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The aphorism on the preceding page is quoted from the Records 
of the Three Kingdoms, an official and authoritative Chinese 
imperial history book written by Chen Shou (233-297 CE). This 
book covers the end of the Han dynasty (184–220 CE) and the 
following Three Kingdoms period (220–280 CE). 

The direct translation of this aphorism is “Never give up despite 
repeated setbacks. Ultimately never yield to others.” These 
words have been used in the final assessment of Liu Bei (161-
223 CE), the founding emperor of Shu Han, one of the Three 
Kingdoms of China. 



Dedicated to my motherland.
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Summary

In modern wafer metrology, there is a strong demand for a Maxwell solver that is precise,
efficient, and sufficiently flexible to tackle complex geometries. The recently developed
spatial spectral method has been successfully applied to solve both 2D and 3D scattering
problems in a layered medium. Gabor frames are used to perform discretization in the
directions perpendicular to the stratification of the background medium. The Gabor frames
yield a fast connection between the spatial domain and the spectral domain. The spatial
spectral method incorporates the spectral-domain Green function for a stratified medium
with a special path to avoid poles and branch cuts. Additionally, a normal-vector-field
formulation is employed to enhance accuracy. Numerical experiments demonstrate that
this spatial spectral method maintains an O(N logN) complexity for the matrix-vector
product in computation time while maintaining good accuracy.

Electromagnetic scattering problems can become much more difficult for more complex
geometries and higher optical contrasts. Therefore, it is advantageous to push the bound-
aries of this spatial spectral method such that more challenging real-world and industry-
based problems can be simulated and solved. This is the goal of the research work under
consideration. We focus on the following challenges. The first challenge is how to effi-
ciently represent scattering objects with complex geometry in terms of Gabor frames. The
corresponding research question can be stated as how to compute the pertaining Gabor
coefficients accurately and efficiently. We concentrate on computing the Gabor coefficients
of a 2D indicator function supported on a polygon, because polygon has the flexibility to
accurately approximate an arbitrary 2D shape. The second challenge in the spatial spec-
tral method faces is to deal with scatterers with high contrast or negative permittivity.
The pertaining matrix system becomes hard to solve iteratively due to its unfavorable
eigenvalue distribution, which results in a large number of iterations when using Krylov
subspace methods. The third challenge concerns cases where the scatterers are distributed
over a large-scale transverse structure and for more realistic industry-based applications.

To approximate the cross section of a 3D object with complex geometry, an N -sided
polygon can be used and the approximation can be refined by increasing the number of
edges N . Therefore, to increase the geometrical flexibility of the spatial spectral solver,
we focus on the computation of Gabor coefficients of a 2D indicator function supported
on an N -sided polygon. Two analytical methods are proposed to compute the fundamen-
tal integrals associated with the Gabor coefficient after applying Gauss’s theorem. In the
first method, the fundamental integral is formulated with the complex error function in
the integrand. The complex error function is approximated by its truncated Taylor series
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expansion. Aiming at accelerating the computation, a second-order inhomogeneous differ-
ence equation is derived and solved by Olver’s algorithm. However, this method needs a
very high working precision, which results in limited practical use. In the second method
we overcome the disadvantages caused by the Taylor series expansion. We reformulate the
fundamental integral with the Faddeeva function in the integrand and a rational expansion
for the Faddeeva function is used. We take advantage of its global fast convergence on
the whole complex plane and employ the fast Fourier transform. A second-order inho-
mogeneous difference equation is again derived, which is also solved by Olver’s algorithm.
Numerical examples demonstrate that the rational-expansion-based method surpasses nu-
merical quadrature in computation time while preserving accuracy.

When extending the application of the spatial spectral method to high-contrast scatter-
ing problems, numerically unreliable results were observed. We identify that the original
multiplication operator for two sets of Gabor coefficients causes this problem when the
contrasts become large. Hence, one of the primary objectives is to construct a stable mul-
tiplication operator, as it plays a crucial role in the spatial spectral method. An improved
multiplication function is proposed to multiply two sets of Gabor coefficients, and its ana-
log for two equidistantly sampled discrete functions is provided. The key step is to identify
the range of the Gabor coefficients that is accurate and apply zero-padding and restriction
operations. With this improved multiplication operator, we are able to solve a scattering
problem with a contrast of 16 with a relative error of 10−3 in the far field, against an
independent reference.

An unfavorable eigenvalue distribution of the matrix system occurs when the scat-
terers have high contrast or negative permittivities. To tackle this problem, we propose
a normal-vector-field-based block-diagonal-preconditioner in to be used with Krylov sub-
space methods BiCGstab(ℓ) or IDR(s). A spectral analysis reveals that the preconditioned
system possesses a more clustered distribution of eigenvalues as compared to the unprecon-
ditioned system. In numerical experiments involving high contrast or negative permittivity,
it is observed that the preconditioned system outperforms the unpreconditioned system in
terms of the number of iterations. Consequently, the total computation time is reduced
while maintaining accuracy.

The thesis is completed by three applications. The first application results from optical
metrology: a single-pad resist-only metrology target illuminated by more than 9000 optical
beams. This scattering problem has been simulated with the spatial spectral solver. The
solutions are analyzed and compared with a periodic solver. Numerical results suggest that
the improved spatial spectral Maxwell solver is able to solve relevant scattering problems
in optical metrology without artifacts due to periodicity. The second application comes
from integrated photonics: a computer-generated waveguide hologram device illuminated
by a beam-type source. The hologram area contains 10126 bar-type scatterers in a 36.8λ×
33λ×0.03λ domain with λ being the free-space wavelength. The third application concerns
scattering by a metasurface. Numerical results from the spatial spectral method suggest
that the height of the scatterer is a critical parameter for the number of iterations of the
Krylov subspace solver. The full-scale problem is currently still beyond the capability of
the solver.
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Chapter 1

Introduction

1.1 Lithography and optical metrology

Microchips, or integrated circuits, were invented by Jack Kilby and Robert Noyce in
the end of the 1950s [1], and they have become the heart of modern technology nowadays.
A microchip is a module of packaged electronic circuits on one small flat piece of semicon-
ductor material, usually silicon. On the chip, transistors are used as electrical switches to
turn a current on or off, or as means to amplify or modulate a signal. In general, a larger
number of transistors integrated on the chip or a smaller feature size of each transistor,
yields improvements in almost every aspect of a microchip [2,3], such as lower power con-
sumption, a larger memory capacity, and a higher processing speed. In the early 1970s, a
microprocessor usually contained thousands of transistors on a single microchip. Today, a
microchip the size of a human fingernail can contain billions of transistors, and its features
are measured on a nanometer scale [4, 5].

More than one trillion microchips are manufactured around the world annually and
the whole semiconductor industry forms a US$ 618 billion market in 2022 with continuing
growth [6]. It is the advantage in mass production capability, reliability, and the building-
block approach in design that made semiconductors revolutionize the world of electronics
[7, 8]. From smartphones and computers to automotive and industrial equipment, from
servers, data centers, and storage to diverse consumer electronics, semiconductors bring a
host of applications and constitute the fundament of modern technology since the digital
revolution began in the second half of the 20th century. Furthermore, semiconductor
technology is playing a crucial role in the trends of shaping an interconnected and intelligent
society, and contributing to the growing market of artificial intelligence, 5G, virtual reality,
the internet of things and cloud computing. A range of application fields of the modern
semiconductor industry are given in Fig. 1.1.
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Figure 1.1: Semiconductor industry application fields.

All the above widespread semiconductor applications in Fig. 1.1 require reliable and
efficient mass production of microchips. Microchips are manufactured by building up
multiple patterned layers on a silicon wafer. When patterned layers are manufactured, the
process can require hundreds of steps and takes up to several months [9]. Following the
descriptions in [3, 10], we outline the main steps of microchip manufacturing as a recipe
in Fig. 1.2. The manufacturing process begins with a silicon wafer, which is a thin slice
of pure silicon polished to extreme smoothness. To manufacture a microchip, the first
important step is deposition, where thin films of materials such as conductors, isolators,
and semiconductors are deposited onto the silicon wafer. The wafer is then covered with a
light-sensitive layer called a photoresist. There are positive and negative photoresists, and
the positive resist is mainly used in semiconductor production due to its high-resolution
capability. The next step is lithography. The intended details to be printed on a wafer
are contained in a patterned plate made of glass or quartz, which is called a reticle or
photomask. During this step, deep ultraviolet (DUV) or extreme ultraviolet (EUV) light
is projected onto the wafer through the reticle. The lithography system’s optics shrinks
and focuses the patterns on the reticle onto the photosensitive resist layer of the wafer and
this induces the pre-designed patterns in the resist layer by chemical changes. This step is
repeated until the whole wafer is covered with these patterns. After the lithography step,
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the wafer is baked to make the resist insensitive to further illumination and subsequently
developed such that printed patterns are represented by the resist being present or absent
according to the printed pattern. Part of the resist layer is also washed away to generate
a pattern of open space with material underneath. The next step is chemical processing
called etching. The material that is not protected by the resist on top of it is etched
away with either gases or chemical baths, so a 3D version of the pattern is produced.
The following step is ion implantation. The wafer may be bombarded with positive or
negative ions of doping material to create electrically conducting properties according to
the patterns. Once the layer is doped, the remaining photoresist is removed. The above
steps are repeated to make more layers with patterns until the whole structure is finished.

Figure 1.2: Main steps in microchip manufacturing.

One important step during the manufacturing of microchips is metrology. Metrology
is the process to measure and characterize the actual features of printed patterns. Small
effects during the manufacture can cause catastrophic deviations in the chip’s functional
behavior. These effects can be reticle defectivity (a tiny imperfection on the wafer such
as particle interference, refraction, or other physical or chemical defects) [11, 12], or im-
proper illumination (e.g. the position or angle of the light source was assigned incorrectly)
during lithography. Therefore, metrology is an essential step to monitor the quality of the
manufacturing process, detect and measure errors, and check if certain minimum quality
standards are satisfied. There are several popular wafer-metrology technologies: critical
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dimension scanning electron microscopy (CD-SEM), critical dimension small-angle X-ray
scattering (CD-SAXS), scatterometry, 3D atomic force microscopy (AFM), transmission
electron microscopy (TEM), see e.g. [13] a comparison of these technologies. Among all
these technologies, optical metrology uses light-based methods to measure and characterize
the properties of semiconductor devices [7, 14], and it has been proven a powerful method
due to the following features: (1) it can achieve high accuracy, e.g., interferometry is con-
sidered as the most accurate measurement technology in modern optical metrology [15],
(2) it has a high speed of measurement [16–18], which is important in mass production of
semiconductor devices, (3) it is a non-destructive technique and therefore the measuring
does not jeopardize the printed structure nor contaminate the material on the wafer [19].

The smallest feature size that can be reliably printed onto a wafer during the lithography
process is called the critical dimension. The critical dimension directly determines the size
of transistors that can be created on the microchip, which makes it a crucial parameter
in the final performance of semiconductor devices. Today’s advanced microchips contain
billions of transistors [20] or hundreds of layers [21], and the fine details of those chips
are in the range of several nanometers. When the components on a microchip or the
printed detail have become much smaller than the illumination wavelength or even half the
wavelength, it is impossible for conventional camera imaging to directly capture the fine
features of the printed patterns in optical metrology, due to Abbe’s diffraction limit [22]. To
obtain the fine details through such optical images, an extra target-reconstruction process
is needed, where the scattering images of a sequence of given targets are computed based
on numerically solving Maxwell’s equations. This target-reconstruction process is usually
performed based on a Maxwell solver. Insights yielded from the Maxwell solver can be used
to understand the scatterometric optical signal from the structure, which is also beneficial
for developing new metrology hardware and algorithms in optical metrology [23]. Hence,
high-performance optical metrology relies significantly on an accurate and efficient Maxwell
solver.

In the following sections, we will review the conventional Maxwell-solver approaches in
computational electromagnetics and then recall a recently developed Maxwell solver based
on the spatial spectral method given in [24], which forms the foundation for the thesis at
hand.

1.2 Numerical methods in computational electromag-

netics

Since the second half of the 20th century, a variety of numerical techniques in compu-
tational electromagnetics have been developed for solving electromagnetic problems. The
capabilities of methods developed in computational electromagnetics got strengthened by
the evolution of high-performance computing facilities. Computational methods can be
classified into different types, based on several features, depending on if there is a time-
harmonic assumption in the governing equations or not. Methods with such an assumption
are classified as frequency-domain methods and those without are time-domain methods.
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If a Fourier transformation is performed from the spatial domain to the spectral domain,
these methods are classified as real-space methods or Fourier-space methods and depending
on which form of Maxwell’s equations is used, these methods are classified as differential-
equation methods or integral-equation methods. A numerical method in an electromagnetic
field solver may possess one or more of the above-mentioned features and a hybrid method
is usually a combination and modification of several of the above methods. Here we briefly
review the most widely-used numerical methods in computational electromagnetics.

1.2.1 FDTD

One of the widely used method is the finite difference time domain (FDTD) method.
FDTD was proposed by Yee in 1966 [25], and the key idea in FDTD is to use finite
differences to approximate the derivatives in the differential form of Maxwell’s equations.
In his original paper [25], Yee used the leapfrog scheme to approximate the electric field
and magnetic field, resulting in local second-order accuracy in both spatial domain and
time domain. Later on, an analysis on numerical stability was given in [26,27] by Taflove.
Boundary conditions must be considered carefully when using FDTD-type techniques.
When the FDTD method is used to solve open-space scattering and radiation problems,
the computational domain must be truncated due to the limitation of computers. An
absorbing boundary condition (ABC) is usually applied to truncate the computational
domain. In 1994, Berenger proposed a perfectly matched layer (PML) [28, 29] and it has
proven to be one of the most robust material ABCs [30–32]. One important property of
the FDTD method is its conservation of energy since it ensures that the numerical solution
is physically valid [33]. A survey shows that the number of FDTD-related publications
exhibits an exponential growth since the 1980s [34], and the FDTD method is one of the
most widely used methods in computational electromagnetics today.

There are several reasons that make the FDTD method successful in solving electro-
magnetic problems. First of all, the explicit derivation in FDTD yields simplicity and
elegance, which is useful for understanding and implementation when modeling an electro-
magnetic problem. Secondly, FDTD method has the intrinsic ability to handle complicated
geometries and inhomogeneous materials by specifying material parameters on the entire
computational domain. Thirdly, FDTD is a time-domain method and therefore the solu-
tion of an FDTD-based system contains not only the electric and magnetic field on the
computational domain, but also their evolution with respect to time. One disadvantage
of the FDTD method is that it becomes inefficient when the object geometry does not
conform with the (commonly used) rectangular grid in the spatial domain. 1 Another
drawback is that the FDTD method is expensive in terms of computational resources
when the computational domain is large, due to the following two reasons. On one hand,
the FDTD algorithm has an inherent numerical-dispersion error, and the spatial discretiza-
tion length of the grid scheme must be fine enough to keep the numerical-dispersion error
small [35, Chapter 12]. On the other hand, for explicit FDTD schemes, the time step
and the space step must together obey the Courant–Friedrichs–Lewy (CFL) condition to

1The finite element method is more suitable for such problems.
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guarantee the stability [26, 33]. These two factors may result in a significant increase in
the cost of obtaining the solution in terms of e.g. memory and computation time.

Since invented, more than a half-century ago, FDTD-type techniques have been suc-
cessfully used to solve electromagnetic problems such as in wafer metrology [36–38], op-
tical fibers [39], radar-cross-section calculation [40, 41], various antennas [42–44], waveg-
uides [45, 46], microstrips [42], etc. The body of applications of the FDTD method is
so large, and it is still expanding into other non-electromagnetic areas such as acous-
tics [47–49], biology [50,51] and machine learning [52,53].

1.2.2 FIT

The finite integration technique (FIT), which was proposed by Weiland [54, 55], is
another popular time-domain method used in computational electromagnetics. Apart from
the fact that FDTD is based on the differential form of Maxwell’s equations, the FIT
discretizes the integral form of Maxwell’s equations.

In the spatial domain, FIT performs the discretization by a staggered grid, where the
original grid is coupled with another dual grid. In a case of dual orthogonal grid, FIT results
in a numerical scheme that is equivalent to the FDTD system [35]. A non-orthogonal
grid can also be used in FIT, which yields higher accuracy and extended flexibility on
complicated geometries [56]. FIT uses the leapfrog scheme or other second-order implicit
methods in the time domain. Together, the FIT method transforms Maxwell’s equations
into a dual grid cell complex, and the algebraic properties of the derived linear equations
based on FIT also lead to the conservation of energy and charge [57].

FIT shares many numerical characteristics with FDTD, such as simplicity in under-
standing and implementation. FIT also encounters similar difficulties that occur in FDTD.
Much like Yee’s algorithm in the FDTD method, FIT becomes inflexible when a Cartesian
grid is used to discretize a complex geometry, and also the CFL condition must be satisfied
in the standard explicit FIT method to generate a stable discretization scheme. Proper
absorbing boundary conditions (ABCs) and perfectly matched layers (PMLs) should also
be applied in FIT to model an unbounded domain.

Today, FIT serves as a basis for CST Studio Suite [58], a commercial simulation tool in
computational electromagnetics. Interesting applications of FIT in computational lithog-
raphy can be found in [59].

1.2.3 FEM

The initial work on the finite element method (FEM) can be traced back to A. Hren-
nikoff when solving differential equations in elasticity [60] and R. Courant when solving
variational problems in potential theory [61] in the earlier 1940s. Other pioneers of FEM
include J. Argyris in Germany, L. Oganesyan in USSR and K. Feng in China. The key idea
of FEM is to represent the solution with given basis functions and unknown coefficients on
small elements, thus converting a partial differential equation (PDE) problem into a set of
algebraic problems [35,62].
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In electrical engineering, FEM was first applied to solve a classical waveguide-mode
problem in 1969 [63]. Later on, this approach attracted a lot of attention and a significant
amount of effort was given on improving this approach. Nowadays, FEM has become a very
powerful numerical method in computational electromagnetics, with many applications
such as antenna radiation [64, 65], microwave engineering [66], optical waveguides [67, 68],
etc. Even though it is possible to use FEM to solve Maxwell’s equations in the time domain
[69,70], FEM is more widely used as a frequency-domain method to solve electromagnetic
problems.

One of the reasons that makes FEM widely used is its flexibility on problems with a
complex structure or with inhomogeneous media. Various geometrical elements have been
developed to discretize the computational domain, e.g. in 3D problems the right-angled
bar, skewed bar, tetrahedron, cylindrical shell, etc. are used [62]. There are two main
types of elements in FEM analysis: node-based elements and edge-based elements [71,72].
The traditional node-based elements are usually easier to implement, while the edge-based
elements model the electric and magnetic fields more accurately and result in sparser system
matrices [62]. Analogous to other PDE approach like FDTD, truncating the mesh correctly
on the boundary of the computational domain is a crucial part to improve the accuracy.
ABCs and PMLs are used to suppress wave reflections back into the computational domain.

A major difference between FDTD and FEM is that the former approximates the
differential operators while the latter approximates the functions or fields themselves. FEM
usually yields a sparse linear system, which can be solved efficiently with direct methods
(e.g., using H-matrices [73]) or iterative techniques (e.g., conjugate gradient method [74]).
Another difference is that, unlike the rectangular grids commonly used in the FDTD, more
flexible meshes can be used in FEM to conform with the object surface. Furthermore,
the adaptive mesh can be generated to refine the discretization locally and increase the
accuracy.

1.2.4 MoM

The method of moments (MoM), sometimes called the boundary element method
(BEM), is another widely used frequency domain approach in computational electromag-
netics. Unlike differential-form-based methods like FEM or FDTD, MoM is based on an
integral-representation form of Maxwell’s equations. The idea of MoM can be traced back
to Galerkin’s work in the 1920s and this method has arisen much attention after its for-
mulation was presented by Harrington in 1967 [75]. The MoM transforms the boundary
value problem (BVP) of Maxwell’s equations into a dense matrix equation, by handling the
integral representation of Maxwell’s equations with Green’s functions. MoM can be used to
solve both volume integral equations (VIEs) and surface integral equations (SIEs) [35]. In
case of a SIE for a perfectly conducting object, the integral equation can be the electric field
integral equation (EFIE), the magnetic field integral equation (MFIE), or the combined
field integral equation (CFIE). For homogeneous penetrable objects, various formulations
exist, among which the Müller [76] and Poggio-Miller-Chang-Harrington-Wu-Tsai (PM-
CHWT) [77–79] formulations are the most popular ones.
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At an abstract level, MoM can be summarized into the following steps. Firstly, the un-
known equation is represented by a summation of a finite set of weighted basis functions.
Commonly used basis functions include pulse functions, piecewise-linear or hat functions,
piecewise sinusoidal functions [35,80,81] for 1D cases, and the famous Rao–Wilton–Glisson
(RWG) basis function [82] for 2D surfaces. Secondly, the substitution of these approxima-
tions for the unknown function is performed in the integral equation, which incorporates a
Green function that is specific for the background medium and the boundary conditions.
After a testing procedure, we arrive at a set of linear equations or a matrix equation.
Thirdly, various numerical methods can be used to solve the matrix equation, including
direct methods such as LU factorization and Krylov-subspace iterative methods (e.g., con-
jugate gradient method [74], BI-CG-based methods [83–85] and the IDR(s) method [86]).

Since the 1960s, MoM has been developed further and has applied to wave scattering
and antenna radiation problems [35,87,88], and it is still one of the predominant numerical
methods in computational electromagnetics today. There is no ABCs or PMLs needed in
MoM, which makes it efficient to solve open-region electromagnetic problems. Furthermore,
the method of moments is much more efficient when it deals with an SIE for problems
involving piecewise homogeneous regions [35], since the number of unknowns from a surface
discretization is much less than its counterpart in a VIE. The capabilities of MoM have
been significantly extended by fast algorithms such as the fast multipole method (FMM)
[89,90] and the multilevel fast multipole algorithm (MLFMA) [91–93]. By using low-rank
approximations for the MoM matrix, FMM speeds up the computation of the matrix-
vector product (MVP), and MLFMA further reduces the computational complexity to
O(N logN). Another important development in MoM is the characteristic basis function
method (CBFM) [94], which can be highly parallelized and combined with MLFMA [95,96].

1.2.5 RCWA

The rigorous coupled-wave analysis (RCWA) is a Fourier space method for periodic
scatterers. RCWA is semi-analytical method which is based upon a mode expansion
method [97, 98]. The key idea of RCWA is to compute the mode propagation along the
longitudinal direction and expand the periodic relative permittivity function as well as the
electric and magnetic fields into a summation of harmonic waves in the transverse plane.
RCWA seeks a solution that satisfies Maxwell’s equations in the computational domain
and matches the boundary conditions at the interfaces in the transverse direction.

In [97], RCWA is shown to be inherently stable, via a criterion of energy conservation
and achieved convergence of the solution, with an accuracy that depends only on the
number of terms in the Fourier expansion. RCWA usually requires solving eigenvalue
problems along the vertical direction, and results in a linear system for each horizontal
interface and which can be solved directly, i.e., without using iterative methods.

RCWA was first invented to solve a planar-grating diffraction problem by Moharam
and Gaylord in 1981 [99], and it has been extended to analyze various transmission and
reflection grating diffraction problems, see e.g. [100–102]. RCWA has been shown very
suitable for solving lamellar metallic and dielectric gratings problems. However, RCWA
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handles the gratings whose boundaries are parallel to the longitudinal direction and the
transverse plane more efficiently than gratings with an arbitrary profile. For instance, when
the grating has a sinusoidal profile, RCWA with staircase approximation exhibits a slower
convergence as compared to the differential method [103,104].

1.3 Research challenges

In [24], a spatial spectral method was proposed to solve electromagnetic scattering
problems in a dielectric layered medium. The spatial spectral method is a frequency-domain
method based on a domain-integral equation. Furthermore, the spatial spectral method
is a hybrid method, where the Gabor transformation is used to perform discretization in
both the spatial domain and spectral domain.

The spatial spectral method has the following features:

• A Gabor-frame-based discretization is used to represent all involved functions in the
domain-integral equation, in the two directions perpendicular to the stratification of
the background medium, also known as the transverse plane. Due to the inherited
property of Gabor frame functions, a fast and exact transformation is established
for these functions between the spatial and spectral domains. In the direction of
the stratification, also known as the longitudinal direction, a set of piecewise linear
(PWL) functions is used as basis functions.

• A normal vector field (NVF) formulation is used in the field-material operator to
improve the system’s accuracy. Proposed by [105] for periodic problems formulated
in the spectral domain, the normal vector field formulation defines a multiplication
satisfying the Li factorization rules [106], which yields better accuracy. The spatial
spectral method also employs an NVF formulation [107], and improved accuracy has
been observed [108].

• An analytical expression for the Green function for a stratified medium exists only
in the spectral domain, which is the main reason to go to the spectral domain in this
spatial spectral solver, since the tedious Sommerfeld integrals to obtain the spatial-
domain Green function can be avoided. A special path in the spectral domain is
carefully chosen to avoid poles and branch cuts of the Green function along the
integration path [108–110].

• To improve computation speed, an alternative set of basis functions and a set of
Dirac-delta function are proposed for 3D problems. These functions yield an equidis-
tant list-based representation in both spatial and spectral domain. With this, the
multiplication operation becomes pointwise and an FFT-based Fourier transforma-
tion is developed [111].

The spatial spectral method has been successfully applied on multiple electromagnetic
problems. For 2D cases, this spatial spectral method was used to solve a problem with
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two bar-shaped scatterers in a layered medium and a grating coupler problem, in both
TE [109] and TM polarization [108]. For 3D cases, this spatial spectral method was applied
on a single scatterer with different shapes [110], and a large grating consisting of multi-
ple scatterers [110, 111]. Numerical experiments show that this spatial spectral method
yields good accuracy when compared with other numerical references, and it reaches an
O(N logN) complexity for the MVP in the sense of computation time. Specifically, the
large 3D grating problem in [110, 111] can be effectively solved using the spatial spectral
method on a regular computer, whereas the FEM-based JCMWave struggles to tackle such
a large grating problem with the same computational resources. Additionally, a recent de-
velopment [112] on the spatial spectral method in combination with analytical geometry
parametrization shows that accurate parameter reconstruction in inverse-scattering prob-
lems can be reached, owing to the use of continuous Gabor frames instead of local basis
functions on a mesh.

In modern optical scatterometry for wafer metrology, an accurate and efficient Maxwell
solver is expected to solve the following challenging scenarios in modern wafer metrology:
when a scatterer has a complex geometry, when a scatterer has high optical contrast, when
scatterers are spread out across the layered medium in the z direction, when scatterers are
distributed over a large-scale transverse domain, and when coupled to sensor modeling. The
previously mentioned spatial spectral method has shown strengths on solving scattering
problems of finite scatterers with a competitive computational complexity. Naturally, it is
beneficial to explore the limits of this spatial spectral method on more difficult problems
and test its performance on real industry-based problems. Therefore, the main goal of this
research is to extend the capability of the previously developed spatial spectral method to
a higher level. To be specific, this study focuses on solving the following problems.

1. Develop analytical methods with reduced computational cost to calculate Gabor
coefficients of a complex geometry accurately.

2. Expand the current spatial spectral solver’s capability to solve cases with higher
optical contrast and larger computational domain.

3. Test this method on real industry-driven applications.

Regarding Problem 1: since the spatial spectral solver is a Gabor-frame-based method,
Gabor coefficients of electric fields, contrast current density and contrast function must
be computed accurately. When the scatterer has a complex structure, heavy numerical
integration is involved since usually a special function is contained in the integrand that
is expensive to evaluate. Key difficulty in this problem is the development of alternative
analytical methods to compute Gabor coefficients. A qualified method should outperform
those conventional numerical-integration-based methods in both accuracy and computation
time.

Regarding Problem 2: in general, to make the spatial spectral method work on more
difficult cases, such as higher contrast scatterers and larger computational domain, im-
provements on two aspects should be considered. On one hand, the formulation of the
original spatial spectral system, such as the field-material interaction operator, should be
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tested and improved. On the other hand, more powerful iterative methods and precondi-
tioning techniques should be considered to accelerate the convergence rate when solving
the system iteratively.

Problem 3 concerns a set of application-driven problems. Potential industry-based
applications of the spatial spectral Maxwell solver include a wave-propagation problem in
an integrated computer generated waveguide hologram, a large-scale scattering problem of a
metalens, and a diffraction-based overlay (DBO) problem in optical metrology. Challenges
in this problem include the implementation of an inner-layered incident Gaussian beam
source, validation of the simulation results with numerical references. Insights obtained by
analyzing the solver’s performances on these real cases can help to understand this spatial
spectral method better and provide guidance for future improvements.

1.4 Outline of the thesis

This thesis is organized as follows.

In Chapter 2, we start the formulation from Maxwell’s equations and then state the
electromagnetic scattering problem in a layered medium. We then derive the electric field
(domain) integral equation based on the transmission-line equations and the Green function
in a layered medium. A summary of the spatial spectral method follows, where we focus on
two important aspects of this method: the NVF formulation and the Gabor frames. Last
but not least, we discuss how to solve the overall linear system efficiently through advanced
iterative methods such as BiCGstab(ℓ) and IDR(s), and preconditioning techniques.

In Chapter 3, we develop a method to numerically calculate the integrals involved in
computing Gabor coefficients of a characteristic function supported on a polygonal domain,
based on a Taylor series expansion and recurrence relations. We transform the double
integral into a sequence of line integrals containing the complex error function as part of
its integrand. Then we apply the Taylor series expansion of the complex error function
and derive a sequence of fundamental integrals. A second-order inhomogeneous difference
equation is derived, and we solve all the fundamental integrals by Olver’s algorithm. As an
improvement to this method, we introduce three requirements for this method to guarantee
accuracy.

Key disadvantages of the method from Chapter 3 are addressed and overcome in Chap-
ter 4. A rational expansion for the Faddeeva function given in [113] is employed, owing to
its global fast convergence on the whole complex plane. We re-formulate the fundamen-
tal integrals such that they contain the Faddeeva function in their integrands and apply
the rational expansions. Another set of second-order linear difference equations is then
derived and we solve the system again with Olver’s algorithm. This rational-expansion-
based method inherits the fast convergence property in [113] and therefore it significantly
outperforms direct numerical quadrature in terms of computation time while maintaining
accuracy.

In Chapter 5, a modified field-material interaction operator is introduced. Instead of
a direct multiplication in the spatial domain, the updated operator contains a pair of
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Fourier transformations (FTs) and a restriction operation in the spectral domain. We
explain why this pair of FTs is necessary for scattering problems with high contrast and
why the restriction operation in the spectral domain is crucial. Numerical experiments on
a high-contrast problem show that the 3D spatial spectral solver based on this modified
field-material interaction operator yields accurate results when compared with a FEM-
based reference.

To reduce the number of iterations used by the iterative method used to solve the
linear system of the spatial spectral method, we propose a normal-vector-field block-
diagonal(NVF-BD) preconditioner in Chapter 6, for both 2D TM and 3D cases. This
preconditioner is directly related to the normal vector field and it has a block-diagonal
structure. We show the preconditioned system has a clustered eigenvalue distribution
and therefore the preconditioned system has the potential to yield a faster convergence
rate of the iterative method. Three experiments with high-contrast scatterers, a negative-
permittivity scatterer, and a larger geometrical dimension are studied. Numerical evidence
reveals that the number of iterations can be significantly reduced by applying the NVF-BD
preconditioner.

Three applications of the improved spatial spectral solver are studied in Chapter 7. In
the first one, we simulate the scattering by a finite single-pad resist-only metrology target.
The second one is for an integrated computed generated waveguide hologram on a layered
medium with an inner-layer Gaussian-beam source. The third application is a metalens
scattering problem with plane-wave excitation.

Finally, we conclude this thesis in Chapter 8 by drawing overall conclusions concerning
the main results of this thesis and by discussing future research topics in relation to the
spatial spectral method.
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Chapter 2

Formulation

2.1 Maxwell’s equations

We start the formulation from Maxwell’s equations, which govern the behavior of the
electric and magnetic fields. Let x be the spatial position vector, t the time variable, E(x, t)
be the electric field, H(x, t) be the magnetic field, J (x, t) be the electric current density,
D(x, t) be the electric flux density, and B(x, t) be the magnetic flux density (or magnetic
induction). We assume the vectors E ,H,D,B are continuous and have continuous deriva-
tives, and vanish when t < 0. Then the classical differential form of Maxwell’s equations
is given by:

∇×H = J +
∂

∂t
D, (2.1)

∇× E = − ∂

∂t
B, (2.2)

∇ ·B = 0, (2.3)

∇ ·D = ϱ, (2.4)

where ϱ is the electric charge density. The above equations are often named after their
discoverers: Eq. (2.1) is called Ampère-Maxwell’s law, Eq. (2.2) is called Faraday’s law of
induction, Eq. (2.3) is called Gauss’s law for magnetic fields, and (2.4) is called Gauss’s
law for electric fields.

Although the divergence operator and the curl operator in Maxwell’s equations do not
rely on the choice of the coordinate system, here we focus on a right-handed Cartesian
coordinate system with x = (x, y, z) in 3D. By taking the divergence on both sides of
Eq. (2.1), we get the following equation of continuity:

∇ ·J +
∂

∂t
ϱ = 0, (2.5)
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which expresses the conservation of charge, i.e. the amount of electric current crossing the
boundary enclosing a finite and bounded volume is equal to the rate of decrease of the
electric charge inside the volume.

Throughout the thesis, we always use j (instead of i) to denote the imaginary unit,
and we define the following Fourier transformations between time domain and frequency
domain:

E(ω) = F [E(t)](ω) =
∫
R

E(t)e−jωtdt, (2.6a)

E(t) = F−1[E(ω)](t) =
1

2π

∫
R

E(ω)ejtωdω, (2.6b)

where ω ∈ R is the angular frequency. Note that Eq. (2.6a) denotes the 1D (forward)
Fourier transformation, Eq. (2.6b) the 1D inverse Fourier transformation, and the integral
is performed per component of the vector field E and E.

By applying the forward Fourier transformation (2.6a) to Eqs (2.1) and (2.2) we have
Maxwell’s equations in the frequency domain:

∇×H(x, ω) = J(x, ω) + jωD(x, ω), (2.7)

∇× E(x, ω) = −jωB(x, ω), (2.8)

where ω becomes a constant in the case of harmonic time dependence.
To make the system (2.1)-(2.4) uniquely solvable, we must supplement Maxwell’s equa-

tions by boundary conditions and constitutive relations concerning the properties of the
material media [114]. The constitutive relations are generally given by [115]

D = ε0E+P(E), (2.9a)

B = µ0 [H+M(H)] , (2.9b)

J = J(E), (2.9c)

where P is the polarization of the medium and M is the magnetization of the medium. In
general, the vector fields P and M depend on the electric field E and the magnetic field
H, and the dependency can be nonlinear. When the relations are linear, it makes sense to
define them in the frequency domain, but then the relations depend on the frequency in
case of dispersive media. The constants ε0 and µ0 are the permittivity and the permeability
of free space, respectively. The values of ε0 and µ0 are given by

µ0 =1.25663706212(19) · 10−6H/m (2.10)

ε0 =
1

c20µ0

≈ 8.8541878128(13) · 10−12 F/m, (2.11)

where c0 is the speed of the light in vacuum.
For most materials under weak-field conditions, the linear material responses of Eq. (2.9)

are used in electromagnetics:

D = εE = ε0εrE, (2.12a)

B = µH = µ0µrH, (2.12b)

J = σE, (2.12c)
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where ε, µ, and σ are the permittivity, the permeability, and the electric conductivity of
the medium, and they can depend on both on the position x and the angular frequency ω.
The εr is called the relative permittivity, and µr is called the relative permeability, of the
medium. In case of an anisotropic material, ε, µ, and σ are tensors that can be represented
by 3 × 3 matrix functions [114]. In case of isotropic material, ε, µ, and σ become scalar
functions. Furthermore, in the case of a single homogeneous isotropic material, ε, µ, σ
reduce to constants. In free space, the constitutive relations in Eq. (2.12) become

D = ε0E, (2.13a)

B = µ0H, (2.13b)

J = 0. (2.13c)

Concerning boundary conditions, the electromagnetic field quantities must satisfy radi-
ation conditions at spatial infinity and interface conditions between different media where
a material parameter shows discontinuity. The radiation conditions are often called Som-
merfeld’s radiation conditions [114], if they are stated based on electromagnetic potentials,
or Silver-Müller radiation conditions [116–118], if they are stated based on the electro-
magnetic fields. Regarding the boundary conditions at an interface, let ∂D be a smooth
interface between domain 1 and domain 2, and n be a normal vector pointing from domain
1 to domain 2. Then the following boundary conditions hold for the electromagnetic field
quantities when crossing the interface between two materials:

n× (H1 −H2) = Js, (2.14a)

n× (E1 − E2) = 0, (2.14b)

n · (B1 −B2) = 0, (2.14c)

n · (D1 −D2) = ρs, (2.14d)

where the subscripts 1 and 2 indicate the field in the corresponding domain, and Js and
ρs denote the electric surface current and surface charge densities, respectively, that are
supported on the interface only. The following Figure 2.1 shows two domains with different
material parameters and the corresponding normal vector n defined on the interface.

Figure 2.1: An example of two media separated by a curved interface.
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2.2 Domain integral equation for a layered medium

Based on Maxwell’s equations that we stated in Section 2.1, we now derive a domain
integral equation for the electromagnetic scattering problem in a layered medium.

2.2.1 Electromagnetic scattering problem in a layered medium

We describe the geometry of the dielectric layered medium and state the electromagnetic
scattering problem first. We set up a standard right-handed Cartesian coordinate system
and make the z-direction point downward1, as shown in Figure. 2.2. Consider a dielectric
layered medium with L layers, and the layered medium is enclosed between two half-
spaces. All layers are stacked along the z direction and separated by the interfaces at
z = z0, z1, . . . , zL−1, zL, with zl−1 > zl for l = 1, . . . , L. Let Vl = R × R × (zl−1, zl) be the
space of the l-th layer for 1 ≤ l ≤ L, V0 = R×R×(−∞, z0), VL+1 = R×R×(zL,∞) be the
two half-space, then clearly the closure of V0

⋃
V1 . . . VL

⋃
VL+1 is equal to R

3. We assume
that the background medium for each layer is homogeneous, isotropic, and nonmagnetic,
i.e. µr = 1 throughout. Denote the relative permittivity of the background medium in
layer l by εrb,l, then we can define the following background relative permittivity function
as

εrb(x) = εrb(z) =


εrb,0, if z ∈ (−∞, z0),

εrb,l, if z ∈ (zl−1, zl), l = 1, . . . , L,

εrb,L+1, if z ∈ (zl,∞).

, (2.15)

Note that εrb,n is a real constant for a lossless medium and becomes a complex constant,
with a negative imaginary part, for a lossy material. In Figure 2.2 we show an example of
a stratified background medium with L = 4, with scattering objects, in yellow, embedded
in layer 1.

Figure 2.2: An example of a layered medium with dielectric scatterers embedded in the
top layer.

1This is the coordinate system we use throughout this thesis unless stated otherwise.
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Scattering objects, which are made of a different material than the surrounding back-
ground medium, are assumed to occupy a finite domain D in one of the background layers,
i.e., D ⊂ Vl ⊂ R3 for some 1 ≤ l ≤ L. The relative permittivity of the scatterers is
denoted by εrs ∈ C and with this we can define a global relative permittivity function in
the presence of scatterers in a layered medium:

εr(x) =

{
εrb(z), if x ∈ R3\D,

εrs, if x ∈ D.
(2.16)

Clearly, εr(x) distinguishes from εrb(x) only within the scatterer domain D. To make the
following formulation convenient, we define a contrast function

χ(x) =
εr(x)− εrb(z)

εrb(z)
=

εr(x)

εrb(z)
− 1, x ∈ R3. (2.17)

As a consequence, the contrast function χ(x) is only supported on the domain D occupied
by the scatters.

The incident electric field Ei(x) plays an important role in electromagnetic scattering
problems. The incident field is an electromagnetic field that satisfies Maxwell’s equations
in the absence of the scatterers, i.e. for the situation where the permittivity is that of
the layered background medium everywhere. The incident electric field Ei(x) within the
layered medium can be calculated as in [10]. Various applications with plane waves prop-
agating along the z direction can be found in Chapter 6. In Section 7.3, we discuss a case
with a plane wave propagating from the bottom and traveling along the −z direction. In
Section 7.2, we simulate a scattering problem with a beam-type incident field traveling
along the x direction and within the layered medium. More cases with beam-type incident
fields are analyzed in Section 7.1.

Now we can state the electromagnetic scattering problem due to scatterers embedded
in the layered medium: given (1) the coordinate information, (2) the material properties
of the layered background medium and scatterers, and (3) the information of the incident
field, e.g. wavelength and incident angle, we should determine the total electric field, both
in near-field and far-field regions, accurately and efficiently.

2.2.2 Transmission-line equations

The linearity of Maxwell’s equations allows us to separate the electric and magnetic
fields according to their sources. Let the incident field be the field originating from a source
in the upper or lower half-space of the background medium (in the case of plane waves,
we consider the sources are at infinity), and the scattered fields be the fields caused by the
presence of the scattering objects from which the incident fields scatter, then we can write
the total fields as the sum of the incident fields and the scattered fields, i.e.

E = Ei + Es, (2.18a)

H = Hi +Hs, (2.18b)

17



where we use the superscript i to represent the incident fields and the superscript s to
represent the scattered fields. We also call E and H the total electric field and total
magnetic field, respectively.

Now we derive a domain integral equation for the electromagnetic scattering problem
in a layered medium. From Eq. (2.7), (2.8) and (2.12), the total electric field satisfies

∇×H(x) = J(x) + jωε0εr(x)E(x), (2.19a)

∇× E(x) = −jωµ0H(x), (2.19b)

where we assume µr ≡ 1, i.e., the layered medium and the scatterers are nonmagnetic.
We now consider two cases of the layered medium. First, we consider the case with just a

layered medium and the absence of dielectric scatterers, clearly J(x) ≡ 0 and εr(x) = εrb(z)
for all x ∈ R3. Given the incident electric field Ei(x), then Eq. (2.19) becomes

∇×Hi(x) = jωε0εrb(z)E
i(x), (2.20a)

∇× Ei(x) = −jωµ0H
i(x). (2.20b)

Second, we consider a layered medium with dielectric scatterers embedded in layer ℓ. In
this case, the total electric field E(x), for all x ∈ R3, satisfies

∇×H(x) = jωε0εrb(z)E(x) + jωε0εrb(z)χ(x)E(x), (2.21a)

∇× E(x) = −jωµ0H(x). (2.21b)

By substituting Eq. (2.20) in Eq. (2.21) and employing Eq. (2.18), we arrive at the differ-
ential equations that govern the scattered electric field Es:

∇×Hs(x) = jωε0εrb(z)E
s(x) + Jc(x), (2.22a)

∇× Es(x) = −jωµ0H
s(x), (2.22b)

where
Jc(x) = jωε0εrb,ℓχ(x)E(x), ∀x ∈ R3. (2.23)

Note that Jc(x) in Eq. (2.23) has the same units as the electric current density J(x), and
it vanishes outside D, owing to the contrast function χ(x). Therefore, we call Jc(x) the
contrast current density. Since there are no other current density sources, we drop the
superscript c from now on, to ease the notation. Eq. (2.23) is known as the field-material
interaction, which is essentially a constitutive relation between the scattered field and the
contrast current density. Eq. (2.22) can be rewritten in the following form:

∇×∇× Es(x)− k2
0εrb(z)E

s(x) = −jωµ0J(x), ∀x ∈ R3. (2.24)

A key step to solve the above system with a general inhomogeneous term J(x) is to
find a specific solution of Eq. (2.24) with the inhomogeneous term being the Dirac delta
function. This solution is called the Green function. In free space, the Green function
has a well-known analytical expression. For a layered medium, the Green function is only
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available in the spectral domain via an analytical expression [119]. Even though it is
possible to obtain a spatial-domain Green function via Sommerfeld integrals or Fourier
transformations [120, 121], the required calculations are usually tedious and sophisticated
due to the Green function’s singularities and oscillatory behavior in the spatial domain.
Therefore, it is advantageous to use the Green function in the spectral domain directly.

We introduce a pair of 2D Fourier transformations on the transverse plane denoted by
FT [·] and its inverse F−1

T [·]:

FT [f(xT )] ≡ f̂(kT ) =

∫
R2

f(xT )e
jkT ·xT dxT , (2.25a)

F−1
T [f̂(kT )] ≡ f(xT ) =

1

(2π)2

∫
R2

f̂(kT )e
−jxT ·kT dkT . (2.25b)

where we use xT = (x, y) and kT = (kx, ky) to represent the transverse vectors. Sub-
sequently, the scattered electric field Es(x, y, z), scattered magnetic field Hs(x, y, z) and
contrast current density J(x, y, z) can be represented by the following spectral representa-
tion:

Es(xT , z) =
1

(2π)2

∫
R2

es(kT , z) exp{−jxT · kT}dkT , (2.26)

Hs(xT , z) =
1

(2π)2

∫
R2

hs(kT , z) exp{−jxT · kT}dkT , (2.27)

J(xT , z) =
1

(2π)2

∫
R2

j(kT , z) exp{−jxT · kT}dkT , (2.28)

where kT is the transverse part of the wave vector of the incident field k, and the integral is
performed per Cartesian component. The spectral fields es(kT , z), h

s(kT , z), j(kT , z) are es-
sentially Fourier coefficients according to Eq. (2.25a), e.g., es(kT , z) = FT [E

s(xT , z)](kT , z).
Substituting the electric field Es(x) and the magnetic field Hs(x) in Eq. (2.22b) in their

spectral representations in Eq. (2.26) and (2.27), we have

∇× Es(x) =
1

(2π)2

∫
R2

∇×
{
es(kT , z) exp{−jxT · kT}

}
dkT

=
1

(2π)2

∫
R2

{
exp{−jxT · kT}∇ × es(kT , z)

+
(
∇ exp{−jxT · kT}

)
× es(kT , z)

}
dkT

=− jωµ0

(2π)2

∫
R2

hs(kT , z) exp{−jxT · kT}dkT

=− jωµ0H
s(x),

(2.29)

therefore the spectral-domain fields es(kT , z) and hs(kT , z) satisfy

−jkT × es(kT , z) + uz ×
∂

∂z
es(kT , z) = −jωµ0h

s(kT , z), (2.30)
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where the differential operator ∂
∂z

is performed per component.
Analogously, Eq. (2.22a) is reduced to:

−jkT × hs(kT , z) + uz ×
∂

∂z
hs(kT , z) = j(kT , z) + jωε0εrb(z)e

s(kT , z). (2.31)

To ease the subsequent derivation, we follow the analysis in [23,119,122] and introduce
a rotated coordinate system in the spectral domain. Let uk = kT/kT , where kT = ∥kT∥,
then the vectors uk, uz × uk and uz form another basis in the spectral domain R3.

Since each layer of the background medium is isotropic, the spectral representations
es(kT , z), h

s(kT , z) and j(kT , z) can be decomposed into their transverse parts and longi-
tudinal parts, based on the polarization states:

es(kT , z) =e∥(kT , z)uk + e⊥(kT , z)(uz × uk) + ez(kT , z)uz, (2.32)

hs(kT , z) =h⊥(kT , z)uk + h∥(kT , z)(uz × uk) + hz(kT , z)uz, (2.33)

j(kT , z) =j∥(kT , z)uk + j⊥(kT , z)(uz × uk) + jz(kT , z)uz, (2.34)

where we employ the same notations used in [23]: the subscripts ∥, ⊥ are used to denote
the parallel polarization and perpendicular polarization, respectively (or equivalently the
e-polarization and h-polarization in [122]). Note that the spectral-domain magnetic field
hs along the uk direction is h⊥ instead of h∥. The subscript z denotes the coefficient along
the longitudinal direction uz.

By substituting Eqs. (2.32)-(2.34) in Eqs. (2.30) and (2.31), we can derive the following
two sets of coupled ordinary differential equations (ODEs):

d

dz
e∥(kT , z) =

jγ(kT , z)
2

ωε0εrb(z)
h∥(kT , z) +

kT
ωε0εrb(z)

jz(kT , z), (2.35)

d

dz
h∥(kT , z) =− jωε0εrb(z)e∥(kT , z)− j∥(kT , z), (2.36)

and

d

dz
e⊥(kT , z) =jωµ0h⊥(kT , z), (2.37)

d

dz
h⊥(kT , z) =− jγ(kT , z)

2

ωµ0

e⊥(kT , z) + j⊥(kT , z), (2.38)

where γ(kT , z)
2 = k2

T −ω2µ0ε0εrb(z), and γ(kT , z) is determined according to the standard
branch-cut definition, i.e., the condition −π

2
< arg{γ(kT , z)} ≤ π

2
is satisfied. Eqs (2.35)-

(2.36) and Eqs (2.37)-(2.38) are two first-order linear ordinary differential systems, and
they are usually called transmission-line equations. Furthermore, the transmission-line
equations are supplemented with the longitudinal components of the electric and magnetic
fields:

ez =
−kTh∥(kT , z) + j[jz(kT , z)]

ωε0εrb(z)
, (2.39)

hz =
kT e⊥(kT , z)

ωµ0

. (2.40)
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Hence the original vector problem in Eq. (2.30) and (2.31) is reduced to the two scalar
transmission-line problems in Eqs (2.35)-(2.38). In other words, for a given spectral con-
trast current density j(kT , z) in Eq. (2.34), we can get the solution es(kT , z) and hs(kT , z)
by solving the transmission-line equations in Eqs (2.35)-(2.38) together with Eqs (2.39)
and (2.40).

2.2.3 Green function in a homogeneous medium

Following the analysis in [119, 122], now we define the dyadic Green function denoted
by Gh(kT , z, z

′) ∈ C3×3. Consider the following three contrast-current density functions

jp(kT , z, z
′) = δ(z − z′)up, (2.41)

where up ∈ {uk,uz ×uk,uz}, and δ(z) is the Dirac delta function. Note that jp represents
an oriented impulsive source at z = z′ with unit amplitude along the up direction. We then
define G(kT , z, z

′) · up as the solution es(kT , z) of Eqs. (2.35)-(2.38), due to the specified
source term jp(kT , z, z

′). Therefore, for a general contrast current density j(kT , z) in a
homogeneous medium, the solution of the system (2.30) and (2.31) can be written as

es(kT , z) = e(kT , z)− ei(kT , z) =

∫
R

Gh(kT , z, z
′) · j(kT , z

′)dz′. (2.42)

The dyadic Green function Gh(kT , z, z
′) in a homogeneous medium with permittivity εrb,ℓ

is given by [122]:

Gh(kT , z, z
′) =

(
−kTkT − jkTuz

d

dz
− juzkT

d

dz
+ uzuz

d2

dz2

)
exp(−γ|z − z′|)
2jγωε0εrb,ℓ

, (2.43)

where the factor exp(−γ|z − z′|) is used to propagate the field over a distance |z − z′|,
i.e. from the z coordinate of the source (z′) to the z coordinate of the observation point
(z). Note that the Green function given in Eq. (2.43) also satisfies the radiation conditions
when |z| → ∞. Furthermore, the full expansion of Eq. (2.43) yields 9 scalar terms in the
form of a 3×3 matrix function, and the full expression of the 9 scalar terms of Gh(kT , z, z

′)
can be found in [24] or [119].

We conclude this section by giving the solution of Eq. (2.24) for a homogeneous back-
ground medium:

Es(x) =E(x)− Ei(x)

=F−1
T

{∫
R

Gh(kT , z, z
′) · FT

{
J(xT , z

′)
}
dz′
}
.

(2.44)

2.2.4 Green function in a layered medium

We now consider the Green function in a layered medium and derive the corresponding
domain integral equation. In each layer of a layered medium, the overall scattered electric
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field contains not only the contribution from the homogeneous medium of the pertaining
layer (which has been studied in the previous subsection), but also the reflections from the
material interfaces above and below that layer. The complete spectral scattered electric
field es(kT , z) in a particular layer of the layered medium can be decomposed as

es(kT , z) = es,h(kT , z) + es,u(kT , z) + es,d(kT , z), (2.45)

where es,h(kT , z) represents the homogeneous scattered electric field and can be written as

es,h(kT , z) =

∫
R

Gh(kT , z, z
′) · j(kT , z

′)dz′, (2.46)

where Gh(kT , z, z
′) is a 3×3 matrix function pertaining to the Green function in a homoge-

neous medium equal to that of the layer where both z and z′ are confined to. Furthermore,
es,u(kT , z) in Eq. (2.45) represents the reflected electric field propagating upward from
the bottom interface, and es,d(kT , z) in Eq. (2.45) represents the reflected electric field
propagating downward from the upper interface2.

The reflections es,u(kT , z) and es,d(kT , z) rely on the propagation of homogeneous scat-
tered electric field es,h(kT , z) and corresponding effective reflection coefficients [110], de-
noted by Ru,u, Ru,d, Rd,u, Rd,d. These effective reflection coefficients can be computed based
on the effective coefficients for e-polarization [108] and h-polarization [109]. More details
about effective reflection coefficients of layer interfaces are given in [115]. If we assume
all scatterers are bounded to the interval [za, zb] in the longitudinal direction, then the
reflected fields es,u and es,d can be written as

es,d(kT , z) =Rd,u(kT ) · es,h(kT , za)e
−γ(zb−z) +Rd,d(kT ) · es,h(kT , zb)e

−γ(zb−z)

=

∫
R

{
Rd,u(kT )G

h(kT , za, z
′)e−γ(zb−z)

+Rd,d(kT )G
h(kT , zb, z

′)e−γ(zb−z)
}
· j(kT , z

′)dz′

≜
∫
R

Gd(kT , z, z
′) · j(kT , z

′)dz′,

(2.47)

and

es,u(kT , z) =Ru,u(kT ) · es,h(kT , za)e
−γ(z−za) +Ru,d(kT ) · es,h(kT , zb)e

−γ(z−za)

=

∫
R

{
Ru,u(kT )G

h(kT , za, z
′)e−γ(z−za)

+Ru,d(kT )G
h(kT , zb, z

′)e−γ(z−za)
}
· j(kT , z

′)dz′

≜
∫
R

Gu(kT , z, z
′) · j(kT , z

′)dz′,

(2.48)

2The bottom interface means the interface closer to the bottom of Fig. 2.2 and the upper interface
means the interface closer to the top of Fig. 2.2, with respect to the orientation on the page and the reading
direction. Similarly, upward means the direction toward negative z, and downward means the direction
toward positive z.
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where we introduce two 3 × 3 matrix functions Gu(kT , z, z
′) and Gd(kT , z, z

′) to ease fol-
lowing formulation.

After combining Eqs (2.46), (2.47) and (2.48), we can rewrite Eq. (2.45) as

es(kT , z) =

∫
R

{
Gh(kT , z, z

′) +Gu(kT , z, z
′) +Gd(kT , z, z

′)
}
· j(kT , z

′)dz′

≜
∫
R

G(kT , z, z
′) · j(kT , z

′)dz′,

(2.49)

where the Green function G(kT , z, z
′) for a layered medium is defined in the last step.

The Green function G(kT , z, z
′) is a superposition of the matrix functions Gh, Gu and

Gd, and it computes the complete scattered electric field within a layered medium from
the contrast current source j(kT , z). Note that the discretization of the Green function
G(kT , z, z

′) along the longitudinal direction can be done in the spatial domain completely.
In practice, the convolution regarding z and z′ in Eq. (2.49) can be computed efficiently in
a recursive manner. Furthermore, the multiplication of the Green function and the contrast
current density in the spectral domain can be done pointwise [111].

We conclude this section by giving the solution of Eq. (2.24) for a layered background
medium:

Es(x) =E(x)− Ei(x)

=F−1
T

{∫
R

G(kT , z, z
′) · FT

{
J(xT , z

′)
}
dz′
}
.

(2.50)

Eq. (2.50) is the domain integral equation in a layered medium.

2.3 The spatial spectral method

We arrive at a position to recall the integral equation in the spatial spectral method
developed in [24]. The overall domain integral equation for the scattering problem in a
layered medium can be written as

Ei(x) =E(x)−F−1
T

{∫
R

G(kT , z, z
′) · FT

{
J(xT , z

′)
}
dz′
}

(2.51)

J(x) =jωε0εrb(z)χ(x)E(x), (2.52)

where the Green operator G is defined in (2.49), FT and F−1
T form a pair of 2D Fourier

transformations with respect to the definition in (2.25a) and (2.25b), the background rel-
ative permittivity function εrb(z) and the contrast function χ(x) are given in (2.15) and
(2.17), respectively.

There are several aspects that make the spatial spectral method unique. First of all, the
total electric field E and the contrast current J are represented as linear transformations on
an auxiliary field F. Based on a local normal vector formulation, F(x) is continuous almost
everywhere and it is constructed to improve the accuracy not only near the field-material
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interface but on the whole computational domain. We will discuss the normal vector field
formulation and the auxiliary field F in Section 2.3.1.

Secondly, a Gabor frame is used as the discretization in the transverse plane, which
results in an efficient transformation between the spatial domain and the spectral domain.
Furthermore, a set of basis functions associated with Gabor frames is developed for 3D
problems, which yields a fast multiplication operation and an FFT-based Fourier transfor-
mation [111]. The Gabor-frame-based discretization of the spatial spectral method yields
an O(N logN) computational efficiency with N being the number of unknowns, see various
applications in [108–110]. In Section 2.3.2 we recall some fundamentals of Gabor analysis.

Thirdly, a complex integration path in the spectral domain is chosen carefully to avoid
poles and branch cuts in the spectral complex plane of the Green operator. Here we do not
recall the sophisticated discretization of the Green operator but refer interested readers
to [109,110].

2.3.1 Normal vector field formulation

For spectral expansion methods [97,98,123] pertaining to scattering by periodic struc-
tures, a Fourier series expansion is used to represent the electric field, electric flux density,
and current density. A spatial product of two functions (e.g., in the field-material interac-
tion Eq. (2.52)) is commonly required to be performed in the spectral domain. In other
words, we need to be able to compute the Fourier coefficients of the product function from
the Fourier coefficients of the given functions that form the product. The framework to
compute these coefficients is referred to as the Fourier factorization rules. When the given
functions do not have concurrent discontinuities, Laurent’s rule states that the Fourier coef-
ficients of the product function are well approximated by a discrete convolution. However,
when the two functions have concurrent discontinuities (e.g., both χ(x) and E in Eq. (2.52)
possess a discontinuity when crossing the interfaces of the scatterer), Laurent’s rule leads
to poor convergence of the resulting Fourier expansion of the product function [124,125].

A remedy for this poor convergence is the inverse rule of factorization, which was first
empirically discovered by Granet, and independently by Lalanne and Morris for metallic
grating problems in TM polarization for scattering by periodic objects [125, 126]. Later
on, Li systematically developed and formulated the factorization rules for the products of
discontinuous periodic functions in a more general case [106] and those rules are known
as the Li factorization rules today, which serve as a framework to compute the Fourier
coefficients of E and J when a discontinuous material property is being multiplied.

From the Fourier factorization rules given above, the normal vector field is then intro-
duced by assembling the continuous components of E and D into an auxiliary field F [105],
such that the auxiliary field F is continuous when crossing the interface in the transverse
plane. This formulation has been modified and improved for several computational frame-
works [103,107,123,127]. Following the definitions of projection operators in [107], for any
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v ∈ C3 there are projection operators Pn and PT constructed as follows

Pnv = (N · v)N, (2.53)

PTv = (T1 · v)T1 + (T2 · v)T2, (2.54)

where the normal vector field N(x) is normal to every material interface, and the two
tangential vector fields T1(x), T2(x) are tangential to every material interface [105], almost
everywhere in the computational domain. All vector fields N,T1,T2 are defined on the
whole computational domain according to the geometry of the configuration. Furthermore,
Pn + PT = I, where I is the identity operator in C3, and PTPn = PnPT = 0. Note that
PT can be rewritten as I −Pn, which avoids the need to construct the vector fields T1(x)
and T2(x).

Now an auxiliary field F is constructed based on the projection operators defined in
(2.53),

F = PT · E+
1

ε0εrb(x)
Pn ·D, (2.55)

where 1/(ε0εrb) is one of the possible scaling factors given in [107]. The auxiliary field F is
essentially a mix of the continuous parts of E and D, therefore it is continuous throughout.

Following the analysis given in [24, 107], the electric field E and the contrast current
density J can be represented by the auxiliary field F together with the operators Cε and
χCε through

E = Cε · F =

(
PT +

1

ε0εrb(1 + χ)
Pn

)
· F, (2.56)

J = χCε · F = jωε0εrb

(
χPT +

χ

ε0εrb(1 + χ)
Pn

)
· F, (2.57)

where the operators Cε and χCε are essentially 3× 3 matrix functions.
By substituting E and J in Eq. (2.51) and (2.52) in (2.56) and (2.57), we obtain the

electric field integral equation (EFIE) of the spatial spectral method with the normal vector
field formulation:

Ei(x) = Cε(x) · F(x)

−F−1
T

{∫
R

G(kT , z, z
′) · FT

{
χCε(xT , z

′) · F(xT , z
′)
}
dz′
}
.

(2.58)

Note that the auxiliary field F(x) is transformed to the contrast current density J(x) by
the operator χCε. Therefore, the integration interval along the longitudinal direction is
reduced to [za, zb] as defined just above Eq. (2.47), where the scatterers are bounded in z
direction.

2.3.2 Discretization based on Gabor frames

To make a model in an analytical form applicable in practice, a proper discretization
scheme is usually required to take advantage of computers. Successful examples of such dis-
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cretization schemes in computational electromagnetics have been discussed in Section 1.2.
Here we continue on the discretization of the EFIE (2.58) in the spatial spectral method.

From Eq. (2.58), it is clear that only the spatial domain is involved along the z direction,
while in the x and y directions all fields and the Green function need to be represented in
both the spatial domain and the spectral domain. Piecewise-linear (PWL) functions have
been shown to be effective along the z direction in many cases [123, 128], and they are
also used as basis functions along the z direction in the spatial spectral method [108–110].
Here we do not go into the details of the PWL functions, but refer the interested readers
to [24]. The discretization in the transverse directions in the spatial spectral method
is based on Gabor frames. Following [129, 130], we introduce the general notations of
Gabor analysis in L2(Rd), i.e. the space of Lebesgue square-integrable functions on Rd,
see e.g. [131, Chapter 4], and briefly explain how Gabor frames are used to discretize the
EFIE in Eq. (2.58).

Given x, τ , ξ ∈ Rd, we define the translation operator Tτ and the modulation operator
Mξ for a function f(x) by

Tτf(x) =f(x− τ ), (2.59)

Mξf(x) =e2πjξ·xf(x), (2.60)

respectively. Translation and modulation operators play a key role in Gabor analysis. Let
Λ be a separable lattice in R2d that takes the form

Λ = αZd × βZd, (2.61)

where α, β > 0 are called lattice parameters. A Gabor system Gs of a window function
g ∈ L2(Rd)\{0} and lattice parameters α, β > 0 is defined as

Gs(g, α, β) = {MβnTαmg}, m,n ∈ Zd. (2.62)

Note that the integer-valued m and n represent the spatial shift index and the frequency
modulation index, respectively. The Gabor system Gs(g, α, β) is called a Gabor frame
or a Weyl-Heisenberg frame, if there exist positive constants A and B such that for all
f ∈ L2(Rd),

A∥f∥2 ≤
∑

m,n∈Zd

|⟨f,MβnTαmg⟩L2|2 ≤ B∥f∥2. (2.63)

The associated Gabor frame operator S mapping from L2(Rd) to L2(Rd) is defined as

Sf =
∑

m,n∈Zd

⟨f,MβnTαmg⟩L2MβnTαmg, (2.64)

and S is bounded and invertible. When the window function g is chosen as a normalized
Gaussian function, the Gabor system constitutes a frame iff αβ < 1, and this case is referred
to as oversampling. In practice, the parameters α and β are often chosen equally and
their product as the ratio of two integers, for computational reasons. If the oversampling
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parameters α = β =
√

q/p, for some integers q < p, are too small, i.e, α, β are close to
0, then a very large number of Gabor coefficients is required, which is inefficient. If the
oversampling parameters α = β are too large, i.e., α, β are close to 1, then a situation called
critical sampling is approached, where αβ = 1. The Balian-Low Theorem [129] states that
the Gabor system Gs(g, α, β) with critical sampling cannot even constitute a frame.

In the spatial spectral method, the following two-dimensional version of a normalized
Gaussian function is used as the Gabor frame window function for the discretization in x
and y directions

g(x, y) = 2
1
2 exp

(
−π

x2

T 2
x

− π
y2

T 2
y

)
, (2.65)

where Tx and Ty denote the Gabor window lengths in the spatial domain. Further, we define
Kx = 2π/Tx and Ky = 2π/Ty as the spectral-domain window lengths. The associated
Gabor frame is defined based on the above translation and modulation operations, i.e.

gm,n(x, y) = g(x− αxmxTx, y − αymyTy) exp (jβxnxKxx+ jβynyKyy) , (2.66)

where the integer-valued m = (mx,my) and n = (nx, ny) represent the spatial shift index
and the frequency modulation index in the x and y directions, respectively.

One of the fundamental results in Gabor analysis, see e.g. [129, 132], states that for a
given Gabor frame Gs(g, α, β) a dual window function η ∈ L2(Rd) exists and an induced
dual Gabor frame Gs(η, α, β). Furthermore, every f(x) ∈ L2(Rd) has the following Gabor-
frame expansion

f(x) =
∑

m,n∈Zd

⟨f,MβnTαmη(x)⟩L2MβnTαmg(x)

=
∑

m,n∈Zd

fm,ngm,n(x),
(2.67)

where gm,n(x) is a Gabor frame function and fm,n is a corresponding Gabor coefficient.
Note that the convergence of (2.67) is in the norm ∥ · ∥2 of L2(Rd) and the convergence
is unconditional [129,132]. The Gabor coefficient fm,n is computed based on the following
Gabor transformation

fm,n = ⟨f,MβnTαmη(x)⟩L2 =

∫
Rd

f(x)η∗m,n(x)dx, (2.68)

where ηm,n(x) is called the dual frame function. The dual window function η(x) in
Eq. (2.65) and (2.66) is not unique and all dual window functions η(x) belong to an
affine subspace of L2(Rd), based on a canonical dual window function [129]. The canon-
ical dual window function is defined as η◦ = S−1g and it yields a canonical dual frame
Gs(S−1g, α, β). Several methods of approximating the inverse Gabor frame operator S−1,
which is the key to computing the canonical dual window function, are reviewed in [133].

In the spatial spectral method, the dual window function η(x, y) is computed based
on the canonical dual window function that involves the generalized pseudo inverse of the
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frame operator, see [132] or [134], where the Zak transform is used as the main tool. The
dual frame function is then defined based on the dual window function by

ηm,n(x, y) = η(x− αxmxTx, y − αymyTy) exp (jβxnxKxx+ jβynyKyy) . (2.69)

The corresponding Gabor-frame expansion and Gabor transformation used in the spatial
spectral method become

f(x, y) =
∑

m,n∈Z2

fm,ngm,n(x, y), (2.70)

fm,n =

∫
R2

f(x, y)η∗m,n(x, y)dxdy. (2.71)

Now we consider the Fourier transform of the spatial Gabor frame window function
g(x, y) in Eq. (2.65) according to Eq. (2.25a). We get

ĝ(kx, ky) = 2
1
2TxTy exp

(
−π

k2
x

K2
x

− π
k2
y

K2
y

)
. (2.72)

We then form the following Gabor system by translation and modulation operations and
arrive at

ĝm,n(kx, ky) = ĝ(kx − βxmxKx, ky − βymyKy) exp (−jαxnxTxkx − jαynyTyky) . (2.73)

One can readily verify that ĝm,n forms a Gabor frame as well, as long as the condition in
Eq. (2.63) is fulfilled. We call Eq. (2.73) the Gabor frame in the spectral domain. Therefore,
every f̂(kx, ky) ∈ L2(R2) has the following Gabor frame expansion in the spectral domain

f̂(kx, ky) =
∑

m,n∈Z2

f̂m,nĝm,n(kx, ky), (2.74)

f̂m,n =

∫
R2

f̂(kx, ky)η̂
∗
m,n(kx, ky)dkxdky, (2.75)

where η̂m,n(kx, ky) is the spectral dual frame.
An important property of the Gabor-frame expansion is that, given a Gabor-frame

expansion of a function f(x, y) through Eq. (2.70), i.e. all Gabor coefficients fm,n are

known, we can easily obtain the spectral Gabor-frame expansion for f̂(kx, ky), through the
following algebraic operations on the Gabor coefficients:

f̂m,n = fn,m exp
{
− 2πj(αxβxmxnx + αyβymyny)

}
. (2.76)

Eq. (2.76) yields significant advantages in practice, since it essentially establishes an effi-
cient transformation between the spatial domain and the spectral domain.

The Gabor-frame expansion and Gabor transformation in Eq. (2.70) and (2.71) play a
key role in the spatial spectral method [24]. When the expansion in the z direction is fixed to

28



the PWL discretization, all constants, vector fields, and matrix functions in the EFIE (2.58)
are represented in the transverse plane by Gabor frames according to Eq. (2.70). Their
counterparts in the spectral domain are computed efficiently based on the relation of the
spatial Gabor coefficients and spectral Gabor coefficients given in Eq. (2.76). Furthermore,
a commonly used choice for the oversampling parameters is αx = αy = βx = βy =

√
2/3,

since it has been shown to be efficient as a trade-off between oversampling and the width
of the dual window function η(x, y) in the spatial spectral electromagnetic solver [24].

2.4 Iterative methods and preconditioning

For practical implementation, the discrete Gabor system in Eq. (2.70) and (2.71) must
be restricted to finite dimensions. Assume the translation index m = (mx,my) and the
modulation index n = (nx, ny) are restricted to

−Mx ≤ mx ≤ Mx, −My ≤ my ≤ My,

−Nx ≤ nx ≤ Nx, −Ny ≤ ny ≤ Ny.

for some Mx,My, Nx, Ny ∈ N+, and we also assume that the number of PWL functions
used in z-direction discretization is Nz ∈ N+. Then the main EFIE with normal vector
field formulation in Eq. (2.23) can be represented by the following linear system:

(C −G ·M) · u = f , (2.77)

where C,M ∈ CN×N are the matrix representations of the operators Cε and χCε in
Eq. (2.56) and (2.57), respectively. The matrix G ∈ CN×N is the matrix representation of
the Green operator in combination with a pair of Fourier transformations in Eq. (2.58),
and · is the standard operation for matrix-vector-product (MVP). The inhomogeneous
term f ∈ CN represents the discretized incident field Ei, and u ∈ CN contains the un-
known Gabor coefficients of the auxiliary field F. Note that N represents the number of
unknowns and it can be calculated via the formula

N = 3 ·Nz · (2Mx + 1) · (2My + 1) · (2Nx + 1) · (2Ny + 1), (2.78)

where 3 denotes the three vector-field components along the x, y, z directions.
There is a unique solution u of the linear system (2.77) if system matrix A = C −GM

is nonsingular, and
u = A−1 · f = (C −GM)−1 · f . (2.79)

The electric field E(x) can be reconstructed from the solution u or the auxiliary field F by
applying the operator Cε. Theoretically, the solution of the linear system Eq. (2.77) can
be computed by direct methods such as Gaussian elimination. However, for a large linear
system (e.g., the total number of unknowns in the applications in Chapter 7 can reach a level
of 108), storing and processing the system matrix is then computationally expensive, if not
impossible. An iterative method is a widely used alternative strategy to direct methods
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to solve a large linear system, by taking an initial vector and generating a sequence of
subsequent approximating vectors that approach the true solution. During the procedure,
only O(N) coefficients need to be stored instead of the full system matrix. Additionally, for
the spatial spectral method each MVP can be performed with an operational complexity
of O(N logN).

2.4.1 Iterative methods

Consider a general linear system Au = f . An iterative method starts from an ini-
tial guess u0 and computes a sequence of approximations u1,u2, . . . that are intended to
approach the true solution u, and terminates when the residual rn = A · un − f satisfies
∥rn∥/∥f∥ ≤ εtol, for some given relative error tolerance εtol. Among all iterative methods to
solve large linear systems, Krylov subspace methods are used extensively [135]. A Krylov
subspace method iteratively computes un, such that un−u0 belongs to the following Krylov
subspace

Kn(A, r0) = span(r0, Ar0, A
2r0, . . . , A

n−1r0), (2.80)

for all n ∈ N+, and r0 = f − A · u0 is the initial residual.

When the system matrix A is real-symmetric and positive definite, a very popular
Krylov subspace method is the conjugate gradient (CG) method [74]. By using a short
recurrence, the CG method minimizes the matrix norm of the residual error over the Krylov
subspace. The CG method is extremely simple and efficient, since usually only a small
number of vectors is required to be stored, owing to the short recurrence. Unfortunately,
it is impossible to extend the same efficiency of the CG method to a general system matrix
A [136]. If the system matrix A is real-symmetric but indefinite, the minimum residual
method (MINRES) has been shown to be effective since for each iteration only one MVP
of A and seven vector operations are required [137].

When the system matrix A is nonsymmetric, there are three dominant types of Krylov
methods. The first one is the generalized minimum residual method (GMRES) [138], which
is a generalization of CG and has become a popular method. The GMRES requires an
increasing amount of computational resources since a new orthogonal basis vector for the
Krylov subspace has to be computed and stored at each iteration. This property implies
that GMRES cannot be practically useful in case of poor convergence, i.e. when a large
number of iterations yields only little improvement on the residual. A restarting technique
can reduce the computational burden of GMRES, but this also significantly slows the
convergence [139].

The Bi-CG method [140] is another generalization of the CG method for a general
matrix A. The Bi-CG method is equivalent to CG in the symmetric case, but for a non-
symmetric A it requires the MVP with AH , which makes it almost twice as expensive as CG.
Furthermore, in practice the matrix AH may not even be available, especially if the system
A is implemented implicitly. The Bi-CG method is based on the nonsymmetric Lanczos
method [141]. It was succeeded by its generalizations: Bi-CGSTAB [83], BiCGstab2 [84]
and BiCGstab(ℓ) [85].
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Another dominant type of Krylov method for nonsymmetric matrix A is the induced di-
mension reduction (IDR) method [142], followed by an improved and generalized algorithm
IDR(s) [86] with a parameter s. IDR(1) is mathematically equivalent to BI-CGSTAB, and
outperforms BI-CGSTAB when s > 1. IDR(s) has also been shown competitive with or
superior to most BI-CG-based methods [86].

Back to the linear system (2.77) of the spatial spectral solver, the matrices C,G,M
are implemented implicitly, and the system matrix A = C − GM is nonsymmetric and
indefinite. In [24], BiCGstab(ℓ) is used widely. Throughout this thesis, we take IDR(s) as
the main iterative method.

2.4.2 Preconditioning

The efficiency of a computational method is usually measured by its accuracy and
computation time. For iterative methods, the total computation time is determined by
the total number of iterations required to reach a certain residual-error level and the
computational cost per iteration. We hope for a small number of iterations, or in other
words, a fast rate of convergence, with a relatively low cost per iteration. For a symmetric
system matrix A, the rate of convergence for CG and MINRES can be guaranteed, since
there exist descriptive convergence bounds, which are only relying on the distribution of
the eigenvalues of A, see e.g. [135]. Therefore, given a residual tolerance, the number of
iterations can be estimated and bounded. However, for a general matrix A, the convergence
theory is very limited. For GMRES, Bi-CG-type methods, and IDR(s), there is not even
a descriptive way to guarantee the convergence rate or to bound the number of iterations
needed a priori. Estimating the rate of convergence of these methods for a general system
matrix A is still an open theoretical problem.

Preconditioning is usually a crucial component in reducing the number of iterations
and it is also widely used with Krylov subspace iterative methods. The essence of precon-
ditioning can be understood as transforming the following original linear system

Au = f , (2.81)

into a preconditioned system
PAu = P f , (2.82)

for some matrix P , called a preconditioner. Note that the preconditioned system (2.82)
shares the same solution with the original system (2.81) when P is nonsingular, and the
system matrix in (2.82) becomes PA.

A good preconditioner P should always satisfy the following conditions:

• The number of iterations of the preconditioned system (2.82) is significantly reduced.

• It should not be expensive to construct P and execute the related MVP with P .

We consider two limiting cases. If P = I, i.e. P is the identity matrix, then the second
condition above is satisfied, but the number of iterations will not be reduced at all. If
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P = A−1, then above the first condition above is satisfied, since only one iteration will be
required, i.e. u = P f = A−1f , but computing this preconditioner itself is as expensive as
solving the original system. Therefore, finding a good preconditioner is a trade-off and its
complexity is always somewhere between I and A−1.

In electromagnetic scattering problems, a large number of iterations is often observed in
cases with high-contrast, negative-valued permittivities, or large scatterers. In Chapter 6
we propose a preconditioner for the spatial spectral method and show how this precondi-
tioner reduces the number of iterations.

32



Chapter 3

Gabor coefficients computation of 2D
indicator functions supported on
polygonal domain based on the
Taylor expansion of the complex
error function.1

3.1 Computation of Gabor coefficients for objects with

polygonal cross section

The Gabor transformation connects the spectral and spatial domain in a recently devel-
oped spatial spectral Maxwell solver. A key step involves computing the Gabor coefficients
of the characteristic function of dielectric scattering objects. Therefore, computing Ga-
bor coefficients accurately and efficiently is significant in the further development of this
Maxwell solver. We discuss a method to numerically calculate the integrals involved in
computing the Gabor coefficients, based on Gauss’s theorem and recurrence relations.

3.1.1 Introduction

In optical scatterometry and metrology for the production of integrated circuits, a fast
and reliable Maxwell solver is key to reconstruct the geometry parameters of metrology
targets on the wafer. This is because the key geometrical details of metrology targets that
are relevant for process control are much smaller than the wavelength of the light that
illuminates the target. The tendency in the semiconductor industry is to shrink the area
occupied by the targets, which implies that the finiteness of the target becomes observable
and the periodicity assumption of the target no longer suffices. This has led us to develop
a Maxwell solver based on a volume integral equation that is capable of simulating finitely

1Section 3.1 was published as [143] and Section 3.2 was published as [144]
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sized dielectric targets in a layered medium [24]. In this Maxwell solver, the fields are
expressed in terms of Gabor frames, that allow for efficient transformations between the
(continuous) spatial and (continuous) spectral domains. The spatial domain is employed
for the field-material interactions and the spectral domain for an efficient convolution
with the layered-medium Green function. The Gabor frame discretization is an effective
tool in this Maxwell solver to transform between spatial and spectral domain. However,
as a consequence, the efficient and accurate calculation of Gabor coefficients to describe
scattering objects in this representation plays a key role in this process [24].

The 3D full-wave Maxwell solver employs a Gabor-frame discretization in the two direc-
tions parallel to the layer interfaces. A two-dimensional (2D) cross-section of a scattering
object embedded in a multi-layered medium can be approximated adequately by a collection
of polygons. To compute Gabor coefficients of geometrical objects that represent dielectric
scatterers embedded in the layered medium, Gabor transformations of 2D characteristic
functions, which represent the 2D cross-sections of scattering objects, are required. These
functions are equal to one on the support of a polygon and zero outside. One 2D integral
is required for each Gabor coefficient in the geometrical representation of each polygon
that represents part of a scattering object. Often, a large number of polygons is required,
which leads to a vast number of two-dimensional integrals to be computed. In most cases
the analytical solution of these integrals is hard to get due to the complicated structure of
integrand and the support of the integration domain. Various numerical quadrature meth-
ods can be applied to acquire numerical approximations, such as quadrature rules based
on interpolating functions. In real applications, these double integrals can occur billions of
times, which brings a heavy computational burden to the preprocessing step of this type of
Maxwell solver. Therefore, even a small improvement in this preprocessing step can bring
a lot of benefits.

Inspired by the idea exploited in the local normal-vector field formulation in [107], we
then transform a double integral into a sequence of line integrals by solving two ordinary
differential equations and applying Gauss’s theorem. Rather than computing the double
integral, these line integrals can either be computed numerically via various quadrature
rules or be developed further analytically in the form of recurrence relations. We discuss
several examples and perform benchmarking to show how these two methods compare in
terms of accuracy, numerical stability, and computation time.

In Section II, we give the statement of the problem and define the pertaining integrals
needed to compute the Gabor coefficients of characteristic functions. Section III discusses
a way to calculate the 1D line integrals based on a recurrence relation. In Section IV, we
give two numerical examples to show how the methods work on rectangular and triangular
cross sections. Finally, we draw conclusions in Section V.
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3.1.2 Statement of the problem

3.1.2.1 2D Gabor transform

For any f(x, y) ∈ L2(R2), we have its Gabor frame expansion

f(x, y) =
∑
m,n

fm,ngm,n(x, y), (3.1)

in which gm,n(x, y) is a Gabor frame function and fm,n is a Gabor coefficient, and m =
(mx,my) and n = (nx, ny).

The Gabor frame functions (2D) are defined as:

gm,n(x, y) = gmx,nx(x, αxX, βxKx)gmy ,ny(y, αyY, βyKy), (3.2)

where
gm,n(x,X,K) = gX(x−mX)ejnKx, (3.3)

where gX(x) = 21/4 exp[−π(x/X)2] is Gaussian window function. Further, mx,my, nx, ny ∈
Z, αx, αy, βx, βy are oversampling parameters (αxβx = αyβy = q/p), and X, Y are spacing
parameters of the window functions of the Gabor frame that satisfy X = 2π/Kx and
Y = 2π/Ky.

Gabor coefficients are defined via the 2D Gabor transformation:

fm,n =

∫∫
R2

f(x, y)η∗m,n(x, y)dxdy, (3.4)

where ηm,n(x, y) is the 2D dual window function, obtained by multiplying its counterparts
in one-dimensional (1D). From [134], the 1D dual window can be represented again by the
original Gabor frame expansion:

ηm,n(x) = η(x−mαX)ejnβKx

=
∑
l,k

(
γl,kgX(x− (m+ l)αX)e−jkmαβKX+j(k+n)βKx

)
, (3.5)

where γl,k are Gabor coefficients. With this representation, the integral in (3.4) can be
rewritten as a linear combination of integrals of the form:

Im+l,n+k =

∫∫
R2

f(x, y) exp

{
−π
[ x
X

− (mx + lx)αx

]2}
· exp {−j(kx + nx)βxKxx}

· exp
{
−π
[ y
Y

− (my + ly)αy

]2}
· exp {−j(ny + ky)βyKyy} dxdy.

(3.6)

This type of integral has to be computed many times.
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We are interested in the Gabor coefficients for the characteristic function of a scattering
object that coincides with a 2D domain D. The characteristic function s(x, y) is then given
by:

s(x, y) =

{
1, (x, y) ∈ D

0, (x, y) ∈ R2\D
, (3.7)

and the Gabor coefficients of this characteristic function can then be expressed in terms of
the integrals defined in Eq. (3.6), where the domain of integration can now be restricted
to the support D of s(x, y).

3.1.2.2 A special case where analytical solution is available

In the case of a rectangular object that is aligned with the x and y direction, i.e., when
integral domain D in (3.7) is an aligned rectangle, the double integral Im+l,n+k defined in
(3.12) is analytically integrable because the integrand is separable in its x and y arguments.

Im+l,n+k =

∫ x2

x1

e−π[ x
X
−αx(mx+lx)]2e−j(nx+kx)βxKxxdx

·
∫ y2

y1

e−π[ y
Y
−αy(my+ly)]2e−j(ny+ky)βyKyydy

=P1 · P2 · P3,

(3.8)

where

P1 =
XY

4
e−πβx(nx+kx)[βx(nx+kx)+2iαx(mx+lx)]

e−πβy(ny+ky)[βy(ny+ky)+2iαy(my+ly)],
(3.9)

P2 = erf

[
−
√
π

X
(αxX(mx + lx)− x1) + iβx

√
π(nx + kx)

]
− erf

[
−
√
π

X
(αxX(mx + lx)− x2) + iβx

√
π(nx + kx)

]
,

(3.10)

and

P3 = erf

[
−
√
π

Y
(αyY (my + ly)− y1) + iβy

√
π(ny + ky)

]
− erf

[
−
√
π

Y
(αyY (my + ly)− y2) + iβy

√
π(ny + ky)

]
.

(3.11)

When the integration domainD is not a rectangle, the double integral Im+l,n+k in (3.12)
cannot be decomposed into a product of two integrals to obtain an analytical solution.
Therefore, numerical integration is required to evaluate Im+l,n+k.
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3.1.2.3 Gauss’s theorem

Based on Gauss’s theorem we can rewrite the integral type Im+l,n+k as a contour integral
over functions P (x, y) and Q(x, y), owing to the finite support of s(x, y), i.e.

Im+l,n+k =

∫∫
D

∂

∂x
P (x, y) +

∂

∂y
Q(x, y)dxdy

=

∮
∂D

−Q(x, y)dx+ P (x, y)dy.

(3.12)

Functions P (x, y) and Q(x, y) are given by

P (x, y) =h1(y,p2) · erf[h2(x,p3)],

Q(x, y) =h1(x,p1) · erf[h2(y,p4)],
(3.13)

where

h1(x,p1) =
Y

4
exp

{
− π

X2
(x− αx(mx + l1)X)2

− πβ2
y(ny + ky)

2 − j
(
βxKx(nx + kx)x

+ 2παyβy(my + ly)(ny + ky)
)}

,

(3.14)

h1(y,p2) =
X

4
exp

{
− π

Y 2
(y − αy(my + ly)Y )2

− πβ2
x(nx + kx)

2 − j
(
βyKy(ny + ky)y

+ 2παxβx(mx + lx)(nx + kx)
)}

,

(3.15)

h2(x,p3) =
√
π
( x

X
− αx(mx + lx)

)
+ j

√
πβx(nx + kx),

(3.16)

h2(y,p4) =
√
π
( y

Y
− αy(my + ly)

)
+ j

√
πβy(ny + ky),

(3.17)

and vectors

p1 = (X, Y, αx, αy,mx + lx, nx + kx,my + ly, ny + ky),

p2 = (Y,X, αy, αx,my + ly, ny + ky,mx + lx, nx + kx),

p3 = (X,αx,mx + lx, nx + kx),

p4 = (Y, αy,my + ly, ny + ky),

contain independent parameters. Essentially, P (x, y) and Q(x, y) are the same function
with different variable and parameter notations.
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3.1.2.4 Parametrization for polygonal object

Suppose the scattering object is an M -sided polygon, and along the i-th edge of the
polygon (for i = 1, 2, . . . ,M counterclockwise), we apply the following parametrization:{

xi(t)
X

= ci1t+ di1,
yi(t)
Y

= ci2t+ di2,
(3.18)

where t ∈ [0, 1). After substituting (3.18) in (3.12) we get

Im+l,n+k =
M∑
i=1

[I(ci) + I(di)], (3.19)

and the representations of I(ci) and I(d)i are:

I(ci) = ci0

∫ 1

0

exp
(
−ci1t

2 + ci2t
)
erf(ci3t+ ci4)dt, (3.20)

I(di) = di0

∫ 1

0

exp
(
−di1t

2 + di2t
)
erf(di3t+ di4)dt, (3.21)

where vectors

ci = (ci0, c
i
1, c

i
2, c

i
3, c

i
3),

di = (di0, d
i
1, d

i
2, d

i
3, d

i
3),

denote the boundary-related parameters, which satisfy ci0, d
i
0, c

i
2, d

i
2, c

i
4, d

i
4 ∈ C, ci1, di1, ci3, di3 ∈

R, ci1, d
i
1 ≥ 0.

3.1.3 Recurrence relation and Olver’s algorithm

We are not aware of any method to find a general solution for (3.20) analytically,
due to the product of the Gaussian function and the complex error function erf(z) in the
integrand. Numerical integration is possible but slow. To avoid a numerical sampling of
the integral, we use a Taylor series expansion to replace the complex error function erf(z).

3.1.3.1 Taylor series expansion

Notice that the product of a Gaussian function and polynomial is analytically integrable,
so we consider the Taylor series of a complex error function first.

We have

erf(z) =
2√
π

∞∑
n=0

(−1)n

(2n+ 1)n!
z2n+1, (3.22)

and for ∀z ∈ C this Taylor series converges to erf(z) since it is an entire function [145].
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In practice we need to truncate this infinite series after a finite number of terms to
approximate erf(z). Hence for a given N ∈ N, we can represent erf(z) as:

erf(z) =
2√
π

[
N−1∑
n=0

(−1)nz2n+1

(2n+ 1)n!
+

∞∑
n=N

(−1)nz2n+1

(2n+ 1)n!

]
≜P2N(z) +R2N(z).

(3.23)

Notice that P2N(z) is actually equivalent to the first 2N items in the original Taylor series
of erf(z) in (3.22). For a given ε > 0, this truncation number N can be determined
correspondingly.

3.1.3.2 Recurrence relation

Recalling (3.20) and omitting the boundary notation i, we have:

Iα = c0

∫ 1

0

e−c1t2+c2terf(c3t+ c4)dt, (3.24)

where c0, c2, c4 ∈ C, c1, c3 ∈ R, c1 ≥ 0. Together with (3.23) we have

Iβ =c0

∫ 1

0

e−c1x2+c2xP2N(c3x+ c4)dx

=
2c0√
π

N−1∑
n=0

(−1)n

(2n+ 1)n!

∫ 1

0

e−c1x2+c2x(c3x+ c4)
2n+1dx

=
2c0e

c7

√
πc3

N−1∑
n=0

(−1)n

(2n+ 1)n!

∫ c3+c4

c4

e−c5y2+c6yy2n+1dy,

(3.25)

where y = c3x+ c4 and when c3 ̸= 0 we have

c5 =
c1
c23
, (3.26)

c6 =
2c1c4
c23

+
c2
c3
, (3.27)

c7 = −c1c
2
4

c23
− c2c4

c3
. (3.28)

We note that if c3 = 0, the integral in (3.24) has a closed-form expression, see Sec-
tion 3.1.4.1. For fixed c1, c2, the difference between Iα and Iβ is also bounded, and therefore
Iβ is an approximation of original integral Iα.

To ease the following analysis, we define the sequence

pm =
1− (−1)m

2
=

{
1, m is odd,

0, m is even.
(3.29)
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Therefore, if we let m = 2n+ 1, then n = 1
2
(m− 1), 0 ≤ n ≤ N − 1, and we have:

Iβ =
2c0e

c7

√
πc3

2N−1∑
m=0

(−1)
m−1

2

m(m−1
2

)!
pm

∫ c3+c4

c4

e−c5y2+c6yymdy

=
2c0e

c7

√
πc3

2N−1∑
m=0

(−1)
m−1

2 [1− (−1)m]

2m(m−1
2

)!

·
∫ c3+c4

c4

e−c5y2+c6yymdy

≜
2c0e

c7

√
πc3

2N−1∑
m=0

dmIm,

(3.30)

where

dm =
(−1)

m−1
2

m
· [1− (−1)m]

2
, (3.31)

Im =
1

(m−1
2

)!

∫ c3+c4

c4

e−c5y2+c6yymdy. (3.32)

With integration by parts applied to (3.32), we find that the sequence Im satisfies the
following second-order inhomogeneous linear recurrence relation:

Im−1 +
c6(

m−1
2

)!

2(m
2
)!

Im − c5Im+1 =
1

2(m
2
)!
(γm − ξm), (3.33)

where

γm = c0e
−c5(c3+c4)2+c6(c3+c4)(c3 + c4)

m, (3.34)

ξm = c0e
−c5c24+c6c4cm4 . (3.35)

Once (3.33) is solved with two initial conditions, we obtain an approximation of Iα
without numerical quadrature.

3.1.3.3 Olver’s algorithm

It is well known that computing the minimal solution of a second-order difference equa-
tion, or three-term recurrence relation, directly from given initial values y0, y1 is an unstable
procedure, see e.g. [146, 147]. F. W. J. Olver proposed a classic and stable algorithm for
second-order inhomogeneous linear difference equations [148] in this form:

aryr−1 − bryr + cryr+1 = dr,

y0 = k, y1 = m,
(3.36)

where ar, br, cr, dr ∈ C are given sequences, r ∈ N and k, m ∈ C are given constants.
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The main idea of Olver’s algorithm is to transfer the initial value problem to an equiv-
alent boundary value problem (BVP). To do this, Olver abandoned the initial condition
y1 = m and replaced it by another boundary condition yN = p, which is obtained based
on the asymptotic property of the minimal solution yr, for sufficiently large N . In most
cases (also in our case later on), yN = 0. The solution of the well-conditioned BVP is

y
(N)
r , Olver also proved that y

(N)
r convergences to the required solution yr of the original

initial value problem as N → ∞. This linear BVP can be solved efficiently by either Gaus-
sian elimination or LU decomposition [149]. Therefore, for sufficient large N , y

(N)
r will

be an approximate solution of the difference equation (3.36). Olver’s algorithm can also
prevent unstable error propagation when solving higher-order inhomogeneous difference
equations [150].

Back to problem (3.33) and comparing with (3.36), we have

arIr−1 − brIr + crIr+1 = dr, (3.37)

where

ar = 1, br = −
c6(

m−1
2

)!

2(m
2
)!

, (3.38)

cr = −c5, dr =
1

2(m
2
)!
(γm − ξm). (3.39)

Hence the system (3.33) can be solved stably via Olver’s algorithm.

3.1.4 Numerical experiments

Generally, every M -sided polygon can be decomposed into a combination of rectangles
and right-angled triangles, so in this section we try to reconstruct these two fundamental
objects with the method proposed in the preceding sections.

3.1.4.1 Rectangular object

In the first experiment we consider a support function s1(x, y) defined on a rectangular
domain with coordinates A(−1

2
,−1

2
), B(1

2
,−1

2
), C(1

2
, 1
2
), D(−1

2
, 1
2
).

The Gabor parameters are given by: −5 ≤ mi, ni, ki, li ≤ 5 and mi, ni, ki, li ∈ Z where
i = x, y.

X = Y = 1, Kx = Ky = 2π. (3.40)

αx = αy = βx = βy =

√
2

3
. (3.41)

From Section 3.1.2.2 we recall that an analytical solution exists for (3.12) that can be
used as a reference to check the method of the recurrence relation for the calculation of
the Gabor coefficients.
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Based on the parametrization step (3.18) of this rectangular object’s boundary, it is
easy to notice that along each side we have either c0 = 0 or c3 = 0 in (3.20). Iα vanishes
when c0 = 0, and when c3 = 0, Iα is integrable:

Iα =c0

∫ 1

0

e−c1t2+c2terf(c4)dt

=
c0
√
π

2
√
c1
erf(c4)e

c22
4c1

[
erf(

2c1 − c2
2
√
c1

) + erf(
c2

2
√
c1
)

]
.

(3.42)

Therefore, in the rectangular case the Gabor coefficients calculated based on the line inte-
gration are the same as the analytical solutions for the double integral. Figure 3.1 shows
the reconstructed characteristic function defined on the rectangular domain.

Figure 3.1: Reconstructed characteristic function for a rectangular object, via computed
Gabor coefficients. The original characteristic function f1(x, y) was supported on a rect-
angle with vertex coordinates A(−1

2
,−1

2
), B(1

2
,−1

2
), C(1

2
, 1
2
), D(−1

2
, 1
2
). Oversampling pa-

rameter q = 2, p = 3, spacing of the window function X = Y = 1, spacial shift
−5 ≤ mx,my ≤ 5, spectral shift −5 ≤ nx, ny ≤ 5.

3.1.4.2 Triangular object

In the second experiment we consider a characteristic function f2(x, y) defined on a
triangular domain with vertex coordinates A(−1

2
,−1

2
), B(1

2
,−1

2
), C(1

2
, 1
2
). We keep the

same Gabor parameter setting as in the previous experiment.

In this triangular case the double integral in (3.6) is not analytically integrable and
the line integral (3.12) along the sloped boundary is non-trivial. Therefore, this is a good
benchmark to test the proposed method in a non-trivial case. In this experiment we use
direct numerical quadrature on (3.12) as a reference. Figure 3.2 shows the reconstructed
characteristic function for the triangular object.
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Figure 3.2: Reconstructed characteristic function for a triangular object based on recur-
rence relation and Olver’s algorithm. The original characteristic function f2(x, y) was
supported on a triangle with vertex coordinates A(−1

2
,−1

2
), B(1

2
,−1

2
), C(1

2
, 1
2
). Same pa-

rameters were used as in Fig. 3.1.

The original support function defined on a triangular domain can be reconstructed
successfully with the proposed method based on the recurrence relation and Olver’s algo-
rithm. However, 4.66% of the total calculated Gabor coefficients have an absolute error
larger than 10−4 compared to the numerical reference.

There are two reasons why the proposed approximate integral Iβ has large errors at
some points.

Firstly, the real part and imaginary part of erf(z) itself can get very large when z is far
from the origin and complex-valued. Convergence of the Taylor series around the origin
is poor compared to the increase of erf(z). Therefore, thousands of terms are required to
reach the qualified approximation, which results in difficulties when solving the recurrence
relation. However, to make sure there exists a recurrence relation in the truncated series,
one must use the Taylor series around the origin to approximate erf(z), since there is no
known explicit representation for n-th derivative of erf(z). Even so, at some points the
error can still be large along some directions, for example in the current case for the triangle
it can be larger than 10−4.

Secondly, the absolute value of the integrals Im can be very large before vanishing
eventually, which means a high working precision is required to represent them accurately
in the propagation through the backward substitution process in the recurrence relation.
Furthermore, the coefficient sequence dm in (3.31) is alternating. Hence, one must set a
high working precision to avoid loss of significant figures and due to cancellation errors. A
high working precision results in an increase in computation time.

Figure 3.3 displays the absolute value of Im with parameter setting: mx + lx = 1,my +
ly = 21, nx + kx = 18, ny + ky = 19, and the maximum of |Im| reaches a level of 10360.
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Figure 3.3: In this specific example, we have N = 1250, i.e., 2500 integrals Im were calcu-
lated based on Olver’s algorithm to approximate erf(z). The error in the approximation is
1.10652× 10−129.

Based on this sequence Im, we obtained an approximate integral Iβ and therefore one
Gabor coefficient. Note that a total of 1166886 integrals were computed to reconstruct
Figure 3.2 and we obtain a difference Iα − Iβ = −1.09719× 10−129 − 1.4339× 10−130j.

3.1.5 Conclusion and outlook

The complex error function erf(z) and the Faddeeva function (also known as the plasma
dispersion function) w(z) = e−z2erfc(−iz) are connected by elementary relations [151], and
both of them can be evaluated in different ways such as a Padé rational approximation [152],
a rational Chebyshev approximation by Schonfelder [153], continued fractions [154] and also
what we used here Taylor series expansion [145]. In this paper we selected a Taylor-series
expansion to approximate the complex error function erf(z), and then approximated the
target integral Iα that occurs in the calculation of Gabor coefficients. The main reason
for choosing a Taylor-series expansion is that it can yield a second-order inhomogeneous
recurrence relation, which is beneficial in computing Gabor coefficients because calculat-
ing abundant integrals is not necessary anymore, as long as this recurrence relation can
be solved stably with two initial conditions. Olver’s algorithm was used to complete this
means for computing Gabor coefficients. As applications for this proposed method, two
characteristic functions defined on rectangular domain and triangular domain were recon-
structed. In the triangular case, we observed that 4.66% of the Gabor coefficients have an
error larger than the set threshold of 10−4 and two reasons were given for this outcome.

In future research, other expansions are expected to better approximate the complex
error function within the integral Iα, with which the new basis function sets either yield
much faster convergence (and therefore coefficients would vanish dramatically and the
approximated integral can be evaluated even term by term), or relatively faster convergence
but at meantime still generate a recurrence relation.
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3.2 A note on Gabor coefficient computing with Tay-

lor series expansion

We present an improvement on a previously proposed method for computing Gabor
coefficients of characteristic functions with polygonal cross sections, based on a Taylor
series expansion and Olver’s algorithm. Several requirements are proposed to make the
method more robust. Numerical evidence is given to show a convergent solution can be
obtained based on a sufficiently high truncation number and working precision.

3.2.1 Introduction

In [143] a numerical method to compute Gabor coefficients for objects with polygonal
cross sections was proposed. The key components of this method are: (1) a 1D-integral
formulation derived from a double integral based on Gauss’s theorem, (2) a Taylor series
expansion of the complex error function, (3) derivation of a second-order inhomogeneous
difference equation and (4) solution with Olver’s algorithm. The main benefit of this
method is that it transforms an integration problem into an evaluation problem, where
the former can be computationally expensive when the complex error function is contained
in the integrand. However, as observed in the second numerical experiment in [143], this
method failed on some points.

We explain why this method failed on those points previously and we remedy the
problem by introducing several requirements for this method. Furthermore, we show how
this method can yield a convergent solution with these requirements.

3.2.2 Requirements of the Taylor-Olver method

Gabor coefficients for characteristic functions supported on a polygonal domain can be
computed using the following fundamental integrals [143]:

I =

∫ 1

0

e−c1x
2+c2xerf(c3x+ c4)dx, (3.43)

where c1, c2, c3, c4 are given constants. Then we use a truncated Taylor series to approxi-
mate the complex error function:

erf(z) ≈ 2√
π

N−1∑
n=0

(−1)nz2n+1

(2n+ 1)n!
, (3.44)
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which thereafter yields an approximated integral Ĩ:

Ĩ =
2ec7√
πc3

2N−1∑
m=0

smIm, (3.45)

where

sm =

{
(−1)

m−1
2

m
, m is odd,

0, m is even,

Im =
1

(m−1
2

)!

∫ c3+c4

c4

e−c5y2+c6yymdy,

and c5, c6, c7 are given constants. Note that only the odd-indexed Im contribute to the final
result. By applying integration by parts, one obtains the following second-order difference
equation:

Im−1 − bmIm − c5Im+1 = dm,∀m ≥ 1 (3.46)

where

bm = −
c6(

m−1
2 )!

2(m2 )!
,

dm = p(m, c3 + c4)− p(m, c4),

and p(m, y) = 1
2(m/2)!

e−c5y2+c6yym. The half-integer factorials in bm are calculated with
the Γ function. We use Olver’s algorithm to solve this equation and assemble Im together
to get Gabor coefficients [143].

The following requirements emphasize three crucial points to obtain correct Gabor
coefficients when using the proposed Taylor-Olver method.
Requirement 1: The truncation number N of the Taylor series in Eq. (3.44) must be
sufficient. An accurate approximation of the partial sum in Eq. (3.44) to the complex
error function erf(z) is a necessary condition to obtain an accurate approximated integral
Ĩ in Eq. (3.45). The truncation number N can be determined based on either desired
accuracy [145] or numerical evidence.
Requirement 2: The working precision w, which indicates how many significant digits
should be maintained in internal computations, must be high enough to guarantee the final
accuracy. This is because:

• the integrals Im can reach an extremely high value before vanishing eventually, e.g.,
the Im in Fig. 3 of [143] reaches a level of 10360, where the Gabor coefficient itself is
a small number.

• the coefficient sequence sm in (3.45) is alternating, therefore large cancellation errors
occur if the working precision is not high enough.

• the truncated tridiagonal system is sensitive to dm, which means the first term I0 of
the difference equation must be calculated with high accuracy.
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Numerical evidence shows that a working precision w = N yields stable results.
Requirement 3: Truncation number N ′ in Olver’s algorithm should be large enough.
Olver’s algorithm transforms an semi-infinite matrix system, which is corresponding to the
difference equation, into a truncated tridiagonal system. Olver provided a way to automat-
ically determine the truncation number based on the desired accuracy [148]. Numerical
evidence shows that a truncation number of the tridiagonal system N ′ = 1.5N yields a
stable result.

3.2.3 Numerical Results

To demonstrate the importance of above requirements, we recalculated one of the failed
integrals in the second experiment in [143] for c1 = 3.14, c2 = 49.3 − 5.1i, c3 = −1.8 and
c4 = 15.4 − 14.5i in Eq. (3.43). One can observe the range of erf(c3x + c4) for x ∈ [0, 1]
in Fig. 3.4. A large truncation number N is needed for the Taylor series to converge due
to a relatively large distance from the origin, which therefore makes this I one of the most
difficult ones in the triangle example to compute with the Taylor-Olver method.

Figure 3.4: Magnitude of erf(z) on a log scale. The black dots represent all c4 occurring
in Simulation 2 in [143]

Following above three requirements, we obtained the result Ĩ = −1.87× 1027 + 1.72×
1026i. Compared with a high accuracy numerical reference, this solution has absolute
error 1.52 × 10−95 and relative error 8.09 × 10−123. The truncation number of the Taylor
series is N = 2800, the working precision used is w = 2800, the dimension of the truncated
tridiagonal system in Olver’s algorithm is N ′ = 4200. Fig. 3.5 shows the computed integral
sequence Im from Eq. (3.45), compared with the numerical reference.
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Figure 3.5: Solution of Eq. (3.46) based on Olver’s algorithm.

Fig. 3.6 shows a convergent solution obtained by increasing the truncation number N
of the Taylor series, as along as the proposed requirements are satisfied. This result also
implies that an insufficient truncation number of the Taylor series can be catastrophic.

Figure 3.6: Convergence obtained by increasing the truncation number of the Taylor series
in Eq. (3.44).

Overall, we proposed three requirements to make the previous Taylor-Olver method
more robust. In the future, optimization of the working precision should be considered to
reduce the computation time.

Acknowledgment

This work was funded by NWO-TTW as part of the HTSM program under project
number 16184.

48



Chapter 4

Gabor coefficients computation of 2D
indicator functions supported on
polygonal domain based on a rational
expansion of the Faddeeva function1

We propose a method to compute Gabor coefficients of a two-dimensional (2D) indi-
cator function supported on a polygonal domain by means of rational expansion of the
Faddeeva function and by solving second-order linear difference equations. This method
has the following three attractive features: (1) the problem of computing Gabor coefficients
is formulated as the calculation of a sequence of integrals with a uniform structure, (2)
a rational expansion based on fast Fourier transform (FFT) is used to approximate the
Faddeeva function on the entire complex plane, (3) second-order inhomogeneous linear dif-
ference equations are derived for previous integrals and they are solved stably with Olver’s
algorithm. Numerical quadrature to compute Gabor coefficients is avoided. Numerical
examples show this rational-expansion-based method significantly outperforms numerical
quadrature in terms of computation time while maintaining accuracy.

4.1 Introduction

Gabor analysis has become an active research area with its foundation widely developed
[129,132,133], since Dennis Gabor suggested to use translated and modulated elementary
functions to analyze a signal in 1946 [156]. Later developed Gabor frames play an important
role in time-frequency analysis owing to their convenient series expansions to represent a
function in L2(Rd), based on a decomposition into translated and modulated versions of
a window function. As applications, Gabor frames have been successfully used in e.g.
image processing [130, 157, 158], signal and wireless communications [159–161], Gaussian
beams [162, 163], antenna analysis and design [164–166]. The related Wilson basis, which

1This chapter was published as [155]
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can be constructed from a tight Gabor frame with redundancy 2, has also been used to
solve electromagnetic scattering problems, reflection-transmission problems, and optical
fiber connection problems [167–169].

Gabor frame theory has been applied in computational electromagnetics as well. This
work is intended for the Gabor-frame-based spatial spectral Maxwell solver for layered
media of [24, 108–110], where a Gabor frame discretization is used to constitute efficient
transformations between the (continuous) spatial and (continuous) spectral domains. To
model an electromagnetic scattering problem accurately, the contrast function, the contrast
current density and the electric fields must be represented well by Gabor frames. On the
transverse plane, the contrast function is described by a 2D indicator function. When
the scatterer has a polygonal cross section, efficient and accurate calculation of Gabor
coefficients of a 2D indicator function supported on this polygonal domain is therefore
important. A Gabor coefficient of a 2D indicator function supported on a polygonal domain
is defined as a 2D integral, but it can be transferred into a summation of 1D integrals that
contain an exponential function and the complex error function in the integrand, see [143,
170]. It is well known that evaluation of integrals with complicated integrands or weakly
singular kernels, for instance poorly behaved special functions, is an important and difficult
computational problem [171,172]. For the integrals containing the complex error function
inside, there is no closed form available in most cases and numerical integration techniques
are therefore required, e.g., Gauss–Legendre quadrature is shown as an efficient numerical
method in [170]. Computing integrals of this specific type accurately and efficiently is
crucial to reduce the associated computational burden. Nevertheless, we intend to further
develop methods to analytically simplify and ease the computational procedure in the
calculation of Gabor coefficients.

In [143], the authors derived second-order difference equations for these integrals based
on the Taylor-series expansion of the complex error function as shown in [173]. Most
numerical integration can be avoided once the difference equations are solved by Olver’s
algorithm. On the other hand, there is a remaining issue that the Taylor series expansion
requires thousands of polynomial terms to reach the desired accuracy in certain regions of
the complex plane, which takes this approach far away from practical usefulness. Later on
in [144], three requirements were proposed to improve this Taylor-Olver method and nu-
merical evidence showed that a convergent solution can be obtained based on a sufficiently
high truncation number and working precision. However, this method still requires too
much computation time due to the slow convergence of the Taylor-series expansion of the
complex error function. Hence, we are seeking a better expansion that can yield not only
a difference equation, but also exhibits a fast convergence to the complex error function,
the Faddeeva function, or other members of the same family of special functions.

The elementary approximation of the complex error function or the Faddeeva function
is a well-studied research area. When the argument of these functions becomes complex-
valued, there exist several classes of algorithms to evaluate these functions to high preci-
sion, such as a Padé approximation [152,174], methods based on the repeated trapezoidal
rule [175], a Chebyshev approximation [153], continued fractions [151, 154], and rational
approximations [113, 176]. Among these approximations, the three rational expansions
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proposed in [113] provide high-accuracy approximations to the Faddeeva function on the
entire first quadrant of the complex plane, with only a small number of terms. Further-
more, the coefficients of these rational expansions can be computed once and for all by a
single FFT. The rapid convergence of these rational expansions and their implementation
advantages are especially interesting to us and also motivate the current work on Gabor
coefficient computation for 2D indicator functions of polygonal support.

Based on one of the rational expansions to the Faddeeva function in [113], we propose a
method to compute Gabor coefficients of a 2D indicator function supported on a polygonal
domain. First of all, the problem of computing Gabor coefficients is transformed into
a formulation that relies on a sequence of integrals with a uniform structure. Secondly,
the rational expansion is used to approximate the Faddeeva function in the integrand on
the entire complex plane. Then we derive second-order inhomogeneous linear difference
equations and solve the sequence of integrals stably with Olver’s algorithm [148, 177].
With this rational-expansion-based method, a fixed small number of function evaluations
is required to compute a Gabor coefficient. A large number of function evaluations, as
occurs in most numerical integration methods, is avoided. We then test and analyse this
method by computing Gabor coefficients for two indicator functions supported on a triangle
and a five-pointed star-shaped polygon.

The structure of this chapter is as follows. In Section 4.2, we briefly review some
fundamentals in Gabor analysis, state the problem to be studied by deriving the funda-
mental integral and apply a rational expansion of the Faddeeva function. Subsequently,
we get a sequence of integrals and expand this formulation to the entire complex plane.
In Section 4.3 we derive the second-order difference equations and solve the sequence of
integrals with Olver’s algorithm. Section 4.4 contains two numerical examples and we test
this method’s accuracy and computation time. Conclusions are drawn in Section 4.5.

4.2 Formulation

We start the formulation by recalling one of the fundamental results in Gabor analysis
[129, 132]. For a given Gabor frame G(g, α, β) with window function g ∈ L2(Rd)\{0},
α, β > 0 and αβ < 1, there exists a dual window function η ∈ L2(Rd) and an induced dual
Gabor frame. Every f(x) ∈ L2(Rd) has the following Gabor-frame expansion:

f(x) =
∑

k,l∈Zd

fk,lgk,l(x), (4.1)

where k, l ∈ Zd represent the translation index and modulation index. Note here we use
gk,l(x) to represent the Gabor frame function associated with the oversampling parameters
α, β, and fk,l is a corresponding Gabor coefficient. When the window function g is chosen

as a normalized Gaussian function, i.e, g(x) = 2
d
4 exp{−πx · x}, the Balian-Low theorem

[129] states that G(g, α, β) constitutes a frame iff αβ < 1, and this case is referred as
oversampling. In case of a Gaussian window function g, the oversampling parameters α, β
determine the rate of decay of both the Gabor window function g and the dual window
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function η [178, 179]. The convergence of (4.1) is in the norm of (L2(Rd), ∥ · ∥2) and it is
unconditional [129,132].

The Gabor coefficient fk,l is computed based on the following Gabor transformation

fk,l =

∫
Rd

f(x)η∗k,l(x)dx, (4.2)

where ηk,l(x) is the dual frame function based on the translation and modulation opera-
tions on the dual window function η(x). The choice of dual window function η(x) is not
unique, and all dual window functions η(x) belong to an affine subspace of L2(Rd) based on
a so-called canonical dual window function η◦(x) [129]. Several methods exist to approx-
imately compute the canonical dual window function [133]. In the case of oversampling,
one important method to compute the canonical dual window functions involves the gen-
eralized pseudo inverse of the frame operator, see [132] or [134], where the Zak-transform
is used as a main tool. Another method for approximating the dual Gabor window is given
in [180], which requires that the Gabor window function g is within the Feichtinger space
S0 ∈ L2 [181, 182]. In [183], a unified approach to study the invertibility of Gabor frame
operators is given for both the continuous case and the discrete case. Different combi-
nations of window and dual window functions can have different decay properties, which
allows to make trade-offs between e.g. efficiency and accuracy in practice.

4.2.1 Statement of the problem

From now on we consider Gabor frames in L2(R2). Let gk,l(x, y) be a 2D Gabor frame
function defined as

gk,l(x, y) = g(x− αxkxTx, y − αykyTy) exp {jβxlxKxx+ jβylyKyy} , (4.3)

where the window function g(x, y) = 21/2 exp{−π[(x/Tx)
2+(y/Ty)

2} is a 2D Gaussian, the
integer-valued k = (kx, ky), l = (lx, ly) represent the spatial shift index and the frequency
modulation index in x and y directions, respectively. Further more, αx = αy = βx = βy =√
2/3 are oversampling parameters, Tx and Ty denote the Gabor window lengths in the

spatial domain and Kx = 2π/Tx and Ky = 2π/Ty their spectral-domain counterparts.
We are interested in the Gabor coefficients for a 2D indicator function f(x, y) supported

on a K-sided polygon D. The indicator function f(x, y) is given by

f(x, y) =

{
1, (x, y) ∈ D

0, (x, y) ∈ R2\D
, (4.4)

and its Gabor coefficients can be computed based on the 2D Gabor transformation:

fk,l =

∫∫
R2

f(x, y)η∗k,l(x, y)dxdy =

∫∫
D

η∗k,l(x, y)dxdy, (4.5)

where the 2D dual frame function is

ηk,l(x, y) = η(x− αxkxTx, y − αykyTy) exp {jβxlxKxx+ jβylyKyy} , (4.6)
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based on a dual window function η(x, y). Here we only compute the discrete form of
η(x, y) based on the pseudo-inverse method [134], and the sampled dual window η(x, y)
can be represented again by Gabor frames [184]. In Eq. (4.5), we replace the dual frame
function ηk,l(x, y) by its Gabor frame expansion with frame functions given in Eq. (4.3),
and rearrange the integral and summation. Then we identify that Gabor coefficient fk,l
can be written (see [143, 170]) as a linear combination of Im,n which are integrals of the
following form:

Im,n =

∫∫
D

exp

{
−π

[
x

Tx

− αxmx

]2}
· exp {−jβxnxKxx}

· exp

{
−π

[
y

Ty

− αymy

]2}
· exp {−jβynyKyy} dxdy

=

∮
∂D

−Q(x, y)dx+ P (x, y)dy

=
K∑
k=1

∫
∂Dk

−Q(x, y)dx+ P (x, y)dy,

(4.7)

where Gauss’s theorem is applied and ∂Dk represents the kth edge of the polygon boundary
∂D. Functions P (x, y) and Q(x, y) are given by

P (x, y) =h̃1(y) · exp
{
h2
2(x)

}
· w
{
h2(x)

}
,

Q(x, y) =h1(x) · exp
{
h̃2
2(y)

}
· w
{
h̃2(y)

}
.

(4.8)

where w(z) is the Faddeeva function or the plasma dispersion function [185, 186]. Note
that

h1(x) =− Ty

4
exp

{
− π

( x

Tx

− αxmx

)2
− πβ2

yn
2
y

− j
(
βxnxKxx+ 2παyβymyny

)}
h2(x) =−

√
πβxnx + j

√
π
( x

Tx

− αxmx

) (4.9)

and one can easily obtain functions h̃1(·) and h̃2(·) by swapping the subscripts x and y
for functions h1 and h2. Note that the choices of functions P and Q in Eq. (4.8) are not
unique. In [143, 170], P (x, y) and Q(x, y) are represented via the complex error function
erf(z), while here we represent them by the Faddeeva function w(z).

Let (Pk,x, Pk,y) be coordinates of the kth vertex of the polygon D, then we define

bk,x =
1

Tx

(Pk+1,x − Pk,x) , sk,x =
Pk,x

Tx

,

bk,y =
1

Ty

(Pk+1,y − Pk,y) , sk,y =
Pk,y

Ty

,
(4.10)
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for k ∈ {1, . . . , K}. Following the analysis of parametrization in [143] and [170], we scale
the coordinate variables xk and yk of the kth boundary edge with respect to the Gabor
window length Tx and Ty, respectively, and then represent them by a parameter t as{

xk(t)
Tx

= bk,x · t+ sk,x,
yk(t)
Ty

= bk,y · t+ sk,y,
(4.11)

where t ∈ [0, 1]. Substituting Eq. (4.11) in Eq. (4.7) we get

Im,n =
∑
k

∑
l

ck,l,1

∫ 1

0

exp
{
−ck,l,2t

2 + ck,l,3t
}
w {ck,l,4t+ ck,l,5} dt, (4.12)

where k ∈ {1, . . . , K}, and the additional index l ∈ {x, y} means the derivation is asso-
ciated with the parameterized x-coordinate or y-coordinate in Eq. (4.11). When l = x,
expressions of all x-related parameters ck,x,i, i ∈ 1, . . . , 5, are given by

ck,x,1 =(−1)k+1TxTy

4
bk,x · exp

{
− π(s2k,x + s2k,y + α2

xm
2
x + α2

ym
2
y)

+ 2π(αxmxsk,x + αymysk,y)− 2πj(βxnxsk,x + βynysk,y)

}
,

ck,x,2 =π{b2k,x + b2k,y},
ck,x,3 =− 2π

{
bk,xsk,x + bk,ysk,y − αxmxbk,x − αymybk,y

+ j(βxnxbk,x + βynybk,y)
}
,

ck,x,4 =j
√
πbk,y,

ck,x,5 =−
√
πβyny + j

√
π(sk,y − αymy).

(4.13)

Corresponding y-related parameters ck,y,i, i ∈ {1, . . . , 5}, can be obtained again by swap-
ping the subscripts x and y in (4.13). Note that this procedure only changes ck,x,1, ck,x,4
and ck,x,5, but keeps ck,x,2 and ck,x,3 the same. Eq. (4.12) shows each Gabor-coefficient-
related integral Im,n of a 2D indicator function supported on a polygon domain is a linear
combination of integrals with the same structure, and all integrals are distinguished by five
parameters.

For ease of notation, we drop the indices k and l in Eq. (4.12), and state that we want
to solve the following problem: Given c2 ∈ R and c1, c3, c4, c5 ∈ C, find an efficient method
to compute the following integral I accurately

I = c1

∫ 1

0

e−c2x2+c3xw(c4x+ c5)dx. (4.14)

4.2.2 Formulation based on a rational expansion of the Faddeeva
function

In general it is difficult to find an analytical expression for I in Eq. (4.14), since the
integrand contains a complex exponential function and the complex Faddeeva function
w(z). However, in some special cases one can find its closed-form expression.
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When the pertaining edge ∂Dk of the polygon boundary is parallel to the x axis or to
the y axis, we can readily see from Eq. (4.11) that bk,y ≡ 0 or bk,x ≡ 0, and then we have
c4 ≡ 0 or c1 ≡ 0. Therefore

I = 0 if c1 = 0, (4.15)

or, if c4 = 0

I = c1
√
πe

c23
4c2w(c5) ·

{
2e

c23
4c2 − w

(
jc3
2
√
c2

)
− e−c2+c3w

(
j(2c2 − c3)

2
√
c2

)}
. (4.16)

Equivalent results are given in [143] and [170], based on the complex error function. When
a polygon edge is not parallel to any coordinate axis, but the condition c3c4 = 2c2c5 holds,
we find that

I =
c1
√
πeξ2

2c4
√
ξ1

·
{
e−c25ξ1w

(
jc5
√

ξ1

)
− e−(c4+c5)2ξ1w

(
j(c4 + c5)

√
ξ1

)}
− 2c1

√
πeξ2

c4
√
ξ1

·
{
T

(
−c5

√
2ξ1,−

j√
ξ1

)
− T

(
−(c4 + c5)

√
2ξ1,−

j√
ξ1

)}
,

(4.17)

where ξ1 = 1 + c2/c
2
4, ξ2 = −c3c5/c4 − c2c

2
5/c

2
4, and T(x, a) is Owen’s T function [187].

In all other cases there is no closed-form expression available for the integral I and
therefore various numerical integration strategies would be required. However, since the
integrand is a product of the complex exponential function exp(−c2x

2 + c3x) and the
Faddeeva function w(c4x+c5), which change dramatically in certain regions of the complex
plane, poor convergence occurs in numerical integration and this causes long computation
times [143,144]. Recalling the relation between Im,n and the integral type I in Eq. (4.12),
it is crucial to find a better method to compute I and get rid of numerical integration
completely. To achieve this, our interest goes to an approximation of the Faddeeva function
w(z). An ideal approximation should have a fast convergence to the Faddeeva function
w(z) and should yield a difference equation so the numerical integration in Eq. (4.14) can
be avoided.

In [113], J. A. C. Weideman proposed three rational expansions of the complex Faddeeva
function w(z) and the most practical one for us is given by

w(z) ≈ 1√
π(L− jz)

+ 2
N−1∑
n=0

an+1
(L+ jz)n

(L− jz)n+2
, Im(z) ≥ 0, (4.18)

where N is a truncation number of the rational expansion series, an is an expansion coeffi-
cient, and the parameter L = 2−

1
4N

1
2 is chosen to optimize the convergence. This rational

expansion (4.18) has the following attractive features:

• High accuracy is achieved uniformly in the complex plane with only a small truncation
number N . As shown in [113], the rational expansion approximation (4.18) with
N = 16 yields a relative error up to 10−6 for all z in the entire first quadrant.
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• The expansion coefficients an can be computed to a high approximation by an FFT,
once and for all.

The above promising properties make the rational expansion (4.18) a much better candidate
than the Taylor-based approximation to the complex error function erf(z), as introduced
in [173], since the truncation number N in this article is independent of z and the fast
convergence saves a summation over thousands of terms that occur in the Taylor-Olver
method [143,144]. Assume for all x ∈ [0, 1] that Im(c4x+c5) ≥ 0, then substitute Eq. (4.18)
in Eq. (4.14) and we get

I = c1

∫ 1

0

e−c2x2+c3xw(c4x+ c5)dx

≈ c1√
π

∫ 1

0

e−c2x2+c3x

L− j(c4x+ c5)
dx

+ 2c1

N−1∑
n=0

an+1 ·
∫ 1

0

e−c2x2+c3x
[L+ j(c4x+ c5)]

n

[L− j(c4x+ c5)]
n+2dx

=
c1j√
πc4

∫ ζ2

ζ1

ec6y
2+c7y+c8

y
dy

+
2c1j

c4

N−1∑
n=0

an+1 ·
{ n∑

m=0

(
n

m

)
(2L)m(−1)n−m

∫ ζ2

ζ1

ec6y
2+c7y+c8

ym+2
dy

}
,

(4.19)

where we used the variable substitution y = L − j(c4x + c5) and applied the binomial
theorem in the last step, and we defined

c6 =
c2
c24
, c7 = −2c2L

c24
+

c3j

c4
+

2c2c5j

c24
,

c8 = −c3c5
c4

− c3Lj

c4
− c2c

2
5

c24
− 2c2c5Lj

c24
+

c2L
2

c24
,

ζ1 = L− jc5, ζ2 = L− j(c4 + c5).

Hence, from Eq. (4.19) we see that the problem of computing the integral I is transferred
to calculating the following sequence of integrals accurately and efficiently

Im =
c1
c4

∫ ζ2

ζ1

ec6y
2+c7y+c8

1

ym
dy, m = 1, 2, . . . , N + 1. (4.20)

4.2.3 March to the whole complex plane

The rational expansion of the Faddeeva function in (4.18) requires Im(z) ≥ 0 to avoid
the singularity in L+jz

L−jz
, and therefore the computation of I in Eq. (4.19) holds only for

z = c4x+ c5, ∀x ∈ [0, 1] in the upper half-plane. However, c4x+ c5, x ∈ [0, 1] in Eq. (4.14)
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can occur in the lower half-plane completely or partially. Now we consider the other cases
with Im(z) < 0.

When Im(c4x+ c5) < 0, we apply the property w(z) = 2e−z2 − w(−z) and get

I = c1

∫ 1

0

e−c2x2+c3xw(c4x+ c5)dx

= c1

∫ 1

0

e−c2x2+c3x
{
2e−(c4x+c5)2 − w(−c4x− c5)

}
dx

=

√
πc1√

c2 + c24
· ec3−c2−(c4+c5)2 ·

{
ec2−c3+c24+2c4c5 · w(z2)− w(z1)

}
− c1

∫ 1

0

e−c2x2+c3xw(−c4x− c5)dx,

(4.21)

where

z1 =
(2c2 + 2c24 + 2c4c5 − c3)j

2
√

c2 + c24
, z2 =

(2c4c5 − c3)j

2
√

c2 + c24
,

and the remaining integral in the last step of Eq. (4.21) can therefore be computed with
(4.19) since Im(−c4x− c5) ≥ 0.

We conclude this section by considering all possible cases of Im(c4x+c5) when x ∈ [0, 1].
Suppose Im(c4x0 + c5) = 0, then the fundamental integral I in (4.14) has 4 types based on
the relation for x0 and the interval [0, 1]:

• Type 1: x0 /∈ [0, 1] and Im(c4x + c5) ≥ 0 for all x ∈ [0, 1]. This case is discussed in
Section 4.2.2, and I can be computed based upon Eq. (4.19).

• Type 2: x0 /∈ [0, 1] and Im(c4x+ c5) ≤ 0 for all x ∈ [0, 1]. As discussed above, I can
be computed following the steps in Eq. (4.21).

• Type 3: x0 ∈ [0, 1], Im(c4x + c5) ≥ 0 when x ∈ [0, x0] and Im(c4x + c5) ≤ 0 when
x ∈ [x0, 1]. In this case, I is a combination of two integrals which should be computed
via (4.19) on [0, x0] and via (4.21) on [x0, 1], respectively.

• Type 4: x0 ∈ [0, 1], Im(c4x + c5) ≤ 0 when x ∈ [0, x0] and Im(c4x + c5) ≥ 0 when
x ∈ [x0, 1]. Analogously, I should be computed via (4.21) on [0, x0] and via (4.19) on
[x0, 1].

Hence the problem of computing the integral I in (4.14) is transferred to calculating a
sequence of integrals Im in (4.20) for any c4x+ c5 in the complex plane.

4.3 Computation of integrals based on difference equa-

tions

Section 4.2 revealed that the computation of the fundamental integral I relies on a
sequence of integrals Im. We now explore a way to compute these integrals that avoids
direct numerical integration.
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4.3.1 Derivation of the second-order difference equations

Analogous to the derived difference equation in [143], based on the Taylor-series ex-
pansion to the complex error function, we expect to derive a difference equation for Im in
(4.20), so numerical integration can be avoided. We apply integration by parts to Eq. (4.20)
and get

Im =
c1
c4

∫ ζ2

ζ1

ec6y
2+c7y+c8

1

ym
dy =

2c1c6
c4(m− 1)

∫ ζ2

ζ1

ec6y
2+c7y+c8

1

ym−2
dy +

c1c7
c4(m− 1)

∫ ζ2

ζ1

ec6y
2+c7y+c8

1

ym−1
dy

− c1
c4(m− 1)

ec6y
2+c7y+c8

1

ym−1

∣∣∣∣ζ2
ζ1

, m ≥ 2

(4.22)

or after rearranging,

2c6Im−1 + c7Im −mIm+1 = Γm, m ≥ 1. (4.23)

where Γm = γm(ζ2) − γm(ζ1) and γm(z) = exp{c6z2 + c7z + c8} · c1/(c4zm) are used to
represent the inhomogeneous term. It is clear that Eq. (4.23) is a set of second-order
linear difference equations and we will have all required Im in Eq. (4.20) as long as we can
solve these difference equations.

Second-order linear difference equations are of great importance and they can be de-
rived from many problems, such as discretization of differential equations and computa-
tion of special functions. It is also well known that computing the minimal solution of a
second-order difference equation, or three-term recurrence relation employing the forward
recurrence is an unstable procedure, see e.g. [146,147].

In [148], F. W. J. Olver proposed a stable, and by now classic, algorithm for second-
order inhomogeneous linear difference equations of the form

αryr−1 − βryr + σryr+1 = µr, r ≥ 1 (4.24)

where αr, βr, σr, µr are given functions of the integer index r, and y0, y1 are given initial
conditions. The main idea of Olver’s algorithm is to transfer the initial value problem
to an equivalent boundary value problem (BVP). To do this, Olver abandoned the initial
condition y1 and introduced a boundary condition yM = p for some sufficiently large
M . The value p is determined based on the asymptotic property of the minimal solution
yr and in most cases it is set as yM = 0. Note that this BVP is corresponding to a
finite-dimensional linear system and it is an approximation of its counterpart Eq. (4.24),
which is an infinite-dimensional one. It was also proven that the solution of the truncated
BVP, denoted by y

(M)
r , convergences to the true solution yr of Eq. (4.24) as M goes to

infinity [148], i.e.

lim
M→∞

y(M)
r = yr, for r = 1, 2, . . .
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Furthermore, Olver’s method has a built-in error estimation technique, which makes it
very efficient in practical computation. Overall, Olver’s algorithm is a very safe numerical
scheme and difficulties will only occur in the most pathological of situations [147].

Following the procedure in Olver’s method, we transform Eq. (4.23) into the following
tridiagonal system

c7 −1
2c6 c7 −2

2c6 c7 −3
. . . . . . . . .

. . . . . . . . .

2c6 c7 −(M − 2)
2c6 c7





I1
I2
I3
...
...

IM−2

IM−1


=



Γ1 − 2c6I0
Γ2

Γ3
...
...

ΓM−2

ΓM−1


. (4.25)

Note that one can readily calculate the first boundary condition I0 as

I0 =
c1
c4

∫ ζ2

ζ1

ec6y
2+c7y+c8dy =

jc1
√
π

2c4
√
c6
e
− c27

4c6
+c8
{
ez

2
3w(z3)− ez

2
4w(z4)

}
, (4.26)

where z3 = (c7 + 2c6ζ1)/(2
√
c6) and z4 = (c7 + 2c6ζ2)/(2

√
c6). The second boundary

condition IM is set to zero based on the asymptotic property of Im in (4.20).
The tridiagonal system (4.25) can be solved either by Gaussian-elimination without

partial pivoting as proposed in [148, 188], or by LU-decomposition [177]. When cr van-
ishes for some r in Eq. (4.24), Olver’s algorithm needs to be modified by partitioning the
tridiagonal system into two parts and attacking them separately [147, 177]. This partic-
ular case will never occur in the difference equations we have, since all corresponding cr
in (4.22) are negative integers. In practice we found that using M = 2N is sufficient to
ensure an accurate result, where N is the truncation number of the rational expansion
of the Faddeeva function in Eq. (4.18). Following Olver’s algorithm we get the solution
I1, I2, . . . , IN , . . . , I2N−1, and then the first N + 1 terms are assembled into the integral I
according to Eq. (4.14).

4.3.2 Algorithm optimization

We optimize the computational procedure of the fundamental integral I and discuss its
advantages for implementation.

Let y = (I1, I2, . . . , I2N−1)
T and A be the system matrix in (4.25), then the tridiagonal

system can be rewritten into
Ay = d, (4.27)

where the vector d = d1 − d2 − d3 contains all inhomogeneous terms and

d1 = γ1(ζ2) ·
(
1, 1/ζ2, 1/ζ

2
2 , . . . , 1/ζ

2N−3
2 , 1/ζ2N−2

2

)T
,

d2 = γ1(ζ1) ·
(
1, 1/ζ1, 1/ζ

2
1 , . . . , 1/ζ

2N−3
1 , 1/ζ2N−2

1

)T
,

d3 = (2c6I0, 0, . . . , 0)
T .

(4.28)
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It is obvious that the components of d1 and d2 satisfy a two-term difference equation, so
in practice d1 and d2 can be computed efficiently based on their initial components γ1(ζ2)
and γ1(ζ1).

Let y1 = I1, y2 = (I2, . . . , IN , IN+1)
T , then we can introduce projection operators pT

and P by

pT · y = y1,

P · y = y2,

where pT = (1, 0, . . . , 0) and P ∈ CN×(2N−1). In addition, we define the following lower
triangular matrix

B =


b11 0
b21 b21

b31 b32
. . .

...
...

. . . . . .

bN1 bN2 · · · bNN−1 bNN

 ,

where its non-zero components are given as bnm =
(
n−1
m−1

)
(2L)m−1(−1)n−m for all n,m =

{1, 2 . . . , N}. Moreover, we use w = (a1, a2, . . . , aN)
T to hold all rational-expansion coeffi-

cients of the Faddeeva function w(z). Then we can rewrite Eq. (4.19) as

I =µ1y1 + µ2w
TBy2

=(µ1p
T + µ2w

TBP ) · y
=(µ1p

T + µ2w
TBP ) · (A−1d)

(4.29)

where µ1 = j/
√
π and µ2 = 2j are two constants. Here A−1d is a symbolic representation

and this matrix-vector-product is essentially computed following Olver’s algorithm. The
operators µ1, µ2, p, P , B and w are independent of c1, c2, c3, c4, c5 in I, therefore in practice
these operators are only required to be computed once and for all in the pre-processing
stage.

We conclude this section by summarizing this rational-expansion-based method to com-
pute the integrals Im,n and therefore the Gabor coefficients as follows:

1. Setting up the tridiagonal matrix A in Eq. (4.25) based on c1, c2, c3, c4, c5 given in
(4.13).

2. Setting up the inhomogeneous vector d with the difference equation discussed in
Eq. (4.28).

3. Solve the tridiagonal system with Olver’s algorithm.

4. Together with pre-processed µ1, µ2, p, P , B and w, compute I based on Eq. (4.29).

And we refer to the above steps as the rational-expansion and difference-equation based
(RE-DE) algorithm.
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4.4 Numerical Examples

In electromagnetic scattering problems with a homogeneous background, the contrast
function connects the total electric field and the contrast current density through a field
material interaction operation. This operation requires a 2D indicator function that cap-
tures the geometry of the scatter. In this section, we compute the Gabor coefficients of
two 2D indicator functions supported on different polygonal domains, to test the RE-DE
algorithm that we proposed in Sections 4.2 and 4.3.

The first indicator function f(x, y) to be reconstructed is supported on a right-angled
triangular domain. We use this example to demonstrate the accuracy and the convergence
of the RE-DE algorithm. In the second example the indicator function is supported on a
5-pointed star-shaped polygon domain. Compared to the first example, in this example
more fundamental integrals I are required to be computed due to the complexity of the
polygon’s contour. The supporting domains of these functions are shown in Fig. 4.1 and
we use the same Gabor parameters in both examples, see Table 4.1. In both examples we
compare the accuracy and computation time of the Gabor coefficients, which are computed
by the RE-DE algorithm, with numerical references.

(a) (b)

Figure 4.1: Supporting domains of the indicator function f(x, y): (a) a triangle, (b) a
5-pointed star-shaped polygon, where Ti (i = 1, 2, 3) and Pi (1 ≤ i ≤ 10) represent the
coordinates of the vertices of the triangle and the 5-pointed star-shaped polygon.
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Table 4.1: Gabor parameters used to reconstruct the 2D indicator functions f(x, y) sup-
ported on the domains in Fig. 4.1.

notation value physical meaning

mx,my −10 : 10 spatial shift index

ny, ny −10 : 10 frequency modulation index

Tx, Ty 1 Gabor window length

Kx, Ky 2π spectral window length

αx, αy, βx, βy

√
2/3 oversampling parameters

Table 4.2 shows the number of integrals evaluated by means of their analytical represen-
tations and the integrals calculated by the RE-DE algorithm for both examples. Recalling
that the Gabor parameters satisfy −10 ≤ mx,my, nx, ny ≤ 10, and that in the case of the
triangle example there are three edges and the parametrization is performed with respect
to both x and y, we have a total of 214 · 3 · 2 = 1,166,886 integrals in Example 1. Note
that the indicator function f(x, y) is supported on an isosceles right-angled triangle that
is aligned such that two of the three edges, i.e. T2T3 and T3T1, are parallel to one of the
coordinate axes. One of bk,x and bk,y in Eq. (4.11) vanishes when the boundary is parallel
to either the x or y axis and therefore in total one third of the integrals in Eq. (4.14) is
zero. Based on the discussion in Section 4.2.2, another one third of the total integrals are
evaluated via Eq. (4.16). A small number of the integrals has an analytical representation
in terms of Owen’s T function and can be evaluated by Eq. (4.17). The other integrals
are calculated based on the RE-DE algorithm. Furthermore, when the fundamental in-
tegrals associated with the hypotenuse T1T2 are computed by the RE-DE algorithm, one
observes that c4 in Eq. (4.13) is always negative due to the counterclockwise direction of
the parametrization in Eq. (4.11). Therefore, only integrals of Types 1, 2 and 3 occur.

Table 4.2: Classification of integrals in Example 1 (triangle) and Example 2 (5-pointed
star-shaped polygon). Note that the fundamental integrals in Type i for i = {1, 2, 3, 4} are
discussed in Section 4.2.3.

Type of integrals Example 1 Example 2

calculated based on Eq. (4.15) 388,962 388,962

calculated based on Eq. (4.16) 388,962 388,962

calculated based on Eq. (4.17) 882 0

fundamental integral Type 1 184,800 1,528,065

fundamental integral Type 2 184,800 1,528,065

fundamental integral Type 3 18,480 18,522

fundamental integral Type 4 0 37,044

fundamental integrals in all types 388,080 3,111,696

Total 1,166,886 3,889,620
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The third column of Table 4.2 shows the classification of the integrals in Example 2.
There are 10 edges in this 5-pointed star-shaped polygon example so in total we compute
214 · 10 · 2 = 3, 889, 620 integrals. Note that in Fig. 4.1 (b) two of the ten edges (boundary
segments P2P3 and P9P10) of the 5-pointed star-shaped polygon are parallel to one of the
coordinate axes. Analogous to Example 1, one tenth of the integrals vanishes and another
one tenth of the integrals can be evaluated via Eq. (4.16). The other integrals are calculated
based on the RE-DE algorithm. Compared to the hypotenuse of the triangle in Example 1,
the other eight edges of the 5-pointed star-shaped polygon yield both positive and negative
values for c4 in Eq. (4.13), hence all types of integrals discussed in Section 4.2.3 occur.

To compare the accuracy of the fundamental integrals and the Gabor coefficients cal-
culated based on the RE-DE algorithm, we define the following absolute error and relative
error. Let Nw be the number of the integrals determined by the discretization parameters
in Table 4.1, and u ∈ CNw contains the integrals calculated based on numerical integra-
tion and v ∈ CNw contains those obtained by the RE-DE algorithm. Then we define the
components of the absolute error vector e as follows

ei = |vi − ui|, 1 ≤ i ≤ Nw (4.30)

where ui, vi represent the components of u and v, respectively. The components of the
relative error vector r are defined as

ri =
ei

∥u∥∞
, 1 ≤ i ≤ Nw (4.31)

where ∥u∥∞ = max(|u1|, |u2|, . . . , |uNw |) is the ℓ∞ norm of vector u. We use rint and rgab to
denote the relative error vectors of the fundamental integrals and of the Gabor coefficients,
respectively, and we compare the relative errors for different truncation number N in the
rational expansion of the Faddeeva function.

We have implemented the RE-DE algorithm in the Wolfram Mathematica language
and performed the examples with Mathematica 13.0. All computations were performed on
a computer with Intel(R) Core(TM) i7-8850H CPU at 2.60 GHz.

4.4.1 Example 1: a 2D indicator function supported on a triangle

The first example we discuss is an indicator function supported on a triangle. With this
example we illustrate the convergence behaviour of the RE-DE algorithm. We compute the
fundamental integrals and also the Gabor coefficients of the indicator function based on
them. The accuracy of the fundamental integrals and the Gabor coefficients are validated
against a numerical reference.

We compute the 388,080 fundamental integrals in Table 4.2 by the RE-DE algorithm
with different number of terms in the rational expansions, i.e. N = 8, 16, 32, 64. Addi-
tionally, we compute all fundamental integrals by numerical integration (NI) with default
machine precision in Mathematica, i.e. 16 digits. Then we compare all integrals, which
are computed by five different methods, with a reference that is calculated by NIntegrate
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in Mathematica with a 100-digit working precision. Gabor coefficients are computed cor-
respondingly based on the calculated integrals through Eq. (4.12). Absolute error and
relative error vectors are computed based on Eq. (4.30) and Eq. (4.31). Table 4.3 shows
the ℓ2 norm and the ℓ∞ norm of rint and rgab. Note that the ℓ2 norm of a vector v is

defined as ∥v∥2 = (
∑

i |vi|2)
1
2 and the inequality ∥v∥∞ ≤ ∥v∥2 holds.

Table 4.3: Norm comparison of relative error vectors rint and rgab in Example 1. Columns
2−5 correspond to the cases with different truncation numbers N in the rational expansion
of the Faddeeva function. The last column corresponds to the numerical integration with
machine precision in Mathematica.

Norm N = 8 N = 16 N = 32 N = 64 NI

∥rint∥∞ 1.7× 10−5 8.3× 10−8 1.7× 10−11 3.5× 10−16 8.1× 10−12

∥rint∥2 1.4× 10−4 6.6× 10−7 3.6× 10−11 1.6× 10−15 2.3× 10−11

∥rgab∥∞ 2.6× 10−4 1.9× 10−7 1.9× 10−13 8.6× 10−15 2.3× 10−10

∥rgab∥2 8.0× 10−4 5.7× 10−7 5.7× 10−13 2.5× 10−14 7.0× 10−10

Based on Table 4.3 we make the following observations:

• There is a clear convergent behaviour of the RE-DE algorithm. Both ℓ2 norm and ℓ∞

norm of fundamental integral and Gabor coefficient are reduced when increasing the
number of terms N in the rational expansion from 8 to 64. This also corresponds to
the convergence property of the rational expansions for the Faddeeva function proven
in [113].

• The norms of rgab are slightly larger than their counterparts for rint. This is as
expected since each Gabor coefficient is a summation of a set of fundamental integrals
according to Eq. (4.12).

In order to have a better view on the distribution of the relative errors for the funda-
mental integrals, we calculate the percentages of the relative errors within specific intervals
and show the results in Table 4.4. Here we notice again that the largest relative error of
all computed fundamental integrals is pushed to a lower level when increasing the rational-
expansion parameter N , as observed in Table 4.3. On the other hand, we expect to a
similar convergence behaviour on the computed Gabor coefficients. Analogous to the be-
havior of a cumulative distribution function, Fig. 4.2 shows the distributions of relative
errors of all Gabor coefficients computed in Example 1. Here we see the changes of the
percentage of computed Gabor coefficients (along the vertical direction) that have relative
error less than a given threshold (along the horizontal direction).
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Table 4.4: Distribution of relative errors rint of the fundamental integrals in Example 1.

relative error interval N = 8 N = 16 NI N = 32 N = 64

(10−4, 10−1] 0 0 0 0 0

(10−7, 10−4] 0.07% 0 0 0 0

(10−10, 10−7] 0.15% 0.13% 0 0 0

(10−13, 10−10] 0.15% 0.11% 0.031% 0.0062% 0

(10−16, 10−13] 0.22% 0.18% 0.15% 0.11% 0.021%

[0, 10−16] 99.41% 99.59% 99.82% 99.89% 99.98%

Figure 4.2: Distribution of relative errors rgab of the Gabor coefficients in Example 1.
Horizontal axis: threshold relative error on a log scale. Vertical axis: percentage of Gabor
coefficients whose relative error is less than the threshold.

Both Table 4.4 and Fig. 4.2 suggest a convergent behaviour when increasing the rational-
expansion parameter N in the RE-DE algorithm and it is clear that the cases with N = 32
and N = 64 yield a higher accuracy than the direct numerical integration method.

Next, we investigate the computation time of the RE-DE algorithm. The time spent on
initializing the constant operators in Eq. (4.29) is negligible, therefore it is more interesting
to compare the time spent on the fundamental integrals only, which is the dominant part
during the computing of all Gabor coefficients. Table 4.5 shows the total computation time
spent on the calculation of the 388,080 integrals for the different cases.

Table 4.5: Computation time of computing the fundamental integrals in Example 1.

N = 8 N = 16 N = 32 N = 64 NI

Time used [min] 24.9 29.5 50.0 109.2 273.2
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Clearly, the RE-DE algorithm significantly outperforms the numerical integration in
terms of computation time. Even the case with the largest truncation number N = 64 in
the rational expansions of the Faddeeva function, the total computation time is less than
40% of that for the numerical integration.

Fig. 4.3 shows the reconstructed indicator function f(x, y) based on the Gabor coeffi-
cients computed with the RE-DE algorithm (N = 16). Note that there is a clear Gibbs
phenomenon 2 close to the boundary of the triangle.

Figure 4.3: Reconstructed indicator function f(x, y) of a triangular domain based on Gabor
coefficients computed by the RE-DE algorithm.

4.4.2 Example 2: a 2D indicator function supported on a star-
shaped polygon

In the second example we discuss the indicator function supported on a 5-pointed star-
shaped polygon. Again we compute the Gabor coefficients, validate their accuracy, and
compare the computation time.

In Example 2 there are 3,111,696 fundamental integrals in the form of Eq. (4.14) that
are computed by the proposed RE-DE algorithm. Computing a numerical reference for
those integrals with 100-digit working precision takes an enormous amount of computation

2When approximating a discontinuous non-periodic function with the Fourier series, an overshoot or
undershoot effect occurs around the discontinuity. This effect is called Gibbs phenomenon, which was
explained by J. W. Gibbs in 1899 [189]. A series of papers about Gibbs phenomenon and reconstruc-
tion with exponential accuracy can be found at [190–194]. Due to the close connection between Gabor
transformation and Fourier transformation, Gibbs phenomenon occurs here as well.
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time (more than 2,600 hours on the current computation hardware), so in this 5-pointed
star-shaped polygon example we take the numerical integration with machine precision
in Wolfram Mathematica as reference and test the RE-DE algorithm with the rational-
expansion parameter N = 8, 16, 32. To obtain the global distribution of the relative errors
in the Gabor coefficients based on the RE-DE algorithm, we count the number of relative
errors located in specific intervals and show the percentage in Table 4.6. Here one observes
again the convergent behaviour of the RE-DE algorithm by increasing the truncation num-
ber N of the rational expansion of the Faddeeva function.

Table 4.6: Distribution of relative errors rgab of the Gabor coefficients in Example 2.

relative error interval N = 8 N = 16 N = 32

(10−2, 10−1] 0.007% 0 0

(10−3, 10−2] 0.423% 0 0

(10−4, 10−3] 2.82% 0 0

(10−5, 10−4] 7.84% 0.05% 0

(10−6, 10−5] 15.6% 1.58% 0

(10−10, 10−6] 70.6% 61.44% 24.4%

(10−16, 10−10] 2.71% 36.93% 75.6%

In Table 4.7 we show the computation time spent on the fundamental integrals with
RE-DE algorithm and on the numerical reference. It is clear that the RE-DE algorithm
requires much less computation time than the numerical integration method. Even for the
case with N = 32, which has better accuracy than the reference in Table 4.4 and Fig. 4.2,
it takes less than 10% of the time spent for numerical integration. A few comments about
the computation time are in order:

• The rational expansion coefficients an in Eq. (4.19) are computed via an FFT. This
property is inherited from [113].

• The constant operators in Eq. (4.29) are independent of the fundamental integrals,
therefore they are computed once during the initialization.

• Numerical integration is avoided in the RE-DE algorithm. The closed form of the
boundary condition I0 is given in Eq. (4.26), and all the other integrals Im can be
computed via Olver’s algorithm.

• Solving the difference equations (4.23) with Olver’s algorithm is a fast procedure,
since Eq. (4.25) is a low-dimensional system, i.e. (2N − 1) × (2N − 1), and its
inhomogeneous term can be generated quickly based on another difference equation
as discussed in Eq. (4.28).
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Table 4.7: Computation time of computing the fundamental integrals in Example 2.

N = 8 N = 16 N = 32 reference (NI)

Time [h] 3.30 5.02 7.17 79.87

Finally we show the reconstructed function f(x, y) based on the RE-DE algorithm with
N = 16 in Fig. 4.4.

Figure 4.4: Reconstructed indicator function f(x, y) of a 5-pointed star-shaped polygonal
domain, based on Gabor coefficients computed by the RE-DE algorithm. The Gibbs phe-
nomenon is also observed around the boundary of the polygon.

In summary, these examples show that the RE-DE algorithm reaches an accuracy that
is compatible with or higher than the accuracy of the numerical integration, by choos-
ing a proper truncation number N . Additionally, it significantly outperforms numerical
integration in terms of computation time.

4.5 Conclusion

We have proposed a rational-expansion-based method to compute Gabor coefficients
of a 2D indicator function supported on a polygon. The method is based on a rational
expansion of the Faddeeva function and inherits its fast-convergence property on the whole
complex plane. A sequence of integrals with a uniform structure was formulated first
and we derived a second-order difference equation after applying the rational expansion
of the Faddeeva function. We solved all integrals with Olver’s algorithm and optimized
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this procedure to make it more suitable for implementation. This rational-expansion-based
method does not require numerical quadrature.

We tested this method on two numerical examples by computing 3.5 million integrals in
total. Numerical results show that this rational-expansion-based method significantly out-
performs numerical quadrature methods in terms of computation time, while maintaining
accuracy.
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Chapter 5

Improved Gabor-based multiplication
operators for the spatial spectral
method

5.1 Introduction

Fourier factorization rules [106, 195, 196] constitute a framework to compute an ap-
proximation to the Fourier coefficients of a product function h(x) = f(x)u(x), based on
the Fourier coefficients of f(x) and u(x). Laurent’s rule of factorization assumes that
the truncated Fourier coefficients of h(x) can be computed approximately through a trun-
cated discrete convolution. However, it has been shown that Laurent’s rule is valid only
when the functions f(x) and u(x) do not have concurrent discontinuities, otherwise con-
vergence issues occur in the computed Fourier coefficients of h(x). When the functions
f(x) and g(x) have concurrent but complementary discontinuities, the inverse rule can be
used to compute the Fourier coefficients of h(x) for more accuracy. When the functions
f(x) and u(x) have concurrent and non-complementary discontinuities, neither Laurent’s
rule nor the inverse rule should be used. These factorization rules were discovered em-
pirically in [125, 126], and subsequently systemically formulated by Li [106]. Following
the Fourier factorization rules given above, the normal vector field (NVF) formulation has
been introduced in [105] to overcome the convergence issues in the electric field that result
from discontinuities in the permittivity function in the transverse plane. This was further
developed in [103,107,123,127] for various computational frameworks.

Gabor analysis (also known as the short-time Fourier transform) is one important
branch in time-frequency analysis, which is concerned with localized Fourier transforms
[130]. The spatial spectral method developed in [108–111, 197] uses Gabor frames to per-
form discretization in the transverse directions, such that an efficient transformation be-
tween the spatial domain and the spectral domain can be established. Since Gabor frames
inherit many of the properties of Fourier series, the problem to accurately multiply two
functions represented by Gabor coefficients is similar to that of multiplying two Fourier
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series. One aspect of this problem was previously addressed by combining the spatial spec-
tral method with the NVF formulation, such that the total electric field E and the contrast
current density J are represented indirectly by a continuous auxiliary field F. Hence the
auxiliary field and NVF-related operators Cε and χCε, which are defined in Eq. (2.56) and
(2.57), are represented by their Gabor coefficients once the Gabor frame is set up. Next of
the use of the NVF framework, a stable and accurate multiplication between two sets of
Gabor coefficients to obtain the Gabor coefficients of the product function is still required
to construct an accurate representation of the multiplication operators Cε and χCε, such
that an iterative solver can be used to obtain the solution to the pertaining scattering
problem.

There are no explicit factorization rules known in Gabor analysis. In [197], a multi-
plication operator for Gabor coefficients is introduced. Even though part of the matrix
representation of the multiplication operator is based on Laurent’s factorization rule (there-
fore it can be computed efficiently using FFTs), the overall matrix representation of this
operator does not have a Toeplitz structure anymore and therefore the direct connection
with the Fourier factorization rules is lost. Nevertheless, reliable results with the spatial
spectral method have been widely observed, e.g. the cases presented in [108–111]. However,
in recent numerical experiments, we have observed unreliable numerical results for high-
contrast scattering problems, where the discontinuities in the operators Cε and χCε become
large. Clearly, it is a vital task to construct an accurate and stable multiplication opera-
tor for Gabor coefficients such that the spatial spectral Maxwell solver produces reliable
results for high-contrast scattering problems. Introducing such an improved multiplication
operator for two sets of Gabor coefficients is the main goal of this chapter.

In Section 5.2 we recall the original multiplication operator for two sets of Gabor co-
efficients, as used in the spatial spectral method [24], and show that the consequent ap-
proximation of a product function becomes inaccurate and the corresponding matrix is
ill-conditioned for a high-contrast example. In addition, we propose an improved multipli-
cation operator for two sets of Gabor coefficients and show that both the approximation
property and the conditioning of the corresponding matrix exhibit better results for the
same example. In Section 5.3, the improved multiplication operation is extended to the
Gabor-based equidistantly sampled lists, which were invented to reduce computation time
in the spatial spectral method. We then show the same behavior for the two multiplication
analogs on sampled list, i.e. the advantages of using the improved multiplication under a
Gabor-based list representation. In Section 5.4, we further compare the performances of
the improved multiplication operator as compared with the original multiplication opera-
tor, by testing them on two examples. These two examples correspond to the second type
and the third type, according to the Fourier factorization rules [106]. To show the sig-
nificance of this improved multiplication on the spatial spectral Maxwell solver, we study
a 3D problem with a high-contrast scatterer in Section 5.6. Both near-field and far-field
solutions are compared against an independent reference and we show that a convergent
trend is obtained by refining the discretization parameters. We summarize the outcomes
of this chapter in Section 5.6.
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5.2 Multiplication of two sets of Gabor coefficients

The Gabor-frame-based spatial spectral Maxwell solver [24] was developed according
to the following domain integral representation:

Ei(x) = Cε(x) · F(x)− F−1
T

{∫
R

G(kT , z, z
′) · FT

{
χCε(xT , z

′) · F(xT , z
′)
}
dz′
}
, (5.1)

where the electric field E and the contrast current density J are computed through:

E = Cε · F, (5.2)

J = χCε · F, (5.3)

and the expressions of the operators Cε and χCε are given in Section 2.3.1.
Multiplication operations in the transverse plane are involved in Eqs (5.2) and (5.3).

Depending on the function representations to be multiplied, there are two multiplication
operators defined in the spatial spectral method. The first multiplication operator is defined
between two sets of Gabor coefficients and it is used to solve 2D TE or TM scattering
problems, see [109,110,197]. The second multiplication operator was introduced in [111] for
multiplying two uniformly sampled lists, which yields a faster computation in 3D scattering
problems together with Fourier transformations. Next, we recall the definitions of these
two multiplication operators.

Given a function f(x) ∈ L2(R), we define the following discrete sampled function

f = S ◦ f(x) = {f(l∆x), l = −L, . . . , L}, (5.4)

where S represents a sampling operation associated with the spacing ∆x ∈ R+, and L is
an integer. Note that f is in boldface since it is a vector in C2L+1 and we use the overline
to indicate that the vector components represent sampled function values.

The fast Gabor transformation described in [134] is used in the spatial spectral method
[24], and the spacing ∆x is defined by the Gabor parameters through

∆x =
Tx

αx(2N + 1)
, (5.5)

where Tx is the spatial Gabor window length, αx is the oversampling parameter, and
{−N, . . . , N} is the range for modulation index nx. When f(x) is sampled with the ∆x

defined in Eq. (5.5), the pertaining sampled function f is equivalent to the equidistant
sampled list described in [111]. Furthermore, we can define an approximately double-
sampled function as

f
′
= S2 ◦ f(x) = {f(l∆′

x), l = −L, . . . , L} (5.6)

where S2 is a sampling operator associated with the spacing distance ∆′
x = Tx/[αx(4N+1)].
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The spatial spectral Maxwell solver is closely connected with the Gabor frames. The
finite Gabor-frame expansion of a function f(x) ∈ L2(R) and the finite Gabor transforma-
tion are given as

f (M,N)(x) =
M∑

m=−M

N∑
n=−N

fm,ngm,n(x), (5.7)

fm,n =

∫
R

f(x)η∗m,n(x)dx, (5.8)

where gm,n(x) is a Gabor frame function and fm,n is a corresponding Gabor coefficient
computed based on the dual frame function η(x). The calculation of Gabor coefficients for
2D indication functions has been discussed in Chapters 3 and 4. We use the notation f to
indicate a vector whose components are the Gabor coefficients fm,n. Following the analysis
in [134], one can rewrite Eq. (5.7) and Eq. (5.8) into the following matrix-vector-product
form:

f =G · f , (5.9)

f =G−1 · f , (5.10)

where G ∈ CS×(2L+1) is the matrix representation of the finite Gabor transformation,
S = (2M + 1)(2N + 1), and G−1 is its generalized (Moore-Penrose) inverse1. Analogously,
we can obtain the vector f ′ ∈ CS′

which contains the Gabor coefficients of the double-
sampled function f

′
, and S ′ = (2M + 1)(4N + 1).

To represent the connection between the two sets of Gabor coefficients f and f ′ effi-
ciently, we assume that the bookkeeping in the vectors f and f ′ is such that the index n is
the fast-running index and m is the slow-running index, i.e. the element numbering follows
the pattern m(2N + 1) + n. We define a restriction operation U through the following
block diagonal matrix

U =


U1

U2

. . .

U2M+1

 , (5.11)

where all the submatrices have the same structure

Um = [02N+1,N I2N+1 02N+1,N ], (5.12)

for all m = 1, 2, . . . , (2M + 1). Additionally, the matrix block I2N+1 is an identity matrix
of dimension (2N +1)× (2N +1), and 02N+1,N is a zero matrix of dimension (2N +1)×N .
Therefore, the dimension of the submatrix Um is (2N + 1)× (4N + 1), the dimension of U
is (2M + 1)(2N + 1)× (2M + 1)(4N + 1) or S × S ′.

1The same transformations are denoted by B and B−1 in [111].
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On the other side, we define an extension operation P as the following block diagonal
matrix

P =


P1

P2

. . .

P2M+1

 , (5.13)

where the submatrix Pm = UT
m and the superscript T stands for matrix transpose, for all

m = 1 . . . (2M + 1). Clearly, Pm ∈ C(4N+1)×(2N+1), and P is a zero-padding matrix from
CS to CS′

.
With the restriction and extension operators introduced above, we have f = U · f ′.

Unfortunately in the other direction, f ′ ̸= P · f in most cases. However, there is an
approximate relation f

′ ≈ G−1 ·P ·f , since G−1 ·P ·f can be considered as a lower-frequency
approximation to f

′
.

From now on, we define a product function h(x) = f(x)u(x) and study how to obtain
the approximated Gabor coefficients of h(x) based on the two sets of Gabor coefficients
of f(x) and u(x). In other words, we want to compute h based on f and u. The finite
Gabor-frame expansions of f(x) and u(x) are given as:

f (M,N)(x) =
M∑

m=−M

N∑
n=−N

fm,ngm,n(x), (5.14)

u(M,N)(x) =
M∑

m′=−M

N∑
n′=−N

um′,n′gm′,n′(x). (5.15)

Assume the finite Gabor-frame expansion of h(x) is

h(M,N)(x) =
M∑

m′′=−M

N∑
n′′=−N

hm′′,n′′gm′′,n′′(x), (5.16)

then we can compute the Gabor coefficient of h(x) according to Eq. (5.8) and get:

hm′′,n′′ =

∫
R

h(x)η∗m′′,n′′(x)dx

=

∫
R

(∑
m,n

fm,ngm,n

)
·

(∑
m′,n′

um′,n′gm′,n′

)
η∗m′′,n′′(x)dx

=

∫
R

∑
m,n

∑
m′,n′

fm,num′,n′gm,n(x)gm′,n′(x)η∗m′′,n′′(x)dx

=
∑
m,n

∑
m′,n′

fm,num′,n′

∫
R

gm,n(x)gm′,n′(x)η∗m′′,n′′(x)dx

=
∑
m,n

∑
m′,n′

am,nbm′,n′ · Im,n,m′,n′,m′′,n′′ ,

(5.17)
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where the summation ranges −M ≤ m,m′ ≤ M , −N ≤ n, n′ ≤ N are omitted, and we
introduce a notation Im,n,m′,n′,m′′,n′′ in the last step. Eq. (5.12) gives a way to compute the
Gabor coefficients of a product function, which is also described in [197]. We summarize
the above operations into the following definition of a multiplication operator.

Definition 1. Let f and u be the Gabor coefficients of f(x) and u(x) under the finite Gabor-
frame expansion in Eq. (5.14) and Eq. (5.16). The multiplication operator associated with
f is defined as

m(u) : CS → CS, S = (2M + 1)(2N + 1), (5.18)

where the components of m(u) are given by Eq. (5.17).

Definition 1 implies that f is a given parameter associated with the multiplication
operator m, and u is the input to be multiplied. By recalling the formulation in [108],
one can easily recognize the multiplication of the operator Cε and the auxiliary field F is a
typical example of the operator m. The multiplication operator m in Definition 1 has been
proven to work well for relatively low-contrast scattering problems [108–111]. However,
when the contrast of a scatterer becomes high, we encounter an ill-conditioned linear
system for the spatial spectral Maxwell solver, which is therefore generating difficulties
in the iterative solution process to find a solution for the linear system. Furthermore,
even for those cases where one can obtain a solution after a large number of iterations,
the obtained “solution” does not coincide with the reference obtained via an independent
Maxwell solver. To show this ill-conditioning issue, we consider the following example.

Let χ be a contrast function supported on the interval [−50, 50] nm defined as

χ(x) =

{
100, −50 · 10−9 ≤ x ≤ 50 · 10−9,

0, otherwise.
(5.19)

We consider the following multiplication problem with Gabor coefficients:

h(x) = f(x) · u(x), (5.20)

where

f(x) =
1

1 + χ(x)
(5.21)

and u(x) is an arbitrary function. The Gabor parameters used in this example are given in
Table. 5.1, where Tx is the Gabor window length, mx and nx are the spatial shift index and
the frequency modulation index and they are restricted to −M ≤ mx ≤ M , −N ≤ nx ≤ N .
αx and βx are the oversampling parameters.

Table 5.1: Gabor parameters used to analyze and reconstruct Eq. (5.14).

Tx M N αx βx

5 · 10−8 5 7
√

2/3
√
2/3
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Let Aorg be the matrix representation of the multiplication operator m associated with
the function f(x) in Eq. (5.14), and the matrix Aorg is constructed by

A:,i = m(ui), 1 ≤ i ≤ S, (5.22)

where A:,i presents the i-th column of the matrix Aorg, ui is the i-th unit vector, i.e. the
vector with the i-th component being 1 and the others being 0. Clearly, Aorg ∈ CS×S, and
the subscript represents the matrix corresponding to the original multiplication operator
m in Definition 1.

To study the conditioning of Aorg, we consider the following linear system

Aorg · x = brandom, (5.23)

where brandom is a random vector in CS that represents the outcome of the multiplication
between the known function f(x) in (5.20) and a yet unknown function u(x) represented
by x. Solving this linear system thus implies an inversion on the multiplication operator m
associated with the function f(x). Since f(x) is a positive function, this inversion should be
a well-defined operation. We then use the BI-CGSTAB iterative method to solve Eq. (5.17)
and plot the iterative details in Fig. 5.1 in red. From Fig. 5.1 it is clear that more than 800
iterations are required to reach a relative error below 10−5. This large number of iterations
indicates that the matrix Aorg of the original multiplication operator m is ill-conditioned.
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Figure 5.1: Iterative details based on the inversion of the multiplication operators Aorg and
Aimp for Gabor coefficients. The label ”original mult.” refers to the original multiplication
operator m in Definition 1, and the label ”improved mult.” refers to the improved multi-
plication operator m in Definition 2.

To address this ill-conditioning issue, we define another multiplication operator in Def-
inition 2.

77



Definition 2. Let f ′ be the Gabor coefficients of a double-sampled function f
′
, and u be

the Gabor coefficients of u. Then the modified multiplication operator associated with f ′ is
defined as

m(u) = U ·m(P · u). (5.24)

where f ′ is used as a parameter in m. The operators U and P that represent a restriction
operation and an extension operation to Gabor coefficients are given in (5.11) and (5.12).

The operator m in Definition 2 is based on the original multiplication operator m but
with extra operations. First, a set of refined Gabor coefficients f ′ is needed and this can be
done with the double-sampling operator S2 and the finite Gabor transformation operator
G. Second, the input to be multiplied must be padded to make sure two inputs have the
same dimension, before using the multiplication of Eq. (5.17) for n and n′ running from
−2N to 2N , and this step is done with the extension operator P for Gabor coefficients.
Third, an extra restriction operation on the Gabor coefficient is needed to make sure the
output has the same dimension as the input.

The matrix representation of m, which is denoted by Aimp, can be obtained by following
an analogous procedure as in Eq. (5.22). We then solve the following linear system by using
the BI-CGSTAB iterative method again:

Aimp · x = brandom, (5.25)

where brandom is kept the same as in Eq. (5.16). The iterative details for this improved
multiplication operator m are displayed in Fig. 5.1 in blue.

One immediately recognizes that this improved multiplication operatorm requires much
fewer iterations to reach the desired relative error of 10−5: the original multiplication
operator m takes 860 iterations, while the improved multiplication operator m requires
only 40.

To get a better understanding of why the number of iterations changes dramatically, we
compute the eigenvalues of both Aorg and Aimp. Since all the eigenvalues have imaginary
parts that are in amplitude smaller than 10−6, we only focus on their real parts and display
them in Fig. 5.2. We use red crosses to denote the eigenvalues associated with the original
multiplication operator m, and blue plus signs to denote the eigenvalues associated with
the improved multiplication operator m. Fig. 5.2 (a) shows the real parts of all eigenvalues
of Aorg and Aimp, and Fig. 5.2 (b) shows the distribution of the eigenvalues which real part
is in [−0.03, 0.03].

One can readily observe that all the eigenvalues associated with the improved multipli-
cation operator have positive real parts, suggesting a positive definite system matrix Aimp,
which is in line with the positivity of the function f(x) in (5.20). The smallest real part
of these eigenvalues associated with m is about 0.0099, which is very close to its analytical

limit 1
1+99

. On the contrary, the spectrum associated with m suggests an indefinite system,
since there are both positive and negative real parts of those eigenvalues (the smallest one
is −0.022). This change in the definiteness causes a significant difference in the condition-
ing of the systems: the condition number of the system associated with m is 2480, while
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its counterpart with m is 566. This explains the dramatic difference in the convergence of
the iterative solver BI-CGSTAB in Fig. 5.1.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx xxxxxxxxxxxxxxxx

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x original mult.

+ improved mult.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

(a)

xx xx xxxxxxxxxxxxxx xx

+++++++++++++++++++++

x original mult.

+ improved mult.

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

(b)

Figure 5.2: Comparison of the eigenvalues of the matrices Aorg and Aimp. The label ”orig-
inal mult.” refers to the original multiplication operator m and ”improved mult.” refers to
the improved multiplication operator m. (a) real parts of all eigenvalues. (b) real parts of
the eigenvalues in the range [−0.03, 0.03].

5.3 Multiplication of two sampled functions

The equidistant list representation of a function was introduced in [111] to achieve a
much faster multiplication operation than the multiplication of two sets of Gabor coeffi-
cients, for the spatial spectral method. We have discussed the original and the improved
multiplication operators for two sets of Gabor coefficients in the preceding section. Now we
focus on the multiplication of two sampled lists, which is the second type of multiplication
used in the spatial spectral method.

The definition of the original multiplication operator of two uniformly sampled functions
is given in a pointwise form in the following.

Definition 3. Let f and u be the uniformly sampled functions of f(x) and u(x) according
to Eq. (5.4), the multiplication operator associated to f is defined as

m(u) : C2L+1 → C2L+1, (5.26)

where the components satisfy [m(u)]i = f i · ui for all i = 1, 2, . . . , 2L+ 1.

We consider the problem in Eq. (5.20) again with the multiplication performed on the
equidistantly sampled functions. The used Gabor parameters are given in Table 5.1. A
similar procedure as in Section 5.2 has been followed to construct a matrix representation
of the sampled-function-based multiplication operator associated with f . The matrix is
denoted by Aorg, where the bar and the subscript indicate the multiplication is correspond-
ing to the original list-based multiplication in the spatial spectral method [111]. We then
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consider the following linear system

Aorg · x = brandom, (5.27)

where brandom is a random vector in CL. We then use again the BI-CGSTAB iterative
method to solve Eq. (5.27), and plot the iterative details in Fig. 5.3. We notice that more
than 800 iterations are required to reach a relative error smaller than 10−5.

Fig. 5.3 (a) suggests that the matrix Aorg is an ill-conditioned system. When using the
spatial spectral method, this ill-conditioning associated with the multiplication m implies
difficulties when inverting the operator Cε in Eq. (5.1). We also know that the invertibility
of the operator Cε is crucial since the NVF formulation relies on stable transformations
from the auxiliary field F to the electric field E and vice versa [105,107].

Moreover, the ill-conditioning caused by the multiplication operator m also has a severe
impact on the entire system’s conditioning. Recall Eq. (2.77), where the matrix form of
the EFIE (5.26) is (C − G ·M) · u = f . When the matrix C is already ill-conditioned, it
is unlikely to get a well-conditioned system (C − G · M), since in most cases the Green
function G and the field-material interaction operator M will not cure the spectrum for
(C −G ·M).
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Figure 5.3: Iterative details based on the inversion of the multiplication operators Aorg

and Aimp for two sampled functions. The label ”original mult.” refers to the original
multiplication operator m in Definition 3, and the label ”improved mult.” refers to the
improved multiplication operator m in Definition 4.

Clearly, a better multiplication operator for two sampled functions is needed for solv-
ing high-contrast scattering problems with the spatial spectral method. It is required to
find the equivalent sampled-function-based representations for the Gabor-coefficient-based
representations in Definition 2. Since the padding and restriction operators cured the mul-
tiplication operator for Gabor coefficients, we will look for an equivalent for the list-based
representation. Based on the relation of a sampled function and its Gabor coefficients, we
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replace P · u by G−1 · P · G · u, replace U by G−1 · U · G, replace f ′ by G · f ′, and then
obtain G−1 · U ·G ·m(G−1 · P ·G · u), where the corresponding parameter should become
f ′. Additionally, we recall the Gabor transformations G and G−1 have been incorporated
into a pair of Fourier transformations F and F−1 according to Eq. (12) in [111] to yield
fast operations. Therefore the zero-padding with more harmonics in Gabor coefficients
corresponds to increasing the range of the list representation in the spectral domain, and
restricting the harmonics in Gabor coefficients corresponds to restricting the range of the
list representation in the spectral domain. To be precise, we have the following approxi-
mations:

G−1 · P ·G ≈ F−1 · P̃ · F, (5.28)

G−1 · U ·G ≈ F−1 · Ũ · F, (5.29)

where we use P̃ and Ũ to represent an extension operator and a restriction operator on
sampled functions in the spectral domain.

With the above analysis, we now introduce the following modified multiplication oper-
ator between two sampled functions.

Definition 4. Let f
′
and u be the uniformly sampled functions of f(x) and u(x) according

to Eq. (5.4) and Eq. (5.6), respectively. The multiplication operator m is defined as

m(u) = U ·m(P · u), (5.30)

where m is given in Definition 3 and takes f
′
as a given parameter vector. Additionally,

the operators U and P are defined as

P = F−1 · P̃ · F, (5.31)

U = F−1 · Ũ · F, (5.32)

where P̃ and Ũ represent a restriction and an extension operation to the sampled functions
in the spectral domain, F and F−1 are the FFT-based Fourier transformations given in
[111] between a spatial domain and a spectral domain.

The function m is essentially a modification of the original multiplication operator m
with a double-sampled list f

′
. We now discuss the two restriction operators U and Ũ .

From Eqs (5.11) and (5.12), we see that the operator U restricts the range of the Gabor
coefficients by keeping the middle half. Suppose a spectral-domain sampled-function-based
representation F · f has the range [−K,K], for some positive integer K, then the effective
range in the spectral domain is 2

3
· 2K = 4

3
K, due to the Gabor oversampling by a factor

2
3
. Definition 4 takes the double-sampled function f

′
as the associated parameter, therefore

F · f ′ occupies the range [−2K, 2K] in the spectral domain. To reach the original effective
range 4

3
K after the multiplication operator, we need a restriction factor of 1

3
since 4K · 1

3
=

4K
3
. Hence, the operator Ũ restricts the range of the sampled function in the spectral

domain by keeping the middle one third and setting the rest to zero.
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Once again, we construct the matrix representation of m and denote it by Aimp. We
then solve the following linear system by using the BI-CGSTAB iterative method, i.e. we
solve

Aimp · x = brandom, (5.33)

where brandom is the same vector as in Eq. (5.27). The iterative details for this improved
multiplication operator m are displayed in Fig. 5.3 (b). One can immediately recognize
that inverting the matrix associated with the improved multiplication operator m takes
only 21 iterations to reach the same desired relative error.

We now compare the spectrum of Aorg and Aimp in Fig. 5.4. Here we focus on the
real parts of the eigenvalues again, since their imaginary parts have very small amplitude.
Fig. 5.4 (a) shows the real parts of all eigenvalues of Aorg and Aimp, and Fig. 5.4 (b) shows
the distribution of the eigenvalues which real part is in [−0.06, 0.06].

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x original mult.

+ improved mult.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

(a)

xxx xxxxxxxxxxx xxxxxxxxxxxxx xxxxx

++++++++++++++++

x original mult.

+ improved mult.

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

(b)

Figure 5.4: Comparison of eigenvalues of the matrices Aorg and Aimp. The label ”original
mult.” refers to the original multiplication operator m and ”improved mult.” refers to the
improved multiplication operator m. (a) Real parts of all eigenvalues. (b) Real parts of
the eigenvalues in the range [−0.06, 0.06].

Here we observe again that matrix Aorg is indefinite since it has both positive and
negative eigenvalues (starting from −0.05). Therefore, both the original multiplication
operators m and m change in the definiteness of their matrix representations. The matrix
Aimp associated with the improved multiplication operator m is positive definite, with its
minimum being 0.0098, which is very close to its analytical limit 1

1+99
. In addition, the

condition number of Aorg is 10081, while its counterpart with Aimp is 678. This explains
the significant difference in the iterative details in Fig. 5.3.

5.4 Discussion with more examples

Fourier factorization rules for three types of products are discussed in [106]. The first
type is the multiplication of two functions that have no concurrent discontinuities and
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Laurent’s rule should be employed to perform Fourier factorization. The second type is
the multiplication of two functions that have only concurrent and complementary disconti-
nuities, where the inverse rule should be employed instead of Laurent’s factorization rule.
The third type is the multiplication of two functions that have concurrent but not com-
plementary discontinuities. This is the most difficult one, since it cannot be factorized
by Laurent’s rule or the inverse rule. Since there is no other rule available to overcome
the difficulty, the third type of multiplication should be avoided during formulation (an
example is the NVF formulation [105,107]).

The example studied in Section 5.2 and Section 5.3 belongs to the first type, since it is
essentially a multiplication operation, i.e., either m or m, of a discontinuous function with
a continuous function. In this section, we study two other examples that correspond to the
second and the third type of product functions in [106] and we discuss the performances
of the improved Gabor-based multiplication operator.

5.4.1 Example A: the second type of multiplication

Consider the following functions for all x ∈ R:

f(x) =e−x2 · v(x), (5.34)

u(x) =e−x2 · v(x), (5.35)

h(x) =f(x) · u(x). (5.36)

where

v(x) =

{
1, x ≥ 0,

−1, x < 0.
(5.37)

Note that v(x) equals the standard sign function almost everywhere, except at the point
x = 0. It is easy to notice that f(x) ≡ u(x), ∀x ∈ R and the product function h(x)
is continuous everywhere due to the complementary discontinuities. Hence, this example
belongs to the second type of multiplication in [106].

Firstly, we recall the Laurent rule and the inverse rule in Fourier factorization theory.
Let hM(x) be an approximation of h(x) based on a truncated Fourier series, i.e.

hM(x) =
M∑

n=−M

hne
jnx, (5.38)

where hn is the n-th corresponding Fourier coefficient of h(x). Laurent’s rule states that
h(x) can be approximated by the following h(M)(x):

h(M)(x) =
M∑

n=−M

h(M)
n ejnx, (5.39)

h(M)
n =

M∑
m=−M

fn−mum, (5.40)
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where fm and um are the m-th Fourier coefficients of f(x) and u(x), respectively.
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Figure 5.5: (a) Comparison of the analytical function h(x), its approximation with a
truncated Fourier series hM(x), and its approximation h(M) based on Laurent’s rule. M =

10. (b) Relative error of h
(M)
n , i.e. the Fourier coefficients computed based on Laurent’s

rule, compared with hn for different numbers of Fourier coefficients M .

In Fig. 5.5 (a) we show the analytical function h(x) given in Eq. (5.36), the finite
Fourier approximation hM(x) given in (5.38), and an approximated function h(M)(x) given
in (5.39), the latter two with M = 10. Clearly, Laurent’s rule fails to generate accurate
Fourier coefficients to approximate the product function h(x). Furthermore, Fig. 5.5 (b)
shows a divergent trend for the Fourier coefficients computed based on Laurent’s rule when
increasing the number of Fourier coefficients 2M + 1 in the series expansion. According
to the conclusions given in [106], Laurent’s rule should break down on this example and
the inverse rule should be used to perform the multiplication of f(x) and u(x). However,
difficulties can occur when inverting the Toeplitz matrix corresponding to the multiplication
by f(x), which is generated by the Fourier coefficients of 1/f(x) due to the ill-conditioning
of this matrix.

We now study this problem with Gabor frames. Let h and h be the uniformly sampled
functions based on the original multiplication operator m and the improved multiplication
operator m, respectively. The overlines indicate that we are working with equidistant lists
of function values. The Gabor parameters used in this example are given in Table 5.2.

Table 5.2: Gabor parameters used in Examples A and B.

Tx M N αx βx

0.5 10 7
√
2/3

√
2/3

In Fig. 5.6 (a) and (b), we compare the approximated functions h and h, i.e., the

continuous version of h and h, with the analytical reference h(x). It is observed that
strong oscillations occur in h at x = 0, the position of the concurrent discontinuity. The
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approximated function h, essentially based on the improved multiplication operator m, has
fewer oscillations and the oscillations have a smaller amplitude around x = 0 and has a
better global match to the analytical reference h(x).
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Figure 5.6: Comparison of the approximated functions and the analytical reference function

in Example A, where the equidistant sampled functions h and h are computed based on
(a) the original multiplication operator m. (b) The improved multiplication operator m.

We now compare the approximated functions based on the original multiplication oper-
ator m and the improved one m, i.e. the multiplications based on sampled functions. Let
href be the sampled function of h(x), which is analytically given in Eq. (5.36), according
to Eq. (5.4). Then we define the following relative errors:

eorg =
∥h− href∥
∥href∥

, (5.41)

eimp =
∥h− href∥
∥href∥

, (5.42)

where ∥ · ∥ is the ℓ2 norm of a vector. A smaller relative error suggests a set of more
accurate Gabor coefficients induced by the multiplication operator. By increasing the
maximum of the modulation index, N , from 4 to 199 and by computing the corresponding
relative errors of the Gabor coefficients, we obtain the results in Fig. 5.7, presented on a
double-logarithmic scale.

From Fig. 5.7, one can readily see a convergent trend in the accuracy of the approxi-
mated functions for both the original multiplication operator m and the improved multipli-
cation operator m. The current Example A clearly shows that the improved multiplication
operator m outperforms the original multiplication operator m in the second type of prod-
uct function as well.
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Figure 5.7: Accuracy of the approximated product functions based on the original multi-
plication (“org. mult.”) operator m and the improved (“imp. mult.”) one m, with respect
to the maximum of the modulation index used in Gabor frames.

5.4.2 Example B: the third type of multiplication

In this example, we study the third type of product function with the multiplication
operators m and m. Consider the following function

h(x, k) = fk(x), (5.43)

where k is a positive integer indicating the power to which the function f is elevated and

f(x) =

{
1, −2 ≤ x ≤ 2,

0, otherwise.
(5.44)

Clearly for any positive integer k we have h(x, k) = fk(x) ≡ f(x). The discontinuities
involved in hk(x) are concurrent but not complimentary. Therefore, this example belongs
to the third type and the most difficult product in [106].

Following the same procedure in Section 5.4.1, we are able to get the sampled functions

h and h as approximations to the product function h(x, k), based on the two multiplication
operators m and m and a given parameter k. The Gabor parameters used in Example B
are again given in Table 5.2. Here we consider three cases specified by k = 2, k = 20

and k = 200, and for each case we compare the approximated functions h and h with the
corresponding analytical reference h(x, k). We show all the involved functions in Fig. 5.8.

From Fig. 5.8 (a), (c), and (e), it is striking that the approximated function h behaves
much poorer for larger k. Therefore, the original multiplication operator m is unable to
perform the third type of multiplication in [106]. On the other hand, Fig. 5.8 (b), (d), and
(f) suggest that the improved multiplication operatorm yields a better-stabilized operation,
compared with the original operator. However, we still notice that the difference between
h and the reference h(x, k) slowly increases with increasing k.
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Figure 5.8: Comparisons of the approximated functions h and h based on the original
multiplication operator m (left column) and the improved multiplication operator m (right
column). (a) and (b): k = 2. (c) and (d): k = 20. (e) and (f): k = 200.

Recalling Fig. 5.4 (a), the maximum eigenvalue λmax of Aorg is larger than 1, while
Fig. 5.4 (b) shows the maximum eigenvalue λmax of Aimp is still bounded by 1. The
eigenvalues larger than 1 of the matrix representation of m essentially cause the severe
overshooting of the sampled functions h in Fig. 5.8 (a), (c), and (e). This is because the
maximum eigenvalue of the matrix representation of m associated with h(x, k) becomes
λk
max, and it can be a large number for a large k when λmax > 1.
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Next, we study how the accuracy of the approximated functions h and h changes
for increasing k, under the two multiplication operators m and m. Let f and u be the
equidistantly sampled functions of f(x) in Eq. (5.44) and u(x) = 1, then we define the
following references:

cref1 =m(u), (5.45)

cref2 =m(u). (5.46)

Then we construct the vectors containing the approximated sampled functions of h and h
through the following nested operations:

corg(k) =m(. . . ,m(m(u)))︸ ︷︷ ︸
k times

, (5.47)

cimp(k) =m(. . . ,m(m(u)))︸ ︷︷ ︸
k times

. (5.48)

The relative errors in corg(k) and cimp(k) are defined as:

e1(k) =
∥cref1 − corg(k)∥

∥cref1∥
, (5.49)

e2(k) =
∥cref2 − cimp(k)∥

∥cref2∥
, (5.50)

where ∥ · ∥ stands for the ℓ2 norm of a vector.
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Figure 5.9: Accuracy comparison of the approximated product functions h and h of h(x, k),
based on the original multiplication (“org. mult.”) operator m and the improved multipli-
cation (“imp. mult.”) operator m, with respect to different k.

Fig. 5.9 shows how the relative error in the approximated sampled functions changes for
k = 1, . . . , 300 on a double-logarithmic scale. Note that the red lines represent the accuracy
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of the approximated sampled function computed based on m and their counterparts in blue
represent the accuracy of the approximated sampled function computed based on m. Here
we notice that the results with the original multiplication operator diverge rapidly away
from the desired result after k = 20, while the results with the improved multiplication
operator m suggests a slowly increasing error when k increases.

5.5 Numerical experiment

To show the effectiveness of the improved field material interaction operator introduced
in Section 5.3, we have tested the spatial spectral Maxwell solver [24] with the improved
field material interaction operator on a 3D scattering problem with high contrast. We
compare the solution with an independent reference and perform a convergence study by
refining the discretization.

5.5.1 Geometry configuration and discretization

A bar-shaped scatterer with a high relative permittivity εr = 17 is placed in free space,
see Fig. 5.10. The scatterer’s dimensions are given as 300 × 200 × 100 nm. A normally
incident plane wave with a wavelength λ = 425 nm illuminates the bar from above, with
the electric field polarized in the x-direction and with unit amplitude. The wave vector
of the incident plane wave is k = (0, 0, k0), where k0 = 2π/λ is the wave number in free
space.

Figure 5.10: Normal incident plane wave illuminated and a bar-shaped scatterer with
relative permittivity εr = 17 in free space.

Table 5.3 displays all the discretization parameters used for this example. Following
the notations used in Section 2.3.2, we use Tx, Ty to denote the Gabor window lengths, mx,
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my to denote the spatial shift numbers, and nx, ny to denote the frequency modulation
numbers. The subscripts x and y indicate that the parameters are associated with the
x- and y-direction, respectively. We use Nz to represent the number of PWL functions
that are used in the z direction. Based on the parameters in the second row, we are going
to show the near-field results in Section 5.5.2, and far-field results in Section 5.5.3. The
values of nx, ny, and Nz in the third and the fourth rows will be varied, since we are going
to consider different discretizations in a convergence study in Section 5.5.3. Additionally,
the oversampling parameters of the Gabor frame, i.e. αx, αy and βx, βy, are specified in
the table. We use IDR(16) as the iterative method to find the solution, and the maximum
number of iterations is set to 1250.2

Table 5.3: Discretization parameters used in Section 5.4. Parameters contained in the
second row are used for the simulations in Section 5.5.2. The third row and the fourth row
include the parameters used for the convergence study in Fig. 5.14 (a) and (b).

case Tx [nm] Ty [nm] mx,my nx, ny Nz αx, αy βx, βy

Section 5.5.2 130 130 −4 : 4 −28 : 28 201
√
2/3

√
2/3

Fig. 5.14 (a) 130 130 −4 : 4 vary 201
√

2/3
√

2/3

Fig. 5.14 (b) 130 130 −4 : 4 −28 : 28 vary
√
2/3

√
2/3

5.5.2 Comparison of near-field results against a reference

We have computed the solution for the same 3D scattering problem in the spatial
spectral Maxwell solver with both the original field-material interaction operator, given
in Definition 3 in Section 5.3, and the improved field-material interaction operator, given
in Definition 4 in Section 5.3. We compare the solutions with the commercial reference
JCMWave, which employs FEM [198]. Discretization parameters are specified in Table 5.3
and the total number of unknowns for the corresponding matrix equation (2.77) is 1.6×108.
In particular, we consider the total electric fields at z = 120 nm. Fig. 5.11 (a) and (b) show
the absolute values of Ex(x, y) and Ey(x, y) as obtained from the original multiplication
operator m, where black rectangles are added to denote the boundary of the scatterer.
Absolute values of Ex(x, y) and Ey(x, y) obtained from the JCMWave, which are considered
as a numerical reference, are displayed in Fig. 5.11 (c) and (d). It is apparent that the
results based on the original multiplication operator are totally different from the reference.
In Fig. 5.11 (e) and (f) we show absolute values of Ex(x, y) and Ey(x, y) based on the
improved multiplication operator m. One can easily see that the near-field solutions based
on the improved multiplication operator match the reference mostly well, except for some
oscillations that can be observed near the boundary of the scatterer, which are due to the
Gibbs phenomenon.

2 In this example we are only interested in the accuracy of the solution that can be achieved with the
improved multiplication operator. A reduction in the number of iterations is discussed in Section 6.4 where
a preconditioner is employed.
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Figure 5.11: Cartesian components of the total electric field at z = 120 nm. Left column:
|Ex(x, y)|, right column: |Ey(x, y)|. (a) and (b): the multiplication is performed with the
original field material interaction operator. (c) and (d): JCMWave reference. (e) and (f)
the multiplication is performed with the improved field material interaction operator.
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Additionally, we show the absolute error, i.e. for the x component ||Ex|−|Ex,JCM || and
analogous absolute errors for the y and z components, of the solutions computed based
on the improved operator in Fig. 5.12. The ringing effect of the Gibbs phenomenon is
observed again.
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Figure 5.12: Absolute error in the total electric field between the solution obtained with
the improved multiplication operator and the result from the JCMWave reference. All
are shown on a log10 color scale. (a) Absolute error in |Ex(x, y)|. (b) Absolute error in
|Ey(x, y)|. (c) Absolute error in |Ez(x, y)|.

5.5.3 A convergence study in the spectral domain and far-field
results

To illustrate the convergence of the proposed method under refinement of the discretiza-
tion, we test the same scattering problem as given in Section 5.5.1 with refinements of the
discretization parameters in the x, y and z directions.

Table 5.4: Refined discretization along x and y directions.

Discretization 1 2 3 4

−Nx : Nx, −Ny : Ny −10 : 10 −16 : 16 −22 : 22 −28 : 28

∆x, ∆y [nm] 5 3.2 2.3 1.8

Nr. of unknowns 2.2 · 107 5.3 · 107 9.9 · 107 1.6 · 108

Firstly, we apply the discretizations specified in the third row in Table 5.3, and set up
four cases with an increasing number of modulated Gabor functions per window length,
i.e., nx and ny in Table 5.3 range from 21 to 57. We compute the resolution ∆x along the
x-direction according to the following formula:

∆x =
αxTx

2Nx + 1
, (5.51)
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where −Nx : Nx is the range for nx. Analogously, we get ∆y. The resolutions in the x
and y directions and the number of unknowns in the corresponding linear system are given
in Table 5.4. We now compute and analyze the relative errors of the four simulations in
Table 5.4. We use Es

ref,x(kx, ky) to denote the far-field JCMWave reference in the spectral
domain, and Es

x(kx, ky) to denote the far-field solution obtained within the spatial spectral
method with the improved multiplication operator m. Let Λ be a uniform grid in the spec-
tral domain containing 124, 301 sample points within the Ewald circle. Then we can define
vectors vx, vref,x by evaluating Es

x(kx, ky) and Es
ref,x(kx, ky) on the grid Λ, respectively.

Then we define the relative error of the amplitude in the x-direction according to:

rx =

∥∥|vx| − |vref,x|
∥∥∥∥|vref,x|

∥∥
∞

, (5.52)

where ∥ · ∥ and ∥ · ∥∞ stand for the ℓ2 norm and the ℓ∞ norm of a vector, respectively.
Analogously, we can compute ry and rz. Fig. 5.13 (a) shows these relative errors with
corresponding discretizations as specified in Table 5.4 on a double-logarithmic scale. The
horizontal axis represents the total number of sample points in the transverse plane, where
Nxy = (2Mx+1) · (2My +1) · (2Nx+1) · (2Ny +1). The vertical axis represents the relative
errors rx, ry, and rz. The decay of the relative error is clearly observed with respect
to the refinement of the discretization parameters in the transverse plane. On the other
hand, we also notice that the convergent trend in Fig. 5.13 (a) levels off after some point.
This is a sign that another factor, e.g., the discretization along the longitudinal direction,
might limit the far-field accuracy thereafter. Therefore we do a convergence study along
z-direction in the following experiment.
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Figure 5.13: Convergence study of the spectral-domain Cartesian components computed
based on the improved operator. (a) Refined discretization along x and y directions as
specified in Table 5.4. (b) Refined discretization along z direction as specified in Table 5.5.

Secondly, we apply the discretizations specified in the fourth row in Table 5.3. The
number of Gabor frames per window length is fixed by setting Nx = Ny = 28, and the
resolution in the transverse plane is ∆x = ∆y = 1.8 nm. We then set up five cases by
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varying the number of the PWL functions in the z direction, i.e. Nz is changing from
11 to 201. The increasing resolution due to the refined longitudinal discretization and
corresponding dimensions of the system are shown in Table 5.5.

Table 5.5: Refined discretization in z direction.

Discretization 1 2 3 4 5

Nz 11 21 51 101 201

∆z [nm] 10 5 2 1 0.5

Nr. of unknowns 8.7 · 106 1.7 · 107 4 · 107 8 · 107 1.6× 108

Fig. 5.13 (b) shows the relative errors due to different discretizations according to
Table 5.5, also in a double-logarithmic scale. Here we observe again a convergent trend
with respect to the refinement of the discretization along the z-direction. The results before
Nz = 21 yield a large relative error. The convergent trend starts after Nz = 21. Be aware
that the case in Table 5.4 with Discretization 4 is identical to the case in Table 5.5 with
Discretization 5. Therefore, the relatively slow decay in Fig. 5.13 (a) and the relatively
fast decay in Fig. 5.13 (b) around the last case indicate that the far-field accuracy is more
limited by the discretization in the longitudinal direction than the discretization in the
transverse directions.

In particular, we consider the case with the finest resolution in all directions, i.e. Dis-
cretization 4 in Table 5.4 or Discretization 5 in Table 5.5. The far-field amplitude in the
plane z = 0 nm is given in Fig. 5.14 (a), based on the improved multiplication operator m
given in Section 5.3 Definition 4 in the spatial spectral solver, and Fig. 5.14 (b), based on
the JCMWave reference. Only the fields within the Ewald circle in the spectral domain are
displayed. The absolute error in this far-field solution is displayed on a log10 color scale in
Fig. 5.14 (c).
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Figure 5.14: Far-field results in comparison. (a) far-field amplitude ∥Es(kx, ky)∥, based on
the improved multiplication operator, (b) far-field amplitude of the electric field based on
the JCMWave reference, and (c) absolute error of the far-field amplitude ∥Es(kx, ky)∥ on
a log10 color scale compared to the JCMWave reference.
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5.6 Conclusion

We have introduced two improved multiplication operators: one between two sets of
Gabor coefficients and one between two equidistantly sampled functions. Each improved
multiplication operator implies a modification to the result obtained from the original mul-
tiplication operator, as defined in [111,197]. The modification is performed in the spectral
domain and yields a smoother approximated product function in the spatial domain.

As a further analysis of the improved multiplication operators, we studied three ex-
amples corresponding to the three types of multiplication classified in [106]. In the first
example, the improved multiplication operators (for both two sets of Gabor coefficients
and two sampled functions) correspond to a well-conditioned linear system, resulting in a
lower cost when inverting the operator Cε in the spatial spectral method. In the second and
the third example, we focused on the improved multiplication for two sampled functions
and showed the accuracy of the Gabor coefficients of the product function is significantly
improved with the improved multiplication operator. Finally, we studied a 3D scattering
problem with the improved multiplication operator in the spatial spectral method and
validate both the near-field and far-field results with a commercial FEM-based reference.
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Chapter 6

A normal-vector-field-based
preconditioner for a spatial spectral
domain-integral equation method for
multi-layered electromagnetic
scattering problems1

A normal-vector-field-based block diagonal-preconditioner for the spatial spectral in-
tegral method is proposed for an electromagnetic scattering problem with multi-layered
medium. This preconditioner has a block-diagonal matrix structure for both 2D TM po-
larization and 3D cases. Spectral analysis shows that the preconditioned system has a more
clustered eigenvalue distribution, compared to the unpreconditioned system. For the cases
with high contrast or negative permittivity, numerical experiments illustrate that the pre-
conditioned system requires fewer iterations than the unpreconditioned system. The total
computation time is reduced accordingly while the accuracy based on the normal-vector
field formulation of the solution is preserved.

6.1 Introduction

In electrical engineering Maxwell solvers for electromagnetic scattering problems have
wide and important applications, which range from semiconductor metrology in integrated
circuits (ICs) production [7, 200, 201], to designing elements on nanophotonic chips [202,
203], and to analysing metamaterials [204, 205]. In these cases, it is required to have fast
and accurate Maxwell solvers, especially for the cases where the number of unknowns is
large.

Different types of Maxwell solvers have been developed in the past decades to solve
electromagnetic scattering problems. When the incident fields and solutions are station-

1This chapter was published as [199]
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ary or time-harmonic, one can solve the problem with a frequency-domain Maxwell solver.
The frequency-domain solver can be more computationally efficient than a time-domain
Maxwell solver, and it can be divided into two categories. The first kind relies on a differ-
ential form of Maxwell’s equations, popular methods in this first category are the finite-
difference (FD) [34] and finite element methods (FEM) [65]. The second category depends
on an integral-equation formulation of Maxwell’s equations, which incorporates the Green
function and the volume is restricted to the support of the sources of the electromagnetic
field. Both domain integral equations [206,207] and surface integral equations [208] belong
to the latter category.

In [108–110], a spatial spectral method is proposed to solve two-dimensional (2D) trans-
verse electric (TE), 2D transverse magnetic (TM) and three-dimensional (3D) scattering
problems in a layered medium, respectively. The main differences between this method and
other volume integral equation solvers are: (1) a Gabor frame is used as a discretization
in the transverse plane, which brings a fast and accurate Fourier transformation; and (2)
a spectral integration path is chosen to avoid the singularities of the Green function in the
spectral domain. The accuracy is improved by introducing an auxiliary field based on the
local normal-vector field (NVF) formulation [107].

The above spatial spectral discretization approach leads to a high-dimensional linear
system of equations. Usually iterative methods such as GMRES [138], BiCG-type meth-
ods [85,140,209], or IDR(s) [86] are deployed to solve these large linear systems instead of a
direct method [135]. For each iteration, this spatial spectral solver reaches a computational
complexity of O(N logN) in terms of the matrix-vector product. However, convergence
difficulties are observed in terms of a large number of iterations when the underlying phys-
ical problem has high-contrast or negative-permittivity scatterers embedded in the layered
medium, or when the scatterer is large. Preconditioning is usually a vital component for
high-dimensional linear systems with a poor convergence rate, to enable practical computa-
tions within a reasonable time [139]. A good preconditioner transforms the original system
into a system that has the same solution, but exhibits better convergence performance.
Furthermore, constructing and executing this preconditioner should be fast because it will
be performed in every iteration as an extra matrix-vector product (MVP).

Optimal circulant preconditioners have been successfully used in domain integral equa-
tions in one-dimensional (1D) and 2D TE, or E-polarized cases to accelerate the iteration,
see [210] and [211]. Circulant-type preconditioners have also proved effective to solve the
system in the form of I − GX with multi-level Toeplitz structure [212]. For scattering
in periodic setups, the integral-equation formulation in the transverse directions exploits
a continuous auxiliary field formulation together with a normal-vector field around ob-
ject boundaries [105, 107]. In that case, the linear system corresponding to the integral
equation can be written in the form (C − GM)u = f , where the matrices C and M are
block-Toeplitz-Toeplitz-block (BTTB) matrices, and the matrix G represents the Green
operator. In [213], the matrix C−1 and its approximations have been proposed as precon-
ditioners and promising improvements were obtained after deploying these preconditioners.
For the nonperiodic case, the spatial spectral method based on Gabor frames and an aux-
iliary field in combination with a normal-vector field formulation [108, 110] bears a close
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resemblance to the case of fully spectral methods for periodic structures. Therefore, it is a
natural idea to extend the application of the C−1 preconditioner in [213] to the Gabor-frame
based spatial spectral solver, which is the main objective of this paper. To be specific, we
show that this NVF-based preconditioner has a block-diagonal structure and we illustrate
that this preconditioner can reduce the number of iterations, while preserving the accuracy
of the solution for high contrasts or negative permittivities.

This paper is organized as follows. In Section 6.2 we recall the most important details
of the 2D TM and 3D spatial spectral Maxwell solver and we establish the NVF-based
preconditioner. In Section 6.3 we discuss the effects of this NVF-based preconditioner
based on spectral analysis. Numerical experiments are discussed in Section 6.4, which
contains three experiments for which we show the reduction in the number of iterations,
an accuracy validation, and a comparison in computation time. Section 6.5 contains the
conclusions.

6.2 Formulation

Consider the following 2D or 3D scattering problem in Fig. 6.1. A multi-layered di-
electric medium is placed in between two dielectric half-spaces. We define a Cartesian
coordinate system such that all layers are stacked along the z direction as background ma-
terials, and each layer i (1 ≤ i ≤ N) has a constant relative permittivity εrbi. A scattering
object, which is made of a different material, is located in a finite domain D ∈ R3 and is
completely embedded within layer i. The relative permittivity of the scatterer is εrs and
one can define a global relative permittivity function εr(x) to distinguish all materials,
where x = (x, y, z) denotes the spatial coordinates. In the absence of the scatterer, the
incident electric field Ei(x) can be calculated as in [10].

Figure 6.1: Geometric setting for a multi-layer medium with embedded scattering object.
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6.2.1 Summary of the spatial spectral method

The spatial spectral method [24] is developed based on the following domain integral
representation:

Ei(xT , z) =E(xT , z)

−F−1
T

{∫
R

G(z′|kT , z) · FT [J(xT , z
′)]dz′

}
(6.1)

where xT denotes the spatial Cartesian coordinates in the transverse plane (i.e., xT = (x, y)
in the 3D case and xT = x in the 2D case), similarly, kT denotes the spatial Fourier
transform variables in the transverse direction, i.e. with respect to xT . Note that FT and
F−1

T denote a pair of Fourier transformations in the transverse plane between xT and kT .
G is the spectral-domain Green operator in the multi-layered medium. E(xT , z) represents
the unknown total electric field, J(xT , z) is the contrast current density given by the spatial
field-material interaction:

J(xT , z) = jωε0εrbiχ(xT , z)E(xT , z), (6.2)

where ε0 is the permittivity of free space, εrbi is the relative permittivity of the ith homo-
geneous layer in the background medium that contains the scatterers. Given the relative
permittivity function εr(xT , z), the contrast function χ(xT , z), bound to layer i, is defined
as

χ(xT , z) =
εr(xT , z)

εrbi(z)
− 1, (6.3)

which is only supported on the domain of the scatterer.
One important feature of this spatial spectral method is that a Gabor frame is used

to perform discretization in the transverse plane in both spatial and spectral domains. A
Gabor-frame expansion for any f(xT ) ∈ L2(R2) in the spatial domain is

f(xT ) =
∑
m,n

fm,ngm,n(xT ), (6.4)

in whichm and n represent the spatial and the spectral shift number, respectively, gm,n(xT )
is a Gabor frame function and fm,n is a Gabor coefficient. Gabor coefficients are computed
via the Gabor transformation:

fm,n =

∫
f(xT )η

∗
m,n(xT )dxT , (6.5)

where ηm,n(xT ) is the dual frame function and is computed via the Moore–Penrose inverse
[132]. Full representations of the Gabor frame function and its dual frame function can
be found in [108, 110]. The main advantage of this Gabor-frame-based discretization is
that it establishes a fast relation between the spatial domain and the spectral domain.
The Fourier transform of a spatial Gabor frame function gm,n(xT ) yields a Gabor frame

100



in the spectral domain, and the Gabor coefficients of the spectral function f̂(kT ) can be
readily obtained via simple operations on the spatial Gabor coefficients fm,n [197]. This
property guarantees fast transformations between the spatial and the spectral domains and
eventually contribute to the O(N logN) computational complexity for the matrix-vector
product of the spatial spectral method, where N represents the total number of unknowns
after discretization. In [111], a set of basis functions is calculated based on equidistant
Dirac delta test functions and an approximation of the exact Gabor-based discretization
is introduced in [110] for 3D scattering problems. These new basis functions yield faster
operations like multiplication and FFT-based Fourier transformation, which reduces the
computation time and preserves accuracy.

In the z direction, the integral in Eq. (6.1) is discretized in terms of piecewise-linear
(PWL) expansion functions:

Λ(z) =

{
1− |z−p∆z |

∆z
if |z − p∆z| < ∆z

0 if |z − p∆z| > ∆z

, (6.6)

where ∆z is the discretization step in the z direction and 1 ≤ p ≤ Nz denotes the index of
the sample points along the z direction. Nz denotes the total number of sample points in the
z direction. Another feature of the spatial spectral method is that a deformed integration
path on the complex plane is chosen as alternative to an integration path on the real axis,
to properly handle the branch cuts of the dielectric half-spaces and the poles that represent
guided waves of the layered medium. Based on the reflection interfaces within a multi-
layered medium [10], effective reflection coefficients are defined in [108–110]. Representing
the Green function in the spectral domain along this integration path avoids the tedious
calculation of Sommerfeld integrals.

To improve the accuracy and efficiency of the Gabor expansion in the presence of
discontinuous permittivities in the transverse plane, a local normal-vector field formulation
is used in this spatial spectral method. Based on the Li rules [106], which provide a
framework to assess whether functions with discontinuities can be multiplied or not, the
normal-vector field formulation was introduced by Popov and Nevière [105] to improve the
convergence in Fourier analysis. The main idea of the normal-vector field formulation is to
perform spatial multiplications on the continuous components of the electric field E and
the electric flux density D, which together constitute the auxiliary field F, and then derive
their discontinuous components from the multiplication by the field-material interactions.
The normal-vector field F can then be transformed to the total electric field E and the
contrast current function J through

E = CF,

J = MF.
(6.7)

Explicit expressions of components of matrices C andM expressed in Cartesian coordinates
are given in [108], [110] and [107].
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6.2.2 The NVF-based block-diagonal preconditioner

Based on the domain integral representation (6.1) and the normal-vector field formula-
tion (6.7), the spatial spectral method can be represented by the following linear system:

Lu = f , (6.8)

where L ∈ CN×N is the system matrix, the inhomogeneous term f ∈ CN represents the
incident field Ei, u ∈ CN contains the expansion coefficients of the auxiliary field F to
be determined, and N represents the number of unknowns. The system matrix A can be
decomposed as

L = C −G ·M, (6.9)

where C and M transform the normal-vector field F into the total electric field E and
the contrast current J through Eq. (6.7), and G denotes the Green tensor operation in
combination with a pair of Fourier transformations. In the spatial spectral solver [24], the
matrix L is implemented implicitly to avoid storing a full system matrix.

The structures of matrices L,C,G,M depend on the order of the discretization indexes
associated with either the transverse plane or the z direction. When choosing the index
associated to z-samples as the outermost one, i.e. the slowest changing index when moving
row-wise or column-wise, matrices C and M have a block-diagonal structure with each
block containing the Gabor coefficients of the operators related to the contrast χ (defined
in [108] and [110]). The block-diagonal structure essentially comes from the direct (spatial)
multiplication between the χ-related operators and the auxiliary field F per z sample. The
Green matrix G contains the Gabor transformation of the homogeneous-medium Green
tensor and the reflected waves from the layer interfaces [109, 110] and therefore it has a
denser structure at the block level. On the other hand, the fact that the Gabor frames
have effectively a finite support in the spectral domain yields some sparsity per block of
the matrix G. Simplified structures of matrices L, C, G and M are given in Fig. 6.2.

Figure 6.2: Sparsity patterns of the matrices L, C, G, and M .

In [213], the system of a light scattering problem for a 2D-periodic structure was also
represented in the form C −GM , but then for an expansion in terms of (discrete) Fourier
modes. For that case, the matrix C is a block-diagonal matrix and each diagonal block
of the matrix C is a so-called BTTB-block matrix. Preliminary investigations have shown
that the number of iterations can be reduced significantly by taking the full inverse matrix
C−1 as a preconditioner. Since the Gabor-frame transformation is a unitary transformation
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[214], it is natural to transfer the idea of this C−1 preconditioner to the spatial spectral
method, where the Gabor representation is used in the transverse plane.

The Nz block matrices of C in Fig. 6.2 come from the Nz sampling points in z direc-
tion. Each block corresponds to the Gabor transformation of the function χ(xT , zp) and
the normal-vector field in the transverse plane with some fixed z = zp (1 ≤ zp ≤ Nz).
Therefore, for a dielectric scatterer that has a uniform cross section in the z direction, the
block submatrices of C are identical to each other. Together with the sparsity, owing to
the block-diagonal structure, one can readily see that the matrix C−1 can be constructed
by inverting one block submatrix of C. This simplifies the computational procedure in
practice and makes C−1 a good candidate to precondition the original system Lu = f .
Hence we refer to the matrix C−1 as the normal-vector-field-based block-diagonal (NVF-
BD) preconditioner for the spatial spectral method.

6.3 An indication of a clustered spectrum

It is well known that the convergence rate of an iterative method highly depends on the
distribution of the eigenvalues of the system matrix: the more clustered the spectrum is,
the faster the convergence rate will be, see [215, Chapter. 1]. Hence, a good preconditioner
should yield a clustered spectrum for the preconditioned system matrix and result in an
increased convergence rate. The clustering effect has been studied in detail for various
types of preconditioners, e.g. circulant preconditioners [216–218], Toeplitz preconditioners
[219–221], and block Toeplitz preconditioners [222]. Following the analysis for the above
preconditioners, we compare the eigenvalue distributions of the systems with and without
applying the NVF-BD preconditioner.

Figure 6.3: Scattering setup: a 2D TM polarized field is incident on a dielectric object (in
red) embedded in a layered medium composed of SiO2 and vacuum. εrb,i, for 0 ≤ i ≤ 4,
denotes the relative permittivities of these layers.
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To this end, we consider a 2D scattering problem as presented in Fig. 6.3, where one
rectangular scatterer is embedded in a layer of SiO2 enclosed by two vacuum half-spaces.
The incident field is a plane wave with wavelength 425 nm that is normally incident with
respect to the xy plane and the incident electric field Ei is polarized along the x direction.
The substrate medium SiO2 has a relative permittivity εrb = 2.16, and the scatterer has
a relative permittivity εr = 54. Therefore the scatterer has contrast χ = 24 and its
length in the x direction is 200 nm. With such a high-contrast case we expect a better
conditioned system after applying the NVF-BD preconditioner. In this example there are
15990 unknowns.

In Fig. 6.4 we compare the absolute values and real parts of the eigenvalues. Both the
original system and the preconditioned system are indefinite but not strongly: among the
15990 eigenvalues only 14 of them have negative real parts. Throughout the rest of this
article, ’org’ represents the original system and ’pdr’ represents the system after applying
the NVF-BD preconditioner. In Fig. 6.4 (a), the horizontal axis denotes six intervals
ranging from 0.003 to 32, and the vertical axis represents the number of the eigenvalues,
which absolute values belong to each of the corresponding intervals, on a log scale. A
significant difference is observed when comparing their minimum absolute eigenvalues: the
minimum absolute eigenvalue is shifted away from the origin from 3.8×10−3 to 7.6×10−2.
In Fig. 6.4 (b), we see the real part of those eigenvalues that satisfy −0.5 ≤ Re(λi) ≤
2. It is clear that without the NVF-BD preconditioner, the original system has much
more eigenvalues close to 0, while after applying the NVF-BD preconditioner, only a few
eigenvalues around 0 remain and there are much more eigenvalues clustered around 1. The
distribution of eigenvalues plays a crucial role in a system’s conditioning, especially when
the maximum eigenvalue does not change dramatically.
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Figure 6.4: Comparison of eigenvalue distributions: (a) number of eigenvalues with absolute
value located in per indicated interval, for the original system (org) and the preconditioned
system (pdr). Note that the minimum and the maximum absolute eigenvalues of the
original system are 0.0038 and 25, and the counterparts for the preconditioned system are
0.076 and 25. (b) Real parts of the eigenvalues Re(λi) in the range [−0.5, 2].
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Table 6.1: Percentage comparison for eigenvalues located within the interval [1− δ, 1 + δ],
given δ as a parameter.

δ % of org. % of pdr.

10−2 89.5 93.0

10−4 85.4 91.6

10−6 67.0 81.4

10−8 36.5 71.5

Fig. 6.4 also shows that the preconditioned system’s spectrum is more clustered around
1. To verify this observation, we counted how many eigenvalues are located within the
interval [1 − δ, 1 + δ] for a given δ > 0. We obtain the percentages by dividing by the
total number of eigenvalues and compare them in Table 6.1. Note that in the original
system only 36.5% of the eigenvalues were located within the disc centered at 1 with radius
10−8 in the complex plane, while this number becomes 71.5% after applying the NVF-BD
preconditioner. Clearly, there is a stronger clustering of the eigenvalues around 1 in the
preconditioned system. Analogous to the clustering effects studied in other preconditioners
[216–222], we expect this promising indicator of the NVF-BD preconditioner can reduce
the number of iterations as well.

6.4 Numerical Results

To show the effectiveness of the NVF-BD preconditioner, we have tested the precondi-
tioned system on the following three scattering problems: (A) a 2D TM rectangular object
with high contrast, (B) a 2D TM metal grating problem with negative permittivity and (C)
a 3D bar-shaped object with high contrast. In all cases we mainly focus on the reduction
in the number of iterations after applying the NVF-BD preconditioner. We also show the
reduction in computation time in case (A), and compare the solution in case (B) with an
independent reference. The iterative method used in all three cases is the BiCGstab(2)
algorithm [85], with the maximum number of iterations set to 1250. In Table 6.2 we sum-
marize all Gabor parameters used in these three problems. Note that case (A-1), case (A-2)
and case (A-3) are three variants of case (A), which are used to demonstrate the NVF-BD
preconditioner’s effects on larger-scatter cases and computation time. Following the nota-
tions in [108–110], we use X, m and n to denote the Gabor window length, the spatial shift
number, and the frequency modulation number, respectively, and we use Nz to represent
how many PWL functions are used in the z direction. Further, p = 3 and q = 2 are the
oversampling parameters for the Gabor frames. Note that case (C) is a 3D problem and
we use the same discretization parameters in both x and y directions.

We define the relative error in step k, with corresponding solution vector uk, as ek =
∥Luk−f∥

∥f∥ , with the system matrix L and the inhomogeneous term f introduced in Section 6.2,

and ∥ · ∥ denotes the ℓ2 norm of a vector. The iterative procedure is terminated once
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a relative error of 10−5 or less is reached. It is known that different iterative methods
yield differences in convergence behaviour, especially for high-contrast cases. However,
comparing the difference in convergence of the various iterative methods is not the aim of
this paper.

Table 6.2: Discretization parameters used in simulation cases (A), (B) and (C).

case X [nm] m n Nz

(A) 100 −7 : 7 −40 : 40 41

(A-1) 100 varying −40 : 40 41

(A-2) 100 −5 : 5 varying 101

(A-3) 100 −5 : 5 −100 : 100 varying

(B) 500 −12 : 12 −40 : 40 29

(C) 100 −4 : 4 −10 : 10 21

6.4.1 Case (A): a 2D TM high-contrast problem

In the first case we consider the 2D scattering problem in Fig. 6.3 again and keep the
geometry parameters as introduced in Section 6.3. Table 6.2 displays the discretization
parameters we used. Note that there are 81 frame functions used in each Gabor window
length X, which yields a resolution of 1 nm in the x direction. In the z direction the PWL
functions are employed with sample distance ∆z = 2.5 nm. Discretization parameters are
given under case (A) in Table 6.2.

Table 6.3: Total number of iterations for Simulation case (A) for a scatterer with different
contrast χ but the same geometric size. Note that ”1250+” means the iterative solver fails
to reach the desired relative error within 1250 iterations.

χ org pdr

2 7 4

4 17 9

8 50 22

16 245 66

24 1227 112

32 1250+ 247

48 1250+ 446

64 1250+ 743

To see the effect of the NVF-BD preconditioner on the number of iterations, we fix the
object’s size by taking its width w = 200 nm and change the value of the contrast χ. The
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contrast ranges from 2 to 64 and we are more interested in the high-contrast cases, since
they are more challenging. We compare the number of iterations for the original solver and
the preconditioned solver in Table 6.3. Due to the nature of the BiCGstab(2) algorithm,
one iteration represents four matrix-vector products (MVPs). Note that in the low-contrast
cases such as χ ≤ 4 the NVF-BD preconditioner saves about 50% of the iterations. For
the cases where 8 ≤ χ ≤ 24 the total number of iterations is reduced by up to 90%, when
χ ≥ 32 the unpreconditioned system fails to converge within 1250 iterations, whereas
the NVF-BD preconditioner makes the solver converge within an acceptable number of
iterations.

Fig. 6.5 shows the evolution of the relative error versus the iteration count for the orig-
inal system and the preconditioned system for the specific case χ = 24, which corresponds
to a relative permittivity εr = 51.87 for the rectangular scatterer. The horizontal axis
denotes the number of iterations within the iterative solver, and the vertical axis denotes
the relative error of the approximated solution at each iteration. Clearly, the precondi-
tioned system significantly outperforms the original system in this high-contrast case. One
possible reason for this significant reduction in number of iterations is that the NVF for-
mulation plays a dominant role in the behavior of the iterative solver acting on the original
system. The NVF-BD preconditioner improves the distribution of eigenvalues, as observed
in Fig. 6.4, and also yields a much better conditioned system. The reduction in the num-
ber of iterations also saves a significant amount of computation time. We recorded the
total computation times for this case on a single-core Intel(R) Xeon(R) Gold 6148 CPU
at 2.40 GHz with 755 GB RAM. The original system takes 11,829.5 seconds (3 hours, 17
minutes and 12 seconds), while the preconditioned system only needs 1,151.5 seconds (19
minutes and 12 seconds) to reach the desired relative error of 1 · 10−5.

Figure 6.5: Convergence of the iterative solver for the high contrast case in Fig. 6.3 with
χ = 24. The dashed line denotes the desired relative error 1 · 10−5.

To explore the performance of the NVF-BD preconditioner on a larger scattering ob-
ject, we change the scatterer’s size and keep its contrast constant. The scatterer’s width is
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changed from 200 nm to 1100 nm, which implies that the range of the x coordinate of the
scatterer changes from [−100, 100] nm to [−550, 550] nm. We set the spatial shift index
m of the Gabor frame in Table 6.2 from m = −8 : 8 to m = −12 : 12, and therefore the
corresponding computation domain is increased from [−500, 500] nm to [−850, 850] nm in
the x direction, which covers the scatterer’s domain and a part of its near field. Other
discretization parameters are given under case (A-1) in Table 6.2. For all cases, the scat-
terer’s contrast is kept at χ = 16, which corresponds to a relative permittivity εr = 36.74.
Table 6.4 presents the number of iterations for the original system and the preconditioned
system. We observe that the preconditioned system can handle a significantly larger range
of widths of the scatterer. Hence, the NVF-BD preconditioner reduces the number of iter-
ations not only in cases of high contrast but also in cases where the scatterer has a larger
width.

Table 6.4: Total number of iterations recorded for the scatterers with different width but
with a constant contrast χ = 16.

width [nm] org pdr

200 232 66

300 432 91

400 1102 229

500 970 258

600 1250+ 333

700 1250+ 527

900 1250+ 930

1100 1250+ 1030

Next, we investigate the NVF-BD preconditioner’s effect on computation time. The
total computation time equals to the initialization time and solution time. During the ini-
tialization of the NVF-BD preconditioner, the matrix C−1 is computed based on Doolittle
LU factorization, and one only has to compute the inverse of a single block matrix of C
since the contrast χ is a constant along its height. The total solution time is equal to the
product of the average solution time per iteration and the total number of iterations. One
may not obtain a significant reduction in the total computation time for the preconditioned
system if the time per iteration increases a lot due to the extra four MVPs induced by the
preconditioner per iteration. We compare the computation time per iteration for the orig-
inal solver with that for the preconditioned system by considering the single scatterer case
in Fig. 6.3 with χ = 8 and width w = 200 nm. Note that each block matrix Ci (1 ≤ i ≤ Nz)
has dimension Nx, and the MVP of matrix block Ci has a quadratic complexity. Hence we
expect the MVP with matrix C−1 should have a complexity of O(NzN

2
x).

In Fig. 6.6, we compare the solution time per iteration and the extra computation time
per MVP of the preconditioner by changing the number of unknowns in both x and z
directions, respectively. The vertical axes denote the average solution time per iteration
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in seconds. The horizontal axis in Fig. 6.6 (a) shows the number of unknowns Nx in
the x direction. Note that Nx = (2m + 1) · (2n + 1), where the spatial shift index m
satisfies −5 ≤ m ≤ 5, the frequency modulation index n satisfies n ∈ {−N, . . . , N} and
N ranges from 6 to 3080. This corresponds to a resolution in the x direction that ranges
from 6.231 nm to 0.013 nm. In the z direction, a total of 101 PWL functions are used
with sample distance ∆z = 1 nm. All discretization parameters used in Fig. 6.6 (a) are
summarized under case (A-2) in Table 6.2. The horizontal axis in Fig. 6.6 (b) denotes
that Nz PWL functions are used in the calculation. Nz ranges from 10 to 2000, which
corresponds to a resolution ∆z in the z direction from 10 nm to 0.05 nm. In this case we
have −5 ≤ m ≤ 5 and −100 ≤ n ≤ 100. All discretization parameters used in Fig. 6.6 (b)
are summarized under case (A-3) in Table 6.2. In both Fig. 6.6 (a) and (b), the red
dots and the blue crosses are computed based on the total solution time divided by the
total number of iterations, and the gray stars are the computation time per MVP due to
the preconditioner only. All the simulations were performed on a dual 20-core Intel(R)
Xeon(R) Gold 6148 CPU at 2.40 GHz with 755 GB RAM.
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Figure 6.6: Average computation time per iteration for (a) Nx and (b) Nz unknowns. Note
that ”org. per ite.” means the computation time per iteration for the unpreconditioned
system, ”pdr. per ite.” means the computation time per iteration for the system after
applying the NVF-BD preconditioner, ”pdr. per matvec.” means the time penalty due to
the extra MVP in the preconditioned system, and ”fitting curve” means the best fit based
on the data points in the Nx and Nz cases, respectively.

The average computation time per iteration for the original system and the precondi-
tioned system, and the average computation time per MVP of the preconditioned system
are displayed in Fig. 6.6 (a) and (b). It is clear that the average computation time in-
creases when a finer discretization is taken in either the x or z direction. The analytical
representation of the fitting curve in Fig. 6.6 (a) is T (Nx) = 2.94 · 10−7N2

x and in (b) it is
T (Nz) = 0.012Nz, where T is the average computation time per iteration. The recorded
data points of the MVP time coincide with the fitting curve well. Therefore we confirm our
prediction that the extra MVP operation in the preconditioned system has a complexity
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O(NzN
2
x). Furthermore, we observe that both original system and preconditioned system

have similar average computation time per iteration for almost the entire range of Nx and
Nz cases, except for the last two data points in Fig. 6.6 (a), where the time of the ex-
tra MVP due to the preconditioner is non-negligible compared with MVP of the original
system and the other operations in the BiCGstab(2) iterative solver. In the z direction,
a much larger Nz would be required to observe a similar effect, owing to the O(NzN

2
x)

complexity for the MVP of the preconditioner.

(a) (b)

Figure 6.7: Comparison of computation time between systems ”org” and ”pdr”. (a) dif-
ferent discretization in the x direction. (b) different discretization in the z direction.

In Fig. 6.7 we compare the total solution time for the original system and the precondi-
tioned system. The vertical axes denote the total solution time in seconds. The horizontal
axes represent the discretization parameters Nx and Nz in Fig. 6.7 (a) and (b), respectively.
Both figures suggest that in most cases (except for the cases with extremely large Nx) the
total solution time can be reduced by a factor larger than 2, which is corresponding to
the gained reduction factor in terms of the number of iterations for the χ = 8 case in Ta-
ble 6.3. For other cases in Table 6.3, the reduction factor in computation time is expected
to be comparable to the reduction factor in terms of the number of iterations, since the
computation time per iteration in Fig. 6.6 (a) and (b) is independent of the contrast χ.

We conclude that the total solution time can be reduced by applying the NVF-BD
preconditioner. We also observe that the reduction in computation time for the precondi-
tioned system gets lowered for large Nx cases due to the computational complexity of the
preconditioner.

6.4.2 Case (B): a 2D TM metal grating problem

In the second case, a grating device made of aluminium is embedded in air and sup-
ported by an aluminium half-space, see Fig. 6.8. A plane wave with wavelength 700 nm is
incident under an angle of 22.9◦ with respect to the z-axis and the incident electric field Ei
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Figure 6.8: Geometry setting of a 2D TM metal grating problem.

is polarized in the xz plane. The relative permittivity of aluminum is −63.6004−31.2881j.
The air in the six grooves are considered as the scatterers, which have negative contrast
χ = −1.0108 + 0.0064j. Table 6.2 case (B) displays the discretization parameters we used
in this simulation. Notice that in total 81 Gabor frame functions are used for each Gabor
window length X, which yields a resolution of 5 nm in the x direction. In the z direc-
tion PWL functions are employed with sampling distance ∆ = 2.5 nm. Our goal in this
example is to demonstrate the effectiveness of the NVF-BD preconditioner as compared
with the original system in terms of convergence with an acceptable relative error. Also, in
this 2D TM case, computing the NVF-BD preconditioner requires only moderate memory
requirements due to the relatively low-dimensional block matrix Ci and we compute C−1

directly based upon the Doolittle LU factorization.

Figure 6.9: Iteration details for the negative permittivity case in Fig. 6.8 with χ = −1.01+
0.0064j. The horizontal dashed line denotes the desired accuracy goal 1 · 10−5.
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Fig. 6.9 shows the convergence of the relative error versus the number of iterations for
the original system and for the preconditioned system. It is clear that without applying the
NVF-BD preconditioner, the system does not converge, while the preconditioned system
reaches the desired relative error of 10−5 in 159 iterations.

We have validated the preconditioned system’s solution against the commercial FEM
code JCMWave [198]. Fig. 6.10 (a) presents the x-component of the total electric field Ex,
where the red line denotes the JCMWave reference and the blue dashed lines denote the
solution from the preconditioned system, so the solutions can be compared. Fig. 6.10 (b)
displays the absolute error between the solution from the preconditioned system in the near
field for z = −50 nm, just above the upper interface. One can observe that some high-
frequency Gibbs ringings occur near the grooves’ boundaries, where the contrast function
is discontinuous. Gibbs phenomena can be the dominant contribution to the error in the
near field, just as observed in the original system [108,110], but it does not propagate over
a long distance. Figures (a) and (b) together suggest that the solution obtained from the
preconditioned system matches the reference well.
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Figure 6.10: The electric fields for the case in Fig. 6.8. In (a) both reference and the
solution Ex(x, z0) from the preconditioned system are displayed at z0 = −50 nm, indicated
by the horizontal green line in Fig. 6.8. In (b) the absolute error in Ex(x, z0) between the
solutions from the preconditioned system and the JCMWave reference is displayed on a
log scale.

6.4.3 Case (C): a 3D high contrast problem

In the third case we consider a bar-shaped scatterer with a high relative permittivity
εr = 17 in free space. The scatterer’s dimensions are 300 × 200 × 100 nm. The incident
plane wave is characterized by the Cartesian wavevector k = (0, 0, k0), with the electric
field polarized in the x direction and with unit amplitude. The plane wave has a wavelength
of λ = 425 nm. The geometry setting is given in Fig. 6.11. Table 6.2, case (C) displays
the discretization parameters that are used in this simulation. Note that the frequency
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modulation number −10 ≤ nx, ny ≤ 10 and therefore there are 21 frame functions used
per Gabor window length X and Y , which yields a resolution of 3.86 nm in both x and y
directions. In the z direction PWL functions are employed with sample distance ∆ = 5 nm.

Figure 6.11: 3D scattering problem for a bar-shaped scatterer with relative permittivity
εr = 17 embedded in air.

Usually the dimension of the system equation in 3D cases is huge. In this simulation
there are 2.3·106 unknowns after performing the discretization based on Table 6.2 case (C),
and the dimension of the block submatrices Ci in Fig. 6.2 is 1.0 × 105. Therefore it is
unrealistic to store the full submatrix Ci due to its excessive memory requirement. As an
alternative strategy we have implemented the preconditioned system such that the extra
MVP for C−1 is executed based on an inner iterative solver. We also use the BiCGstab(2)
algorithm in the inner iterative process and this inner iterative process is terminated once
a relative error of less than or equal to 10−15 is reached. The inner iterative solver takes
much fewer MVPs than the outer solver. However, this double-iterative method should
be improved in future work, to make the entire solution process more efficient. Therefore,
we focus on the effect of the NVF-BD preconditioner on the reduction in the number of
iterations, instead of computation time, in this 3D case.

Fig. 6.12 shows the evolution of the relative error versus the iteration count for the
original system and the preconditioned system. It is clear that the preconditioned system
outperforms the original system in this 3D high contrast problem with χ = 16. The pre-
conditioned system takes 454 iterations to reach the required relative error with a relatively
fast rate of convergence. However, the original system failed to converge to the desired
relative error within 1250 iterations. Notice that, from iteration 550 to 1250, the residual
vector of the original system gained less than 1-digit accuracy. This is a clear example
that shows how the NVF-BD preconditioner can reduce the number of iterations in a 3D
high-contrast case.
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Figure 6.12: Iteration details for the high contrast case with χ = 16. The dashed line
denotes the default accuracy goal 1× 10−5.

6.5 Conclusion

We proposed a normal-vector-field-based block-diagonal (NVF-BD) preconditioner for
the original system of a spatial spectral solver with Gabor discretization for 2D TM po-
larization and 3D cases. The block-diagonal structure of the matrix that incorporates the
normal-vector field formulation and previous work motivated us to apply this precondi-
tioner to this spatial spectral Maxwell solver. We observed a more clustered eigenvalue
distribution after applying this NVF-BD preconditioner, which is a good sign in the sense
of expecting a reduction in the number of iterations. The NVF-BD preconditioner is either
computed via a direct LU decomposition, in the 2D TM cases, or performed via an inner
iterative procedure in the 3D problem.

We tested this NVF-BD preconditioner on three types of problems: (A) a 2D TM
scattering problem with high contrast values and large geometry size, (B) a 2D TM metal
grating problem, and (C) a 3D high contrast problem. The numerical experiments re-
veal that the number of iterations can be significantly reduced by applying the NVF-
BD preconditioner, which therefore extends the capability of the original spatial spectral
solver to cases with higher contrast, negative permittivity, or larger geometrical dimension.
Computation-time analysis shows that the total solution time can also be reduced after
applying the NVF-BD preconditioner, even though the reduction effect can be dampened
when a large number of transverse basis functions Nx is used, due to the extra MVP
for the preconditioner with O(NzN

2
x) computational complexity. The proposed NVF-BD

preconditioner itself can readily benefit from parallel computing, since the NVF-BD pre-
conditioner has the same per-z-sample block-diagonal structure as the matrices C and M .
However, a similar speed increase due to parallelization at the z-sampling level will not
readily obtained for the original system due to the communication overhead associated
with the Green function, for which many z-samples need to be combined.
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Chapter 7

Applications of the spatial spectral
Maxwell solver

7.1 Scattering by single-pad resist-only metrology tar-

gets

7.1.1 Introduction

An optical scatterometer is an important optical sensor and it has been widely used in
optical wafer metrology [17]. After the resist layer has been exposed and developed (see
e.g. the 5th step in Fig. 1.2), an important step is to measure the uniformity of the critical
dimension (CDU) and overlay of the printed patterns. This is because a large critical
dimension (CD) variation (e.g. CDU is larger than 10% of the CD) or a large overlay
(e.g. overlay is larger than 30% of the CD) significantly degrades the performances of the
manufactured device on the wafer [17]. The measurement of CDU and overlay in optical
metrology can be performed by optical scatterometry.

In Fig. 7.1 we show a simplified conceptual sketch of a sensor model for wafer metrol-
ogy. Incoherent or partially coherent light is processed by an optical system and then
illuminates a repetitive metrology target. The scattered light is collected by a set of op-
tical elements and captured by a charge-coupled device (CCD) camera for intensity and
spectrum measurements. More detailed schematic diagrams of a scatterometer for CD and
overlay metrology can be found in Figure 10 and Figure 11 in [17].

The blue dashed box in Fig. 7.1 indicates an electromagnetic scattering process, which
can therefore be modeled by a Maxwell solver. In real wafer metrology applications, this
step is often performed by a periodic Maxwell solver, which implies the assumption that
the geometry has a 2D periodicity in the directions perpendicular to the direction of the
stratification of the background layers. On the other hand, the spatial spectral Maxwell
solver has been developed for aperiodic scattering problems [108–111,199,223], and there-
fore it can also be used for solving this finite scattering problem. Therefore, even with the
same excitation, the scattered electric field obtained from an aperiodic solver can differ
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from its counterpart in a periodic solver due to the absence of a periodicity assumption in
an aperiodic solver. Hence, a natural idea, and also the goal of this section, is to use the
spatial spectral Maxwell solver to simulate and solve this type of scattering problem and
detect the difference with respect to the results obtained from a periodic solver. A com-
parison between the aperiodic solver and a periodic solver should yield insights into what
kind of role the spatial spectral Maxwell solver can play in a real optical scatterometry
application.

Figure 7.1: Conceptual sketch of an optical metrology sensor. A repetitive pattern (in red)
is illuminated by incoherent or partially coherent light processed by an optical system.
The reflected light is also processed by an optical system and the spectrum is measured
by a camera. The blue dashed box indicates a scattering problem that can be solved by a
Maxwell solver.

The structure of this section is as follows. In Section 7.1.2, we state the scattering
problem of a single-pad resist-only metrology target by giving the geometry configuration
and the incident electric field. In Section 7.1.3, we outline the solution strategy before
using the spatial spectral method. Section 7.1.4 contains two numerical examples with
an obliquely incident plane wave excitation and a beam excitation. The results from the
spatial spectral Maxwell solver are compared with an external reference from a periodic
solver. We give the conclusions in Section 7.1.5.

7.1.2 Statement of the problem

We consider a single-pad resist-only metrology grating target consisting of 13 grooves in
the top layer of a layered medium. The grooves are bar-shaped and they are considered to
be the scatterers. The dimension of each scatterer is 7800× 300× 90 nm, and the distance
between two subsequent scatterers is 300 nm. In Fig. 7.2 (a) we show the location of all
scatterers with a Cartesian coordinate system in the xy-view. Note that the background
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medium is assumed to be of infinite extent in the transverse directions, and Fig. 7.2 (a)
only shows the finite domain [0, LD] × [0, LD] with LD = 18000 nm. In the longitudinal
direction, the top layer of the layered medium consists of a 90 nm high resist, on top of a
300 nm high silicon dioxide layer, and a silicon substrate occupying the bottom half-space.
In Fig. 7.2 (b) shows the stratification and the relative permittivities of the materials, for
the illumination wavelength λ0 = 550 nm. Additionally, we define the top of the resist
layer as z = 0, and the z direction is pointing upwards.

(a)

(b)

Figure 7.2: A single-pad resist-only metrology grating target and a layered medium. (a)
xy-view of the scatterers. Note that all the scatterers are in the first quadrant of the
given coordinate system, and the center of the scatterer domain is at (5000, 4600) nm. (b)
yz-view, with each layer’s material and relative permittivity for the free-space wavelength
λ0 = 550 nm.

To have a full statement of the scattering problem, the excitation must also be provided,
apart from the geometry configuration. As an example, we consider an excitation with a
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single plane wave coming from the upper half-space. Given a standard Cartesian coordinate
system with Cartesian unit vectors x̂, ŷ and ẑ, we assume a plane wave with wavelength
λ0 = 2π/k0 coming in from the upper half space as visualized in 7.2. The wave vector
specifying the direction of propagation of the plane wave is denoted by k and we define
k̂ = k/k0. Further, kT be the transverse part of k in the xy plane. The wave vector k of
this plane wave is determined by a polar angle θ and an azimuthal angle ϕ defined with
respect to the z and x axis, respectively. In Fig. 7.3 we show an example of an oblique
plane-wave incidence with corresponding incident angles.

Figure 7.3: The s− p polarization of an incident plane wave Ei with wave vector k.

Assuming an ejωt time convention, the incident electric field Ei in the upper half space,
which is associated with the plane-wave excitation, can be represented by:

Ei(x) =
(
Ei

sŝ+ Ei
pp̂
)
e−jk·x,

=
(
Ei

sŝ+ Ei
pp̂
)
e−jkT ·xT e−jkzz

(7.1)
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where

k =− k0 sin θ cosϕx̂− k0 sin θ sinϕŷ − k0 cos θẑ

=kT + kzẑ and kT = kxx̂+ kyŷ,
(7.2)

ŝ =
k̂× ẑ

∥k̂× ẑ∥
, p̂ = k̂× ŝ, xT = xx̂+ yŷ. (7.3)

Here, two auxiliary unit vectors ŝ and p̂ are defined on the plane perpendicular to the
wave vector k, such that the polarization of the incident electric field Ei is fixed. The
plane containing both k and ẑ is called the plane of incidence. Clearly, ŝ is normal to the
plane of incidence, and p̂ is contained in the plane of incidence. Furthermore, Ei

s and Ei
p

are the independent complex amplitudes of Ei along the ŝ and p̂ directions, respectively.
Mathematically, the wave vector k in Eq. (7.2) can be considered as a parameter, and both
ŝ and p̂ are fixed once k is given. Therefore, the incident electric field Ei(x) is uniquely
determined by the complex amplitudes Ei

s and Ei
p according to Eq. (7.1).

The s and p polarization definitions of the incident electric field in Eq. (7.1) yield a
removable singularity for modes that are close to normal incidence where θ = 0. To avoid
this inconvenience, we define

x̂p = − sinϕ ŝ+ cosϕ p̂, (7.4)

ŷp = cosϕ ŝ+ sinϕ p̂. (7.5)

The unit vectors x̂p and ŷp are essentially an improper rotation of ŝ and p̂ in the plane
perpendicular to k and they approach the directions x̂ and ŷ respectively when θ is ap-
proaching 0. Consequently, the incident electric field Ei can be represented as

Ei(x) =
(
Ei

xpx̂p + Ei
ypŷp

)
e−jkT ·xT e−jkzz, (7.6)

for all x in the upper half space. Hence, for a given plane wave with wave vector k, the
incident electric field Ei(x) is uniquely determined by the complex amplitudes Ei

xp and Ei
yp

and the auxiliary unit vectors x̂p and ŷp.
A realistic illumination pattern consists of multiple mutually independent and incoher-

ent beams and each of these beams needs to be simulated separately to obtain a complete
image formation in an optical metrology sensor. To generate individual beams expressed
in terms of a plane-wave spectrum, we sample the kT spectrum of the plane waves in a
uniform manner. The incident electric field of the scattering problem described in Fig. 7.2,
after uniform sampling, is defined in the plane z = 0 through

Ei(kT , z = 0) = Ei
xp(kT )x̂p(kT ) + Ei

yp(kT )ŷp(kT ), (7.7)

for all kT ∈ Λ, and Λ is a uniform grid in kT -space defined as

Λ =
{
(kx, ky) ∈ R2|(kx, ky) = (kc

x + l1 ·∆k, k
c
y + l2 ·∆k)

}
. (7.8)
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Here we denote by (kc
x, k

c
y) = (0, 0) the center of this spectral grid, and ∆k = k0λ0/LD

is the grid spacing, with LD the length of the computational domain in the xy plane, see
Fig. 7.2 (a). Additionally, −L1 ≤ l1 ≤ L1, −L2 ≤ l2 ≤ L2 for positive integers L1 and L2.

Throughout the rest of this section, we will focus on the following single-pad resist-only
metrology scattering problem: given the geometry configuration in Fig. 7.1, a spectral grid
defined in (7.8), and corresponding complex amplitudes Ei

xp, E
i
yp in Eq. (7.7), compute

the scattered electric field at the top of the resist layer on the same spectral grid Λ, i.e.,
Es(kT , z = 0) for all kT ∈ Λ.

7.1.3 Solution strategy

We now discuss the preprocessing steps to use the spatial spectral Maxwell solver. The
spatial spectral method requires an incident electric field represented in the spatial domain.
Therefore, the first preprocessing task is to transform the incident electric field given in
Eq. (7.7) into the following form

Ei(xT , zn) = Ei
x(xT , zn)x̂+ Ei

y(xT , zn)ŷ + Ei
z(xT , zn)ẑ, (7.9)

where zn ∈ [za, zb] are sample points in the PWL discretization, za and zb bound all the
scatterers in the longitudinal direction. To achieve this goal, we first represent the incident
electric field in Eq. (7.7) in Cartesian components as

Ei(kT , z = 0) = Ei
x(kT )x̂+ Ei

y(kT )ŷ + Ei
z(kT )ẑ, (7.10)

for all kT ∈ Λ, where the complex amplitudes Ei
x(kT ), E

i
y(kT ), E

i
z(kT ) can be obtained

readily, once x̂p and ŷp in Eq. (7.6) are expressed in terms of x̂, ŷ, ẑ.1 In a subsequent
step, the incident electric field Ei(kT , z = 0), for all kT ∈ Λ, needs to be propagated to the
top position of the scatterers at z = za. Later on, the propagation of the incident electric
field from z = za to all zn ∈ [za, zb] is performed by applying a Fourier transformation
on a deformed integration manifold, as introduced in [109, 110], and by computing the
tensorial transmission coefficients as in [24]. The detailed process of extending Eq. (7.10)
to Eq. (7.9) can be found in Appendix A.

While transforming from Eq. (7.10) to Eq. (7.9), we also need to represent the discretely
sampled incident electric field in the spectral domain by Gabor frames. The Gabor-based
spectral-domain grid spacing (or resolution) is determined by

∆′
k,x =

Kx

βx · (2Mx + 1)
, (7.11)

where Kx ∈ R is the spectral Gabor window length, {−Mx, . . . ,Mx} is the range of the
translation index mx, and βx is one of the oversampling parameters. Analogously, we have
∆′

k,y.

1Since the z-direction is pointing downwards in the Cartesian coordinate system defined in [24], the
coordinates of a vector (a1, a2, a3) represented in Fig. 7.3 gets coordinates (a1, a2,−a3) in the coordinate
definition in the spatial spectral solver.
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From Eq. (7.7) and (7.8), we observe that the incident electric field is expressed in terms
of (2L1 + 1)(2L2 + 1) planar waves of the same frequency but with different polarization
and propagation direction. When transferring all the information to the spatial spectral
Maxwell solver, the best way is to choose the Gabor-based grid Λ′ the same as the given
grid Λ for the plane-wave samples. By doing so, we can use the exact plane waves in the
spatial spectral solver, without artificially creating interpolation artifacts.

The second preprocessing task is therefore to determine the Gabor coefficients such that
∆′

k,x = ∆′
k,y = ∆k. This can be done2 by choosing a suitable pair of Kx and Mx according

to Eq. (7.11) and set Ky = Kx and My = Mx. In Fig. 7.4 (a) we give an example where
the Gabor-based spectral grid Λ′ matches the plane-wave spectral grid Λ for the incident
electric field.

(a) (b)

Figure 7.4: (a) An example of two spectral grids having the same spacing. The red dots
represent the original grid defined in Eq. (7.8) with spacing ∆k. The black lines are used to
represent the Gabor-based spectral grid with spacing ∆′

k,x = ∆′
k,y = ∆′

k. (b) The scatterers
are shifted to a location that is symmetric about the origin and the gray area depicts the
new computational domain.

The third preprocessing task concerns the computational domain. The spatial spectral
method [24] works on a symmetric computational domain in the transverse plane, but
from Fig. 7.2 (a) we can easily see that the grating targets are not symmetric about the
origin, which results in a much larger symmetric computational domain, which reduces the
efficiency of the solver. To over overcome this problem, we spatially shift the scatterers
with the translation vector a = (−5000,−4600) nm to make them symmetric about the
origin. Additionally, we apply the same spatial shift to the incident electric field, but now
performed in the spectral domain as

Ei
sym(kT , z = 0) = Ei(kT , z = 0)e−jkT ·a. (7.12)

2Other requirements for the Gabor parameters must also be satisfied: the spatial Gabor window length
relies on its spectral counterpart and the combination of the spatial window length and the range of the
spatial shift index should be such that a sufficiently large computational domain is covered. The choices
of Mx, My, Nx, and Ny are restricted by the application of the FFT-based fast operations [111] and the
resolutions in both spatial and spectral domains should be fine enough.
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In practice, the above spatial shift is performed immediately after the Cartesian represen-
tation in Eq. (7.10) and before the propagation steps in Appendix A. After shifting the
scatterers and the original incident electric field, a much smaller computational domain
is obtained for the spatial spectral Maxwell solver, see Fig. 7.4 (b), which implies less
computational effort.

7.1.4 Numerical results

We now give two examples of the scattering problem stated in Section 7.1.2: Example 1
is with a single plane-wave excitation, Example 2 is with a beam excitation. The Gabor
parameters used in these two examples are given in Table 7.1. Following the notations
used in Section 2.3.2, Tx, Ty represent the spatial Gabor window lengths, Kx, Ky represent
the spectral Gabor window lengths, mx, my are the spatial translation indices for the
Gabor frames, and nx, ny are the frequency modulation indices for the Gabor frames.
Nz represents the number of the PWL functions used in the z direction. Oversampling
parameters are denoted by αx, αy and βx, βy. The resulting resolution is 36.4 nm in the
transverse plane and 30 nm in the longitudinal direction. The total number of unknowns
in the pertaining matrix system is 2.94× 106.

Table 7.1: Discretization parameters used in both Example 1 and Example 2.

Tx, Ty Kx, Ky mx,my nx, ny Nz αx, αy βx, βy

1.47× 10−6 4.28× 106 −7 : 7 −16 : 16 4
√
2/3

√
2/3

0

0.2

0.4

0.6

0.8

(a)

0.935

0.940

0.945

0.950

(b)
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-0.50

-0.25

0

0.25

0.50

0.75

(c)

Figure 7.5: Incident electric field in the plane z = 0. (a) ∥Ei(kx, ky)∥, intensity in the
spectral domain. (b) |Ei

x(x, y)|. (c) Re[Ei
x(x, y)]. Note that the yellow dashed box in (b)

and (c) indicates the location of the shifted scatterers.

In Example 1, we consider a single plane-wave excitation with normalized wave vector
k̂ = (0.31, 0.43,−0.85), and the complex amplitudes of the incident electric field are Ei

xp =
0.71 + 0.71j and Ei

yp = 0. After representing Ei(x) according to Eq. (7.9) and performing
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the spatial shift according to Eq. (7.12), we get

Ei(xT , z = 0) = (0.12− 0.94j,−0.009 + 0.07j,−0.04 + 0.3j)e−jkT ·xT , (7.13)

for all xT is in the z = 0 plane, and kT = (3.4 × 106, 4.89 × 106). In Fig. 7.6 we plot
the incident electric field in the plane z = 0. Fig. 7.5 (a) shows the incident electric field
of (7.12) is a dot within the Ewald circle in the spectral domain. Fig. 7.5 (b) shows the
absolute value of Ei

x(x, y) in the spatial domain. Here we observe that |Ei
x(x, y)| is more or

less a constant but not completely. This is because a Dirac delta function in the spectral
domain requires an infinite number of Gabor coefficients (see Eq. (A.3) in Appendix A).
Therefore, truncation to a finite number of coefficients results in a non-constant amplitude
in the spatial domain. Fig. 7.5 (c) shows the real part of Ex(x, y).

With the discretization parameters given in Table 7.1, we obtain the solutions of Ex-
ample 1 by the spatial spectral Maxwell solver. We then compare the solutions with an
external reference computed based on the periodic assumption. The periodic solver as-
sumes a 2D periodicity in 3D space with the periodic directions orthogonal to ẑ. The
18000 × 18000 nm geometry shown in Fig. 7.1 (a) can be seen as the unit cell that is
repeated to fill the entire xy plane. The intensity of the scattered electric field of the refer-
ence (denoted by Es

ref(x, y)) is shown in Fig. 7.6 (a) on a linear color scale. Furthermore,
we show the field intensity of the scattered electric field by the spatial spectral method in
Fig. 7.6 (b). Note that the plotting domain in (b) is smaller than the domain in (a).
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Figure 7.6: Intensity of the scattered electric fields at z = 0 in Example 1. (a) ∥Es
ref(x, y)∥,

based on the periodic assumption (reference). (b) ∥Es(x, y)∥ based on the spatial spectral
method. All figures are on a linear color scale, and the yellow dashed box denotes the
location of the scatterers.

From Fig. 7.6 (a) and (b), one observes that the scattered field Es
ref(x, y) propagates

to the adjacent periodically repeated scatterers, while in Fig. 7.6 (c) there is no other
scatterer. This slight difference in the spatial domain is essentially caused by the difference
between a periodic solver and an aperiodic solver, which might cause differences in the far
field as well. This is an indication of the differences in the approximation of an aperiodic
scattering problem by a periodic solver with the supercell approach.
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Figure 7.7: Comparison of the far-field solutions at z = 0 in Example 1. The reference
results are displayed in the left column and the results from the spatial spectral Maxwell
solver are displayed in the right column. (a) and (b): |Es

x(kx, ky)|. (c) and (d): real part
of Es

y(kx, ky). (e) and (f): imaginary part of Es
z(kx, ky).
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In order to quantitatively compare the far-field results, we had to rescale the results
from the spatial spectral method by an empirically determined scaling constant cff =
2.33k2

0∆
2
k/(4π

2), to match the scaling factor of the periodic solver3. We now show the
far-field results in Fig. 7.7. Note that only the fields within the Ewald circle in the spectral
domain have been shown. The absolute differences in the far-field solutions computed by
the spatial spectral finite solver are shown in 7.8, in the spectral domain.
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Figure 7.8: Absolute differences in the far-field results. (a) Es
x(kx, ky), (b) E

s
y(kx, ky) and

(c) Es
z(kx, ky), obtained from the spatial spectral Maxwell solver. All on a log10 color scale.

To show the similarities in the far-field results, we defined the following relative differ-
ences. Let the vectors vx, vy and vz contain the scattered electric fields Es

ref,x(kx, ky),
Es

ref,y(kx, ky) and Es
ref,z(kx, ky) evaluated on the spectral grid Λ, respectively. Let ux,

uy, and uz be the reference data from the periodic solver on the same grid Λ. Clearly,
ux,uy,uz,vx,vy,vz ∈ C32400, where 32400 = 180 × 180 is the number of sample points
contained in the grid Λ. We define the following relative difference for Es

x(kx, ky):

rx =
∥ux − vx∥

∥ux∥
, (7.14)

where ∥ · ∥ is the ℓ2 norm for a vector. Analogously, we define ry and rz. Furthermore, we
define the following weighted relative difference:

rw = wx · rx + wy · ry + wz · rz, (7.15)

where wi = ∥ui∥/(∥ux∥ + ∥uy∥ + ∥uz∥) for i = x, y, z. The relative differences of the
solutions obtained by the spatial spectral Maxwell solver and the periodic reference are:
rx = 0.05, ry = 0.13, rz = 0.04, and rw = 0.058.

We now study Example 2, the scattering problem stated in Section 7.1.2 with a beam
excitation. We use the same discretization parameters, given in Table 7.1. After repeating
the preprocessing steps as described in Section 7.1.3, we show the incident electric field
of Example 2 in Fig. 7.10 in both the spectral domain and the spatial domain. From

3Unfortunately, the exact mathematical expression of the scaling factor of the periodic solver was
unknown. More validation data is needed to determine the origin of this scaling factor.
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Fig. 7.9 (a) we observe that the beam-type excitation contains a set of plane waves with
different propagating directions. The field intensity of ∥Ei(x, y)∥ is shown in Fig. 7.9 (b).
Note that only a part of the scatterer is illuminated by the beam. Fig. 7.9 (c) shows the
real part of Ei

x(x, y).
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Figure 7.9: Incident electric field of Example 2 at z = 0. (a) ∥Ei(kx, ky)∥, intensity in the
spectral domain. (b) ∥Ei(x, y)∥. (c) Re[Ex(x, y)]. Note that the yellow dashed box in (b)
and (c) indicates the location of the shifted scatterers.

The scattered electric fields are shown in Fig. 7.10. The reference from a periodic solver
is displayed in (a), where we observe a similar behavior of the scattered electric field within
the layered medium. The solution from the spatial spectral solver is displayed in (b).

0.002

0.004

0.006

0.008

(a)

0

0.002

0.004

0.006

(b)

Figure 7.10: Amplitude of the scattered electric fields at z = 0 in Example 2.
(a) ∥Es

ref(x, y)∥, based on the periodic assumption (reference). (b) ∥Es(x, y)∥ based on
the spatial spectral method. All figures are on a linear color scale, and the yellow dashed
box denotes the location of the scatterers.
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Figure 7.11: Comparison of far-field solutions at z = 0 in Example 2. The reference results
are displayed in the left column and the results from the spatial spectral Maxwell solver
are displayed in the right column. (a) and (b): |Es

x(kx, ky)|. (c) and (d): real part of
Es

y(kx, ky). (e) and (f): imaginary part of Es
z(kx, ky).
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In Fig. 7.11 we compare the far fields from the spatial spectral Maxwell solver, using the
same scaling constant cff , with the reference, by showing the absolute values of Es

x(kx, ky),
the real parts of Es

y(kx, ky) and the imaginary parts of Es
z(kx, ky). Note that the color

ranges are set the same in each comparison.
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Figure 7.12: Absolute differences of (a) Es
x(kx, ky), (b) Es

y(kx, ky) and (c) Es
z(kx, ky) in

Example 2.

The absolute differences in the far-field solutions computed by the spatial spectral finite
solver are shown in 7.12, on a log10 color scale. The relative differences computed based
on Eqs (7.14) and (7.15) are: rx = 0.014, ry = 0.022, rz = 0.012, and rw = 0.015.
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Figure 7.13: Iteration details of IDR(16) and BICGstab(2) in Example 2, where “org”
stands for the original unpreconditioned system, and “pdr” indicates that the NVF-BD
preconditioner proposed in Chapter 6 has been used.

We complete this subsection by discussing the computational cost. All computations
were performed on a dual 20-core Intel(R) Xeon(R) Gold 6148 CPU at 2.40 GHz with
755 GB RAM. Here we focus on the beam-excited Example 2, and the recorded initializa-
tion time was 162 seconds and the solution time was 160.5 seconds for IDR(16). Further, 33
MVPs were counted in the iterative process to reach the desired relative error of 1.0×10−5.
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Besides using IDR(16), we also solved the same scattering problem with BICGstab(2).
BICGstab(2) achieved a solution time of 167.4 seconds and required 32 MVPs to attain
the same desired relative error. Consequently, both IDR(16) and BICGstab(2) take about
5 seconds per MVP in this example. The details of the iterative process are shown in
Fig. 7.13.

We now consider the same scattering problem of the 13 grooves, but now the excitation
consists of an incoherent sum of 9031 beams. Each beam is specified by a different set of
complex amplitudes Ei

xp and Ei
yp, on the same grid Λ in the spectral domain according

to Eq. (7.8). Due to the incoherence, we have to compute each beam individually and
consequently the total number of simulations is 9031. We compute ∼ 45 simulations
simultaneously on a dual 20-core Intel(R) Xeon(R) Gold 6148 CPU at 2.40 GHz with
755 GB RAM.

After computing, we obtain the far-field electric fields Es(kx, ky, z = 0) for the 9031
beams, and they are all represented by complex amplitudes on the plane-wave sample
grid Λ and decomposed in terms of the unit vectors x̂p and ŷp, defined in Eqs (7.4) and
(7.5). To simulate the optical system in Fig. 7.1, the data set containing all the complex
amplitudes for the reflected light has been processed with proprietary internal software by
ASML Netherlands B.V.. This software simulates the optical configuration of YieldStar,
an optical metrology tool commercialized by ASML, the working principle of which can be
found in [224] and [225]. As a result, three simulated camera images are generated showing
the three lowest diffraction orders of this grating structure as detected by YieldStar. These
images are shown in Fig. 7.14.

Figure 7.14: Detected diffraction orders of the grating structure specified in Fig. 7.2. Left:
the +1st diffraction order. Middle: the −1st diffraction order. Right: the 0th diffraction
order. For all figures, the horizontal axis represents the x-direction and the vertical axis
represents the y-direction. The square regions indicate the grating area containing the 13
scatterers. The yellow disc in the right figure represents the size of the spot that results
from the specular reflection of the incident light composed of the incoherent summation of
all the 9031 incident beams.
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7.1.5 Conclusion on the single-pad resist-only metrology target

We have applied the spatial spectral Maxwell solver developed in [24] and solved a single-
pad resist-only metrology target scattering problem. The solution strategy was aimed at
using the spatial spectral method efficiently. We then studied two examples with plane-
wave excitation and beam excitation and compared the far-field results with a solution
obtained from a periodic solver. In the plane-wave incidence example, we reached a relative
difference of 5.8% in the far field. In the beam-excitation example, the average relative
difference was 1.5% and the computation time was about 6 minutes. These results suggest
that the spatial spectral Maxwell solver has the ability to solve similar type of scattering
problems accurately and efficiently, and can hence contribute to the optical metrology
sensor model for non-periodic metrology targets. For future work, it is recommended to
formulate additional physics-based interpretations for comparison and conduct experiments
in order to further understand the differences between the spatial spectral Maxwell solver
and the periodic solver.
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7.2 Simulating a computer-generated waveguide

hologram scattering problem with an artificial 2D

Gaussian beam source4

We study a computer-generated waveguide hologram scattering problem. An artificial
current density function with Gaussian profile is defined on a source plane that is close to
the scatterers. A Gaussian beam field is induced based on the artificial current density
function, and can be controlled to approximate the original incident field. The computer-
generated waveguide hologram scattering problem is then solved with a spatial spectral
method.

7.2.1 Introduction

Amethod of designing a large-area Computer-GeneratedWaveguide Hologram (CGWH)
with a long working distance is given in [226]. Subsequently, an integrated CGWH is pre-
sented to emit or receive optical beams in free space [227]. An accurate and efficient
Maxwell solver is necessary for the design and optimization before the fabrication, since
it can be computationally expensive for large-area devices such as grating couplers. Here
we consider solving a 3D CGWH scattering problem numerically with the spatial spectral
method developed in [110,111].

In Section 7.2.2 we present a scheme to artificially generate an inner-layer Gaussian
beam (GB) source, which yields the possibility to approximate the real incident field by
optimizing the beam parameters. We show numerical results in Section 7.2.3 and conclude
in Section 7.2.4.

7.2.2 Methodology

7.2.2.1 Statement of the problem

We consider a similar CGWH scattering problem as in [226], but with a smaller hologram
area being 40 × 40 µm. Fig. 7.15 (a) shows the layout of hologram area and the light
source in the xy plane. The CGWH has a grating structure and it contains 10126 bar-type
scatterers in total. All scatterers have uniform lengths in the y and z directions. In the x
direction, the lengths of the scatterers vary and they are designed specifically to project a
focused beam into free space [227].

Far from the hologram area, an optical input is released from a single-mode waveguide.
The input light has a vacuum wavelength λ0 = 1300 nm and an inner-layer wavelength
λ1 = 410.5 nm. The incoming light is guided within a high-contrast indium phosphide
(InP) layer. The hologram scatterers have a uniform height since they are all embedded in
a layer above the InP slab waveguide. Fig. 7.15 (b) shows the details of the multi-layered

4This section was published as [223]
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medium in the xz view. To reduce the computational cost, we will only simulate the
CGWH structure and approximate the source by a GB.

(a)

(b)

Figure 7.15: Geometry setup: (a) layout of the CGWH and the sources in xy view. The
dashed line represents the location where the artificial current is defined. (b) layered
medium in xz view with each layer’s material and the relative permittivity under λ0 =
1300 nm.

7.2.2.2 Induced Gaussian beam source

Inspired by the method used in [228, Chapter 3], we define an artificial current density
function JGB(x, y, z) in a Gaussian form that is centered at (x0, y0, z0), see Fig. 7.15 (a).
We make the following assumptions: (1) the fundamental mode is the only propagating
mode in the multi-layered medium, and (2) this mode can be excited by a current that is
uniform in the z direction. Therefore we use a 2D Gaussian function as a current source
generate the Gaussian beam. Let JGB(x, y, z) = (0, 0, JGB

z )T , and define:

JGB
z (x, y, z) = A(x, y)P (x, y)δ(x− xa)Π[z1,z2](z), (7.16a)

A(x, y) = J0
w0

w(x)
exp

{
−(y − y0)

2

w(x)2

}
, (7.16b)

P (x, y) = exp

{
−jk(y − y0)

2

2R(x)
− jk(x− x0)

}
. (7.16c)
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Note that A(x, y) represents an amplitude factor, where J0 is the initial amplitude, w0 is the
beam waist, xR = πw2

0/λ is the Rayleigh length, and w(x) = w0

√
1 + (x− x0)2/x2

R is the
beam radius at x. P (x, y) in (7.16) is a phase factor, whereR(x) = (x−x0) {1 + x2

R/(x− x0)
2}

is the radius of curvature of the phase front. The longitudinal phase is ignored since it
vanishes after a long propagation distance. In (7.16a), δ(x−xa) is the Dirac delta function
to generate a pulse current on xa (see Fig. 7.15 (a)), and in practice it is approximated
by a Gaussian function. Π[z1,z2](z) is a rectangular pulse function to bound the infinite 2D
GB to the computation domain only.

Then one can compute the scattered electric field by taking the pre-defined JGB as a
generating function:

EGB(x, y, z) = F−1
T

{∫
R

G(kx, ky, z, z
′)FT [J

GB(x, y, z′)]dz′
}
, (7.17)

where FT ,F−1
T denote 2D Fourier transformations, and G is the spectral-domain Green

operator in the multi-layered medium [110]. In Fig. 7.16 we show an example of the induced
electric field based on a 2D GB source defined within the InP waveguide in Fig. 7.15 (a).
The beam waist is w0 = 700 nm and the beam center is (−23.5, 0, 0.16) µm.
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Figure 7.16: Induced 2D GB and the domain of scatterers (red box). Left: |EGB
x (x, y)|.

Right: EGB
x (x, y), real part.

7.2.3 Numerical Results

We regard the induced scattered field EGB in (7.17) as the new incident field, i.e.,
Ei = EGB, and test the performance of the spatial spectral method [110, 111] on this
CGWH scattering problem. The beam waist is set to w0 = 600 nm. The computation
domain is 47.8× 42.9 µm, and discretization parameters determine a resolution of 27.9 nm
in the transverse plane and 16.5 nm in the z direction. Convergence study on the far field
shows a relative error of 10−3 under these settings.

We show the near-field scattered electric field in Fig. 7.17. Fig. 7.18 (a) shows far-
field intensity in the spectral domain above the top interface. The distribution of the
far field represents the total electric field after leaving the CGWH into free space, and it
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suggests a beam with a dominant direction in the xz plane. Fig. 7.16 (b) shows convergence
performances of iterative methods IDR(16) and BiCGstab(2), with (pdr.) or without (org.)
preconditioning, respectively. With BiCGstab(2) and a NVF-BD preconditioner [199], only
28 matrix-vector products are required to reach the desired relative error.
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Figure 7.17: Es(x, y) at z = 22 nm: (a) field intensity. (b) real part of Es
z(x, y). (c)

imaginary part of Es
z(x, y).
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Figure 7.18: (a) k2
0 · ∥E(kx, ky)∥ on a log10 scale within the Ewald circle, where k0 = 2π/λ0.

(b) Convergence comparisons.

7.2.4 Conclusion

A CGWH scattering problem with multi-layered medium is simulated via the spatial
spectral method. A GB incidence is induced based on an artificial current function. Near-
field and far-field solutions are shown and discussed. The fast convergence suggests the
spatial spectral method can be particularly useful for the CGWH design and similar large-
area devices.
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7.3 Simulating a metasurface scattering problem

7.3.1 Introduction

Dielectric metasurfaces based on dielectric resonators have interesting characteristics
and have been shown an effective tool for light manipulation [229–231]. Conventionally,
wavefront shaping is performed by designing the curvature of the surfaces in diffractive
optics. However, with a metasurface, variation in the alignment and geometrical details
of the subwavelength structures in the transverse directions can manipulate the phase,
amplitude, and polarization of the electromagnetic waves in a highly controllable man-
ner, and the dimension of the metasurface is reduced as compared to conventional optical
designs [232, 233]. For example, a robust design scheme is given in [234] for single-layer
metasurface lenses based on dielectric resonators. A dielectric resonator metasurface usu-
ally contains high-contrast scatterers to generate strongly resonant responses [233, 235],
which yields difficulties when using a full-wave simulation. Naturally, an efficient Maxwell
solver can contribute to the design process.

In this section, we use the spatial spectral Maxwell solver to simulate a single-layer
dielectric resonators metasurface lens. In Section 7.3.2 we present the geometry configu-
ration of the metasurface lens and give the discretization parameters used in the spatial
spectral method. We show the near-field results and the iteration details in Section 7.3.3.
The challenges when solving this metasurface case and concluding remarks are discussed
in Section 7.3.4.

7.3.2 Methodology

We consider a metasurface with multiple circular-cylindrical scatterers positioned on a
substrate and surrounded by the air. Fig. 7.19 (a) shows the top view of the layout of a case
with 13 × 13 scatterers in the x and y directions. The scatterers are made of amorphous
silicon, while the substrate material is SiO2. The side view of this metasurface is displayed
in Fig. 7.19 (b). Note that all the cylindrical scatterers have a uniform height of 800 nm,
but a non-uniform diameter ranging from 161 nm to 257 nm. A normally incident plane
wave with the electric field polarized along the x-direction is impinging from the bottom
substrate and travels along the z direction. The free-space wavelength of the incident plane
wave is 1000 nm. Relative permittivities of the scatterers and the substrate are shown in
Fig. 7.19 (b) as well, and the consequent contrast of these cylinder-shaped scatterers is
χ = 12.1769.

In particular, we consider 4 cases of the metasurface scattering problem as described in
Fig. 7.19 with different numbers of scatterers. Table 7.2 shows the discretization parameters
used for these 4 cases. Note that the ℓ×ℓ, for some positive integer ℓ, represents a case with
ℓ scatterers per row and ℓ scatterers per column. Therefore, Fig. 7.19 (a) corresponds to the
case 13× 13. Tx, Ty in Table 7.2 denote the Gabor window lengths in the spatial domain,
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mx, my are the spatial shift numbers, nx, ny are the spatial frequency modulation numbers.
Note that the spatial shift numbers are increased to generate a larger computational domain
when more scatterers are taken into account. In the z direction, Nz represents the number
of PWL functions used. The oversampling parameters are αx = αy =

√
2/3, and βx =

βy =
√
2/3. The total number of unknowns for each case is given in the last column, based

on Eq. (2.78). Additionally, the discretization parameters, as listed in Table 7.2, imply a
transverse resolution of about 14 nm and a longitudinal resolution of 10 nm.5

(a) (b)

Figure 7.19: A metasurface example. (a) top view of the scatterers and the background
medium. Here 13 × 13 circular-cylindrical scatterers are displayed on a rectangular grid
with a center-to-center spacing of 328 nm. (b) Side view of three scatterers and the layered
background medium. The relative permittivities are given for the free-space wavelength
λ0 = 1000 nm. The scatterers of this metasurface can have different diameters.

Table 7.2: Discretization parameters used in the metasurface cases.

# scatterers Tx, Ty [nm] mx, my nx, ny Nz q p Nr. of unknowns

3× 3 500 −4 : 4 −16 : 16 81 2 3 21.4× 106

9× 9 500 −7 : 7 −16 : 16 81 2 3 59.5× 106

13× 13 500 −7 : 7 −16 : 16 81 2 3 59.5× 106

27× 27 500 −13 : 13 −16 : 16 81 2 3 192.9× 106

5On a single-scatterer test, these parameters yield an average relative error of 10−3 in the far field,
compared to a self-reference with a transverse resolution of 2.3 nm and a longitudinal resolution of 2 nm.
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7.3.3 Numerical results

Now we show the near-field solutions of two metasurface cases with different numbers
of scatterers, as described in Table 7.2. The first case contains 3× 3 scatterers distributed
over the transverse domain [−450, 450]× [−450, 450] nm2. The second case contains 13×13
scatterers distributed over the domain [−2100, 2100]× [−2100, 2100] nm2. The plane that
separates the scatterer and the substrate is located at z = za = 0 nm and we are interested
in the total electric field at the top of the scatterers, where z = zb = 800 nm. The near-field
solutions of these two cases are shown in Fig. 7.20 and Fig. 7.21, respectively.
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Figure 7.20: Total electric field E(x, y) at z = zb = 800 nm of a metasurface with 3 × 3
scatterers. (a) Absolute value of Ex(x, y), (b) real part of Ey(x, y), and (c) real part of
Ez(x, y). The black circles denote the boundaries of the circular-cylindrical scatterers in
the transverse plane.
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Figure 7.21: Total electric field E(x, y) at z = zb = 800 nm of a metasurface with 13× 13
scatterers. (a) Absolute value of Ex(x, y), (b) real part of Ey(x, y), and (c) real part of
Ez(x, y). The yellow dashed box indicates smallest square domain that contains all the
scatterers.

The iteration details of the Krylov-subspace solver for the 4 cases in Table 7.2 are shown
in Fig. 7.22. The horizontal axis denotes the number of MVPs for the iterative method

139



IDR(16) and the vertical axis represents the relative error of the approximate solution at
each iteration. To make the relative error of the residual reach 1.0× 10−5, the 3× 3 case
requires 435 MVPs and the 9× 9 case requires 2567 MVPs. The number of MVPs of the
9 × 9 case is reduced to 2114, after applying the NVF-BD preconditioner introduced in
Chapter 6. The 13 × 13 case reaches a relative error of 1.0 × 10−4 after 5000 MVPs, and
the 27 × 27 case only reaches a 1.2 × 10−1 relative error after 5000 MVPs. Clearly, more
iterations are needed when more scatterers are taken into account.
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Figure 7.22: Iteration details of the 4 cases with different numbers of scatterers. The 9× 9
scatterers case was also tested with the NVF-BD preconditioner proposed in Chapter 6, as
indicated by pdr in the legend. The dashed line denotes the desired relative error level in
the residual of 1.0× 10−5.

7.3.4 Further discussion

We have observed difficulties in the convergence of the Krylov subspace methods for
larger cases in Section 7.3.3. To analyze which factor causes this difficulty, we perform the
following two groups of simulations:

1. increasing the wavelength of the incident plane wave,

2. reducing the height of the scatterers.

In the first experiment, we increase the wavelength from 1000 nm to 2000 nm and use
the discretization parameters specified in Table 7.2. In the sense of relative sizing in an
electromagnetic scattering problem, increasing the wavelength of the incident electric field
is equivalent to considering a smaller geometry with the original wavelength. We expect
this metasurface problem with a larger wavelength to be easier to solve since the scattering
effects tend to weaken as the incident waves interact with the geometry on a coarser scale.
Fig. 7.22 displays the iteration details of all 4 cases listed in Table 7.2. It is apparent that
fewer iterations are required as compared to Fig. 7.22.
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Figure 7.23: Iteration details of the 4 cases in Table 7.2 with an increased wavelength of
2000 nm. The dashed line denotes the desired relative residual error of 1.0× 10−5.
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Figure 7.24: Iteration details of the 4 cases, as listed in Table 7.2, with reduced height of
the scatterers from 800 nm to 130 nm and 70 nm. (a) 3× 3 scatterers, (b) 9× 9 scatterers,
(c) 13 × 13 scatterers, and (d) 27 × 27 scatterers. The dashed line denotes the desired
relative residual error level of 1.0× 10−5.

In the second experiment, we decrease the height of all the scatterers from 800 nm to
130 nm and 70 nm, respectively. The original wavelength inside the scatterers is 276.3 nm.
Therefore, the reduced heights are around 1/2 and 1/4 of the original wavelength in the
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material of the scatterer6. The diameters of the cylindrical scatterers are kept the same.
Fig. 7.24 shows the double-logarithmic plots of the iteration details of the 4 cases with the
original scatterer height of 800 nm and the reduced scatterer heights.

We summarize the results concerning the number of iterations for all cases involved
in the above two experiments in Table 7.3. The second column and the third column
record the number of MVPs with the original wavelength of 1000 nm (marked by “org.”)
and the increased wavelength of 2000 nm, respectively. The recorded numbers of MVPs
related to Experiment 2 are given in the last two columns of Table 7.3. Both Fig. 7.24
and Table 7.3 indicate that the scatterers’ height is crucial to the number of iterations. A
smaller height of the scatterers not only reduces the number of iterations, but it also yields
an only moderate increase in the number of iterations when including more scatterers in
the transverse direction.

Table 7.3: Number of MVPs comparison.

scatterers org. λ0 = 2000 nm h = 130 nm h = 70 nm

3× 3 435 146 162 167

9× 9 2567 280 181 165

13× 13 5000+ 389 193 175

27× 27 5000+ 1208 230 195

6 The second experiment only reduces the geometry of the scatterers in the longitudinal direction,
while the first experiment essentially reduces the scatterers in all directions.
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Chapter 8

Conclusions and outlook

8.1 Conclusions

The main results of this thesis are the flexible geometry representation, improved mul-
tiplication operators, and a preconditioner to reduce the number of iterations of Krylov
subspace methods, for a spatial spectral Maxwell solver using Gabor frames.

We proposed two methods to compute Gabor coefficients for 2D indicator functions
supported on a polygonal domain. The first one utilized a recurrence relation after applying
a finite Taylor-series expansion of the complex error function. Owing to the recurrence
relation structure, the pertaining system can be solved efficiently with Olver’s algorithm.
However, this method requires a high working precision, which results in a limited use in
practice. The most valuable lesson learned from this Taylor-based method is that expansion
functions should be used that exhibit faster convergence. In a subsequent investigation,
we found that the rational expansion of the Faddeeva function is a good candidate for
this, since it yields uniform convergence on the whole complex plane, which constitutes the
fundament of the second method. A recurrence relation was derived and solved by Olver’s
algorithm. This so-called RE-DE method surpasses direct numerical quadrature in both
accuracy and computation time.

When simulating scattering behavior on high-contrast objects with the spatial spectral
method, we encountered an extremely ill-conditioned system due to the originally imple-
mented multiplication operator. The conditioning problem was resolved by an improved
multiplication operator for Gabor coefficients, with a cutting procedure in the spectral do-
main. Equipped with the new multiplication operator, we solved a 3D scattering problem
with the contrast χ = 16 and obtained a 10−3 relative error in the far field.

To increase the rate of convergence of Krylov subspace solvers applied to the spatial
spectral method, an NVF-BD preconditioner was designed and applied in cooperation with
BiCGstab(ℓ) or IDR(s). The preconditioned system reduces the number of iterations and
computation time in both 2D and 3D examples with high contrast or negative permittivity.
In a 2D TM scattering problem, we observed the NVF-BD preconditioner saves up to
90% for high-contrast cases. For some 2D TM cases with negative permittivities and 3D
cases with high contrast, the NVF-BD preconditioner makes the solver converge within
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a reasonable number of iterations while the unpreconditioned system does not converge
at all. Analysis of the computation time demonstrates that the overall solution time
can be decreased by applying the NVF-BD preconditioner, even though the reduction
may be diminished when a large number of transverse basis functions is used. This is
attributed to the additional MVPs required for the preconditioner, which introduces a
quadratic computational complexity in the transverse directions. Nevertheless, the NVF-
BD preconditioner still offers the potential for reducing the total solution time.

Finally, three scattering applications were studied in this thesis. In the first application,
we modeled and solved the scattering behavior for a single-pad resist-only metrology target.
After comparing the solution of the finite spatial spectral solver with a periodic Maxwell
solver, we observed a 10−2 level of relative difference. Numerical results suggest that the
spatial spectral Maxwell solver has the ability to solve similar types of scattering problems
accurately and efficiently, and can hence contribute to an optical metrology sensor model
for non-periodic metrology targets. In the second application, we simulated a computer-
generated waveguide hologram (CGWH) scattering problem. The hologram area contains
10,126 bar-type scatterers in a 41.6 × 41.4 µm2 area. We also simulated a metasurface
problem in the third application. Numerical results show the height of the scatterers is a
crucial parameter for the rate of convergence of the iterative solver.

8.2 Outlook

Acceleration on the Gabor coefficients computation with the RE-DE method

A rational-expansion-based method has been proposed in Chapter 4. In the sense of
computing a single fundamental integral, numerical results show that this method signifi-
cantly outperforms the direct numerical integration method in terms of computation time,
by taking advantage of a recurrence relation.

A complex polygonal object usually requires many Gabor coefficients for reconstruction.
Therefore, a reduction in the required number of Gabor coefficients is also important. The
RE-DE method proposed in Chapter 4 should be incorporated with a scheme where the
total number of Gabor coefficients is optimized. The cost is that the derived second-order
difference equations in Section 4.3 might not hold anymore. However, the fundamental
integrals can still be computed efficiently by applying the truncated rational expansion
of the Faddeeva function by utilizing its fast convergence property on the whole complex
plane. Overall, the total computation time should be reduced further after optimizing the
required number of Gabor coefficients.

Geometry with curves

The two difference-equation-based methods in Chapter 3 and Chapter 4 are designed
for computing the Gabor coefficients of a 2D indicator function supported on a polygonal
domain. Even though the N -sided polygon has the advantage to approximate an arbitrary
2D shape by increasing N , the fundamental difference between a straight line and a curve
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might affect the accuracy and efficiency of the approximation with a polygon. For a curve
with high curvature, a refined polygonal approximation might be required, at least locally in
the area with high curvature. The analytical RE-DE-based method proposed in Chapter 4
could be extended to circles or ellipses if a similar difference equation can be derived.

Approximation to the NVF-BD preconditioner

The NVF-BD preconditioner proposed in Chapter 6 requires computing the inverse
of matrix C, i.e., the matrix representation of the field-material interaction operator Cε.
For 2D TM polarization, it is not hard to compute this preconditioner since the size of
matrix C is usually not so large. However, in 3D cases, computing the inverse directly is a
challenging task due to its large dimension. In the 3D example studied in Section 6.4.3, an
extra linear system is solved iteratively per iteration to perform the MVP associated with
the NVF-BD preconditioner. Even though in general it is not hard to find C−1, owing
to its block-diagonal structure, the requirement to perform the multiplication with the
preconditioner iteratively in every iteration significantly limits its applications in practice.

One way to approach this problem is to find an approximation of the NVF-BD pre-
conditioner. Analogous to the situation for circulant/Toeplitz preconditioners for Toeplitz
systems [216, 217, 220], the ideal approximated matrix C̃ should have a similar eigenvalue
distribution of C, and its inverse should be available at a lower computational cost. The
starting point should be an explicit representation of the matrix C. This is a challenging
task since it requires the explicit representation of the finite 2D Gabor expansion of the
Cε operator and the improved multiplication operators as introduced in Chapter 5.

New preconditioner design

The matrix equation of the spatial spectral method is (C − G · M) · u = f , and a
strong clustering of eigenvalues of the system C − G · M tends to reduce the number of
iterations. Several factors affect the distribution of eigenvalues and the skewness of the
system C−G ·M : the normal vector field formulation, the contrast between the scatterers
and the environment, and the size of the scattering object(s) with respect to the wavelength
of the source.

The NVF-BD preconditioner proposed in Chapter 6 cures the spreading effect of the
spectrum due to the NVF and yields a preconditioned system in the form of I − G · X.
However, for higher-contrast or negative-permittivity scattering problems, there might still
be convergence issues for the preconditioned system. On one side, more powerful iterative
algorithms with a faster rate of convergence are required to tackle these problems. However,
we expect only moderate improvement from this direction. When such advanced iterative
methods are not available yet, the other realistic option is to resort to a new preconditioner
to reduce the number of iterations by further curing the eigenvalue distribution. There are
several requirements for designing such a new preconditioner. Firstly, a clear structure of
the system C − G ·M of the spatial spectral system should be known a priori. Secondly,
the matrix structure of the original system (e.g., symmetry, definiteness, multilevel block
structure) should be preserved as much as possible. Thirdly, the new preconditioner should
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be constructed only once per problem, and its cost should not significantly increase with
the number of unknowns.

Validation against experimental measurements

The results of the thesis at hand are mainly compared with external numerical refer-
ences. In the future, it is also important to conduct experimental validation to verify the
performance and reliability of this spatial spectral Maxwell solver. For instance, on the
cases in Chapter 7. Studying a similar metrology case for which experimental measurement
data is available would provide valuable validation information for and test capabilities of
the spatial spectral Maxwell solver. The results of the cases with large structures should
also be validated, e.g., the CGWH device with an induced Gaussian beam source. Current
numerical results suggest a reasonable scattered beam focus, but a comparison of finer
details of the focused beam in the far-field should be conducted.
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Appendix A

Extension of an electric field from a
plane to a volume

To facilitate real wafer metrology applications, we take a look into the incorporation of
a general incident field that is composed of a large number of plane waves. The interest
lies in consistently extending the electric field, defined on a horizontal plane at z = zd in
the upper halfspace, to the entire simulation domain D via the spatial spectral method.
The first assumption is that an incident field originates from the upper half-space, given
the geometrical formulation of a planarly layered background medium as in [24, p.27], and
the simulation domain D is contained in the n-th layer below the top interface. The second
assumption concerns the incidence, i.e. we assume the propagation directions of the plane
waves are specified on a uniform grid Λ in the spectral domain. To be precise, this incident
field is described as

Ei(kT , zd) = [Ei
x(kT )x̂+ Ei

y(kT )ŷ + Ei
z(kT )ẑ], (A.1)

for all kT ∈ Λ, where zd satisfies zd < z1.
We apply the following operations to achieve our goal. First, for each kT ∈ Λ, the inci-

dent field is multiplied by a factor exp(γ0[z1−zd]) with the, generally complex, propagation
coefficient

γ0 =
√
k2
x + k2

y − εrb,0k2
0. (A.2)

In other words, each plane wave is propagated to the interface between the upper half-
space and the first layer of the planarly layered background medium, i.e. z = z1. Now,
the incident field has to be propagated through the layered medium. Unfortunately, this
is in its current form not immediately possible due to the branch cuts and poles of the
layered medium. Therefore, we employ a complex-plane deformation for kT , as in [24], to
evade these branch cuts and poles. As a result, the second step is to perform the following
ordinary real-space Fourier transformation

Ei(xT , z1) =

∫∫
kT∈R2

Ei(kT , z1)e
−jkT ·xT dkT , (A.3)

147



where in practice this Fourier transformation is performed on Gabor coefficients together
with the list-based representation introduced in [111]. From Eq. (A.3) we can subsequently
apply the complex-plane deformed Fourier transformation operator FxT

as

Ei[τ(kT ), z1] = FxT
[Ei(xT , z1)](kT , z1). (A.4)

The variable τ refers to the complex-plane deformation as formulated in [24, Ch. 8]. Third,
we compute the tensorial transmission coefficients T d

0n and T u
0n on the complex kT -plane,

see [24, Ch. 2.2.3]. These coefficients link the amplitude of an incident field in the upper
half-space, namely layer 0, to its effective amplitude in layer n owing to all transmission
and reflection coefficients of the layered medium. We use these coefficients in the fourth
step to describe the effective downward-propagating response Wd

n(kT , z) in domain D as

Wd
n[τ(kT ), z] = e−γn(z−zn)T d

0n · Ei[τ(kT ), z1], (A.5)

while the effective upward-propagating response Wu
n(kT , z) is written as

Wu
n[τ(kT ), z] = e−γn(zn+1−z)T u

0n · Ei[τ(kT ), z1]. (A.6)

The variable γn represents the propagation coefficient in layer n. The last step is performing
an inverse complex-plane-deformed Fourier transformation by the operator F−1

kT
[. . .](xT , z),

which provides the incident field in simulation domain D as

Ei(xT , z) = F−1
xT

{
Wd

n[τ(kT ), z] +Wu
n[τ(kT ), z]

}
(xT , z). (A.7)
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