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Foreword

In the innovation project ’Digital infrastructure for future-proof mobility’ (DITM), research institu-
tions and industry together develop and deploy a system architecture for a digital infrastructure con-
sisting of critical core technologies related to localization, traffic services, digital maps, and energy
supply. The underlying aim is to improve traffic safety and efficiency by supporting the implemen-
tation of a scalable Cooperative, Connected and Automated Mobility system (CCAM), including a
reliable and secure energy supply. To this end, DITM adopts an integrated public-private approach, in
which developments from the automotive industry, ICT, traffic management, and mobility innovation
are combined.

To validate the feasibility and scalability of the architecture, several use cases are defined in DITM,
involving the application of connected automated vehicles in a particular operational design domain.
These use cases are developed, tested, and validated in a real and virtual validation environment. One
of these use cases relates to platooning of electric buses, where both the longitudinal and the lateral
motion are fully automated, employing on-board sensors and wireless inter-vehicle communications.

Prabhat was given the challenging assignment to design the perception and control system for this
use case, the results of which are presented in the current report. And he tackled it energetically!
Prabhat implemented a platooning controller for the longitudinal motion control and a non-linear
path-following controller for the lateral motion control. In addition, path generation based on the
preceding vehicle’s path was designed and implemented in simulation. But planning and control was
not all: perception of the environment is the enabling technology for all automated vehicles, including
the current use case. Therefore, Prabhat also investigated a high-level fusion method, known as track-
to-track fusion, which can combine the observations of various sensors such as camera and radar into
object tracks. The resulting system behavior is analyzed in simulation, using the Prescan simulation
platform.

Without any doubt, I can say that Prabhat has laid a solid foundation for the CCAM use case of
DITM, providing a basis for several partners to build upon. Personally, I wished this EngD project
lasted another year, not in the least because Prabhat proved to be a very friendly, cooperative, and
ambitious student, due to which our progress meetings gave energy rather than consumed it.

Jeroen Ploeg,

Siemens Industry Software Netherlands

Helmond, October 2023
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Executive Summary

The growing population is putting a lot of pressure on the existing mobility infrastructure. Frequent
disruptions in public transport are becoming common nowadays. Cooperative, Connected, and Au-
tomated Mobility (CCAM) systems are becoming the need of the hour to improve traffic efficiency
by increasing road throughput and reducing traveling time. In addition, these mobility solutions are
supposed to improve road safety and reduce fuel consumption. To that end, a use case of city bus
platooning is used as the central idea in this work.

This work aims to develop lateral and longitudinal control for the follower buses in a platoon such that
they can follow the preceding/lead vehicle closely in a safe and comfortable manner. To implement
these control algorithms, the motion states of the preceding vehicle are required. Various sensors
are used to measure these states. However, no single sensor can measure these states directly with
sufficient accuracy to be usable by the control algorithms. Thus, filtering and fusion algorithms are
used to combine the information coming from different sensors to estimate the relevant motion states
accurately. Another goal of this work is to develop these filtering and fusion algorithms based on the
requirements from the controller design, thereby, approaching the control and sensor fusion problems
in an integrated way instead of treating them in isolation.

The Siemens Prescan simulation environment is used as a platform to test and verify the developed
algorithms in different scenarios. The simulation results show that the presented algorithms are capa-
ble of not only achieving the control objectives of the follower buses to follow the preceding vehicle
closely but also doing it in a comfortable manner for the passengers.

DITM: Control-oriented sensor fusion for bus platooning v
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1 Introduction

In this work, the design and development of the lateral and longitudinal control of a platoon of city
buses and the underlying control-oriented sensor fusion algorithms are presented as a part of the
final individual project for the engineering doctorate (EngD) program. The project is carried out in
collaboration with Eindhoven University of Technology, and Siemens Industry Software B.V. In this
chapter, the motivation for the project is first explained. Then, the main goals and the scope of the
project are presented. Next, a system engineering based design approach applied for the execution of
this project is discussed. Finally, the outline of the rest of the report is presented in the last section.

1.1 Background and motivation

With the increasing population and its ever-increasing demands, the current mobility infrastructure is
reaching its limits. This limit is putting the brakes on the economic growth and prosperity of society
in general [1]. Cooperative, Connected, and Automated Mobility (CCAM) systems are becoming the
need of the hour to improve traffic efficiency by increasing road throughput and reducing traveling
time. In addition, these mobility solutions are supposed to improve road safety and reduce fuel con-
sumption [2]. To tackle these challenges and make the mobility infrastructure robust to future needs,
an innovative project called Digital Infrastructure for Future Mobility (DITM) is being carried out in
the Netherlands with the help of many industrial and academic partners [1]. Figure 1.1 shows different
work packages, corresponding use cases, and the related partners involved in the project.

Figure 1.1: DITM work packages and related partners

DITM: Control-oriented sensor fusion for bus platooning 1
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This work is related to the lane maneuvering use case of work package 2, focusing on the bus pla-
tooning application. Platooning refers to the use of vehicle following with short-inter vehicle dis-
tance [3] [4]. This is usually achieved with the help of the onboard sensors on the vehicles and
vehicle-to-vehicle (V2V) communication. Platooning is actively researched for heavy-duty commer-
cial vehicle applications and they show significant advantages in terms of fuel savings [5]. How-
ever, city bus platooning has additional challenges like passenger comfort, frequent stop-go situations,
tighter roads, etc. and there is limited literature available concerning these aspects. Apart from the
above-mentioned benefits of platooning, there could be other business use cases in utilizing platoon-
ing in city buses. For instance, it can be used to manage peak traffic demands during work commute
hours. It can also be used to create a rail-on-road transport mode for intra-city travel during railway
maintenance and/or failure. Thus, bus platooning is included in the DITM scope.

1.2 Need for control-oriented sensor fusion

To perform cooperative and/or automated driving tasks, CCAM systems use various sensors and may
rely on vehicle-to-everything (V2X) communication. For ease of articulation, any source of infor-
mation, for instance, V2X communication, map data, or any other sensor data is simply referred to
as sensor data in this work. The information received from these sensors is then used to understand
the driving environment, localize the vehicle in the environment, plan motion, and finally control the
vehicle to perform the desired driving task. Generally, one sensor is not capable of measuring all the
motion states of a vehicle and even if they do, the measurements are not accurate for all the states.
Thus, one sensor cannot provide accurate measurements for all the motion states necessary for con-
trol application. To that end, the sensor data from different sources are fused to make more accurate
estimates. This process is called sensor fusion. There are many ways to fuse different information.
The fused information should however be useful for further use, for instance, controlling the vehicle.
Thus, it is important to think about sensor fusion in an integrated manner with controller design, rather
than designing fusion algorithms and control algorithms in isolation. Figure 1.2 shows the workflow
of an integrated approach towards control-oriented sensor fusion.

The development of control and sensor fusion algorithms in an integrated manner can be accelerated
if all the related scenarios, sensors, and algorithms can be implemented virtually in a single plat-
form. To this end, the Siemens Prescan [6] environment is used. This also allows Siemens to explore

Analyzing the control
problem

Deriving requirements for
the sensor fusion

Sensor selection and
fusion algorithm design

Iterations

Figure 1.2: Integrated approach towards control-oriented sensor fusion
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the opportunity to develop sensor algorithms within their software module based on the controller
requirements.

1.3 Project goals and scope

As outlined in sections 1.1 and 1.2, the aim of this project is two-fold. The first aim is to develop
vehicle control modules to implement platooning in city buses. The second aim is to derive require-
ments from the controllers to develop the sensor fusion algorithm in order to implement the controllers
successfully. Thus, the two main goals of this design project are as follows:

1. To design and develop longitudinal and lateral control for the follower vehicles in a platoon.

2. To use a control-oriented approach to design and develop sensor fusion algorithms.

The duration of the project does not allow for developing a complete pipeline to control a platoon of
buses in all possible scenarios. To that end, after discussion with the relevant stakeholders, the scope
of this project is limited as summarized below:

• A three-bus platoon use case to be considered, where the lead bus is driven manually and is
responsible for taking a safe path. Figure 1.3 schematically shows this use case.

• Formation and/or dissolution of the platoon is beyond the scope of this work. It is assumed that
the platoon is already formed and communication is established between the vehicles.

• A homogeneous string of rigid buses, without articulation, is to be considered.

• Both structured and unstructured road infrastructure should be considered, i.e., lane markings
on the roads may or may not be present or detected.

• It is assumed that the object-level measurement data is available from the sensors. Thus, object
detection and tracking problem from raw sensor data is not considered in this work.

• Considering that the individual sensors can detect the same object and thus can provide track
data of the same object, a high-level track-to-track fusion (T2Tf) has to be developed.

• All the information regarding ego vehicle pose (position, velocity, acceleration, heading, etc.)
is known. Thus, the ego state estimation problem is not considered in this work.

• Functional safety aspects such as fail-safe operation, the safety of the intended function, etc. are
also not considered in this work. Consequently, it is assumed that the wireless communication
has very limited or no packet loss.

Figure 1.3: Schematic to show the use case of three bus platooning

DITM: Control-oriented sensor fusion for bus platooning 3
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Figure 1.4: V-cycle development model

1.4 Design approach

In this section, the system engineering based design framework used for the execution of this project
is discussed. First, a brief introduction of the V-model is provided which is used as the general frame-
work for the development of various algorithms in this project. Following the V-model framework,
the conceptual system design is presented which acts as the basis of implementation carried out during
this project. Please refer to Figure A.1 in appendix A for the project management plan outlining the
execution timeline for this project.

1.4.1 V-model

The V-model [7] is one of the most common models utilized in software development. Figure 1.4
shows different stages of the development in the V-model. The left side of the V represents the defi-
nition and design phase of the project where the conceptual design of the system is conceived based
on the requirements and constraints. The system is also decomposed in this phase into subsystems
for ease of implementation and to maintain important aspects of development such as modularity,
traceability, etc. Once the subsystems are defined, they are implemented in the implementation phase.
Next, the right side of the V is used to test and integrate these implemented subsystems. Note that
the testing and integration happens both at subsystem and system level and design iterations might be
required based on the testing results obtained.

In an ideal V-model approach, one should start with listing all the requirements and concerns of
different stakeholders before focusing on the conceptual system design. This helps in understanding
the problem better and knowing what exactly stakeholders want. However, the goals and scope of
this project were well-defined, therefore, we started with the conceptual system design considering
the aforementioned goals and scope as the guiding requirements and constraints. Next, the conceptual
system design is discussed which lays the foundation for the implementation phase.

4 DITM: Control-oriented sensor fusion for bus platooning
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Figure 1.5: System architecture

1.4.2 Conceptual system design

Driving is a highly complex process. Human beings use multiple sensory and cognitive capabilities
simultaneously to perform this task. Just like humans, automated driving systems also use the so-
called ’see-plan-act’ cycle iteratively. Various sensors are used to ’see’ the environment. Based on
this sensed information, a motion ’plan’ is made to safely maneuver through the environment. Then,
a controlled ’act’ is used to ensure that the ’plan’ is followed. A similar approach is used for the
conception in this work as well. The complete software pipeline for the automated follower buses is
referred to as a ’system’. The system is divided into three sub-systems, namely, sensor fusion, path
planning, and controller modules corresponding to the see, plan, and act tasks. Now, each of these
sub-systems is briefly explained, then the system architecture is presented showing the interaction of
these sub-systems to achieve the task of the system.

The sensor fusion module is responsible for processing the information from different sensors to
estimate the poses and/or states of the target (X̂) and the ego vehicle (X̂ego). As already mentioned
in section 1.3, the ego state estimation is not considered in this work and is assumed to be available.
Furthermore, in the context of platooning, the target is the vehicle that the ego vehicle needs to follow.

The task of the path planning module is to use the ego vehicle and target state information to generate
a reference path for the controllers to follow. The path may be represented as a curve Γ in 2D space.
In order to make a path, this module also needs to keep a buffer of the state estimates.

Finally, the task of the controller module is to generate control commands, namely, desired longitudi-
nal acceleration ulong and desired steering angle input uδ. These commands are then provided to the
vehicle’s low-level controllers to maneuver the vehicle.

Figure 1.5 shows the architecture of the whole system outlining the interaction of these three modules.
It also shows the expected input(s) and output(s) of each of the modules. The sensor fusion module
consists of the ego state X̂ego estimation and the target state X̂ estimation blocks. Note that the ego
state estimation block is colored gray to show that it is not developed in this work. In the path planning
module, first, a buffer of X̂ego and X̂ is maintained. This buffer is then used in the path generation
block to generate a reference path Γ. Finally, the control layer module uses the path and motion
state information to generate control commands. This module consists of the lateral and longitudinal
control blocks responsible for computing desired steering angle uδ and longitudinal acceleration ulong
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commands respectively. These commands then act on the ego vehicle changing its motion states such
as velocity v, yaw rate ψ̇, and steering angle δ to maneuver the vehicle.

As seen in Figure 1.5, these modules are interdependent on each other. Thus, it is not trivial to design
them individually. To that end, the second goal of this project is used, i.e., first, the control algorithms
are designed, and then their formulation acts as the requirement for the design of path generation and
sensor fusion algorithms. This sets the basis for the implementation of this project which is outlined
next.

1.5 Outline

Chapter 2 outlines the control problem for a platoon and describes the lateral and longitudinal con-
troller design and their implementation in detail. The method of generating reference paths for the
controllers to follow is then discussed in chapter 3. Based on the controllers and thereby path gen-
eration requirements, sensor fusion algorithms are presented in chapter 4 to estimate the pose of the
preceding vehicle accurately. Chapter 5 describes the verification of all the algorithms developed
in this work implemented in Siemens Prescan. Finally, conclusions are drawn from this work, and
recommendations provided for future work are provided in chapter 6.
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2 Controller Design

In this chapter, the vehicle controller design and its implementation are discussed. Before dwelling
into the controllers, first, the vehicle model being used is described in section 2.1. Next, the lateral and
longitudinal control problems are described in sections 2.2 and 2.3 respectively. Simulations are used
to develop and test the control algorithms, the results of which are shown in the respective sections.

2.1 Vehicle model

Similar to most vehicle lateral control literature [8] [9], a bicycle model is used as the vehicle model
in this work. It is shown in Figure 2.1. The position (x, y) of the center of the rear axle is expressed in
an inertial frame r⃗1. Steering angle δ is used to change the curvature κ of the path followed by the rear
axle and consequently, the orientation ψ of the vehicle. The planar dynamics showing the relationship
between these entities is given by


ẋi(t) = vlong,i(t) cosψi(t)

ẏi(t) = vlong,i(t) sinψi(t)

ψ̇i(t) = κ(t)vlong,i(t)

κi(t) =
tan δi(t)

li
,

(2.1)

where l is the wheelbase of the vehicle and vlong is the forward velocity in the longitudinal direction.
Furthermore, the subscript i denotes the index of the vehicle. Thus, li and vlong,i denote the wheel-
base and longitudinal velocity of vehicle i. Additionally, it should be noted that the tire slip is not
considered throughout this work, thus, the instantaneous radius R of the path traversed by the rear
axle center is given by

Ri =
1

κi
. (2.2)

From (2.1), vlong and δ can be seen as the two inputs to the vehicle required to maneuver the vehicle
in the x−y plane. However, in practical application, they are not the external inputs provided. Thus it
is important to model the dynamics for these inputs. Taking a similar approach as in [4], the steering
dynamics is modeled as the first-order dynamics

δ̇i(t) =
1

ηδ,i
(uδ,i(t)− δi(t)) (2.3)

in which ηδ,i is the time constant and uδ,i(t) is the desired steering input.

DITM: Control-oriented sensor fusion for bus platooning 7



Eindhoven University of Technology

Figure 2.1: Planar kinematic bicycle model

For the longitudinal dynamics, the first-order drive-line dynamics used in [4] is used:


ṡi(t) = vlong,i(t)

v̇long,i(t) = along,i(t)

ȧlong,i(t) =
1

ηa,i
(ulong,i(t)− along,i(t)) ,

(2.4)

where si(t) is the curvilinear distance travelled by the rear axle, vlong,i(t) is the longitudinal velocity,
along,i(t) is the longitudinal acceleration, ulong,i(t) is the desired longitudinal acceleration, and ηa,i is
the drive-line time constant of vehicle i.

Furthermore, the acceleration and steering inputs need to be limited to model the powertrain, brake,
and steering limitations. To that end, the following limits are imposed on the desired inputs (ulong,i, uδ,i)
and the actual inputs (along,i, δi) using saturation functions

{
−ā ≤ ulong,i ≤ ā

−δ̄ ≤ uδ,i ≤ δ̄
(2.5)

{
−ā ≤ along,i ≤ ā

−δ̄ ≤ δi ≤ δ̄,
(2.6)

where ā = 1.4m/s2, δ̄ = 42deg.

Ideally, the limits should be put only on the actual inputs. However, putting these limits on the desired
input allows the actuator dynamics to respect the limits as well.

With the vehicle model established, the design of the lateral and longitudinal controllers is discussed
next.
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2.2 Lateral control

The task of lateral control is to make the vehicle follow a desired path by reducing the lateral distance
and heading angle errors to zero. There are many lateral controllers presented in the literature. A brief
overview of these controllers and their comparison can be found in [10]. There it is shown that the
simple geometric controllers based on the kinematic vehicle models perform sufficiently well in a va-
riety of situations when compared to the controllers based on dynamic vehicle models. [11] shows the
comparison of these geometric controllers and also presents experimental test results. They propose a
lateral speed based controller to achieve reasonable tracking performance without sacrificing passen-
ger comfort. The main idea of this controller is to control the lateral speed of the vehicle such that the
motion of the vehicle toward the path is smooth. Following a similar approach as presented in [11],
first, the kinematic bicycle model described in section 2.1 is reformulated in Frenet coordinates. Then,
the control law is presented.

2.2.1 Frenet coordinate representation

The advantage of representing the vehicle model in Frenet coordinates is that it helps to describe the
vehicle behavior with respect to the desired path. It also simplifies the error models and allows for
deriving control laws that are intuitive and easy to understand. Figure 2.2 illustrates the Frenet frame
r⃗2 attached to a reference path and how the vehicle’s pose is defined with respect to it. The reference
path is described by means of a spline curve parameterized by the curvilinear distance s. Here, Xc(s)
is the point on this curve which is closest to the center of the rear axle and whose position is expressed
in the inertial frame r⃗1, i.e., Xc(s)

def
= (xc, yc).

Now the deviated path followed by the vehicle can be described in Frenet coordinates r⃗2 by means
of the lateral distance error le and the heading error θe. To that end, the center of the rear axle is
considered as the reference point of the vehicle, called the control point. Consequently, le is the
distance between Xc(s) and the control point in r⃗22 direction, whereas θe is the difference in the
heading of the vehicle ψ and the tangent θc of the reference path at Xc(s), i.e. θe = ψ − θc.

Note that the pose of the vehicle at any instance can be calculated with the Frenet state variables s, le,
and θe. The dynamics of these variables are given by

ṡ = vlong
cos θe

1−κ(s)le

l̇e = vlong sin θe

θ̇e = vlong

(
tan δ
l − κ(s) cos θe

1−κ(s)le

)
,

(2.7)

with vlong, l, and δ being the longitudinal velocity, wheelbase, and steering angle of the vehicle as
described in section 2.1, and κ(s) is the curvature of the path at Xc(s).

Next, the lateral control law to let these lateral and heading errors converge asymptotically to zero
such that the vehicle follows the reference path as closely as possible is discussed.

2.2.2 Control law

The lateral control law used in this work is based on the controller presented in equation (17) in [11].
The complete derivation and stability analysis for the controller is however missing in [11]. To that
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Figure 2.2: Schematic to show the reference path described by Xc(s) in inertial frame r⃗1 parameter-
ized by the curvilinear distance s, and representation of the deviated path followed by the vehicle in
the Frenet coordinates. Adapted from [4]

.

end, derivation and stability analysis are presented herein. Note that the steering dynamics (2.3) is not
included in the control law derivation and its stability analysis. This is done under the assumption that
steering dynamics (2.3) is much faster than lateral vehicle dynamics (2.7) to simplify the analysis.

From (2.7), the error dynamics consisting of lateral distance error and heading error can be written as:{
l̇e = vlong sin θe

θ̇e = vlong

(
tan δ
l − κ cos θe

1−κle

)
.

(2.8)

For brevity, s is dropped from κ(s) for the rest of this section.

Now, as mentioned in [11], the exact linearization technique [12] can be used to linearize (2.8).

To that end, let us define ω def
= tan δ

l as the input to the system. To perform input-output (IO) lineariza-
tion [13], we can write (2.8) in the following form:{

ẋ = f(x) + g(x)u

y = h(x),
(2.9)

where

x =

[
le
θe

]
(2.10)

are the error states,

f(x) =

[
vlong sin θe

−vlongκ cos θc
1−κle

]
(2.11)
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is the vector representing the non-linear dynamics of the states,

g(x) =

[
0

vlong

]
(2.12)

is the vector representing the non-linear relation between the input u (= ω) and the states, y is the
output and h(x) is the vector representing the non-linear relation between the output and the states.

Let θe be the output of the system, then

h(x) = θe. (2.13)

With this formulation, we have a single input single output system that can be IO linearized by defining
a new input W1 such that

θ̇e =W1. (2.14)

The relation between W1 and ω directly follows from (2.8) and (2.14)

ω =
κ cos θe
1− κle

+
W1

vlong
. (2.15)

It should be noted that with IO linearized θe dynamics, one can choose the control input W1 such that
θe dynamics is asymptotically stable and θe → 0. However, that does not ensure that the lateral error
also goes to zero as even with θe = 0, l̇e → 0, leaving a constant lateral error offset, which might not
be zero.

To ensure that le → 0, the control law proposed in [11] is used. The motivation for this controller as
presented in [11] is that this controller ensures a smooth approach of the vehicle towards the reference
path. For completeness, the derivation for this controller is also presented herein. From (2.8), the
lateral speed l̇e depends on θe, which in turn depends on the steering input δ. Let ˆ̇le be the desired
lateral speed with which the control point (center of the rear axle) must approach the line tangent to
the path at Xc(s). The desired lateral speed can be given by introducing a proportional gain klat

ˆ̇
le = −klatle. (2.16)

From (2.8) and (2.16), the lateral speed error l̇eerr can be written as

l̇eerr = l̇e − ˆ̇
le = vlong sin θe + klatle. (2.17)

To reduce this lateral speed error to zero, the controller must steer the vehicle in the direction of v̂long
as shown in Figure 2.3.

This can be achieved by introducing another proportional gain khead to this lateral speed error as the
input W1 resulting in the following controller

W1 = −khead (vlong sin θe + klatle) , (2.18)

where khead and klat are the proportional gains for heading and lateral errors. The stability analysis
for this controller is presented next.
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Figure 2.3: Lateral speed controller. Adapted from [11]

Stability analysis

The Lyapunov stability criterion [14] can be used to prove the asymptotic stability of the controller
presented in (2.18). A Lyapunov candidate function V can be given by

V (le, θe) =
1

2
l2e + 1− cos θe, le ∈ R, θe ∈ [π,−π] , (2.19)

such that (le, θe) = (0, 0) is the equilibrium point, i.e.,

V (le = 0, θe = 0) = 0

and
V (le, θe) > 0, ∀(le, θe) ̸= (0, 0).

Now, taking the derivative of (2.19) and using (2.8) and (2.18) results

V̇ (le, θe) = levlong sin θe − kheadvlong sin
2 θe − kheadklatle sin θe. (2.20)

Considering vlong > 0 and making the control gain klat longitudinal velocity dependent such that

klat =
vlong
khead

, (2.21)

equation (2.20) reduces to

V̇ (le, θe) = −kheadvlong sin2 θe, (2.22)

which is negative definite given khead > 0. Thus, it is proven that the equilibrium (le = 0, θe = 0) is
asymptotically stable provided vlong > 0, khead > 0, and klat =

vlong

khead
.

12 DITM: Control-oriented sensor fusion for bus platooning



Eindhoven University of Technology

Controller tuning and practical considerations

Substituting W1 in (2.15) and using the relation between ω and steering input δ, the control law for
the desired steering input is given as

uδ,i = arctan
(
l
(
−khead sin θe − kheadklatle

vlong
+ κ cos θe

1−κle

))
vlong ̸= 0

κle ̸= 1.

(2.23)

The controller gains khead and thereby klat are tunable parameters with klat, khead > 0. klat can
be seen as the gain that determines how aggressively the controller will try to reduce the lateral error.
Thus, its value can be determined by the passenger comfort requirements translated to the lateral speed
limits ¯̇le, for example, ¯̇le = 1m/s suggested in [11]. On the other hand, khead can be seen as the gain
that determines how aggressively the controller will try to reduce the heading error θe. This may be
limited by the yaw stability of the vehicle, which is not taken into account in this work. Furthermore,
it is assumed that the lateral error is relatively small compared to the reference path’s instantaneous
radius, i.e., | 1κ | = R >> le. This ensures that |κle| << 1 and thus the denominator of the third term
in (2.23) does not approach zero. To avoid the issue of divisibility by zero in implementation, the
desired steering value is set to zero when vlong → 0 and/or (1− κle) → 0

Next, performance analysis for the controller developed in this section is provided.

2.2.3 Performance analysis

To analyze the performance of the lateral controller, a simulation study is presented in this section.
There are two scenarios considered for the same. First, the stability of the controller is verified when
an initial lateral and heading offset with respect to a straight path is given to the vehicle. In second
scenario, the tracking performance of the controller is verified with respect to a zigzag path. Various
parameters used for the simulation are listed in Table 2.1

Initialization error response

In this scenario, the vehicle is given an initial lateral error of 1m and a heading error of 10 deg with
respect to a straight reference path. Figure 2.4 shows the path-following behavior of the vehicle in an
inertial frame. The vehicle smoothly converges to the reference path. The lateral error and sine of the
heading error are shown in Figure 2.5. Both the errors converge to zero. The steering response of the
vehicle is also shown in Figure 2.5. Note that the steering dynamics (2.3) is not considered for this

Table 2.1: Lateral control parameters

Parameters Values
l 6m

ηδ,i 0.2 [−]

khead 1 [−]

klat 10 [−]
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simulation and it is assumed that δ = uδ. The vehicle tries to steer sharply towards the right in order to
reduce the lateral and heading errors. Furthermore, the steering remains around zero when the errors
are reduced to zero asymptotically. This verifies that the lateral controller shows stable behavior.

Tracking response

In this scenario, the vehicle is given a predefined zig-zag path to follow. Initial errors are kept at zero
to verify the tracking performance of the controller. Figure 2.6 shows the path-following behavior of
the vehicle in an inertial frame. The vehicle follows the reference path sufficiently well. The lateral
distance error le and sine of heading error θe are shown in Figure 2.7. Both errors are close to zero.
However, they show ’jerky’ behavior and peak at the corners with the maximum lateral and heading
error of approximately 0.05m and 0.1 deg respectively. This is due to the approximation error for
calculating the minimum distance point (Xc(s)) from the ego vehicle position to the reference curve
(see Figure 2.2). The approximation errors are higher at the corners where the curvature values are
changing. These error values are, however, deemed acceptable for this work. The steering response
is also shown in Figure 2.7. Note that the steering dynamics (2.3) are not included in this simulation.
Thus, δ = uδ is used for this scenario. It can be seen that the steering values are discontinuous in the
first derivative. This observation can be explained by (2.23). If θe → 0, le → 0, and vlong is constant,
it follows from (2.23), uδ ∝ κ. The curvature values for the reference path are shown in Figure 2.8.
Thus, it can be seen that the steering response indeed follows the curvature profile of the path.

Furthermore, the simulation presented herein is repeated with taking the steering dynamics into ac-
count. Figure 2.9 shows the error and steering response. The errors are slightly larger when compared
to the case without including the steering dynamics. This is mainly due to the phase lag of the steering
input with respect to the desired steering input. This delayed response results in larger errors, espe-
cially in the corners making the vehicle either cut or overshoot the corners. For a platoon of vehicles,
this behavior is not desirable. However, for the use case of a three-bus platoon considered in this
work, this error is considered acceptable.
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Figure 2.4: Lateral control initialization error response: x− y plot
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Figure 2.5: Lateral control initialization error response: error and steering plot
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Figure 2.6: Lateral control tracking response: x− y plot

0 1 2 3 4 5 6 7 8 9
-0.05

0

0.05

0 1 2 3 4 5 6 7 8 9

-2

0

2

10
-3

0 1 2 3 4 5 6 7 8 9

-20

0

20

Figure 2.7: Lateral control tracking response: error plot
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Figure 2.9: Lateral control tracking response: error plot including steering dynamics
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Figure 2.10: Schematic showing the spacing policy and the related errors relevant for longitudinal
control of the platoon.

2.3 Longitudinal control

The goal of longitudinal control in a platoon is to maintain a safe but close gap between the vehicles.
The most common spacing policy used in literature is the constant time gap [3] [4] which is given by

dr,i(t) = ri + hvlong,i(t), (2.24)

where ri, h, and vlong,i are standstill distance, time gap, and the longitudinal velocity of the ith

vehicle respectively. Figure 2.10 shows the schematic of the spacing policy and related errors in the
longitudinal control of a platoon. The actual inter-vehicle distance is calculated as

di(t) = si−1(t)− (si(t) + Li) , (2.25)

where Li is the overall length of the vehicle, and si and si−1 represent the position of the ego vehicle
and the preceding vehicle, respectively. Now, the error between the desired gap and the actual gap is
defined as the spacing error ei given by

ei(t) = di(t)− dr,i(t)

= (si−1(t)− si(t)− Li)− (ri + hvi(t)) ,
(2.26)

that the longitudinal controller tries to reduce to zero.

One of the most commonly used techniques to achieve it in a string stable manner is cooperative
adaptive cruise control (CACC) [3]. Interested readers can further refer to [3] for the derivation of this
controller and string stability analysis. The control law for such a controller is given by

u̇CACC,i = −1

h
uCACC,i +

1

h
(kpei + kdėi + kddëi) +

1

h
ulong,i−1. (2.27)

Here uCACC,i is the desired CACC longitudinal acceleration for the ego vehicle, ulong,i−1 is the
desired acceleration of the preceding vehicle, and kp, kd and kdd are the control gains.

With this control law, one can compute the desired longitudinal acceleration, for instance, ulong,i =
uCACC,i which can be used in the longitudinal dynamics in (2.4). However, there are some design
considerations that need to be addressed in the practical implementations, which are discussed next.
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Figure 2.11: Curvilinear distance based inter-vehicle gap calculation

2.3.1 Practical considerations

There are some practical design considerations that need to be addressed during the implementation
of this controller.

• V2V communication is required to communicate the desired acceleration (ulong,i−1) of the
leading vehicle i−1. Wireless communication can be used and its applicability is demonstrated
in practice in the literature as well [3]. The communication delay, however, plays a crucial role
in string stability which is not considered in this work.

• The actual gap between the two vehicles is not trivial to calculate or estimate. To that end, the
parameterized reference path, Γ(τ), traced by the predecessor is used to calculate the curvilin-
ear distance based gap in this work. It is schematically shown in Figure 2.11. The footpoint
Xc(s) of the ith vehicle on the reference path is used to determine the curve parameterization
parameter τ (see section 3.3) at time t. Now, using the value of τ at Xc(s) and at the end of the
reference path (which is 1, considering τ is normalized), we can approximate the gap between
the vehicles

di(t) = ∆s(t)− Li = (Γi(1)− Γi (τ (t)))− Li. (2.28)

• The longitudinal controller (2.27) requires calculation of ei, ėi, and ëi. In practical implemen-
tation, ei can be computed using (2.28) and (2.26). Now, taking the derivative of (2.26), we
obtain

ėi = vlong,i−1 − vlong,i − halong,i, (2.29)

which can be computed by measuring the longitudinal velocity of the preceding vehicle vlong,i−1.
The onboard sensors on the ego vehicle or V2V communication can be used for it. The mea-
surements are typically noisy and thus require state estimation filtering. Finally, the ëi term is
not trivial to compute. Moreover, [3] shows that the error dynamics are stable with kdd = 0,
thus, it is ignored in this work.

• It can be seen from (2.27) that the controller only accounts for the spacing error. This might
lead to some undesired behavior in practical scenarios, especially in corners. Consider a sce-
nario where the preceding vehicle exits a turn and starts to accelerate, leading to an increased
spacing error. To reduce the spacing error, the follower vehicle will try to accelerate while still
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being in the corner. To tackle such situations, a curvature based cruise controller (CBCC) is
implemented. The idea is that the velocity of the ego vehicle, and consequently the desired
acceleration ulong,i is limited to a safe threshold, irrespective of the spacing error. The velocity
threshold v̄long,i is calculated based on the path curvature the ego vehicle is following and is
given by

v̄long,i =

√
ālat

|κ̂max,i|
, (2.30)

where κ̂max,i is the maximum curvature of the path over a finite horizon and ālat is the lateral
acceleration threshold acceptable in public transport. The value for ālat is taken as 0.98m/s2

from [15].

A proportional gain kcc > 0 is then used to calculate the desired CBCC longitudinal acceleration
to limit vehicle’s speed to v̄long,i which is given by

uCBCC,i = −kcc (vlong,i − v̄long,i) . (2.31)

Now, the minimum of the two accelerations presented in equations (2.27) and (2.31) is chosen
as the desired longitudinal acceleration setpoint for the vehicle, i.e.

ulong,i = min (uCACC,i, uCBCC,i) , (2.32)

which can be used in longitudinal dynamics (2.4) to achieve a longitudinal control that makes
vehicle i follow vehicle i− 1 closely in a safe and comfortable manner.

Next, a simulation study is presented to show the performance of the longitudinal control.

2.3.2 Performance analysis

To evaluate the performance of the longitudinal controller, a simulation study is presented in this
section. Similar to the lateral controller case, two scenarios are considered. First, the stability of the
longitudinal controller is verified in a scenario where an initial spacing error is given. The second
scenario is presented to verify the tracking performance of the longitudinal controller in terms of
following the acceleration profile of the preceding vehicle. For both scenarios, a straight path is
assumed. Thus, the gap between the vehicles can be calculated by simply calculating the Euclidian
distance between them. However, in actual implementation, the curvilinear distance should be used

Table 2.2: Longitudinal control parameters

Parameters Values
ηa,i 0.2 [−]

h 0.5 [s]

ri 2 [m]

kp 0.2 [−]

kd 0.7 [−]

kdd 0 [−]

kcc 0.5 [−]
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Figure 2.12: Longitudinal control: initialization error response

as depicted in Figure 2.11, which requires parameterized path traversed by the preceding vehicle.
Furthermore, various parameters related to the vehicle model, spacing policy, and control gains used
for the simulation are listed in Table 2.2.

Initialization error response

In this scenario, the preceding vehicle is standing at rest in front of the ego vehicle on a straight path
such that there is an initial spacing error of 16m. The longitudinal behavior of the ego vehicle in
this scenario is shown in Figure 2.12. The vehicle starts to accelerate to close the gap and reduce the
spacing error. Note that the first order longitudinal dynamics (2.4) is also included in this simulation
along with the acceleration limit (2.6). As the gap reduces, the vehicle again decelerates to reduce the
velocity again to zero such that the spacing error remains zero, showing the asymptotic stability of the
controller.

Tracking response

For this scenario, both the ego vehicle and the preceding vehicle are initially moving with a constant
speed of 10 m/s with zero spacing error between them on a straight path. The acceleration profile
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Figure 2.13: Longitudinal control: tracking response

followed by the preceding vehicle ulong,i−1 is shown in Figure 2.13. Figure 2.13 also shows the lon-
gitudinal behavior of the ego vehicle in response to the acceleration profile followed by the preceding
vehicle. It can be seen that the ego vehicle follows the acceleration profile of the preceding vehicle
reasonably well. The spacing error also remains zero except for the transient periods of acceleration
and deceleration.

The performance of the longitudinal controller is deemed sufficient for this work and its performance
in the closed-loop simulation in different scenarios is further discussed in chapter 5.

2.4 Summary

In this chapter, the design and implementation of a longitudinal and a lateral controller are discussed.
The performance of these controllers is also studied using simulation. It can be seen that both con-
trollers require a reference path to follow. Generation of reference paths in real-time is one of the
challenging tasks in platooning. This is discussed in the next chapter.
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3 Path Generation

In the context of the platooning use case considered in this work, the automated follower vehicles
require a reference path to follow. The follower vehicles need to construct this reference path in real
time. There are mainly three ways to construct the path:

1. Platoon leader’s trajectory based: The trajectory of the platoon leader can be communicated via
wireless communication to the follower vehicles. Thus, all the follower vehicles have the same
trajectory to follow.

2. Preceding vehicle’s trajectory based: In this approach, the path traversed by the immediate
predecessor is used as the reference. The onboard sensors such as radar or camera can be used
to estimate the position of the preceding vehicle and use this information as waypoints to fit a
smooth curve through them.

3. Infrastructure based: Features in the infrastructures can also be used to generate a reference
path. The road center line is one of the obvious choices for the reference path. Different
methods can be used to determine the lateral position of the vehicle with respect to the road
center line. Camera based computer vision techniques can be used. Some applications may
also use the magnetic markers for the same purpose.

All these approaches have some advantages and disadvantages. Both the first and the second ap-
proaches are more robust and flexible when compared to the third approach as they are infrastructure
independent and try to mimic the dynamic driving maneuvers of the preceding/leader vehicle, for
example, avoiding an obstacle or taking a different route, etc. On the other hand, both the first and
second approaches rely on safe driving behavior from the preceding or lead vehicle.

In this work, it is assumed that the lead vehicle is driven by an experienced driver and is responsible
for taking a safe path. Thus, path generation based on the platoon leader’s trajectory seems to be the
best choice as it is road infrastructure independent and potentially the most precise considering local-
ization in modern vehicles is fairly accurate. However, this approach is overdependent on wireless
communication, which can be unreliable. Considering these aspects, path generation based on the
preceding vehicle’s trajectory is selected for further investigation in this work. This approach allows
for designing a more modular, flexible, and reliable solution.

In this chapter, first, the path generation problem based on the preceding vehicle’s trajectory is math-
ematically formulated. Then, a detailed explanation of the algorithms used to solve this problem is
provided.
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Figure 3.1: Schematic showing path following for a platoon of three vehicles

3.1 Problem formulation

Figure 3.1 schematically shows the convoy of three vehicles considered as our use case. The leader
vehicle i − 1 is manually driven. It is responsible for avoiding obstacles and taking collision-free
paths. Vehicle i is just behind it and it can see the leader vehicle. Thus, vehicle i can construct the
path Γi (τ (t)) of its leader from its observation and use it as a reference path to follow. Furthermore,
vehicle i+1 cannot see the leader vehicle i− 1 as vehicle i will obstruct its field of view. To that end,
vehicle i+ 1 can construct the path Γi+1 (τ (t)) driven by its immediate predecessor and use it as the
reference. Ideally, this arrangement should result in vehicle i + 1 following the exact path of vehicle
i which is following the exact path of vehicle i − 1, and thus making all the follower vehicles in the
platoon follow the exact path of the leader.

Before focusing on how to construct the path for the vehicles, it is important to choose which reference
point of the preceding vehicle one needs to track in order to construct the path for the ego vehicle.

Reference point to track

From the perspective of lateral control, the center of the rear axle seems to be the most obvious choice
for the reference point to track as this point on the vehicle is made to follow the prescribed path in
most of the lateral control literature [11] [8]. Thus, it is wise to construct a path that is followed
by the preceding vehicle’s rear axle center point. This choice is justified as the vehicles are usually
front-steered and the rear tires point towards the longitudinal direction, consequently making them
ideal for placing the speed sensor to measure the longitudinal velocity, which is used in describing
the vehicle dynamics (2.1). In the case of longer vehicles like buses, considering the geometric center
point as the reference point might be beneficial, taking the swept path into account [16]. In this case,
however, the vehicle’s side slip angle is required to estimate the longitudinal velocity which is not
directly measured. Thus, the geometric center is not considered as the reference point in this work for
simplicity.

On the other hand, from the sensing perspective, measuring the states (position, velocity) of the rear
axle center or the geometric center is generally not possible with common onboard automotive sensors
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like radar and cameras. However, utilizing the V2V communication and under the assumption of
knowing the preceding vehicle’s dimensions, it is possible to estimate the states of the rear axle center
as described in [17]. Thus, the center of the rear axle is used as the reference point to track in this
work.

Now, the following sections describe the procedure of obtaining the path traversed by the preceding
vehicle assuming its position is known.

3.2 Waypoint management

Let us define the position vector of the reference point of the preceding vehicle as p def
= (xr, yr).

Estimation of this position vector is discussed in chapter 4.

Now, these position estimates p act as the waypoints in a 2D space through which the path for the ego
vehicle is generated. Let P be the set of such j waypoints.

P = {p1, p2, ..., pj}, (3.1)

where p1, p2, ..., pj are the waypoints observed at time steps k = 1, 2, ...j.

Is 
relevant?

Receive new
point 

Yes

No

Check
?

 remains
unchanged

Add
 to  

 remains
unchanged

No

Update 
using FIFO

Yes

Figure 3.2: Waypoint management strategy workflow

Before moving to methods of generating a path based on these waypoints, it is important to note the
following aspects:

• To ensure real-time performance and memory requirements, the number of waypoints to be
handled has to be managed and should be restricted to an upper bound, say N̄

• Not all the observed waypoints are relevant for path generation. For example, a very slow
moving or standstill preceding vehicle results in a new waypoint that is very close or equal to
the most recent waypoint in P.
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To incorporate these aspects, a waypoint management strategy shown in Figure 3.2 is employed.
When the new waypoint pj+1 is received, first, it is checked whether it is relevant to append to P. The
Euclidean distance between the most recent point in P and the new point is calculated. If it is higher
than a distance threshold, say r̄, it is appended to the list P. Furthermore, the number of points in the
list is capped. As the number of points in the list, N , exceeds N̄ , the first-in-first-out principle is used
to remove the oldest point from the list.

With this procedure, we obtain a list of points P that represents a polygon chain of the waypoints of
the preceding vehicle in an inertial frame. These waypoints, however, cannot be used as the path for
controllers as they are noisy and only C0 continuous. Most of the controllers rely on the geometric
derivatives [8] [4]. To that end, smoothing techniques are used which are discussed next.

3.3 Curve fitting and smoothing

There are mainly two techniques that can be used to fit a curve through a given set of points, namely,
interpolation and approximation. With interpolation, the fitted curve passes through all the points,
whereas in approximation it may not. The presence of noise in the measurements makes the inter-
polation technique inappropriate. Thus, the approximation technique is considered in this work. A
piece-wise cubic spline approximation method based on least-squares adjustment [18] is implemented.

In this method, a parametric, two-dimensional piecewise spline is calculated. The spline is represented
as

Γ(τ) =


γ1(τ) , τ0 ≤ τ < τ1

:

γn(τ) , τn−1 ≤ τ < τn

, (3.2)

where τ is the parameterization variable, γi are the n spline segments with n + 1 strictly monotonic
breaks τ0 < τ1 < .. < τn, commonly referred as knots in literature. These spline segments are
represented as

γi(τ) =

[
x̃(τ)
ỹ(τ)

] [
ai,0 + ai,1τ + ..+ ai,kτ

k

bi,0 + bi,1τ + ..+ bi,kτ
k

]
, (3.3)

where k is the degree of the splines, ai,0, .., ai,k and bi,0, .., bi,k are the polynomial coefficients of the
ith spline segment.

The algorithm tries to determine the polynomial coefficients for each spline segment by minimizing
the squared distance between the spline and the waypoints, using Lagrange multipliers to take the
continuity constraints into account [18]. Interested readers are requested to refer to [18] for further
explanation. The MATLAB implementation developed in this work is provided in appendix C.1. If
λ is the required parametric continuity (Cλ) at the knots τi, then the polynomial coefficients can be
calculated by solving a linear matrix equation of the form

AX = B, A ∈ Rα×α, B ∈ Rα×2, (3.4)

with α = (k+1)n+ (λ+1)(n− 1). Here, matrix A captures the sum of squared distance terms and
constraints, matrix X denotes the unknown coefficients and the Lagrange variables, and B represents
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the measurements and residuals. Kindly refer to equation (91) of [18] for the exact formulation of
these matrices.

Note that the computational load (mainly for calculating A−1) in solving (3.4) does not depend on the
number of waypoints, rather it depends on the number of spline segments the user wants to create, the
degree of the polynomial, and the parametric continuity required. However, the number of waypoints
does play a significant role in spline approximation as the goodness of fit depends on the noise in the
position estimates, the number of points in a spline, and design parameters like n, k, and λ [18]. Thus,
these parameters need to be chosen based on the real-time performance, and continuity requirements
from the controller.

3.4 Parameter selection

In this section, the selection of the design parameters related to spline curve approximation and their
effect is briefly discussed.

Distance threshold, r̄

As mentioned above, distance threshold r̄ is used to prevent unnecessary waypoints being appended
in P, especially in a stop-go scenario. The expected measurement noise while measuring the position
of a standstill vehicle can be used to determine r̄. However, having r̄ too high may result in discarding
necessary waypoints, which can be crucial, for example, in slow cornering scenarios. In this work, r̄
is taken as 0.5m.

Capping threshold, N̄

In order to approximate splines, sufficient waypoints should be available in the buffer P. On the other
hand, having too many waypoints might not be useful considering vehicles are following closely,
which can result in unnecessary memory requirements. Based on [8], N̄ is chosen to be 100 in this
work.

Degree of spline polynomials, k

From the lateral control law (2.23) presented in section 2.2, it can be seen that the curvature of the
path needs to be calculated. The curvature of a parameterized spline is given by [4]

κ =
ỹ(τ)′′x̃(τ)′ − x̃(τ)′′ỹ(τ)′(

x̃(τ)′2 + ỹ(τ)′2
)3/2 , (3.5)

where ′ and ′′ represent the derivative and double derivative respectively concerning the parameteri-
zation variable τ introduced earlier in this section. Thus, a third-degree polynomial (k = 3) is used
in this work to ensure the calculation of the derivatives with sufficient accuracy while keeping the
computation load in check.
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Parametric continuity, λ

Following a similar argument presented above, λ is chosen as 2 to ensure C2 continuity of the curve
at the knots.

Number of spline segments, n

The choice of the number of spline segments depends on the number of waypoints, j, present in
the buffer list P. Theoretically, one cubic polynomial piece can be used to approximate the entire
path. However, at least two spline pieces are required to utilize the continuity constraints in the
approximation problem formulation presented in section 3.1 in [18]. Thus, the lower bound ñ for
the number of spline segments is taken as two, i.e. ñ = 2. In practice, one would want as many
polynomial pieces as possible to represent the path precisely. However, having too many polynomial
pieces can result in a path that might encompass the measurement noise, which is not desired. In this
work, the upper bound on the number of splines is taken as n̄ = 10 arbitrarily.

Number of points in a spline, m

In order to calculate the coefficients of a third-degree polynomial, at least four points are generally
required. However, applying continuity constraints at the knots can help in determining these coef-
ficients with fewer points. This criterion is thus can be used to determine the lower bound on the
number of points (m̃) required in one spline piece. So, for a spline section of second-order continuity,
at least two points are required (the knot with three continuity constraints and one other waypoint),
i.e., m̃ = 2. For the upper bound on the number of points (m̄) in a spline piece, the upper bound on
the number of splines (n̄) can be used:

m̄ = ⌊j/n̄⌋+ j mod n̄, (3.6)

where j is the total number of waypoints.

Minimum number of waypoints, j̃

We can use the lower bounds on the number of spline segments ñ and the number of points in a spline
m̃ to calculate the minimum number of waypoints j̃ required for approximating a spline, i.e.

j̃ = ñm̃ = 4. (3.7)

Thus, the algorithm waits for at least four waypoints to be available in the buffer to approximate the
spline and thereby provide a reference path for the controllers.

With the above parameters, an example of a cubic spline approximation is shown in Figure 3.3. It
uses a set of hundred waypoints representing the noisy estimated positions for an arbitrary curve. The
approximated spline follows the ground truth reasonably well with 0.5m root mean squared error.
Furthermore, the approximated spline is also able to avoid major measurement noise deviations, for
instance, in the vicinity of (44, 2) and (22, 15). With this fitting, the spline approximation method
proposed in this chapter is deemed satisfactory for this work.
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Figure 3.3: Cubic spline approximation for an arbitrary set of points based on least-squares adjust-
ment [18] with k = 3, λ = 2, n = 10

3.5 Summary

In this chapter, the design and implementation of the path generation algorithm for follower vehicles
is discussed. A cubic piecewise spline approximation method is implemented to fit a path for the ego
vehicle from the position estimates of the preceding vehicle. The effects of various parameters for
spline approximation are also studied.
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4 State Estimation

Chapters 2 and 3 laid the theoretical foundation for implementing the automated lateral and longitu-
dinal control of follower vehicles in a platoon. Different algorithms required to perform these control
actions are also discussed in these chapters. To implement these algorithms, however, information
regarding the pose of the preceding vehicle is required. This chapter discusses different algorithms
to estimate this information using the onboard sensors on the vehicles. First, the requirements from
previous chapters are listed to understand what information is exactly required from the perspective
of controller implementation. Then, the problem of state estimation of a preceding vehicle using only
onboard sensors is discussed in detail.

4.1 Control oriented requirements

In this section, the requirements from the controllers and thereby path generation are derived. There
are mainly two requirements. The first requirement comes from path generation where the estimation
of the position of the rear axle center is required. Recall that a buffer P of these position estimates
is maintained in the path generation algorithm. These position estimates can either be in the relative
frame or the inertial frame. However, from an implementation point of view, it is efficient to have the
position estimates in the inertial frame to avoid the transformation of all the waypoints every time the
algorithm is called to accommodate for the change in the ego vehicle position. Thus, the requirement
from path generation is to estimate the position of the rear axle center of the preceding vehicle in
an inertial frame. This path generation requirement already covers the requirement for the lateral
controller used in this work as it only requires the geometric properties of the reference curve. The
second requirement comes from the longitudinal controller which requires estimating the longitudinal
velocity and acceleration of the preceding vehicle (referring to equations 2.29 and (2.27)). Note that
we require the desired longitudinal acceleration (ulong,i−1) state of the preceding vehicle for CACC
implementation. However, an acceleration estimate (along,i) might be useful as a fallback scenario in
case of communication loss.

In a nutshell, state estimation of the position, velocity, and acceleration states of the preceding vehicle
in an inertial frame is needed to successfully implement the control algorithms. To that end, the
preceding vehicle’s state estimation problem with onboard sensors is discussed next.

4.2 Preceding vehicle state estimation

This section describes the preceding vehicle state estimation problem using onboard sensors on the
ego vehicle. Different sensors have different strengths based on their measurement principles. For
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instance, radars provide accurate range measurement but due to their limited angular resolution, mea-
sure the lateral position with less accuracy. On the other hand, cameras are not accurate in range
measurement but can provide better lateral position measurement due to advanced computer vision
methods employed on the images captured by them. Furthermore, the velocity of the target is not
measured directly from the camera. Thus, camera and radar sensors can be seen as complementary
sensors with the camera being better at lateral position measurements while radar being better at lon-
gitudinal position and velocity measurements. Therefore, fusion algorithms are often employed to
fuse data from different sources to produce overall more accurate state estimates[19]. Additionally,
the sampling frequencies of these sensors are different, thereby producing measurements at different
rates. Thus, the fusion algorithms need to account for this aspect as well.

One can utilize a state estimation filter such as the Kalman filter to fuse different state measurements
by the sensors directly as presented in section 3.3 in [20]. However, state estimation and tracking
algorithms are implemented in automotive sensors by their manufacturers, producing object-level
filtered estimates, called tracks. To utilize the existing estimation and tracking pipeline of the sensors,
track-to-track-fusion (T2Tf) can be used. T2Tf allows for a flexible method to fuse the track-level
data from different sensors coming at different rates and forms, making it relatively easy to add and
remove sensors from the sensor suit.

For T2Tf implementation, track-level measurements and corresponding covariances are required [19].
However, sensors may not produce the covariance values in practice. Furthermore, the underlying
state estimation and filtering implementation for the sensors are proprietary and not shared. Thus, in
this work, first, a state estimation algorithm is presented for the individual sensors. This algorithm can
be treated as the local tracker for each sensor that tracks the preceding vehicle. Then, a track-to-track
fusion (T2Tf) algorithm is presented which fuses the tracks from these local trackers to produce a
central track of the preceding vehicle to be used by the controllers.

4.2.1 Sensor level tracking

In this subsection, the state estimation or tracking of the preceding vehicle using a sensor is dis-
cussed. First, the tracking problem is formulated mathematically. Then, the implementation of a
discrete Kalman filtering based recursive filter is presented to recursively produce state estimates of
the preceding vehicle.

Problem formulation

Figure 4.1 schematically shows the state estimation problem wherein the position, velocity, and accel-
eration of the reference point R of the preceding vehicle needs to be estimated using measurements
from an onboard sensor S on the ego vehicle A. To that end, let

X =
[
xr vx,r ax,r yr vy,r ay,r

]T (4.1)

be the state vector of the target that needs to be estimated, where [xr, yr]T , [vx,r, vy,r]T , and [ax,r, ay,r]
T

are the position, velocity, and acceleration vectors in the inertial frame O.

For a typical automotive sensor capable of providing object-level data, for example, a radar or a
camera, we can assume that it can measure the position and velocity of the target in the sensor’s
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Figure 4.1: Schematic showing the transformation of reference point R from the sensor’s frame to the
inertial frame

relative coordinates S. To that end, let us define

Z
def
=

[
∆x ∆vx ∆y ∆vy

]T (4.2)

as the measurement vector. Further, let

Xego =
[
x y vx vy ax ay ψ ψ̇

]T
(4.3)

be the ego vehicle states consisting of the position, velocity, acceleration, yaw, and yaw rate in the
inertial frame O. The ego state estimation problem is not dealt with in this work and hence, all states
are assumed to be known.

Now, the task at hand is to use Z and Xego to estimate X . To that end, let us transform the measure-
ment vector Z from sensor frame S to the inertial frame O. Figure 4.1 also illustrates this coordinate
transformation. The measured position vector is given by[

x̃r
ỹr

]
=

[
x+ ls cosψ +∆x cosψ −∆y sinψ
y + ls sinψ +∆x sinψ +∆y cosψ

]
, (4.4)

where ls is the longitudinal distance between the center of the rear axle of the ego vehicle and the
sensor mount location. Note that it is assumed that the sensor is mounted on the longitudinal axis of
the vehicle.

Taking the derivative of (4.4), the velocity vector can also be calculated[
ṽx,r
ṽy,r

]
=

[
vx − ψ̇ (ls sinψ +∆x sinψ +∆y cosψ) + ∆vx cosψ −∆vy sinψ

vy + ψ̇ (ls cosψ +∆x cosψ −∆y sinψ) + ∆vx sinψ +∆vy cosψ

]
. (4.5)
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Using (4.4) and (4.5), a transformed measurement vector can be defined as

Z̃
def
=

[
x̃r ṽx,r ỹr ṽy,r

]T (4.6)

which provides the position and velocity measurement of the preceding vehicle in the inertial frame.

The measurement values are noisy leading to inaccurate estimates which might be not useful for the
path generation and thereby controllers. However, Z̃ can be used as the observation in a Kalman filter-
ing setting in order to have an accurate estimation of the measured states and also estimate unobserved
states like acceleration. This Kalman filter approach is briefly outlined next.

Kalman filtering

Bayesian filtering is used in many object-tracking applications [20]. In the context of object track-
ing, the Bayesian filter first predicts the states of the target object at the current time step using the
estimated states at the previous time step and a motion model. Based on this predicted state, the
measurement likelihood is calculated using a measurement model. This measurement likelihood is
then compared with the actual measurement to give innovation which is eventually used to correct the
predicted state. This process is repeated to estimate the target object states recursively.

The Kalman filter provides a closed-form solution of a Bayesian recursive filter assuming that the mo-
tion and measurement models are linear and the related noise is zero mean Gaussian [21]. Figure 4.2
shows the steps involved in a discrete-time Kalman filter. Interested readers are requested to refer
to [20] for a detailed explanation and derivation of the expressions used at various steps. It is impor-
tant to note that data association is one of the key aspects of Kalman filtering. Data association refers
to the task of assigning which measurement is to be associated with which track. This step is crucial
in a scenario with multiple targets, false positive detections, and missed detections. However, in this
work, it is assumed that the sensor only provides data for the relevant target which is the preceding
vehicle in our use case.

Now, taking Figure 4.2 as a reference, various aspects of the Kalman filter are presented below:

• States: X̂ represents the estimated states of the preceding vehicle in this work, i.e.

X̂ =
[
x̂r v̂x,r âx,r ŷr v̂y,r ây,r

]T . (4.7)

• Motion model: A (near)constant acceleration model [20] is used in this work, where the jerk
(the derivative of acceleration) of the preceding vehicle is assumed as zero mean Gaussian noise.
Thus, the linear motion model to predict the states X̂k|k−1 and corresponding error covariance
Pk|k−1 at the current time step k using the estimated states and covariance at time k−1 is given
by {

X̂k|k−1 = FX̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T +Q

(4.8)

which is characterized by the transition matrix F and the process noise matrix Q and they are
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Figure 4.2: Flowchart of discrete Kalman filter recursive steps [20]

given by:

F =



1 T T 2/2 0 0 0
0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 1 T T 2/2
0 0 0 0 1 T
0 0 0 0 0 1

 , (4.9)

Q = σ2Q



T 5/20 T 4/8 T 3/6 0 0 0
T 4/8 T 3/3 T 2/2 0 0 0
T 3/6 T 2/2 T 0 0 0
0 0 0 T 5/20 T 4/8 T 3/6
0 0 0 T 4/8 T 3/3 T 2/2
0 0 0 T 3/6 T 2/2 T

 , (4.10)

where T is the time difference between the current and the previous time step, i.e., T = tk−tk−1

and σQ is the standard deviation of the Gaussian noise assumed.

• Measurement model: The measurement model is used to calculate the likelihood of the mea-
surement Ẑk at k given the predicted state X̂k|k−1. It is given as

Ẑk = HX̂k|k−1, (4.11)
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where H is the linear sensor model. For the measurement vector assumed in this work (4.6), it
is given by

H =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (4.12)

• Innovation: Innovation Vk represents the difference between the actual measurement received
Z̃k and the measurement likelihood Ẑk calculated above i.e.,

Vk = Z̃k − Ẑk. (4.13)

Furthermore, the covariance for the innovation Sk is given by

Sk = HPk|k−1H
T +R, (4.14)

where R is the sensor noise matrix. Writing this sensor noise matrix is not trivial. Even if we
assume a zero mean Gaussian noise for the measurement vector Z in the sensor frame (4.2),
the non-linear transformation to calculate Z̃ will result in non-gaussian noise. An unscented
Kalman filter can be used to deal with this. However, in this work, a conservative approach
is taken, where the noise is modeled as the zero mean Gaussian noise with sufficiently high
covariance and is given as:

R =


σ2x 0 0 0
0 σ2vx 0 0
0 0 σ2y 0

0 0 0 σ2vy

 , (4.15)

where σ2x, σ2vx , σ2y , σ2vy are the variance values for the position and velocity measurements. Note
that the off-diagonal terms are zero. This is under the assumption that there is no correlation
between the measured states.

• Kalman update: With the innovation Vk and its covariance Sk obtained above, the Kalman
update step is performed to correct the predicted states and their corresponding error covariance
(X̂k|k−1, Pk|k−1) to give the corrected estimates for the current time step (X̂k|k, Pk|k), i.e.,

{
X̂k|k = X̂k|k−1 +KkVk

Pk|k = Pk|k−1 −KkSkK
T
k

, (4.16)

where Kk is the Kalman gain given by

Kk = Pk|k−1H
TS−1

k . (4.17)

Using the aforementioned motion and measurement models, a Kalman filter based state estimation
algorithm is implemented for both the radar and the camera sensors. With this formulation, each
sensor recursively produces the state estimates X̂ of the preceding vehicle along with the covariances
P . This list of state estimates and covariances along with the time stamp forms the track of the
preceding vehicle. Thus, a track can be represented as
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T =
[
{X̂0, P0}, {X̂1, P1}, ..., {X̂k, Pk}

]
, (4.18)

where k represents the time step. Next, a high-level fusion algorithm is discussed to perform T2Tf
using the local tracks from different sensors.

4.2.2 Track to track fusion

Fusing two or more tracks from different sensors is a widely researched topic. [19] and [22] presents
a review of different methods and architectures to perform this task. One of the simplest methods for
fusion presented in [22] is the basic convex combination method. In this method, the local tracks from
individual tracks are linearly combined as the weighted sum based on their covariances. This method,
however, may produce suboptimal results as it ignores the cross-covariance between the tracks which
might be present due to the common motion model and process noise involved in their estimates [22].
Furthermore, the implementation of this algorithm requires the tracks to be synchronized in time,
which often is not the case in the actual sensors. One of the most popular T2Tf algorithms that is
tractable, implementable, and produces near-optimal solutions is information matrix fusion (IMF).

The main advantage of IMF is that it does not require cross-covariance calculation, which makes its
implementation tractable when compared to the exact versions of T2Tf fusion algorithms [19]. It also
produces near-optimal solutions when operated at the full rate, i.e. performing fusion step at each
local track update [19]. Furthermore, several versions of IMF are available in the literature catering to
different implementation issues like asynchronous sensors, heterogeneous measurements, etc. Thus,
IMF is selected as the T2Tf algorithm in this work.

As described in the previous section, both the sensors produce the state estimate of the preceding
vehicle along with their covariances. Furthermore, these sensors operate at different frequencies.
Therefore, the asynchronous, homogeneous version of IMF presented in [23] is implemented. Addi-
tionally, from an implementation point of view, it is required to have the fusion at a fixed frequency
such that the path generation and thereby control algorithms can be implemented at a fixed rate in a
discrete-time setting. To that end, a fusion center (FC) driven approach [23] is implemented where
the fusion happens at fixed intervals.

The timeline for such an implementation is shown in Figure 4.3. The FC update steps (shown by the
green squares) occur at fixed time intervals ν, i.e., if the current fusion update happens at tf , then the
previous update must have happened at tf−1 = tf − ν. The local tracker (LT) updates for the camera
and radar are shown using red circles and blue triangles, respectively. Now, the idea is to use the
new information obtained from each sensor in the fusion interval (tf−1, tf ] to update the fused states.
The information state fusion expression and the corresponding covariance expression to do so is given
by [23]

P (tf | tf )−1 X̂ (tf | tf ) =P (tf | tf−1)
−1 X̂ (tf | tf−1)

+

Ns∑
i=1

{
P i

[
tf | ti (tf )

]−1
X̂i

[
tf | ti (tf )

]
−P i

[
tf | ti (tf−1)

]−1
X̂i

[
tf | ti (tf−1)

]}
,

(4.19)
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Figure 4.3: Fusion center driven asynchronous track to track fusion: timeline

P (tf | tf )−1 =P (tf | tf−1)
−1 +

Ns∑
i=1

{
P i

[
tf | ti (tf )

]−1 − P i
[
tf | ti (tf−1)

]−1
}

, (4.20)

where Ns is the number of sensors, i represents the sensor index, X̂i and P i are the state estimate
and related covariance from sensor i, and X̂ and P are the fused state estimate and related covariance.
Furthermore, ti (tf ) and ti (tf−1) are the times of the most recent LT update of sensor i prior to tf
and tf−1 respectively. One can calculate X̂ by using (4.20) in (4.19).

Next, we present a brief explanation of the terms presented in (4.19) and (4.20). The terms X̂ (tf | tf−1)
and P (tf | tf−1) denote the FC predicted state and the related covariance obtained using the motion
model (4.8) presented in the previous section, i.e.{

X̂ (tf | tf−1) = FX̂ (tf−1 | tf−1)

P (tf | tf−1) = FP (tf−1 | tf−1)F
T +Q.

(4.21)

Note that the time difference T required to calculate F and Q in the above expression is given by
T = tf − tf−1. Further, the terms in the braces in (4.19) and (4.20) represent the new information
received during the fusion interval (tf−1, tf ]. A brief explanation for this notion of new information
is presented herein.

Consider the terms in the braces in (4.19). In the first term, X̂i
[
tf | ti (tf )

]
represents the state
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estimate from sensor i obtained at ti (tf ) propagated to the fusion time tf . Similarly, in the sec-
ond term, X̂i

[
tf | ti (tf−1)

]
represents the state estimate from sensor i obtained at ti (tf−1) propa-

gated to the fusion time tf . The dotted arrows in Figure 4.3 represent these propagations. Further-
more, P i

[
tf | ti (tf )

]
and P i

[
tf | ti (tf−1)

]
represent the related covariance for these propagated

states, respectively. Note that these propagations are carried out exactly the same way as it is done
in (4.21) with appropriate values of T . Now combining these propagated states and their related
covariance gives the latest ’information’ [24] from sensor i prior to time tf and tf−1, i.e., the terms
P i

[
tf | ti (tf )

]−1
X̂i

[
tf | ti (tf )

]
and P i

[
tf | ti (tf−1)

]−1
X̂i

[
tf | ti (tf−1)

]
represent the latest in-

formation we have from sensor i prior to tf and tf−1 respectively. Thus, the difference between the
two denotes the new information obtained from sensor i during the fusion interval (tf−1, tf ].

Thus, the overall expression in (4.19) and (4.20) represents a covariance-based weighted summation
of the FC prediction and the new information obtained from the sensors in the fusion interval.

Note that this implementation is flexible and capable of handling different uncertainties. For example,
if there is no update received from any sensor in the fusion interval, then ti (tf ) = ti (tf−1), resulting
in cancellation of the terms in the braces and zero contribution from that sensor in the fusion update.
Furthermore, the LT update does not need to be happening at a fixed rate. The only requirement is
that the algorithm needs to have some memory to remember the state and covariances from different
sensors and their respective time stamp. It should also be noted that if the fusion interval is too big,
then it is possible to have multiple LT updates within the fusion interval. This can result in discarding
some useful information as only the most recent LT updates prior to tf and tf−1 are used. To avoid
such information losses, the fusion interval should be kept as low as possible. However, computational
load also needs to be considered for real-time implementation.

Next, a simulation study is provided to show the performance of the Kalman filter of individual sensors
and the IMF based T2Tf fusion algorithm.

4.2.3 Results

To evaluate the performance of the state estimation algorithm described in the previous section, a
simulation study is provided in this section. The MATLAB scenario generator [25] is used to create
a scenario where the ego vehicle is following a preceding vehicle which is driving a circular path at a
constant longitudinal speed. A camera and a radar sensor are attached to the ego vehicle to measure
the relative position and velocity. These measurements are then transformed to the inertial frame.
Next, these transformed measurements are used in the Kalman filter based local trackers of each of
the individual sensors. Finally, the outputs of these local trackers are used in the IMF based T2Tf to
produce the fused state estimates. Various parameters used in the simulation are listed in Table 4.1.
The noise values for radar are based on the values provided in [26] whereas the noise values for the
camera are taken based on the discussion with the stakeholder.

Figure 4.4 shows the estimated states of the preceding vehicle with camera, radar, and IMF fusion. It
also shows the ground truth for reference. The estimates seem to follow the ground truth reasonably
well. To quantify the performance of the local trackers and fusion, root mean square errors (RMSE)
are calculated for position, velocity, and acceleration estimates. The initial phase of filter stabilization
of about 2s is not included in the RMSE calculations. The estimation error values are listed in Ta-
ble 4.2. Of the two sensors, the camera produces better position estimates while radar produces better
velocity and acceleration estimates. This was expected based on the respective noise values listed in
Table 4.1. Furthermore, IMF fusion produces the best estimates for all the states, even though it runs
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Table 4.1: Sensor fusion parameters

Parameters Symbol Values
Radar tracker time interval νrad 0.07 [s]

Camera tracker time interval νcam 0.09 [s]

Fusion center time interval νfusion 0.10 [s]

Process noise standard deviation σQ 1 [m/s3]

Camera position noise standard deviation σx,cam = σy,cam 0.2 [m]

Camera velocity noise standard deviation σvx,cam = σvy ,cam 1 [m/s]

Radar position noise standard deviation σx,rad = σy,rad 0.5 [m]

Radar velocity noise standard deviation σvx,rad = σvy ,rad 0.5 [m/s]

Table 4.2: State estimation RMSE errors

Position [m] Velocity[m/s] Acceleration[m/s2]
Camera 0.1567 0.4198 0.6516

Radar 0.1992 0.3032 0.5872

IMF fusion 0.1133 0.2832 0.5666

at a lower rate compared to the individual sensors. It can also be seen from the estimated acceleration
plots in Figure 4.4 that the fusion estimates closely follow the radar-based estimates. This is expected
since the camera-based acceleration estimates have a higher noise level. The position and velocity
estimation errors are deemed acceptable for path generation and longitudinal control requirements.
However, the acceleration estimates are still quite noisy. The acceleration values for buses in nominal
conditions are in the range of −1.4m/s2 to 1.4m/s2 [15] and having an RMSE of 0.6m/s2 in its
estimates doesn’t make it too useful. Thus, it is assumed that V2V communication provides the nec-
essary acceleration values of the preceding vehicle. The acceleration estimates, however, can be used
in fallback scenarios such as intermittent loss of communication. Such implementations are however
beyond the scope of this work.

4.3 Summary

This chapter outlines the need for the preceding vehicle’s state estimation based on the control al-
gorithms developed in the previous chapters. Then, it describes the state estimation problem of the
preceding vehicle using the onboard sensors. It also presents a high-level fusion algorithm that can
be used to fuse the information coming from two or more sensors to provide a coherent estimate with
better accuracy. A simulation study is also presented to show the performance of the fusion algorithm.

With the state estimation algorithm implemented, the whole pipeline for lateral and longitudinal con-
trol of the follower vehicles is complete. Now, the Siemens Prescan environment is used to verify the
algorithms developed in this work.
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Figure 4.4: State estimation results: Camera vs Radar vs IMF
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5 Experimental analysis

This chapter presents the experimental analysis to verify the performance of different algorithms pre-
sented in the previous chapters in different scenarios. The experimental analysis also provides insight
into the potential limitations of the current implementation of the algorithms. Siemens Prescan is used
as a simulation platform to design scenarios, set up sensors, and integrate all the algorithms. First, a
short introduction to the Prescan tool is provided in section 5.1. Next, the scenarios considered in this
simulation study and their motivation are described in section 5.2. Finally, the simulation results are
presented in section 5.3.

5.1 Simulation environment: Prescan

Siemens Prescan is a physics-based simulation platform that can be used to develop and validate
advanced driver assistance systems (ADAS) and automated vehicle functionalities. Prescan provides
a streamlined methodology to verify different algorithms in a closed-loop simulation environment.
This methodology consists of four steps:

• Replicate or import real-world traffic scenarios using various inbuilt elements within the Prescan
library using a GUI or API. Different aspects like weather conditions, local traffic signs, road
imperfections, etc. can also be modeled.

• Add sensors to the vehicles. Prescan provides a number of sensors in its library that can be used
for understanding the environment around the ego vehicle. It also provides V2X communication
which is crucial for the simulation of the CCAM system.

• Use the control system interface to implement control algorithms. Prescan offers integration
with MATLAB/Simulink, C++, and Python platforms. These platforms can be used to develop
fusion and control algorithms and visualize results.

• Run experiments once scenarios are built and algorithms are implemented using the control
system interfaces. Prescan also provides a test automation feature that can help in running the
simulation in various configurations of parameters automatically and log results. This can be
useful for tuning various algorithms.

The above methodology is followed in this work as well. First, different scenarios are built using the
Prescan GUI. The default Hino blue ribbon bus available in the Prescan library is used as the vehicle in
these simulations. Unfortunately, the dynamic model is not present for the bus in the Prescan library.
Therefore, a vehicle model described in section 2.1 is implemented using the vehicle parameters
listed in appendix B. For sensors, Prescan provides very detailed sensor models. However, they do
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Table 5.1: Time interval for different algorithms in the Simulink model

Parameters Values
Overall simulation 0.01 [s]

Radar tracker 0.05 [s]

Camera tracker 0.10 [s]

IMF fusion 0.10 [s]

Path generation 0.10 [s]

Longitudinal control 0.01 [s]

Lateral control 0.01 [s]

not directly provide the object-level data, which is assumed to be available in this work. To that end,
the Actor Information Receiver sensor of Prescan is used, which provides the ground truth information
of the actors/vehicles. A zero mean Gaussian noise is added to simulate the noisy measurements from
the sensors. Thus, the result of the sensor fusion algorithm for all the scenarios is similar to what we
obtained in chapter 4. Therefore, fusion-related results are not discussed in this chapter. Furthermore,
V2X transceivers use the ETSI CAM [27] message type for V2V communication in the simulations
presented in this chapter.

Once the scenarios are built and sensors are configured, a Simulink model is generated from the
built file. All algorithms such as IMF based T2Tf, path generation, and control algorithms are then
implemented in this Simulink model. Table 5.1 lists the rate at which different blocks run in the
Simulink experiment.

5.2 Scenario description

As discussed in section 1.4.2, a three bus platoon use case is considered in this work. The first bus
or the leader of the platoon is driven by an experienced human driver and thus responsible for taking
a safe path, whereas the second and the third buses are the automated follower bus. To mimic the
human-driven lead bus (Bus 0), a reference trajectory is provided in the simulation which it follows
perfectly. The follower buses (Bus 1 and 2) are equipped with sensors, path generation, and control
algorithms to perform the path-following task.

Driving is a complex task and many scenarios are possible in real-world driving. Even though it is not
possible to simulate all scenarios, one can define several scenarios that represent essential maneuvers
required for driving a city bus. To that end, three scenarios are considered in this simulation study.
The scenarios are characterized by the trajectory followed by the lead bus.

5.2.1 Start-stop-start

This scenario depicts the typical stop-go drive cycles that the city buses go through. Figure 5.1 shows
the x − y position plot along with the velocity profile followed by the lead vehicle. The vehicle is at
rest initially. It waits for 2s, then starts to accelerate to reach a velocity of 10m/s. It decelerates to
come to a stop again for 5s. Then it starts to accelerate again.

This scenario intends to verify the performance of the path generation algorithm in different phases
of the stop-go cycle. Different phases include the initialization phase, constant velocity phase, and
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Figure 5.1: Start-stop-start scenario

transition phase from rest to motion, or motion to rest. Furthermore, the tracking performance of
the longitudinal controller is also verified in this scenario with the changing acceleration profile of
the preceding vehicle. This scenario is also used for verifying the stability of the lateral control on a
straight path.

5.2.2 Roundabout

In this scenario, the lead bus takes a 270 deg roundabout turn. Figure 5.2 shows the x− y plot for this
scenario with the velocity profile followed by the lead vehicle. Similar to the previous scenario, it is at
rest initially. Then, it accelerates to attain a constant velocity. As it approaches the corner, it reduces
the velocity to make the roundabout at a constant speed of 6m/s. Once it exits the roundabout, it
again accelerates.

The goal of this scenario is to evaluate how well the lateral controller performs. Furthermore, the
performance of the longitudinal controller is verified when the vehicle is not on a straight path and
curvature-based limitations have to be imposed on the velocity of the ego vehicles such that the lateral
acceleration is limited as explained in section 2.3.1.

5.2.3 Evasive maneuver

This scenario depicts an evasive action taken by the lead vehicle. Figure 5.3 schematically shows the
scenario, wherein the road is partially blocked and the vehicles need to take an evasive action to avoid
the obstacle.

This simulation aims to study the response from the platoon when the lead vehicle takes such an
evasive action, especially in the distance domain which is critical for collision avoidance.

Next, the simulation results for these three scenarios are discussed.
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Figure 5.2: Roundabout scenario

Figure 5.3: Evasive maneuver scenario schematic: The evasive path to be taken by the vehicle is
shown by the yellow arrow

5.3 Simulation results and discussion

This section presents the simulation results obtained for the three scenarios described in the previous
section. The simulation parameters for the vehicle model, path generation, sensor fusion, and longi-
tudinal and lateral control algorithms are kept the same as described in their respective chapters. For
clarity, the lead vehicle, the first follower, and the second follower are referred to as Bus 0, Bus 1, and
Bus 2, respectively. Furthermore, they are represented with black, blue, and red colors in the plots.

5.3.1 Start-stop-start

Figure 5.4 shows the x−y plot of the three buses. Both the followers traverse the leader’s path closely
with the maximum lateral deviation of ±0.25m. It can also be seen from Figure 5.4 and 5.1(a) that
the lateral deviation is higher in the low-speed transient phases, namely, the initialization phase and
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Figure 5.4: Start-stop-start: x− y plot

the motion transition phase from motion to rest and rest to motion.

This observation may be attributed to the path generation inaccuracies in the low-speed transient
phases. Figure 5.5 shows the approximated spline path generated by the path generation algorithm
for Bus 1 in the initialization phase. It can be seen that the waypoints used for spline fitting are not
equidistant. The first three waypoints are within the space of 12mwhile the next three are within 1m.
Furthermore, the effect of measurement/estimation noise becomes more prominent at lower distances.
These factors may result in an inappropriate approximated spline with high curvatures as shown in
Figure 5.5. A similar argument can be used to explain the path generation inaccuracy in the motion
transition phase as well. Consequently, it can be concluded that there should be a speed dependency on
the waypoint management and thereby path generation algorithm which is not included in the current
implementation.

Next, the longitudinal tracking performance of the follower vehicles is presented. Figure 5.6 shows
the longitudinal controller response for this scenario. The topmost subplot shows the spacing er-
ror (2.26) while the middle and the bottom plots show the longitudinal velocity and acceleration
profiles followed by the three buses. Both follower buses follow the acceleration profile of the leader
vehicle reasonably well, except for the initialization phase, where both vehicles accelerate rather ag-
gressively. This is due to the initial buffering period that the path generation algorithm needs to have
enough waypoints to generate a path. Without a path in this buffering period, the spacing error could
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not be calculated. This causes an initial delay in the follower’s response, leading to a high spacing
error, and thereby high acceleration to reduce the spacing error. One can use the radar range values
directly to calculate the spacing error in the buffering period to avoid such a situation. Further, note
that the acceleration value is saturated to 1.4m/s2 for Bus 2 (around t = 12s) as per the threshold
value prescribed in (2.6) to meet the passenger comfort requirements.

Furthermore, the spacing error value seems to be quite noisy. A zoomed-in spacing error plot is shown
in Figure 5.7. It looks like a saw tooth profile. This is due to the difference in the execution rates of
the path generation and the control blocks. Referring to Table 5.1, the path generation provides an
updated path every 0.1s whereas the longitudinal controller calculates the desired acceleration input
every 0.01s. Furthermore, zero-hold is used for the path in the longitudinal controller. This causes the
controller to believe that the preceding vehicle is not moving in between the path generation updates
and hence the error is reduced causing it to decelerate. However, the moment a new path update
comes, the spacing error increases, prompting it to accelerate. This causes a low amplitude cyclic
acceleration-deceleration cycle which can be seen in the acceleration plots in Figure 5.6.

Another interesting observation occurs when Bus 0 comes to a halt for 5s. Even though the follower
buses decelerate, they do not come to a halt completely. This can also be attributed to inaccuracy in
the spacing error calculations leading to small acceleration inputs on the vehicle. However, if Bus
0 waits long enough, both follower buses come to a complete halt. This is shown in Figure D.1 in
appendix D where Bus 0 remains stationary for 15s instead of 5s.

Finally, the response of the lateral controller is presented for this scenario. Figure 5.8 shows the lateral
controller response. The top and the middle subplots show the lateral and heading errors respectively
while the bottom subplot shows the steering response of the follower buses. Note that the lateral and
heading errors are computed with respect to the approximated spline generated by the path generation
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Figure 5.6: Start-stop-start: longitudinal control response

algorithm and not with respect to the actual ground truth. It can be observed that both the lateral
and heading errors, and thereby steering values remain close to zero for the entire scenario except
for the low-speed initialization and the motion transition phases. There are two possible reasons for
this observation. Firstly, the spline approximation inaccuracy in the low-speed regions as discussed
above. Secondly, the aggressive response from the lateral controller when the speed of the vehicle
approaches zero, see (2.23). It can also be seen that the steering value is set to zero when velocity
reaches below a certain threshold. In this work, the threshold value is 0.1m/s. Furthermore, the
lateral error seems to be following a cyclic pattern of a very low amplitude. This observation is also
attributed to the spline approximation. The current path generation implementation does not take the
temporal consistency [4] into consideration, i.e. no provision is provided to ensure that the part of the
path remains unchanged for the overlapping time horizon between the two consecutive path updates.
This results in sudden changes in the shape of the splines. Figure 5.9 shows the approximated splines
for Bus 1 and its position with respect to these splines for five consecutive time-steps at an interval of
0.5s each when Bus 1 is in (almost)constant speed phase. It can be seen that the position of the bus is
changing with respect to the spline. In the first two plots, the closest point from the bus position to the
spline is on the left side of the bus, considering the bus is moving in the positive x− axis direction. In
the next two plots, the closest point is on the right side, resulting in a change in the sign of the lateral
error.
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Figure 5.7: Start-stop-start: zoomed-in spacing error
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Figure 5.8: Start-stop-start: lateral controller response
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Figure 5.9: Start-stop-start: spline approximation at t = 54.5s, t = 55.0s, t = 55.5s, t = 56.0s,t =
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5.3.2 Roundabout

As discussed in the previous section, the goal of this scenario is to verify the performance of the lateral
and longitudinal controller in cornering. Thus, only the cornering part of the roundabout scenario is
discussed here. Figure 5.10 shows the lateral controller response for this scenario. Similar to the
straight path response, both lateral and heading errors are also close to zero in the constant radius turn
phase of the roundabout, i.e., between times 90−100s. The errors are however relatively higher at the
entry and exit of the corners of the roundabout. This observation is in line with section 2.2.3. Thus,
the same reasoning of the underlying steering dynamics of the system, i.e., the phase lag between the
desired and the actual steering input, explains this observation.

The entry and exit of the corners of the roundabout seem to be the critical phases in this scenario.
The lateral deviation of the follower buses with respect to the ground truth (path traversed by Bus
0) at the entry and exit of the roundabout is shown in Figure 5.11. Note that calculating the exact
values for the lateral and heading errors with respect to the ground truth is not trivial as the simulation
is done in the time domain whereas these errors are calculated in the distance domain, i.e., with
respect to the closest point on the ground truth path from the ego vehicle. Thus, the analysis of the
lateral deviation of follower buses with respect to the ground truth is done by visually looking at the
x − y plots. From Figure 5.11, it can be observed that the lateral deviation of Bus 2 is higher than
Bus 1 with respect to the ground truth, which is expected since the reference for Bus 2 is the path
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traversed by Bus 1 which already has some deviation with respect to the ground truth. It can also be
observed in Figure 5.11(b) that the deviation for Bus 2 is large at the exit of the roundabout corner,
near (450, 140), even though Bus 1 follows the ground truth relatively well. The reason for this
observation is the spline approximation method. Figure 5.12 shows the approximated spline for Bus
2 at t = 114s. It can be seen that the approximated spline does not follow the waypoints closely. This
observation indicates that along with the steering dynamics, spline approximation is the root cause of
the high lateral deviation of the follower buses in the corners. The spline approximation method may
be improved with tuning. For example, by increasing the number of spline pieces, one can obtain a
spline that follows the waypoints more closely. However, that can result in spline approximations that
follow the measurement/estimation noise pattern, which is also not desirable. Thus, a trade-off has to
be made in the current implementation.

Furthermore, the longitudinal controller’s response for this scenario is shown in Figure 5.13. It can
be seen that the spacing error grows in the corner entry phase for both the followers ( 75s − 80s for
Bus 1 and 80s − 85s for Bus 2). This is due to the curvature-based cruise controller (CBCC) (2.31)
implemented in this work to limit the lateral acceleration for passenger comfort. The radius of the
path at the corner entry is 25m. Thus, the maximum permissible speed of the vehicle based on (2.30)
would be 5m/s which the follower buses try to attain. However, the lead bus continues to move at
a speed of 6m/s through the entire roundabout, resulting in an increase in the spacing error. In the
steady state cornering phase, the radius of the curve is 36m, i.e. maximum permissible speed of the
vehicle is 6m/s. Thus, the spacing error remains almost constant as the follower buses maintain the
same speed as the lead bus. At the exit of the roundabout, a similar situation arises as the entry of the
roundabout, resulting in a further increase in the spacing error. Furthermore, the lead bus accelerates
after exiting the roundabout which further increases the spacing error. However, once the follower
buses are out of the corner, they accelerate to reduce the spacing error and eventually close to zero.

Note that the spacing error for Bus 2 reduces in the roundabout exit phase (105s−115s). This is due to
the fact that its preceding vehicle (Bus 1) decelerates to comply with CBCC. Furthermore, the spacing
error between Bus 1 and 2 increases significantly when Bus 1 exits the corner when compared to the
spacing error increase between Bus 1 and 0. This is due to the fact that Bus 1 accelerates significantly
faster than Bus 0 at the exit of the roundabout. Note that the longitudinal acceleration is limited as
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Figure 5.12: Roundabout: approximated spline for Bus 2 at t = 114s

per (2.6) to meet the passenger comfort requirements.

This simulation illustrates that the CACC- and CBCC-based longitudinal controller implemented in
this work may have contradicting goals, especially in the corners. The CACC component tries to
maintain a close but safe inter-vehicle gap whereas the CBCC component tries to limit the speed of
the vehicle to respect the lateral acceleration threshold values for passenger comfort. This can result
in a high spacing error as observed above. In an extreme case, the spacing error might become so
large that the preceding vehicle goes beyond the measurement range of the sensors, thus losing the
track. One may argue that if the lead vehicle maintains the velocity profile to respect the curvature
based speed threshold for passenger comfort, this situation can be avoided. Another solution could
be to formulate an objective function for the desired acceleration combining both objectives, i.e.,
close following and passenger comfort into account such that when spacing error becomes too high,
passenger comfort is sacrificed momentarily to avoid losing track of the preceding vehicle completely.
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Figure 5.13: Roundabout: longitudinal control errors
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5.3.3 Evasive maneuver

The x − y plot for the evasive maneuver scenario is shown in Figure 5.14. Both the follower buses
take the evasive path following the lead bus. However, the follower buses seem to cut the corner when
approaching the peak of the lateral deviation (near (400, 79.5)) and then overshoot as they come out
of it. This is mainly due to spline approximation in the path generation method. Figure 5.15 shows the
approximated spline for Bus 1 at t = 50s when it is close to the crest of the evasive maneuver. It can
be seen that the approximated spline does not follow the waypoints closely. The spline approximation
could not handle the abrupt change in direction and tried to fit a smoother spline. By increasing
the number of splines, a better spline approximation may be obtained. However, as explained in the
previous section, it might result in a spline approximation that follows the measurement/estimation
noise pattern. Thus, if the lead bus provides enough margin to avoid the obstacle, the response from
the follower buses can be deemed satisfactory with the current implementation.

Furthermore, it can be observed that the follower buses steer in the opposite direction initially at the
start of the evasive maneuver, i.e., the region around (370, 77) in Figure 5.14. This observation can
also be explained based on the spline approximation shown in Figure 5.15 in that region.
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Figure 5.15: Evasive maneuver: approximated splines for Bus 1

5.4 Summary

In this chapter, the path following response of the follower buses is analyzed using the Simens Prescan
simulation platform. The behavior of the follower buses seems reasonably acceptable in nominal con-
ditions. Some interesting observations are noted mainly related to the spline approximation method
of the path generation module in low speed regions and evasive maneuvers which require improve-
ment. Furthermore, the performance of the controllers is also deemed satisfactory. The controllers are
capable of not only following the preceding vehicles closely but also considering passenger comfort
in their maneuvers as shown in the roundabout scenario.
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6 Conclusions & Recommendations

This chapter summarizes the main conclusions drawn from this work and provides recommendations
for future work.

6.1 Conclusions

This project aimed to use a control-oriented development approach for the development of sensor
fusion algorithms for follower buses in a city bus platooning use case. To that end, first the lateral
and longitudinal control algorithms are developed. Then, a high-level T2Tf algorithm is developed to
estimate the necessary state information required by the controllers.

For the longitudinal controller, a combination of CACC- and CBCC-based control laws is used. The
performance of the longitudinal controller is found to be satisfactory as it maintains a close but safe
gap between the vehicles. Furthermore, it respects the passenger comfort parameters namely, permis-
sible longitudinal and lateral acceleration threshold values. Notably, the follower vehicles respected
these thresholds despite the lead vehicle violating them, as shown in the roundabout scenario presented
in chapter 5.

For the lateral controller, a non-linear lateral velocity controller is used. The stability analysis for
the same is also presented in this work. The lateral controller performs reasonably well in terms of
tracking. Moreover, thanks to its formulation, it ensures passenger comfort by controlling the lateral
velocity at which the vehicle approaches the reference path. However, there are some limitations of
this controller. It is quite aggressive in the steering response at low vehicle speeds. Thus, a different
approach might be required at low speeds.

Both controllers require a reference path to follow. The lateral controller requires a desired path,
whereas the longitudinal controller requires the curvilinear distance over that path for spacing error
calculation. To that end, a piecewise cubic spline approximation method is implemented for generat-
ing a reference path from the position estimates (waypoints) of the preceding vehicle. It performed
reasonably well in most of the scenarios presented in chapter 5. However, improvements are also iden-
tified during experimental analysis. Further, it is noted that the performance of the path generation
method proved to be the limiting factor in most of the observations.

To successfully implement the path generation and control algorithms presented in this work, the
position, velocity, and acceleration states of the preceding vehicle are required in an inertial frame.
Hence, a high-level T2Tf algorithm, called Inverse Matrix Fusion (IMF), is used. As expected, the
fusion estimates are consistent and more accurate than the individual sensors. The formulation of
the IMF algorithm is found to be versatile as it can handle asynchronous sensors, variable data rates
from the individual sensors, etc. It is also capable of handling heterogeneous measurements. This is
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useful for future developments when other sensors are used with different measurement states from
one another.

Siemens Prescan is used in this work as the simulation tool to verify all developed algorithms. The
simulation environment provides a vast library of sensors, vehicles, infrastructure, etc., and an inter-
face with other development platforms, which is very useful for ADAS and CCAM system verifica-
tion. However, the platform is restrictive in terms of dynamic modeling of the vehicles, and producing
object-level data from the sensors.

6.2 Recommendations for future Work

There are some areas of improvement identified during this work that can be taken up in the future to
implement bus platooning in practice.

• Path generation improvements: The current spline approximation method approximates the
best possible spline minimizing the least squared distance error given the noisy waypoints and
certain design parameters. However, the path generation for a vehicle should consider more
factors such as temporal consistency, respecting vehicle dynamics, respecting road boundaries,
etc. One may formulate the spline approximation problem with these factors as constraints to
get a more viable reference path for following. This also calls for a method for online calculation
of the goodness of fit for the generated reference path so that the control algorithms can take
appropriate action to avoid aggressive responses for an improper path.

• Inclusion of delays: In the current implementation of the controllers and fusion algorithm, the
effects of various delays such as communication delays, actuation delays, and data processing
delays are not considered. Thus, to improve the robustness of all these algorithms, the effect of
these delays should be studied.

• Producing object-level data: The common automotive sensors usually employ some clustering
and filtering techniques to produce the object-level target data. The reference point for which
this object-level data is produced might be different for different sensors. For example, the
camera may produce the center of the bounding box that it obtains, whereas radar may produce
the center of the cluster it obtains from the reflections it receives. These properties of the mea-
surements need to be properly understood before implementing the T2Tf algorithms. This also
calls for Siemens Prescan to include low-level clustering and filtering algorithms in its sensors
library to produce object-level data that can be used in the development of T2Tf algorithms.

• Including dynamic behavior of the bus: In this work, a kinematic model with first-order longi-
tudinal and steering dynamics is used to represent the vehicle model, which does not include
some of the dynamic and handling behavior of the vehicle. Further study and/or experimental
analysis are required to analyze these behaviors.
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A Project management plan

Figure A.1 shows the overall project plan. We employed the V-model approach for carrying out this
project. Based on this V-model, certain milestones are identified at different stages of the project.

Figure A.1: Project management plan
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B Vehicle parameters

Table B.1 lists the parameters used for the dynamic vehicle model for the buses considered in this
work.

Table B.1: Hino bus dimensions [6]

Parameters Symbol Values
Wheelbase l 5.6 [m]

Rear overhang lr 2.7 [m]
Front overhang lf 2.5 [m]
Overall length L 10.8 [m]
Overall width W 2.5 [m]
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C MATLAB code

C.1 Path generation

1 function [waypoints, kappa, s_approx, slope] = mySplines(P, n)
2 % Spline approximation
3 % Author: Prabhat K Sharma (p.k.sharma@tue.nl)
4 % Based on
5 % [1] Ezhov, N.; Neitzel, F.; Petrovic, S.
6 % Spline approximation, Part 1: Basic methodology
7

8 % version 1.2: curvature calculations added
9

10 % Input(s):
11 % p : Nx2 array of control points
12 % n : Number of spline segments to be formed
13

14 % Output:
15 % waypoint: 1000x2 array representing the smoothend curve
16 % kappa: curvature values at each waypoint
17 % s: curvilinear distance
18

19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 % t calculation: constructing the non-decreasing sequence
21 N = length(P);
22 t = nan(N,1);
23 t(1) = 0;
24 for i=2:N
25 t(i) = i;
26 end
27

28 t = t./t(end); % normalize the t vector
29

30 % assign number of data points to each section
31 mj = nan(n,1);
32 mj(1:n-1) = floor(N/n);
33 mj(n) = floor(N/n) + mod(N,n);
34

35 % knot sequence
36 k_ind = nan(n+1,1);
37 k_ind(1) = 1;
38 k_ind(end) = N;
39 k = nan(n-1,1); % knot sequence initialization
40 for i=1:n-1
41 ind = 1;
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42 for j=1:i
43 ind = ind+mj(i);
44 end
45 k_ind(i+1) = ind;
46 k(i) = t(ind);
47 end
48

49 % Observation matrix
50 Lx = P(:,1);
51 Ly = P(:,2);
52

53 % Design matrix (A)
54 A = zeros(N,4*n);
55 for i=1:n
56 m = mj(i);
57 A_temp = nan(m,4);
58 for j = 1:m
59 t_ij = t(k_ind(i)+j-1);
60 A_temp(j,:) = [1 t_ij t_ij^2 t_ij^3];
61 end
62 if i<n
63 A(k_ind(i):k_ind(i+1)-1,4*(i-1)+1:4*(i-1)+4) = A_temp;
64 else
65 A(k_ind(i):k_ind(i+1), 4*(i-1)+1:4*(i-1)+4) = A_temp;
66 end
67 end
68 Ax = A;
69 Ay = A;
70

71 % Continuity matrices (C)
72 C0 = zeros((n-1),4*n);
73 C1 = zeros((n-1),4*n);
74 C2 = zeros((n-1),4*n);
75 for i=1:n-1
76 t_i = k(i);
77 C0(i,4*(i-1)+1:4*(i-1)+8) = [1 t_i t_i^2 t_i^3 -1 -t_i -t_i^2 -t_i^3];
78 C1(i,4*(i-1)+1:4*(i-1)+8) = [0 1 2*t_i 3*t_i^2 0 -1 -2*t_i -3*t_i^2];
79 C2(i,4*(i-1)+1:4*(i-1)+8) = [0 0 2 6*t_i 0 0 -2 -6*t_i];
80 end
81

82 C = [C0; C1; C2];
83 Cx = C;
84 Cy = C;
85

86 % P matrices
87 Pxx = 0.5*eye(N,N);
88 Pyy = 0.5*eye(N,N);
89

90 % Solving matrix equations for coefficients and lagrange multipliers
91 A_bar_rows = size(Ax,2)+size(Cx,1);
92 A_bar_cols = A_bar_rows;
93 A_bar = zeros(A_bar_rows, A_bar_cols);
94 A_bar(1:size(Ax,2), 1: size(Ax,2)) = Ax'*Pxx*Ax;
95 A_bar(size(Ax,2)+1:end,1:size(Cx,2)) = Cx;
96 A_bar(1:size(Cx,2),size(Ax,2)+1:end) = Cx';
97

98 L_bar_x = zeros(size(A_bar,1),1);
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99 L_bar_x(1:size(Ax,2)) = Ax'*Pxx*Lx;
100

101 L_bar_y = zeros(size(A_bar,1),1);
102 L_bar_y(1:size(Ax,2)) = Ay'*Pyy*Ly;
103

104 X_bar = inv(A_bar)*L_bar_x;
105 Y_bar = inv(A_bar)*L_bar_y;
106

107 %%
108

109 n_wp = 1000; % number of waypoints
110 t_q = linspace(0,t(end),n_wp);
111 x_est = nan(n_wp,1);
112 y_est = nan(n_wp,1);
113 kappa = nan(n_wp,1);
114 slope = nan(n_wp,1);
115 s_approx = nan(n_wp,1);
116 s_approx(1) = 0;
117

118 j=1;
119 lim = k(j);
120 for i=1:length(t_q)
121 t_temp = t_q(i);
122 if t_temp≥lim && j≤length(k)
123 j=j+1;
124 if j<length(k)+1
125 lim = k(j);
126 else
127 lim = k(j-1);
128 end
129 end
130

131 x_est(i) = X_bar(4*(j-1)+1:4*j)'*[1; t_temp; t_temp^2; t_temp^3];
132 y_est(i) = Y_bar(4*(j-1)+1:4*j)'*[1; t_temp; t_temp^2; t_temp^3];
133

134 % Calculate the curvature analytically C = (y"x'-x"y')/(x'^2+y'^2)^(3/2)
135 xdot = X_bar(4*(j-1)+1:4*j)'*[0; 1; 2*t_temp; 3*t_temp^2];
136 xddot = X_bar(4*(j-1)+1:4*j)'*[0; 0; 2; 6*t_temp];
137

138 ydot = Y_bar(4*(j-1)+1:4*j)'*[0; 1; 2*t_temp; 3*t_temp^2];
139 yddot = Y_bar(4*(j-1)+1:4*j)'*[0; 0; 2; 6*t_temp];
140

141 kappa(i) = (yddot*xdot-xddot*ydot)/(xdot^2+ydot^2)^(3/2);
142

143 % approximated curvilinear distance
144 if i>1
145 s_approx(i) = s_approx(i-1) + norm([x_est(i), ...

y_est(i)]-[x_est(i-1), y_est(i-1)]);
146 end
147

148 % Slope of the curve
149 slope(i) = atan2(ydot,xdot);
150

151 end
152

153 waypoints = [x_est, y_est];
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D Additional simulation plots

Figure D.1 shows the longitudinal controller’s response for the start-stop-start scenario presented in
chapter 5. It shows that the follower buses also come to a complete halt if the leader bus (Bus 0) waits
for a longer duration (15s instead of 5s).

Figure D.1: Start-stop-start: longitudinal control response with 15s halt for Bus 0
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