current location and variable valuations. Initial/marked locations
implicitly define initial and marked states.

Events are defined to be controllable or uncontrollable. Uncontrollable events can-
not be prevented from occurring by a supervisory controller, whereas controllable

1 The ESCET toolset and documentation is open source and freely available athttps://eclipse.
org/escet/. ‘Eclipse’, ‘Eclipse ESCET’ and ‘ESCET’ are trademarks of Eclipse Foundation, Inc.

https://eclipse.org/escet/
https://eclipse.org/escet/
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Listing 4.1: Textual CIF model of an automaton.
1 plant automaton ExampleAutomaton:
2 controllable start, process;
3 uncontrollable finish;
4 disc int[0..5] c = 0;
5 location Idle: initial; marked;
6 edge start goto Busy;
7 location Busy:
8 edge process when c<5 do c:=c+1;
9 edge finish when c>4 do c:=0 goto Idle;

10 end

c=0
Idle Busystart

when c>4
finish
do c:=0

when c<5
process
do c:=c+1

Figure 4.2: Graphical representation of the automaton from Listing 4.1.

events can be blocked. The extended finite automata may have marked states. Marked
states are typically used to denote states in which the system has finished a task. By
applying supervisor controller synthesis, the controllable events are restricted in such
a way that from every reachable state, a marked state can eventually be reached.

An example of a CIF automaton is given in Listing 4.1. Its graphical representation
is given in Figure 4.2. Locations are represented by small circles with their name next
to them. Initial locations have a dangling incoming arrow and possibly an expression
stating the initial values of the variables. In the example there is a c variable that
is defined as a discrete (the value will update in a discrete manner) integer that can
take values between 0 and 5, denoted with keywords disc int[0..5], which has
an initial value of 0. Marked locations have a double circle representation. Edges
that are labeled by a controllable event are represented by a solid arrow and edges
with an uncontrollable event by a dashed arrow. The optional guard is indicated by
the keyword when and the update using do. In this chapter we use both textual and
graphical representations as we see fit.

In CIF requirements are specified by means of automata that state in which orderings
the contained events are allowed to occur, or by using state-based expressions such as
event conditions and state invariants (Ma and Wonham 2006; Markovski et al. 2010).
An event condition restricts the occurrences of an event to situations where a certain
condition in terms of the variables of the model is satisfied. A state invariant expresses
in which states the system is allowed to be.

CIF has several concepts that facilitate modeling of large systems, such as a defini-
tion/instantiation mechanism for automata and requirements and algebraic variables.
For an algebraic variable, the value is defined to be identical to the value of some
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expression (in terms of other variables). In this chapter algebraic variables are used
abundantly.

With each location 𝐿 in each automaton 𝐴, CIF associates a location variable 𝐴.𝐿

that may be used in guards, in right-hand sides of updates and algebraic variables, and
in state-based requirements. Updates of these variables are implicit and according to
the location change of an automaton.

4.3 Static feature models in CIF

In this section we demonstrate modeling of feature models where features cannot
configure dynamically, i.e., they are static, as proposed in ter Beek et al. (2016).
We first discuss normal (non-extended) feature models, and then attributes to allow
extended feature models. Next, in Section 4.4 we will show how these static models can
be extended to feature models supporting dynamic feature configuration, i..e., features
may enter or leave the system during run-time.

A CIF model representing all allowed configurations for a given feature model is
obtained as follows. For each feature, an automaton is introduced that captures whether
the feature is present or not. It uses a Boolean variable present, the value of which
is fixed initially, that is true when the feature is present and false otherwise. This
variable is also used to capture the feature constraints expressed in the feature model.

Since the feature automata have the same structure we use an automaton definition
in CIF, which is then instantiated for each feature in the feature model. The CIF
specification for this automaton definition is given in the first four lines of Listing 4.2.
In CIF, every automaton needs to have at least one location, hence the dummy location
(without a name) defined in Listing 4.2. Note that the initial value of present is left
implicit (is allowed to be either true or false by using the keywords in any).
For each feature in the feature model an instance of this feature automaton definition is
obtained by a statement such as the ones in lines 6 and 7. These instances act just like
separately defined automata. We can write F1.present to refer to the present
variable in F1.

Listing 4.2: Automaton definition for features and instantiation for features.
1 plant def FEATURE():
2 disc bool present in any;
3 location: initial; marked;
4 end
5

6 F1: FEATURE();
7 F2: FEATURE();
8 ...

Feature constraints arising from a feature model can be modeled in CIF in such
a way that the transformation from a feature model to a CIF model can easily be
automated. For each of the constraint types in Table 4.1, an algebraic CIF expression
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is shown in Listing 4.3. ‘//’ in the listing denotes that the remainder of the line is a
comment, which we use to specify the constraint type. Also more complex constraints
between features can be formulated in this way. These algebraic expressions can also
be used to denote more complex constraints between features that are not considered
here.

Listing 4.3: Several feature constraint expressions.
1 alg bool r1 = F0.present <=> true; //root
2 alg bool r2 = F1.present <=> F2.present; //mandatory
3 alg bool r3 = F2.present => F1.present; //optional
4 alg bool r4 = (F1.present <=> (not(F2.present) and F.present))

and (F2.present <=> (not(F1.present) and F.present));
//alternative

5 alg bool r5 = F.present <=> (F1.present or F2.present); //or
6 alg bool r6 = F1.present => F2.present; //requires
7 alg bool r7 = not (F1.present and F2.present); //excludes

A valid configuration is obtained if and only if all feature constraints are satisfied.
To this end, the algebraic expressions for the separate feature constraints, such as in
Listing 4.3, can be used. In Listing 4.4 we introduce an algebraic variable sys valid
that evaluates to true if and only if all feature constraints are satisfied. We also define
automaton Validity in lines 3-5 in Listing 4.4. At the moment this automaton only
states that the system initially is in a valid system configuration.

Listing 4.4: Validity of configuration.
1 alg bool sys_valid = r1 and r2 and r3 and ...;
2

3 plant automaton Validity:
4 location: initial sys_valid; marked;
5 end

In an extended feature model, an attribute may be assigned to a feature. To model an
attributed feature as an automaton, next to the presence feature one or more variables
need to be declared to represent the attribute. In Listing 4.5 an example is given for a
ball feature. The ball feature is attributed with a color, that can either be red, yellow, or
blue. When the ball feature is not present, the color is not available (NA). The domain
of the color enumerator is defined in line 1 of Listing 4.5. In line 5 the color variable
is defined for the ball feature; it is an algebraic variable that takes the value defined
in the feature automaton instantiation (clr) when the feature is present, and is NA
otherwise.

Listing 4.5: Attributed ball feature.
1 enum colordomain = red, yellow, blue, NA;
2

3 plant def BallFeature(alg colordomain clr):
4 disc bool present in any;
5 alg colordomain color = if present : clr else NA end;
6 location: initial; marked;
7 end
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8

9 RedBall: BallFeature(red);
10 YellowBall: BallFeature(yellow);

Example 4.2 Static feature model for coffee machine in CIF

The CIF specification of the feature model for the coffee machine is given in Listing 4.6
2. Two different plant definitions for features are used; one without any attributes,
and one with a cost attribute. The plant definition for the attributed feature can be
instantiated with an input variable defining the cost value. An algebraic integer variable
cost sum is introduced in line 39, as the sum of costs of all (present) features. Then,
an algebraic Boolean is defined that is true when cost sum is 30 or less. In the
Validity automaton, it is defined that initially both the feature and cost constraints
are satisfied. Construction of the state space of this model in CIF results in a structure
with 16 allowed configurations, each represented by an initial state (and nothing more
as we have not yet modeled any behavior).

Listing 4.6: Feature instances of the coffee machine.
1 plant def FEATURE():
2 disc bool present in any;
3 location: initial ; marked;
4 end
5

6 plant def FEATURE_ATTRIBUTED(alg int x):
7 disc bool present in any;
8 alg int cost = if present : x else 0 end;
9 location: initial ; marked;

10 end
11

12 FM : FEATURE();
13 FS : FEATURE_ATTRIBUTED(5);
14 FO : FEATURE();
15 FR : FEATURE_ATTRIBUTED(5);
16 FB : FEATURE();
17 FX : FEATURE_ATTRIBUTED(10);
18 FE : FEATURE_ATTRIBUTED(5);
19 FD : FEATURE_ATTRIBUTED(5);
20 FP : FEATURE_ATTRIBUTED(7);
21 FC : FEATURE_ATTRIBUTED(5);
22 FT : FEATURE_ATTRIBUTED(3);
23

24 alg bool r1 = FM.present <=> true;
25 alg bool r2 = FM.present <=> FS.present;
26 alg bool r3 = FM.present <=> FO.present;
27 alg bool r4 = FR.present => FM.present;
28 alg bool r5 = FM.present <=> FB.present;
29 alg bool r6 = FX.present => FM.present;

2 The CIF models used in this chapter are available here: https://github.com/
sbthuijsman/TECS_PLE

https://github.com/sbthuijsman/TECS_PLE
https://github.com/sbthuijsman/TECS_PLE
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30 alg bool r7 = (FE.present <=> (not(FD.present) and FO.present))
and (FD.present <=> (not(FE.present) and FO.present));

31 alg bool r8 = FP.present => FB.present;
32 alg bool r9 = FB.present <=> FC.present;
33 alg bool r10 = FT.present => FB.present;
34 alg bool r11 = FP.present => FR.present;
35 alg bool r12 = not(FD.present and FP.present);
36

37 alg bool sys_valid = r1 and r2 and r3 and r4 and r5 and r6 and
r7 and r8 and r9 and r10 and r11 and r12;

38

39 alg int cost_sum = FS.cost+FR.cost+FX.cost+FE.cost+FD.cost+FP.
cost+FC.cost+FT.cost;

40 alg bool cost_valid = cost_sum <= 30;
41

42 plant automaton Validity:
43 location: initial sys_valid and cost_valid; marked;
44 end

4.4 Dynamic configuration

In the setting discussed in the previous section, the configuration is decided upon
initialization of the system and cannot change at any later stage. In this section we
consider the situation that features may configure dynamically.

Different types of reconfiguration can be imagined. For example, it can be decided
if reconfigurations take place in isolation, or may occur simultaneously. We can for
example consider the replacement of the euro feature with the dollar feature. If we do
this by first removing the euro feature, and then adding the dollar feature in a next action,
these are separate reconfigurations in isolation. If we replace the euro feature with the
dollar feature in a single action, this is simultaneous reconfiguration. Both alternatives
can be modeled in CIF, and are respectively discussed in Sections 4.4.1 and 4.4.2.
The decision on which alternative to use for a model is generally case-specific: can
simultaneous reconfiguration practically be achieved, or are reconfiguration actions
always performed one-by-one as in single feature configuration? One can also create a
model that contains a combination of simultaneous and single feature reconfiguration.
Nevertheless, the supervisory controller that we will generate in Section 4.7 is always
correct-by-construction for the model, and will operate correctly for the physical system
if that is adequately represented in the model.

If one allows models to dynamically configure, there may be situations where a
specific change in configuration would result in a violation of the feature constraints.
For the example we mentioned above for reconfiguration in isolation, temporarily
neither the euro nor the dollar feature is present. Hence, it must be decided if such
violations of the feature constraints are allowed, this is discussed in Section 4.4.3.
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4.4.1 Single feature reconfiguration

In Section 4.3, for each feature an automaton with a variable named present is
introduced that captures whether the feature is present. To allow change of presence
status of a feature, the value of the corresponding present variable needs to be
able to change. This can be modeled with a relatively small adaptation to the current
feature definition. For each feature a come and go event are introduced that represent
the addition and removal of the feature from the configuration. The resulting feature
definition is shown in Listing 4.7. The events come and go are defined inside the
automaton. As a consequence, there is an instance of both events for each instance
of the plant definition. These events are referred to by, e.g., FM.come or FS.go.
The same method of adapting the feature automaton definition to allow for dynamic
configuration applies for attributed features.

In our examples the come and go events are chosen to be uncontrollable. This
essentially means the supervisory controller safeguards the behavior of the system
in the presence of uncontrollable reconfiguration. When the come and go events are
controllable this means the supervisory controller can influence when particular re-
configurations can happen or not dependent on the system state. It is system dependent
whether the come and go events should be modeled controllable or uncontrollable. It
is also possible to have a mix of controllable and uncontrollable reconfiguration in the
same model.

Listing 4.7: Automaton definition for features with reconfiguration.
1 plant def FEATURE():
2 uncontrollable come, go;
3 disc bool present in any;
4 location: initial; marked;
5 edge come when not present do present:=true;
6 edge go when present do present:=false;
7 end

By instantiating the plant definition from Listing 4.7 for all features, a state space
is obtained that contains each possible reconfiguration, also those that are invalid by
the feature model. Restricting reconfiguration to valid configurations is discussed in
Section 4.4.3.

4.4.2 Multi feature reconfiguration

In Section 4.4.1 we discussed a situation where features can come and go only one at
a time. In some cases it may be desirable to update the presence of multiple features
at a time. For example, the dollar feature of the coffee machine can be removed and
simultaneously the euro feature can be added. In this way, this reconfiguration can take
place without violating the feature constraints, which is impossible with single feature
configuration.
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To allow updating of the presence variable of multiple feature automata at the same
time, a global event can be introduced on which the automata synchronize and their
presence variable is updated. In Listing 4.8 features F1 and F2 are alternative features.
The event swap12 is declared to define exchanging F1 and F2. By the restriction of
the Validity automaton, the system is initially in a valid configuration. Because of
multi feature reconfiguration, F1 and F2 can be swapped without the system being in
an invalid configuration, i.e., always either F1 or F2 is present.

Listing 4.8: Feature automata with multi feature configuration.
1 uncontrollable swap12;
2

3 plant F1:
4 disc bool present in any;
5 location: initial ; marked;
6 edge swap12 do present:=not(present);
7 end
8 plant F2:
9 disc bool present in any;

10 location: initial ; marked;
11 edge swap12 do present:=not(present);
12 end
13

14 alg bool r1 = (F1.present and not(F2.present)) or (F2.present
and not(F1.present));

15 alg bool sys_valid = r1;
16

17 plant automaton Validity:
18 location: initial sys_valid; marked;
19 end

4.4.3 Strictness of the feature constraints

By allowing features to enter or leave the system, the feature constraints may be violated
temporarily. Two approaches towards the applicability of the feature constraints during
reconfiguration are discussed: (1) violation of feature constraints is strictly prohibited,
and (2) feature constraints may be violated temporarily.

4.4.3.1 Strict feature constraints

Restricting reconfigurations to valid configurations can be achieved by adding a plant
invariant such as presented in Listing 4.9. Adding this invariant removes all states
where sys valid and cost valid evaluates to false, and all transitions to-
ward these states in the plant’s behavior.
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Listing 4.9: Invariant restricting reconfiguration to valid configurations.
1 plant invariant sys_valid and cost_valid;

Example 4.3 Reconfiguration with strict feature configuration

Consider the coffee machine from Example 4.2, but now with single feature re-
configuration as discussed in Section 4.4.1, and reconfiguration restricted such that
sys valid and cost valid are always true. The state space of this system is
shown in Figure 4.3. Note that this is a single automaton, even though it consists of two
unconnected parts. Just as for the static configuration, there are 16 (initial) states that
represent the valid configurations. Now, switching between configurations is possible
by the come and go events.

Since not all states in the state space are connected to each other, we conclude
that for some initial configurations, it is not possible to reconfigure to some other
configurations. The seven states on the left hand side are all configurations equipped
with the dollar feature, the nine states on the right hand side are all configurations
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Figure 4.3: State space of the coffee machine with reconfiguration.
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equipped with the euro feature. In this model, it is impossible to reconfigure from a
euro to dollar feature and vice versa. This is because for single feature reconfiguration,
during reconfiguration either both the euro and dollar feature are present or both are
not present, which are invalid configurations.

4.4.3.2 Relaxed feature constraints

It may be desirable to temporarily allow violation of feature constraints during a recon-
figuration phase, where the system configuration moves from one valid configuration
to another. This would allow any feature to configure at any moment. Consequently,
the system may get into a configuration that does not satisfy the feature constraints.

It should be noted that one may feel the need to express that some of the feature
constraints really need to be satisfied at all times. Of course this can still be enforced.

Example 4.4 Constraints during reconfiguration

One may allow invalid configurations to be reached. However, for the coffee machine
there may be a constraint when the change feature is present, the coin feature must
always be present. This is achieved using the model fragment from Listing 4.10. The
resulting state space consists of 1,364 states, among which 16 initial states. There
are 13,440 come and go transitions. Given the possibilities offered by CIF and the
modularly defined feature constraints, it is possible to make more complex constraints.

Listing 4.10: Coin feature present when change feature is present.
1 plant invariant FX.present => FO.present;

4.5 Modeling of uncontrolled behavior

Next, the modeling of uncontrolled behavior of the system components is discussed.
In Section 4.6, requirements are defined on this behavior. This can then be used to
synthesize a supervisory controller, which is discussed in Section 4.7.

4.5.1 Behavior of the uncontrolled system

The plant modeling aims at capturing all uncontrolled behavior regardless of features,
solely focusing on the potential behavior of the physical components.



4.5 Modeling of uncontrolled behavior 83

Example 4.5 Coffee machine component behavior

We model the uncontrolled behavior of the individual components of the coffee ma-
chine. The component-wise behavioral specification of this machine is taken from ter
Beek et al. (2016).

The system constitutes of the following components: Coffee, Tea, Sweet,
Ringtone, Coin, Cancel, and Machine. For each of the components an au-
tomaton is provided that describes its behavior, see Figure 4.4. Although the different
models use the same event names (done), because the events are defined within the
automata, they are different, and do not synchronize.

The system that is composed of these seven components has a state space of 18
states and 207 transitions, when there is no imposed (supervisory) control, i.e., the
events can occur at any time that they are defined in the system.

NoChoice

Cappuccino

Coffee

coffee

cappuccino
done coffee

done

cappuccino

pour coffee,pour milk

pour coffee

(a) Coffee.

NoChoice

Sugar

NoSugar

no sugar

sugar

done
no sugar

done

sugar

sugar

pour sugar

no sugar

(b) Sweet.

NoChoice Teatea

done

pour tea

(c) Tea.

ring

(d) Ringtone.

insert

(e) Coin.

cancel

(f) Cancel.

take cup

(g) Machine.

Figure 4.4: Plant automata for the coffee machine.

The CIF model consisting of the component automata does not yet take into account
that in specific configurations specific components are not allowed to show behavior,
because they are ‘connected’ to features that are not present. For example, the event
ring of component Ringtone (denoted Ringtone.ring) is only available in
case the ringtone feature is part of the configuration.

In the coffee machine example, for each component there is a one-to-one corre-
spondence with the features. In general we require the modeler to indicate for each
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event that occurs in a component model which features need to be present for that event
to be able to occur. Note that in some cases the availability of an event may also be
dependent on the value of some attribute. In CIF this can then be captured by means
of additional conditions on such events. For an event e that requires the presence of
feature F1 and an attribute value of x for attribute A of feature F2, this is achieved
as shown in Listing 4.11. The connection is stated in the form of a plant, because it
models the physical incapability to perform some events when certain features are not
present.

Listing 4.11: Definition of link between events and features.
1 plant automaton event_feature_conditions:
2 location: initial; marked;
3 edge e when F1.present and F2.A = x;
4 end

Example 4.6 Connection between events and features for the coffee machine

For the coffee machine, the connection between events and features is captured by the
plant event feature link in Listing 4.12.

Listing 4.12: Connection between events and features.
1 plant automaton event_feature_link:
2 location: initial; marked;
3 edge Coffee.cappuccino when FC.present and FP.present;
4 edge Coffee.coffee when FC.present;
5 edge Coffee.done when FC.present;
6 edge Coffee.pour_coffee when FC.present;
7 edge Coffee.pour_milk when FC.present and FP.present;
8

9 edge Tea.done when FT.present;
10 edge Tea.pour_tea when FT.present;
11 edge Tea.tea when FT.present;
12

13 edge Sweet.done when FS.present;
14 edge Sweet.no_sugar when FS.present;
15 edge Sweet.pour_sugar when FS.present;
16 edge Sweet.sugar when FS.present;
17

18 edge Ringtone.ring when FR.present;
19

20 edge Coin.insert when FO.present;
21

22 edge Cancel.cancel when FX.present;
23

24 edge Machine.take_cup when FM.present;
25 end
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The way we expressed the availability of events in relation to the presence of features
is conceptually similar to the solution adopted in featured transition systems (Classen
et al. 2013). In these featured transition systems events are also available conditionally
depending on feature presence. The most prominent difference between this chapter
and the approach using featured transition systems is that here the description of
the relation between features and events is separated from the behavioral models of
the components. Another difference is that in the approach using featured transition
systems not the uncontrolled system and requirements are modeled, but the supervisory
controller is developed directly.

4.5.2 Component reappearance

As a result of reconfiguration, a component may leave or enter the system repeatedly.
Initially, the components are in their initial state as defined in Section 4.5.1. Sometimes
it may be required to reinitialize or reset the state of the component when it leaves or
enters the system.

Until now, the appearance and disappearance of features is not directly affecting
the states of the involved components. Therefore, when a feature disappears, and in a
future configuration reappears, the components linked with this feature are still in the
same state.

The modeler can easily adapt the plant model such that, for example, a component
transitions to some desired reset state whenever the component enters or leaves the
system. For example by adding an edge, labeled with the come or go event of the
respective component, from each state in the plant model of the component to its
desired reset state. Because of synchronization, upon occurrence of the come or go
event (from the feature plant) the transition with the same label in the component
is taken as well. When the plant model of the component has an outgoing transition
labeled with this reconfiguration transition from each state, the proposed addition does
not restrict reconfiguration possibilities. Otherwise, the reconfiguration event can only
take place when the component is in a state where the transition is defined.

Example 4.7 Re-initialization in the coffee machine

Let us consider the case that we want the tea component to go to the NoChoice
location when it leaves the system. Applying the proposed approach results in the
adapted plant automaton shown in Figure 4.5. If the tea component leaves the system,
i.e., event FT.go occurs, when the automaton is in the Tea location, it will transition
to NoChoice. If the event occurs when the automaton is already in NoChoice it will
remain there. Note that in this example the automaton does not use the event FT.come
and is therefore not influenced when that particular event occurs.
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NoChoice Teatea

done pour tea

FT.goFT.go

Figure 4.5: Adapted plant for resetting the tea component in case of removal from the
configuration.

4.6 Specification of requirements

In the previous section, we have discussed how to model the uncontrolled system and
how to link event occurrences to availability of features. In this section, we discuss the
modeling of requirements. In Section 4.6.1 the specification of behavioral requirements
is discussed. In Section 4.6.2 we elaborate on the specification of requirements in the
setting of dynamic configuration.

4.6.1 Behavioral requirements

As explained in Section 4.2, requirements are specified by means of automata that
synchronize with the plant or by using state-based expressions such as event conditions
and state invariants (Markovski et al. 2010). The example below demonstrates several
ways to specify the formal requirements, given a set of informal requirements.

Example 4.8 Requirements coffee machine

Below we state the informal system requirements and their corresponding CIF formu-
lation. Requirement automata, event conditions, and state invariants are used. These
requirements can be added to the model containing the plant behavior and the feature
model.

1. The coffee and tea component cannot both be ready to pour:

1 requirement not(Coffee.Coffee and Tea.Tea);

2. Coffee, cappuccino, or tea can only be selected when no choice between them has
been made:
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1 requirement Coffee.coffee needs Coffee.NoChoice and Tea.
NoChoice;

2 requirement Coffee.cappuccino needs Coffee.NoChoice and Tea.
NoChoice;

3 requirement Tea.tea needs Coffee.NoChoice and Tea.NoChoice;

Note that, in addition to these requirements, these events can only occur when their
respective feature is present, because of the connection between the events and feature
presence discussed in Section 4.5.

3. When the ringtone feature is present, it may only ring (once) after the coffee or tea
component is finished:

1 requirement automaton RingAfterBeverageCompletion:
2 location NotCompleted:
3 initial; marked;
4 edge Coffee.done when FR.present goto Completed;
5 edge Tea.done when FR.present goto Completed;
6 edge Coffee.done, Tea.done when not FR.present;
7 location Completed:
8 edge Ringtone.ring goto NotCompleted;
9 end

This requirement shows how the behavioral requirements can be made dependent on
the presence of features. When the ringtone feature is not present, this requirement
automaton will stay in NotCompleted. When the ringtone feature is present, after
pouring coffee or tea is done, the automaton needs to transition to the Completed
location before the ringtone can be performed.

4. A coin needs to be present to make a selection of beverage and sugar:

1 plant automaton CoinPresence:
2 monitor;
3 location NoCoinPresent:
4 initial; marked;
5 edge Coin.insert goto CoinPresent;
6 location CoinPresent:
7 edge Cancel.cancel goto NoCoinPresent;
8 edge Machine.take_cup goto NoCoinPresent;
9 end

10

11 requirement Coffee.coffee needs CoinPresence.CoinPresent;
12 requirement Coffee.cappuccino needs CoinPresence.CoinPresent;
13 requirement Tea.tea needs CoinPresence.CoinPresent;
14 requirement Sweet.sugar needs CoinPresence.CoinPresent;
15 requirement Sweet.no_sugar needs CoinPresence.CoinPresent;

This requirement showcases the use of a monitor automaton. In literature this is
sometimes also called an observer automaton. The automaton CoinPresence never
disables any event, but simply tracks whether a coin is present in the system. The state



88 4 Supervisory control for dynamic feature configuration in product lines

of CoinPresence is used in the subsequent event conditions so that only a selection
can be made when a coin is present.

5. Coffee is only poured once:

1 plant automaton CoffeePoured:
2 monitor;
3 location NotPoured:
4 initial;marked;
5 edge Coffee.pour_coffee goto Poured;
6 location Poured:
7 edge Machine.take_cup goto NotPoured;
8 end
9

10 requirement Coffee.pour_coffee needs CoffeePoured.NotPoured;

Once more, a monitor automaton is used. This automaton tracks whether Coffee has
been poured. Note that we have similar informal requirements with CIF formaliza-
tions for only pouring tea and milk once; resulting in automata TeaPoured and
MilkPoured.

6. Coffee and tea should not be mixed, and tea and milk should not be mixed:

1 requirement not(CoffeePoured.Poured and TeaPoured.Poured);
2 requirement not(TeaPoured.Poured and MilkPoured.Poured);

Here the previously defined states of the monitor automata are used in additional state
invariants.

7. When coffee is selected, the coffee component is done after pouring only coffee.
When cappuccino is selected, the coffee component is done after pouring both
coffee and milk:

1 requirement Coffee.done needs (Coffee.Coffee and CoffeePoured.
Poured) or (Coffee.Cappuccino and CoffeePoured.Poured and
MilkPoured.Poured);

8. When sugar is selected, it is poured twice:
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1 requirement automaton PourSugarTwice:
2 disc int[0..2] count=0;
3 location Idle:
4 initial; marked;
5 edge Sweet.sugar goto SugarNeeded;
6 edge Sweet.done when Sweet.NoSugar;
7 edge Machine.take_cup do count:=0;
8 location SugarNeeded:
9 edge Sweet.pour_sugar when count<2 do count:=count+1;

10 edge Sweet.done when count=2 goto Idle;
11 edge Machine.take_cup do count:=0;
12 end

Here we use a requirement automaton that is an extended finite automaton to keep track
of a count of how many times sugar has been poured. Pouring sugar is only finished
after it has been performed twice, and the counter is reset to zero when the cup is taken
from the system.

9. Cancellation is only possible before anything has been poured:

1 requirement Cancel.cancel needs CoffeePoured.NotPoured and
TeaPoured.NotPoured and MilkPoured.NotPoured and
PourSugarTwice.count=0;

10. The cup can only be taken from the machine when the pouring of coffee, tea, and
sugar is done and no new selection was made:

1 requirement automaton TakeCupWhenCoffeeOrTeaDone:
2 location NotPoured:
3 initial;marked;
4 edge Coffee.done goto Done;
5 edge Tea.done goto Done;
6 location Done:
7 edge Machine.take_cup goto NotPoured;
8 end
9

10 requirement automaton TakeCupWhenSugarDone:
11 location NotPoured:
12 initial;marked;
13 edge Sweet.done goto Done;
14 location Done:
15 edge Machine.take_cup goto NotPoured;
16 end
17

18 requirement Machine.take_cup needs Coffee.NoChoice and Sweet.
NoChoice and Tea.NoChoice;
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4.6.2 Requirements during configuration

As discussed in Section 4.4.3, it may be beneficial to allow invalid configurations so
that reconfiguration can take place. In this case, decisions must be made about allowed
behavior in such configurations. There are several ways to deal with the specification
of allowed behavior during the configuration phase: (1) disable some events from
occurring, and (2) additional requirements. Each of these approaches may be suitable
for certain applications. In the following subsections these possibilities are investigated.

4.6.2.1 Disabling events

An approach to restrict the behavior during reconfiguration is to disable some events
in case the system is in an invalid configuration. For each such an event, an event
condition, such as the one presented for event e in Listing 4.13, can be defined that
restricts that event to occur only when the system is in a valid configuration.

Listing 4.13: Disabling an event in an invalid system configuration.
1 requirement e needs sys_valid;

This approach assumes that the system will exhibit safe behavior by not exercising
any of the events disabled in this way. As soon as the system returns to a valid
configuration these events are no longer disabled. Such event disablement requirements
can also be expressed for particular configurations, as discussed in the next example.

Example 4.9 Event disablement in coffee machine during reconfiguration

In the coffee machine, invalid configurations may sometimes be allowed. For example,
exchanging the euro and dollar feature through two subsequent single feature recon-
figuration events is achieved by either having none or both features present during
the reconfiguration. Let us consider the case that both the euro and dollar feature are
present. It may be unsafe to cancel the order in this situation, as it is unclear from which
feature the coin should be returned. This can be avoided by adding a requirement as
given in Listing 4.14.

Listing 4.14: Constraint during invalid configuration.
1 requirement Cancel.cancel needs not(FE.present and FD.present);

4.6.2.2 Additional requirements

Another approach is stating additional requirements for the transitional situation. For
the coffee machine these are detailed in the next example.
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Example 4.10 Dynamic configuration constraints for the coffee machine

We consider the situation that it is allowed that the sweet feature is not present during
reconfiguration. However, in case the sweet feature is currently ready to pour sugar,
it needs to always be present. Listing 4.15 shows a formalization of this requirement,
that restricts the possible (invalid) configurations that can be reached depending on the
current state of the components.

Listing 4.15: Constraint during invalid configuration.
1 requirement Sweet.Sugar => FS.present;

4.7 Supervisory controller synthesis

The automata model obtained from the feature model in Section 4.4, the uncon-
trolled behavior specification from Section 4.5, and the behavioral requirements from
Section 4.6 can be placed into a single model. Next, supervisory control synthesis
(Ramadge and Wonham 1987) can be applied. A supervisory controller is generated
as an automaton that controls the system through synchronizing events. The system
under control consists of the supervisor synchronized with all plant and requirement
automata. By construction of the supervisor, the system under control is:

1. Safe: the requirements are always adhered to. If in the synchronous product the
plant can execute an event, but it is not possible in a requirement automaton that
synchronizes on that event, the event is prevented from occurring.

2. Nonblocking: a marked state can always be reached. Since we modeled the system
using multiple automata, this means in the controlled behavior it is always possible
to follow a sequence of events such that all automata are simultaneously in a
marked state. For example, if we consider the CoinPresence requirement of
Section 4.6.1, we are sure that the system can always return to the state that no
coins are present.

3. Controllable: the supervisor does not disallow uncontrollable events to occur. In
our model of the coffee machine all reconfiguration actions are uncontrollable. The
supervisor always allows these to happen, and prevents the sytem from reaching
states that are not allowed in a particular configuration, if we may uncontrollably
reconfigure to that configuration.

4. Maximally permissive: no behavior is disabled that does not strictly need to be dis-
allowed to satisfy the aforementioned properties. This makes sure the supervisory
controller does not restrict any behavior that is perfectly fine to occur.

Note that a single supervisory controller is generated that applies to all system config-
urations.
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Example 4.11 Supervisory controller synthesis for the coffee machine

We consider the coffee machine with dynamic single feature configuration, where
invalid configurations are never allowed, and the requirements of Section 4.6 are
applied. Applying supervisory controller synthesis to the described system results
in a supervisory controller that applies the guards formulated in Listing 4.16 to the
controllable events. Note that the guard forCancel.cancel is not displayed because
the expression is very long. The state space of the system under control contains 6,240
states and 35,336 transitions.

Listing 4.16: Additional guards provided by supervisory controller synthesis.
1 supervisor automaton sup:
2 alphabet Coin.insert, Cancel.cancel, Sweet.sugar, Sweet.

no_sugar, Sweet.pour_sugar, Sweet.done, Ringtone.ring,
Coffee.cappuccino, Coffee.coffee, Coffee.pour_coffee, Coffee
.pour_milk, Coffee.done, Tea.tea, Tea.pour_tea, Tea.done,
Machine.take_cup;

3 location:
4 initial;
5 marked;
6 edge Cancel.cancel when ...;
7 edge Coffee.cappuccino when CoinPresence.CoinPresent and

not Coffee.Coffee and (Tea.NoChoice and
TakeCupWhenCoffeeOrTeaDone.NotPoured);

8 edge Coffee.coffee when CoinPresence.CoinPresent and not
Coffee.Cappuccino and (Tea.NoChoice and
TakeCupWhenCoffeeOrTeaDone.NotPoured);

9 edge Coffee.done when not Coffee.Cappuccino and
CoffeePoured.Poured or Coffee.Cappuccino and (CoffeePoured.
Poured and MilkPoured.Poured);

10 edge Coffee.pour_coffee when CoffeePoured.NotPoured;
11 edge Coffee.pour_milk when MilkPoured.NotPoured;
12 edge Coin.insert when true;
13 edge Machine.take_cup when true;
14 edge Ringtone.ring when true;
15 edge Sweet.done when true;
16 edge Sweet.no_sugar when CoinPresence.CoinPresent and not

Sweet.Sugar and (PourSugarTwice.Idle and
TakeCupWhenSugarDone.NotPoured) or (CoinPresence.CoinPresent
and (not Sweet.Sugar and PourSugarTwice.SugarNeeded) or

CoinPresence.CoinPresent and (Sweet.Sugar and PourSugarTwice
.count = 2));

17 edge Sweet.pour_sugar when true;
18 edge Sweet.sugar when CoinPresence.CoinPresent and

TakeCupWhenSugarDone.NotPoured;
19 edge Tea.done when true;
20 edge Tea.pour_tea when TeaPoured.NotPoured;
21 edge Tea.tea when CoinPresence.CoinPresent and (Coffee.

NoChoice and TakeCupWhenCoffeeOrTeaDone.NotPoured);
22 end
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4.8 Case study: Body Comfort System

We present a case study on the Body Comfort System (BCS) (Lity et al. 2013), which
is a frequently used benchmark in (S)PLE-related literature (Lochau et al. 2014; Fragal
et al. 2017; Lity et al. 2017; Lachmann et al. 2016). It is a product line originating from
the automotive industry. It contains a number of standard and optional features, such
as LED’s in the human machine interface, manual or automatic windows, security
options such as an alarm system, and more. The feature model of the BCS is given
in Figure 4.6. This feature model allows for 11,616 valid configurations. Note that for
this case study, only features without attributes are considered.

The feature model is modeled in CIF as outlined in Section 4.3, this results in
Listing 4.17.

Listing 4.17: BCS feature model in CIF.
1 plant def FEATURE():
2 uncontrollable come,go;
3 disc bool present in any;
4 location: initial ; marked;
5 edge come when not present do present:=true;
6 edge go when present do present:=false;
7 end
8

9 // Feature declaration by level in FM
10 // Level 1
11 FBCS:FEATURE();
12 // Level 2
13 FHMI:FEATURE(); FDoor:FEATURE(); FSecu:FEATURE();
14 // Level 3
15 FPowerW:FEATURE(); FMir:FEATURE(); FAlarm:FEATURE();FRCKey:

FEATURE();FCLS:FEATURE();
16 // Level 4
17 FLED:FEATURE(); FFingerP:FEATURE(); FAutoPW:FEATURE(); FManPW:

FEATURE(); FMirE:FEATURE(); FMirHeat:FEATURE(); FInterMon:
FEATURE(); FCtrAlarm:FEATURE(); FCtrAutoPW:FEATURE(); FSafe:
FEATURE(); FAdjMir:FEATURE(); FAutoL:FEATURE();

18 // Level 5
19 FLEDMir:FEATURE(); FLEDFP:FEATURE(); FLEDPW:FEATURE(); FLEDCLS:

FEATURE(); FLEDAlarm:FEATURE(); FLEDHeat:FEATURE();
20

21 // Feature relations
22 // Level 1
23 alg bool r11 = FBCS.present; //Root feature present
24 // Level 2
25 alg bool r21 = FBCS.present <=> FHMI.present; //HMI mandatory
26 alg bool r22 = FBCS.present <=> FDoor.present; //Door mandatory
27 alg bool r23 = FSecu.present => FBCS.present; //Security

optional
28 // Level 3
29 alg bool r31 = FDoor.present <=> FPowerW.present; //PW

mandatory
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30 alg bool r32 = FDoor.present <=> FMir.present; //EM mandatory
31 alg bool r33 = FAlarm.present => FSecu.present; //AS optional
32 alg bool r34 = FCLS.present => FSecu.present; //CLS optional
33 alg bool r35 = FRCKey.present => FSecu.present; //RCK optional
34 // Level 4
35 alg bool r41 = FLED.present => FHMI.present; //LED optional
36 alg bool r42 = (FManPW.present <=> (not FAutoPW.present and

FPowerW.present)) and (FAutoPW.present <=> (not FManPW.
present and FPowerW.present)); //Manual or automatic PW

37 alg bool r43 = FPowerW.present <=> FFingerP.present; //Finger
Protection mandatory

38 alg bool r44 = FMir.present <=> FMirE.present; //Electric
exterior mirror mandatory

39 alg bool r45 = FMirHeat.present => FMir.present; //Mirror
heating optional

40 alg bool r46 = FInterMon.present => FAlarm.present; //Interior
monitoring optional

41 alg bool r47 = FCtrAlarm.present => FRCKey.present; //Control
alarm optional

42 alg bool r48 = FCtrAutoPW.present => FRCKey.present; //Control
automatic power window optional

43 alg bool r49 = FSafe.present => FRCKey.present; //Safety
optional

44 alg bool r410 = FAdjMir.present => FRCKey.present; //Adjust
exterior mirror optional

45 alg bool r411 = FAutoL.present => FCLS.present; //Automatic
locking optional

46 // Level 5
47 alg bool r51 = FLED.present <=> (FLEDAlarm.present or FLEDFP.

present or FLEDCLS.present or FLEDPW.present or FLEDMir.
present or FLEDHeat.present);

48 //cross tree relations
49 alg bool rx1 = FLEDAlarm.present => FAlarm.present; //LED

alarm requires Alarm
50 alg bool rx2 = FLEDCLS.present => FCLS.present; //LED central

requires central locking
51 alg bool rx3 = FLEDHeat.present => FMirHeat.present; //LED

heat mirror requires heated mirror
52 alg bool rx4 = not(FManPW.present and FCtrAutoPW.present);

//Manual power windows excludes control autoPW
53 alg bool rx5 = FCtrAlarm.present => FAlarm.present; //Control

alarm requires Alarm system
54 alg bool rx6 = FRCKey.present => FCLS.present; //Remote

control key requires central locking system
55

56 alg bool sys_valid = r11 and r21 and r22 and r23 and r31 and
r32 and r33 and r34 and r35 and r41 and r42 and r43 and r44
and r45 and r46 and r47 and r48 and r49 and r410 and r411
and r51 and rx1 and rx2 and rx3 and rx4 and rx5 and rx6;

57

58 plant automaton Validity:
59 location: initial sys_valid; marked;
60 end
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Figure 4.6: Feature model of the Body Comfort System (Lity et al. 2013).
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In this model, the system is initially in a valid configuration, but can reconfigure
to any configuration through the come and go events. I.e., all invalid configurations
are allowed during reconfiguration. This model (without any component behavior
added) has 134,217,728 reachable states. Of these states, 11,616 states are initial states
representing the valid configurations.

In Lity et al. (2013) state machine test models are constructed for product instances
of the BCS. In Tuitert (2017) a component wise behavioral model of the BCS is made,
as an interpretation of the models in Lity et al. (2013). We will use the models from
Tuitert (2017) here.

As an example, we consider the alarm system and interior monitoring features. The
uncontrolled behavior of the relevant components is defined by the automata shown
in Listing 4.18. In the event names, ”c ” and ”u ” are used as prefixes to respectively
indicate controllable or uncontrollable events.

Listing 4.18: BCS uncontrolled behavior of the alarm system and interior monitoring.
1 plant automaton AlarmSystem:
2 controllable c_on, c_off, c_deactivated, c_activated,

c_IM_detected;
3 uncontrollable u_detected, u_time_elapsed;
4 location Deactivated:
5 edge c_activated goto Activated;
6 location Activated:
7 initial; marked;
8 edge c_on goto On;
9 edge c_deactivated goto Deactivated;

10 location On:
11 edge c_off goto Activated;
12 edge u_detected goto Alarm_detected;
13 edge c_IM_detected goto Alarm_detected;
14 location Alarm_detected:
15 edge c_off goto Activated;
16 edge u_time_elapsed goto On;
17 end
18

19 plant automaton InteriorMonitoring:
20 uncontrollable u_detected, u_clear;
21 controllable c_on, c_off;
22 location Off:
23 initial; marked;
24 edge c_on goto On;
25 location On:
26 edge c_off goto Off;
27 edge u_detected goto Detected;
28 location Detected:
29 edge u_clear goto On;
30 edge c_off goto Off;
31 end

The events of the automata are linked to their presence in Listing 4.19. One can
observe that the events of AlarmSystem and InteriorMonitoring are depen-
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dent on the presence features FAlarm and FInterMon respectively. However, the
event AlarmSystem.c IM detected requires both features to be present.

Listing 4.19: BCS presence check alarm system.
1 plant automaton PRESENCE_UNCONTROLLED_AS:
2 location: initial; marked;
3 edge AlarmSystem.u_detected when FAlarm.present;
4 edge AlarmSystem.u_time_elapsed when FAlarm.present;
5 edge AlarmSystem.c_on when FAlarm.present;
6 edge AlarmSystem.c_off when FAlarm.present;
7 edge AlarmSystem.c_deactivated when FAlarm.present;
8 edge AlarmSystem.c_IM_detected when FAlarm.present and

FInterMon.present;
9 edge InteriorMonitoring.u_detected when FInterMon.present;

10 edge InteriorMonitoring.u_clear when FInterMon.present;
11 edge InteriorMonitoring.c_on when FInterMon.present;
12 edge InteriorMonitoring.c_off when FInterMon.present;
13 end

Requirements for these components are given in Listing 4.20. One can see how these
refer to other relevant components in the system such as Key lock and RCK CLS,
which are the physical key and the remote control key of the central locking system.

Listing 4.20: BCS requirements alarm system.
1 requirement AlarmSystem.c_on needs Key_lock.Locked or RCK_CLS.

Locked;
2 requirement AlarmSystem.c_off needs Key_lock.Unlocked or

RCK_CLS.Unlocked;
3 requirement AlarmSystem.c_deactivated needs Key_lock.Unlocked

or RCK_CLS.Unlocked;
4 requirement AlarmSystem.c_IM_detected needs InteriorMonitoring.

Detected;
5 requirement InteriorMonitoring.c_off needs Key_lock.Unlocked or

RCK_CLS.Unlocked;

In the complete model3, there are in total 31 plant automata representing the be-
havior of the components. Additionally, there are 27 feature automata and 18 plant
automata that link the component events to the presence of the features. 55 require-
ments are specified. Only event condition requirements are used. Using CIF, synthesis
can successfully be applied to this system.

Some relevant state space sizes are mentioned in Table 4.2. The worst case state
space is calculated by calculating the product of the number of states in each automa-
ton. The other state space sizes all denote the reachable states from the initial states.
For the uncontrolled systems, no synthesis or requirements are applied yet. For the
controlled systems, the state space size is the number of reachable states in the system
controlled by the synthesized supervisory controller. Using a standard personal com-
puter and applying supervisory controller synthesis in CIF using the default settings,

3 Note that also all complete CIF models we use of the BCS are available here: https://github.
com/sbthuijsman/TECS_PLE

https://github.com/sbthuijsman/TECS_PLE
https://github.com/sbthuijsman/TECS_PLE
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the supervisor is obtained in roughly 0.3 seconds for each of the static and the dynamic
case. For these computations, the CIF application requires no more than 0.5 GB of
memory. Even though a state space in the order of 1020 can be considered large, CIF has
been shown capable of performing supervisory controller synthesis for systems with
much larger state spaces (Reijnen et al. 2020). It should be noted that, since CIF uses
symbolic supervisory controller synthesis using Binary Decision Diagrams (BDDs),
the computational effort of synthesis is dependent on more factors than state space
size, see Chapter 5. Supervisory controller synthesis for the static case requires 19,614
peak used BDD nodes and 1,864,598 BDD operations. For the dynamic case this is
26,140 peak used BDD nodes and 2,039,318 operations. These BDD-based metrics of
computational effort of supervisory controller synthesis are detailed in Chapter 5 and
measurements for benchmark systems are provided in the same work.

Table 4.2: State space sizes BCS.

State space Number of states
Worst case 7.7 · 1020

Uncontrolled static 3.2 · 1014

Uncontrolled dynamic 6.2 · 1020

Controlled static 7.6 · 1013

Controlled dynamic 1.1 · 1020

Even though the BCS is a frequently used benchmark in literature related to product
line engineering (Lity et al. 2013; Lochau et al. 2014; Fragal et al. 2017; Lity et al.
2017; Lachmann et al. 2016), as far as we are aware there is no existing work to which
we can compare these results. In fact, only in Tuitert (2017) the first models of the BCS
were made that were suitable for application of supervisory control theory.

With the BCS use case, we have shown that CIF is capable of both modeling an
industrial sized product line through the use of feature models, and synthesizing a
supervisory controller for this system in which dynamic reconfiguration is allowed.

4.9 Concluding Remarks

We have presented a framework for engineering supervisory controllers for product
lines of which the valid configurations are described by a feature model and where
dynamic configuration of the features is allowed. The CIF language has shown to
be adequate for modeling the involved concepts. It was shown how the presence and
absence of features can be modeled, and how this presence can update through single or
multi feature configuration. Component wise modeling of the system behavior has been
demonstrated, where the presence of features influences the possible behavior. It was
shown how requirements can be formulated that take the presence of the features into
account, and how requirements can be strengthened when the system is in an invalid
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configuration. Supervisory controller synthesis can be applied such that the maximal
nonblocking, controllable, and safe behavior under control is obtained. The method
was demonstrated using the coffee machine as a running example. Although the coffee
machine system is small, feasibility of industrial application has been demonstrated
with the much larger BCS use case.

By using this framework, supervisory controllers do not have to be computed
one-by-one for each product instance in a product line, and also the reconfiguration
is directly handled. Presumably, by applying this framework, supervisory controllers
for product lines can be engineered more efficiently than doing so without using the
product line engineering approach. A case study evaluation on the improvement of
engineering efficiency remains future work.





Chapter 5
Reducing the computational effort

of symbolic supervisor synthesis

Abstract Supervisor synthesis is a means to algorithmically derive a supervisory con-
troller from a discrete-event model of a system and a requirements specification. For
large systems, supervisor synthesis suffers from state space explosion. To handle large
state spaces, and thereby large systems, the model can be symbolically represented
using Binary Decision Diagrams (BDDs), and supervisor synthesis can be applied to
this symbolic representation. Peak used BDD nodes and BDD operation count are
introduced as deterministic and platform-independent metrics to express the compu-
tational effort of a symbolic supervisor synthesis. These BDD-based metrics can be
used to analyze the efficiency of the synthesis algorithm. From this analysis, modifi-
cations can be made to the way the BDDs are handled during synthesis, improving
the synthesis efficiency. In this paper we showcase this approach by: introducing and
analyzing DCSH, a variable ordering heuristic; analyzing several edge ordering heuris-
tics; and introducing and analyzing an approach to efficiently enforce state exclusion
requirements in synthesis. These methods have recently been implemented in our open
source supervisory control tool, Eclipse ESCET. The analysis is based on large scale
experiments of performing synthesis on a variety of models from literature. It is shown
that: (1) by using DCSH, performing synthesis with relatively high computational ef-
fort can be avoided, and generally relatively low computational effort is required; (2)
applying reverse-model edge order realizes relatively low synthesis effort; and (3) state
exclusion requirements can efficiently be enforced by restricting edge guards prior to
synthesis.

5.1 Introduction

Supervisory control theory (Ramadge and Wonham 1987, 1989) is a model-based
approach to control cyber-physical systems. Given a plant (a model that defines all
possible system behavior) and a requirements specification (a model that defines what

This chapter is strongly based on: Thuijsman, Sander B.; Hendriks, Dennis; Reniers, Michel A.:
Reducing the computational effort of symbolic supervisor synthesis. Submitted to: Discrete Event
Dynamic Systems.
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behavior is allowed), a supervisor can be computed algorithmically (synthesized)
that restricts the plant’s behavior so that it is in accordance with the requirements
specification. Depending on the synthesis algorithm, the supervised system has some
useful properties by construction, such as safety, nonblockingness, controllability, and
maximal permissiveness. There are a number of formal modeling frameworks to which
supervisory control theory can be applied. The framework of extended finite automata
(EFAs) (Sköldstam et al. 2007) is an extension to finite state automata that augments
them with variables, guard expressions and updates, which enables more convenient
modeling of systems.

The power of supervisory control theory has been demonstrated in literature. There
are many examples where it is applied to controller design. We refer to Table 5.1 further
down this chapter for a selection. Despite the advantages of supervisory control theory,
and demonstration thereof in case studies, industrial acceptance is scarce. Wonham
et al. (2018) point to the state space explosion as one of the barriers to industrial
acceptance. Technically, all possible combinations of states of components in the
system must be taken into account. Therefore, adding a small component to the model
might induce a large increase to the total system state space. A way to mitigate state
space explosion, is by representing the system model using binary decision diagrams
(BDDs) (Akers 1978; Lee 1959), and performing supervisor synthesis on this symbolic
representation (Ma and Wonham 2006; Vahidi et al. 2006; Miremadi et al. 2012). This
approach is considered state of the art to handle industrial-sized systems (Malik et al.
2017).

Symbolic supervisor synthesis has been shown to be able to deal with large-scale
systems. For instance, monolithic synthesis was successfully performed for a system
where the uncontrolled system and supervised system respectively had 2.3 · 1057

and 4.5 · 1034 states by Reijnen et al. (2020), which are much larger state spaces
than non-symbolic monolithic synthesis could handle. However, as we will also show
in this chapter, the amount of time and memory required for symbolic synthesis is
majorly impacted by the settings the algorithm is initiated with, and different ways the
algorithm can be applied (Vahidi et al. 2006; Thuijsman et al. 2019). It is of practical
benefit to optimize the application of the algorithm to minimize time and memory
required to perform synthesis (of large-scale systems). Such optimization is difficult,
as what techniques are beneficial is often case dependent, and even frequently counter-
intuitive, since a BDD representing a small amount of states may require many more
BDD nodes than a BDD representing a much larger amount of states (Ciardo and
Siminiceanu 2002). Sufficient experimentation and validation is required to judge the
efficiency of a method.

A tool that can be used to perform symbolic supervisor synthesis is CIF (van Beek
et al. 2014). CIF is part of the Eclipse Supervisory Control Engineering Toolkit (Eclipse
ESCET™)1 since 2020 (Fokkink et al. 2023). As a result of this open source project, the
intensity of the development of the CIF tool has recently greatly increased. Among the
many developments that have been made, are implementations of recently proposed

1 The ESCET toolkit and documentation is open source and freely available athttps://eclipse.
org/escet/. ‘Eclipse’, ‘Eclipse ESCET’ and ‘ESCET’ are trademarks of Eclipse Foundation, Inc.

https://eclipse.org/escet/
https://eclipse.org/escet/
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methods that aim to improve the computational efficiency of symbolic supervisor
synthesis, such as the BDD variable ordering heuristic algorithm from Lousberg et al.
(2020) and efficient enforcement of state exclusion requirements from Thuijsman
et al. (2021). These methods were previously only available in local proof-of-concept
implementations.

This chapter is an extension to Thuijsman et al. (2019); Lousberg et al. (2020); and
Thuijsman et al. (2021). These papers contain many results of elaborate experiments.
Because, as mentioned, many developments have taken place for the CIF tool, we re-
perform and re-evaluate the results from Thuijsman et al. (2019); Lousberg et al. (2020);
and Thuijsman et al. (2021). We use the BDD-based metrics of Thuijsman et al. (2019)
to measure the computational effort of performing symbolic supervisor synthesis. We
re-evaluate the impact of the variable order heuristic of Lousberg et al. (2020) and
the requirement enforcement of Thuijsman et al. (2021) on the computational effort,
now that they are implemented and available to all users. For further validation, the
experiments are performed on a larger set of models. Additionally, we make all models
publicly available, so that our experiments are repeatable2. Note that the experiments
are performed on a large scale: running all experiments in a single sequence would re-
quire several years of computation time. Instead, we have performed many experiments
in parallel on a high-performance computing cluster. In further extension to Thuijsman
et al. (2019); Lousberg et al. (2020); and Thuijsman et al. (2021), we investigate various
(simple) heuristics for edge ordering to improve synthesis efficiency. We also evaluate
how these methods perform together, e.g., the edge ordering heuristics are evaluated
using the variable ordering heuristic we introduce. Furthermore, this chapter contains
a proof of correctness of the efficient requirement enforcement method, that was not
given in Thuijsman et al. (2021). Finally, in this chapter the methods are presented in
a more unified way.

There are many ways in which improvements can be made on computational ef-
ficiency of symbolic supervisor synthesis. Evidently, we restrict ourselves to a few
options in this chapter in order to keep this study contained. The methods that we
evaluate have the following in common, they are:

• monolithic approaches: supervisor synthesis is not divided into multiple sub-
problems;

• non-restrictive to the input model: the method can be used for synthesis of any plant
and requirement specification that CIF supports synthesis of;

• “under the hood”: the user does not have to supply additional parameters or modify
their model;

• static: in the sense that optimization is performed only at a single stage, and not
on-the-fly (dynamically) during/throughout synthesis.

2 All experiments in this chapter are performed using ESCET release v0.9, available here:
https://eclipse.org/escet/v0.9/. The models are available bundled in ESCET un-
der “CIF Benchmarks”, see https://eclipse.org/escet/cif/examples.html. The
files to run the same experiments as presented in this chapter are available here: https:
//github.com/sbthuijsman/reduce_effort.

https://eclipse.org/escet/v0.9/
https://eclipse.org/escet/cif/examples.html
https://github.com/sbthuijsman/reduce_effort
https://github.com/sbthuijsman/reduce_effort
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Related work

The foundations of symbolic supervisor synthesis are discussed in Ma and Wonham
(2006). Symbolic supervisor synthesis for (sets of) EFAs is discussed in Ouedraogo
et al. (2011) and Fei et al. (2014). In Ziller and Schneider (2003) a supervisor synthesis
algorithm is constructed that is based on `-calculus, and a BDD-based implementation
is made. In Vahidi et al. (2006) partitioning and ordering of the transition relation to
efficiently perform BDD-based synthesis is investigated. This partitioning, as well as
how supervisor guards can efficiently be generated for such a partitioning, is inspected
in Fei et al. (2013). A symbolic synthesis approach using hierarchichal decomposition is
presented in Song and Leduc (2006). In Miremadi and Lennartson (2016) an efficient
synthesis algorithm is introduced that is based on forward reachability rather than
backward reachability to avoid unnecessary exploration of states, of which also a
BDD-based implementation is evaluated.

Efficient symbolic state space exploration is also a well-studied topic in the field
of model checking. An overview of concepts and techniques for BDD-based model
checking is provided in Chaki and Gurfinkel (2018). A BDD-based algorithm for com-
putation tree logic model checking is introduced in Burch et al. (1994). Several variable
ordering heuristics for state space exploration of interacting finite state machines are
evaluated in Aziz et al. (1994). In Cabodi et al. (1999) the efficiency of BDD-based
operators is improved by partitioning the BDDs. Zero-supressed BDDs are used in
Minato (2001) to reduce computational effort of symbolic model checking in some
applications.

We are not aware of existing works that study variable ordering heuristics specifi-
cally for supervisor synthesis, static edge ordering heuristics for supervisor synthesis
(although dynamic edge ordering is investigated in Vahidi et al. (2006) and Fei et al.
(2014)), or efficient enforcement of state-based requirements.

Structure

We first discuss preliminaries on symbolic supervisor synthesis in Section 5.2. BDD-
based metrics to measure computational effort are introduced in Section 5.3. In the
same section, these metrics are used to show the impact of the variable order and edge
order on the computational effort of synthesis. In Sections 5.4 and 5.5 respectively a
variable and an edge ordering heuristic algorithm are introduced, that aim to reduce the
computational effort in synthesis. In Section 5.6 a method is introduced to efficiently
enforce requirements in synthesis. Conclusions are provided in Section 5.7.
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5.2 Symbolic supervisor synthesis

In this section we first introduce EFAs and their linearized version that can be sym-
bolically encoded. Next, we discuss symbolic supervisor synthesis. Following, the
encoding of a system in BDDs is considered. Finally, we introduce the relevant parts
of the tool CIF, which we use for symbolic supervisor synthesis.

5.2.1 Automata

We consider an EFA A defined as 8-tuple:

𝐴 = (𝐿,𝑉, Σ, 𝑇, 𝐿0, 𝑉0, 𝐿𝑚, 𝑉𝑚),

where 𝐿 is a finite set of locations, 𝑉 is a finite set of discrete variables (each with a
finite domain), and Σ is a finite set of events, usually called alphabet. The alphabet is
split into two disjoint subsets: Σ𝑐 and Σ𝑢, representing controllable and uncontrollable
events respectively. 𝐿0 ⊆ 𝐿 is a set of possible initial locations, 𝑉0 is an expression
indicating possible initial values of all variables in 𝑉 , 𝐿𝑚 ⊆ 𝐿 is the set of marked
locations, and 𝑉𝑚 is an expression indicating marked values for variables 𝑉 . 𝑇 is a set
of transitions where a transition 𝑡 is defined as 5-tuple:

𝑡 = (𝑙𝑜, 𝑙𝑡 , 𝜎, 𝛾, 𝜐),

where 𝑙𝑜 and 𝑙𝑡 are the origin and target location in 𝐿, 𝜎 is an event in Σ, 𝛾 is a guard
expression, indicating for which variable values the transition can take place, and 𝜐

is an update expression that indicates new values for the variables after the transition
has occurred. In case in a transition the update is not specified for a variable, then its
value remains the same when taking the transition. In case in a transition the guard
is not specified, then the guard is assumed ‘true’, i.e., the transition can occur for any
valuation of variables.

Essentially, locations can be modeled as variables, which we call location pointer
variables, and transitions between locations can be modeled as guards and updates.
Furthermore, expressions stated in an EFA can be encoded in (Boolean) predicates,
that return true or false for a particular evaluation of variable values. Therefore, to
simplify our explanations, and also stay consistent with the implementation of symbolic
supervisor synthesis in CIF, we consider Linearized Finite Automata (LFAs), where an
LFA is defined as a 5-tuple:

𝐴𝐿 = (𝑋, Σ, 𝐸, 𝑋0 (𝑋), 𝑋𝑚 (𝑋)),

in which 𝑋 is a finite set of variables (which may contain a location pointer variable).
A state is defined by a valuation over these variables. Σ is the alphabet. 𝑋0 and 𝑋𝑚

are predicates over variables from 𝑋 that respectively represent the initial and marked
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states. Note that for a predicate 𝑃(𝑋) we may simply write 𝑃 when it is clear from
context it is a predicate over variables 𝑋 . 𝐸 is the set of edges, with edge 𝑒 defined as
triple:

𝑒 = (𝜎, 𝑔(𝑋), 𝑢(𝑋, 𝑋+)),

where 𝜎 is an event, 𝑔 is a guard predicate, expressing from what states the event
may occur, and 𝑢 is an update predicate over current state variables 𝑋 and new state
variables 𝑋+ = {𝑥+ |𝑥 ∈ 𝑋}, representing what state will be reached when the edge is
taken from a particular current state. We assume 𝑋 ∩ 𝑋+ = ∅.

Example 5.1 EFA and LFA

We consider the EFA of Figure 5.1. This EFA consists of two locations 𝐿 = {𝑙0, 𝑙1}
of which 𝑙1 is marked: 𝐿𝑚 = {𝑙1}, as indicated in Figure 5.1 by a double circle. The
initial location 𝐿0 = {𝑙0} is indicated by the dangling incoming arrow. We have two
Boolean variables named 𝑎 and 𝑏. Both variables are initially set to false, as indicated
by the expression next to the dangling incoming arrow. Events 𝑎 𝑜𝑛 and 𝑏 𝑜𝑛 can
occur at 𝑙0, the value of 𝑎 and 𝑏 will then respectively update to true. These updates
are denoted in Figure 5.1 by the keyword ‘do’. An edge with event label 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 can
be taken from origin location 𝑙0 to target location 𝑙1. This can only happen if the guard
𝑎 = 𝑏 evaluates to true. The guard is denoted by the keyword ‘when’. In case no update
expression is given, the variables keep the same value after taking the transition. In
case no guard expression is given, it is assumed true, i.e., the transition can occur for
any values of the variables. All variable values are considered to be marked.

𝑙0
𝑎 = false
𝑏 = false 𝑙1

a on
do 𝑎 := true

b on
do 𝑏 := true

when 𝑎 = 𝑏

continue

Figure 5.1: Example EFA.

The same model can be expressed as an LFA as follows: The set of variables is
{𝑙𝑠 , 𝑎, 𝑏}, where 𝑙𝑠 is the location pointer variable with domain {𝑙0, 𝑙1}, used to encode
the current location. The initial state predicate is (𝑙𝑠 = 𝑙0) ∧¬𝑎∧¬𝑏. The marked state
predicate is (𝑙𝑠 = 𝑙1). There are three edges:
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(𝑎 𝑜𝑛 , 𝑙𝑠 = 𝑙0 , (𝑙+𝑠 = 𝑙0) ∧ 𝑎+ ∧ (𝑏+ = 𝑏));
(𝑏 𝑜𝑛 , 𝑙𝑠 = 𝑙0 , (𝑙+𝑠 = 𝑙0) ∧ (𝑎+ = 𝑎) ∧ 𝑏+); and
(continue, (𝑙𝑠 = 𝑙0) ∧ (𝑎 = 𝑏), (𝑙+𝑠 = 𝑙1) ∧ (𝑎+ = 𝑎) ∧ (𝑏+ = 𝑏)).

To explain the notation, the first edge is labeled by event 𝑎 𝑜𝑛, has guard 𝑙𝑠 = 𝑙0,
so can only occur when the system is currently in location 𝑙0, and has update (𝑙+𝑠 =

𝑙0) ∧ 𝑎+ ∧ (𝑏+ = 𝑏), indicating that after taking the edge, the location becomes 𝑙0,
𝑎 becomes true, and 𝑏 does not change value.

5.2.2 Symbolic supervisor synthesis

The purpose of applying supervisor synthesis is to generate a supervisor automaton
such that the parallel composition between the plant automaton and supervisor is
safe, nonblocking, controllable, and maximally permissive (Cassandras and Lafortune
2021). Safe means that the requirements are always satisfied. How requirements are
specified, and what it exactly means to satisfy them, is discussed in more detail in
Section 5.6. Nonblocking indicates that from every reachable state in the controlled
system, a marked state can be reached. Controllable means that from every reachable
state in the controlled system, when the plant can execute an uncontrollable event, this
event can also be executed in the parallel composition between supervisor and plant.
In other words, the supervisor does not stop any uncontrollable events from occurring.
Maximally permissive says that these properties are ensured without disabling any
events that do not strictly need to be disallowed.

In Algorithm 5.1 a supervisor synthesis algorithm is presented. This synthesis algo-
rithm is based on the algorithm introduced by Ouedraogo et al. (2011), simplified by us-
ing an LFA instead of an EFA. In line 1 the requirements are applied by using algorithm
applyRequirements. Again, application of requirements is discussed Section 5.6.
For this preliminary section, it is only relevant to know that applyRequirements
returns a predicate 𝑁 that defines all states where the requirements are satisfied, a set
of edges 𝐸𝑆 which is the set of plant edges 𝐸 with restricted guards of the controllable
events such that the requirements are satisfied, and a predicate 𝑋0,𝑆 defining the initial
states that satisfy the requirements, i.e., the initial states that are safe3.

So, applyRequirements outputs a predicate 𝑁 for which the requirements
are satisfied. However, this predicate might still allow blocking states (states that
cannot reach a marked state). Algorithm 5.1 iteratively calculates nonblocking states
𝑁 , followed by bad states 𝐵. The calculation to obtain 𝑁 and 𝐵 is done by means of
a backward reachability search, given in Algorithm 5.2. This search is performed on
the predicates by using the existential quantification operator (Bryant 1992; Lousberg
et al. 2020). The bad states are removed from 𝑁 . The removal of these states can induce

3 In case of multiple initial states, it is assumed that the supervisor can restrict in which of those states
the system starts.
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Algorithm 5.1 SS (Supervisor Synthesis)
Input: Plant LFA 𝐴𝐿 = (𝑋, Σ, 𝐸, 𝑋0, 𝑋𝑚), state exclusion predicates SX, state-event

exclusion predicates EX
Output: Supervisor LFA 𝑆

1: (𝑁, 𝐸𝑆 , 𝑋0,𝑆) = applyRequirements(SX,EX, 𝐸, 𝑋0)
2: repeat
3: 𝑁 ′ = 𝑁

4: 𝑁 = BRS(𝑁, 𝐸𝑆 , 𝑋𝑚)
5: 𝐵 = BRS(true, {(𝜎, 𝑔, 𝑢) ∈ 𝐸 |𝜎 ∈ Σ𝑢},¬𝑁)
6: 𝑁 = 𝑁 ∧ ¬𝐵
7: until 𝑁 = 𝑁 ′

8: for all (𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆 with 𝜎 ∈ Σ𝑐

9: 𝑔(𝑋) = 𝑔(𝑋) ∧ ∃𝑋+ [𝑁 (𝑋+) ∧ 𝑢(𝑋, 𝑋+)]
10: end
11: 𝑆 = (𝑋, Σ, 𝐸𝑆 , 𝑋0,𝑆 ∧ 𝑁, 𝑋𝑚 ∧ 𝑁)

Algorithm 5.2 BRS (Backward Reachability Search)
Input: Restriction predicate 𝑃𝑅 (𝑋), edges 𝐸 , start predicate 𝑃(𝑋)
Output: Coreachable predicate 𝑃′ (𝑋)

1: repeat
2: 𝑃′ (𝑋) = 𝑃(𝑋)
3: 𝑃(𝑋) = 𝑃𝑅 (𝑋) ∧ (𝑃(𝑋) ∨∨

(𝜎,𝑔,𝑢) ∈𝐸 ∃𝑋+ [𝑃(𝑋+) ∧ 𝑔(𝑋) ∧ 𝑢(𝑋, 𝑋+)])
4: until 𝑃(𝑋) = 𝑃′ (𝑋)

other states to become blocking. Therefore, the algorithm repeats these steps until a
fixpoint is reached, i.e., no further bad states get removed. Next, the guards of the
edges labeled by controllable events are strengthened such that the guard can only be
true when the nonblocking predicate is true for the state that is reached after taking
the edge. Here, notation 𝑁 (𝑋+) denotes predicate 𝑁 (𝑋) in which each current state
variable 𝑥 ∈ 𝑋 is substituted by its new state counterpart 𝑥+. Finally, the supervisor
LFA is constructed. The conjunction is taken between the initial state predicate and the
nonblocking predicate, so that the supervised system is only initialized in nonblocking
states. The supervised system will remain in nonblocking states, as the strengthened
guards prevent transitions from nonblocking to bad states.
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5.2.3 Binary Decision Diagrams

A Binary Decision Diagram (BDD) (Akers 1978) is a data structure that is used to
represent Boolean functions and predicates, and can be used to represent and perform
calculations on an LFA. BDDs are directed acyclic graphs that consist out of two types
of nodes: decision- and terminal nodes. Each decision node is labeled by a Boolean
variable 𝑏 and has two edges leading to child nodes, one edge labeled true and the other
false. When evaluating 𝑏 to true or false we take the respective edge. At the leaves of
the BDD are terminal nodes, that are labeled by true or false, indicating the final result
of evaluating the BDD.

When referring to BDDs in this chapter, we implicitly always mean reduced ordered
BDDs (Bryant 1992). This type of BDD imposes some additional restrictions such that
the BDD is minimal in the number of decision nodes and canonical for a given order
of the variables. This order is strictly imposed over all the variables in the BDD and is
called the variable order. A variable order is denoted as <, where 𝑏1 < 𝑏2 indicates
that decision node 𝑏1 is placed closer to the root node than 𝑏2.

The variable order can influence the number of decision nodes required to encode
a Boolean expression, see Figure 5.2 for an example. Visually, we represent true edges
by solid lines and false edges by dashed lines. The size of a BDD is defined by the
number of decision nodes and in worst case this size can be exponential in the number
of Boolean variables (Bryant 1992).

In our work, when we mention variable order, we refer to an order of the LFA
variables. The variable order corresponds to an order of Boolean variables by which
the BDD is ordered. We explain how the LFA variables are encoded as Boolean
variables, and how an LFA variable order corresponds to a variable order of Boolean
variables in Example 5.2.

Example 5.2 BDD encoding

We consider an LFA with variables 𝑦 and 𝑧. 𝑦 is an integer that can take values
{0, 1, 2} and 𝑧 is an integer that can take values {0, 1}. 𝑦 can be encoded using two
Boolean variables: 𝑏𝑦,0 and 𝑏𝑦,1; 𝑧 can be encoded using a single Boolean variable
𝑏𝑧,0. Note that for every current state variable, there is also a new state variable. So,
there is also an integer 𝑦+ corresponding to Boolean variables 𝑏𝑦+ ,0 and 𝑏𝑦+ ,1, and
integer 𝑧+ corresponding to Boolean variable 𝑏𝑧+ ,0. Let us assume the LFA variables
are ordered by 𝑦 < 𝑧. Then, this corresponds to the following variable order of the
Boolean variables: 𝑏𝑦,0 < 𝑏𝑦+ ,0 < 𝑏𝑦,1 < 𝑏𝑦+ ,1 < 𝑏𝑧,0 < 𝑏𝑧+ ,0. So, in the order
of Boolean variables, a Boolean variable corresponding to a current state variable is
always immediately succeeded by the respective Boolean variable corresponding to
the new state variable (using default settings in CIF).
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(a) Variable order 𝑎<𝑏<𝑐<𝑑.

a

c

b

d

TF

c

b

(b) Variable order 𝑎<𝑐<𝑏<𝑑.

Figure 5.2: Two BDDs representing (𝑎 ∧ 𝑏) ∨ (𝑐 ∧ 𝑑) for different variable orders.

In this work we study how to effectively use BDDs in symbolic supervisor synthesis
to reduce computational effort.

5.2.4 CIF

There are several tools that allow modeling of plants and requirements with the ability
to synthesize a supervisor. Of the tools considered in Reniers and van de Mortel-
Fronczak (2018), the tools Supremica (Malik et al. 2017) and CIF (van Beek et al.
2014) allow for the use of EFAs and base their EFAs supervisor synthesis algorithm on
the use of BDDs. The syntheses in this chapter are performed using the EFAs supervisor
synthesis tool of CIF. CIF has been used to synthesize supervisors for industrial sized
systems (Theunissen et al. 2014; Reijnen et al. 2017, 2018a; Loose et al. 2018; Korssen
et al. 2018; Reijnen et al. 2020).

CIF is part of the ESCET project, an Eclipse open-source project since 2020
(Fokkink et al. 2023). ESCET provides a model-based approach and toolkit for de-
veloping supervisory controllers. It supports synthesis-based engineering of supervi-
sory controllers for discrete-event systems, combining model-based engineering with
computer-aided design to automatically generate correct-by-construction controllers
through supervisor synthesis.

5.3 Evaluating computational effort in symbolic supervisor
synthesis

The performance of algorithms is typically judged by their space- and time complexity
(Meinel and Theobald 1998). We use the metrics peak used BDD nodes and BDD
operation count introduced in Thuijsman et al. (2019) to quantitatively express the
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space- and time effort required for supervisor synthesis. These metrics have some
advantages over conventional metrics such as peak random access memory and wall
clock time. First, they are deterministic: performing a supervisor synthesis twice with
the same input and algorithm configuration will give the exact same result. This
determinism also holds when doing the synthesis on two different platforms, even if
one is a supercomputer and the other is a personal computer. As a result, it becomes
easier to compare results from different measurements or publications. Second, there is
no overhead in the measurement, loaded-in Java classes and other computer processes
will not influence the measurement. After introducing the BDD-based metrics, we
relate them to the wall-clock time and peak memory usage of a synthesis and worst
case state space size of the model in Section 5.3.3.

We distinguish complexity from effort. Complexity regards classes of problems,
and defines the generic trend of the (space/time) resources a computation requires
for inputs of different sizes, often expressed using ‘Big O’ notation (Knuth 1976).
Effort specifies the amount of resources used for one particular computation, where
the complete input is considered rather than only its size. This input includes algorithm
configuration settings and, in our case, variable and edge order.

5.3.1 Peak used BDD nodes

During symbolic supervisor synthesis, the number of BDD nodes used to describe
the predicates generally fluctuates. Since reduced ordered BDDs are used, which are
minimal representations, the used BDD nodes is the minimal amount of BDD nodes
required to represent the predicates at that point during the computation. The space
effort can be measured by the peak (maximal) number of BDD nodes used during
synthesis (Meinel and Theobald 1998; Vahidi et al. 2006).

In CIF, BDD nodes are stored in a hash table. Each new node is allocated to an entry
in the hash table. Once the hash table reaches a certain fill rate, garbage collection is
employed to free no longer used entries. We only count the used BDD nodes, i.e., hash
table entries that still contain relevant information for the BDDs that are still in use.
Garbage collection is performed by means of a standard mark-and-sweep algorithm.
Functions from the implementation of this algorithm in the JavaBDD library4 are
reused to count the BDD nodes that are in use. This measurement is performed each
time just before a BDD reference is deleted, which causes used nodes to become
unused. Thereby ensuring the exact peak value of used nodes is found. For a more
detailed explanation on BDD node references, used nodes, and unused (dead) nodes
we refer to Somenzi (1999).

Peak used BDD nodes is a reproducible metric: Performing a supervisor synthesis
twice with the same input yields exactly the same peak used BDD nodes.

4 The JavaBDD library is available at https://javabdd.sourceforge.net.

https://javabdd.sourceforge.net
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5.3.2 BDD operation count

The time effort can be expressed in the number of steps/operations during a computation
(Meinel and Theobald 1998). As supervisor synthesis is done by performing operations
on BDDs, we use BDD operation count to express the time effort of performing
supervisor synthesis. Since BDD operations (such as ‘and’ and ‘or’) are implemented as
functions that employ structural recursion on BDD nodes, the number of invocations of
such functions can be used to express time effort. Since the functions are deterministic,
the results are reproducible.

Generally, these functions consist of three parts. First, a few checks are performed to
see whether the requested calculation is a terminal case. Second, if it is a non-terminal
case, it is checked whether the calculation has already been performed, and is still in
the cache. Note that we do not mean hardware cache here, but a table actively storing
results of previous calculations. If both previous cases do not apply, the function
performs recursive expansion over the child nodes. Each time this recursive expansion
is performed, i.e., when operations are applied on the BDD, we increment the BDD
operation count. For more details about terminal cases, cache lookup and recursive
expansion over child nodes we refer to Somenzi (1999).

5.3.3 Relevance of metrics

In order to compare the BDD-based metrics to conventional metrics, e.g., wall clock
time, memory usage, and state space sizes, we perform a number of supervisor syn-
theses and extract these metrics. The data presented in this chapter is acquired by
performing supervisor syntheses to the models shown in Table 5.1. The models are
selected to have a wide range of sizes. Table 5.1 shows, and is sorted by, the worst case
state space size of the uncontrolled plant for each model, which is the product of the
number of the locations and variable domain sizes of each EFA in the model. E.g., the
EFA given in Example 5.1 has two locations and two variables with each a domain of
two, so its worst case state space is 2 · 2 · 2 = 8. The first two models have a worst
case state space of a single state because their plant models only contain EFAs with
a single state. The requirement specifications of these models contain automata with
more than one state.

For a supervisor synthesis of the Waterway lock model, Figure 5.3 shows how
the number of used BDD nodes evolves, as BDD operations are performed during
synthesis. Intuitively, the horizontal axis represents the ever-increasing number of
operations performed as synthesis progresses, and the vertical axis represents the
fluctuating memory usage. The metrics presented in this chapter are the maxima along
both axes in this plot: the peak used BDD nodes and the final BDD operation count.

Figures 5.4(a) and 5.4(b) show how peak random access memory and wall clock time
respectively relate to peak used BDD nodes and BDD operation count. A supervisor
was synthesized for each model of Table 5.1 for 100 pairs of random variable- and edge
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Table 5.1: Benchmark models.

Name Worst case state
space size

Robotic swarm aggregation (Lopes et al. 2016) 1.0 · 100

Robotic swarm clustering (Lopes et al. 2016) 1.0 · 100

Robotic swarm segregation (Lopes et al. 2016) 6.4 · 101

Robotic swarm formation (Lopes et al. 2016) 8.0 · 101

Multi agent formation (Cai and Wonham 2014) 1.0 · 103

Automatic guided vehicles (Wonham and Cai 2019) 3.1 · 103

Ball sorting system (Čengić and Åkesson 2008) 7.4 · 104

Theme park vehicles (Forschelen et al. 2012) 2.9 · 105

Cluster tool (Su et al. 2010) 2.7 · 108

Production cell (Feng et al. 2008) 7.5 · 108

Modified cat and mouse tower (n=3, k=1) 1.1 · 109
(Thuijsman et al. 2021)

Advanced driver assistance system (Korssen et al. 2018) 3.4 · 109

Cat and mouse tower (n=3, k=2) ∗ 2.1 · 1014

Lithography machine initialization (Vos 2020) 1.8 · 1016

Bridge (Reijnen et al. 2018b) 2.8 · 1027

FESTO production line (Reijnen et al. 2018a) 1.3 · 1028

Waterway lock (Reijnen et al. 2017) 6.0 · 1032

∗ This model first appears in literature in Ma and Wonham (2008), Miremadi et al. (2008), and Moor
et al. (2008). See Section 3.6 for more details.
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Figure 5.3: Evolution of used BDD nodes during synthesis.

orders. Note that these variable orders have been re-ordered by heuristic algorithms
FORCE and Sliding Window (SW), which we discuss later, to obtain the variable order
that synthesis actually uses. The measurements were performed in sequence using two
Intel Xeon Gold 6226 processors clocked at 2.70 GHz, operating on Linux. The
measurements for random access memory and wall clock time were done separately
from the measurements of the BDD-based metrics to avoid them from interfering.
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(a) Peak memory usage vs peak BDD nodes.
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(b) Wall clock time vs BDD operation count.
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Figure 5.4: BDD-based metrics against conventional metrics.

For small models, peak random access memory cannot indicate a difference in
synthesis effort, as all results of the small models are grouped around 60 MiB. For
some of the smaller and medium-sized models there is a significant amount of noise
in the measured wall clock time and random access memory. For wall clock time,
this noise typically originates from delays in IO procedures (writing the output file).
For memory, the noise originates from loaded in classes and the practically random
intervals at which Java performs garbage collection.

For larger computations, a linear relation is visible between wall clock time and
BDD operation count. The threshold at which this relation starts, and its slope, are
dependent on the used hardware. The scattering that is seen for larger computations
in Figure 5.4(a) is a result of the manner in which the BDD space allocation takes
place: when the current table is full, it gets doubled in size, the new free entries in this
table will have an influence on the memory, but are not measured when counting the
used BDD nodes. Also, when performing computations that require more memory,
the Java Virtual Machine will perform garbage collection in the background to free
memory. For separate measurements this will happen at different times, which impacts
the peak random access memory, not the amount of used BDD nodes. Note that for the
measurements in Figure 5.4 additional garbage collection is performed before every
measurement to achieve a consistent situation between measurements.

An advantage of wall clock time and peak random access memory is that a user
performing supervisor synthesis is more likely to be familiar with these metrics. It gives
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(a) Worst case state space size vs peak BDD
nodes.
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(b) Worst case state space size vs BDD operation
count.
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Figure 5.5: BDD-based metrics against conventional metrics.

a better idea whether their computer is able to perform the synthesis in an acceptable
amount of time given the available memory. However, opposed to the BDD-based
metrics, wall clock time and peak random access memory are not deterministic, so
they will yield different results for every synthesis run. Their results are influenced
by aspects including loaded classes, garbage collection, and IO operations. The BDD-
based metrics enable a distinction in effort for the actual synthesis portion of the
computation. Also, the BDD-based metrics are platform dependent. Particularly the
wall clock time of some synthesis will be influenced by the used hardware, making it
difficult to compare results.

Worst case state space of the uncontrolled system is also frequently used to indicate
(expected) synthesis effort. The advantage of using worst case state space size of
the uncontrolled system over BDD-based metrics to indicate the synthesis effort, is
that no supervisor synthesis or reachability computations are required to calculate
this number. Figures 5.5(a) and 5.5(b) show how this state space size relates to the
BDD-based metrics. There is a general trend of a larger state space size suggesting
more supervisor synthesis effort, but it is not a very accurate indicator. Note that there
are multiple ways to indicate state space sizes, some also taking the product with
requirement automata, but we found that also in those cases the state space size cannot
accurately indicate the expected supervisor synthesis effort.
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5.3.4 Impact of variable- and edge order on computational effort

We presented two metrics that indicate the computational effort of a supervisor synthe-
sis. However, we have to be careful when making conclusions based on this synthesis
effort. The variable- and edge order have an influence on the results. This can also be
seen in Figures 5.4 and 5.5, where the results per model are scattered due to using
different variable- and edge orders. Recall that since the BDD-based metrics are de-
terministic, re-performing a synthesis with the same variable- and edge orders would
provide the exact same result.

It is well known that the variable order has a notable impact on the BDD size, and
consequently on the computational effort. Therefore, the variable ordering heuristics
FORCE and SW (Aloul et al. 2003) are implemented in CIF (already prior to this
work). FORCE is supplied with a variable order and reorders it to group variables
together that have high interaction, meaning they often appear together in guards and
updates. Note that this algorithm finds a local optimum: initializing it with different
orders, might give different resulting variable orders. SW starts from a variable order,
and “slides a window” across the variables to locally optimize that part of the order.
In this work, always a (default) window size of 4 is used. These heuristics can be
sequenced. We denote FORCE+SW to indicate that first FORCE is applied to some
initial variable order, and SW is performed on the variable order computed by FORCE,
to produce the variable order used in synthesis.

In previous work (Thuijsman et al. 2019; Lousberg et al. 2020; Thuijsman et al.
2021) the conditions when FORCE and SW considered two variables to be related
was different from the current implementation. For further details we refer to the CIF
documentation. The current implementation uses the variable relations as discussed in
Section 5.4. Hence, we repeat the experiments of Thuijsman et al. (2019); Lousberg
et al. (2020) and Thuijsman et al. (2021) using the same variable dependencies for
all variable ordering heuristics, that we discuss below, such that we can accurately
compare their efficiency.

We investigate to what extent the edge order and initial variable order influence
the supervisor synthesis effort. For each model in Table 5.1, a supervisor has been
synthesized for all combinations of 100 random edge orders and 100 random initial
variable orders. These initial variable orders are re-ordered by FORCE+SW to produce
the variable order used in synthesis. The effort of performing each synthesis is shown
in Figure 5.6.

It can be seen that there are major differences in computational effort by using
different orders. For the Waterway lock model, the highest peak used BDD nodes is
658 times larger than the lowest peak used BDD nodes. For BDD operations this factor
is 338. This is purely a result of changing the edge orders and initial variable orders:
all other algorithm configurations were the same for all measurements.

Figure 5.6 also shows that measuring both peak used BDD nodes and BDD operation
count is relevant. It would be difficult to distinguish the computational effort between
some of the syntheses if only one of the metrics was used. For example, if we only
measured the BDD operation count, we would not see much difference for the efforts
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Figure 5.6: Supervisor synthesis effort for all combinations of 100 edge- and 100
variable orders for each model.

of synthesis for Cat and mouse tower. If we only measured peak used BDD nodes.
we would not see much difference for the effort of synthesis for Ball sorting system.
Measuring both metrics enables us to differentiate between the efforts of synthesis for
each model based on the various initial variable orders and edge orders.

Figure 5.7 shows the peak used BDD nodes for all syntheses of the Theme park
vehicles model. Darker squares indicate a higher amount of peak used BDD nodes.
All variable- and edge orders were given an index. A row shows the peak used BDD
nodes of all syntheses that were performed with the same edge order and varying
variable orders, and a column shows the same for a fixed variable order with varying
edge orders. In Figure 5.7, we see rows and columns where the elements are similarly
colored, indicating that variable order and edge order both have a reasonable impact on
the peak used BDD nodes for this particular model. There are other models where only
the elements in columns are similarly colored, indicating that the variable order mainly
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Figure 5.7: Peak used BDD nodes for all supervisor syntheses of the Theme park
vehicles model.

influences their synthesis effort. We observe similar results for the BDD operation
count.

Figure 5.7, along with analyzing the same plot for other models, shows that a
relatively poor/good variable order generally performs relatively poor/good for all
edge orders and vice versa. This means the variable order and edge order can be
improved individually, which is what we respectively focus on in Sections 5.4 and 5.5.

If we define the peak used BDD nodes for a certain model as a deterministic
function 𝑓 (𝑜𝑣,𝑖 , 𝑜𝑒, 𝑗 ), where 𝑜𝑣,𝑖 is the 𝑖’th sample random variable order and 𝑜𝑒, 𝑗 the
𝑗’th sample random edge order, the global sample mean (Montgomery and Runger
2018) of the peak used BDD nodes `𝐺 ( 𝑓 ) is given by Equation 5.1:

`𝐺 ( 𝑓 ) = 1
𝑁 · 𝑀

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑓 (𝑜𝑣,𝑖 , 𝑜𝑒, 𝑗 ), (5.1)

where 𝑁 and 𝑀 respectively are the total number of sampled variable- and edge orders.
For our experiment, 𝑁 = 𝑀 = 100 for each model.

The global (unbiased) sample variance (Montgomery and Runger 2018) of the peak
used BDD nodes 𝜎2

𝐺
( 𝑓 ) is given by Equation 5.2:

𝜎2
𝐺 ( 𝑓 ) = 1

𝑁 · 𝑀 − 1

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

(
𝑓 (𝑜𝑣,𝑖 , 𝑜𝑒, 𝑗 ) − `𝐺 ( 𝑓 )

)2
. (5.2)
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The sample variance 𝜎2
𝑣,𝑖
( 𝑓 ) of the peak used BDD nodes for the edge orders tested

with a particular variable order 𝑜𝑣,𝑖 , is given by Equation 5.3:

𝜎2
𝑣,𝑖 ( 𝑓 ) =

1
𝑀 − 1

𝑀∑︁
𝑗=1

(
𝑓 (𝑜𝑣,𝑖 , 𝑜𝑒, 𝑗 ) − `𝑣,𝑖 ( 𝑓 )

)2
, (5.3)

where `𝑣,𝑖 ( 𝑓 ) = 1
𝑀

∑𝑀
𝑗=1 𝑓 (𝑜𝑣,𝑖 , 𝑜𝑒, 𝑗 ) is the mean peak used BDD nodes of the edge

orders tested with variable order 𝑜𝑣,𝑖 . The mean sample variance for fixed variable
orders 𝜎2

𝑣 ( 𝑓 ) is computed by Equation 5.4:

𝜎2
𝑣 ( 𝑓 ) =

1
𝑁

𝑁∑︁
𝑖=1

𝜎2
𝑣,𝑖 ( 𝑓 ). (5.4)

Equations 5.3 and 5.4 can analogously be applied to compute the sample variance
of peak used BDD nodes for variable orders tested with particular edge orders 𝜎2

𝑒, 𝑗
( 𝑓 ),

and the mean sample variance for fixed edge orders 𝜎2
𝑒 ( 𝑓 ). Likewise, we can define

a function 𝑔(𝑜𝑣,𝑖 , 𝑜𝑒, 𝑗 ) for the BDD operation count of a model and apply above
computations to this.

When relating these characteristics to what we see in Figure 5.7, a low mean sample
variance for fixed variable orders 𝜎2

𝑣 ( 𝑓 ) would indicate a similar amount of peak used
BDD nodes for a given variable order. This would be visible in Figure 5.7, as elements
located in the same column would be similarly colored. This would indicate that the
variable order mainly influences the peak used BDD nodes, and the edge order has
little influence.

For each model, the global sample mean `𝐺 , global sample variance 𝜎2
𝐺

, mean
sample variance for fixed variable orders 𝜎2

𝑣 and mean sample variance for fixed edge
orders 𝜎2

𝑒 are given for peak used BDD nodes ( 𝑓 ) and BDD operation count (𝑔) in
Table 5.2. For most of the models, the mean sample variance for fixed variable orders
is smaller than the mean sample variance for fixed edge orders. This indicates that the
variable order has a larger influence on the supervisor synthesis effort than the edge
order. The effect of the variable order is particularly notable, when considering that
for these experiments FORCE+SW is being applied to the variable order (to compute
the variable order that synthesis is performed with). The variance is even higher when
FORCE+SW is not applied (Lousberg et al. 2020). However, the mean variance for
fixed variable orders is large enough that the edge order is still of considerable influence
to the supervisor synthesis effort.

Models that require a relatively large amount of supervisor synthesis effort, also
have a relatively large variance in effort. This would also be observed if we were to
normalize to the mean values of the models, i.e., 𝜎2/` or 𝜎/`. This indicates that
applying a good variable- and edge order becomes more beneficial when considering
models that require more supervisor synthesis effort.
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5.4 DCSH variable ordering heuristic

In Section 5.3.4 we have touched on the extent in which edge and variable order in-
fluence the computational effort. There is a large variance in the computational effort
of synthesis as a result of the initial variable order, even if FORCE+SW is applied.
In this section, we introduce a heuristic algorithm named DSM-based Cuthill-McKee-
Sloan variable ordering Heuristic (DCSH) to find a variable order that reduces the
computational effort required for symbolic supervisor synthesis compared to current
implementation (FORCE+SW). This heuristic is based on two matrix ordering heuris-
tics from Cuthill and McKee (1969) and Sloan (1989), that are used to minimize the
Weighted Event Span (WES) (Siminiceanu and Ciardo 2006). These matrix reordering
heuristics are applied to a Dependency Structure Matrix (DSM) that stores the number
of times BDD-variables appear together in transition relations, to find a new variable
order. It is shown in Meijer and van de Pol (2016) that these heuristics are able to
reduce the WES, and thereby the computational effort for symbolic model checking.
Heuristics are used, since directly minimizing the WES is an NP-complete problem
(Siminiceanu and Ciardo 2006).

5.4.1 Transition relation, variable order, and computational effort

When studying the evolution of BDDs during synthesis, most computational effort is
performed during the reachability searches (Algorithm 5.2). Specifically, during the
existential quantification operation in line 3 of Algorithm 5.2. Because this operation
is applied many times, the guard and update predicates are placed in a single predicate,
which is the transition relation: 𝑇𝑒 (𝑋, 𝑋+) = 𝑔𝑒 (𝑋) ∧ 𝑢𝑒 (𝑋, 𝑋+), where there is a
transition relation 𝑇𝑒 for each edge 𝑒 = (𝜎, 𝑔𝑒 (𝑋), 𝑢𝑒 (𝑋, 𝑋+)).

Existential quantification over the transition relations is frequently applied during
synthesis. This operation can be executed by first computing 𝑃(𝑋+) ∧ 𝑇𝑒 (𝑋, 𝑋+)
and then quantifying over 𝑋+. However, this results in a large intermediate result of
𝑃(𝑋+) ∧ 𝑇𝑒 (𝑋, 𝑋+). Therefore, both the conjunction and existential quantification are
computed in a single recursive pass over𝑃(𝑋+) and𝑇𝑒 (𝑋, 𝑋+) by utilizing the relational
product operation (Burch et al. 1994). This operation prevents computing the entire
BDD 𝑃(𝑋+)∧𝑇𝑒 (𝑋, 𝑋+) and quantifies early over 𝑋+, thereby reducing memory usage
and number of required operations. Nevertheless, computing the relational product is
known to be an expensive computation (Burch et al. 1994).

So, we frequently apply computationally expensive operations to BDDs that repre-
sent predicate 𝑇𝑒 (𝑋, 𝑋+). We say sets of variables are strongly related if they appear
together in many transitions. BDDs are overall small if strongly related BDD-variables
are placed near each other in the variable order (Minato 1996; Somenzi 1999). If we
keep variables of each transition relation near each other in the variable order, it is
likely that the resulting BDDs representing the (nonblocking and bad-state) predicates
are kept small during synthesis, leading to reduced computational effort.
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5.4.2 Dependency Structure Matrix reordering

A DSM is a square 𝑛 × 𝑛 matrix representing dependencies between 𝑛 aspects of a
system or model (Browning 2016). We capture variables of the LFA along the rows and
columns where each index represents a single variable. In our use, the variables are
always ordered the same along the row and column axis. In this chapter we utilize static
Numerical DSMs (NDSMs). The off-diagonal elements can be non-negative integers,
where the value indicates the number of times the respective variables appear together
in a predicate expression𝑇𝑒 of an edge in the LFA. In our use, the diagonal elements are
always zero. Furthermore, all dependencies in the NDSM are regarded as undirected,
thus providing a symmetric matrix. Subsequently, the NDSM is manipulated by two
matrix ordering heuristic algorithms that reorder the row and column indices such
that non-zero values are placed towards the diagonal. The order in which the variables
appear along the rows/columns is used as variable order for synthesis. Essentially, we
are creating a variable order such that variables that often appear together in 𝑇𝑒, are
placed near each other in the variable order.

Before synthesis we extract the variables that appear in predicate expression 𝑇𝑒 for
each edge 𝑒 ∈ 𝐸 . For all occurrences of pairs of variables per 𝑇𝑒 we increment the
element in the NDSM by one, thus a higher value indicates a stronger dependency
between the variables. The increment is executed for both combinations of the pair
such that the resulting NDSM is symmetric.

Figure 5.8 shows an example of an NDSM before and after reordering. The before
image has the variables ordered alphabetically, which is the default initial variable
order in CIF. The variables are reordered, by applying the method we discuss next. In
the after image we observe that variables that are closely related are clustered together.
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(a) NDSM before reordering.
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(b) NDSM after reordering.

Figure 5.8: NDSM before and after reordering of the Cluster tool model.
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The use of DSMs in supervisory control theory is not new. In Goorden et al. (2020)
DSMs are used to find clusters of highly interactive components for the purpose of
applying multilevel synthesis. However, we are not looking for clusters, but interested
in reordering the row and column indices such that higher valued elements are placed
as close as possible towards the diagonal relative to lower valued elements. By finding
such an order, we also find an order where variables that often appear together in
transition relations are placed near each other.

In practice, the NDSMs constructed in our approach are sparse. We utilize existing
variable ordering heuristics, that have been designed for bandwidth, profile, and/or
wavefront reduction of symmetric sparse matrices. For an elaboration on these metrics
we refer to Cuthill and McKee (1969) for bandwidth and Sloan (1989) for profile
and wavefront. By minimizing any of these metrics, an order is achieved for which
relatively low computational effort is expected. The effective use of these heuristics for
static variable order optimization for BDDs is shown in Meijer and van de Pol (2016),
where several bandwidth, profile and wavefront reducing node ordering heuristics have
been compared. These heuristics apply a reordering to the adjacency graph that can
directly be extracted from an NDSM. As we utilize an NDSM we append the graph’s
edges by weights resulting in a weighted adjacency graph. For an NDSM with row
index 𝑖 and column index 𝑗 , we denote elements by [𝑖, 𝑗 . For each row 𝑖 we generate
a node labeled by 𝑖. Subsequently, each non-zero element [𝑖, 𝑗 results in an undirected
edge with weight [𝑖, 𝑗 between nodes 𝑖 and 𝑗 . This results in a weighted adjacency
graph where the node labels are reordered using the following two heuristics.

5.4.2.1 Weighted Cuthill-McKee ordering

The Cuthill-McKee (CM) ordering is a bandwidth reducing node ordering heuristic
introduced by Cuthill and McKee (1969). The standard algorithm places non-zero
elements near the diagonal to result in a matrix with a lower bandwidth. We introduce
an adjustment to the standard algorithm, such that it is able to differentiate between
non-zero elements. Higher valued elements are prioritized in being placed close to the
diagonal over lower valued elements. We will refer to this algorithm as the weighted
CM ordering, which is shown in Algorithm 5.3. Lines 7 and 8 are an adjustment of
the standard algorithm. As a convention, the for-loop at line 2 selects sub-graphs in
descending size.

5.4.2.2 Sloan’s ordering

Sloan’s ordering is a profile and wavefront reducing node ordering heuristic introduced
by Sloan (1989). It places non-zero elements near the diagonal to result in a lower
profile of the matrix. In this chapter the standard algorithm is not adjusted to be able
to differentiate between non-zero elements, although this is of interest for future work.
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Algorithm 5.3 Weighted Cuthill-McKee ordering.
Input: NDSM 𝑀

Output: Variable order list 𝑅
1: Initialize empty list 𝑅, compute weighted adjacency graph 𝐴 of 𝑀
2: for each Connected subgraph 𝐴′ of 𝐴 not connected to another node in 𝐴

3: Compute pseudo-peripheral node 𝑝 of 𝐴′

4: Mark 𝑝 and append 𝑝 to 𝑅

5: while Unmarked nodes exist in 𝐴′

6: Find list 𝐶 of unmarked neighbors of 𝑝
7: Sort list 𝐶 such that the nodes are in descending weight
8: Sort list 𝐶 such that nodes with equal weight are in ascending degree
9: Append 𝐶 to 𝑅 and mark all nodes in 𝐶

10: Set the next node in 𝑅 as 𝑝

11: end
12: end

5.4.2.3 Weighted Event Span

We apply both ordering heuristics to the NDSM indicating related pairs of variables.
This results in two orders. Furthermore, we notice that reversing the order can some-
times lead to significant differences in synthesis effort. Siminiceanu and Ciardo (2006)
noticed that placing variables that result in more costly operations towards the bottom
of the BDD resulted in less effort required in a similar application of BDDs. This
resulted in the Weighted Event Span (WES) metric. Furthermore, the WES has been
extensively tested by Meijer and van de Pol (2016), where a correlation is shown be-
tween peak BDD nodes, computation time, and the WES for several types of decision
diagrams applied to symbolic model checking. Given a variable order, the WES is
found by

WES =
∑︁
𝑒∈𝐸

2𝑥𝑙 (𝑒)
|𝑋 | · 𝑥𝑙 (𝑒) − 𝑥ℎ (𝑒) + 1

|𝑋 | |𝐸 | , (5.5)

where |𝑋 | and |𝐸 | respectively indicate the total number of variables and edges. 𝑥𝑙 (𝑒)
and 𝑥ℎ (𝑒) are respectively the lowest- and highest variable index from the variables in
𝑇𝑒 (𝑋). The first term in Equation 5.5 increases as 𝑥𝑙 (𝑒) is placed later in the variable
order. The second term increases the WES when 𝑥𝑙 (𝑒) − 𝑥ℎ (𝑒) is large.

To estimate which of the four orders (two orders resulting from two different ordering
heuristics and two reverse orders) should be used in synthesis, the WES is computed for
each of the orders. The order that has the lowest WES is used in synthesis. This results
in the proposed variable ordering heuristic, named DSM-based Cuthill-McKee-Sloan
variable ordering Heuristic, abbreviated to DCSH for ease of reference.
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5.4.3 Experiments

In Lousberg et al. (2020), the efficiency of variable orders computed by DCSH was
compared to that of FORCE+SW. As mentioned in Section 5.3.4, in Lousberg et al.
(2020) DCSH used different variable relations than FORCE and SW. We repeat the
same experiments of Lousberg et al. (2020) here, using the same variable relations
as discussed above for all heuristic algorithms. Additionally, the experiments are now
performed for all models in Table 5.1, which is a larger set of models than was used in
Lousberg et al. (2020).

For each model in Table 5.1, 10,000 random initial variable orders are generated.
Each of those orders, is ordered by FORCE+SW and DCSH (separately) and then
synthesis is performed using the computed order. We noticed it may be beneficial
to apply FORCE+SW on the order computed by DCSH, so essentially performing
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Figure 5.9: Distribution of peak used BDD nodes for 10,000 random initial variable
orders, ordered by FORCE+SW, DCSH, and DCSH+FORCE+SW
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sequence DCSH+FORCE+SW. We perform synthesis using each resulting variable
order and measure the computational effort. Besides the initial variable order and
turning on the BDD measurements, other settings in CIF were kept default in these
experiments.

For each model, the computational effort using FORCE+SW, DCSH, and DCSH+
FORCE+SW is plotted in a histogram, respectively for peak used BDD nodes in
Figure 5.9 and BDD operation count in Figure 5.10. The histograms are created by
dividing the space between the lowest and highest measurement in 100 bins, and setting
the height of each bar to the fraction of measurements that are in that bin. Note that
while each bin has equal width, the bars in Figures 5.9 and 5.10 visually have varying
widths due to logarithmic scaling along the horizontal axis.

For each heuristic method, the minimal, mean, and maximal value are shown in
Figure 5.11, for both peak used BDD nodes and BDD operation count. These values
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are normalized to the mean value for FORCE+SW for that model. E.g., a mean value
of 0.8 (8 · 10−1) for DCSH+FORCE+SW for some model, indicates that for that model
the mean computational effort of DCSH+FORCE+SW was 20% lower than the mean
computational effort of FORCE+SW.

Summarizing the results, for both peak used BDD nodes and BDD operation
count, for 16 out of 17 models, the maximal computational effort was found when
using FORCE+SW. So, using FORCE+SW there is the likelihood to perform syn-
thesis with relatively a really high computational effort. Generally, using DCSH
or DCSH+FORCE+SW, removes most high-effort outliers: the maximal values are
much lower. The mean of peak used BDD nodes over the measurements is less for
DCSH+FORCE+SW compared to DCSH in 12 out of 17 models. For BDD operation
count this is the case for 10 out of 17 models. Also, the maximal peak used BDD nodes
using DCSH+FORCE+SW is less than the maximal peak used BDD nodes using just
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DCSH for 13 out of 17 models. For BDD operation count this is the case for 12 out of
17 models.

On average over all models, when using DCSH+FORCE+SW the peak used BDD
nodes increase by 5%, and the BDD operation count lowers by 14%, relative to
FORCE+SW. Relative to DCSH, it realizes 8% less peak used BDD nodes and a
12% lower BDD operation count. Even though DCSH+FORCE+SW realizes a slightly
higher average amount of peak used BDD nodes than FORCE+SW, it is very effective at
avoiding the high effort computations. In conclusion, using DCSH+FORCE+SW gen-
erally the least computational effort is required, and computations with relatively high
computational effort are avoided. Therefore, using DCSH+FORCE+SW is advisable
over just applying FORCE+SW or DCSH.

The time to run these variable ordering heuristic algorithms is negligible relative to
the time to perform synthesis.

5.5 Edge order

As shown in Section 5.3.4, next to the variable order also the edge order has a significant
impact on the computational effort of synthesis. In the current implementation of CIF,
there are six options to set the edge order:

1. model: the order in which each edge appears when reading the model top-to-
bottom;

2. reverse-model: the reverse of ‘model’;
3. sorted: alphabetical sorting of the edges by their event label;
4. reverse-sorted: the reverse of ‘sorted’;
5. random: a random ordering (optionally with a seed);
6. a manually specified order.

In this section, we compare the efficiency of the first five options. There are perhaps
more interesting approaches to ordering the edges, e.g., such as presented in Vahidi et al.
(2006) and Fei et al. (2014). These approaches however do not satisfy our self-imposed
restriction mentioned in Section 5.1 to investigate static (not on-the-fly) optimization.
Yet, however simple the static edge ordering heuristics may be, we will see in the
following they can still produce good results, and investigating which option to use is
worthwhile, also in order to come up with more meticulous heuristics in the future.

For each model in Table 5.1, synthesis is performed using model, reverse-model,
sorted, and reverse-sorted edge order. Also for 100 random edge orders synthesis is
performed. Following Section 5.4, DCSH+FORCE+SW is applied as variable order-
ing heuristic in these experiments, using the variable relations as introduced in Sec-
tion 5.4.2. Besides applying DCSH+FORCE+SW, setting the edge order, and turning
on BDD measurements, other settings in CIF are kept default in these experiments.

The results of these experiments are shown in Figure 5.12. For model, reverse-model,
sorted, and reverse-sorted edge order, computational effort is displayed, normalized to
the mean of using the 100 random edge orders. E.g., a value of 2 · 10−1 indicates an
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Figure 5.12: Computational effort reduction factor for edge order heuristics normalized
to random.

80% reduction in effort compared to the random orders on average. These values are
shown for the peak used BDD nodes, and the BDD operations count.

As was concluded in Section 5.3.4, the edge order has a smaller influence on the
peak used BDD nodes compared to BDD operation count. For most models the peak
used BDD nodes are similar for the different edge orders. However, for the Bridge and
Waterway lock models, using any edge order option other than random considerably
reduces the peak memory usage, with reductions up to 90%, compared to the mean
of using random edge orders, for both models. Overall, for peak used BDD nodes the
average reduction by using any edge order option other than random is 10%.

The edge order has a larger influence on the BDD operation count. Again, for the
Bridge and Waterway lock models the highest impacts are found, with a reduction up to
99% for the Waterway lock model compared to the mean of using random edge orders.
Overall, for BDD operation count the average reduction by using any edge order option
other than random is 22%.

Over all models, the best average reduction for BDD operation count is found using
reverse-model, with a average reduction of 29%. For model, sorted, and reverse-sorted
these average reductions are 16%, 22%, and 21% respectively. Also, reverse-model is
the only heuristic that performed the same or better than the averaged random edge
orders for every model. Therefore, usage of the reverse-model edge order is advisable
over the other edge ordering heuristics available in CIF.

We give a possible reason why model, reverse-model, sorted, and reverse-sorted
generally perform better than the random edge orders. In all models, the model is
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specified by a network of automata. If an event is locally specified within an automaton,
its name gets prefixed with the automaton name (to avoid duplicate names). As a result
for these ordering heuristics, edges that are used in the same automata are placed next
to each other in the edge order. It is likely that edges specified in the same automaton,
address similar variables in their guard and update expressions. Therefore, calculations
on the parts of the BDD representing these variables are performed in close succession
to each other. This means there is a higher likelihood of comparable calculations still
being in the cache if we perform calculations on the same variables back-to-back.
We refer back to Section 5.3.2: when a previous calculation is found in the cache,
that result is used, no computations on the BDD need to be performed, and the BDD
operation count is not incremented. So, iterating over edges in an order such that
similar calculations are performed back-to-back improves the efficiency of the cache
mechanism, therefore speeding up synthesis.

Also, we can reason why reverse-model generally has the best results. People
generally write down the automata in a way that logically follows the behavior from
top-to-bottom. For synthesis, the main computations are calculating the nonblocking
and bad state predicate through backward reachability searches, i.e., the behavior is
followed backwards (from the nonblocking or bad states). Evaluating an edge that does
not lead to a currently found nonblocking/bad state costs computational effort, but
does not aid in further construction of the nonblocking/bad state predicate. As a result,
states are more efficiently found by evaluating edges in the reverse order of how they
occur in the behavior, for which practically reverse-model is a good guess.

5.6 Efficiently enforcing requirements

Central to supervisory control theory, is the specification of behavioral requirements,
and enforcing those through supervisor synthesis. In CIF, requirements can be specified
in three ways:

1. requirement EFAs: prescribing allowed behavior w.r.t. a subset of the plant’s events;
2. state exclusion expressions: an expression defining a condition that needs to hold

in every state of the controlled system;
3. state-event exclusion expressions: an expression defining a condition that needs to

hold for a particular event to occur.

Similarly to how an EFA was converted to an LFA prior to synthesis in Section 5.2.1,
these requirements are also converted to a format based on predicates. Respectively:

1. requirement LFAs: prescribing allowed behavior w.r.t. a subset of the plant’s events,
which are direct linearizations from the requirement EFAs;

2. state exclusion predicates: a predicate using variables 𝑋 that needs to hold in
every state of the controlled system. Logically, this predicate directly relates to the
condition specified in a state exclusion expression;
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3. state-event exclusion predicates: defined by 𝜎 ⇒ 𝐽, where 𝐽 is an expression
defining a predicate over 𝑋 that needs to hold for event 𝜎 to occur in the controlled
system.

The latter two requirement types are discussed in Markovski et al. (2010). These
are also the requirement types that we consider in this chapter. Note that requirement
automata can be converted to plant automata to enforce them in synthesis (Flordal et al.
2007).

Even though we define the safe states or states from which events are allowed
to occur, we call it ‘exclusion’ requirements because it is a restriction on the plant
behavior.

Conversion of the requirements to their predicate-based counterparts is relatively
straightforward, and specification of requirements, along with this conversion, is ex-
emplified in Example 5.3.

Example 5.3 Traffic lights

We consider two traffic lights, each regulating traffic for their road at a two-way
intersection. The plant behavior can be modeled by two automata, given in Figure 5.13.

Red Green

green A

red A
(a) LightA.

Red Green

green B

red B
(b) LightB.

Figure 5.13: Traffic lights plant automata.

The informal requirement is that the traffic lights should not be green at the same
time, as this may result in a collision. This requirement can be formalized by a require-
ment EFA, given in Figure 5.14.

RR RGGR

green A

red A

green B

red B

Figure 5.14: Traffic lights requirement automaton.

Alternatively, the requirement specification can be given by a state exclusion ex-
pression (i.e., this is the syntax a modeler would use in CIF):
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not(LightA.Green and LightB.Green),

which directly relates to a state exclusion predicate:

¬(𝑙𝐴 = Green ∧ 𝑙𝐵 = Green),

where, e.g., 𝑙𝐴 is the location pointer variable for LightA that can take values Green
and Red.

As another option, the modeler may give two state-event exclusion expressions,
specifying that one light can only be turned green if the other light is red:

green A needs LightB.Red,
green B needs LightA.Red.

These expressions, written in CIF syntax, can be directly converted to state-event
exclusion predicates:

green A ⇒ 𝑙𝐵 = Red,
green B ⇒ 𝑙𝐴 = Red.

We will refer to the set of all state exclusion predicates as SX, and to the set of all
state-event exclusion predicates as EX. For simplicity we will consider specifications
that do not contain any requirement EFA. Enforcing the requirements expressed by
automata in (symbolic) supervisor synthesis is well known (Ramadge and Wonham
1987; Flordal et al. 2007; Ouedraogo et al. 2011; Cassandras and Lafortune 2021).

Through general usage of CIF, it has been noticed empirically that the manner in
which the requirements are modeled can impact the efficiency of performing supervisor
synthesis, even if they represent the same informal requirement specification and the
same controlled behavior is achieved. Notably the usage of state exclusion expressions
would lead to computations that require a lot of time and memory. Consequently,
this type of requirement specification was sometimes avoided when modeling larger
systems. This can be observed in, e.g., the Waterway lock model from Reijnen et al.
(2017).

For the purpose of modeling ease and model clarity, in a number of cases it might
be useful to use state exclusion expressions. For the traffic lights in Example 5.3, the
state exclusion expression is arguably the most straightforward formalization of the
informal requirement specification. Ideally, the usage of state exclusion expressions
would not be penalized by a higher computational effort in synthesis. This introduces
the problem statement discussed in this section: How can state exclusion requirements
be enforced (more) efficiently in symbolic supervisor synthesis?

We discuss the current way requirements are enforced in CIF in Section 5.6.1.
Then we present our modified approach in Section 5.6.2. Experiments comparing both
approaches are presented in Section 5.6.3.
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5.6.1 Current application of requirements

We first introduce the current way requirements are enforced during synthesis in CIF
(before the new algorithm we discuss in Section 5.6.2 was implemented).

In the synthesis algorithm (Algorithm 5.1), first requirements are applied by Al-
gorithm 5.4. In this algorithm, a safe state predicate 𝑃 is computed by first taking
the conjunction of all state exclusion predicates. This predicate returns true only for
states for which all state exclusion predicates hold. Note that the empty conjunction
is assumed true. Next, the state-event exclusion predicates are enforced by computing
a safe state predicate and safe edges in Algorithm 5.5. When these requirements con-
sider controllable events, the guard of each edge labeled by that event can simply be
strengthened by taking the conjunction with the predicate, so that the event only occurs
when the predicate holds. This is not possible for uncontrollable events, because the
supervisor is not able to disallow uncontrollable events from occurring when they can
occur in the plant. In that case, the safe state predicate is modified to exclude states
from which the event can take place (i.e., for some edge (𝜎, 𝑔, 𝑢), labeled by the same
event 𝜎 that the state-event exclusion predicates addresses, 𝑔 evaluates to true), but the
state-event exclusion predicate does not hold (i.e., 𝐽 evaluates to false). The predicate
𝑔 =⇒ 𝐽 specifies the states where the state-event exclusion requirement is adhered
to. Finally, 𝑋0 ∧ 𝑃 restricts the initial state predicate to the safe part5.

Algorithm 5.4 applyRequirements
Input: Mutual state exclusion predicates SX, state-event exclusion predicates EX,

edges 𝐸 , initial state predicate 𝑋0
Output: Safe state predicate 𝑃, safe edges 𝐸 , safe initial state predicate 𝑋0

1: 𝑃 =
∧

𝐼∈SX 𝐼

2: (𝑃, 𝐸) = applyEventRequirements(𝑃, 𝐸,EX)
3: 𝑋0 = 𝑋0 ∧ 𝑃

Algorithm 5.5 applyEventRequirements
Input: State predicate 𝑃, edges 𝐸 , state-event exclusion predicates EX
Output: Safe state predicate 𝑃, safe edges 𝐸

1: for all (𝜎, 𝑔, 𝑢) ∈ 𝐸, (𝜎 ⇒ 𝐽) ∈ EX
2: if 𝜎 ∈ Σ𝑐

3: 𝑔 = 𝑔 ∧ 𝐽

4: else
5: 𝑃 = 𝑃 ∧ (𝑔 =⇒ 𝐽)
6: end if
7: end for

5 Strictly speaking, calculating the initial state predicate here is not necessary, and only needs to be
performed at the end of synthesis (line 11 Algorithm 5.1). We already calculate 𝑋0,𝑆 here to simplify
our proofs.
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In the following we show that, when supervisor synthesis is performed using Al-
gorithm 5.4 to apply the requirements, supervisor synthesis (Algorithm 5.1) computes
the correct result, i.e., the maximal, safe, controllable, and nonblocking supervisor.
Our explanation is structured as follows: We first define a safe state and safe LFA in
Definition 5.1. We then define when an LFA is minimally restricted in Definition 5.3,
i.e., no more behavior is removed from the LFA than strictly necessary so that the re-
quirements are satisfied. We show that after performing applyRequirements, we
can induce an LFA that is both safe (Lemma 5.1) and minimally restricted (Lemma 5.2)
with respect to the requirements. Since Algorithm 5.1 follows the same structure as
the synthesis algorithm in Ouedraogo et al. (2011), it is known that after performing
applyRequirements in line 1 of SS, the remaining lines (2-11) compute the
maximal, controllable, and nonblocking supervisor (Theorem 3 in Ouedraogo et al.
(2011)), of the minimally restricted safe LFA. Therefore, we show in Theorem 5.1 that
Algorithm 5.1 computes the maximal, safe, controllable, and nonblocking supervisor.

Given a set of symbols 𝑋 , let Φ(𝑋) be the set of functions 𝜙(𝑋), where a function
𝜙(𝑋) assigns a value to each variable 𝑥 ∈ 𝑋 , in the domain of 𝑥. We write a function
𝜙(𝑋) as a predicate

∧
𝑥∈𝑋 𝑥 = 𝜙(𝑥). E.g., say we have variables 𝑋 = {𝑠, 𝑡}, where the

domain of 𝑠 is {1, 2} and the domain of 𝑡 is {3, 4}, then: Φ(𝑋) = {(𝑠=1∧ 𝑡=3), (𝑠=1∧
𝑡=4), (𝑠=2 ∧ 𝑡=3), (𝑠=2 ∧ 𝑡=4)}. Given an LFA 𝐴𝐿 with symbols 𝑋 , we refer to a
function 𝜙(𝑋) as a state of 𝐴𝐿 . We may write 𝜙 and Φ to refer to 𝜙(𝑋) and Φ(𝑋)
respectively. For a predicate 𝑃(𝑋) we may write 𝑃(𝜙) to denote the valuation of 𝑃 for
state 𝜙.

We say there is a transition from 𝜙 ∈ Φ to 𝜙′ ∈ Φ, if there is some edge (𝜎, 𝑔, 𝑢) for
which 𝑔(𝜙) ∧ 𝑢(𝜙, 𝜙′). We say this transition is controllable or uncontrollable, when
respectively 𝜎 ∈ Σ𝑐 or 𝜎 ∈ Σ𝑢.

Definition 5.1 Given LFA 𝐴𝐿 = (𝑋, Σ, 𝐸, 𝑋0, 𝑋𝑚), and requirements SX and EX, then
a state 𝜙 ∈ Φ is safe when:

• ∀𝐼 ∈ SX : 𝐼 (𝜙), and
• ∀(𝜎, 𝑔, 𝑢) ∈ 𝐸, (𝜎 ⇒ 𝐽) ∈ EX : 𝑔(𝜙) =⇒ 𝐽 (𝜙).

We call LFA 𝐴𝐿 safe if all its reachable states are safe. Non-safe states or automata are
called unsafe.

Definition 5.2 Given LFA 𝐴𝐿 = (𝑋, Σ, 𝐸, 𝑋0, 𝑋𝑚), then restricted LFA 𝐴𝐿,𝑅, with
respect to predicate 𝑁 , edges 𝐸𝑆 , and safe initial states 𝑋0,𝑆 , is defined as 𝐴𝐿,𝑅 =

(𝑋, Σ, 𝐸𝑆⊳𝑁 , 𝑋0,𝑆 , 𝑋𝑚), where 𝐸𝑆⊳𝑁 = {(𝜎, 𝑔(𝑋) ∧ ∃𝑋+ [𝑁 (𝑋+) ∧ 𝑢(𝑋, 𝑋+)], 𝑢) |
(𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆}.

Note that in Defintion 5.2 the guards are restricted in the same manner as in line 9
of Algorithm 5.1.

Definition 5.3 Given LFA 𝐴𝐿 = (𝑋, Σ, 𝐸, 𝑋0, 𝑋𝑚), and requirements SX and EX, then
after performing (𝑁, 𝐸𝑆 , 𝑋0,𝑆) = applyRequirements(SX,EX, 𝐸, 𝑋0), restricted
automaton 𝐴𝐿,𝑅 (w.r.t. 𝐴𝐿 , 𝑁, 𝐸𝑆 , 𝑋0,𝑆) is minimally restricted w.r.t. 𝐴𝐿 , SX, and EX
when:
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• all initial states in {𝜙 ∈ Φ|𝑋0 (𝜙) ∧ ¬𝑋0,𝑆 (𝜙)} are unsafe, and
• all restricted transitions lead to an unsafe state, or they are disallowed by some

state-event exclusion predicate: ∀𝜙, 𝜙′ ∈ Φ : (∃(𝜎, 𝑔, 𝑢) ∈ 𝐸 : 𝑔(𝜙) ∧ 𝑢(𝜙, 𝜙′) ∧
�(𝜎, 𝑔𝑆 , 𝑢𝑆) ∈ 𝐸𝑆 : 𝑔𝑆 (𝜙) ∧ 𝑢𝑆 (𝜙, 𝜙′)) =⇒ (state 𝜙′ is unsafe or ∃(𝜎, 𝐽) ∈ EX :
¬𝐽 (𝜙)).

I.e. only unsafe initial states are removed, and all transitions that are removed directly
lead to an unsafe state or are disallowed by some state-event exclusion predicate.

Lemma 5.1 Given LFA 𝐴𝐿 = (𝑋, Σ, 𝐸, 𝑋0, 𝑋𝑚), and requirements SX and EX, then
after performing (𝑁, 𝐸𝑆 , 𝑋0,𝑆) = applyRequirements(SX,EX, 𝐸, 𝑋0), restricted
automaton 𝐴𝐿,𝑅 = (𝑋, Σ, 𝐸𝑆⊳𝑁 , 𝑋0,𝑆 , 𝑋𝑚) (w.r.t. 𝐴𝐿 , 𝑁, 𝐸𝑆 , 𝑋0,𝑆) is safe w.r.t. 𝐴𝐿 ,
SX, and EX.

Proof For all controllable transitions, it directly follows from line 3 in Algorithm 5.5
that ∀𝜙 ∈ Φ, (𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆 , (𝜎 ⇒ 𝐽) ∈ EX, with𝜎 ∈ Σ𝑐 : 𝑔(𝜙) =⇒ 𝐽 (𝜙).

It directly follows from line 1 in Algorithm 5.4 that ∀𝜙 ∈ Φ, 𝐼 ∈ SX : 𝑁 (𝜙) =⇒
𝐼 (𝜙).

For all uncontrollable transitions, it directly follows from line 5 in Algorithm 5.5
that ∀𝜙 ∈ Φ, (𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆 , (𝜎 ⇒ 𝐽) ∈ EX, with 𝜎 ∈ Σ𝑐 : 𝑁 (𝜙) =⇒ (𝑔(𝜙) =⇒
𝐽 (𝜙)). Therefore, all states in {𝜙 ∈ Φ|𝑁 (𝜙)} are safe.

From line 3 in Algorithm 5.4 we can conclude that all initial states {𝜙 ∈ Φ|𝑋0,𝑆 (𝜙)}
are safe. From the definition of 𝐴𝐿,𝑅, and specifically 𝐸𝑆⊳𝑁 , we can conclude that only
transitions to safe states are possible. Therefore, 𝐴𝐿,𝑅 is safe. □

Lemma 5.2 Given LFA 𝐴𝐿 = (𝑋, Σ, 𝐸, 𝑋0, 𝑋𝑚), and requirements SX and EX, then
after performing (𝑁, 𝐸𝑆 , 𝑋0,𝑆) = applyRequirements(SX,EX, 𝐸, 𝑋0), restricted
automaton 𝐴𝐿,𝑅 = (𝑋, Σ, 𝐸𝑆⊳𝑁 , 𝑋0,𝑆 , 𝑋𝑚) (w.r.t. 𝐴𝐿 , 𝑁, 𝐸𝑆 , 𝑋0,𝑆) is minimally re-
stricted w.r.t. 𝐴𝐿 , SX, and EX.

Proof For all controllable transitions, it follows from line 3 in Algorithm 5.5 that
∀𝜙, 𝜙′ ∈ Φ : (∃(𝜎, 𝑔, 𝑢) ∈ 𝐸 : 𝜎 ∈ Σ𝑐 ∧ 𝑔(𝜙) ∧ 𝑢(𝜙, 𝜙′) ∧ (�(𝜎 ⇒ 𝐽) ∈ EX :
¬𝐽 (𝜙)) =⇒ ∃(𝜎, 𝑔𝑆 , 𝑢𝑆) ∈ 𝐸𝑆 : 𝑔𝑆 (𝜙) ∧ 𝑢𝑆 (𝜙, 𝜙′). I.e., guards of controllable
transitions in 𝐸𝑆 are not restricted from 𝐸 when there is no state-event exclusion
predicate that does not disallow them.

It directly follows from line 1 in Algorithm 5.4 that ∀𝜙 ∈ Φ, 𝐼 ∈ SX : ¬𝐼 (𝜙) =⇒
¬𝑁 (𝜙).

For all uncontrollable transitions, it directly follows from line 5 in Algorithm 5.5
that ∀𝜙 ∈ Φ, (𝜎, 𝑔, 𝑢) ∈ {(𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆 |𝜎 ∈ Σ𝑢}, (𝜎 ⇒ 𝐽) ∈ EX : ¬(𝑔(𝜙) =⇒
𝐽 (𝜙)) =⇒ ¬𝑁 (𝜙). Therefore, all states in {𝜙 ∈ Φ|¬𝑁 (𝜙)} are unsafe.

From the definition of 𝐴𝐿,𝑅, and specifically 𝐸𝑆⊳𝑁 , we can conclude that only
transitions in 𝐸𝑆 to unsafe states are restricted.

Also, since all states {𝜙 ∈ Φ|¬𝑁 (𝜙)} are unsafe, it follows that all states in {𝜙 ∈
Φ|𝑋0 (𝜙) ∧ ¬𝑋0,𝑆 (𝜙)} are unsafe. □

Theorem 5.1 The supervisor obtained by Algorithm 5.1 is a maximal, safe, control-
lable, and nonblocking supervisor for automaton 𝐴𝐿 and requirements SX and EX.



136 5 Reducing the computational effort of symbolic supervisor synthesis

Proof Note that during the repeat-until loop in Algorithm 5.1, for all states 𝜙 ∈ Φ, if
at the start of the loop ¬𝑁 (𝜙), then because BRS is restricted by 𝑁 , after line 4 ¬𝑁 (𝜙)
still holds. Also after lines 5 and 6 ¬𝑁 (𝜙) still holds, because BRS has ¬𝑁 (𝜙) as a
start predicate, and only the disjunction with other predicates is taken when computing
𝐵, except for conjunction with true. So after line 5, we know that 𝐵(𝜙) holds, so after
line 6 ¬𝑁 (𝜙) still holds. In other words, as shown in Lemma 5.2, all states 𝜙 ∈ Φ

for which ¬𝑁 (𝜙) after line 1 of Algorithm 5.1 are unsafe, and these will remain
unsafe (/bad/blocking) states during the fixpoint computation. Note also that in the
restriction of Definition 5.2, the edges are restricted in the same manner as in in line 9
of Algorithm 5.1.

It is shown in Theorem 3 in Ouedraogo et al. (2011) that lines 2-11 compute a
maximal, controllable, and nonblocking supervisor. This is a maximal, controllable,
and nonblocking supervisor, for the LFA that is safe (Lemma 5.1), and minimally
restricted (Lemma 5.2). It follows that Algorithm 5.1 computes a maximal, safe,
controllable, and nonblocking supervisor for automaton 𝐴𝐿 and requirements SX and
EX. □

5.6.2 Efficient application of requirements

As stated above, it has been found empirically that synthesis on models containing
state exclusion expressions was inefficient. The problem is that, when there are many
state exclusion expressions, the BDD describing the safe state predicate can become
quite large. This predicate is the starting point for the nonblocking predicate, which is
continuously updated during synthesis. It is beneficial to keep the BDD representing
this predicate as small as possible, to have low computational effort for synthesis.

Because synthesis on models containing state exclusion expressions was inefficient,
they are sometimes manually converted to state-event exclusion expressions. From
practice it has been found that this can solve the inefficiency problem. This is because
the requirements are encoded into the guards of the edges, rather than into the non-
blocking predicate. Therefore, we seek our solution in the same direction: we enforce
state exclusion requirements in the same manner as state-event exclusion requirements.
This is done in Algorithm 5.6.

In Algorithm 5.6, for each state exclusion predicate 𝐼 and each edge (𝜎, 𝑔, 𝑢),
a predicate 𝐽 is constructed that expresses the states from which the edge can be
performed such that 𝐼 holds after executing the edge. In the controlled behavior, the
edge can only be performed from the states indicated by 𝑔 ∧ 𝐼, because states where
𝐼 does not hold are not reached by a safe supervisor. In all cases that the edge can be
performed, 𝐽 must hold so that a safe state is reached. In line 5 it is checked whether
there are any states for which this does not hold. If that is the case, the respective edge
is restricted in the same way as for state-event exclusion predicates, note that lines
6-10 in Algorithm 5.6 are the same as lines 2-6 in Algorithm 5.5. So, if the edge is
labeled by a controllable event, the guard is restricted by 𝐽. If the edge is labeled by
an uncontrollable event, the safe state predicate is restricted so that it only describes
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Algorithm 5.6 applyRequirementsEfficient
Input: Mutual state exclusion predicates SX, state-event exclusion predicates EX,

edges 𝐸 , initial states 𝑋0
Output: Safe state predicate 𝑃, safe edges 𝐸 , safe initial states 𝑋0

1: 𝑃 = true
2: for all 𝐼 ∈ SX
3: for all (𝜎, 𝑔, 𝑢) ∈ 𝐸

4: 𝐽 (𝑋) = ∃𝑋+ [𝑔(𝑋) ∧ 𝑢(𝑋, 𝑋+) ∧ 𝐼 (𝑋+)]
5: if (𝑔 ∧ 𝐼 =⇒ 𝐽) ≠ true
6: if 𝜎 ∈ Σ𝑐

7: 𝑔 = 𝑔 ∧ 𝐽

8: else
9: 𝑃 = 𝑃 ∧ (𝑔 =⇒ 𝐽)

10: end if
11: end if
12: end for
13: end for
14: (𝑃, 𝐸) = applyEventRequirements(𝑃, 𝐸,EX)
15: 𝑋0 = 𝑋0 ∧ 𝑃 ∧∧

𝐼∈SX 𝐼

states where if the edge can occur, a state is reached where 𝐼 holds. After enforcing
all state exclusion requirements for all edges, the state-event exclusion requirements
are applied in the same way as in Algorithm 5.4, by using Algorithm 5.5. Finally, the
initial state predicate is modified so that all state exclusion predicates hold in the initial
state. Thus, the system starts in a safe state, and does not leave the safe states as a result
of the restricted guards.

We show in Example 5.4 how the state exclusion predicate given in Example 5.3 is
enforced by Algorithm 5.6.

Example 5.4 Traffic lights continued

This is a continuation of Example 5.3, where a traffic light system was modeled, and
requirements were specified for that model. We consider the state exclusion predicate:

¬(𝑙𝐴 = Green ∧ 𝑙𝐵 = Green).

We consider LightA turning green. In this case there is only one edge labeled with
this event, which is: 𝑒𝑔𝐴 = (green A, 𝑙𝐴 = Red, 𝑙+

𝐴
= Green ∧ 𝑙+

𝐵
= 𝑙𝐵). Computing 𝐽

as in line 4 of Algorithm 5.6, provides the following predicate:

𝐽 = ∃𝑋+ [(𝑙𝐴 = Red ∧ 𝑙+𝐴 = Green ∧ 𝑙+𝐵 = 𝑙𝐵 ∧ ¬(𝑙+𝐴 = Green ∧ 𝑙+𝐵 = Green)]
≡ 𝑙𝐴 = Red ∧ ¬(𝑙𝐵 = Green)
≡ 𝑙𝐴 = Red ∧ 𝑙𝐵 = Red
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Next, we compute the (𝑔 ∧ 𝐼 =⇒ 𝐽) as in line 5:

𝑙𝐴 = Red ∧ ¬(𝑙𝐴 = Green ∧ 𝑙𝐵 = Green) =⇒ 𝑙𝐴 = Red ∧ 𝑙𝐵 = Red
≡ 𝑙𝐴 = Red =⇒ 𝑙𝐴 = Red ∧ 𝑙𝐵 = Red
≡ 𝑙𝐴 = Red =⇒ 𝑙𝐵 = Red.

We can see that this does not equal true, i.e., there are states from which edge 𝑒𝑔𝐴 can
be taken such that the state exclusion predicate does not hold afterwards.

Because green 𝐴 is a controllable event, its guard 𝑔𝐴 is restricted as follows:

𝑔𝐴 = 𝑙𝐴 = Red ∧ 𝑙𝐴 = Red ∧ 𝑙𝐵 = Red
≡ 𝑙𝐴 = Red ∧ 𝑙𝐵 = Red.

Similarly, repeating the same steps for edge 𝑒𝑔𝐵 that models LightB turning green,
would result in the following restricted guard 𝑔𝐵:

𝑔𝐵 = 𝑙𝐴 = Red ∧ 𝑙𝐵 = Red.

One can verify that these guards computed by Algorithm 5.6 restrict the behavior
in the same way as the state-event exclusion predicates provided in Example 5.3.

In Algorithm 5.1, we can substitute line 1 with the following line, to apply the
introduced efficient enforcement of the requirements:

1: (𝑁, 𝐸𝑆 , 𝑋0,𝑆) =applyRequirementsEfficient(SX,EX, 𝐸, 𝑋0)

We will refer to Algorithm 5.1 with line 1 substituted as above as SS’.
Same as in Section 5.6.1, we show that SS’ computes the maximal, safe, control-

lable, and nonblocking supervisor in Theorem 5.2. We do so by first showing that the
induced restricted LFA (by Definition 5.2) after performing applyRequirements
Efficient is both safe (Lemma 5.3) and minimally restricted (Lemma 5.4) with
respect to the requirements.

Lemma 5.3 Given LFA 𝐴𝐿 = (𝑋, Σ, 𝐸, 𝑋0, 𝑋𝑚), and requirements SX and EX,
then after performing (𝑁, 𝐸𝑆 , 𝑋0,𝑆) = applyRequirementsEfficient(SX,
EX, 𝐸, 𝑋0), restricted automaton 𝐴𝐿,𝑅 = (𝑋, Σ, 𝐸𝑆⊳𝑁 , 𝑋0,𝑆 , 𝑋𝑚) (w.r.t. 𝐴𝐿 , 𝑁, 𝐸𝑆 ,

𝑋0,𝑆) is safe w.r.t. 𝐴𝐿 , SX, and EX.

Proof For all controllable transitions, it directly follows from line 3 in Algorithm 5.5
that ∀𝜙 ∈ Φ, (𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆 , (𝜎 ⇒ 𝐽) ∈ EX, with 𝜎 ∈ Σ𝑐 : 𝑔(𝜙) =⇒ 𝐽 (𝜙). For all
uncontrollable transitions, it directly follows from line 5 in Algorithm 5.5 that ∀𝜙 ∈
Φ, (𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆 , (𝜎 ⇒ 𝐽) ∈ EX, with 𝜎 ∈ Σ𝑢 : 𝑁 (𝜙) =⇒ (𝑔(𝜙) =⇒ 𝐽 (𝜙)).
So, in the restricted automaton the state-event exclusion predicates are satisfied for all
transitions originating from a state 𝜙 ∈ Φ where 𝑁 (𝜙) holds.

For all controllable transitions, it directly follows from line 7 in Algorithm 5.6
that ∀𝜙, 𝜙′ ∈ Φ, (𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆 , with 𝜎 ∈ Σ𝑐, 𝐼 ∈ SX : 𝑔(𝜙) ∧ 𝑢(𝜙, 𝜙′) ∧ 𝐼 (𝜙) =⇒
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𝑔(𝜙) ∧ 𝑢(𝜙, 𝜙′) ∧ 𝐼 (𝜙′). For all uncontrollable transitions, it directly follows from line
9 in Algorithm 5.6 that ∀𝜙, 𝜙′ ∈ Φ, (𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆 , with 𝜎 ∈ Σ𝑢, 𝐼 ∈ SX : 𝑁 (𝜙) =⇒
(𝑔(𝜙) ∧ 𝑢(𝜙, 𝜙′) =⇒ 𝐼 (𝜙′)). So, in the restricted automaton there are no transitions
to a state that does not satisfy some state exclusion predicate.

Since for all states in {𝜙 ∈ Φ|𝑁 (𝜙)} it is implied that no uncontrollable transition
can be performed that does not satisfy a state-event exclusion predicate, all states in
{𝜙 ∈ Φ|𝑁 (𝜙)∧𝐼∈SX 𝐼 (𝜙)} are safe. From line 15 in Algorithm 5.6 we can conclude
that all initial states in {𝜙 ∈ Φ|𝑋0,𝑆 (𝜙)} are safe. Since 𝐴𝐿,𝑅 only has safe initial
states, and can only transition to safe states, 𝐴𝐿,𝑅 is safe. □

Lemma 5.4 Given LFA 𝐴𝐿 = (𝑋, Σ, 𝐸, 𝑋0, 𝑋𝑚), and requirements SX and EX,
then after performing (𝑁, 𝐸𝑆 , 𝑋0,𝑆) = applyRequirementsEfficient(SX,
EX, 𝐸, 𝑋0), restricted automaton 𝐴𝐿,𝑅 = (𝑋, Σ, 𝐸𝑆⊳𝑁 , 𝑋0,𝑆 , 𝑋𝑚) (w.r.t. 𝐴𝐿 , 𝑁, 𝐸𝑆 ,

𝑋0,𝑆) is minimally restricted w.r.t. 𝐴𝐿 , SX, and EX.

Proof For all controllable transitions, it follows from line 3 in Algorithm 5.5 and line
7 in Algorithm 5.6 that ∀𝜙, 𝜙′ ∈ Φ : (∃(𝜎, 𝑔, 𝑢) ∈ 𝐸 : 𝜎 ∈ Σ𝑐 ∧ 𝑔(𝜙) ∧ 𝑢(𝜙, 𝜙′) ∧
(�(𝜎 ⇒ 𝐽) ∈ EX : ¬𝐽 (𝜙)) ∧ (�𝐼 ∈ SX : ¬𝐼 (𝜙′))) =⇒ ∃(𝜎, 𝑔𝑆 , 𝑢𝑆) ∈ 𝐸𝑆 :
𝑔𝑆 (𝜙) ∧ 𝑢𝑆 (𝜙, 𝜙′). I.e., guards of controllable transitions in 𝐸𝑆 are not restricted from
𝐸 when there is no state-event exclusion predicate that does not disallow them, and
there is no state exclusion predicate that is not satisfied in the target state.

For all uncontrollable transitions, it directly follows from line 5 in Algorithm 5.5
that ∀𝜙 ∈ Φ, (𝜎, 𝑔, 𝑢) ∈ {(𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆 |𝜎 ∈ Σ𝑢}, (𝜎 ⇒ 𝐽) ∈ EX : ¬(𝑔(𝜙) =⇒
𝐽 (𝜙)) =⇒ ¬𝑁 (𝜙). For all uncontrollable transitions, it directly follows from line
9 in Algorithm 5.6 that ∀𝜙 ∈ Φ, (𝜎, 𝑔, 𝑢) ∈ {(𝜎, 𝑔, 𝑢) ∈ 𝐸𝑆 |𝜎 ∈ Σ𝑢}, 𝐼 ∈ SX :
¬(𝑔(𝜙) ∧ 𝐼 (𝜙) =⇒ 𝑔(𝜙) ∧ 𝑢(𝜙, 𝜙′) ∧ 𝐼 (𝜙′)) =⇒ ¬𝑁 (𝜙′). Therefore, all states in
{𝜙 ∈ Φ|¬𝑁 (𝜙)} are unsafe. From the definition of 𝐴𝐿,𝑅, and specifically 𝐸𝑆⊳𝑁 , we
can conclude that only transitions in 𝐸𝑆 to unsafe states are restricted.

Also, since all states {𝜙 ∈ Φ|¬𝑁 (𝜙)} are unsafe, it follows that all states in {𝜙 ∈
Φ|𝑋0 (𝜙) ∧ ¬𝑋0,𝑆 (𝜙)} are unsafe. □

Theorem 5.2 The supervisor obtained by Algorithm 5.1 is a maximal, safe, control-
lable, and nonblocking supervisor for automaton 𝐴𝐿 and requirements SX and EX.

Proof The same proof as in Theorem 5.1 applies here. □

Not necessarily the supervisor LFAs computed by SS and SS’ are the same. When
applyRequirements is used, the guards of all edges are restricted such that they
can never reach an unsafe state, also if the edge originates from another unsafe state.
Since it is assumed in applyRequirementsEfficient that unsafe states are
never reached, the guards of the edges from unsafe states are not necessarily restricted
such that they can never reach another unsafe state. Regardless, the behavior under
control of the supervisor, that only reaches safe states, is the same.
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5.6.3 Experiments

Here we compare the computational effort of SS and SS’. In the set of benchmark
models (Table 5.1), there are three models that use state exclusion expressions, which
are: Lithography machine initialization, Cat and mouse tower (with 3 floors, 2 cats,
and 2 mice), and Modified cat and mouse tower (with 3 floors, and at most 1 cat
or 1 mouse per room). As the suggested approach only influences synthesis of these
models, experiments are only performed for these models. The lithography machine
initialization model contains 51 state exclusion expressions. Both cat and mouse tower
models contain 15 state exclusion expressions. More details on these models can be
found in Thuijsman et al. (2021).

For each model, synthesis is performed using default CIF settings, other than:
DCSH+FORCE+SW is applied (as a result of Section 5.4) using the variable relations
as introduced in Section 5.4.2, edge order is set to reverse-model (as a result of
Section 5.5), and BDD measurements are turned on. The results of these experiments
are shown in Table 5.3. For all models the efficient approach (Algorithm 5.6) requires
less computational effort than the current approach (Algorithm 5.4). Generally, there
is a small decrease in peak used BDD nodes, which is reduced by 8% on average. The
computational benefit for BDD operation count is more significant. For these models,
the BDD operation counts were decreased by 64% on average. Note that the suggested
method is not necessarily always more efficient than the current method. Nevertheless,
these experiments suggest that using applyRequirementsEfficient rather
than applyRequirements is beneficial.

Table 5.3: Experimental results efficiently enforcing requirements.

Peak used BDD nodes BDD operation count
Name SS SS’ SS SS’
Lith. mach. init. 4.63 · 104 4.17 · 104 1.68 · 107 5.88 · 106

CMT 1.82 · 106 1.81 · 106 1.67 · 107 1.09 · 107

Modif. CMT 5.68 · 105 4.92 · 105 3.92 · 108 2.83 · 107

To provide further discussion on the influence of applyRequirements and
applyRequirementsEfficient on the computational effort, we study the evo-
lution of the BDD during synthesis for the two methods. For Lithography machine
initialization, the BDD evolution during synthesis is displayed in Figure 5.15. One can
validate that the peak used BDD nodes and final BDD operation count are indeed lower
when SS’ is applied instead of SS (and match the values in Table 5.3). Performing
applyRequirementsEfficient actually requires more BDD operations than
performing applyRequirements (i.e., only performing line 1 of SS’ and SS,
not yet the remainder). Respectively, these algorithms are finished after 9.5 · 105 and
1.8 · 105 BDD operations. So, SS’ starts later on its fixpoint computation (lines 2-7 in
Algorithm 5.1) than SS. However, this computation is less costly in SS’, because the
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state exclusion predicates do not appear directly in the nonblocking predicate, which
is the case for SS. At this point, the additional computational effort that was invested
when applying the predicates is “won back” (and more) by SS’, leading to a lower
computational effort overall. The peak that is observed at the end of both syntheses in
Figure 5.15 is a result of restricting the guards (lines 8-10 in Algorithm 5.1).

The efficiency of applyRequirementsEfficient likely depends on the
number of edges labeled by controllable/uncontrollable events in the system. When
there are many edges labeled by an uncontrollable event, the state exclusion require-
ments are still encoded in the nonblocking predicate. Unfortunately, at the moment we
do not have any more models containing state exclusion expressions to use for further
experimentation. In part, this is because they were previously avoided because of their
inefficient application in synthesis.
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Figure 5.15: BDD evolution for SS and SS’ of Lithography machine initialization.

5.7 Conclusion

The computational effort of symbolic supervisor synthesis can be expressed using peak
used BDD nodes and BDD operation count. Unlike wall clock time and peak random
access memory, these BDD-based metrics are platform-independent, deterministic,
and include no overhead in their measurement. BDD-based metrics can be used to
analyze, and improve, the efficiency of the synthesis algorithm. In this chapter we
showcase this approach by: introducing and analyzing DCSH, a variable ordering
heuristic; analyzing several edge ordering heuristics; and introducing and analyzing an
approach to efficiently enforce state exclusion requirements. It is shown that:

1. Even though using DCSH+FORCE+SW on average requires 5% more peak used
BDD nodes than FORCE+SW, it on average realizes a 14% lower BDD operation
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count and for 16 out of 17 models it resulted in both a lower maximal mea-
sured peak used BDD nodes and BDD operation count. Therefore, by applying
DCSH+FORCE+SW as variable ordering heuristic, performing synthesis with
relatively high computational effort can be avoided, and generally relatively low
computational effort is required.

2. Using reverse-model edge order realizes relatively low synthesis effort, averaging
10% lower peak used BDD nodes and a 29% lower BDD operation count than
using random edge orders.

3. State exclusion requirements can efficiently be enforced by restricting edge guards
prior to synthesis. On average, this method reduces the peak used BDD nodes by
8% and BDD operation count by 64%, relative to the conventional method.

These methods are implemented in the ESCET toolkit, and therefore available to
all those who wish to use them. Experiments like presented in this chapter help in
selecting what methods or settings should be used by default. For instance, in the
newest ESCET release DCSH+FORCE+SW is now applied by default.

From the experimental results it becomes clear that generally there are no one-size-
fits-all solutions. What works for one model, does not necessarily work for another
model. Unfortunately it is hard to predict when this is the case. A small change in the
synthesis input, e.g., the variable order, can have a huge influence on the synthesis effort.
This means that methods need to be thoroughly validated, which we do in this work.
Nevertheless, these huge variances in effort also indicate how much improvement can
be made. Scalability is a major factor in the industrial acceptance of supervisory control
theory. This makes it worthwhile to investigate techniques like the ones discussed in
this chapter, to be able to keep tackling the engineering of supervisory controllers for
larger and more complex systems with supervisor synthesis.

Future work

As (industrial) systems generally become more and more complex, the computational
efficiency of symbolic supervisor synthesis should continuously be improved in the
future. With respect to static ordering of variables or edges, more heuristics can
be investigated, and their efficiency together with, or compared to, the heuristics
discussed in this chapter can be analyzed. Furthermore, dynamic reordering during
synthesis could bring additional benefits, e.g., as considered in Panda et al. (1994) or
Ranjan et al. (1995) for dynamic variable reordering and in Vahidi et al. (2006) for
dynamic selection of edges. Also, other synthesis settings that directly influence the
computational efficiency, such as the size of the BDD operation cache, can be evaluated
and improved using BDD-based metrics. Finally, since certain methods perform well
for some models, but poorly for others, it can be investigated whether these cases can
be recognized prior to performing synthesis, to make a selection of methods that are
likely to perform well.



Chapter 6
Conclusions

This chapter contains the concluding remarks of this thesis. First, answers are provided
to the research questions that are posed in Chapter 1. Next, it is discussed how the
contributions presented in this thesis aid ease of use, applicability, and efficiency in
synthesis-based engineering. Possible directions for future work are suggested.

6.1 Answers to the research questions

Three research questions are formulated in Section 1.2. The questions are answered
below.

Research question 1

How can supervisory control theory be efficiently applied to systems that evolve
over time?

In this thesis, it is investigated for supervisor synthesis and supervisor localization how
to efficiently apply them to a system that evolves over time, respectively in Chapter 2
and 3. For these approaches, transformational algorithms are introduced that not only
consider the current system instance, but also use the knowledge from a previous in-
stance. So, when a system evolves to a new instance, one may take the algorithmic
results computed based on a previous instance, and transform those into the according
results for the new instance, instead of performing the algorithmic computations once
again completely from scratch. For supervisor synthesis, the transformational method
is shown to be less efficient than using the basic (nontransformational) method. Con-
versely, for supervisor localization, the transformational method is shown to be more
efficient than the basic method. Therefore, for a system that evolves over time, su-
pervisor synthesis can be efficiently applied by using the basic method. Supervisor
localization can be efficiently applied by using the transformational method.
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Research question 2

How can supervisory control theory be efficiently applied to product families with
dynamic reconfiguration?

Supervisory control theory can be efficiently applied to product families by incor-
porating feature models in automata models. Presence of features can be modeled,
and restricted to the constraints expressed by the feature models. To allow dynamic
reconfiguration, feature presence can change during runtime. Behavior of each feature
is modeled, and made dependent on its presence. Requirements are formulated that
take the presence of features into account. The resulting model is shown to be suitable
for supervisor synthesis. The supervisor obtained by synthesis can control each valid
configuration, as well as the transition phase during reconfiguration. The method is
explained in Chapter 4. By a case study, the method is shown to be applicable for
industrial product lines.

Research question 3

How can BDDs be efficiently applied in symbolic supervisor synthesis in order to
reduce the computational effort?

The computational effort of symbolic supervisor synthesis can generally be reduced
by: (1) applying DCSH+FORCE+SW variable ordering heuristic, (2) applying reverse-
model edge order, and (3) enforcing state exclusion requirement by restricting edge
guards prior to synthesis. In Chapter 5 these methods are presented, and supported
by elaborate experimental evaluation. The evaluation shows that when these methods
are applied, generally peak BDD sizes are smaller and the number of BDD operations
are lower compared to when the methods are not used. The first method generally
avoids high effort outliers, the second and third reduce memory usage and reduce the
computation time even more significantly.

6.2 Contribution to synthesis-based engineering and future work

For each part of this thesis we discuss how it contributes to synthesis-based engineering,
and mention some possible directions for future work.

6.2.1 Transformational approaches in supervisory control

In Chapters 2 and 3, transformational approaches in supervisory control are discussed.
This part contributes to the efficiency and ease of use of supervisory control theory,
by investigating ways to reduce the computational effort of algorithmic calculations.
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Although it was not investigated in this work, possibly the “transformational way
of thinking” may lead to more benefits in synthesis-based engineering in the future.
For example, the concept of model deltas is now only applied to input models, but it
might be interesting to also evaluate model deltas for results. E.g., say a supervisor has
been synthesized for some model, afterward a new requirement is added to the model,
and a new supervisor is (transformationally) synthesized. Then, it may be interesting
to compute the model delta between both supervisors to compare in exactly what
situations the new requirement influences the behavior permitted by supervisor.

6.2.2 Supervisory control for product lines

Chapter 4 contributes to the applicability and ease of use of supervisory control the-
ory by presenting a framework for engineering of supervisory controllers for product
lines with dynamic feature configuration. By using this framework, supervisory con-
trollers do not have to be produced one-by-one for each product instance, and also the
reconfiguration is directly handled. Presumably, by applying this framework, super-
visory controllers for product lines can be engineered more efficiently than doing so
without using the product line engineering approach. A case study evaluation on the
improvement of engineering efficiency remains future work.

Even though in Section 4.8, it is demonstrated that the method can handle an
industrial-sized system, eventually scalability issues may arise when considering larger
systems. This is expected, because a single supervisor is generated that can control
all unique configurations, and the number of unique configuration rapidly grows when
features are added to the system. Since the models that are considered already have
a structured layout based on the feature models, it would make sense to investigate
modular synthesis techniques that exploit this structure. Some initial work in this
direction is presented in Wetzels (2021).

6.2.3 Efficient symbolic supervisor synthesis

Chapter 5 directly contributes to the efficiency of symbolic supervisor synthesis.
Therefore, this chapter also improves the ease of use, and makes synthesis an available
option for more complex systems. The experimental evaluations indicate that much
improvement can still be made on the efficiency of symbolic supervisor synthesis.

There are several directions that this research can be extended. In this thesis, only
static ordering of variables and edges is considered. In the future, also dynamic ordering
algorithms may be investigated. Also, other synthesis settings that directly influence
the computational efficiency, such as the size of the BDD operation cache, may be
improved. Furthermore, it may be interesting to investigate some meta-heuristic that
selects good heuristic (ordering) algorithms to be applied, depending on characteristics
of the model.
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Malik et al. 2017. Malik, Robi ; Åkesson, Knut ; Flordal, Hugo ; Fabian, Martin: Suprem-
ica–an efficient tool for large-scale discrete event systems. In: Proceedings of the 20th IFAC
World Congress, Elsevier BV, 2017, p. 5794–5799. – URL https://doi.org/10.1016/
j.ifacol.2017.08.427

Markovski et al. 2010. Markovski, Jasen ; Beek, Dirk A. van ; Theunissen, Rolf J. M. ; Jacobs,
Koen G. M. ; Rooda, Jacobus E.: A state-based framework for supervisory control synthesis and
verification. In: Proceedings of the 49th IEEE Conference on Decision and Control, IEEE, 2010,
p. 3481–3486. – URL https://doi.org/10.1109/cdc.2010.5717095

Meijer and van de Pol 2016. Meijer, Jeroen ; Pol, Jan C. van de: Bandwidth and wavefront
reduction for static variable ordering in symbolic reachability analysis. In: Proceedings of the 8th
NASA Formal Methods Symposium. Springer International Publishing, 2016, p. 255–271. – URL
https://doi.org/10.1007/978-3-319-40648-0_20

Meinel and Theobald 1998. Meinel, Christoph ; Theobald, Thorsten: Algorithms and Data Struc-
tures in VLSI Design. Springer Berlin Heidelberg, 1998. – URL https://doi.org/10.
1007/978-3-642-58940-9. – ISBN 978-3-540-64486-6

Minato 1996. Minato, Shin-ichi: Binary Decision Diagrams and Applications for VLSI CAD.
Springer US, 1996. – URLhttps://doi.org/10.1007/978-1-4613-1303-8. – ISBN
978-1-4612-8558-8

Minato 2001. Minato, Shin-ichi: Zero-suppressed BDDs and their applications. In: International
Journal on Software Tools for Technology Transfer 3 (2001), Nr. 2, p. 156–170. Springer Science
and Business Media LLC. – URL https://doi.org/10.1007/s100090100038
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Appendix A
Proofs for atomic TSS algorithms

In this appendix, we provide the proofs of Theorem 2.2 for the atomic TSS algorithms
provided in Section 2.4. Subsequently the proofs for Lemma 2.5 are provided for an
added state, removed state, added event, and removed event.

Added Initial Property (Algorithm 2.5)

We denote automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), 𝐴′ = (𝑋, Σ,−→, 𝑋0 ∪ {𝑥 𝛿}, 𝑋𝑚).
Additionally, we denote (𝑌, 𝐺) = computeFixpoint(𝐴), (𝑌 ′, 𝐺′) = compute
Fixpoint(𝐴′), and (𝑌, �̂�) = TSSAIP(𝐴,𝑌, 𝐺, 𝑥 𝛿).

• For any (𝑋0, 𝑋
′
0) ⊆ 𝑋 × 𝑋 it holds that 𝐺 = 𝐺′ when computing (𝑌, 𝐺) = comp

uteFixpoint(𝑋, Σ,−→, 𝑋0, 𝑋𝑚), (𝑌 ′, 𝐺′) = computeFixpoint(𝑋, Σ,−→
, 𝑋 ′

0, 𝑋𝑚), as the initial state does not influence the computation of 𝐺. We also
observe that for all switchcases in Algorithm 2.5, �̂� = 𝐺 is computed. It follows
that �̂� = 𝐺′.

• 𝑌 ′ are all reachable states in 𝐺′. Since we have proven that �̂� = 𝐺′, it suffices to
prove that 𝑌 are all reachable states in �̂� to show that 𝑌 = 𝑌 ′.

– In case that 𝑥 𝛿 is in𝑌 , the state 𝑥 𝛿 will already have been found in the FRS (line 8
Algorithm 2.2), so in this case𝑌 = 𝑌 = 𝑌 ′, which is also found by Algorithm 2.5.

– In case that 𝑥 𝛿 is in 𝑋 \𝐺, it will also be in 𝑋 \𝐺′. As 𝑥 𝛿 is not in 𝐺′, the change
of initial property cannot influence the reachable part of 𝐺′, so 𝑌 = 𝑌 ′. This is
also found in Algorithm 2.5. So 𝑌 = 𝑌 = 𝑌 ′.

– In case that 𝑥 𝛿 is in 𝐺 \ 𝑌 , for the supervisor synthesis of 𝐴′, the reachable part
is determined by 𝑌 = FRS(𝐺′, Σ,−→, 𝑋 ′

0), where we know that 𝐺′ = 𝐺 and
𝑋 ′

0 = 𝑋0∪{𝑥 𝛿}.𝑌 is calculated by FRS(𝐺, Σ,−→, 𝑌 ∪{𝑥 𝛿}). The result of these
FRSs is the same, as we know that all states in 𝑌 are reachable in 𝐺 from 𝑋0
from the base synthesis. So 𝑌 = 𝑌 ′.

159
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We can conclude that 𝑌 = 𝑌 ′ and �̂� = 𝐺′ for any 𝑥 𝛿 ∈ 𝑋 \ 𝑋0, so Theorem 2.2 holds
for Algorithm 2.5. □

Removed Initial Property (Algorithm 2.6)

Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→, 𝑋0 \ {𝑥 𝛿}, 𝑋𝑚). Addition-
ally, we denote (𝑌, 𝐺) = computeFixpoint(𝐴), (𝑌 ′, 𝐺′) = computeFixpoint
(𝐴′), and (𝑌, �̂�) = TSSRIP(𝐴,𝑌, 𝐺, 𝑥 𝛿).

• For any (𝑋0, 𝑋
′
0) ⊆ 𝑋 × 𝑋 it holds that 𝐺 = 𝐺′ when computing (𝑌, 𝐺) = comp

uteFixpoint(𝑋, Σ,−→, 𝑋0, 𝑋𝑚), (𝑌 ′, 𝐺′) = computeFixpoint(𝑋, Σ,−→
, 𝑋 ′

0, 𝑋𝑚), as the initial state does not influence the computation of 𝐺. We also
observe that for all switchcases in Algorithm 2.6, �̂� = 𝐺 is computed. It follows
that �̂� = 𝐺′.

• 𝑌 ′ are all reachable states in 𝐺′. Since we have proven that �̂� = 𝐺′, it suffices to
prove that 𝑌 are all reachable states in �̂� to show that 𝑌 = 𝑌 ′.

– In case that 𝑥 𝛿 is not in 𝑌 , the state 𝑥 𝛿 was not in the reachable part of 𝐺. Thus,
the set of reachable states in 𝐺 is not influenced by 𝑥 𝛿 being initial. So in this
case 𝑌 = 𝑌 = 𝑌 ′, which is also found by Algorithm 2.6.

– In case that 𝑥 𝛿 is in 𝑌 , for the supervisor synthesis of 𝐴′, the reachable part
is determined by 𝑌 = FRS(𝐺′, Σ,−→, 𝑋 ′

0), where we know that 𝐺′ = 𝐺 and
𝑋 ′

0 = 𝑋0 \ {𝑥 𝛿}.𝑌 is calculated by FRS(𝑌, Σ,−→, 𝑋0 \ {𝑥 𝛿}). The result of these
FRSs is the same, as we know that all states in 𝐺 \𝑌 are not reachable from the
base synthesis. So 𝑌 = 𝑌 ′.

We can conclude that 𝑌 = 𝑌 ′ and �̂� = 𝐺′ for any 𝑥 𝛿 ∈ 𝑋0, so Theorem 2.2 holds for
Algorithm 2.6. □

Added Marked Property (Algorithm 2.7)

Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚 ∪ {𝑥 𝛿}). Addition-
ally, we denote (𝑌, 𝐺) = computeFixpoint(𝐴), (𝑌 ′, 𝐺′) = computeFixpoint
(𝐴′), and (𝑌, �̂�) = TSSAMP(𝐴,𝑌, 𝐺, 𝑥 𝛿).

• In case that 𝑥 𝛿 is in 𝐺, it was already in the maximal coreachable and controllable
set of states. It will remain so after making it marked, so𝐺′ = 𝐺. We observe �̂� = 𝐺

is computed in Algorithm 2.7, so �̂� = 𝐺′. As the initial states did not change, and
𝐺′ = 𝐺, the reachable part 𝑌 will remain the same. So 𝑌 = 𝑌 = 𝑌 ′.

• In case that 𝑥 𝛿 is in 𝑋\𝐺, states in𝑌 remain reachable, coreachable, and controllable.
So, computeFixpoint((𝑋, Σ,−→, 𝑌 ∪ 𝑋0, 𝑌 ∪ 𝑋𝑚 ∪ {𝑥 𝛿})) = computeFix
point((𝑋, Σ,−→, 𝑋0, 𝑋𝑚 ∪ {𝑥 𝛿})).
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We can conclude that 𝑌 = 𝑌 ′ and �̂� = 𝐺′ for any 𝑥 𝛿 ∈ 𝑋 \ 𝑋𝑚, so Theorem 2.2 holds
for Algorithm 2.7. □

Removed Marked Property (Algorithm 2.8)

Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚 \ {𝑥 𝛿}). Addition-
ally, we denote (𝑌, 𝐺) = computeFixpoint(𝐴), (𝑌 ′, 𝐺′) = computeFixpoint
(𝐴′), and (𝑌, �̂�) = TSSRMP(𝐴,𝑌, 𝐺, 𝑥 𝛿).

• We know that 𝑥 𝛿 ∈ 𝑋𝑚 (model delta is valid). And all states in 𝑋𝑚 are coreachable by
definition. 𝐺 was the maximal controllable coreachable set to 𝑋𝑚. After removing
𝑥 𝛿 as a marked state; 𝐺′ ⊆ 𝐺 and 𝑌 ′ ⊆ 𝑌 . So 𝑋 \ 𝐺 ⊆ 𝑋 \ 𝐺′. Therefore comp
uteFixpoint((𝐺, Σ,−→, 𝑋0, 𝑋𝑚 \ {𝑥 𝛿})) = computeFixpoint((𝑋, Σ,−→
, 𝑋0, 𝑋𝑚 \ {𝑥 𝛿})). Thus, in case 𝑥 𝛿 ∈ 𝑌 , then 𝑌 = 𝑌 ′ and �̂� = 𝐺′.

• In case that 𝑥 𝛿 is in 𝐺 \ 𝑌 , all states in 𝑌 are coreachable and controllable for
𝑋𝑚 \ {𝑥 𝛿}, as 𝑥 𝛿 is not reachable from 𝑌 , otherwise it would be contained in 𝑌 .
Therefore computeFixpoint((𝐺, Σ,−→, 𝑋0, (𝑌 ∪ 𝑋𝑚) \ {𝑥 𝛿})) = compute
Fixpoint((𝑋, Σ,−→, 𝑋0, 𝑋𝑚\{𝑥 𝛿})). So in case 𝑥 𝛿 ∈ 𝐺\𝑌 ,𝑌 = 𝑌 ′ and �̂� = 𝐺′.

• In case that 𝑥 𝛿 ∉ 𝐺, 𝑥 𝛿 must have an uncontrollable path to a non-coreachable state,
as it is coreachable as a marked state, it would have been in 𝐺 if it were controllable.
States that uncontrollably reach 𝑥 𝛿 were removed from 𝐺 in the base synthesis. 𝐺
remains the same, and consequently 𝑌 will also remain the same, so 𝑌 = 𝑌 = 𝑌 ′

and �̂� = 𝐺 = 𝐺′, which is also found by Algorithm 2.8.

We can conclude that 𝑌 = 𝑌 ′ and �̂� = 𝐺′ for any 𝑥 𝛿 ∈ 𝑋𝑚, so Theorem 2.2 holds for
Algorithm 2.8. □

Added Transition (Algorithm 2.9)

Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→ ∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑋0, 𝑋𝑚).
Additionally, we denote (𝑌, 𝐺) = computeFixpoint(𝐴), (𝑌 ′, 𝐺′) = compute
Fixpoint(𝐴′), and (𝑌, �̂�) = TSSAT(𝐴,𝑌, 𝐺, (𝑥or, 𝜎, 𝑥tar)).

• In case 𝑥or ∈ 𝑌 and 𝑥tar ∈ 𝑌 , all states in𝑌 remain reachable, coreachable, reachable,
and controllable. Also the (co-)reachability and controllability of the states in 𝑋 \𝑌
remains the same. So 𝑌 = 𝑌 = 𝑌 ′ and �̂� = 𝐺 = 𝐺′.

• In case 𝑥or ∈ 𝑌 and 𝑥tar ∈ 𝐺 \ 𝑌 , the coreachability an controllability of all
states remains unchanged. So �̂� = 𝐺 = 𝐺′. All states in 𝑌 remain reachable, so
FRS(𝐺, Σ,−→ ∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑌 ) = FRS(𝐺, Σ,−→ ∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑋0).

• In case 𝑥or in 𝑋 \ 𝐺 and 𝑥or ≠ 𝑥tar, then all states in 𝑌 remain (co-)reachable and
controllable. Therefore, computeFixpoint((𝑋, Σ,−→ ∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑌 ∪
𝑋0, 𝑌 ∪ 𝑋𝑚)) = computeFixpoint((𝑋, Σ,−→ ∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑋0, 𝑋𝑚)).
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• In case 𝑥or ∈ 𝐺 and 𝑥tar ∈ 𝑋 \ 𝐺. The states in 𝑋 \ 𝐺 remain non-coreachable or
non-controllable. In case that

– 𝜎 ∈ Σ𝑐. The supervisor can disable the added transition. So 𝑌 = 𝑌 = 𝑌 ′ and
�̂� = 𝐺 = 𝐺′.

– 𝜎 ∈ Σ𝑢. The supervisor cannot disable the added transition. Thus 𝑥or is non-
controll-able. Because also states in 𝑋 \ 𝐺 remain non-coreachable or non-
controllable, computeFixpoint((𝐺, Σ,−→ ∩((𝐺 \ {𝑥or}) × Σ × 𝐺), 𝑋0 \
{𝑥or}, 𝑋𝑚 \ {𝑥or})) = computeFixpoint((𝑋, Σ,−→ ∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑋0,
𝑋𝑚)).

• In case 𝑥or ∈ 𝐺 \ 𝑌 and 𝑥tar ∈ 𝐺 the coreachability and controllability of all states
does not change; �̂� = 𝐺 = 𝐺′. 𝑥or is non-reachable, so the added transition does
not change the reachability of any state. Thus, �̂� = 𝐺 = 𝐺′.

• In case 𝑥or = 𝑥tar, the (co-)reachability and controllability of any state does not
change. So �̂� = 𝐺 = 𝐺′ and 𝑌 = 𝑌 = 𝑌 ′.

We can conclude that 𝑌 = 𝑌 ′ and �̂� = 𝐺′ for any (𝑥or, 𝜎, 𝑥tar) ∈ (𝑋 × Σ × 𝑋)\ −→,
so Theorem 2.2 holds for Algorithm 2.9. □

Removed Transition (Algorithm 2.10)

Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→ \{(𝑥or, 𝜎, 𝑥tar)}, 𝑋0, 𝑋𝑚).
Additionally, we denote (𝑌, 𝐺) = computeFixpoint(𝐴), (𝑌 ′, 𝐺′) = compute
Fixpoint(𝐴′), and (𝑌, �̂�) = TSSRT(𝐴,𝑌, 𝐺, (𝑥or, 𝜎, 𝑥tar)).

• In case 𝑥or ∈ 𝑌 , 𝑥tar ∈ 𝑌 , and 𝑥or ≠ 𝑥tar, states in 𝑋 \ 𝐺 remain non-coreachable
or non-controllable. Therefore computeFixpoint((𝐺, Σ,−→ \{(𝑥or, 𝜎, 𝑥tar)},
𝑋0, 𝑋𝑚)) = computeFixpoint((𝑋, Σ,−→ \{(𝑥or, 𝜎, 𝑥tar)}, 𝑋0, 𝑋𝑚)).

• In case 𝑥or ∈ 𝐺 \𝑌 , 𝑥tar ∈ 𝐺, and 𝑥or ≠ 𝑥tar, states in 𝑋 \𝐺 remain non-coreachable
or non-controllable. Also, states in𝑌 remain (co-)reachable and controllable. There-
fore, computeFixpoint((𝐺, Σ,−→ \{(𝑥or, 𝜎, 𝑥tar)}, 𝑌 ∪𝑋0, 𝑌 ∪𝑋𝑚)) = comp
uteFixpoint((𝑋, Σ,−→ \{(𝑥or, 𝜎, 𝑥tar)}, 𝑋0, 𝑋𝑚)).

• In case 𝑥or ∈ 𝑋 \ 𝐺, 𝑥tar ∈ 𝑋 \ 𝐺, and 𝑥or ≠ 𝑥tar, states in 𝑌 remain (co-)reachable
and controllable. States in 𝐺 remain coreachable and controllable. In case that

– 𝜎 ∈ Σ𝑐, the non-coreachablity or non-controllability of 𝑥or and 𝑥tar do not
change. So �̂� = 𝐺 = 𝐺′ and 𝑌 = 𝑌 = 𝑌 ′.

– 𝜎 ∈ Σ𝑢, then 𝑥or may have been non-controllable, but may be controllable in the
variant model. Because states in 𝑌 remain (co-)reachable and controllable, and
states in 𝐺 remain coreachable and controllable; 𝑌 ⊆ 𝑌 ′ and 𝐺 ⊆ 𝐺′. Therefore
computeFixpoint((𝑋, Σ,−→ \{(𝑥or, 𝜎, 𝑥tar)}, 𝑌 ∪ 𝑋0, 𝐺 ∪ 𝑋𝑚)) = comp
uteFixpoint((𝑋, Σ,−→ \{(𝑥or, 𝜎, 𝑥tar)}, 𝑋0, 𝑋𝑚)).

• A removed transition from 𝑥or ∈ 𝑌 to 𝑥tar ∈ 𝐺 \𝑌 cannot exist, as 𝑥tar was reachable
in the base model by this transition, and 𝑥tar would have existed in 𝑌 .
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• In case 𝑥or ∈ 𝑌 and 𝑥tar ∈ 𝑋 \ 𝐺, then states in 𝑌 remain (co-)reachable and
controllable, states in𝐺 remain coreachable and controllable, but not reachable, and
states in 𝑋 \𝐺 remain non-coreachable or non-controllable. Therefore �̂� = 𝐺 = 𝐺′

and 𝑌 = 𝑌 = 𝑌 ′.
• In case 𝑥or ∈ 𝑋 \𝐺 and 𝑥tar ∈ 𝐺, then 𝑥or was coreachable in the base model. As it

is not in 𝐺, 𝑥or must be non-controllable. It will remain as such after removal of the
transition (𝑥or, 𝜎, 𝑥tar). Thus, states in 𝑌 remain (co-)reachable and controllable,
states in 𝐺 remain coreachable and controllable, but not reachable, and states in
𝑋 \ 𝐺 remain non-coreachable or non-controllable. Therefore �̂� = 𝐺 = 𝐺′ and
𝑌 = 𝑌 = 𝑌 ′.

• In case 𝑥or = 𝑥tar, the (co-)reachability and controllability of any state does not
change. So �̂� = 𝐺 = 𝐺′ and 𝑌 = 𝑌 = 𝑌 ′.

We can conclude that 𝑌 = 𝑌 ′ and �̂� = 𝐺′ for any (𝑥or, 𝜎, 𝑥tar) ∈−→, so Theorem 2.2
holds for Algorithm 2.10. □

Added state

In case a state 𝑥 𝛿 is added as an atomic model adaptation, there are no transitions to or
from this state, because for the base model it holds that−→⊆ 𝑋×Σ×𝑋 , and 𝑥 𝛿 ∉ 𝑋 It is
also not an initial state or marked state because for the base model it holds that 𝑋0 ⊆ 𝑋

and 𝑋𝑚 ⊆ 𝑋 . Therefore the added state 𝑥 𝛿 is non-coreachable and non-reachable in
the variant model. Therefore 𝑌 ′ = 𝑌 , and 𝐺′ = 𝐺, proving Lemma 2.5 for an added
state. □

Removed state

In case a state 𝑥 𝛿 is removed as an atomic model adaptation, there are no transitions to
or from this state, because for the variant model it holds that −→⊆ (𝑋 \ {𝑥 𝛿}) × Σ ×
(𝑋 \ {𝑥 𝛿}). It is also not an initial state or marked state because for the variant model
it holds that 𝑋 ′

0 ⊆ 𝑋 \ {𝑥 𝛿} and 𝑋 ′
𝑚 ⊆ 𝑋 \ {𝑥 𝛿}. Therefore the removed state 𝑥 𝛿 is

non-coreachable and non-reachable in the base model. Therefore 𝑌 ′ = 𝑌 , and 𝐺′ = 𝐺,
proving Lemma 2.5 for a removed state. □

Added event

In case an event 𝜎 is added as an atomic adaptations, there are no transitions over this
event, because for the base model it holds that −→⊆ 𝑋 ×Σ× 𝑋 , and 𝜎 ∉ Σ. Therefore,
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adding the event is not going to influence the (co-)reachability or controllability of any
state. Thus, 𝑌 ′ = 𝑌 , and 𝐺′ = 𝐺, proving Lemma 2.5 for an added event. □

Removed event

In case an event 𝜎 is removed as an atomic adaptations, there are no transitions
over this event in the base model, because for the variant model it holds that −→′⊆
𝑋×(Σ\{𝜎})×𝑋 , and−→′=−→. Therefore, removing the event is not going to influence
the (co-)reachability or controllability of any state. Thus, 𝑌 ′ = 𝑌 , and 𝐺′ = 𝐺, proving
Lemma 2.5 for a removed event. □



Appendix B
Proofs for ITSS

The lemmas in this appendix support Theorem 2.3 for Algorithm 2.11. Following from
the lemmas, Theorem 2.3 is proven at the end of this appendix.

Lemma B.1 Following each line in Algorithm 2.11 that directly follows a call to
an atomic TSS algorithm (i.e., lines 5,9,13,17,21,25), it holds for the intermediate
automaton that is formed by �̂� = (𝑋 ′, Σ′,−→′, 𝑋 ′

0, 𝑋
′
𝑚) that computeFixpoint

( �̂�) = (𝑌 ′, 𝐺′), where (𝑌 ′, 𝐺′) is the result of the atomic TSS algorithm in the line
above.

Proof The correct result (by Theorem 2.2) of each atomic TSS algorithm is proven in
Appendix A. �̂� correctly constructs the variant model after applying the atomic model
delta, following the definitions in Section 2.3. □

Lemma B.2 Each time an atomic TSS algorithm is initiated by Algorithm 2.11, the
atomic adaptation is a valid model delta for the automaton that is input.

Proof We subdivide the proof over all calls to the atomic TSS algorithms, Algo-
rithms 2.5 - 2.10:

• From Section 2.3, we know that 𝑋+
0 ⊆ (𝑋 ∪ 𝑋+) \ 𝑋− , and 𝑋+

0 ∩ 𝑋0 = ∅. At the
time Algorithm 2.5 (TSSAIP) is initiated with 𝑥 𝛿 ∈ 𝑋+

0 , this is with an automaton
with state set 𝑋 ′ = 𝑋 ∪ 𝑋+ and initial state set 𝑋 ′

0. It holds that {𝑥 𝛿} ⊆ 𝑋 ′. It holds
that {𝑥 𝛿} ∩ 𝑋 ′

0 = ∅, as 𝑥 𝛿 is only added to 𝑋 ′
0 after the call to Algorithm 2.5 with

𝑥 𝛿 as added initial state. We can conclude that 𝑋+
0 = {𝑥 𝛿} is a valid model delta for

the automaton that is input when Algorithm 2.5 is initiated.
• From Section 2.3, we know that 𝑋−

0 ⊆ 𝑋0. At the time Algorithm 2.6 (TSSRIP) is
initiated with 𝑥 𝛿 ∈ 𝑋−

0 , this is with an automaton with initial state set 𝑋 ′
0 ⊆ 𝑋 ∪ 𝑋+.

𝑥 𝛿 is in 𝑋 ′
0 when Algorithm 2.6 is called with 𝑥 𝛿 , as 𝑥 𝛿 is only removed from

𝑋 ′
0 after this call. We can conclude that 𝑋−

0 = {𝑥 𝛿} is a valid model delta for the
automaton that is input when Algorithm 2.6 is initiated.
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• From Section 2.3, we know that 𝑋+
𝑚 ⊆ (𝑋 ∪ 𝑋+) \ 𝑋− , and 𝑋+

𝑚 ∩ 𝑋𝑚 = ∅. At the
time Algorithm 2.7 (TSSAMP) is initiated with 𝑥 𝛿 ∈ 𝑋+

𝑚, this is with an automaton
with state set 𝑋 ′ = 𝑋 ∪ 𝑋+ and marked state set 𝑋 ′

𝑚. It holds that {𝑥 𝛿} ⊆ 𝑋 ′. It
holds that {𝑥 𝛿} ∩ 𝑋 ′

𝑚 = ∅, as 𝑥 𝛿 is only added to 𝑋 ′
𝑚 after the call to Algorithm 2.7

with 𝑥 𝛿 as added marked state. We can conclude that 𝑋+
𝑚 = {𝑥 𝛿} is a valid model

delta for the automaton that is input when Algorithm 2.7 is initiated.
• From Section 2.3, we know that 𝑋−

𝑚 ⊆ 𝑋𝑚. At the time Algorithm 2.8 (TSSRMP) is
initiated with 𝑥 𝛿 ∈ 𝑋−

𝑚, this is with an automaton with initial state set 𝑋 ′
𝑚 ⊆ 𝑋∪𝑋+.

𝑥 𝛿 is in 𝑋 ′
𝑚 when Algorithm 2.8 is called with 𝑥 𝛿 , as 𝑥 𝛿 is only removed from 𝑋 ′

𝑚

after this call. We can conclude that 𝑋−
𝑚 = {𝑥 𝛿} is a valid model delta for the

automaton that is input when Algorithm 2.8 is initiated.
• From Section 2.3, we know that: −→ ∪ −→+⊆ 𝑋 ′ × Σ′ × 𝑋 ′, and −→+ ∩ −→= ∅.

At the time Algorithm 2.9 (TSSAT) is initiated with (𝑥or, 𝜎, 𝑥tar) ∈−→+, this is
with an automaton with state set 𝑋 ′ = 𝑋 ∪ 𝑋+ and event set Σ′ = Σ ∪ Σ+. It
holds that {(𝑥or, 𝜎, 𝑥tar)} ⊆ 𝑋 ′ ×Σ′ × 𝑋 ′. It holds that {(𝑥or, 𝜎, 𝑥tar)}∩ −→′= ∅, as
{(𝑥or, 𝜎, 𝑥tar)} is only added to−→′ after the call to Algorithm 2.9 with (𝑥or, 𝜎, 𝑥tar)
as added transition. We can conclude that −→+= {(𝑥or, 𝜎, 𝑥tar)} is a valid model
delta for the automaton that is input when Algorithm 2.9 is initiated.

• From Section 2.3, we know that −→−⊆−→. At the time Algorithm 2.10 (TSSRT)
is initiated with (𝑥or, 𝜎, 𝑥tar) ∈−→− , this is with an automaton with state set 𝑋 ′ =
𝑋 ∪ 𝑋+ and event set Σ′ = Σ ∪ Σ+. (𝑥or, 𝜎, 𝑥tar) is in −→′ when Algorithm 2.10
is called with (𝑥or, 𝜎, 𝑥tar), as (𝑥or, 𝜎, 𝑥tar) is only removed from −→′ after this
call. We can conclude that −→−= {(𝑥or, 𝜎, 𝑥tar)} is a valid model delta for the
automaton that is input when Algorithm 2.10 is initiated.

Together, the above cases prove Lemma B.2. □

Lemma B.3 Each time states are added or removed, or events are added or removed in
Algorithm 2.11, this adaptation is a valid model delta for the automaton it is performed
on.

Proof From Section 2.3, we know that 𝑋+ ∩ 𝑋 = ∅ and Σ+ ∩ Σ = ∅ The added states
and added events are only added once to state set 𝑋 in Algorithm 2.11, at the point
they are added, this is a valid model delta. The removed states and removed events are
removed from automaton 𝐴′ = (𝑋 ′, Σ′,−→′, 𝑋 ′

0, 𝑋
′
𝑚) in line 28. At this point, all added

transitions are added to −→′ and removed transitions are removed from −→. Also all
states with added marked property are added to 𝑋 ′

𝑚, all states with removed marked
property are removed from 𝑋 ′

𝑚, all states with added initial property are added to 𝑋 ′
0,

and all states with removed initial property are removed from 𝑋 ′
0. So in automaton 𝐴′,

𝑋− ∩ 𝑋 ′
𝑚 = ∅, 𝑋− ∩ 𝑋 ′

0 = ∅, and −→′ ⊆ ((𝑋 ∪ 𝑋+) \ 𝑋−) × ((Σ ∪ Σ+) \ Σ−) × ((𝑋 ∪
𝑋+) \ 𝑋−). In other words, the removed states are not initial or marked, there are no
transitions to-or from removed states, and there are no transitions over removed events.
Thus, Lemma B.3 is proven for Algorithm 2.11. □

Lemma B.4 If final fixpoint result 𝑌 in SS is equal to fixpoint result 𝑌 ′ in ITSS, then
supervisor 𝑆 is also the same.
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Proof From Lemma B.1 it follows that the final fixpoint result 𝑌 ′ in ITSS is equal to
the final fixpoint result𝑌 inSS. By following the steps of Algorithm 2.11, it follows that
at line 27; Σ′ = (Σ∪Σ+). Line 27 of Algorithm 2.11 is equal to line 2 of Algorithm 2.1
when 𝑌 ′ = 𝑌 and Σ′ = (Σ ∪ Σ+) \ Σ− , thus computing the same automaton 𝑆. □

From Lemmas B.1-B.3 it follows that each intermediate result (𝑌 ′, 𝐺′) is correctly
constructed in Algorithm 2.11, so that the final result (𝑌 ′, 𝐺′) is equal to compute
Fixpoint(𝐴′). From Lemma B.4 it follows that the supervisor automaton computed
by Algorithm 2.11 is the same as the supervisor automaton computed by Algorithm 2.1,
for the same supervisor states in𝑌 . Together, the lemmas show that Theorem 2.3 holds.

□





Appendix C
Proofs for GTSS

First we prove the application of a set Δ∼ atomic model adaptations in Δ× , defined in
Section 2.5.2, in the same manner as Appendix A. Following, we provide the proof for
Theorem 2.4 for Algorithm 2.12.

Lemma C.1 For a set Δ∼, the same statements associated with a case statements of
Algorithms 2.5 - 2.10 can be applied, as long as ∀𝛿 ∈ Δ∼ the same case condition
holds.

Proof We structure our proof the same way as Appendix A, for each atomic TSS
algorithm the possible Δ∼ in Δ× is discussed. We denote (𝑌, 𝐺) = computeFix
point(𝐴), (𝑌 ′, 𝐺′) = computeFixpoint(𝐴′), and (𝑌, �̂�) is calculated by the
TSS algorithm.

• We consider Δ∼ = 𝑋+
0 ∩ (𝐺 \ 𝑌 ).

Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→, 𝑋0 ∪ Δ∼, 𝑋𝑚).

– For any (𝑋0, 𝑋
′
0) ∈ 𝑋 × 𝑋 it holds that 𝐺 = 𝐺′ when computing (𝑌, 𝐺) =

computeFixpoint(𝑋, Σ,−→, 𝑋0, 𝑋𝑚), (𝑌 ′, 𝐺′) = computeFixpoint
(𝑋, Σ,−→, 𝑋 ′

0, 𝑋𝑚), as the initial state does not influence the computation of
𝐺. We also observe that for all switchcases in Algorithm 2.5, �̂� = 𝐺 is com-
puted. It follows that �̂� = 𝐺′.

– AsΔ∼ ⊆ 𝐺\𝑌 , for the supervisor synthesis of 𝐴′, the reachable part is determined
by 𝑌 = FRS(𝐺′, Σ,−→, 𝑋 ′

0), where we know that 𝐺′ = 𝐺 and 𝑋 ′
0 = 𝑋0 ∪ Δ∼. 𝑌

is calculated by FRS(𝐺, Σ,−→, 𝑌 ∪Δ∼). The result of these FRSs is the same, as
we know that all states in 𝑌 are reachable in 𝐺 from 𝑋0 from the base synthesis.
So 𝑌 = 𝑌 ′.

• We consider Δ∼ = 𝑋−
0 ∩ 𝑌 .

Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→, 𝑋0 \ Δ∼, 𝑋𝑚).

– For any (𝑋0, 𝑋
′
0) ∈ 𝑋 × 𝑋 it holds that 𝐺 = 𝐺′ when computing (𝑌, 𝐺) =

computeFixpoint(𝑋, Σ,−→, 𝑋0, 𝑋𝑚), (𝑌 ′, 𝐺′) = computeFixpoint
(𝑋, Σ,−→, 𝑋 ′

0, 𝑋𝑚), as the initial state does not influence the computation of
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𝐺. We also observe that for all switchcases in Algorithm 2.5, �̂� = 𝐺 is com-
puted. It follows that �̂� = 𝐺′.

– In case that Δ∼ ⊆ 𝑌 , for the supervisor synthesis of 𝐴′, the reachable part is
determined by 𝑌 = FRS(𝐺′, Σ,−→, 𝑋 ′

0), where we know that 𝐺′ = 𝐺 and
𝑋 ′

0 = 𝑋0 \ Δ∼. 𝑌 is calculated by FRS(𝑌, Σ,−→, 𝑋0 \ Δ∼). The result of these
FRSs is the same, as we know that all states in 𝐺 \𝑌 are not reachable from the
base synthesis. So 𝑌 = 𝑌 ′.

• We consider Δ∼ = 𝑋+
𝑚 ∩ 𝑋 \ 𝐺.

Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚 ∪ Δ∼).

– In case that Δ∼ ⊆ 𝑋 \ 𝐺, states in 𝑌 remain reachable, coreachable, and con-
trollable. So, computeFixpoint((𝑋, Σ,−→, 𝑌 ∪ 𝑋0, 𝑌 ∪ 𝑋𝑚∪Δ∼)) = comp
uteFixpoint((𝑋, Σ,−→, 𝑋0, 𝑋𝑚 ∪ Δ∼)).

• We consider Δ∼ = 𝑋−
𝑚 ∩ 𝑌 .

Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚 \ Δ∼).

– We know that Δ∼ ⊆ 𝑋𝑚 (model delta is valid). And all states in 𝑋𝑚 are core-
achable by definition. 𝐺 was the maximal controllable coreachable set to 𝑋𝑚.
After removing Δ∼ as marked states; 𝐺′ ⊆ 𝐺 and 𝑌 ′ ⊆ 𝑌 . So all states in
𝑋 \ 𝐺 ⊆ 𝑋 \ 𝐺′. Therefore computeFixpoint((𝐺, Σ,−→, 𝑋0, 𝑋𝑚 \ Δ∼)) =
computeFixpoint((𝑋, Σ,−→, 𝑋0, 𝑋𝑚 \ Δ∼)). So in case Δ∼ ⊆ 𝑌 , 𝑌 = 𝑌 ′

and �̂� = 𝐺′.

• We consider Δ∼ = 𝑋−
𝑚 ∩ 𝐺 \ 𝑌 .

Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚 \ Δ∼).

– In case thatΔ∼ ⊆ 𝐺\𝑌 , all states in𝑌 are coreachable and controllable for 𝑋𝑚\𝑥 𝛿 ,
as states in Δ∼ are not reachable from 𝑌 , otherwise they would be contained in
𝑌 . Therefore computeFixpoint((𝐺, Σ,−→, 𝑋0, (𝑌 ∪ 𝑋𝑚) \ Δ∼)) = comp
uteFixpoint((𝑋, Σ,−→, 𝑋0, 𝑋𝑚 \ Δ∼)). So in case Δ∼ ⊆ 𝐺 \ 𝑌 , 𝑌 = 𝑌 ′ and
�̂� = 𝐺′.

• We consider Δ∼ =−→+ ∩𝑌 × Σ × 𝑌 .
Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→ ∪Δ∼, 𝑋0, 𝑋𝑚).

– The coreachability an controllability of all states remains unchanged. So �̂� =

𝐺 = 𝐺′. All states in𝑌 remain reachable, so FRS(𝐺, Σ,−→ ∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑌 )
= FRS(𝐺, Σ,−→ ∪Δ∼, 𝑋0).

• We consider Δ∼ =−→+ ∩𝐺 × Σ𝑢 × 𝑋 \ 𝐺.
Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→ ∪Δ∼, 𝑋0, 𝑋𝑚).

– The states in 𝑋 \𝐺 remain non-coreachable or non-controllable. The supervisor
cannot disable the added transitions. All states in 𝑋𝑜𝑟 are non-controllable,
where 𝑋𝑜𝑟 = {𝑥or | (𝑥or, 𝜎, 𝑥tar) ∈ Δ∼, 𝜎 ∈ Σ𝑢, 𝑥tar ∈ 𝑋}. Because also states
in 𝑋 \ 𝐺 remain non-coreachable or non-controllable, computeFixpoint
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((𝐺, Σ,−→ ∩((𝐺 \ 𝑋𝑜𝑟 ) × Σ × 𝐺), 𝑋0 \ 𝑋𝑜𝑟 , 𝑋𝑚 \ 𝑋𝑜𝑟 )) = computeFix
point((𝑋, Σ,−→ ∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑋0, 𝑋𝑚)).

• We consider Δ∼ = {(𝑥or, 𝜎, 𝑥tar) ∈−→+ |𝑥or ∈ 𝑋 \ 𝐺 ∧ 𝑥or ≠ 𝑥tar}
Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋,Σ,−→ ∪Δ∼, 𝑋0, 𝑋𝑚).

– All states in 𝑌 remain (co-)reachable and controllable. Thus we conclude, comp
uteFixpoint((𝑋, Σ,−→ ∪{(𝑥or, 𝜎, 𝑥tar)}, 𝑌 ∪ 𝑋0, 𝑌 ∪ 𝑋𝑚)) = compute
Fixpoint((𝑋, Σ,−→ ∪Δ∼, 𝑋0, 𝑋𝑚)).

• We consider Δ∼ = {(𝑥or, 𝜎, 𝑥tar) ∈−→− |𝑥or ∈ 𝑌 ∧ 𝑥tar ∈ 𝑌 ∧ 𝑥or ≠ 𝑥tar}
Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→ \Δ∼, 𝑋0, 𝑋𝑚).

– States in 𝑋 \ 𝐺 remain non-coreachable or non-controllable. Therefore comp
uteFixpoint((𝐺, Σ,−→ \Δ∼, 𝑋0, 𝑋𝑚)) = computeFixpoint((𝑋, Σ,
−→ \Δ∼, 𝑋0, 𝑋𝑚)).

• We consider Δ∼ = {(𝑥or, 𝜎, 𝑥tar) ∈−→− |𝑥or ∈ 𝐺 \ 𝑌 ∧ 𝑥tar ∈ 𝐺 ∧ 𝑥or ≠ 𝑥tar}
Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→ \Δ∼, 𝑋0, 𝑋𝑚).

– States in 𝑋 \ 𝐺 remain non-coreachable or non-controllable. Also, states in
𝑌 remain (co-)reachable and controllable. It follows that computeFixpoint
((𝐺, Σ,−→ \Δ∼, 𝑌 ∪𝑋0, 𝑌 ∪𝑋𝑚)) = computeFixpoint((𝑋, Σ,−→ \Δ∼, 𝑋0
, 𝑋𝑚)).

• We considerΔ∼ = {(𝑥or, 𝜎, 𝑥tar) ∈−→− |𝑥or ∈ 𝑋 \𝐺∧𝑥tar ∈ 𝑋 \𝐺∧𝜎 ∈ Σ𝑢∧𝑥or ≠

𝑥tar}
Automaton 𝐴 = (𝑋, Σ,−→, 𝑋0, 𝑋𝑚), and 𝐴′ = (𝑋, Σ,−→ \Δ∼, 𝑋0, 𝑋𝑚).

– States in 𝑌 remain (co-)reachable and controllable. States in 𝐺 remain core-
achable and controllable. The origin states of the removed transition may
have been non-controllable, but may be controllable in the variant model. Be-
cause states in 𝑌 remain (co-)reachable and controllable, and states in 𝐺 re-
main coreachable and controllable; 𝑌 ⊆ 𝑌 ′ and 𝐺 ⊆ 𝐺′. Therefore comp
uteFixpoint((𝑋,Σ,−→ \Δ∼, 𝑌 ∪ 𝑋0, 𝐺 ∪ 𝑋𝑚)) = computeFixpoint
((𝑋, Σ,−→ \Δ∼, 𝑋0, 𝑋𝑚)).

For any possible Δ∼ Lemma C.1 is proven. □

Lemma C.2 Each time 𝑋 ′, Σ′, −→′, 𝑋 ′
0, or 𝑋 ′

𝑚 is constructed in Algorithm 2.12 (i.e.,
lines 1,6,8,12), it holds that computeFixpoint(𝑋 ′, Σ′,−→′, 𝑋 ′

0, 𝑋
′
𝑚) = (𝑌 ′, 𝐺′),

for (𝑌 ′, 𝐺′) computed at that point in Algorithm 2.12.

Proof We structure our proofs over the different lines where automaton 𝐴′ is con-
structed.

• Lines 1,12: In case states are added or removed, or events are added or removed in
Algorithm 2.12, the same proofs as for Lemma 2.5 and Lemma B.3 hold here.

• Line 6: This is the same iterative application as in Algorithm 2.11 (ITSS). The
same proofs as for Lemma B.1 and Lemma B.2 hold here.
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• Line 8: The correct result of applying sets Δ∼ is proven for Lemma C.1 above. In
conjunction with the proof for Lemma B.2, this proves Lemma C.2 for line 8.

For each time 𝑋 ′, Σ′, −→′, 𝑋 ′
0, or 𝑋 ′

𝑚 is constructed in Algorithm 2.12, Lemma C.2 is
proven. □

From Lemma C.2 it follows that each intermediate result (𝑌 ′, 𝐺′) is correctly
constructed in Algorithm 2.12, so that the final result (𝑌 ′, 𝐺′) is equal to compute
Fixpoint(𝐴′). Using the same proof as Lemma B.4, it follows that the supervisor
automaton computed by Algorithm 2.12 is the same as the supervisor automaton
computed by Algorithm 2.1, for automaton 𝐴′. Together, this shows that Theorem 2.4
holds. □
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