

Development of Service Workbench for Software Delivery
Platform
Citation for published version (APA):
Sharma, M. (2023). Development of Service Workbench for Software Delivery Platform. Technische Universiteit
Eindhoven.

Document status and date:
Published: 10/10/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/83d27354-78fd-4f24-a470-b82a04295cb1

Eindhoven University of Technology

i

Development of Service Workbench for Software Delivery Platform

Mayank Sharma

October 2023

Eindhoven University of Technology

Stan Ackermans Institute – Software Technology

EngD Report: 2023/091

Confidentiality Status:

Not Confidential

Partners

Thermo Fisher Scientific Eindhoven University of Technology

Steering

Group

ir. E. Algra, EngD

ir. H.T.G. Weffers, EngD

Date October 2023

Eindhoven University of Technology

ii

Composition of the Thesis Evaluation Committee:

Chair: Prof. Dr. M.G.J. van den Brand

Members: ir. E. Algra, EngD

ir. H.T.G. Weffers, EngD

T.E. Molina, MSc

Dr. ir. L.G.W.A. Cleophas

The design that is described in this report has been carried out in accordance

with the rules of the TU/e Code of Scientific Conduct.

Eindhoven University of Technology

iii

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 5.080A, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31 402474334

Partnership This project was supported by Eindhoven University of Technology and Thermo

Fisher Scientific.

Published by Eindhoven University of Technology

Stan Ackermans Institute

EngD-report 2023/091

Preferred

reference

Development of Service Workbench for Software Delivery Platform Eindhoven

University of Technology, EngD Report, October 2023

Abstract Thermo Fisher Scientific offers various scientific research services and products,

including analytical testing, clinical laboratory services, and pharmaceutical re-

search and development. Their Transmission Electron Microscope is a noteworthy

product that the semiconductor, life sciences, and material sciences industries use.

It also helps semiconductor manufacturers identify defects in semiconductor chips.

Thermo Fisher Scientific also provides complex instruments that require profes-

sional installation, troubleshooting, and upgrades to function efficiently. These in-

struments also host a software hosting infrastructure that Thermo Fisher Scientific

Digital Service Engineers manage. To address the challenges of installing and con-

figuring this instrument, we developed a new tool, Workbench, which the Field

Service Engineers can use to install and update the infrastructure at the customer’s

location. Additionally, it provides access to external tools that support trouble-

shooting and other application installations.

Keywords EngD, Software Technology, Workbench, Graphical User Interface, Automation,

Audits, Manage Applications

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the Eindhoven University

of Technology or Thermo Fisher Scientific. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the Eindhoven Univer-

sity of Technology or Thermo Fisher Scientific and shall not be used for advertis-

ing or product endorsement purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within

this report is accurate and up to date, Eindhoven University of Technology makes

no warranty, representation or undertaking whether expressed or implied, nor does

it assume any legal liability, whether direct or indirect, or responsibility for the

accuracy, completeness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service

marks of their respective owners. We use these names without any particular en-

dorsement or with the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2023. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced, mod-

ified, or redistributed in any form or by any means, electronic or mechanical, in-

cluding photocopying, recording, or by any information storage or retrieval

Eindhoven University of Technology

iv

system, without the prior written permission of the Eindhoven University of Tech-

nology and Thermo Fisher Scientific.

Eindhoven University of Technology

v

Foreword
The MSD business of Thermo Fisher Scientific (formerly known as FEI) has traditionally been a global

leader in the innovation of electron microscopes (EM). Software has played an increasing role in the

delivery of the innovations, yet mainly focused on the instruments themselves.

The new area the company is moving towards is to deliver solutions that support the workflow of the

customer using various instruments, covering data management as well as data post processing. To be

successful, we need ability to deliver (pure) software solutions as managed service, interfacing with

customer infrastructure, and due to the nature of the customer and instruments, deployed and managed

within the premises of the customer. Our Software Delivery Platform (SDP) infrastructure services the

needs of the on-premise software as a service delivery with local tools and automation. The current

configuration management interface of this infrastructure is limited in its usage due to the command

line nature of the management toolsets, where an easy to use, intuitive and foolproof solution is needed

that can be used by lesser trained IT service engineers also.

Mayank has done a good job in filling this gap. He interacted intensely with various stakeholders outside

R/D resulting in a feature set that meets end user needs. As part of the implementation, he introduced a

number of new libraries and mechanisms in the SDP configuration GUI sphere and nicely integrated

with an existing GUI app, with good decoupling mechanisms with the other system parts.

Due to his rigid time and scope management, Mayank was able to deliver the most important parts of

the scope into a release candidate of the actual product.

Mayank demonstrated visible growth during his project in his personal and professional skills, and we

wish him all the best on his next endeavors.

Egbert Algra, MSc, PDEng

11 October 2023

Eindhoven University of Technology

vi

Preface
The Engineering Doctorate (EngD) Software Technology (ST) program at Eindhoven University of

Technology is a two-year postmaster program focused on training individuals for a career as a techno-

logical designer in the industrial sector. The program consists of 14 months of advanced training in

technical and professional subjects and three in-house projects driven by industry Needs. Following

this, trainees complete a ten-month final project in a company and are awarded the EngD degree upon

completion.

This final technical report details the Development of Service Workbench for Software Delivery Plat-

form project, which Mayank Sharma completed during his ten-month final project. The project aimed

to create a user-friendly, web-based application for Field Service Engineers (FSEs) at Thermo Fisher

Scientific with varying skills and backgrounds to install, upgrade, and troubleshoot the software hosting

infrastructure called Software Delivery Platform (SDP).

The report includes an introduction to Thermo Fisher Scientific, the project goal, an explanation of

critical concepts in the domain analysis, and a description of core needs and requirements. The report

then delves into the detailed project solution, followed by verification and validation for software qual-

ity. Finally, the report provides recommendations for future work, project management, and career-

oriented learning through project retrospectives.

Mayank Sharma

October 2023

Eindhoven University of Technology

vii

Acknowledgements
As an Engineering Doctorate (EngD) Software Technology (ST) trainee working on the EngD project,

I had the opportunity to learn and grow professionally. I am grateful for the support and contributions

of my supervisors, colleagues, and friends throughout the project.

I sincerely thank Egbert Algra from Thermo Fisher Scientific and Harold Weffers from the Eindhoven

University of Technology, who served as my company and university supervisor, respectively. Their

invaluable guidance, unwavering support, and insightful feedback were integral to the success of my

ten-month-long project, Development of Service Workbench for Software Delivery Platform. They

aided with project management, documentation, risk management, stakeholder communication, and

stakeholder management, as well as valuable insights on architecture and critical pointers that helped

me navigate the project successfully. Their willingness to help with every aspect of the project ensured

its success.

I am also grateful to my colleagues Respa A. Putra, Giovanni de Almeida Calheiros, Chen Gang, Tor

Halsan, Bart van Knippenberg, and Bob Peeters from the Research & Development Team for their

camaraderie and stimulating discussions. Their diverse perspectives were invaluable in refining the

software design and implementation of the project.

I express my deepest gratitude to Tarkan Akcay, Jordy Plug, Kieran Ham, and Ataur Rahman from the

Service Organization for their valuable feedback during the project.

Yanja Dajsuren and Karin Majoor provided invaluable support and guidance during my two years in

the EngD program, and I am thankful for their contributions. I would also like to thank my friends from

the EngD ST 2023 generation for the joy, laughter, and memorable moments we shared.

I want to thank my parents, Arvind Prakash Sharma and Sarita Sharma, and my sister, Mrinal Sharma,

for their understanding, encouragement, and occasional distractions that provided moments of respite

during the intense phases of my project. I would also like to thank my spiritual guide, Daaji, for always

supporting my endeavors.

Lastly, I would like to thank all whom I have missed and who have helped in my EngD journey.

Mayank Sharma

October 2023

Eindhoven University of Technology

viii

Executive Summary
Thermo Fisher Scientific offers various scientific research services and products, including analytical

testing and research, clinical laboratory services, and pharmaceutical research and development. One

of their noteworthy products is the Transmission Electron Microscope, which helps manufacturers iden-

tify defects in semiconductor chips.

Thermo Fisher Scientific provides complex instruments housing a software hosting infrastructure that

requires professional installation, troubleshooting, and upgrades to function efficiently. The Service

Organization sends Field Service Engineers to customers to perform these tasks. However, the complex

instruments Thermo Fisher Scientific Research and Development Engineers developed require more

demanding installation and configuration, resulting in a new tool called Workbench. This tool would

enable Field Services Engineers to install, upgrade, and troubleshoot the instruments independently at

Thermo Fisher Scientific customers’ locations.

We developed a solution during the project to help with installation, upgradation, and troubleshooting.

Workbench provides a Graphical User Interface that interacts with the software hosting infrastructure

to install, update, and troubleshoot itself. This software hosting infrastructure is the Software Delivery

Platform, which can be installed or updated by executing automation files. Additionally, Workbench

provides the opportunity to view output generated by the automation files in the form of history. It is a

centralized place showing each automation file’s complete output trace. To support troubleshooting,

Workbench provides access to other applications that help to troubleshoot the Software Delivery Plat-

form and install other applications.

As an experimental version, Workbench has become part of the Thermo Fisher Scientific Q3 software

release. This release will enable all Service Engineers to test the application and provide further feed-

back to improve the application.

Eindhoven University of Technology

ix

Table of Contents

Foreword .. v

Preface ... vi

Acknowledgements ... vii

Executive Summary ... viii

Table of Contents ... ix

List of Figures .. xii

List of Tables .. xiii

Glossary .. xiv

1. Introduction ... 1

1.1 Context .. 1

1.2 Business Problem & Goal .. 1

1.3 Project Problem & Goal .. 1

1.4 Project Scope .. 2

2. Needs & Requirements .. 3

2.1 Overview ... 3

2.2 Needs .. 3

2.3 System Requirements .. 3
2.3.1. Functional .. 3
2.3.2. Non – Functional ... 5

2.4 Use Cases ... 5

3. Solution ... 7

3.1 Overview ... 7

3.2 High-Level View ... 7

3.3 SCI – Action .. 10
3.3.1. Applying an action ... 10
3.3.2. Cancel an action ... 13
3.3.3. Auto – reconnect to action ... 13

3.4 SCI – Action History ... 18

3.5 Workbench – Manage Applications .. 21
3.5.1. Accessing service applications .. 21
3.5.2. Accessing SWAP within Workbench .. 23
3.5.3. Viewing SDP Health alerts .. 24

3.6 Integration – Form Flow .. 29

4. Verification & Validation .. 33

Eindhoven University of Technology

x

4.1 Overview ... 33

4.2 Verification ... 33
4.2.1. End-to-end testing .. 33
4.2.2. Unit testing .. 36
4.2.3. Static analysis .. 36

4.3 Validation ... 36

4.4 Final Feedback ... 36

5. Conclusion .. 39

5.1 Overview ... 39

5.2 Recommendation for Future Work ... 39
5.2.1. UI ... 39
5.2.2. Functionality .. 40
5.2.3. Testing ... 40
5.2.4. Continuous Integration .. 41

6. Project Management ... 43

6.1 Overview ... 43

6.2 Project Planning ... 43

6.3 Process Management.. 43

6.4 Risk Management ... 44

6.5 Change Management .. 45

6.6 Needs & Requirements Management ... 46

6.7 Architecture & Decision Management ... 47

6.8 Quality Management .. 47
6.8.1. Consultations ... 47
6.8.2. Demo Sessions ... 47
6.8.3. Dry Run ... 47

7. Project Retrospective ... 48

7.1 Overview ... 48

7.2 Lessons Learned ... 48

References .. 49

Appendix A. Light & Electron Microscopy .. 53

Appendix B. Domain Analysis ... 55

Domain .. 55
Virtualization ... 55
Containerization ... 55
Ansible ... 55
Terminal ... 55
Grafana .. 55
Kubernetes ... 55
Kibana .. 56

SDP Overview ... 56

Eindhoven University of Technology

xi

SDP Installation .. 57

SDP Troubleshooting & Application Installation ... 58

Appendix C. NFR Reference List .. 59

Appendix D. Tools & Technologies ... 60

Appendix E. Decisions .. 63

Appendix F. Final UI .. 70

Appendix G. Solution Architecture ... 77

Overview .. 77

Development View ... 78

Physical View Production ... 79

Physical View Testing ... 80

Process View ... 81

Logical View (Class/Sub-module diagram)... 82

Logical View (State Machine Diagram) .. 83

Use Cases .. 84

Appendix H. Risks .. 85

About the Author .. 86

Eindhoven University of Technology

xii

List of Figures

Figure 1. Diagram showing the workbench scope .. 2
Figure 2. Diagram showing the high-level view of the solution ... 9
Figure 3. Diagram showing how operation manages Webserver state ... 11
Figure 4. Diagram showing the flow of information from Form Flow File to Script Executor............ 11
Figure 5. Diagram showing workbench accessing automation scripts through SSH 12
Figure 6. Diagram showing applying an action .. 15
Figure 7. Diagram showing cancelling an action .. 16
Figure 8. Diagram showing client reconnection ... 17
Figure 9. Final UI showing filter button to filter action history .. 19
Figure 10. Image showing the name and creation date of automation audits 19
Figure 11. Diagram showing internal sub-modules of history .. 20
Figure 12. Diagram showing how URL builder obtains Manage Applications information 21
Figure 13. Final UI showing list of Manage Applications .. 22
Figure 14. Image showing the structure of the Manage Applications file .. 23
Figure 15. SDP Health traffic light used in Workbench ... 24
Figure 16. Diagram showing access to service applications ... 26
Figure 17. Diagram showing access to SWAP embedded within Workbench 27
Figure 18. Diagram showing Workbench accessing SDP Health alerts ... 28
Figure 19. Image showing the flow parameter in the URL that Form Flow Mapper uses 30
Figure 20. Image showing the structure of the Form Flow File .. 30
Figure 21. Diagram showing the steps to transition from SCI to SCA ... 31
Figure 22. Diagram showing an example of complete Form Flow ... 32
Figure 23. Diagram showing the interactions between containers for testing 35
Figure 24. Image showing extra information for an element .. 39
Figure 25. Image explaining the overall project timeline ... 43
Figure 26. Diagram showing the working process.. 44
Figure 27. Diagram showing the risk management process ... 44
Figure 28. Diagram showing the change management process .. 45
Figure 29. Diagram showing the interview to requirements process .. 46
Figure 30. Image showing a cross section of a light microscope [53] .. 53
Figure 31. Side-by-side comparison between light microscope and TEM [53] 54
Figure 32. Side by side comparison of SEM and TEM images [52] .. 54
Figure 33. Diagram showing the internal components of SDP ... 56
Figure 34. Steps showing the installation process of SDP .. 57
Figure 35. Final UI of the workbench homepage ... 70
Figure 36. Final UI for viewing action output .. 71
Figure 37. Final UI showing a list of all actions ... 72
Figure 38. Final UI showing action cancelled on the action page .. 72
Figure 39. Final UI of action history ... 73
Figure 40. Final UI of viewing an audit content for an action .. 73
Figure 41. Final UI showing the list line of audit ... 74
Figure 42. Final UI showing SWAP within Iframe .. 74
Figure 43. Final UI showing the list of Manage Applications .. 75
Figure 44. Final UI showing the next and previous buttons of SCA .. 75
Figure 45. Final UI showing the pre-install web page and its elements ... 76
Figure 46. Diagram showing the development view of Workbench... 78
Figure 47. Diagram showing physical view for the production environment 79
Figure 48. Diagram showing physical view for the testing environment ... 80
Figure 49. Sequence diagrams of workbench ... 81
Figure 50. Diagram showing the sub-modules/classes and their relations ... 82
Figure 51. Diagram showing the state machine diagram of operation.. 83
Figure 52. Uses cases for workbench application ... 84

Eindhoven University of Technology

xiii

List of Tables

Table 1. Core Needs elicited ... 3
Table 2. Functional requirements and the Needs they address ... 4
Table 3. Non-functional requirements and the Needs they address .. 5
Table 4. Use Cases and the requirements they address ... 5
Table 5. Description of high-level view of solution components ... 7
Table 6. Traceability between the solution components and requirements .. 8
Table 7. Description of sub-modules within Action ... 10
Table 8. Description of sub-modules within History .. 18
Table 9. Description of Manage Applications internal sub-modules .. 22
Table 10. Description of internal sub-modules of Form Flows .. 29
Table 11. Traceability between requirements and test cases .. 33
Table 12. Description of components used for End-to-end testing ... 35
Table 13. Detailed feedback for different elements of Workbench .. 36
Table 14. Headings used for documenting Needs in the Needs Register ... 47
Table 15. Internal components of SDP and their purpose .. 57
Table 16. List of nonfunctional requirements derived from ISO 25010:2011 59
Table 17. List of tools and technologies used for the project ... 60
Table 18. List of decisions made during the project ... 63
Table 19. Decisions associated to different modules .. 66
Table 20. Stakeholders consulted for different decisions ... 66
Table 21. An example of a decision taken to choose a suitable real-time technology 67
Table 22. Legend for the example decision .. 69
Table 23. Top two risks that occurred during the project ... 85

Eindhoven University of Technology

xiv

Glossary

TU/e Eindhoven University of Technology

DMP Data Management Platform

SDP Software Delivery Platform

DSE Digital Service Engineer

DSO Digital Service Organization

FSE Field Service Engineer

GTS Global Technical Service

OE Operations Engineer

RNDE Research and Development Engineer

EngD Engineering Doctorate

SPC Support PC

MPC Microscope PC

MTA Milestone Trend Analysis

CI/CD Continuous Integration/ Continuous Delivery

ST Software Technology

TEM Transmission Electron Microscope

SCA Software Configurator Application

SCI Software Configurator Installer

SCIA Software Configurator Installer Application

SLMT Software Lifecycle Management Tools

SWAP WDP Web-installer Application Program

GUI Graphic User Interface

VM Virtual Machine

MoSCoW Must have, should have, could have, won't have

SO Service Organization

SE Service Engineer

SSH Secure Shell

PDCA Plan Do Check Act

PMP Project Management Plan

SEM Scanning Electron Microscope

VM Virtual Machine

Eindhoven University of Technology

1

1.Introduction

1.1 Context

Thermo Fisher Scientific is a global leader in scientific research services and products. Their services

include analytical testing and research, clinical laboratory services, and pharmaceutical research and

development. They serve many customers, including academic institutions, government agencies, bio-

technology companies and semiconductor manufacturers [1].

One notable product that Thermo Fisher Scientific produces is their Transmission Electron Microscope

(TEM) which has proven an invaluable tool for semiconductor manufacturers. With the ability to image

materials at the nanoscale, these microscopes can help identify defects in semiconductor chips [2]. This

saves time and money and ensures a higher-quality final product. The electron and light microscopy

can be seen further in Appendix A.

1.2 Business Problem & Goal

Along with the TEM, Thermo Fisher Scientific provides customers with complex instruments housing

a software hosting infrastructure that requires professional installation, upgradation, and troubleshoot-

ing to work effectively and efficiently. Since many customers need skilled professionals, the Service

Organization (SO), part of Thermo Fisher Scientific, sends their Field Service Engineers (FSEs) to

perform these on-site tasks. These engineers are also responsible for any necessary hardware or software

upgrades during the operation and maintenance of the instrument. It is important to note that these

instruments are often connected to the internet.

Thermo Fisher Scientific has recently developed a new range of instruments that use virtualization and

container-based design to provide faster software upgrades. However, this new range requires a more

demanding installation and configuration, necessitating Digital Service Engineers (DSEs) support.

DSEs are software skilled and understand these complex instruments. To provide support, they connect

to the instruments online or visit the customer site. While the SO has a few DSEs to manage the instru-

ments and the software hosting infrastructure, creating a new tool was necessary to enable the FSEs to

install, update, and troubleshoot it independently on-site at the customer’s location.

1.3 Project Problem & Goal

For this project, we worked with the Data Management Platform (DMP) as the complex instrument that

houses the Software Delivery Platform (SDP) as its software hosting infrastructure. To understand

DMP, SDP, and other concepts, please refer to Appendix B. Most of the SDP installation and upgrada-

tion process occurs within the terminal [3] software. However, the SDP Configuration is created and

updated through another Software Configurator Application (SCA) [4]. SCA is a web-based Graphical

User Interface (GUI) tool designed to be simple and easy to use, enabling FSEs to configure the SDP.

It generates an SDP Configuration that contains SDP resource information. SCA contains two main

functionalities. It allows the generation of SDP Configuration from scratch. This generation is known

as a Complete Action. Besides configuring a Complete Action, SCA also allows FSEs to update SDP

by updating specific parts of the SDP Configuration through a series of forms after the Complete Action

is successful. These are known as Quick Actions within SCA.

DSEs from the Digital Service Organization (DSO) within Thermo Fisher Scientific manage most tasks.

These tasks are simple, automated, and easy to use. However, installing SDP using automation scripts

is still an error-prone and daunting task for FSEs. SCA does not implement this installation through its

web-based GUI. This installation using automation scripts is termed as Applying An Action in the fol-

lowing chapters. Moreover, straightforward access through a single place to other applications for trou-

bleshooting and application installation needs to be created, as accessing them is a tedious task for FSEs.

Eindhoven University of Technology

2

Therefore, this project presented an opportunity to develop a simple and easy-to-use web-based GUI

application called Workbench that bridges the gap between FSEs with different skills and backgrounds

to install, upgrade, and troubleshoot SDP independently. This includes the following objectives:

• Applying the Complete Action for full SDP installation after the SDP Configuration is gener-

ated

• Applying Quick Actions to update specific parts of SDP after the SDP Configuration is updated

• Providing access to output traces in the form of automation audits after actions have been ap-

plied in a centralized place called Action History

• Providing access to SWAP and other service applications such as Grafana [5], Kibana [6], and

Kubernetes [7] dashboards for troubleshooting and application installation

Even though Workbench was developed for FSEs, we considered both DSEs and FSEs end users since

both will use the application to manage SDP. These engineers will be collectively called Service Engi-

neers (SEs) in the following chapters. We designed a web-based GUI application to provide access

through browsers and mitigate the error-prone nature of the terminal. Moreover, web-based GUI al-

lowed the application to simplify and improve ease of use.

1.4 Project Scope

Figure 1 shows the scope of the project. Since generating a configuration goes hand in hand, applying

an action became an extension to SCA known as Software Configurator Installer (SCI). The SCI will

apply the actions through the new web-based GUI. The combined application became a Software con-

figurator installer application (SCIA). Since SWAP is responsible for application installation on SDP,

it is part of The Software Lifecycle Management Tools (SLMT) and SCA. SDP contains a Kubernetes

cluster [7] where SWAP installs these applications. Workbench combines SLMT with maintenance

applications and acts as a unification point for all installation and troubleshooting of SDP. We will

collectively address SWAP and service applications as Manage Applications in the remaining sections

for simplicity.

Figure 1. Diagram showing the workbench scope

Eindhoven University of Technology

3

2.Needs & Requirements

2.1 Overview

To manage this project, we defined a timeline containing four phases: planning, requirements elicitation

and elaboration, solution elaboration, and finalization. For a detailed understanding of these phases,

please refer to Section 6.2. For the requirements elicitation and elaboration phase, we captured many

user Needs [8] from stakeholder interviews. These Needs helped to formulate the functional and non-

functional requirements for the project. To see a detailed explanation of how Needs and System Re-

quirements [9] were collected and documented, please refer to Section 6.6.

2.2 Needs

We captured 91 raw Needs that were formatted and formalized into 54 Needs in a Needs Register. The

Needs Register contained a list of user Needs requested by various stakeholders. Table 1 shows a list

of core Needs (addressing the main functionality or the system's quality) elicited from the elicitation

process. These Needs align with the project goal defined in Section 1.3.

Table 1. Core Needs elicited

Needs ID Needs
N1 Apply the complete action for full SDP installation

N2 Apply quick actions to update specific parts of SDP

N3 Show line-by-line, verbose, output, progress, and exit status of the action applied

N4 View action history of all automation audits in a centralized place

N5
Provide access to manage applications for troubleshooting and installing applica-

tions

N6 Simple and easy-to-use for SEs

N7 Provide extensibility to add more actions

N8 Provide modularity for code reusability and maintainability

N9
Allow only one SE to apply an action at one time, while others can view the pro-

gress of that action

2.3 System Requirements

The System Requirements contained a combination of functional (solution functionality) and non-func-

tional (solution quality). In the Requirements Register, we formulated a total of 22 requirements. The

Requirements Register contained a list of System Requirements that addressed the user Needs and

helped to develop Workbench. Out of these, ten were core as they address the core Needs.

2.3.1. Functional

Out of the ten requirements, six were functional requirements. These requirements addressed the main

functionality of the system’s Needs. Table 2 shows the core functional requirements and the Needs they

address. We also added the associated User Stories [10] to the requirements.

Eindhoven University of Technology

4

Table 2. Functional requirements and the Needs they address

Require-

ments ID
System Requirements User Story Needs ID

F1

The system shall apply the

complete action for full SDP

installation.

As an SE, I want to apply the

complete action so that I can in-

stall the full SDP by myself.

N1

F2

The system shall apply quick

actions to update specific parts

of SDP.

As an SE, I want to apply quick

actions to update specific parts

of SDP so that I update specific

parts of SDP by myself.

N2

F3

The system shall show line-

by-line, verbose output of the

action applied.

As an SE, I want to see line-by-

line, verbose output of the ac-

tion applied so that I can check

the progress of the action.

N3

F4

The system shall notify the

success or failure of the action

applied.

As an SE, I want to see the suc-

cess and failure of the action

applied so that I can check if

the action was a success or a

failure and notify others of any

problems.

N3

F5

The system shall show the ac-

tion history of all automation

audits in a centralized place.

As an SE, I want to view the

action history of all automation

audits in a centralized place so

that I can check the exit status

and audit content and notify

others of any problems.

N4

F6

The system shall provide ac-

cess to manage applications

for troubleshooting and in-

stalling applications.

As an SE, I want to access man-

age applications for trouble-

shooting and installing applica-

tions so that I can troubleshoot

SDP and install applications by

myself.

N5

Eindhoven University of Technology

5

2.3.2. Non – Functional

The other remaining four requirements were non-functional and addressed the software’s quality. These

can be seen in Table 3. We used the ISO 25010 [11] reference framework standard list of non-functional

requirements to elicit them, as in Table 16, Appendix C.

Table 3. Non-functional requirements and the Needs they address

Requirements

ID

System Require-

ments
User Story Needs ID

NF1
The system shall be simple

and easy to use.

As an SE, I want to

use the workbench

with ease so that I can

use it without any user

manual or help.

N6

NF2

The system shall be exten-

sible with more quick ac-

tions and manage applica-

tions.

As an RNDE, I want

to extend the work-

bench with more quick

actions and manage

applications so that an

SE can perform more

tasks independently.

N7

NF3

The system shall be easy to

modify to fix issues

quickly and reuse compo-

nents.

As an RNDE, I want

to modify the work-

bench easily so that I

can fix issues quickly,

provide uninterrupted

access to the work-

bench for the SEs, and

reuse components.

N8

NF4

The system shall allow

only one action to be ap-

plied at a time.

As an SE, I want only

one action to be ap-

plied at a time and re-

direct other SEs to

view the action in pro-

gress.

N9

2.4 Use Cases

We also created a list of Use Cases [12] from the requirements that describe how SEs will use Work-

bench. These were created from various consultation sessions throughout the project. Table 4 shows

these Use Cases. To view detailed Use Cases, please refer to Appendix G.

Table 4. Use Cases and the requirements they address

Requirements ID Use cases ID Use cases Description

F1 UC 1
Apply complete ac-

tion

This use case in-

volves starting auto-

mation script execu-

tion of the complete

action through the

web-based GUI.

Eindhoven University of Technology

6

Requirements ID Use cases ID Use cases Description

F2 UC 2 Apply quick actions

This use case in-

volves starting auto-

mation script execu-

tion of the quick ac-

tions through the

web-based GUI.

F3 UC 3 View output

This use case in-

volves viewing the

output and progress

of the actions

through the web-

based GUI.

F4 UC 4
View success or fail-

ure

This use case in-

volves viewing the

success and failure

of the actions

through a web-

based GUI.

F5 UC 5 View action history

This use case in-

volves viewing the

action history in a

single place. It also

allows viewing au-

dits of each action

through the history.

F6 UC 6
Access manage appli-

cations

This use case in-

volves accessing

service applications

and SWAP for trou-

bleshooting and ap-

plication installa-

tion.

Eindhoven University of Technology

7

3.Solution

3.1 Overview

This chapter explains our high-level view of our application, the part-by-part design and implementation

for each core component, and the requirements it addresses. The chapter follows this approach to show

how we designed and implemented our application part-by-part. We will delve into implementation

notes for each component, such as the final UI1, development tools and libraries, and how we developed

specific components. For a complete understanding of how we documented the Solution Architecture,

please see Section 6.7. To view all the Solution Architecture diagrams, please see Appendix G.

3.2 High-Level View

Figure 2 shows the high-level view of the application. The application consists of the Client, a Web-

server, and SDP. It follows a client-server architecture [13]. The arrows represent the flow. Connections

without arrows represent the bi-directional flow. The diagram uses color coding, as shown in Figure 2.

Table 5 explains the high-level view components in detail. The Client connects with the Workbench

Webserver application and displays the rendered template. The Webserver connects with SDP resources

and performs the necessary tasks. The SDP provides the necessary resources for Workbench.

Table 5. Description of high-level view of solution components

Component Description Interfaces

Client
A Web browser to view ren-

dered Workbench UI templates

Accesses the Workbench Web-

server to perform tasks

Webserver

Contains the main business

logic and application entry

points to perform tasks

Accesses the SDP resources to

generate SDP configuration,

execute automation scripts,

parse automation audits, and

access service applications and

SWAP

SDP
Software hosting infrastructure

within DMP

Stores or provides the neces-

sary resources to Webserver to

perform tasks

The Webserver can be divided into further sub-components and modules.

Table 6 explains these subcomponents, their interfaces, and the requirements they fulfill. The Web-

server consists of three sub-components. The main is Workbench, which contains both SCI and SCA.

SCI contains both the Action and History as they go hand in hand. The Manage Applications provide

access to the service applications and SWAP. Workbench also contains Form Flows that integrate SCI

and SCA. SCA is the existing module that generates the SDP Configuration.

1 The Final UI may contain some inconsistent naming.

Eindhoven University of Technology

8

Table 6. Traceability between the solution components and requirements

Sub-compo-

nent

Require-

ments ful-

filled

Module Description Interfaces

SCI

F1 - F4 Action

Contains the

functionality to

apply complete

and quick actions

Executes auto-

mation scripts to

install and update

SDP

F5 History

Contains the

functionality that

shows action his-

tory, their exit

status, and their

audit trail

Parses automa-

tion audits gener-

ated by automa-

tion scripts

within SDP

Workbench

F6
Manage Applica-

tions

Contains the

functionality that

integrates

SWAP, SDP

Health traffic

light and service

applications redi-

rect links

Accesses the ser-

vice applications

and SWAP

within SDP

 Form Flows

Contains flow in-

formation that

defines the se-

quence of forms

to generate and

update SDP con-

figuration

Integrates SCI

and SCA

SCA SCA

Existing module

that contains

forms for differ-

ent SDP VMs,

storage, and

other resources

Interacts with

SDP to generate

SDP Configura-

tion

In the following sections, we will discuss in detail the different modules2 of the Webserver and how

Form Flows integrate SCI and SCA. Only the SCA components we added or modified will be discussed

in the design and implementation.

2 It contains some sub-modules implemented in class-based approach. Thes include the sub-modules part of the

business logic. This approach was used to improve code modularity and fulfil NF3.

Eindhoven University of Technology

9

Figure 2. Diagram showing the high-level view of the solution

Eindhoven University of Technology

10

3.3 SCI – Action

This module addresses applying Complete and Quick Actions. SEs can apply these actions once they

have completed forms to create or update the SDP Configuration. Since the system had to be simple,

easy to use, and self-guided, it had to display output in a format that is easy to understand or resemble

existing tools used by SEs such as the terminal. In addition, we made it a single-click installer as re-

quested by them. Finally, we made it simple to extend for an RNDE if a need in the future arises to

support more Quick Actions.

3.3.1. Applying an action

Design

Applying an action can be explained in detail in Figure 6. Its sub-modules can be explained in Table 7.

Table 7. Description of sub-modules within Action

Sub-module Description Interfaces

Action API

Contains endpoints for access-

ing action application and

showing the rendered action

template

Triggers Operation to update

Webserver state and start an ac-

tion

Web Socket

Contains WebSocket [14] end-

points implementation to

broadcast line-by-line output to

the Client

Provides line-by-line output to

multiple clients

Operation
Contains business logic for

managing the Webserver state

Triggers Script Executor to exe-

cute Bash Scripts

Script Executor

Contains business logic for ex-

ecuting a Bash Script in SDP

Signal Bash Scripts to start or

stop the execution in the back-

ground and collect output and

exit code

Bash Scripts

Contains commands to install

or update SDP and execute

necessary Ansible Scripts

Executes Ansible Scripts and

sends output or exit code to

Script Executor

Ansible Scripts

Contains commands to install

or update SDP based on SDP

Configuration

Sends the Ansible exit code and

output to Bash Scripts

Form Flow File

Contains Bash Scripts and Ac-

tions mapping

Parsed by Operation to select

the appropriate Bash Script for

Action applied.

In this functionality, an SE can apply an action from the Client. The Action API receives the action

request and initializes the Operation sub-module to start an action. Since Operation sub-module uses a

singleton design pattern [15], the application contains only a single instance and, therefore, always en-

sures a single Bash Script [16] is executed by Script Executor. This fulfils the non-functional require-

ment NF4. As the executor executes the script and gathers line-by-line output, the output is cascaded to

the Web Socket sub-module, sending the output to the browser where the SE can view the ongoing

action. Once the action is successful or fails, the Script Executor captures the exit code [17] with which

the execution ends. An exit code is a numerical value used by computer programs to denote success or

failure. This is sent to the rendered template in the Client as success or failure to notify the SE.

The Operation sub-module acts as a single-entry point to the business logic that manages the internal

Webserver state and passes information to the Script Executor based on a mapping present in a JSON

Eindhoven University of Technology

11

file [18]. This JSON file, known as Form Flow File, contains a mapping for all Complete and Quick

Actions as shown in Figure 20.

To further explain, how Operation manages the Webserver state, we developed a mechanism that stores

existing in-progress action information. This mechanism was developed based on decision D12 in Table

18, Appendix E. Figure 3 show the internal state within Operation. The states could be either running

or not running. When an action is applied, the Operation enters a running state. Due to the singleton

pattern, every Client accessing the SCI, accesses the same state and therefore gets the same in-progress

action information. This ensures, all Clients and therefore SEs get to check the progress of the same

action applied. The state of the server resets when the action is cancelled, or it completes either with

success or failure.

Figure 4. Diagram showing the flow of information from Form Flow File to Script Executor

Figure 3. Diagram showing how operation manages Webserver state

Eindhoven University of Technology

12

Additionally, we decided to group Complete and Quick Actions to make the system modular. When an

action is applied, the Operation obtains the mapping to run the automation script present in Form Flow

File. Figure 4 shows this behavior. The file contains the mapping of all the actions and automation

scripts. When an action is applied, the operation obtains the name of the Bash Script based on the map-

ping. It then passes this name to the Script Executor. The Script executor then looks for the Script in

the SDP and then executes it to create or update SDP resources. Since any action can be executed from

the same Script Executor sub-module, more actions can be added in the future by the RNDEs. All the

RNDEs must do is to extend the Form Flow File with new automation mapping which can then applied

by SEs from the client. This fulfills NF2 and NF3 since the action sub-module does not change due to

any new addition of actions.

Implementation

Figure 36 shows the final web page of the application. It consists of the following elements:

• Status panel – The status panel shows the status of the action applied, such as in progress,

success, error, or action cancelled. It turns green when the action is successful or red when it

fails. Otherwise, it remains yellow when the action is in progress or cancelled.

• Progress bar – This shows the progress of the action and turns green when the action is suc-

cessful or red when the action has failed. When the action is completed, the progress bar fills

up to 100% of the bar. Otherwise, it is not complete.

• Output panel – It shows line–by–line output. Any output line containing color is also shown

with color information in the panel. When an action succeeds, a final output line is displayed

on the panel, denoting the success of the action. Otherwise, the line denotes failure of the action.

• Cancel button – It allows an SE to cancel an applied action. It is enabled by default, and the

action is cancelled when the SE clicks it, and this button gets disabled.

• Close button – It allows an SE to close the action page and move to Action History. It is turned

off by default and becomes enabled when an action is cancelled, succeeded, or failed.

To implement the functionality at the code level, we chose several libraries. Table 17 in Appendix D

shows the tools and technologies used and their purpose. Since the automation scripts are present in the

SDP and need to run on it natively, the application must connect with the SDP. To perform this, the

subprocess [19] library must connect with SDP using a Secure Shell (SSH) [20] connection. This is

shown in Figure 5. Workbench is deployed in SDP itself. It is served using the gunicorn [21] server

Figure 5. Diagram showing workbench accessing automation scripts through SSH

Eindhoven University of Technology

13

with the gevent-websocket [22] library to support the Web Socket asynchronous [23] behavior. It is

then further wrapped within a Docker Container [24] to run on SDP.

To execute scripts, we implemented our own single thread [25] model. Workbench uses the subprocess

library to execute Bash Scripts. The flask-socketio [26] creates a thread of execution to broadcast

which is passed as a callback to the Script Executor. The execution command is provided by the Script

Executor sub-module. However, since the execution needs to happen natively on SDP, the execution

command is wrapped within the SSH command that helps to connect to SDP. This creates a channel for

communication between Workbench and SDP and execution begins. The line-by-line output is then

sent back to the subprocess library. The output is then fed to the Web Socket callback which then

broadcasts the output to the Client. The output can be viewed on the browser in color for easier inter-

pretation of the content and to comply with NF1. This was possible because the output is displayed

using the xterm.js [27] library that resembles the terminal used by SEs.

To manage the internal state, we used Boolean value which is set to true when an action is applied and

running. When not running, the same value is set to false. If another action is applied, while an action

is in progress, the SE is redirected to the existing action in progress.

3.3.2. Cancel an action

Design

The SE can also cancel an action when something goes wrong during the whole process. Figure 7 shows

that the SE can cancel the action through the browser, interrupting the SDP’s automation scripts. This

sends an output to the Client rendered template where the SE sees the action cancelled.

Implementation

The cancel button can be seen in the final web page in Figure 36. To cancel a running action, the Script

Executor sends an interrupt signal to the running process. This terminates subprocess library execution

and it receives an error exit code.

3.3.3. Auto – reconnect to action

Design

Workbench also supports auto-reconnection in case an SE closes the browser on his computer or wants

to check the progress from another computer. Figure 8 shows the auto-reconnect scenario. The number

in the circles show the steps of reconnection. As the first Client disconnects in step 1, the action in

progress action continues to run till it either succeeds or fails. As shown in step 2, when the SE accesses

the workbench application again, the Client starts receiving output information from the Web Socket

sub-module. The home also shows the progress of the action, and the SE can then choose to go to action

web page to see the latest progress.

Implementation

Figure 35 shows the final web page of home, which shows a running action. The page shows the action

in progress and the button to go to the action page. When clicked on the to installer button, the SE gets

redirected to the action page shown in Figure 36. This is possible because each Client connects to sock-

etio [28] receivers, one at home and one in action that receive output. When loading the home page,

the home socketio receiver connects with the Web Socket sub-module, and it starts receiving output.

When redirected to the action page, the Client connects with the second receiver and receives infor-

mation in detail.

Eindhoven University of Technology

14

Since the socketio and flask-socketio support auto-reconnect, it was easy to implement this feature.

The socketio receiver keeps checking for a flask-socketio connection provided by Web socket sub-

module and connects when found.

Eindhoven University of Technology

15

Figure 6. Diagram showing applying an action

Eindhoven University of Technology

16

Figure 7. Diagram showing cancelling an action

Eindhoven University of Technology

17

Figure 8. Diagram showing client reconnection

Eindhoven University of Technology

18

3.4 SCI – Action History

The second module of SCI includes viewing Action History. In this part, an SE can view all the Action

History from the most recent to the oldest. Additionally, it shows the action name, exit status, audit

creation date and the entire audit content for each action.

Design

The design of the Action History can be seen in Figure 11. It is still within the SCI as it shows the

history of all the audits of actions. The audits are generated from automation scripts that install or update

SDP. Table 8 describes the elements of Action History.

Table 8. Description of sub-modules within History

Sub-module Description Interfaces

History API

Contains endpoints for access-

ing the entire action history and

audit contents

Interacts with Audit Extractor

to retrieve extracted and sorted

audit content

Audit Extractor

Contains business logic to ex-

tract the action name, audit cre-

ation date, exit status, and audit

content

Interacts with Automation Au-

dits within SDP to extract their

contents

Audit

File containing entire action

output and exit status of the au-

tomation scripts

Generated by automation

scripts within SDP and their

content is parsed by Audit Ex-

tractor

The SE can access Action History through the History API. The History API then interacts with Audit

Extractor which extracts information from the Audits. The Audit name contains detailed information of

the action name and creation date. Inside the Audit is the entire action output and exit status. The Audit

Extractor parses, sorts, and compiles all this information and then sends it as a response to the Client

through the History API. The SE can then view the entire history with all the compiled information on

the Client rendered template.

Implementation

The history consists of two web pages. These can be seen in Figure 39 and Figure 40. Figure 39 shows

the final history web page while Figure 40 shows the final audit content web page. It also shows the

audit details, such as the action name, exit status, and the creation date. To view the audit content, the

SE can select the View Content button to see the entire action output.

The web pages contain the following elements:

• Homepage button – The homepage button allows an SE to move back to the Workbench home

from the action history web page

• Filter selector – This allows SE to filter the actions by action name and exit status

• View Content button – This allows SEs to access the audit content web page to view the audit

• History page button – The history page button allows an SE to move back to the action history

web page

• Audit panel – This panel shows the entire output of the automation audit for an action

• Status – This shows the exit status of the applied action

• Action name – This is the name of the action applied

• Date – Date of creation for the automation audit

We took decision D9 in Table 18, Appendix E to establish a standard between the audits and Work-

bench. Through this, we agreed that the final exit code of the automation script would be printed as the

Eindhoven University of Technology

19

last line in the audit content. This can be seen in Figure 41 where the exit code is printed in the last

line. This can then be parsed by the Audit Extractor, which can be shown as a success or failure icon

on the history web page. This can be seen in Figure 39, which shows the red and green icons to denote

failure and success, respectively.

An SE can also use the filter button to filter actions by action name or exit status. Figure 9 shows the

filter selector. This makes it easier for SEs to sort and view specific action information. To view com-

plete audit content, we designed another web page shown in Figure 40. It shows the entire audit content,

the action name and the date created.

At the implementation level, we used several libraries. The libraries can be seen in Table 17, Appendix

D. We used HTML tables to design the action history. To filter the audits, we took a decision D22 in

Table 18, Appendix E to decide the library for filtering. We chose a custom implementation [29]. The

implementation was derived from an existing library. To parse the action name and date of creation

from audit file name, we used the re [30] library for regular expressions. The action name and creation

date can be seen in Figure 10 that the Audit Extractor parses to display on action history. We used the

font awesome icons as it was already integrated within SCA. Colors were enabled for audit content for

easier interpretation and to comply with NF1. This was possible because the audit content is displayed

using the xterm.js library that resembles the terminal used by SEs.

Figure 9. Final UI showing filter button to filter action history

Figure 10. Image showing the name and creation date of automation audits

Eindhoven University of Technology

20

Figure 11. Diagram showing internal sub-modules of history

Eindhoven University of Technology

21

3.5 Workbench – Manage Applications

Workbench also provides access to other apps that help to monitor and manage SDP. These include the

service applications and SWAP. SEs are redirected to these applications on a new Web browser tab. It

also provides SDP Health alerts as a traffic light and embeds SWAP.

3.5.1. Accessing service applications

Design

Figure 16 shows the design of accessing service applications. Its sub-modules are explained in Table 9.

The design was according to decision D14 in Table 18, Appendix E. The numbers in the design show

the steps of the access. The arrows in the diagram show the inputs and outputs. As shown in step 1,

when an SE accesses Workbench, the SE gets access to the SCA home. SCA home was an existing

SCA sub-module modified and reused as the home for Workbench. As the SCA home loads, the URL

Builder builds service applications URLs based on a mapping present in a Manage Applications File as

shown in Figure 12 and application hostname, as shown in step 2. Finally, in step 3, when an SE accesses

a specific service application from SCA home, the SE gets redirected to that application based on the

URL in a new tab. For example, when an SE clicks on View SDP Health, the SE gets redirected to the

Grafana overview page in another browser tab.

Since Workbench is also deployed in the SDP, Workbench, service applications, and SWAP contain

the same hostname. The URLs are built dynamically when the Workbench is operational since SEs

cannot update the application URLs as they cannot access the code. This dynamic building of URLs

fulfills NF1 and makes it simpler for SEs to access the service applications with a single click.

Figure 12. Diagram showing how URL builder obtains Manage Applications information

Eindhoven University of Technology

22

Table 9. Description of Manage Applications internal sub-modules

Sub-module Description Interfaces

URL Builder

Contains the logic to build

URLs for service applications

and SWAP

Interacts with hostname and

manage applications JSON File

to provide application URLs

SCA Home

Contains the logic to show ser-

vice applications and SWAP on

the Client rendered template

Provides Client rendered tem-

plate with a list of URLs to re-

direct SEs to service applica-

tions and SWAP

Grafana

Service application for monitor-

ing SDP health and providing

alerts for problems within SDP

Accessed through SCA home

and provide alerts to SDP

health traffic light

Kibana

Service application for diagnos-

tics and log trace present in

Elasticsearch

Accessed through SCA home

Kubernetes Dashboard

Service application to manage

applications running on the Ku-

bernetes Cluster and check ap-

plication health

Accessed through SCA home

SWAP

SLMT application that installs

applications on the Kubernetes

Cluster

Accessed through SCA home

and embedded within Work-

bench

Manage Applications API

Contains endpoints to render

SWAP Iframe template and fil-

ter severity level from SDP

health alerts

Provides Client rendered tem-

plate with SWAP embedded

and interacts with Grafana to

fetch SDP health alerts

Implementation

Figure 43 shows the final UI of Manage Applications. We added a new button, Manage Applications,

which shows a list of service applications and SWAP. These applications can be seen further in Figure

13. When an SE clicks on View SDP Health, View Kibana logs and View Kubernetes dashboard, the

SE gets directed to the specific service application in a new tab.

In the background, the URL Builder sub-module builds the URL using the hostname obtained from the

request [31] library and Manage Applications File. The request library is part of the Flask application

framework [32] used for building Workbench. The Manage Applications File can be seen in Figure 14.

It shows mapping for different service applications. Since the mapping is decoupled into this JSON file,

it can be extended further with new applications fulfilling NF2 and NF3.

Figure 13. Final UI showing list of Manage Applications

Eindhoven University of Technology

23

3.5.2. Accessing SWAP within Workbench

Design

Since the DSEs wanted the SWAP tool to be embedded within the Workbench, we took decision D15

in Table 18, Appendix E to show it through an Iframe [33]. An Iframe is like a mini window on a web

page that shows another web page inside it.

Figure 17 shows how an SE can view the SWAP tool through an Iframe. Like Section 3.5.1, the URL

builder sub-module builds the URL for SWAP. However, it returns a SWAP endpoint rather than the

URL. The manage application sub-module also contains a Manage Applications API that acts as a

wrapper for SWAP. When an SE clicks on View SWAP dashboard, as shown in Figure 13, the SE gets

directed to another web page containing an Iframe through the manage application sub-module where

SWAP is embedded.

Implementation

Figure 42 shows the final Iframe web page of SWAP within Workbench. The Iframe contains a sidebar

to navigate back to the homepage. Additionally, the SE can also access SWAP functionality from within

Workbench.

To implement it, we used HTML Iframe element described in Table 17, Appendix D to wrap the built

URL within Workbench. This way, the SEs can install applications from a single unified application.

Just like accessing service application information from Manage Applications File and hostname,

SWAP also uses the same functionality. The Manage Applications File can be seen in Figure 14.

Figure 14. Image showing the structure of the Manage Applications file

Eindhoven University of Technology

24

3.5.3. Viewing SDP Health alerts

Design

In addition to giving access to Grafana, the Workbench also fetches alerts from Grafana at a fixed

regular interval. Figure 18. shows how the alerts are gathered and filtered based on severity level. A

traffic light that shows colored output is present in the Client rendered template. The Manage Applica-

tions API sub-module requests for alerts from Grafana. Once the alerts are gathered, the sub-module

checks for severity levels in the alert output. The severity levels were decided as a standard interface

between SDP and Workbench for denoting alerts. They are of three types:

• Critical – This is for resources that are very crucial and require immediate troubleshooting.

• Warning – This is for resources that do not require immediate troubleshooting.

• Ok – This denotes that all SDP resources are healthy.

The color enforces an SE to check Grafana application for troubleshooting. Another functionality the

traffic light provides is accessing Grafana when clicked. This uses the same mechanism mentioned in

Section 3.5.1.

Implementation

Figure 35 shows the final design of the Traffic light [34] on the home page. The traffic light shows three

colors. These colors can be seen in Figure 15, which signify the severity levels.

To implement the traffic light, we used a combination of the http.client [35] library and Grafana alert

API [36] in the Manage Applications API sub-module. The http.client library helps fetch a response

from Grafana Alert API, which is filtered for severity level. This mechanism fetches the response at

regular intervals to notify SEs about the status of SDP Health. The Grafana alert fetch API was decided

based on decision D16 in Table 18, Appendix E.

To use the Grafana alert API, an authentication strategy is required for access. Based on decision D18

in Table 18, Appendix E, we decided to use a read-only service account consisting of a username and

password for authentication that will only be dedicated for SEs. The SEs do not need to provide these

Figure 15. SDP Health traffic light used in Workbench

Eindhoven University of Technology

25

details and are instead parsed from Manage Applications File as shown in Figure 14 under sdp_health,

username, and password. This keeps the Workbench simple and complies with NF1.

Eindhoven University of Technology

26

Figure 16. Diagram showing access to service applications

Eindhoven University of Technology

27

Figure 17. Diagram showing access to SWAP embedded within Workbench

Eindhoven University of Technology

28

Figure 18. Diagram showing Workbench accessing SDP Health alerts

Eindhoven University of Technology

29

3.6 Integration – Form Flow

The Form Flow module is the final introduction to the Workbench application. The Form Flow helps

integrate SCA with SCI, ensuring the appropriate scripts are installed when an SE applies an action.

Design

Figure 21 shows the integration between SCI and SCA using Form Flow. The integration contains sev-

eral elements described in Table 10. For simplicity, the components of SCA are showing at a high-level

abstraction.

Table 10. Description of internal sub-modules of Form Flows

Sub-module Description Interfaces

Other SCA Modules

Contains logic for filling forms

and generating the SDP Con-

figuration

Interacts with Form Flow Map-

per to retrieve the next and pre-

vious form mapping

Pre-Install

SCA module containing busi-

ness logic to review form filed

information before starting an

action. It is also the starting

point of executing an automa-

tion script

Interacts with Form Flow Map-

per to retrieve the previous

form mapping or transition to

applying an action

Action

SCI module containing the

business logic to executing an

automation script

Interacts with Form Flow Map-

per to transition to viewing ac-

tion history after the action is

complete.

Form Flow Mapper

It contains the business logic to

traverse through next and pre-

vious forms. It also integrates

SCI by traversing from SCA

forms to applying an action

and viewing action history

Interacts with Form Flow File

to parse the flow mapping and

provide URLs to different SCI

and SCA modules

Form Flow File

Contains flow mapping to trav-

erse through next and previous

forms. It also contains map-

pings to traverse from SCA to

applying an action and viewing

action history in SCI

Provides the Form Flow File

Mapper with flow mapping

To explain this module, we need to understand a Form Flow. An SE first accesses the series of forms

through Other SCA Modules, as shown in Figure 21, Step 1. As the forms are traversed, the Form Flow

Mapper provides the web page URLs in the background from the Form Flow File. The mapper is con-

nected to the existing next and previous functionality in SCA Forms. After filling out all the forms, the

SE reaches the Pre-Install Module, where the SE can review the contents of the forms entered. If some

information is entered incorrectly, the SE can go to previous or go transition to action web page to

execute the script in the background. Finally, in step 3, after the automation script is complete, the SE

can view the complete Action History, the current action exit status, and its audit content by closing

the action page.

This can be further explained using Figure 22. It shows an example of a Form Flow for Complete

Action. The Form Flow starts from the home page, where the SE selects the Complete Action to be

applied. It then traverses through a series of forms using the next or previous URLs to add or update

form information. This generates the SDP Configuration which can then be viewed on the Pre-Install

Eindhoven University of Technology

30

page. The SE can then apply the Complete Action and the automation script for the Complete Action

begins to execute in the background. The SE is transitioned to the action web page and the SE can close

the action page and view Action History after the action is completed.

Implementation

We reused the existing next and previous buttons in Form Flows to implement the functionality. Figure

44 shows an example of these buttons that help an SE traverse the forms. To bridge the SCI and SCA,

we added the Pre-Install page as a new component that helps SE review the SDP Configuration before

applying an action. This is depicted by the final Pre-install web page in Figure 45. The web page also

shows the previous and install button to update the details or apply an action. Once an action is applied

and completed, the SE can then view the Action History by selecting the close button, as shown in

Figure 36.

The implementation depends on a flow value as shown in Figure 19. This flow value is used across

actions to determine the type of action being updated or applied and determine the next and the previous

forms. Figure 20 shows the structure of a specific Form Flow in the Form Flow File. The Form Flow

File is implemented using JSON. The flow value is the first key of the JSON, which is storage_ip in

this example. The second-order keys, home, storage, pre-install and install (action), represent the

forms for this flow. Each form contains the URLs to traverse through the flow. To comply with NF3,

we combined the automation script information with the flow file in the action page denoted by install.

Figure 20. Image showing the structure of the Form Flow File

Figure 19. Image showing the flow parameter in the URL that Form Flow Mapper uses

Eindhoven University of Technology

31

Figure 21. Diagram showing the steps to transition from SCI to SCA

Eindhoven University of Technology

32

Figure 22. Diagram showing an example of complete Form Flow

Eindhoven University of Technology

33

4.Verification & Validation

4.1 Overview

This chapter covered various techniques and methods for verifying and validating software. In the end,

we also discuss the feedback from the stakeholders that can be implemented for further improvement

of Workbench.

4.2 Verification

We performed verification through several tests. These tests were automated and integrated into the

GitLab CI [37] pipeline for the testing environment and Make file [38] for the local environment. Table

17 in Appendix D shows the tools and technologies used for verification.

4.2.1. End-to-end testing

We developed these tests to check the end-to-end behavior of the application. We created new end-to-

end tests to test the behavior and modified some old tests for our application. Table 11 shows the test

specifications and the requirements associated with the tests. We developed 39 test cases, of which only

core test cases have been shown. The test cases have been simplified for readability. Additionally, we

combined test case T1 with previous SCA test cases to test complete Form Flows.

Table 11. Traceability between requirements and test cases

Requirement

ID
Test ID

Test De-

scription
Test Specification

F1 – F2

T1

Applying a

complete action

successfully

Given I am on the pre-install page

with the SDP Configuration

When I click on install on the pre-in-

stall page

Then I should see action output on the

action page

And I should see success on the action

page

And I should see a success audit on

the history page

T2
Applying an ac-

tion which fails

Given I am on the pre-install page

with the SDP Configuration

When I click on install on the pre-in-

stall page

Then I should see action output on the

action page

And I should see error on the action

page.

And I should see a failed audit on the

history page

T3

Cancelling an

action in pro-

gress

Given I am on the pre-install page

with the SDP Configuration and an

action in progress

When I click on the cancel button

Then I should see action cancelled on

the action page

And I should see a failed audit on the

history page

Eindhoven University of Technology

34

Requirement

ID
Test ID

Test De-

scription
Test Specification

T4

Auto reconnect

to an action in

progress

Given I am on the pre-install page

with the SDP Configuration and an

action in progress

When I close Workbench

And reopen it to access the home page

Then I should see the action in pro-

gress on the home page

And I can click on “to installer” but-

ton to check the progress of action

F3 Fulfilled by T1 – T4

F4 Fulfilled by T1 – T4

F5

T5
Viewing action

history

Given I am on the home page with the

SDP Configuration and some automa-

tion audits present

When I access the action history page

Then I should see a list of automation

audits on action history

T6
Viewing an au-

dit content

Given I am on the action history page

When I click on the view content but-

ton for an action

Then I should see the audit content in

the audit content page

F6

T7
Viewing the

traffic light

Given I am on the home page with the

SDP Configuration and the complete

action applied

When I look at the SDP health traffic

light

Then I should see a color on the traf-

fic light denoting the status of the SDP

infrastructure

T8
Accessing

SWAP

Given I am on the home page with the

SDP Configuration and the complete

action applied

When I click on “view SWAP dash-

board” button within “Manage Appli-

cations” option

Then I should see the SWAP Iframe

page with SWAP embedded within

Workbench

T9
Accessing a ser-

vice application

Given I am on the home page with the

SDP Configuration and the complete

action applied

When I click on service application

link from the “Manage Applications”

option other than SWAP

Then I should see the service applica-

tion in another browser tab

To test these end-to-end test cases, we also created a new strategy for testing the functional requirements

for local and testing environments. In this strategy, we created mock automation scripts to test the func-

tionality and execute them in an isolated mock automation scripts container since the original scripts

required the SDP infrastructure resources. These resources were not available in the local testing

Eindhoven University of Technology

35

environment. This strategy can be explained in Figure 23, which shows three docker containers and two

docker volumes. The arrows represent the input and output between containers. The black lines denote

the connection between the volumes and the containers. The elements and their interfaces are described

further in Table 12.

Table 12. Description of components used for End-to-end testing

Component Description Interfaces

Ansible volume

A docker volume that contains

mock automation scripts and

their automation audits

Provides mock automation

scripts container with automa-

tion scripts, and Workbench

with automation audits

SSH keys volume

A docker volume that contains

SSH keys for connecting to

mock automation scripts con-

tainer

Provides mock automation

scripts container with author-

ized public key and Work-

bench with private SSH key

Mock automation scripts con-

tainer

A docker container that be-

haves like an Open-SSH [20]

server

Sends automation scripts out-

put to Workbench

Workbench container
A docker container running the

Workbench application

Invokes automation scripts in

the script’s container through

SSH and sends the output to

Cypress tests

End-to-end test container
A docker container that exe-

cutes Cypress [39] tests

Interacts with Workbench end-

points and verifies UI output

Instead of connecting the SE to the VM described in 3.3.1, the application is connected to the mock

automation scripts container in the local and testing environment through SSH protocol. The application

invokes the mock automation scripts by using the private SSH key present in the SSH keys volume.

This is validated by the authorized key file containing the public SSH key. The script is executed once

Figure 23. Diagram showing the interactions between containers for testing

Eindhoven University of Technology

36

the connection is established, and the output is sent to the Workbench. The mapping to mock scripts is

also mapped in the Form Flow File as test_script, as shown in Figure 20, for RNDE to update them

easily. This strategy helps with the following:

• Test the SSH behavior of the application to automate scripts

• Test requirements F1- F6

• Give access to mock automation audits generated by the application

• Decouple and isolate the testing of applying an action from the local and testing environment,

making it reusable

4.2.2. Unit testing

We also added new tests and modified some old tests. The old tests that we modified were testing

endpoints for different SCA and SCI components. The modification introduced the flow value men-

tioned in Section 3.6 to test for Form Flow support. In addition, we introduced tests for pre-install and

action endpoints to test the Form Flows further.

4.2.3. Static analysis

We also integrated a Pylint [40] static analyzer to analyze code. It helped to check the Python code

quality and ensured it followed the PEP-8 [41] style guide. It was also integrated into GitLab CI, Make

file, and pre-commit hooks to ensure the committed followed the style guide.

4.3 Validation

We performed validation through demo sessions, consultations, dry runs, and code reviews with stake-

holders to ensure the application was designed according to the requirements. These sessions also vali-

dated the non-functional requirements with crucial stakeholders, NF1 – NF4. All the sessions were

organized based on the project working process, described further in Section 6.3. Toward the end of the

project, we also organized a final feedback session to gather feedback from stakeholders.

4.4 Final Feedback

During the final feedback session, the stakeholders gave several feedbacks. The feedback is shown in

Table 13.

Table 13. Detailed feedback for different elements of Workbench

Feedback

UI
• Some graphic elements, which include the web pages, can be made more self-guided, such

as providing additional information when hovering over buttons, such as those shown in

Figure 35, Figure 37, and Figure 43.

• Some graphic elements can be replaced by elements provided by Thermo Fisher Scientific

design guidelines so that Workbench becomes more coherent with other applications, mak-

ing it easier for SEs to recognize them.

• The names of the buttons shown in Figure 37 could be improved further to make the appli-

cation more self-guided.

• Certain graphic elements can be improved further to have a more polished look.

• It is essential to provide a graphical popup on the action page when an action is completed

to make it more evident to the SEs.

Functionality
• The functionality of flows, SWAP, and accessing other service applications looks good.

• The actions in Figure 37 could be disabled when an action is in progress to prevent other SEs

from starting another action.

Eindhoven University of Technology

37

In general, Workbench looks good to the stakeholders and fulfills the core Needs of the SEs. It is part

of SDP release 2.14.0 Q3 as an experimental version for SEs for experimentation. This will further help

to improve Workbench and stability the product.

Eindhoven University of Technology

39

5.Conclusion

5.1 Overview

To summarize, this project presented an opportunity to develop a simple and easy-to-use web-based

GUI application called Workbench that bridges the gap between FSEs with different skills and back-

grounds to install, upgrade, and troubleshoot SDP independently.

To solve this, we interviewed various stakeholders to understand the business and project problem as

described in Chapter 1 and the Needs described in Chapter 2. These helped to elicit our requirements

and develop Use Cases, such as Applying An Action, Viewing Action Output, accessing the Action

History, and accessing Manage Applications.

We developed a solution for Workbench from the requirements mentioned in Chapter 3. It contains SCI

that allows only a single action to be applied. The SCI also uses Web Sockets, which support auto

reconnection if the SE closes the browser. SCI is integrated with SCA through Form Flows. Addition-

ally, our application allows access to Action History to show the automation audits generated during

automation script execution. It also shows the exit status of the action. The application also contains

access to Manage Applications for which the URLs are added dynamically so that the SEs can access

them without additional configuration.

To verify and validate the solution, we used several ways. Additionally, we devised a new strategy to

test mock scripts in the local and test environment, as mentioned in Chapter 4. Toward the end of the

project, we organized a final feedback session where the stakeholders tried the application, and we

collected valuable feedback. This feedback will help to improve the Workbench further and make it a

usable and stable product.

Workbench is now part of SDP release 2.14.0 Q3 as an experimental version for SEs, which will further

help in its stabilization.

5.2 Recommendation for Future Work

From the feedback collected in Section 4.4, we recommend that the RNDE improve some aspects of

the application to stabilize Workbench further. The improvements are further described in the following

section.

5.2.1. UI

The UI could be made more self-explanatory. As suggested by stakeholders in the final feedback ses-

sion, this could be achieved by showing more information when hovering over elements. Figure 24

shows an example of this behavior.

Figure 24. Image showing extra information for an element

Eindhoven University of Technology

40

Turning off the Quick Action button shown in Figure 37 would be better when applying an action. This

behavior would ensure that SEs could not start another action while an action is in progress. Before

applying an action, the SEs can review the form information on the pre-install page. However, the UI

of the pre-install page should be improved for readability.

The progress bar progresses to 100% only when an action is completed. This behavior should be ex-

tended to show the progress bar updates as the action page shows output, giving a more realistic feel of

how much the automation script has progressed in the background. Moreover, the action page could

also show how much time the execution of the automation script would take in the background.

Additionally, certain small UI elements, such as texts, could be changed to make the UI more readable

and understandable to SEs.

5.2.2. Functionality

The RNDEs could add an extra column in Action History showing the version number of the Complete

Action applied. A standard could be set up between the audits generated and Workbench. The audit

could show the Complete Action version being applied as the first line, which the Workbench could

parse. Once successful, the Action History could also show this information.

Additionally, the RNDEs could also enable downloading audits from the Action History. This would

ensure the SE could also save the audit to show others the automation problems and attach them as

evidence for further technical support. This feature should be accompanied by audit size as an additional

column on the Action History to show how extensive the audit is and indicate SE the time it could take

to load and download it.

The production automation scripts do not contain the interface to generate audits when their execution

is completed. In the future, the RNDEs must add this behavior for Action History. This functionality

could be done in two ways:

• Interface through automation scripts

o Pro – Adding to automation scripts would ensure any script could generate the audits

o Con – Require modifications to automation scripts

• Interface through Workbench

o Pro – Workbench would generate the audit and store the automation output, preventing

modifications of automation scripts

o Con – Automation scripts not executed through the Workbench would not generate

any audits and, therefore, would not show on the Action History

This choice must be made by the RNDEs for audit generation and viewing audits in history.

Besides the Workbench, SWAP is a tool that installs and updates applications on the Kubernetes Clus-

ter, as explained in Appendix B. When Workbench becomes operational alongside SWAP, both could

perform execution simultaneously. This could result in SDP entering a failed state. This could be pre-

vented by adding an API [42] in Workbench that SWAP could use to check if an action is in progress.

To improve usability further, Workbench could also manage auto sign-on for service applications to

simplify access for SEs and not be concerned with managing external credentials. This behavior would

further improve NF1.

5.2.3. Testing

Further testing is needed for Workbench. This includes adding more unit tests to the current test suite

and resolving bugs found in dry runs. Even though the application was tested on the production server,

it is yet to be tested with the entire three-step SDP installation explained in Appendix B. This will help

test the Workbench’s stability and resolve further bugs that could improve it.

Eindhoven University of Technology

41

Additionally, we recommend that the RNDEs use BDD test specifications [43] for unit tests. This can

be achieved through Behave [44], which supports this approach with Python. Through this, test cases

will become human-readable, and it will be easier to communicate and validate tests with SEs.

5.2.4. Continuous Integration

Since SCA is also evolving independently, the Workbench contains a slightly outdated version of SCA.

The Workbench features exist in a separate branch in the current SCA Gitlab code repository. It should

be merged with the main SCA code to keep a single version moving forward.

Eindhoven University of Technology

43

6.Project Management

6.1 Overview

This chapter explains the Project Management and the processes used during the project. It also ad-

dresses formats and conventions used for documenting the project. The overall project was executed

using agile [45] evolutionarily. Smaller processes were developed based on the Plan Do Check Act

(PDCA) cycle [46]. These were modified throughout the project to fit our working style. The modifi-

cations were through trial and error.

6.2 Project Planning

The project started on 2 January 2023 till 31 October 2023. To manage the project schedule, we created

an overall project timeline. The project timeline was based on agile, where it was managed evolution-

arily. Figure 25 shows the main phases of the timeline. The descriptions are as follows:

• Planning – During this phase, we developed a Project Management Plan (PMP) [47] using ISO

16326:2019 standard [48] outlining the basic processes. We also created a Risk and Stakeholder

Register to manage the project.

• Requirements elicitation and elaboration – During this phase, we identified the Needs and

elicited the core System Requirements from the stakeholders. The requirements were elaborated

in the Requirements Register and consulted with stakeholders.

• Solution elaboration – During this phase, we developed the architecture and experimented

with different tools and technology before implementing Workbench. We also verified and val-

idated Workbench through end-to-end tests and demo sessions.

• Finalization – During this phase, we tested the application in the production server to find

production bugs and the product's stability. We also finalized the documents for handover such

as the confluence page with updated project information

Granular planning was using Milestone Trend Analysis (MTA) [49]. An MTA is a method to track the

project process. It helps in measuring and checking deviations between the planned and the actual dates

of a milestone achieved. A milestone is essential in the project's progress when a deliverable is delivered

to the client. These milestones were used to measure and show the progress of the project.

6.3 Process Management

We used an extended version of our working process. Figure 26 shows the stages of our process based

on PDCA. The stages are explained as follows:

• Plan

o Decide Tasks – In this stage, tasks such as making a document or implementing a

feature were decided to be completed.

• Do

Figure 25. Image explaining the overall project timeline

Eindhoven University of Technology

44

o Experiment – In this stage, the solution is experimented to decide the appropriate ap-

proach for a problem and identify trade-offs.

o Implement – Stage where the solution is implemented and tested for the End-to-end

behavior of the application using a series of test cases.

o Draft – Stage where a draft is created for a document

• Check

o Consult – Stage where the draft document or code was reviewed.

o Demo – Stage where the implemented feature or mock-ups were demonstrated to the

Service Engineers

• Act

o Update – Stage where changes were updated based on the feedback received

o Refactor – Stage where code was updated based on the feedback received

6.4 Risk Management

•Implement

•Experiment

•Draft

•Consult

•Demo

•Decide Tasks•Refactor

•Update

Act Plan

DoCheck

Action Identification

Mitigation or
Contingency

Consultation

Figure 26. Diagram showing the working process

Figure 27. Diagram showing the risk management process

Eindhoven University of Technology

45

We managed Risk in a Risk Register. The top two Risks can be seen in Table 23, Appendix H. The

register contains the following information:

• ID – ID of the Risk

• Risk Description – Explains what the Risk is about

• Risk Category – Shows the category of the Risk identified

• Impact Level – Explains how strong its impact will be on the project

• Probability Level – Shows how likely the Risk is going to happen

• Severity Level – Product of Impact and Probability and shows how severe the Risk is

• Mitigation – Strategy to prevent the Risk from happening

• Contingency – Strategy to use in case the Risk occurs

• Status – Show the status of the Risk

The Risk Register provided an opportunity to decide the critical mitigation strategy to avoid the Risk

from taking place or a contingency plan in case the Risk occurs. It was updated monthly or whenever

an uncontrolled event occurred. The most critical Risks were then discussed with the supervisors to

decide a possible way forward based on the mitigation and contingency plan. Figure 27 shows the cycle

of the process. The stages are explained as follows:

• Identification – Identifying risk which is something out of control

• Mitigation or Contingency – Identify strategies to prevent the risk from happening or steps to

reduce if it has already occurred

• Consultation – If the risk has a high impact on the project and high occurrence, then consult

with Supervisors to decide a way forward

• Action – Act based on the feedback received

6.5 Change Management

Changes were common during the project. To accommodate changes, we followed a process as shown

in Figure 28.

Figure 28. Diagram showing the change management process

Update
Understanding

change

Risk
identification

Consult

Eindhoven University of Technology

46

The stages are explained as follows:

• Understanding change – This step explores changes and adds them to the Needs Register

when requested by stakeholders.

• Risk identification – This step identifies risks and their impact based on remaining time avail-

able and feasibility. Trade-offs were also developed in this phase, noting the pros and cons of

approaches.

• Consult – This step is where Supervisors were consulted with the change request and possible

solutions moving forward.

• Update – This step is where the change was either implemented based on priority or termed as

out of scope for the project

6.6 Needs & Requirements Management

Another critical aspect of the project was managing the Needs and the requirements. These were main-

tained in the Needs and Requirements Registers, respectively. The Needs Register contained a list of

Needs based on their priority. The Needs Register acted as a document for consultation whenever new

Needs were identified, or a change occurred. If a Need was crucial for Workbench, it was then moved

to the Requirements Register, where it was formally written. We used Must have, Should have, Could

have, and Won’t have (MoSCoW) [50] to define priorities for the requirements. We followed an elici-

tation process to gather and update the Needs and requirements. Figure 29 shows the process in detail.

The stages are explained as follows:

• Interviews – This step is where interviews were planned and conducted with stakeholders

• Analysis – This step is where interviews were analyzed, and the Needs Register was updated

• Consult – This step is where Supervisors were consulted for the Needs

• Elicit – This step is where requirements were formulated, and a core set of Needs were elicited

To document the Needs, we developed a simple format for the register., Table 14 show the headings of

the Needs Register.

Elicit Interviews

AnalysisConsult

Figure 29. Diagram showing the interview to requirements process

Eindhoven University of Technology

47

Table 14. Headings used for documenting Needs in the Needs Register

Headings Purpose
Needs ID Denotes the ID of the Needs

Needs Denotes the description of the Needs

Considered Denotes if the need was considered for the project

Requester Denotes the stakeholder who requested the need

Remarks
Denotes extra description of the Needs or additional notes derived from the in-

terviews

6.7 Architecture & Decision Management

We documented our architecture using the 4 + 1 view model [51]. It provided several views to our

application design. These can be seen in Appendix G. Additionally, to analyze alternatives for library

implementation and making architectural choices, we used decision matrices to analyze the pros and

cons. These helped to make an informed decision for our architecture and implementation. These deci-

sions can be explored further in Appendix E.

6.8 Quality Management

For quality management, we had to organize various sessions. These were either through consultations,

demos, and dry runs. These sessions were opportunities to gather valuable feedback and improve our

documentation or implementation.

6.8.1. Consultations

Consultations were used to validate documents. These documents include the Needs Register, require-

ment register, architecture and design diagrams, mock-ups, and decision matrix. Various stakeholders

were invited during this session to validate the documents. The DSEs, Operations Engineer (OE), and

Global Technical Service (GTS) were consulted for mock-ups, and RNDEs were consulted for technical

documents such as architecture and design diagrams. Feedback from these sessions helped us to better

understand the Needs, clarify requirements, improve the architecture, design, and mock-ups, and make

better decisions.

6.8.2. Demo Sessions

We also organized demo sessions with critical stakeholders. These sessions helped to validate the UI

and the end-to-end behavior of the application. In these sessions, the SEs obtained the opportunity to

see and try the application and give feedback. The feedback from these sessions helped improve the UI

and functionality of the application to meet the stakeholders' Needs.

6.8.3. Dry Run

Dry runs were organized towards the end of the project. These were organized to run the Workbench

application in a production server to check if it fulfilled the functionality, such as applying an action.

Additionally, these helped to check if the application was running without any bugs or errors in the

production server.

Eindhoven University of Technology

48

7.Project Retrospective

7.1 Overview

Since I was the primary owner of the project, It was a new experience, and I learned various lessons

during its course. This chapter will discuss the key lessons learned from those challenges.

7.2 Lessons Learned

Accepting the unknown – This is the more critical learning. During the project, when I did not know

the answer to a question, I used to present my assumptions. I was provided with feedback from my

supervisors that rather than assuming things, it is essential to accept that I do not know the answer and

ask for clarification. Doing so will help me to be more explicit in my understanding.

Asking the question why – Asking the question why had been uneasy for me. During the project, there

were moments when I was unclear about the domain, and therefore, I had to communicate with the

stakeholders multiple times. I was provided feedback from my Company Supervisor that asking such

questions should become the norm to ensure that I do things with a purpose and a reason and understand

the stakeholder requirements better.

Understanding priorities – During the project, there were many instances when I was pushing myself

to complete multiple requirements simultaneously. However, I realized that since the project time was

limited, I could only complete specific requirements requested by the stakeholders. I felt that rather than

accepting everything, selecting tasks based on priorities and addressing them for delivery was crucial.

Testing along with implementation – One of the biggest lessons learned was writing tests as part of

the implementation. I remember when my Company Supervisor recommended that I implement tests

before writing the implementation. When I applied this approach, I noticed that thinking about tests first

also enforced considering edge cases and handling them accordingly. Moreover, the cycle for imple-

menting and refactoring was also reduced. Therefore, I will prefer using this approach in my future

career.

Always consult if faced with blockers – I habitually worked alone before the project. During the pro-

ject, when I was stuck on a problem for some time, I decided to ask for some implementations help

from RNDEs. The problem was resolved within 30 minutes, and I then understood the benefits of com-

municating blocks with the team as it solved my problem faster.

Always think of the production environment from the beginning – Towards the end of the project,

some issues appeared when I deployed my code to the production environment for the dry run. Though

we solved the major issues, I realized I could have detected this problem earlier if I had more concretely

considered CI/CD and the production environment. Therefore, I will prefer using this approach in my

future career for application stability.

Overall, the project boosted my professional career as a Software Engineer and Technical Designer.

The project helped develop my technical and communication skills and better software solutions.

Eindhoven University of Technology

49

References

[1] Thermo Fisher Scientific, "About," Thermo Fisher Scientific, 2023. [Online]. Available:

https://corporate.thermofisher.com/us/en/index/about.html.

[2] P. Kirby, "Transmission Electron Microscopy in Semiconductors: Generating Ground Truth Insights," Thermo Fisher Scientific, 05

08 2023. [Online]. Available: https://www.thermofisher.com/blog/semiconductors/tem-analysis-semiconductor-development/.

[3] peppertop, "The Linux command line for beginners," 2023. [Online]. Available: https://ubuntu.com/tutorials/command-line-for-

beginners#1-overview.

[4] K. A. R. Putra, "A solution for configuring an Infrastructure-as-a-Service," Technische Universiteit Eindhoven, Eindhoven, 2022.

[5] Grafana Labs, "Grafana: The open observability platform," Grafana Labs, 2023. [Online]. Available: https://grafana.com/.

[6] Elasticsearch B.V., "Kibana: Explore, Visualize, Discover Data," 2023. [Online]. Available: https://www.elastic.co/kibana.

[7] The Kubernetes Authors, "What is a Kubernetes cluster?," VMware. Inc., 2023. [Online]. Available:

https://www.vmware.com/nl/topics/glossary/content/kubernetes-cluster.html.

[8] S. Piechottka, "Template: User Needs List," 27 June 2022. [Online]. Available: https://openregulatory.com/user-needs-list-template-

iec-62304/.

[9] O. Eidel, "Writing Software Requirements Based on the IEC 62304," OpenRegulatory, 24 May 2023. [Online]. Available:

https://openregulatory.com/software-requirements-iec-62304/.

[10] M. Rehkopf, "User stories with examples and a template," Atlassian, 2023. [Online]. Available:

https://www.atlassian.com/agile/project-management/user-stories.

[11] International Organization for Standardization, "ISO/IEC 25010:2011," March 2011. [Online]. Available:

https://www.iso.org/standard/35733.html.

[12] IBM Corporation, "Defining use cases," 26 April 2023. [Online]. Available: https://www.ibm.com/docs/en/engineering-lifecycle-

management-suite/lifecycle-management/7.0.3?topic=SSYMRC_7.0.3/com.ibm.rational.rrm.help.doc/topics/c_uc.htm.

[13] Britannica, T. Editors of Encyclopaedia, "Client-server architecture," Encyclopedia Britannica, 17 September 2023. [Online].

Available: https://www.britannica.com/technology/client-server-architecture.

[14] I. Fette and A. Melnikov, "The WebSocket Protocol," Internet Engineering Task Force, December 2011. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc6455.

[15] G. E., V. J., H. R. and J. R., "Obeject Creational: Singleton," in Design Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, 2009, pp. 127-134.

[16] Free Software Foundation, Inc., "GNU Bash," Free Software Foundation, Inc., 22 September 2020. [Online]. Available:

https://www.gnu.org/software/bash/.

[17] Free Software Foundation, Inc., "The GNU C Library," Free Software Foundation, Inc., 2023. [Online]. Available:

https://www.gnu.org/software/libc/manual/html_node/Exit-Status.html.

[18] "ECMA-404," ECMA International, December 2017. [Online]. Available: https://www.ecma-international.org/publications-and-

standards/standards/ecma-404/.

[19] Python Software Foundation, "subprocess - Subprocess management," Python Software Foundation, 2023 October 2023. [Online].

Available: https://docs.python.org/3/library/subprocess.html.

[20] OpenBSD Foundation, "OpenSSH," OpenBSD Foundation, 10 August 2023. [Online]. Available: https://www.openssh.com/.

[21] B. Chesneau, "Gunicorn - WSGI server," 2023. [Online]. Available: https://docs.gunicorn.org/en/latest/index.html.

[22] J. Gelens, "gevent-websocket," Python Software Foundation, 12 March 2017. [Online]. Available: https://pypi.org/project/gevent-

websocket/.

[23] D. Bevans, "Asynchronous vs. Synchronous Programming: Key Similarities and Differences," Mendix Technology BV, 19

September 2023. [Online]. Available: https://www.mendix.com/blog/asynchronous-vs-synchronous-programming/.

[24] Docker Inc., "What is a Container?," Docker Inc., 2023. [Online]. Available: https://www.docker.com/resources/what-container/.

Eindhoven University of Technology

50

[25] J. Brownlee, "Python Threading: The Complete Guide," Super Fast Python, 09 April 2022. [Online]. Available:

https://superfastpython.com/threading-in-python/.

[26] M. Grinberg, "Flask-SocketIO," 2018. [Online]. Available: https://flask-socketio.readthedocs.io/en/latest/.

[27] "xterm.js documentation," 2019. [Online]. Available: http://xtermjs.org/.

[28] Socket.IO, "Socket.IO," Socket.IO, 2023. [Online]. Available: https://socket.io/.

[29] "GitHub dropdown-filter," 9 November 2021. [Online]. Available: https://github.com/zangetsu-isshin/dropdown-filter/tree/main.

[30] Python Software Foundation, "Regular expression operations," 23 September 2023. [Online]. Available:

https://docs.python.org/3/library/re.html.

[31] "Quickstart," 2023. [Online]. Available: https://flask.palletsprojects.com/en/2.3.x/quickstart/#accessing-request-data.

[32] "Welcome to Flask," 2023. [Online]. Available: https://flask.palletsprojects.com/en/2.3.x/.

[33] Mozilla Foundation, "The Inline Frame element," 2023. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/HTML/Element/iframe.

[34] Twitter, Inc, "Vertical Traffic Light SVG Vector," 2019. [Online]. Available: https://www.svgrepo.com/svg/407686/vertical-traffic-

light.

[35] Python Software Foundation, "HTTP protocol client," 2023. [Online]. Available: https://docs.python.org/3/library/http.client.html.

[36] Grafana Labs, "HTTP API reference," 2023. [Online]. Available:

https://editor.swagger.io/?url=https://raw.githubusercontent.com/grafana/grafana/main/pkg/services/ngalert/api/tooling/post.json.

[37] GitLab B.V., "Get started with GitLab CI/CD," 2023. [Online]. Available: https://docs.gitlab.com/ee/ci/.

[38] Free Software Foundation, Inc., "GNU make," 26 February 2023. [Online]. Available:

https://www.gnu.org/software/make/manual/make.html.

[39] "JavaScript Component Testing and E2E Testing Framework," Cypress, [Online]. Available: https://www.cypress.io/. [Accessed May

2023].

[40] "Pylint," 2 October 2023. [Online]. Available: https://www.pylint.org/.

[41] G. v. Rossum, B. Warsaw and N. Coghlan, "PEP 8 - Style Guide for Python Code," 1 August 2013. [Online]. Available:

https://peps.python.org/pep-0008/.

[42] "What is an API?," Red Hat, Inc., 2 June 2022. [Online]. Available: https://www.redhat.com/en/topics/api/what-are-application-

programming-interfaces.

[43] M. Fowler, "GivenWhenThen," 21 August 2013. [Online]. Available: https://martinfowler.com/bliki/GivenWhenThen.html.

[44] J. Engel, B. Rice and R. Jones, "Welcome to behave!," 12 September 2023. [Online]. Available:

https://behave.readthedocs.io/en/latest/.

[45] "Principles behind the Agile Manifesto," [Online]. Available: https://agilemanifesto.org/principles.html. [Accessed February 2023].

[46] Lean Enterprise Institute, Inc., "Plan, Do, Check, Act (PDCA)," 2023. [Online]. Available: https://www.lean.org/lexicon-terms/pdca/.

[47] B. Roseke, "Project Management Plan," 21 October 2021. [Online]. Available: https://www.projectengineer.net/project-management-

plan-the-12-core-components/.

[48] "ISO/IEC/IEEE International Standard - Systems and software engineering - Life cycle processes - Project management - Redline,"

ISO/IEC/IEEE 16326:2019(E) - Redline, pp. 1-83, 2019.

[49] M. Waida, "What is a Milestone Trend Analysis," 17 July 2021. [Online]. Available: https://www.wrike.com/blog/what-milestone-

trend-analysis/.

[50] "Chapter 10: MoSCoW Prioritisation," Agile Business Consortium Limited, 2023. [Online]. Available:

https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html.

[51] P. B. Kruchten, "The 4+1 View Model of architecture," IEEE Software, vol. 12, no. 6, pp. 42-50, 1995.

[52] A. Ilitchev, "Transmission (TEM) vs. Scanning (SEM) Electron Microscopes: What's the Difference?," 11 November 2019. [Online].

Available: https://www.thermofisher.com/blog/materials/tem-vs-sem-whats-the-difference/.

Eindhoven University of Technology

51

[53] A. Ilitchev, "Seeing with Electrons: The Anatomy of an Electron Microscope," 11 April 2020. [Online]. Available:

https://www.thermofisher.com/blog/atomic-resolution/seeing-with-electrons-the-anatomy-of-an-electron-microscope/.

[54] VMware, Inc., "What is Virtualization?," 2023. [Online]. Available: https://www.vmware.com/nl/solutions/virtualization.html.

[55] Red Hat, Inc., "Ansible is Simple IT Automation," 2023. [Online]. Available: https://www.ansible.com/.

[56] J. Forcier, "Welcome to Paramiko!," 2023. [Online]. Available: https://www.paramiko.org/.

[57] "About ANSI," American National Standards Institute (ANSI), 2023. [Online]. Available: https://ansi.org/about/introduction.

[58] "Modern UI for Ansible," [Online]. Available: https://www.ansible-semaphore.com/. [Accessed 12 September 2023].

[59] "OMG Unified Modeling Language (OMG UML)," Object Management Group, Inc., 05 December 2017. [Online]. Available:

https://www.omg.org/spec/UML/2.5.1/PDF.

[60] "Electron Microscopy," 2023. [Online].

[61] "BDD Testing & Collaboration Tools for Teams," SmartBear Software, [Online]. Available: https://cucumber.io/. [Accessed May

2023].

[62] J. Engel, B. Rice and R. Jones, "Welcome to behave!," 12 September 2023. [Online]. Available:

https://behave.readthedocs.io/en/latest/.

Eindhoven University of Technology

53

Appendix A. Light & Electron Microscopy
There are two different types of microscopies. The first is light microscopy [52], which uses visible

light to view small objects. It uses glass lenses to focus the light on specimens to magnify and produce

the image. The specimens are placed close to the microscope lenses, and the magnification depends on

the type and number of lenses used in the microscope. Figure 30 [52] shows an example of a light

microscope. It uses a focused light source that passes through the specimen using the condenser lens.

The light passes through the lens, which our eyes can then view.

The second type of microscopy uses electrons as a source to see small objects instead of visible light

[52]. It allows us to see tiny specimens that are not visible through a light source, as a beam of electrons

possesses a wavelength even smaller than visible light. Such specimens included cell internal structures,

protein structures, and individual atoms. In this approach, the microscope fires electrons to the specimen

through electromagnetic or electrostatic lenses. These lenses focus the electrons through the specimen,

which is then captured through an electron imaging device as a detector, as our eyes cannot view elec-

trons. Figure 31 [53] shows a side-by-side comparison between light and Transmission Electron Micro-

scopes (TEM).

There exist two types of electron microscopes [53]. The first is TEM, and the second is the Scanning

Electron Microscope (SEM). In TEM, the beam of light is passed through a thin specimen film showing

the internal structures in detail. However, the drawback is that it requires the specimen to be very thin,

which could allow electrons to pass through. In SEM, the beam of light is swept across the specimen,

recording the bounced electron. This technique scans the surfaces of the specimen. It is faster than

TEMs. However, it does not show the internal structures in detail. Figure 32 [53] shows the comparison

of the images generated. The SEM on the left shows the surface of the specimen, showing multiple

bacteria. The TEM on the right shows the internal structure of a single bacteria.

Figure 30. Image showing a cross section of a light microscope [53]

Eindhoven University of Technology

54

Figure 32. Side by side comparison of SEM and TEM images [52]

Figure 31. Side-by-side comparison between light microscope and TEM [53]

Eindhoven University of Technology

55

Appendix B. Domain Analysis

Domain

Before describing one of the new complex instruments used by Thermo Fisher Scientific customers, we

will explain certain technologies and tools used by these instruments. These include technologies like

virtualization, containerization, and other tools like Ansible, terminal, Grafana, Kibana and Kubernetes.

Virtualization

Virtualization is a technology that enables a single physical computer to function as multiple virtual

computers known as Virtual Machines (VMs) by creating virtualized versions of computer resources

such as processors, memory, storage, and networking components. These VMs operate independently,

each running its operating system and applications [54].

Containerization

Containerization is another technology that allows software applications and their dependencies to be

packaged and run in isolation. This packaging is called a container, and it is lightweight and portable.

The container can run consistently across different computing environments. One such tool is Docker,

which facilitates this technology for applications [24].

Ansible

Ansible is an open-source automation tool to simplify the management and orchestration of complex

tasks across multiple servers or devices. It allows the automation of tasks related to configuration man-

agement, application deployment, cloud provisioning, and more. Ansible uses scripts known as play-

books to install modules and tools. The playbooks use a configuration file containing the information

for VMs, storage and other resources [55].

Terminal

A terminal is a text-based interface that allows users to interact with a computer’s operating system

using text commands. It supports the execution of bash scripts, which are plain text files containing a

series of commands written in the Bash [16] scripting language. These scripts are executed by the Bash

interpreter, allowing users to automate tasks, perform complex operations, and streamline repetitive

processes [3].

Grafana

Grafana is an open-source analytics and visualization platform that allows users to create, explore, and

share interactive dashboards for monitoring and analyzing data from various sources, such as databases,

cloud services, and applications. It also helps show alerts for different resources to see if something has

gone wrong [5].

Kubernetes

Kubernetes, often abbreviated as K8s, is an open-source container orchestration platform for automating

containerized applications’ deployment, scaling, and management. It allows users to efficiently manage

clusters of containers, ensuring that applications run reliably and scale seamlessly across various envi-

ronments. It contains a web-based user interface that provides a visual representation and control panel

for managing Kubernetes Clusters. It allows users to monitor the health and performance of their cluster,

deploy and manage applications, inspect resources, and troubleshoot issues. The dashboard offers a

convenient way to interact with and manage the various components of a Kubernetes cluster, making it

more accessible to users who prefer a graphical interface over command-line interactions [7].

Eindhoven University of Technology

56

Kibana

Kibana is an open-source data visualization and exploration platform designed for Elasticsearch. It pro-

vides powerful search and visualization capabilities, allowing users to analyze and interact with their

data stored in Elasticsearch indices. Kibana is often used for log and event data analysis, business in-

telligence, and other data-driven applications [6].

SDP Overview

Data Management Platform (DMP) is a new complex instrument. It is a PC platform that supports using

the TEM. The DMP is shown in Figure 33. It contains a software hosting infrastructure called the Soft-

ware Delivery Platform (SDP) that supports microscope applications. It also supports applications for

managing software installation. These applications include Software Configurator Application (SCA)

and SDP Web-installer Application Program (SWAP). The SDP also contains service applications that

include Grafana, Kibana, and Kubernetes Dashboard. Table 15 shows the elements of DMP and their

purpose.

SDP utilizes virtualization technology to manage virtual machines that operate independently. Within

SDP, applications use containerization through docker to run multiple applications independently. SCA

helps to generate a configuration that helps to define SDP. This configuration lists devices and their

properties Ansible uses to install or upgrade SDP. The Research and Development Engineers (RNDEs)

design and develop SDP and its applications.

Figure 33. Diagram showing the internal components of SDP

Eindhoven University of Technology

57

Table 15. Internal components of SDP and their purpose

Component Purpose

DMP

PC platform that connects TEM, MPC, SPC,

microscope applications, and service applica-

tions

SDP
Software hosting infrastructure within DMP that

hosts applications

Software Lifecycle Management Tools (SLMT)
SLMT used for application and infrastructure

installation and upgrades

SPC
Used by DSEs to access SDP, SCA, SWAP and

service applications

MPC
Used by researchers to access microscope appli-

cations

Kubernetes Cluster
A collection of VMs that help to run and man-

age applications

Microscope Applications A set of applications for the microscope

Service Applications

A set of applications that help to troubleshoot

SDP and applications running on the Kubernetes

Cluster

Grafana An application used for monitoring and alerts

Kibana
An application used for diagnostics and log

trace

Kubernetes Dashboard
An application used for identifying application

health

SCA
Web-based GUI application that helps to define

an SDP specification for resource allocation

SWAP
Web-based GUI application that helps to install

applications on the Kubernetes Cluster

Transmission Electron Microscope (TEM)
Transmission Electron Microscope used by Mi-

croscope Applications

SDP Installation

SDP installation involves a three-step process, as shown in Figure 34. These steps help to prepare DMP,

generate SDP configuration, and execute Automation Scripts. These scripts are a combination of bash

scripts and ansible playbooks. The steps are as follows:

• The first step involves an automated process of setting up the entry VM with modules and

packages necessary for SDP installation with DMP. The entry VM comes installed with DMP.

It is straightforward, requiring no input from a DSE for the execution. To invoke the process, a

DSE must upload executable files into the system and execute through the VM terminal. An

operating system is the software that manages hardware resources and provides services for

DMP to run effectively.

Figure 34. Steps showing the installation process of SDP

Eindhoven University of Technology

58

• Once the VM is ready, the SDP Configuration is generated using SCA. Since SCA is a web-

based GUI application, it can be accessed through a web browser like Firefox. The DSEs then

must fill out forms that generate a configuration from the information. This configuration gen-

eration is known as a Complete Action where the SDP Configuration is generated for the first

time.

• Once the configuration is generated, the Complete Action can be applied by executing automa-

tion scripts through the operating system terminal. During the process, a DSE is asked several

inputs to configure the SDP correctly. Once the execution is completed, an automation audit is

generated that can be viewed by DSEs to check if the SDP was installed correctly.

SDP Troubleshooting & Application Installation

To troubleshoot SDP, the DSEs use a few service applications. These include Grafana, Kibana, and

Kubernetes. Grafana helps monitor SDP and notify DSEs through alerts if there are issues with SDP

resources. Kibana is used for diagnostics and log trace, where logs collected from different applications

can be sliced and diced to show readable information for troubleshooting. Kubernetes checks for appli-

cation health installed on the Kubernetes cluster. To install other applications on the Kubernetes cluster,

DSEs use SWAP. These applications include both microscope and service applications.

Eindhoven University of Technology

59

Appendix C. NFR Reference List

Below is a standard list of product qualities used to elicit the non-functional requirements for the project.

The standard list is from ISO 25010:2011 Section 4.2 product quality model. The list is shown in Table

16. The list was used during interviews to ask questions related to non-functional requirements.

Table 16. List of nonfunctional requirements derived from ISO 25010:2011

Product Qualities Sub Characteristics

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Performance Efficiency

Time behavior

Resource utilization

Capacity

Compatibility
Co-existence

Interoperability

Usability

Appropriateness recognizability

Learnability

Operability

User error protection

User interface aesthetics

Accessibility

Reliability

Maturity

Availability

Fault tolerance

Recoverability

Security

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Maintainability

Modularity

Reusability

Analyzability

Modifiability

Testability

Portability

Adaptability

Installability

Replaceability

Eindhoven University of Technology

60

Appendix D. Tools & Technologies

Table 17. List of tools and technologies used for the project

Tools & Technologies Type Purpose

Socketio Implementation

The client uses this library to con-

nect to the web server. It uses Web

Socket for communication and

uses HTTP long-polling as a

fallback. This library is part of the

presentation component.

flask-socketio Implementation

This library connects with the

socketio library for communica-

tion. It is an extension of the Flask

framework. This library is part of

the Web Socket component in the

web server.

subprocess Implementation

The library used to run a script in

the SDP. The action module uses

this library to execute an automa-

tion script.

gunicorn Implementation

This library is a WSGI server used

to run the web server in a produc-

tion environment.

gevent-websocket Implementation

This library is used with gunicorn

to support the asynchronous nature

of Web Socket communication.

When present, the socketio and

flask-socketio libraries upgrade to

a WebSocket connection.

xterm.js Implementation

This library implements the output

panel that shows the automation

script output and the audit panel to

view audit contents on UI. It repli-

cates a terminal software used by

the SEs.

bootstrap Implementation

This library implements the pro-

gress bar, which is already present

in the existing SCA.

JSON Implementation

This file format stores action and

automation script mapping. The

operation module can obtain the

appropriate automation script

based on the action.

Iframe Implementation

This HTML template element em-

beds external content, such as other

web pages or videos, within a web

page.

HTTP client Implementation

This built-in Python module pro-

vides low-level access to the HTTP

protocol, allowing you to create

and send HTTP requests directly. It

is part of the standard library that

Eindhoven University of Technology

61

Tools & Technologies Type Purpose
can make HTTP requests, handle

responses, and work with HTTP

headers.

Grafana alert API Implementation

This API manages alerts program-

matically. It enables standard

HTTP methods (GET, POST,

PUT, DELETE) to list, create, up-

date, and delete alerts. Authentica-

tion is required to access the

alerts.

re Implementation

This library helps to parse the au-

dit name and creation date from

the audit files.

Font awesome Implementation
This font library provides icons

for action success and failure.

Make file Verification

This automation script uses the

Make automation tool to build and

test the workbench application in

the local environment.

Pre-commit hooks Verification

This automation script triggers

when code is committed to the

GitLab repository. It runs Pylint to

check if Python code meets the

PEP8 coding standard.

GitLab CI Verification

This Continuous Integration (CI)

feature of GitLab helps to set up a

pipeline to build, test, and deploy

the application to the production

environment.

Cypress Verification

This end-to-end testing framework

tests UI interactions with a web

browser.

Cucumber Verification

This BDD tool describes test spec-

ifications for end-to-end tests. It

integrates with Cypress to create

automated tests that are easy to

understand.

Pylint Verification

This is a static code analyzer that

checks if the Python code meets

the PEP8 coding standard.

Pytest Verification
This unit-testing framework tests

Python modules and components.

GitLab
Configuration Manage-

ment

This repository stores the solu-

tion's source code and runs the

CI/CD pipeline.

Jira Project Management

Jira is an issue-tracking software

for managing sprints, epics, user

stories, and tasks.

Confluence Project Management
Confluence is a document wiki for

the project.

MS teams
Stakeholder Communica-

tion

MS teams is a video conferencing

tool for communication with all

stakeholders.

Eindhoven University of Technology

62

Tools & Technologies Type Purpose

Excel Document Management

Excel is a documenting tool for

project management-related tables

and graphs for TU/e Supervisor.

Word Document Management

Word is a documenting and re-

porting tool for sharing meeting

minutes with the TU/e Supervisor.

Email
Stakeholder Communica-

tion

Email is a communication tool

used to communicate with all

stakeholders.

One drive Document Management

One drive is a document reposi-

tory that contains all project-re-

lated documents.

Eindhoven University of Technology

63

Appendix E. Decisions

Table 18. List of decisions made during the project

ID Description Outcome
Number of

Alternatives

Number

of crite-

ria

D1

To decide if SCI will

be part of SCA or a

separate application

We decided to go with a

single application and use

the existing stack. SCA

and SCI will then need to

be integrated.

2 1

D2

To find a suitable

real-time technology

for communication

between the SCI and

the web browser

We decided to go with

Web Sockets as I was

more aware of how to use

them rather than polling.

Moreover, its functional-

ity was more commonly

used in examples availa-

ble online. It also repli-

cated terminal behavior.

This was further dis-

cussed and decided during

Egbert's system design

whiteboarding session.

4 11

D3

To decide the design

pattern for SCI for ap-

plying a single action

at a time

We decided to use single-

ton pattern over python

module to achieve class

base approach, modularity

and apply single action at

a time.

2 1

D4

To decide to change

bash scripts to python

or ansible or keep us-

ing bash scripts.

We decided to go with

bash scripts as it is a sin-

gle-entry point, and it can

be decoupled from SCI

and workbench through a

JSON file.

3 2

D5

To decide the appro-

priate library for exe-

cuting a shell com-

mand on a remote

host and retrieve,

line-by-line, and ver-

bose output

We decided to use sub-

process library as para-

miko [56] can only run

with gunicorn sync

worker. subprocess is also

compatible with gunicorn

async gevent-websocket

worker.

3 9

D6

To decide an existing

library that can show

colored and verbose

output of terminal

We decided to use

xterm.js as it is used more

than terminal.js and sup-

ports ANSI [57] terminal

color format.

2 2

Eindhoven University of Technology

64

ID Description Outcome
Number of

Alternatives

Number

of crite-

ria

D7

To decide a specific

framework for work-

bench application

We decided to add work-

bench features to SCA ap-

plication and therefore a

new framework was not

required. It will be easier

for SEs to use a single

app.

3 11

D8

To decide separate

app or single app

(combined with SCA)

for workbench

We decided to add work-

bench features to SCA ap-

plication as it will be easy

for SEs to access the ap-

plication and RNDEs to

maintain the application.

3 2

D9

To decide the suitable

way to capture exit

status of actions ap-

plied from action his-

tory

We agreed to print exit

code as last line of auto-

mation audits. The history

in workbench can then

capture the exit status

from the audit content and

display on the browser as

success or failure.

6 3

D10

To decide a suitable

approach to apply ac-

tions in unattended

mode

We agreed to use defaults

and pass them as parame-

ters to scripts. Workbench

will use file with values

temporary till the scripts

have been changed.

4 3

D11

To decide the integra-

tion strategy of SCI

and SCA

We used JSON file strat-

egy to store next and pre-

vious values of form

flows.

3 2

D12

To decide the internal

state management of

SCI

We decided to use a Bool-

ean value rather than a

state design pattern to de-

note if the SCI server is

applying an action auto-

mation or is idle.

2 1

D13

To decide whether to

use a single action

class rather than in-

heritance relationship

for mapping all ac-

tions

We decided to use a sin-

gle script executor that

will be unaware of the au-

tomation scripts. The ac-

tion information will be

decoupled in the JSON

file which can be modi-

fied and extended by

RNDEs independently.

2 1

D14

To decide if the

maintenance applica-

tions will be

We decided to add

Grafana, Kibana and Ku-

bernetes as redirect links.

2 1

Eindhoven University of Technology

65

ID Description Outcome
Number of

Alternatives

Number

of crite-

ria
redirecting links

through the work-

bench.

D15

To decide if SWAP

will be embedded

within workbench ra-

ther than a redirect

link

We decided to use Iframe

to access SWAP from

within workbench rather

than redirecting SEs to the

application.

2 1

D16

To decide the library

to fetch Grafana alerts

for the traffic light

We decided to use

Grafana alert API to fetch

Grafana alerts and filter

based on severity levels.

3 2

D17

To decide the library

to show a progress

bar in the browser

We decided to use boot-

strap library progress bar

as bootstrap library is al-

ready imported in the ex-

isting SCA code.

2 2

D18

To decide if a new ac-

count should be used

for SEs

We decided to use a new

read only account for SEs.
2 1

D19

To decide the strategy

for testing mock auto-

mation scripts during

end-to-end testing in

local and testing envi-

ronment

We decided to use a sepa-

rate mock automation

scripts docker container

for end-to-end testing.

2 2

D20

To decide the appro-

priate frontend and

backend library for

Web Sockets

We decided to use sock-

etio (frontend) and flask-

socketio (backend) as it

supports advanced fea-

tures such as broadcasting

to multiple clients, sup-

ports fallback mechanism

to long polling if the pro-

duction environment does

not support Web Socket

connection. It also sup-

ports reconnection if

browser is closed, or con-

nection is interrupted.

4 (Templates)

4 (Webserver)

2 (Tem-

plates)

2 (Web-

server)

D21

To decide a custom

solution for applying

actions or using an

existing open-source

solution

We decided to create a

custom solution as the an-

sible-semaphore [58]

open-source solution uses

ansible scripts for auto-

mation rather than bash

scripts. Bash scripts act as

single-entry point to the

automation process. The

UI of the ansible-

2 2

Eindhoven University of Technology

66

ID Description Outcome
Number of

Alternatives

Number

of crite-

ria
semaphore tool is also dif-

ficult to use for SEs.

D22

To decide a library to

filter the action his-

tory table

We decided to use a cus-

tom solution available

online.

3 2

D23

To use appropriate

worker class library

for Gunicorn WSGI

production server

We decided to use gevent-

websocket library to sup-

port flask-socketio asyn-

chronous behavior.

6 2

Table 19. Decisions associated to different modules

Module Decision ID

Actions
D2, D3, D4, D5, D6, D10, D12, D13, D17, D20,

D21, D23

History D9, D22

Managing Applications D14, D15, D16, D18

Form Flows D1, D7, D8, D11

End-to-end Testing D19

Table 20. Stakeholders consulted for different decisions

Stakeholders Role
Decisions Con-

sulted

Egbert Algra

Company Supervisor,

Staff Architect

(RNDE)

All decisions

Giovanni de Almeida

Calheiros

Software Design Engi-

neer III (SWAP, SDP

Infrastructure)

(RNDE)

All decisions

Tor Halsan

Software Design Engi-

neer IV (SDP Infra-

structure) (RNDE)

D2, D4

Respa A. Putra
Software Design Engi-

neer II (SCA) (RNDE)
All decisions

Chen Gang
DevOps Engineer

(RNDE)
D10

Harold Weffers TU/e Supervisor D5, D7, D8

Jordy Plug DSE
D10, D14, D15, D17,

D22

Tarkan Akcay DSE
D10, D14, D15, D17,

D22

Kieran Ham GTS D17

Ataur Rahman OE D14, D15, D17, D22

Eindhoven University of Technology

67

Table 21. An example of a decision taken to choose a suitable real-time technology

Status Final

Impact High

Informed Egbert, Respa, Giovanni, Tor

Last Up-

dated
18/08/2023

Purpose
To find a suitable real-time technology for communication between the SCI and the

web browser

Criteria

Web-

Socket

(WS)

Long Polling

(HTTP)

AJAX Short

Polling

(HTTP)

Server-Sent

Events

(HTTP)

Real-time

communi-

cation

Yes, it

communicates

in real-time by

creating a sin-

gle connec-

tion.

Yes, it does it

partially with multi-

ple requests and re-

sponses. It makes a

request, and the

server holds the re-

quest till it has data,

keeping the connec-

tion open long

enough for the client

to receive the re-

sponse.

No, it does it

partially with multi-

ple requests and re-

sponses. It makes a

request to the

server every fixed

interval.

Yes, only from

the server side. To

initiate this, the cli-

ent will need to

send a request to

the server. After

this the server will

send the client with

data continuously.

Existing

support
No exist-

ing support.

Yes, there is ex-

isting support and

therefore it can be

managed by RNDEs.

Yes, there is

existing support

and therefore it can

be managed by

RNDEs.

No existing

support.

Maturity &

browser

support

Yes, it is

highly mature

and supported

by all modern

browsers.

(Edge,

chrome, Fire-

fox, opera, sa-

fari)

Yes, it is highly

mature and supported

by most modern and

old browsers.

Yes, it is

highly mature and

supported by most

modern and old

browsers.

Yes, it is

highly mature and

supported by all

modern browsers.

(Edge, chrome,

Firefox, opera, sa-

fari)

Familiarity

Experi-

enced in cer-

tain web

socket librar-

ies.

No experience so

far but willing to

learn.

No experience

so far but willing to

learn.

No experience

so far but willing to

learn.

Eindhoven University of Technology

68

Criteria

Web-

Socket

(WS)

Long Polling

(HTTP)

AJAX Short

Polling

(HTTP)

Server-Sent

Events

(HTTP)

Auto-recon-

nect

Depends

on the library

used for im-

plementation.

Must be imple-

mented manually.

Must be imple-

mented manually.

Supports auto-

matic tracking of

last seen message

and auto reconnect.

Fallback

mechanism

Needed if

not supported

natively by

old browsers

and produc-

tion environ-

ment.

Natively sup-

ported by old brows-

ers.

Natively sup-

ported by old

browsers.

Needed if not

supported natively

by old browsers

and production en-

vironment.

Bi-direc-

tional com-

munication

Yes, it is

bi-directional

No, it is unidi-

rectional

No, it is unidi-

rectional

No, it is unidi-

rectional

Message or-

dering

Ordered

sequence since

the underlying

protocol is

TCP which

presents bytes

in order as

they are sent.

Can be an issue

since multiple HTTP

requests from the

same client can be in

transmission simulta-

neously. Some can

arrive before others.

They can also be du-

plicate if two or more

browser tabs are

open. It could also

happen if there are

more than one or

more connection at a

time.

Can be an issue

since multiple

HTTP requests

from the same cli-

ent can be in trans-

mission simultane-

ously. Some can ar-

rive before others.

Ordered se-

quence since it

transfers data

though a single

long-lived HTTP

connection.

Latency

Low la-

tency as the

data is sent

immediately

once availa-

ble.

Low latency as

the response is only

sent when the data is

available. Till then,

the request is held by

the server.

High latency

due to message de-

lays. Some re-

sponses could be

empty. Since the re-

quest is periodic,

any data that comes

in between the

HTTP requests will

have to wait for the

next request. This

causes delays.

Low latency as

the data is sent im-

mediately once

available through a

single, long-lived

connection.

Eindhoven University of Technology

69

Criteria

Web-

Socket

(WS)

Long Polling

(HTTP)

AJAX Short

Polling

(HTTP)

Server-Sent

Events

(HTTP)

Message

overhead

Low mes-

sage overhead

as headers are

not sent on

each server re-

quest.

High message

overhead as each re-

quest carries the

HTTP header.

High message

overhead as each

request carries the

HTTP header.

Low message

overhead

Firewall

compatible

Can be

blocked by

firewall that

perform appli-

cation-level

packet inspec-

tion.

Firewall compat-

ible since the under-

lying protocol is

HTTP.

Firewall com-

patible since the

underlying protocol

is HTTP.

Firewall com-

patible since the

underlying protocol

is HTTP.

Score 3 2 -2 4

Discus-

sion
Discussed with Giovanni, Tor and Respa: Recommended to use the already exist-

ing libraries that are part of SCA.

Discus-

sion
Discussed with Egbert: Recommended to use either Web Sockets or polling (long

and short).

Outcome
Decided to go with Web Sockets as I was more aware of how to use them rather

than polling. Moreover, it has more real time in nature. This was further discussed

and decided during system design whiteboarding session with Egbert.

Refer-

ence
High Performance Browser Networking by Oreilly chapter 14, https://code-

burst.io/polling-vs-sse-vs-websocket-how-to-choose-the-right-one-1859e4e13bd9

Table 22. Legend for the example decision

Icon Value

+1

-1

0 (zero)

Eindhoven University of Technology

70

Appendix F. Final UI

Figure 35. Final UI of the workbench homepage

Eindhoven University of Technology

71

Figure 36. Final UI for viewing action output

Eindhoven University of Technology

72

Figure 37. Final UI showing a list of all actions

Figure 38. Final UI showing action cancelled on the action page

Eindhoven University of Technology

73

Figure 40. Final UI of viewing an audit content for an action

Figure 39. Final UI of action history

Eindhoven University of Technology

74

Figure 42. Final UI showing SWAP within Iframe

Figure 41. Final UI showing the list line of audit

Eindhoven University of Technology

75

Figure 44. Final UI showing the next and previous buttons of SCA

Figure 43. Final UI showing the list of Manage Applications

Eindhoven University of Technology

76

Figure 45. Final UI showing the pre-install web page and its elements

Eindhoven University of Technology

77

Appendix G. Solution Architecture

Overview

We documented our architecture using 4 + 1 view model. It was implemented using the UML [59]

notation This model contains the following views and the associated diagrams3:

• Development View – This view shows the implementation view of Workbench. It is shown

through the package diagram as shown in Figure 46. We chose the package diagram to show

the layered architecture and modularity of the implementation and it becomes easier to com-

municate with RNDEs to implementation changes.

• Physical View – This view shows the deployment of Workbench. We considered the deploy-

ment diagram to denote how Workbench operates in testing and production environment. This

can be seen in Figure 47 and Figure 48.

• Process View – This view shows how the sub-modules/classes4 interacts with one another. We

used the sequence diagrams to show the behavior. This can be seen in Figure 49.

• Logical View – This view denotes the functionality of Workbench. We used class and state

diagrams to describe the functionality. These can be seen in Figure 50 and Figure 51.

• Scenarios – This describes the Use Cases the SEs interact with Workbench. These can be seen

in Figure 52.

3 There may be some differences between the diagrams in the Solutions Chapter and Appendix G. Diagrams in

Appendix G are more detailed.
4 Even though the business logic was developed using class-based approach, we used sub-module to simplify

explanation.

Eindhoven University of Technology

78

Development View

Figure 46. Diagram showing the development view of Workbench

Eindhoven University of Technology

79

Physical View Production

Figure 47. Diagram showing physical view for the production environment

Eindhoven University of Technology

80

Physical View Testing

Figure 48. Diagram showing physical view for the testing environment

Eindhoven University of Technology

81

Process View

Figure 49. Sequence diagrams of workbench

Eindhoven University of Technology

82

Logical View (Class/Sub-module diagram)

Figure 50. Diagram showing the sub-modules/classes and their relations

Eindhoven University of Technology

83

Logical View (State Machine Diagram)

Figure 51. Diagram showing the state machine diagram of operation

Eindhoven University of Technology

84

Use Cases

Figure 52. Uses cases for workbench application

Eindhoven University of Technology

85

Appendix H. Risks

Table 23. Top two risks that occurred during the project

ID
Risk

Description
Risk

Category
Impact Level

(1 - 5)
Probability Level

(1 - 5)
Severity

Level
Mitigation Contingency Status

1

The project may

get delayed as

SCA and auto-

mation scripts

are also evolving

along with

Workbench.

Product 3 3 9

Discuss monthly

with RNDEs to

know what has

changed. Discuss

the priorities

based on availa-

ble time.

Discuss the risk

with the company

and TU/e supervi-

sor during one-to-

one or PSG with

alternative strate-

gies.

Decided on common

interfaces between

SCA and automation

scripts to reduce de-

pendency.

2

The project may

get delayed due

to application

failure in the

production envi-

ronment.

Product 3 4 12

Organize more

dry runs to test

the application in

the production

environment. Un-

derstand the na-

ture of the prob-

lem and show

possible alterna-

tives to the

RNDEs. Discuss

the priorities

based on availa-

ble time.

Discuss the risk

with the company

and TU/e supervi-

sor during one-to-

one or PSG with

alternative strate-

gies.

Changed the para-

miko library to sub-

process with SSH to

support gunicorn

gevent-websocket

and web socket

asynchronous be-

havior

Eindhoven University of Technology

86

About the Author

Mayank Sharma received his bachelor’s degree in Electronics and

Communication Engineering from Manipal University Jaipur, India, in

2017. After that, he completed his master’s degree in software engi-

neering at the University of Melbourne, Australia, in 2020. He com-

pleted his final year team project with the University of Melbourne Au-

diology Department titled Pediatric speech, spatial and qualities (SSQ)

of hearing scale. It involved developing a web application for admin-

istering questionnaires and evaluating hearing disabilities in children

using the SSQ scale, replacing the old paper-based concept. He and his

team came runners-up in the University of Melbourne Endeavour Dis-

cipline Award for the team project. Additionally, he worked as a stu-

dent supervisor at the University of Melbourne, supervising and guid-

ing student teams for their final IT projects. His interests include soft-

ware architecture and design, multi-domain systems, and entrepreneur-

ship.

