
 

Event Log Analysis on Realistic Queue Qualification Tests

Citation for published version (APA):
Sattari, F. (2023). Event Log Analysis on Realistic Queue Qualification Tests: Developing a Graph Theory-based
Diagnostic Tool. Technische Universiteit Eindhoven.

Document status and date:
Published: 09/10/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/25ed1d89-16aa-4e64-914f-3566587fd9e1


 

 

Public 

  
Event Log Analysis on Realistic Queue Qualification Tests:  

Developing a Graph Theory-based Diagnostic Tool  
 

Faezeh Sattari 

 

 

 

October 2023 

 

 

 

 

Eindhoven University of Technology 

Stan Ackermans Institiute – Software Technology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Public 

Partners 

 
 

ASML Eindhoven University of Technology 

 

Steering Group 
(By alphabetical order) 

Marc Hermans 

Andre Korbes 

Mari Mnatsakanyan 

Junchao Xu 

 

Date October 2023 



 

 

Public 

Composition of the Thesis Evaluation Committee: 

 

 

Chair:  Jacob Krüger 

 

Members: Marc Hermans 

 

Andre Korbes 

 

Jacob Krüger  

 

Mari Mnatsakanyan 

 

Junchao Xu 

 

 

 

 

 

 

 

 

 

 

The design that is described in this report has been carried out in accordance 

with the rules of the TU/e Code of Scientific Conduct. 

 

 

 

 

  



 

 

Public 

 

 

Contact  

Address 

Eindhoven University of Technology 

Department of Mathematics and Computer Science 

MF 5.072, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands 

+31 402474334 

 

Partnership This project was supported by Eindhoven University of Technology and ASML. 

  

Published by Eindhoven University of Technology 

Stan Ackermans Institiute 

 

EngD-report PDEng REPORT NUMBER 
 

  

Preferred  

reference 

Improve feedback loop: Intelligent diagnostics of realistic queue qualification test. 

Eindhoven University of Technology, EngD Technical Report  PDEng REPORT 

NUMBER, October 2023 

  

Abstract The Metrology department at ASML develops algorithms that drive most of the 

parts within lithography scanners to achieve performance. Those algorithms use 

parameters that are set by calibration software during machine setup.  

To provide a feedback loop for Metrology software development, an automated 

software tester at the system level is used to qualify deliveries of metrology driver 

software and calibration software. This tester executes a sequence of calibration 

tests (namely CPDs) according to a predefined setup sequence and verifies the  

setup's final performance. 

Metrology drives constantly for improving efficiency in software development and 

strives to automate processes. In this context, we would like to have tools (algo-

rithms) that analyze data and generate reports about the results and issues automat-

ically. This tool would be used to automate the diagnosis process and decrease the 

investigation time to find the hints to the root cause.  

  

Keywords Metrology, Lithography, Realistic queue, Test results, Automation, Analysis, In-

vestigation 

 

Disclaimer 

Endorsement 

Reference herein to any specific commercial products, process, or service by trade 

name, trademark, manufacturer, or otherwise, does not necessarily constitute or 

imply its endorsement, recommendation, or favoring by the Eindhoven University 

of Technology or ASML. The views and opinions of authors expressed herein do 

not necessarily state or reflect those of the Eindhoven University of Technology 

or ASML, and shall not be used for advertising or product endorsement purposes.  

 

Disclaimer  

Liability 

While every effort will be made to ensure that the information contained within 

this report is accurate and up to date, Eindhoven University of Technology makes 

no warranty, representation or undertaking whether expressed or implied, nor does 

it assume any legal liability, whether direct or indirect, or responsibility for the 

accuracy, completeness, or usefulness of any information. 

 

Trademarks Product and company names mentioned herein may be trademarks and/or service 

marks of their respective owners. We use these names without any particular en-

dorsement or with the intent to infringe the copyright of the respective owners. 

 

Copyright Copyright © 2021. Eindhoven University of Technology. All rights reserved. 



 

 

Public 

No part of the material protected by this copyright notice may be reproduced, mod-

ified, or redistributed in any form or by any means, electronic or mechanical, in-

cluding photocopying, recording, or by any information storage or retrieval sys-

tem, without the prior written permission of the Eindhoven University of Technol-

ogy and ASML. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 





Eindhoven University of Technology 

i 

 

Public 

Foreword 
In ASML, analyzing event logs from the machine is part of everyday activities for D&E. In particular, 

these are event logs from hundreds of automated tests that are used for regression testing. To reduce the 

time the engineers spend analyzing these test results, we aim to create an intelligent system that will 

automatically identify the possible root cause of the failure. 

 

Faezeh has created a good basis for developing such a system. In this thesis, Faezeh shows that a 

graph theory-based method is well suited for the purpose of analyzing the event logs from ASML ma-

chines. To prove that the selected method is able to provide accurate results, Faezeh created a tool that 

now can be used by the ASML engineers to identify the root of the software failure more easily. More 

importantly, the solution that Faezeh offers has great potential for growing into an intelligent system 

that will automatically provide comprehensive feedback on the test results. Faezeh also suggests a 

way forward towards this goal and identifies possible issues in her work. 

 

Mari Mnatsakanyan 

October 2023 

 

 

 

 

  



Eindhoven University of Technology 

ii 

 

Public 

Preface 
This document presents the final report of the "Event Log Analysis on Realistic Queue Qualification 

Tests" project, conducted by Faezeh Sattari as part of the EngD program in Software Technology at 

Eindhoven University of Technology. The project, in collaboration with ASML, aimed to automate 

failure diagnosis in Realistic Queues tests, reducing investigation time for developers. 

 

The tool utilizes algorithms to analyze data, generate reports, and prototype graph theory techniques 

for potential solutions. It includes solution description, architecture, design, verification, and valida-

tion. Chapters 2, 3, and 4 cover problem, domain, and requirements. Chapter 5 addresses project man-

agement, risks, and mitigation. Chapter 6 delves into the architectural logic, while implementation de-

tails are discussed there too. Chapter 7 covers verification, validation, and results. Chapter 8 offers 

project achievements and future suggestions. 

 

Faezeh Sattari 

October 2023 

  



Eindhoven University of Technology 

iii 

 

Public 

Acknowledgements 
I wish to extend my sincere gratitude to the collaborative efforts of both the ASML and TU/e, whose 

collective contributions have been instrumental in the successful completion of this investigation. I am 

deeply appreciative of the guidance provided by ASML supervisors Mari Mnatsakanyan, Andre Korbes, 

and Junchao Xu. While Mari and Andre's dedication in aligning the system design with stakeholders' 

concerns and their invaluable support in navigating intricate challenges within ASML have been pivotal 

in shaping the trajectory of this research, Juancho’s insights and supervision have also been invaluable 

to the project's progress.  

  

Furthermore, I would like to acknowledge Jacob Kruger, my supervisor from TU/e, whose consistent 

oversight of my progress and timely guidance have significantly contributed to the project's accom-

plishments.  

 

Within ASML, I am thankful for the valuable insights and support received from colleagues across 

various departments. The expertise and guidance provided by Marc Hermans, ASML Group Leader, 

regarding project success and adherence to company regulations, have greatly enriched the project's 

outcomes. Jenny van Baden, ASML Software Field Performance Engineer, has been instrumental in 

emphasizing the significance of visualization effects and manual inspection within the analytics and 

visualization domain. Andreas Gammel, ASML Engineer, has provided valuable contributions in the 

verification of graph theory-based methods and pollution detection techniques. Erdem Karayer's in-

sights into software development technical limitations and root cause automation tools, coupled with 

Errol Zalmijn's expertise in data science techniques, have been indispensable. 

 

October 2023 

  



Eindhoven University of Technology 

iv 

 

Public 

Executive Summary 
 

This report outlines the design and implementation of an automated tool to analyze realistic queue event 

logs at ASML, a premier chip-making equipment manufacturer. The project's core objective was to 

create a diagnostic tool capable of identifying the root causes of issues that arise during the execution 

of the realistic queue within ASML's Metrology department. Employing graph theory-based methods, 

the developed system efficiently detects root causes within event logs. These methods are fast, memory-

efficient, and require no retraining, rendering them an ideal solution for ASML's dynamic operational 

context. 

 

The realistic queue plays a pivotal role in ASML's lithography machines, generating substantial data 

that offers crucial insights into system behavior. Given the data's volume, an automated analytical ap-

proach is imperative. The system designed for this project employs algorithms to analyze event logs 

generated by the realistic queue, producing comprehensive reports on outcomes and identified issues. 

 

To achieve project goals, a range of requirements were collected, guiding architectural decisions on 

method selection. The resulting designed tool boasts remarkable scalability, adeptly handling large data 

volumes within tight time and memory constraints. Moreover, we designed this tool to integrate with 

the existing realistic queue tester and harmonize effectively with cloud-based architecture in ASML. 

 

Efficiency optimization emerged as a primary challenge during the project. Ensuring prompt feedback 

to Metrology software developers was a critical aspect, alongside managing the order of linked events 

as defined by developers and filtering the pollution event log list. The system triumphantly overcame 

these challenges and operates within defined time and memory limitations. 

 

In conclusion, we developed the tool to offer a potent solution for automating the analysis of realistic 

queue event logs within ASML's Metrology department. Boasting optimization for speed and effi-

ciency, the system incorporates features ensuring the correct event order and effective filtering of the 

pollution event logs list. Overall, we could enhance the efficiency of event log analysis diagnostics for 

realistic queue qualification tests.  



Eindhoven University of Technology 

v 

 

Public 

 

Foreword ................................................................................................................................................. i 

Preface .................................................................................................................................................... ii 

Acknowledgements .............................................................................................................................. iii 

Executive Summary ............................................................................................................................. iv 

List of Figures ...................................................................................................................................... vii 

List of Tables ...................................................................................................................................... viii 

Introduction ........................................................................................................................................... 9 

1.1 Goals and Objectives ................................................................................................................ 9 

1.2 Outline .................................................................................................................................... 10 

Problem Analysis ................................................................................................................................ 11 

2.1 Problem Definition ................................................................................................................. 11 

2.2 Project Goal ........................................................................................................................... 11 

2.3 Methodology ........................................................................................................................... 12 

2.4 Main Questions ....................................................................................................................... 13 
• What do you want the system to do? ...................................................................................... 13 
• What is the purpose of the system you want? ........................................................................ 13 
• Who should be asked? ............................................................................................................ 13 

2.5 Stakeholder Analysis .............................................................................................................. 14 

2.6 Usage Model ........................................................................................................................... 14 
Scope and Out-of-scope Elements .............................................................................................. 14 
Overall Scenario........................................................................................................................... 15 
Deriving Capabilities from The Scenario .................................................................................. 15 

2.7 Conclusion .............................................................................................................................. 16 

Domain Analysis.................................................................................................................................. 17 

3.1 ASML ...................................................................................................................................... 17 

3.2 Related Works ......................................................................................................................... 17 

Requirements and Use Cases ............................................................................................................. 19 

4.1 Use Cases ............................................................................................................................... 19 

4.2 Requirements Elicitation: A Collaborative Approach ............................................................ 20 
Business Requirements ................................................................................................................ 20 
Functional Requirements ............................................................................................................ 21 
Non-Functional Requirements ................................................................................................... 22 
Architectural Requirement ......................................................................................................... 23 

Designing Feasible Solutions .............................................................................................................. 25 

5.1 Feasibility Analysis ................................................................................................................ 25 

5.2 Challenges Arising from Real-World Requirements .............................................................. 25 



Eindhoven University of Technology 

vi 

 

Public 

Model Retraining to Counter False Positives: .......................................................................... 25 
Mitigating Data Collection Costs: .............................................................................................. 25 
Validating Performance Across Scenarios: ............................................................................... 26 
Domain Knowledge and Feature Selection: .............................................................................. 26 

5.3 Risk Navigation ...................................................................................................................... 27 
Risk Identification: ...................................................................................................................... 28 
Risk Mitigation and Strategy: .................................................................................................... 28 

5.4 Prototype Blueprint ................................................................................................................ 28 
Data Pipeline ................................................................................................................................ 29 
Model Pipeline .............................................................................................................................. 29 

5.5 Conclusion .............................................................................................................................. 30 

Design and Implementation ............................................................................................................... 31 

6.1 Intelligent Diagnosis Tool ...................................................................................................... 31 

6.2 Implementation Phases ........................................................................................................... 31 

6.3 Data Pipeline .......................................................................................................................... 33 

6.4 Model Pipeline ....................................................................................................................... 34 

6.5 Data Processing and Anomaly Detection Workflow .............................................................. 35 
Runtime Interaction Diagram .................................................................................................... 36 

6.6 Summary ................................................................................................................................. 37 

Verification and Validation ................................................................................................................ 38 

7.1 Datasets Description .............................................................................................................. 38 

7.2 Test Cases and Verification and Validation ........................................................................... 38 

7.3 Summary ................................................................................................................................. 42 

Conclusion ........................................................................................................................................... 43 

8.1 Results .................................................................................................................................... 43 

8.2 Conclusion .............................................................................................................................. 43 

8.3 Recommendation and future work .......................................................................................... 43 

Abbreviations and Glossary ............................................................................................................... 45 

References ............................................................................................................................................ 47 

Appendix A. Stakeholder Analysis .................................................................................................... 49 

8.4 ASML Netherlands.................................................................................................................. 49 

8.5 Eindhoven University of Technology ...................................................................................... 50 

Appendix B. Project Management .................................................................................................... 51 

8.6 Project network diagram ........................................................................................................ 51 

About the Author ................................................................................................................................ 53 

 

  



Eindhoven University of Technology 

vii 

 

Public 

List of Figures 
 

 

Figure 1 The data flow diagram of the anomaly detection system ....................................................... 12 
Figure 2 Use case diagram of the system .............................................................................................. 19 
Figure 3 Prototype architecture ............................................................................................................. 28 
Figure 4 Runtime UML Sequence Diagram ......................................................................................... 36 
Figure 5 Project network diagram ......................................................................................................... 52 
 

 

  



Eindhoven University of Technology 

viii 

 

Public 

List of Tables 
 

Table 1 Trade off analysis of related methods ...................................................................................... 18 
Table 2 Business requirements ............................................................................................................. 21 
Table 3 Functional Requirements ......................................................................................................... 22 
Table 4 Non-Functional Requirements ................................................................................................. 23 
Table 5 Architectural Requirements ..................................................................................................... 23 
Table 6 Challenges in the Project ......................................................................................................... 26 
Table 7 Risks in the Project .................................................................................................................. 27 
Table 8 ASML stakeholders ................................................................................................................. 49 
Table 9 TU/e stakeholders .................................................................................................................... 51 
 

 

 

 

 

  



Eindhoven University of Technology 

9 

 

Public 

Introduction 
 

In today's highly interconnected and data-driven world, it is becoming increasingly important for or-

ganizations to efficiently process and analyze the large amounts of data generated by their systems.[1] 

This is especially true in the high-tech industry, where complex and sophisticated systems generate vast 

amounts of data that can provide insights into system behavior and performance.  

 

One such industry leader is ASML, a leading manufacturer of chip-making equipment and a key player 

in the semiconductor industry. ASML's Metrology department develops algorithms that drive most of 

the parts within lithography scanners to achieve performance. To provide a feedback loop for Metrology 

software development, an automated software tester at a system level is used to qualify deliveries of 

metrology driver software and calibration software. In this context, the ability to automatically analyze 

the event logs generated by ASML's realistic queue tester is crucial for improving the efficiency of the 

software development process. 

 

ASML is a company that produces complex machines, such as the Twinscan NXT and NXE machines, 

which are used in semiconductor manufacturing. These machines have multiple components that are 

responsible for various functions, and any failure in these components can cause the entire machine to 

malfunction. There could be various reasons for system breakdown, such as inappropriate working en-

vironments, logistic errors, or operator errors. 

 

Due to the high costs and risks involved in testing on a real machine, ASML uses a virtual machine 

called Simulated test environment  to test software, and all the activity events are continuously recorded 

in event logs. These logs not only provide information about when the system works correctly but also 

indicate when and where problems occur. However, diagnosing the root cause of failure from these 

event logs can be a challenging task. The time used in diagnosis is usually much longer than the time 

used in problem-solving because event logs often contain thousands of events, and only a few of them 

are important records relevant to the root cause of the failure. 

 

ASML developed some tools to detect anomalies, but it's difficult to definitively judge its accuracy. It 

is indeed used extensively for customer machine data analysis. However, it's limited in real queue tests, 

where manual use and event log conversion are necessary. 

 

While ASML inhouse tools excels in troubleshooting recurrent errors, our project primarily focuses on 

realistic queue scenarios, without a direct comparison to other tools’ accuracy. 

1.1    Goals and Objectives 

 

The overarching goal of this thesis was to design a tool capable of analyzing Simulated test environment  

data and utilizing advanced algorithms to pinpoint the root causes of failures or anomalies within the 

results report. 

 

In line with this aim, the research set out to achieve the following specific objectives: 

 

• Objective 1: Eliciting Requirements and Informing Architectural Decisions 

 

This objective centered on the precise identification of system requirements and the 

informed selection of architectural decisions. By doing so, the aim was to ensure a seamless 

alignment of the system with the intended functionalities and performance benchmarks. 

 

• Objective 2: Designing and Implementing an Automated Queue Event Log Analysis 

System 



Eindhoven University of Technology 

10 

 

Public 

 

The second objective involved the design and successful implementation of a resilient 

and efficient system. This system was tasked with automating the comprehensive analysis 

of extensive queue event logs. This automation not only streamlined the process but also 

significantly reduced the need for manual intervention. Consequently, the outcome was a 

marked reduction in errors, coupled with a notable improvement in the overall accuracy of 

the analysis. 

 

By attaining these objectives, this research has laid the groundwork for an automated solution that holds 

the potential to greatly enhance the efficiency and precision of anomaly detection through the automated 

analysis of realistic queue event logs. 

  

 

In summary, this research aims to deliver an automated system that enhances efficiency, accuracy, and 

scalability in anomaly detection. By achieving these objectives, developers will have a powerful tool 

for automating queue analysis, reducing manual effort, and making informed decisions to optimize 

queue performance in real-world scenarios, including tests conducted in a Google Cloud environment. 

 

The proposed tool will provide a smarter and more accurate diagnostic approach to help engineers save 

time and improve the efficiency of problem-solving in ASML's machines. The tool's ability to visualize 

events and results will enhance the understanding of the root cause of failures or abnormalities and 

provide an actionable report to engineers. The use of state-of-the-art algorithms will ensure accuracy 

and reliability in the root cause analysis of event logs. 

1.2    Outline 

This report consists of several chapters, each serving a specific purpose: 

 

• Chapter 1: Introduction - Outlines objectives and report structure. 

• Chapter 2: Problem Analysis - Conducts a thorough problem analysis and defines scope 

and goals. 

• Chapter 3: Project Domain - Explores the project's domain, including ASML and related 

terminology. 

• Chapter 4: Requirements and Use Cases - Focuses on requirements, including business, 

functional, and quality attributes. 

• Chapter 5: Feasibility Assessment - Assesses project feasibility and addresses potential is-

sues. 

• Chapters 6 and 7: Design and Implementation - Provide insights into the intelligent diag-

nosis tool. 

• Chapter 8: Conclusion - Presents findings, recommendations, and reflections on company 

contributions. 

 

 

 

 

 

 

 

 

 



Eindhoven University of Technology 

11 

 

Public 

Problem Analysis 
 

In this chapter, we discuss the project context and undertake a problem analysis for the automation of 

event log diagnosis. The primary objective of this project is to design and implement a system capable 

of automating the analysis of realistic queue event logs, generating reports on the results and issues 

automatically. The system is expected to integrate seamlessly with the realistic queue tester and be 

compatible with cloud infrastructure. 

2.1    Problem Definition 

 

 The ASML system generates a large amount of data from the realistic queue tester, which is difficult 

to analyze manually. The current system lacks the necessary tools and algorithms to analyze and gen-

erate reports automatically. This manual process is time-consuming and error-prone, resulting in a delay 

in identifying the root cause of the issues. Therefore, the problem is to design and implement a system 

that can automate the analysis of realistic queue event logs and generate reports about the results and 

issues automatically. The system should also integrate with the realistic queue tester and be cloud com-

patible. 

 

2.2    Project Goal  

 

The goal of this project is to design and implement a system that can automate the analysis of realistic 

queue event logs and generate reports about the results and issues automatically. The system should 

integrate with the realistic queue tester and be cloud compatible. The system should provide intelligent 

diagnostics for the realistic queue tester and analyze the data generated by the ASML machines. Addi-

tionally, the project aims to gather the requirements and perform architectural decisions for the system's 

design and implementation. 

 

Based on the project goals, the aim of this study is to design and implement a system that automates the 

analysis of realistic queue event logs and generates reports about the results and issues automatically. 

The system is required to integrate with the realistic queue tester and be cloud compatible. Additionally, 

the system should provide intelligent diagnostics for the realistic queue tester and analyze the data gen-

erated by the ASML machines. 

 

To achieve these goals, I identified several key requirements for the system. Firstly, the system should 

have tools and algorithms that can effectively analyze data from the tester, enabling it to generate reports 

about the results and issues automatically. Secondly, the system should be capable of visualizing results 

and events, making it easier for stakeholders to understand the data generated by the system. 

 

Another crucial requirement is the ability of the system to indicate the root cause of failures/abnormal-

ities in the results report. This will enable users to quickly identify and address issues, reducing the time 

and resources required for troubleshooting. Additionally, the system should provide intelligent diag-

nostics for the realistic queue tester, analyzing the data generated by the ASML machines and providing 

useful insights to stakeholders. 

 

To achieve these requirements, the study involves investigating, designing, and implementing software 

that provides intelligent diagnostics for the realistic queue tester. I also provided the analysis and defi-

nition of functionalities of the diagnostics tool. Additionally, I added requirement gathering documen-

tation to ensure that the system meets the needs of stakeholders. 

 

Furthermore, the study evaluates existing software tools, libraries, visualization, data science, and ma-

chine learning techniques to make informed architectural decisions. The integration of the system with 



Eindhoven University of Technology 

12 

 

Public 

the realistic queue tester is to ensure that the diagnostics are executed as part of the tester at the end. 

Finally, the system is designed to be cloud compatible as the realistic queue tester needs to be executed 

on the cloud. 

 

Overall, this study aims to provide an automated system that can effectively analyze realistic queue 

event logs and provide useful insights to stakeholders, reducing the time and resources required for 

troubleshooting. The system will provide a valuable tool for the ASML machines, allowing them to 

generate reports and analyze data more effectively. 

 

2.3    Methodology  

 
This section presents the methodology used for the problem analysis of the automation of the event log 

diagnosis project. The objective is to identify and understand the key entities involved in automating 

the diagnosis of event logs, with a particular emphasis on the core functionality of an anomaly detection 

system. The methodology consists of the following steps:  

 

 

Figure 1 The data flow diagram of the anomaly detection system 

  

Figure 1 shows the context diagram created to visualize the overall system and its entities. The central 

entity of the system is the anomaly detection system, which forms the core component of the analysis 

process. The context diagram illustrates the relationships and interactions between the anomaly detec-

tion system and other entities relevant to the project. These entities include:  

  

a. Event Logs:  

Event logs serve as the primary input for the diagnosis process. They contain recorded 

events and relevant data that require analysis.  

  

b. Model Analysis:  



Eindhoven University of Technology 

13 

 

Public 

Multiple analysis models are employed to extract meaningful insights from the event logs. 

These models may include process mining, statistical analysis, machine learning, and pattern recog-

nition techniques. Each model contributes to different aspects of the diagnosis process.  

  

c. Data Analysis:  

Developed modules for parsing and pre-processing the event logs, extracting pertinent in-

formation, and preparing the data for analysis. These modularities could encompass log parsing 

libraries, software applications, or custom scripts.  

 

By following this methodology, a comprehensive understanding of the entities involved in automating 

event log diagnosis can be achieved. The problem analysis phase provides insights into the suitability 

and effectiveness of the anomaly detection system, leading to valuable improvements in the automation 

process.  

  

Note: The specific analysis techniques, tools, and approaches used within each entity may vary depend-

ing on the project's requirements and the nature of the event logs being analysed. 

 

2.4    Main Questions 

 

The main questions help to define the project's objectives and requirements. The four main questions 

for this project are:[2] 

• What do you want the system to do? 

The system should automate the analysis of realistic queue event logs and generate 

reports on the results and any issues detected. It should also visualize the results and events and 

indicate the root cause of failures or abnormalities. 

• What is the purpose of the system you want? 

The primary objective of this system is to establish a fast feedback loop in the realistic 

queue tester environment. Its core purpose is to expedite the diagnostic process, ensuring swift 

identification of issues, and subsequently reduce investigation time significantly. Moreover, it 

aims to enhance the overall efficiency and accuracy of the testing process. 

 

• What do you want to be able to do? 

 

The stakeholders want to be able to analyze the results of the realistic queue tester 

automatically, generate reports on the results and issues, and visualize the results and events. 

They also want to be able to investigate and diagnose any failures or abnormalities detected 

during testing. 

• Who should be asked? 

The stakeholders who should be asked include the project sponsor, project manager, 

technical team, testing team, and end-users. 

 



Eindhoven University of Technology 

14 

 

Public 

2.5    Stakeholder Analysis 

 

To identify potential stakeholders for the project, I attended group meetings and networked with experts 

in various departments of ASML, including the EUV Metrology Department and the Test-related Ac-

tivities Department. These meetings provided me with valuable insights into the potential pitfalls of 

different analysis methods, which helped me to narrow down my approach to the project. Through these 

meetings, I also connected with a highly knowledgeable individual who was experienced in this area 

and provided valuable input on the project's scope and methodology. In addition to these meetings, I 

also reviewed similar thesis projects that had been completed by master's students in the past, which 

helped me to identify other stakeholders who had previously worked on similar projects. 

 

Stakeholder analysis is a critical step in any project, and it is especially important when working on a 

complex project like this. It involves identifying all parties that will be affected by the project and 

understanding their concerns, requirements, and levels of involvement. This information is used to de-

velop strategies for managing stakeholders and ensuring that their needs are met throughout the project 

lifecycle. 

  

In this project, the primary stakeholders are ASML Netherlands B.V. and the Eindhoven University of 

Technology. However, there are many other stakeholders who may be impacted by the project, includ-

ing employees in the EUV metrology and test-related activities departments, software developers, and 

end-users of the diagnostic tool. By conducting a thorough stakeholder analysis, we can identify poten-

tial conflicts and develop strategies for managing them, ultimately increasing the likelihood of project 

success. 

 

Once I had identified the stakeholders, I developed a plan for engaging with them and understanding 

their requirements and concerns. This involved conducting interviews, surveys, and focus groups to 

gather feedback and input on the project. 

 

In addition to identifying the stakeholders, it is also important to analyze their requirements and con-

straints. This involves understanding their goals, concerns, and expectations for the project and identi-

fying any factors that may limit or impact their involvement. By doing so, we can develop strategies for 

managing the stakeholders and ensuring that their needs are met throughout the project lifecycle. 

 

Overall, stakeholder analysis is crucial for project success. It involves identifying, engaging, and man-

aging stakeholders throughout the project. The ultimate goal is to ensure that all stakeholders accept the 

project's outcome, which defines its success. 

 

2.6    Usage Model 

 

The usage model defines the scope and out-of-scope elements of the system, as well as the overall 

scenario and capabilities derived from the scenario. In this project, the scope includes the automated 

analysis of realistic queue event logs, report generation, visualization, and root cause analysis. The out 

of scope elements include the development of the realistic queue tester itself. 

 

The overall scenario involves the testing of the realistic queue using the tester and the automated anal-

ysis of the event logs. The capabilities derived from the scenario include the ability to diagnose failures 

or abnormalities, generate reports, and visualize results and events. 

Scope and Out-of-scope Elements  

Defining the scope and not-scope of a system is an important step in the methodology of any project. It 

helps to clarify what the system is supposed to do and what it is not supposed to do. The scope and not-



Eindhoven University of Technology 

15 

 

Public 

scope of the system provide the boundary for the project, and all requirements and use cases should be 

within the scope. 

 

The scope of the system for this project includes designing and implementing a system to automate the 

analysis of realistic queue event logs, integrating the system with a realistic queue tester, and designing 

a cloud-compatible system. The system should be able to analyze data from the tester, generate reports 

automatically, visualize results and events, indicate the root cause of failures/abnormalities in the results 

report, and provide intelligent diagnostics for the realistic queue tester. 

 

The not-scope of the system includes anything that is outside of the above-defined scope. For example, 

the system is not responsible for the maintenance or repair of the tester hardware or software. It is not 

responsible for monitoring the tester or controlling its operations. The system is also not responsible for 

providing training on the tester or its usage. The not-scope should be clearly defined to avoid misun-

derstandings and scope creep during the project. 

Overall Scenario 

In the overall scenario, the system will automate the analysis of realistic queue event logs generated by 

the ASML machines using a cloud-compatible solution. The system will provide intelligent diagnostics 

and generate reports about the results, issues, and root causes of failures/abnormalities in the results 

report. The main objective of the system is to improve the efficiency of the ASML machines and reduce 

the overall downtime by providing accurate and timely insights into the root causes of issues. 

 

To achieve this objective, I designed the system to collect and preprocess data from the ASML machines 

and perform log parsing to extract relevant information from the event logs. The system uses advanced 

algorithms and data science techniques to analyze the data and identify patterns and anomalies that 

could indicate issues or abnormalities in the machine's performance. 

 

The system provides a user-friendly interface to visualize the results and events, allowing the stake-

holders to quickly identify potential issues and take appropriate actions. We integrated the system with 

the Realistic Queue tester, and the diagnostics are executed as part of the tester at the end, providing a 

seamless experience for the users. 

 

Overall, the system will enable the stakeholders to make data-driven decisions, improving the efficiency 

and performance of the ASML machines and reducing the downtime, leading to significant cost savings 

for the company. 

Deriving Capabilities from The Scenario  

Deriving capabilities from the scenario involves identifying the key features and functions that the sys-

tem must have to support the identified use cases. This includes breaking down the use case scenarios 

into specific tasks and activities, and then identifying the system capabilities required to support those 

tasks and activities. 

 

For example, in the scenario outlined in section 2.6.2, the system must possess the following function-

alities: 

1. Parse queue event logs and extract relevant information 

2. Analyze extracted information using algorithms and tools 

3. Generate automated reports on analysis results and issues 

4. Visualize results and events in an intuitive and clear manner 

5. Identify root causes of failures/abnormalities in the results report 

6. Provide intelligent diagnostics for the realistic queue tester 



Eindhoven University of Technology 

16 

 

Public 

7. Support cloud compatibility for executing the realistic queue tester 

 

By identifying these capabilities, the project team can better define the requirements for the system and 

begin to design and implement the necessary functionality to support these capabilities. 

 

2.7    Conclusion  

 

In summary, this chapter focuses on the problem analysis phase of the project, which aims to design 

and implement a system for automating the analysis of realistic queue event logs. The identified goals 

include generating automated reports, integrating with the realistic queue tester, being cloud compati-

ble, and providing intelligent diagnostics for the tester and ASML machine data. The requirements 

gathering process is discussed, highlighting the need for effective data analysis, and root cause identi-

fication.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



Eindhoven University of Technology 

17 

 

Public 

Domain Analysis  
 

In this chapter, I am going to break down a crucial step: understanding the area where we're applying 

automation to the event log diagnosis project. Specifically, we are going to zoom in on the ASML 

system, focusing on the part that directly relates to our project. This helps us get familiar with the special 

words and phrases used in this field. This deep dive sets us up to build a strong base for the next stages 

of the project. We also discuss the types of data involved, particularly event logs, and provide an over-

view of the ASML testing system and diagnosis tools. Furthermore, we examine related works outside 

the ASML domain to gather insights and leverage existing knowledge. Through domain analysis, we 

aim to gain a comprehensive understanding of the project context and domain-specific aspects, laying 

a solid foundation for the subsequent stages of our research. 

3.1    ASML 

 

ASML is a key player in the chip industry, making microchips vital to modern tech like smartphones, 

cars, and medical devices. They've been improving lithography tech since 1984, offering full solutions 

for making complex patterns on silicon wafers. They partner with industry leaders like Intel and Sam-

sung to make critical machines for IC production [1]. 

 

ASML's EUV metrology department spearheads research and development, focusing on novel meas-

urement techniques and tools to enhance lithography machine performance. They conduct vital tasks 

like testing, validating new methods, developing test plans, conducting experiments, analyzing data, 

and collaborating across departments to integrate findings into the design process. 

The EUV metrology department's rigorous testing and analysis are pivotal in ensuring the reliability 

and performance of ASML's lithography machines, contributing to cost reduction and risk mitigation. 

In summary, ASML's EUV metrology department plays a vital role in ASML's R&D efforts, contrib-

uting to the success of the company by ensuring high standards of performance and reliability. 

3.2    Related Works  

 

In this section, various approaches for event log analysis in industrial settings are summarized: 

 

1. Rule-based mathematical methods are simple and suitable for small, straightforward systems 

but become unwieldy for complex setups. 

2. LSTM, a deep learning technique, excels in handling sequential data like time-series but strug-

gles with complex and interconnected events. 

3. Graph theory solutions offer visual representations of event relationships, beneficial for identi-

fying anomalies but may not suffice for complex, large-scale event logs without additional 

methods like clustering. 

 

In conclusion, the choice of analysis method should align with the system's complexity and size. Rule-

based methods suit simple systems, LSTM is effective for sequential data, and graph theory solutions 

provide visual insights but may require complementing approaches. Combining methods often yields a 

comprehensive event log analysis. Table 1 shows the tradeoff analysis between these methods. [4][6][9] 

 

 

 

 

 

 



Eindhoven University of Technology 

18 

 

Public 

Table 1 Trade off analysis of related methods 

Methods  Advantages  Disadvantages  

rule-based 

mathematical 

methods 

✓ Low complexity  

✓ Simple implementation  

➢ Not suitable for large scale complex 

systems  

LSTM  ✓ Sequential data  

✓ Time-series  

✓ Text  

➢ Not appropriate for highly intercon-

nected events  

➢ LSTM is to model temporal de-

pendencies between in sequences 

but not relationships between 

events  

➢ Struggle to handle complex data  

➢ Not appropriate for the models with 

relationships between individual 

events  

Graph theory 

solutions 

✓ Graph-theory can provide a 

visual representation of the 

relationships between 

events  

✓ Help to identify unusual 

patterns or anomalies  

✓ Low complexity  

✓ Better representation  

✓ Enhanced analysis  

➢ Hard interpretation in large scale 

and highly interconnected event 

logs  

➢ Not sufficient for complex and 

large-scale event logs( based on 

simple statistical methods) 

➢ It needs to be combined with other 

methods like clustering  

 

 

Implementing effective anomaly detection systems presents several challenges, including real-time ca-

pability, model retraining for false positives, diverse and representative dataset collection, and manag-

ing the associated data collection costs. Generalizing well on new data, preventing overfitting, and val-

idating performance in various scenarios are also crucial. Additionally, having domain knowledge about 

metrology setup is important. Risks in implementation include compatibility issues with cloud systems, 

licensing concerns, and the need for administrative access on company laptops. The choice of anomaly 

detection methods varies depending on system requirements and event log types. Rule-based and sta-

tistical methods offer simplicity but may not be suitable for large-scale systems. LSTM handles sequen-

tial data but struggles with complex interconnected events. Graph theory solutions like SNA and GNN 

provide visual representations of event relationships but may lack complexity for extensive logs. Com-

bining SNA and GNN can enhance analysis but at the cost of increased computational complexity and 

complex output interpretation.[8] 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



Eindhoven University of Technology 

19 

 

Public 

Requirements and Use Cases  
 

In this chapter, we embark on a comprehensive journey to outline the requirements and use cases of 

our project, setting the stage for a systematic and purpose-driven development process. This pivotal 

step bridges the gap between stakeholder aspirations and tangible system functionalities. 

 

The requirements were categorized using the MoSCoW method through a series of structured meet-

ings for requirement registry. During these sessions, priority levels were carefully revised and final-

ized in close consultation with supervisors. The application of the MoSCoW method involved 

thoughtful consideration and consensus-building among project stakeholders to accurately classify re-

quirements into Must have, Should have, Could have, and Won't have categories. The process was 

meticulous, involving detailed discussions, assessments, and iterative feedback loops to ensure precise 

assignment of these labels aligning with project objectives and stakeholder expectations. 

4.1    Use Cases 

 

In this section I present a detailed exploration of the system's functionalities as perceived and interacted 

with stakeholders. It defines specific actions or goals that a user can undertake when engaging with the 

system, encompassing data preprocessing, automated analysis, and result interpretation. The identified 

use cases provide a structured framework to understand the system's behavior, allowing users to effec-

tively identify root causes of given issues. 

 

 

 

Figure 2 Use case diagram of the system 

 

Based on Figure 2, I categorized the use cases into four key functionalities, each essential for effective 

system operation and management: 

 

1. Identify Root Causes: 

Description: Identifies root causes of issues within the system. 

Includes: Automation of analysis processes. 



Eindhoven University of Technology 

20 

 

Public 

Extends: Customization of analysis parameters. 

 

2. Managing Data Preprocessing: 

Description: Prepares and parses data for further processing. 

Includes: Parsing raw data to enhance usability. 

 

 

3. View Analysis Result: 

Description: Provides access to analysis results. 

 

4. Accessing Documentation: 

Description: Facilitates access to crucial system documentation. 

Includes: Viewing user manual documents for operational insights. 

Includes: Viewing design documents for understanding system architecture. 

4.2    Requirements Elicitation: A Collaborative Approach  

 

The foundation of any successful project rests on a clear understanding of what needs to be achieved. 

Our requirements elicitation process was not merely a documentation exercise; it was a collaborative 

effort aimed at synergizing stakeholder insights and technical feasibility. Through proactive networking 

and a series of biweekly meetings, I engaged with a diverse range of stakeholders across ASML. These 

interactions fostered an environment for open discussions, enabling the identification of key priorities, 

expectations, and potential challenges. 

 

Iterative Prototyping: To enhance the accuracy and relevance of requirements, an iterative prototyping 

approach was adopted. Prototypes were progressively developed and shared with stakeholders. This 

iterative process allowed us to refine requirements based on continuous feedback, ensuring alignment 

with stakeholder needs. 

 

Based on the MoSCoW method, the requirements were categorized into business, functional, non-

functional, architectural, and implementation requirements. Each category was meticulously shaped to 

cater to the diverse needs and aspirations of the project. 

Business Requirements 

Business requirements encapsulate the overarching goals and aspirations of our project. They serve as 

the beacon guiding the development process. Notable among these requirements are: 

 

B01: System Event Log Collection and Storage: The system's ability to collect and store system event 

logs is essential for historical analysis and informed decision-making. 

 

B02: Automated Event Log Analysis: The automation of event log analysis to identify potential root 

causes aligns with the project's objective of enhancing efficiency in issue resolution. 

 

B03: Models and Algorithms: This requirement underscores the significance of robust models and 

algorithms as the backbone of accurate event log analysis. 

 

B04: Seamless Integration: The capability to seamlessly integrate with the existing IT system is es-

sential for harmonious operation within the ASML ecosystem. 

 

B05: Handling Large Volumes: The system's capacity to manage extensive event logs and swiftly 

provide root cause analysis contributes to timely decision-making. 

 



Eindhoven University of Technology 

21 

 

Public 

B06: User-Friendly Interface: The importance of a user-friendly interface cannot be understated. This 

requirement focuses on ensuring ease of use, fostering user engagement, and efficient information ac-

cess. 

 

This section lists the high-level statements of the goals, objectives, and requirements that should be met. 

The business requirements of this project are listed in Table 2. 

 

Table 2 Business requirements 

Id  Requirement Description  Priority  

B01  The system shall be able to collect and store system event logs Must have 

B02  The system shall be able to automatically analyze the system event logs to 

identify potential root causes of any issues or problems 

Must have 

B03 The system shall have models and algorithms  Must have 

B04 The system shall be able to handle large volumes of system event logs and 

provide fast and reliable root cause analysis. 

Must have 

B05 The system should be easy to use, with a user-friendly interface that allows 

users to quickly and easily access the information they need 

Nice to have  

Functional Requirements 

Functional requirements articulate the detailed functionalities and behaviors that the system should ex-

hibit. Some of these requirements include: 

 

F01: Anomaly Prediction Algorithm: The system's capability to predict anomalies by analyzing the 

frequency of logs within a specified timeframe. 

 

F02: Log Parsing: The requirement for the system to efficiently parse logs, a foundational step for 

analysis. 

 

F03: These requirements delineate the system's ability to identify different types of session vectors—

normal, abnormal, and pollution data—contributing to precise analysis. 

 

F04, F05, F06, F07: Visualization of event trees, linked events, and the option for filtering by process 

id or event id enhances user understanding and decision-making. 

 

F08: Model Update: The ability to update the model based on user input enhances accuracy over time. 

 

F09: Automated Reporting: The automatic generation of reports facilitates efficient communication and 

decision-making. 

 

F10: Integration with ASML IT Systems: Check the possibility of integration with ASML's existing 

IT systems. 

 

F11: Collection and Storage of System Event Logs: Collect and store system event logs from various 

sources. 

 

F12: Automated Identification of Potential Root Causes: Automatically identify potential root 

causes from event logs. 

 

F13: Use of AI/Mathematical Models for Root Cause Identification: Employ AI/mathematical mod-

els for root cause identification. 

 



Eindhoven University of Technology 

22 

 

Public 

F14: Identification of Pollution Data: Identify pollution data within logs. 

 

F15: Ensure high reliability and availability for uninterrupted access. 

 

F16: Additional Reports for Developers 

 

Description: Generate extra reports, including CPD execution phase, for developers. 

 

Functional requirements are detailed statements of capabilities, behavior, and information that the 

solution should address. Table 3 lists the functional requirements of this project. 

 

Table 3 Functional Requirements 

Id Requirement Description Priority 

F01 The algorithm shall predict the anomaly in logs by analyzing the number of 

logs in the time period 

Must have 

F02 The system shall parse the logs Must have 

F03 The system shall identify the abnormal event ids  Must have 

F04 The system shall visualize the user about the event tree by process id  Could have 

F05 The system shall visualize the linked events  Could have 

F06 The visualizer shall be filtered by process id  Could have 

F07 The visualizer shall be filtered by event id  Could have 

F08 The system shall update the model if user input to result was false positive  Could have 

F09 The system shall generate report about the results automatically  Must have 

F10 The system should be compatible with existing ASML environment   Should have  

F11 The system should be able to collect and store system event logs from vari-

ous sources such as simulated test environment  and cloud based simulated 

test environment  results from testing management system 

Must have 

F12 The system shall have an automated analysis module that identifies potential 

root causes of any issues or problems from the collected system event logs. 

Must have 

F13 The analysis module shall use AI/ mathematical models and algorithms to 

identify the hint to root cause of issues or problems. 

Must have 

F14 The system shall identify pollution data  Must have 

F15 The system shall be highly reliable and available to ensure that users can 

access it whenever they need it. 

Should have 

F16 The system should give some extra reports in addition to the hint root cause 

to developer to ease tracking the main root cause: like phase of the CPD 

sequence execution  

Should have 

Non-Functional Requirements 

Non-functional requirements encompass quality attributes that underpin the system's overall perfor-

mance, maintainability, and user experience. Some of these attributes include: 

 

NF01, NF02: The imposition of execution time and memory limits safeguards optimal system perfor-

mance. 

 

NF03, NF04: The emphasis on maintainability and modularity guarantees the system's longevity and 

ease of management. 

 

NF05: Clear Documentation: Thorough documentation ensures knowledge transfer and system sus-

tainability. 

 



Eindhoven University of Technology 

23 

 

Public 

NF06: Data Parsing and Quality: The system should accurately parse data and maintain data quality 

standards to ensure the reliability of processed information. 

 

Table 4 lists the requirements that specify criteria used to judge the system's operation rather than 

specific functionality. 

 

Table 4 Non-Functional Requirements 

Id Requirement Description  Priority  

NF01 The system should not exceed a maximum execution time limit of 1 hour for 

any operation when running on a typical PC 
Must have 

NF02 The system should operate within a memory usage limit that does not exceed 

1 megabyte (1 MB) when running on a typical PC  
Must have 

NF03 The system shall be designed to be easily maintained Should have  

NF04 The system shall be modular in design Should have  
NF05 The system shall have a clear and concise documentation  Must have 

NF06 The system shall parse data correctly and ensure data quality Should have 

Architectural Requirement 

Architectural requirements lay the foundation for a scalable, efficient, and effective system. Notable 

requirements include: 

 

I01: Scalable Design: A design that accommodates future growth and changing demands ensures long-

term relevance. 

 

I02: Effective Data Management: The architectural approach should optimize data management for 

efficient operation. 

 

Table 5 lists the architecturally significant requirements that should be taken into account while 

defining the system architecture. 

Table 5 Architectural Requirements 

Id  Requirement Description  Priority  

I01  The system shall be designed to be scalable to accommodate future growth 

and changes in demand. 

Must have 

I02  The system's architectural design should include efficient data manage-

ment capabilities, ensuring that data is stored, retrieved, and processed in a 

manner that minimizes latency, optimizes resource usage, and supports 

scalability. 

Should have   

 

 

 

 

 

 





Eindhoven University of Technology 

25 

 

Public 

Designing Feasible Solutions 
 

Log analysis and root cause analysis have been active areas of research and development for many 

years. Various techniques and tools have been proposed and implemented to automatically analyze sys-

tem logs and identify potential issues or anomalies. In this chapter, we discuss some of the related work 

and methods in the area of log analysis and root cause analysis, along with the feasibility of implement-

ing such systems. 

5.1    Feasibility Analysis 

Many organizations already collect system logs and use various tools and techniques for log analysis 

and root cause analysis. However, designing and implementing a system that can handle high volumes 

of event data and provide fast and reliable analysis is a challenging task. The system must consider 

performance, scalability, and other design criteria/quality attributes. 

 

One important factor to consider is the cost of implementing and maintaining the system. Depending 

on the size and complexity of the system, it may require significant resources in terms of hardware, 

software, and personnel. Organizations need to carefully evaluate the cost-benefit analysis of imple-

menting such a system, taking into account factors such as the potential benefits in terms of improved 

system reliability and reduced downtime. 

 

Moreover, the feasibility of the case depends on the specific requirements and constraints of the organ-

ization, as well as the availability of appropriate tools, technologies, and expertise. While there are many 

existing tools and systems available in the market that can be used for log analysis and root cause anal-

ysis, the choice of method depends on the specific requirements and constraints of the organization. 

In conclusion, log analysis and root cause analysis are essential for maintaining and improving system 

reliability. While there are various techniques and tools available to perform such analysis, the choice 

of method depends on the specific requirements and constraints of the organization. Therefore, careful 

evaluation of the cost-benefit analysis is necessary before implementing such a system. 

5.2    Challenges Arising from Real-World Requirements 

In the domain of anomaly detection, a landscape intricately woven with technical nuances, significant 

challenges emerge as a direct result of operational imperatives within real-world settings. These chal-

lenges find their foundation in the insights uncovered in the preceding chapter. In our exploration of 

these challenges, we unearth pathways towards establishing resilient risk detection mechanisms cou-

pled with strategic mitigation strategies. This subsection undertakes a comprehensive examination of 

the nuanced issues that manifest during the anomaly detection process. This examination is deeply in-

formed by my prior experiential insights and remains closely aligned with the predefined technical 

requirements expounded upon in earlier sections. We explored some of the issues that arise when de-

tecting anomalies and provide potential solutions. 

Addressing False Alarms in the System: 

The system changing can cause false alarms. To fix this, we update the model with new data and ad-

just its settings. Alternatively, we can use smarter models that adapt to changes without needing com-

plete updates. This saves computing power and still catches anomalies accurately. 



Eindhoven University of Technology 

26 

 

Public 

 

Mitigating Data Collection Costs: 

Data collection can be expensive, particularly for large-scale systems. It is essential to determine the 

optimal balance between data quantity and quality. To mitigate this issue, we considered using a sam-

pling approach to reduce data size, prioritize data collection based on critical system components. 

Validating Performance Across Scenarios: 

The model's performance across diverse scenarios is pivotal for anomaly detection. This challenge man-

dates formulating distinct test scenarios, utilizing metrics like accuracy. 

Domain Knowledge and Feature Selection: 

Accurate anomaly identification relies on understanding system behavior, particularly in complex set-

ups. Appropriate feature selection is imperative to pinpoint critical components. 

 

Table 6 Challenges in the Project 

Challenge Description Category  

(Managemental/Technical) 

Mitigation and Strategy 

Compatibility of Libraries and 

Dependencies 

Technical - Thoroughly assess library 

compatibility 

- Explore alternative library 

- Escalate compatibility issues 

High Data Collection Costs Technical - Consider data sampling to re-

duce size 

- Prioritize critical data compo-

nents 

- Seek cost-effective data 

sources 

Admin Access Requirements Technical - Discuss admin access policies 

with the company 

- Seek workaround solutions if 

necessary 

Lack of Diversity in the Da-

taset for Accurate Detection 

Technical - Ensure diverse and repre-

sentative dataset 

- Data augmentation if neces-

sary 

Compatibility Issues with Soft-

ware Versions 

Technical - Keep software versions up-

dated 

- Test compatibility early on 

- Maintain documentation for 

versions 

Implementation of Active 

Learning Methods 

Technical - Provide training and support 

for active learning 

- Explore alternative methods 

if necessary 

 

 

Based on table 6, I listed the technical challenges encountered in implementing the system. Challenges 

include compatibility issues with libraries and dependencies, high data collection costs, administrative 



Eindhoven University of Technology 

27 

 

Public 

access requirements, diversity in the dataset for accurate detection, compatibility issues with software 

versions, and effective implementation of active learning methods. 

5.3    Risk Navigation  

 

Risk management is an essential component of any project, and it involves identifying, assessing, and 

mitigating potential risks that may impact the project's success. In this thesis section, we discuss the 

risks and challenges associated with a cloud-based system aimed at detecting anomalies in a given da-

taset. We explore the various risks and challenges that may arise during the implementation of the pro-

ject, including cloud-based system challenges, data gathering, licensing, and active learning. 

 

One of the significant risks associated with a cloud-based system is the compatibility of libraries and 

dependencies. This risk is essential as the system may require various libraries and dependencies to 

function correctly, and any issues with compatibility may lead to errors, which can affect the project's 

success. Another significant challenge is the cost of data collection, which can be a significant barrier, 

particularly if the dataset is massive. 

 

Another significant risk is the need to run some libraries and tools on company laptops that requires 

admin access. This requirement can create challenges, particularly if the company has strict policies 

regarding admin access. Data gathering is another challenge, as it requires a diverse and representative 

dataset to ensure accurate anomaly detection. The risk associated with data gathering is that if the dataset 

is not diverse, it may not be representative, leading to inaccurate anomaly detection. 

 

The project's scope definition and budget are also essential factors to consider when assessing risks and 

challenges. A poorly defined project scope and budget can lead to poor project outcomes, particularly 

if the scope is too broad or the budget too small to cover the project's essential elements. Another sig-

nificant risk is the need to retrain the model based on false positive tasks, which can increase the pro-

ject's scope and make adding real-time capability to the system hard. 

 

In conclusion, risk management is a critical component of any project, and it is particularly essential in 

cloud-based systems designed to detect anomalies in datasets. The risks and challenges associated with 

this type of project include compatibility of libraries and dependencies, data gathering, licensing, active 

learning, and versioning compatibility. To mitigate these risks, it is essential to assess alternative solu-

tions, modify the project scope, and escalate issues that require attention from stakeholders. By address-

ing these risks and challenges, it is possible to ensure the project's success and achieve the project's 

objectives. 

 

Table 7 Risks in the Project 

Risk Description Category  

(Managemental/Technical) 

Mitigation and Strategy 

Project Scope and Budget Is-

sues 

Managemental - Define clear project scope and 

budget 

- Regularly review and adjust as 

needed 

- Involve stakeholders in scope 

decisions 

Licensing Agreement Challen-

ges 

Managemental - Ensure compliance with li-

censing agreements 

- Seek legal counsel if neces-

sary 

 

Based on table 7 I listed potential risks associated with the project, encompassing both managemental 

and technical domains. Risks include issues related to project scope and budget, licensing agreements, 



Eindhoven University of Technology 

28 

 

Public 

and the need for frequent model retraining due to false positives. Addressing these risks is crucial to 

ensure the project's success and mitigate potential setbacks. 

Risk Identification: 

The VDI system's role in pivotal tasks, such as storing test results and ensuring compatibility, highlights 

its significance. Incorporating a cloud-based system introduces risks like compatibility issues, version-

ing complexities, licensing matters, and admin access needs. 

Risk Mitigation and Strategy: 

Risk mitigation strategies involve exploring alternatives, modifying project scopes, escalating issues, 

conducting thorough risk assessments, leveraging expertise and documentation, and meticulous project 

planning. 

 

5.4    Prototype Blueprint  

 

 

Network 
construction

Pattern 
recognition

Register 
outliers

Model pipelineData Pipeline

Domain 
expert 

inspection

Commit

Collect
Raw log data 

Failure
data frames

Outliers

Labelbox

download
Log parser

Object-
Attribute table

Network metrics 
measures

Visualisation

Recursive 
analysis

 

Figure 3 Prototype architecture 

 

Figure 3 focuses on the design of a prototype aimed at mitigating risks in each phase of the automation 

of event log diagnosis project. The prototype is structured in a sequential manner, consisting of several 

key components.  

  

Firstly, the prototype begins by taking input of raw log files, which serve as the initial data source for 

the analysis. These raw log files contain crucial information about system events and behaviors that 

require processing and interpretation.  

  

Next, the prototype incorporates a data pipeline that handles the pre-processing, cleansing, and trans-

formation of the log data. This pipeline ensures the data is properly formatted and prepared for subse-

quent analysis steps.  



Eindhoven University of Technology 

29 

 

Public 

  

Following the data pipeline, a model pipeline is implemented, incorporating various analysis models 

and algorithms to extract meaningful insights from the processed log data. These models may include 

process mining, statistical analysis, or machine learning techniques, depending on the specific require-

ments and goals of the project.  

  

To further enhance the accuracy and reliability of the results, the prototype incorporates a critical step 

of domain expert inspection. This involves domain experts who possess in-depth knowledge and un-

derstanding of the ASML system and event log data. Their expertise and insights play a vital role in 

validating the analysis results and detecting any potential inaccuracies or anomalies.  

  

Lastly, the prototype includes the design of a label box, which facilitates the annotation and labeling of 

the analysis outcomes. This labeling process enables the categorization and identification of specific 

events, patterns, or anomalies discovered in the log data.  

  

By implementing this prototype design, the project aims to minimize risks at each phase, ensuring that 

the analysis results are accurate, reliable, and aligned with the requirements of the automation of event 

log diagnosis. 

Data Pipeline 

The data pipeline involves the collection and processing of test result data. The following steps will be 

taken to mitigate risks in the data pipeline: 

 

• Data Collection: We collected data from a diverse and representative dataset that is relevant to 

the ASML setup sequence. The data was collected from multiple sources to ensure its com-

pleteness and accuracy. 

 

• Data Structure: The data is structured and cleaned to ensure its quality and consistency. That 

was divided into test results and event logs. 

 

• Log Parser: We used a log parser tool to extract meaningful information from the event logs. 

This tool helped us to identify the patterns and trends in the data. 

Model Pipeline 

The model pipeline involves the construction of a network that can identify abnormal behavior and 

diagnose faults in the system. The following steps will be taken to mitigate risks in the model pipeline: 

 

• Network Construction: We will construct a network using the extracted information from the 

event logs. The network will be a directed graph with nodes representing the different compo-

nents of the ASML system and edges representing the causal relationships between them. 

 

• Pattern Recognition: We will use machine learning techniques to identify patterns and trends 

in the data. We will also use anomaly detection algorithms to identify abnormal behavior in the 

system. 

 

• Visualization Analysis: We will use visualization techniques to analyze the network and iden-

tify the critical components of the ASML system. 

 

• Network Measure: We will use network measures such as modularity class, clustering coeffi-

cient, and eccentricity to quantify the properties of the network. 



Eindhoven University of Technology 

30 

 

Public 

 

• Domain Experts Inspection: We will seek the input of domain experts to validate the results of 

the diagnosis and provide additional insights into the system. 

 

5.5    Conclusion 

 

In conclusion, the intelligent diagnosis of event logs in ASML required a systematic and structured 

approach that involves the careful management of the data and model pipelines. By following a rigorous 

methodology, we identified risks and potential issues in the system and develop effective strategies to 

mitigate them. The success of the diagnosis relies on the accuracy and reliability of the data and the 

effectiveness of the model in identifying abnormal behavior and diagnosing faults in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Eindhoven University of Technology 

31 

 

Public 

Design and Implementation  
 

The design and implementation of the intelligent diagnosis tool play a pivotal role in enabling effective 

analysis of network data. This chapter outlines the architecture, components, and processes involved in 

the development of the Data Pipeline and Model Pipeline. The chapter also highlights the quality attrib-

utes guiding the design process. 

6.1    Intelligent Diagnosis Tool  

The intelligent diagnosis tool is a comprehensive solution for analyzing network data, comprising the 

Data Pipeline and Model Pipeline. It enables users to gain valuable insights into the network structure 

through efficient data processing, graph creation, and analysis techniques. 

 

Sequence of 
Test Scenarios

Calibration 
Software

Dataset
(Log Entries)

Diagnosis Tool 
(Graph-based 

app)

Exclusive Event 
Iist

Calls Produces Uses

Uses

 

Figure 6 Intelligent diagnosis tool integration diagram 

6.2    Implementation Phases  

  

Before delving into the specific phases of implementation, it's crucial to understand why we chose the 

methodology underpinning this intelligent diagnosis tool. The selection of this methodology was driven 

by the unique structure of the ASML data, which involves events intricately linked together. These links 

are explicitly defined within the process. 

 

Why Graph Theory-Based Solutions? 

The ASML data structure exhibits a network-like quality where certain events are interconnected, akin 

to nodes in a graph. The relationships between these events are vital and provide invaluable insights for 

analysis. Leveraging graph theory-based solutions, we can effectively model this interconnectedness as 

edges in a graph. 

 

Advantages: 

• Efficiency and Speed: Representing events as nodes and their connections as edges allows 

for efficient calculations and reduced computational complexity. By assigning weights to 

edges based on the significance of the connections, we can optimize the analysis process. 

 

• Simplicity and Lower Computational Complexity: Graph theory simplifies the data repre-

sentation, leading to lower computational complexity compared to training-intensive ma-

chine learning methods. The method shines in capturing the essential relationships without 

unnecessary intricacies. 

 



Eindhoven University of Technology 

32 

 

Public 

This approach essentially transforms the data into a graph representation where events are nodes and 

links between them are edges. By prioritizing important nodes with lower weights, we can achieve 

efficient and rapid results compared to the training requirements of machine learning-based approaches. 

 

With this understanding, let's proceed to explore the specific phases of implementation. 

The development of the intelligent diagnosis tool involved several key phases, each focusing on specific 

aspects of the system's functionality. These phases include:  

  

a. Data Processing Phase  

The Data Processing Phase is a fundamental step in our analysis pipeline, representing the initial pro-

cessing of raw input data. This phase is essential to transform the raw data into a structured and orga-

nized format that is suitable for subsequent analysis. The primary objectives of this phase are to pre-

process the data, parse it based on a specific format, construct the base network data, and potentially 

create a configurable network based on time considerations. 

 

1. Preprocessing the Data 

We start by preparing the raw data for analysis. This involves cleaning, standardizing, 

and addressing any missing or inconsistent values. Essentially, we ensure the data is in good 

shape for further steps. 

 

2. Parsing the Data According to a Specific Format 

We interpret the data based on a predefined structure. For our context, this structure is 

the Qualification Queue Test Event Log format in ASML. Parsing helps us extract meaningful 

information and organize it appropriately. 

 

3. Constructing the Base Network Data Using Graph Theory Principles and Assigning Edge 

Weights 

Here, we use principles from graph theory to build the foundational network structure. 

Nodes represent specific data elements, and edges depict relationships between them. Assign-

ing weights to edges helps us emphasize the importance of these relationships for a more in-

sightful analysis. 

 

       4. Creating a Customizable Network Based on Time 

We consider time as a key factor. By organizing the data to account for time, we can 

analyze how events unfold over different time intervals. This time-based approach adds a val-

uable dimension to our analysis. 

 

In summary, this phase transforms raw data into an organized, structured format, making it ready for 

the subsequent analysis stages. Each step contributes to understanding the data better and extracting 

meaningful insights from it.  

 

b. Network Data Construction Phase  

During the Network Data Construction Phase, we actively construct the foundational network data 

structure. This phase plays a pivotal role in enabling effective network analysis by building nodes and 

edges that contain crucial information. 

 

        1. Creating Nodes and Edges 

We actively generate nodes to represent individual elements or events from the pro-

cessed data. These nodes serve as fundamental building blocks, encapsulating specific infor-

mation. Additionally, we create edges to depict the relationships between these events. This 

process allows us to visually and conceptually represent how events are interconnected. 

 

        2. Adding Attributes for Relationships and Metrics 

To enhance the depth of our analysis, we attach attributes to the nodes and edges. These   

attributes provide additional context, such as the nature or strength of the relationship between 



Eindhoven University of Technology 

33 

 

Public 

events. We also incorporate metrics, such as frequency or importance, enriching the network 

and enabling a more comprehensive analysis. 

 

The Network Data Construction Phase is crucial as it actively transforms processed data into a mean-

ingful network representation. It's akin to assembling a puzzle, where each node and edge contributes 

to the larger picture, allowing us to derive insights and detect patterns within the data. 

  

c. Graph Creation Phase  

In the Graph Creation Phase, we focus on converting the constructed network data into a usable graph 

format, ready for analysis. This phase is essential because it allows us to work with the data in a struc-

tured and flexible manner. 

 

        1. Abstracting and Configuring Graph Types 

The GraphFactory class actively abstracts the creation of various graph types based on 

the network data. Different types of graphs can highlight different aspects of the data, enabling 

a more tailored analysis. By abstracting this process, we ensure the tool's adaptability and ver-

satility, capable of handling various network representations. 

 

        2. Loading Network Data and Facilitating Subsequent Analysis 

The GraphLoader class actively loads the constructed network data into a graph object. 

This step is vital as it prepares the data for in-depth analysis. Once the network is in a graph 

format, we can easily perform a range of analyses, from calculating centrality to identifying 

communities within the network. 

 

The Graph Creation Phase is crucial in actively ensuring that the data is presented in a format that can 

be readily explored and analyzed. By providing options for different graph types and efficiently load-

ing the data, this phase enhances the tool's capabilities and facilitates a more insightful analysis. 

 

6.3    Data Pipeline  

 

In this section, the data pipeline's implementation phases are detailed, encompassing two main modules: 

Data Processor and Base Network Data. The Data Processor module focuses on parsing and prepro-

cessing input data, while the Base Network Data module is responsible for extracting relevant infor-

mation, building the network structure, and incorporating additional attributes for meaningful analysis. 

 

• Data Processor  

1. Parsing the Input Data  

The Data Processor class reads and interprets input files of various formats, extracting relevant 

fields for further processing.  

  

2. Preprocessing the Data  

Data preprocessing includes cleaning and standardizing data, handling missing values, and pre-

paring it for transformation.  

  

3. Data Transformation  

The transformed data is organized into a structured format suitable for network analysis, fea-

turing relevant attributes and dimensions.  

  

4. Data Output  

Methods for retrieving processed data or writing it to output files are provided for seamless 

integration.  

 

  



Eindhoven University of Technology 

34 

 

Public 

• Base Network Data  

1. Extracting Relevant Information  

The BaseNetworkData class selects pertinent fields from processed data, such as event IDs, 

linked events, and timestamps.  

  

2. Building Network Data  

Nodes and edges are constructed based on the extracted information, forming the foundational 

structure of the network.  

  

3. Adding Attributes  

Additional attributes are incorporated into nodes and edges to capture relationships and provide 

context for analysis.  

4. Data Output  

Methods for retrieving built network data or exporting it for further use are implemented. 

 

 

Figure 7 Data Pipeline class diagram 

6.4    Model Pipeline  

 

This section introduces two critical modules: Graph Factory and Graph Loader. The Graph Factory 

module facilitates the creation of diverse graph types, offering configurability for edge weights and 

visualization settings. On the other hand, the Graph Loader module focuses on converting base network 

data into a graph structure, enabling analysis such as centrality calculations, community identification, 

and graph visualization for deeper exploration of network properties. 

 

• Graph Factory  

1. Graph Creation  

The GraphFactory class supports the creation of various graph types, abstracting implementa-

tion details and accommodating configuration parameters.  

  

DataProcessor

DataBuilder

BaseNetworkData TimeIntervalNetworkData

+input_raw_log_path
+preprocessed_log_file_path
+parsed_log_file_path
+network_data

+__init__()
+preprocess_data
+parse_data()
+build_base_network_data()
+build_time_interval_network_data()

+data_processor

+__init__()
+build_data()

+build_data() +build_data()



Eindhoven University of Technology 

35 

 

Public 

2. Configuration Management  

Flexible configuration options enable customization of graph creation, edge weights, and visu-

alization settings.  

  

• Graph Loader  

1. Loading Network Data  

The GraphLoader class translates base network data into a graph structure, encompassing 

nodes, edges, and relationships.  

  

2. Graph Analysis  

Methods for calculating centrality, identifying communities, and visualizing the graph aid in 

exploring network properties.  

 

 

 

Figure 8 Model Pipeline class diagram 

6.5    Data Processing and Anomaly Detection Workflow 

This section shows runtime interactions among classes within a software system, aiming to provide a 

detailed understanding of the system's behavior under varying use cases. The point is the runtime in-

teraction diagram, a dynamic representation illustrating the communication and collaborations be-

tween different classes during the execution of specific functionalities. By examining these interac-

tions, we gain valuable insights into how the system functions and how various components work to-

gether to fulfill distinct requirements. 

 

In this section, we present the diverse use cases that have been examined to analyze the runtime inter-

actions of different classes within the system. Each use case represents a specific scenario or function-

ality, showcasing distinct class collaborations and highlighting their roles in fulfilling the respective 

requirements. 

 

• Use Case 1: Data Processing and Analysis 

 

This use case revolves around the processing and analysis of raw data to derive mean-

ingful insights. The runtime interaction diagram illustrates how classes related to data 

processing collaborate to transform raw data into valuable information for further anal-

ysis. 

 

• Use Case 2: Network Construction 

 

Graph

SimpleGraph WeightedGraph WeightedTimeIntervalGraph

GraphLoader

GraphFactory
creates

+G

+__init__()
+load_graph()
+calculate_eccentricity()
+calculate_modularity()

+G

+load_graph()

+G

+load_graph()
+calculate_eccentricity()

+G

+load_graph()
+calculate_eccentricity()

+graph_factory

+__init__()
+load_graph()

+get_graph()



Eindhoven University of Technology 

36 

 

Public 

The network construction use case focuses on building a network representation from 

processed data. The runtime interaction diagram sheds light on the interactions between 

classes responsible for constructing the network and managing its components. 

 

• Use Case 3: Anomaly Detection 

 

Anomaly detection involves identifying irregular patterns within the data. The runtime 

interaction diagram elucidates how classes collaborate to detect anomalies, showcasing 

the flow of information and decision-making processes. 

Runtime Interaction Diagram 

This section presents the runtime interaction diagram, providing a visual representation of class inter-

actions for the aforementioned use cases. Each diagram is analyzed in detail to explain the interactions 

and their significance in fulfilling the respective use case requirements. 

 

 

Main Code DataProcessor BaseNetworkData

Creates an instance of DataProcessor

Calls the constructor of BaseNetworkData 

GraphLoader GraphFactory 

Creates an instance of GraphFactory

Creates an instance of GraphLoader with the GraphFactory

Calls load_graph()
Calls calculate_eccentricity()

Prints the anomalies detected in the simple graph.

 

Figure 4 Runtime UML Sequence Diagram 

 

 

Based on Figure 4, in the main section of the code, executed when the script is run directly, an in-

stance of DataProcessor is created with designated file paths for input event logs, preprocessed logs, 

parsed data frames, and network data. The process_data method within DataProcessor is subsequently 

invoked. This method involves handling the provided file paths, including the initialization of Base-

NetworkData by calling its constructor with the processed data. The build_data method within Base-

NetworkData is then called, facilitating the construction of the network data.  

 

This interaction demonstrates the pivotal role of DataProcessor in orchestrating data processing and 

its seamless integration with BaseNetworkData, enabling efficient network data construction. Addi-

tionally, GraphFactory is instantiated to support the creation of graphs, and GraphLoader is estab-

lished using GraphFactory. During the loading of graphs using the load_graph method in 

GraphLoader, network_data and a specified graph type are provided as parameters. The 



Eindhoven University of Technology 

37 

 

Public 

calculate_eccentricity method of the loaded graph is subsequently invoked, illustrating the step-by-

step graph loading and analysis process. Ultimately, in the main section, anomalies detected in the 

simple graph are printed, showcasing the successful execution of the anomaly detection process in this 

scenario. 

 

The sequence diagram depicts the primary interactions and data flow within the main file of the pro-

vided Python code. It begins with the initialization of the data processing using DataProcessor, en-

compassing the handling of event logs and data preparation. Following this, BaseNetworkData con-

structs the network data based on the processed information. The diagram then showcases the steps 

involving the GraphFactory and GraphLoader, which load network data and analyze it to detect anom-

alies within a simple graph. 

6.6    Summary  

This chapter provided an in-depth exploration of the design and implementation of the Data Pipeline 

and Model Pipeline within the intelligent diagnosis tool. The Data Pipeline encompasses data pro-

cessing, transformation, and network data construction, while the Model Pipeline focuses on graph cre-

ation, loading, analysis, and visualization. The tool's design adheres to quality attributes such as scala-

bility, modularity, flexibility, performance, usability, and extensibility. The next chapter evaluates the 

tool's effectiveness through experimental analysis and real-world case studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Eindhoven University of Technology 

38 

 

Public 

Verification and Validation  
 

The thorough verification and validation of the graph-based intelligent diagnosis tool involved a metic-

ulously designed set of test cases. These test cases were carefully crafted to assess the tool's capability 

to fulfill the specified functional and non-functional requirements. By subjecting the tool to diverse 

scenarios and data inputs, we aimed to ensure its accuracy, reliability, and adherence to performance 

constraints. 

7.1    Datasets Description  

My investigation revolves around three distinct datasets originating from unique database identifiers. 

These datasets capture a wide array of event types and occurrences. The count of events within each 

dataset, coupled with the labeled root cause event IDs derived from domain knowledge experts' analysis. 

Guided by domain knowledge experts' analysis of realistic queue qualification tests and similar scenar-

ios, we meticulously crafted a series of test cases. These test cases were curated to simulate a spectrum 

of potential scenarios, accounting for both common and exceptional cases. This approach ensured that 

our analysis would capture a holistic understanding of the datasets' nuances and behaviors, consistent 

with established industry standards. 

7.2    Test Cases and Verification and Validation  

7.2.1 Anomaly Detection (F-01)  

The analysis of event logs plays a pivotal role in modern industries, enabling the extraction of valuable 

insights from the vast amounts of data generated by intricate processes. This section focuses on the 

verification and validation of the intelligent diagnosis tool's anomaly detection capabilities within the 

context of event log analysis at ASML. ASML, a leading semiconductor equipment manufacturer, op-

erates highly complex and interconnected systems where anomaly detection is crucial to ensure optimal 

performance, mitigate risks, and maintain manufacturing precision.  

 

7.2.1.1 Test Case: VV-AD-01 - Scenarios Variation  

Description: ASML's operational environment involves diverse scenarios with varying numbers of 

events, each contributing to the intricate web of operations. The ability of the intelligent diagnosis tool 

to accurately detect anomalies under these dynamic conditions is of utmost importance to enhance pro-

duction efficiency and minimize disruptions.  

  

Methodology: A range of scenarios was meticulously designed, simulating different operational con-

texts at ASML. These scenarios encompassed varying event counts, from small-scale to large-scale 

inputs, and integrated both abnormal and normal events.  

  

Expected Outcome: The tool demonstrated its capability to effectively identify anomalies across a 

spectrum of scenarios, showcasing its adaptability and robustness in dealing with the intricacies of 

ASML's event logs.  

Table 6 Key Dataset Details 

Dataset id Total count of events Labeled root cause coded event id  

1 2916 E136   E000 

2 22230 E0100 

3 4308 E0608    E0310    E0000    E0082 



Eindhoven University of Technology 

39 

 

Public 

4 67658 Can’t infer anything from the ER 

events 

"compare queue results" failed 

5 64354 Can’t infer anything from the ER 

events 

"compare queue results" failed 

6 2995 E0004    E847    E840    E0605    

E00000 

 

 

7.2.1.2 Test Case: VV-AD-02 - ER Event Log Analysis  

Description: ASML's event logs contain a rich tapestry of operational data, reflecting the interactions 

and dependencies within its manufacturing processes. This test case scrutinized the tool's ability to ac-

curately detect anomalies within ASML's complex and authentic ER event log datasets.  

  

Methodology: A diverse set of ER event log datasets, representative of different ASML operations, 

were employed for analysis. The tool's anomaly detection performance was evaluated in terms of accu-

racy and consistency across these datasets.  

  

Expected Outcome: The tool consistently and accurately identified anomalies within ASML's ER event 

log datasets, affirming its effectiveness in deciphering complex operational patterns.  

 

Table 7  Intelligent diagnosis tool results based on different scenarios 

Task ids 1 2 3 4 5 6 

Known is-

sue 

E0608    

E0310    

E0000     
E0082 

Can’t infer anything from 

the ER events 

"compare queue results" 
failed 

Can’t infer anything from 

the ER events 

"compare queue results" 
failed 

E136 E0100 E0004    E847    E840    

E0605        E00000 

Eccen-

tricity app 

result 

('E0608'    
120) 

('E0310'    

100) 
('E0000'    80) 

('E0082'    60) 

Based on 

overall 

ER event 

log re-

sults: 

 

('E0100'    
180) 

('E0401'    
160) 

('E0400'    

140) 

Failed sub-

test result: 

 

threshold is 

less than 20 

=> no de-

tected event 

error in 

test results 

Based on 

overall 

ER event 

log re-

sults: 

 

('E0100'    
140) 

('E009'    
120) 

('E0401'    

120) 

Failed sub-

test result: 

 

threshold is 

less than 20 

=> no de-

tected event 

error in 

test results 
 

E136 E0100 E0004    E847    E840    
E0605 

 

 

7.2.2 Pollution Event Identification (F-06) - Ensuring Precision in ASML Operations  

An accurate assessment of pollution events is of paramount importance within ASML's manufacturing 

processes, where even minor deviations can have significant implications. This section focuses on the 

validation of the intelligent diagnosis tool's ability to precisely identify pollution events within AS-

ML's event logs.  

  



Eindhoven University of Technology 

40 

 

Public 

7.2.2.1 Test Case: VV-PEI-01 - Pollution Data Verification  

Description: The analysis focuses on the tool's ability to accurately detect pollution events within event 

log data, an essential aspect for ASML's operations, necessitating swift and precise identification. 

  

Methodology: Event logs were tailored to include instances of pollution events, replicating various 

pollution scenarios that may appear in the event logs relevant to ASML's operations. The tool's ability 

to accurately pinpoint these pollution events was meticulously evaluated. 

  

Expected Outcome: The tool adeptly identified pollution events within ASML's event logs, attesting 

to its precision in detecting and mitigating environmental anomalies.  

 

Table 8 Pollution event logs data and accuracy of events detection 

Pollution 

events list 

Total num-

ber detected 

events ids(re-

petitive) 

Total number 

detected 

events 

ids(unique) 

Accuracy of 

subset of 10 

Accuracy of 

subset of 15 

Accuracy of 

subset of 20 

 
659 180 100 100 100 

 

7.2.3 Automatic Report Generation (F-07)  

The ability to generate accurate and consistent reports is crucial for facilitating informed decision-mak-

ing. To verify this capability, the following test case was conducted:  

  

Test Case: VV-ARG-01 - Report Generation Consistency  

Description: This test case focused on evaluating the system's report generation capabilities using dif-

ferent event logs, with an emphasis on the consistency of the generated reports.  

  

Methodology: We subjected the tool to various event logs, each representing distinct network scenarios. 

The generated reports were compared to assess their coherence and alignment with the analyzed data. 

Check the file format, execute different tests, cross-reference with original file, expected results, time-

line and error handling are the actions we took in tool design to guarantee the report generation con-

sistency. 

 

Expected Outcome: The generated reports consistently reflected the analyzed data, demonstrating the 

tool's proficiency in automatic report generation.  

  

7.2.4 Performance and Memory Usage (NF-02, NF-03)  

The performance and memory usage of the intelligent diagnosis tool are pivotal factors in its overall 

utility. To gauge these aspects, the following test cases were executed:  

  

Test Case: VV-PMU-01 - Response Time 

 

Evaluation  

Description: This test case involved the evaluation of the system's response time to ensure it met the 

specified execution time limit.  

  

Methodology: The tool was subjected to various scenarios, each representing different operational con-

texts. The response time for each scenario was measured and compared against the predetermined exe-

cution time limit.  

  

Expected Outcome: The system's response time was found to be within the specified execution time 

limit, meeting performance expectations.  

  



Eindhoven University of Technology 

41 

 

Public 

Test Case: VV-PMU-02 - Memory Usage Monitoring  

Description: This test case aimed to monitor and measure the tool's memory usage during different 

phases of execution.  

  

Methodology: The system's memory usage was tracked using appropriate monitoring tools and tech-

niques. Memory measurements were taken during various stages of execution to ensure compliance 

with memory usage constraints.  

  

Expected Outcome: The tool's memory usage remained within acceptable limits throughout execution, 

confirming its efficient resource management.  

 

Table 8 Response time and memory usage based on each scenario 

Test Scenario  Response time(in seconds) Memory usage(KB) 

1 0.66602 116.05859375 

2 6.44831  117.546875 

3 0.58472 116.50390625 

4 12.46434  118.30859375 

5 11.22432 118.2578125 

6  0.25909  114.96484375 

 

Based on table 8, I utilized the memory_profiler.memory_usage() function from the memory_profiler 

Python library to gauge the memory consumption of my Python program. The function allows real-time 

monitoring of memory usage during program execution. I strategically placed memory measurement 

points within the codebase, particularly at critical stages of computation. These designated locations 

were marked using decorators, specifically @profile, enabling the tool to capture memory snapshots at 

those instances. It's important to note that these measurements were conducted on my personal PC dur-

ing regular usage and not during peak server loads. Despite this, the recorded memory usage values, 

represented in megabytes, offered valuable insights into the program's memory consumption patterns. 

This data was instrumental in identifying memory-intensive segments and potential optimization areas, 

even within the context of personal computer usage. 

  

7.2.5 Data Parsing Accuracy (NF-08)  

Accurate data parsing is fundamental for extracting meaningful insights from network data. To validate 

this core functionality, the following test case was conducted:  

  

Test Case: VV-DPA-01 - Data Parsing Precision  

Description: This test case involved the provision of diverse datasets with different formats and struc-

tures to verify the tool's accurate parsing of data.  



Eindhoven University of Technology 

42 

 

Public 

  

Methodology: We curated datasets encompassing varying data formats and structures, representing real-

world data heterogeneity. The tool's parsing results were meticulously compared against the original 

datasets.  

  

Expected Outcome: The tool exhibited precise data parsing capabilities, accurately handling diverse 

data formats and structures.  

  

Table 9 accuracy of tool's parsing module 

Test Scenario  Total count of events Total number 

of correctly 

parsed events 

Parsing accu-

racy rate 

1 2916 2719 93.24% 

2 22230 21796 98.05% 

3 4308 4145 96.21% 

4 67658 66256 97.92% 

5 64354 62888 97.72% 

6 2995 1774 66.7% 

 

In scenario 6, as per Table 9, log parsing accuracy is comparatively lower due to the distinct log format 

and structure inherent to this specific scenario. The discrepancy arises from its differing log format 

compared to the focus of this project, which centers on realistic queue tests, as opposed to the alternative 

test type represented by scenario 6. 

7.3    Summary  

This chapter presented a comprehensive verification and validation process conducted on the intelli-

gent diagnosis tool. The devised test cases encompassed a wide array of functional and non-functional 

requirements, rigorously assessing the tool's performance, accuracy, and adherence to constraints. The 

outcomes of these test cases provide compelling evidence of the tool's reliability, effectiveness, and 

capacity to empower network diagnostics through advanced graph-based analysis.  

  

In the subsequent chapter, the results of experimentation and analysis will be detailed, shedding fur-

ther light on the tool's practical performance and real-world applicability. 

 

The verification and validation of the intelligent diagnosis tool's capabilities, particularly in anomaly 

detection and pollution event identification, yielded promising results within the context of event log 

analysis at ASML. Through a systematic approach, a comprehensive set of test cases was executed, 

rigorously evaluating the tool's performance, accuracy, and adherence to constraints.  

  

In the realm of ASML's operations, where precision and efficiency are paramount, the tool demon-

strated its potential to enhance anomaly detection and pollution event identification. These findings 

underscore the tool's relevance in real-world industrial applications and lay the foundation for its ef-

fective integration into ASML's operational framework.  

  

The next chapter explores the results of the experiments and analyses, providing a closer look at how 

the tool performs in practice and its potential impact on ASML's operations. 



Eindhoven University of Technology 

43 

 

Public 

Conclusion  
 

The utilization of advanced data analysis techniques within industrial operations has become a corner-

stone for enhancing efficiency, reliability, and overall performance. In the context of ASML's intricate 

manufacturing processes, the application of event log analysis has been explored through the lens of a 

graph theory-based intelligent diagnostic tool. This chapter provides a comprehensive conclusion, en-

capsulating the outcomes, insights, and implications derived from the study. 

8.1    Results  

The rigorous validation and experimentation of the graph theory-based intelligent diagnostic tool within 

the realm of ASML's Realistic Queue Qualification Tests have yielded noteworthy results and signifi-

cant observations. The tool's anomaly detection capabilities demonstrated remarkable accuracy across 

diverse scenarios, underscoring its potential to enhance early detection of irregularities in complex man-

ufacturing processes. The precise identification of pollution events within ASML's event logs signifies 

a critical step towards proactive risk management. Furthermore, the automatic report generation feature 

showcased the tool's ability to synthesize complex data analyses into actionable insights, expediting 

decision-making processes.  

  

The evaluation of the tool's performance and memory usage aligns with the stringent demands of AS-

ML's operations. Its efficient resource utilization and compliance with specified execution time limits 

attest to its suitability for real-time applications within industrial contexts. 

8.2    Conclusion  

In conclusion, the integration of the graph theory-based intelligent diagnostic tool into ASML's manu-

facturing operations has proven to be a practical and valuable addition. The tool's notable contributions 

include a significant reduction in investigation time, facilitated by its ability to efficiently detect anom-

alies and consider their weights to discern event patterns and potential failure scenarios. 

 

The tool's foundation in graph theory has enabled a clear and insightful visualization of event log data, 

aiding in the understanding of event interconnections. Its lightweight design, devoid of the need for 

extensive training phases, ensures adaptability in handling evolving log sequences, aligning well with 

the changing manufacturing environment. 

 

A key strength lies in the tool's real-time functionality, allowing seamless integration with various be-

haviors and scenarios. This adaptability is crucial for effectively addressing the dynamic nature of the 

manufacturing environment. The successful application of this tool within ASML's Realistic Queue 

Qualification Tests underscores its potential to streamline manufacturing processes, reduce risks, and 

foster a culture of continuous improvement. As ASML continues to push the boundaries of innovation, 

the graph theory-based intelligent diagnostic tool represents an effective convergence of data analysis 

and industrial operations, paving the way for operational efficiency and informed decision-making. 

8.3    Recommendation and future work 

While the graph theory-based intelligent diagnostic tool has demonstrated promising capabilities, there 

exist avenues for further enhancement and exploration:  

  

• Enhanced Event Visualization: 

Future development should prioritize enhancing event visualization within the tool using graph 

theory. Incorporating a feature that clearly represents event relationships and links will provide 

stakeholders with a more intuitive understanding of the data. This enhancement becomes even 

more impactful when accessible through a user-friendly web application, enabling a broader 

audience to benefit from the tool. 

 



Eindhoven University of Technology 

44 

 

Public 

• Cross-Platform Compatibility: 

To ensure broader accessibility and seamless integration, efforts should be made to create a 

self-contained executable version of the tool compatible with both Windows and Linux plat-

forms. Cross-platform compatibility will enhance the tool's versatility, making it adaptable to 

various testing environments and catering to a wider user base. 

 

• Exploration of Additional Graph Metrics: 

Future research should delve into exploring and utilizing a diverse set of graph theory metrics 

beyond eccentricity. This exploration will enable a more comprehensive analysis of different 

scenarios, providing a deeper understanding of event interdependencies. Reporting on and an-

alyzing these additional metrics will enhance the tool's analytical capabilities and the insights 

it offers. 

 

• Collaborative Knowledge Sharing and Integration: 

Encouraging collaboration among multiple ASML teams involved in diagnostics is crucial. Es-

tablishing a centralized knowledge repository or a collaborative platform where teams can share 

insights, labeled datasets, and root causes based on various scenarios is recommended. Addi-

tionally, integrating machine learning techniques for failure prediction and root cause detection, 

leveraging the collective expertise, can further enhance the tool's capabilities and its potential 

for driving operational excellence. 

 

In summary, implementing the outlined recommendations will significantly enhance the tool's usability, 

analytical depth, and collaborative potential. These steps aim to refine event visualization, achieve 

cross-platform compatibility, explore diverse graph metrics, and promote knowledge sharing. By em-

bracing these improvements, ASML can harness the tool's full potential to drive operational efficiency 

and informed decision-making in manufacturing processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Eindhoven University of Technology 

45 

 

Public 

Abbreviations and Glossary 
 

Test cases naming and abbreviation  

The choice of test case names was based on a systematic and descriptive approach that aimed to clearly 

convey the purpose and scope of each test case. Here's how the test case names were derived and why 

they were chosen:  

  

Test Case Prefixes:  

The test case names start with a prefix that indicates the type of test case. For example, "VV" stands for 

"Verification and Validation," which provides context that these are test cases related to the validation 

process.  

 

Functional Requirement Codes:  

The functional requirement codes (e.g., F-01, F-06) were incorporated into the test case names to di-

rectly link the test case to the specific functional requirement being tested. This helps in clearly identi-

fying which aspect of the system's functionality is being verified.  

 

Brief Description:  

Following the requirement code, each test case name includes a brief description that summarizes the 

objective of the test case. This description is concise yet informative, giving a clear idea of what the test 

case aims to achieve.  

 

Context or Focus:  

In some cases, the test case name includes additional information about the context or focus of the test. 

For instance, "Scenarios Variation" in "VV-AD-01" highlights that the test is focused on different sce-

narios, and "ER Event Log Analysis" in "VV-AD-02" specifies the type of event logs being analyzed.  

The chosen approach ensures that the test case names are meaningful, informative, and easy to under-

stand. They provide a quick snapshot of the test's purpose, the aspect being tested, and any specific 

context. This aids in clear documentation, communication, and understanding of the verification and 

validation process. 

 

Glossary 
 

CPD Calibration, Performance and Diagnostic application 

IC Integrated Circuits 

ER Error Recording  

GNN Graph Neural Network  

PSG Project Steering Group 

PCA Principal Component Analysis 

LSTM Long Short-Term Memory 

EUV Extreme Ultraviolet 

FC Functional Cluster 

SNA Social Network Analysis  

SW Software 

VDI Virtual Desktop Infrastructure 

CC Clear Case  

TM Test Management  

TH Trace Handler  

MoSCoW M – Must have, S – Should have, C – Could have, W - Won't have  





Eindhoven University of Technology 

47 

 

Public 

References 
[1] Annual Report, ASML. "Small patterns. Big impact. ." 2022. 

[2] Jeremy Dick, Elizabeth Hull , Ken Jackson. Requirements Engineering. Springer, 2017. 

[3] Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su, Michael R. Lyu. "Experience Report: Deep 

Learning-based System Log Analysis for Anomaly Detection." 2021. 

[4] Zhao, Z., Xu, C., & Li, B. (2021). A LSTM-based anomaly detection model for log analysis. Jour-

nal of Signal Processing Systems, 93, 745-751. 

[5] Cinque, Marcello, Domenico Cotroneo, and Antonio Pecchia. "Event logs for the analysis of soft-

ware failures: A rule-based approach." IEEE Transactions on Software Engineering 39.6 (2012): 806-

821. 

[6] Soboleva, A., & Tushkanova, O. (2020, April). The Methodology of Extraction and Analysis of 

Event Log Social Graph. In 2020 26th Conference of Open Innovations Association (FRUCT) (pp. 

415-422). IEEE. 

[7] Yuan, Y., Wang, Z., & Wang, Y. (2022). Learning latent interactions for event classification via 

graph neural networks and PMU data. IEEE Transactions on Power Systems, 38(1), 617-629. 

[8] Yadav, R. B., Kumar, P. S., & Dhavale, S. V. (2020, June). A survey on log anomaly detection us-

ing deep learning. In 2020 8th International Conference on Reliability, Infocom Technologies and Op-

timization (Trends and Future Directions)(ICRITO) (pp. 1215-1220). IEEE. 

[9]  Min, S., Gao, Z., Peng, J., Wang, L., Qin, K., & Fang, B. (2021). STGSN—A Spatial–Temporal 

Graph Neural Network framework for time-evolving social networks. Knowledge-Based Systems, 

214, 106746. 

 





Eindhoven University of Technology 

49 

 

Public 

Appendix A. Stakeholder Analysis     
 

Stakeholder analysis is an essential step in any project as it helps to identify and understand the needs 

and expectations of individuals or groups that can affect or be affected by the project. In this report, we 

present a detailed stakeholder analysis of the project, which involves ASML Netherlands B.V. and the 

Eindhoven University of Technology. This chapter aims to provide an in-depth understanding of the 

stakeholders' interests, concerns, and roles in the project. It also outlines the process of stakeholder 

identification, analysis, and engagement. The main stakeholders in this project include representatives 

from different departments of ASML, such as the software development team, the quality assurance 

team, and the engineering team. The Eindhoven University of Technology is also a significant stake-

holder, as it provides research support and academic expertise. The stakeholder analysis chapter pro-

vides a comprehensive overview of the stakeholders' roles, responsibilities, and expectations, which 

helped to ensure that the project meets all the relevant requirements and expectations. 

 

8.4    ASML Netherlands  

 

ASML Netherlands B.V. is the industrial part of this project. The outcome of this project could bring 

added value to the company. ASML stakeholders were responsible for providing the details and related 

domain knowledge of the root cause analysis and realistic queues. Table 6 lists the main ASML stake-

holders. Their involvement level was quite different depending on their expertise and interest. Mari 

Mnatsakanyan, Andre Korbes, and Junchao Xu, the project supervisors, closely monitored the project's 

progress via weekly meetings. The rest of the stakeholders were involved in the project through neces-

sary meetings and project steering group meetings. 

 

Table 8 ASML stakeholders 

Id Role Concerns 

1   

ASML Supervisor  

 

A. Ensuring the system design satisfies stakeholders' 

concerns  

B. Helping the EngD trainee to overcome a steep 

learning curve inside ASML  

2  

ASML Supervisor 

 

A. Ensuring the system design satisfies stakeholders' 

concerns  

B. Helping the EngD trainee to overcome a steep 

learning curve inside ASML  

3  

ASML Supervisor 

 

A. Ensuring the system design satisfies stakeholders' 

concerns  

B. Helping the EngD trainee to overcome a steep 

learning curve inside ASML  

4  

ASML Group Leader  

 

A. Project success  

B. Adherence to the company rules  

 

5  ASML Software Field Perfor-

mance - Analytics and Visualiza-

tion Engineer in SQL Test Data 

Analysis team 

 

A. Visualization effect 

B. Manual inspection importance 

 



Eindhoven University of Technology 

50 

 

Public 

6 ASML Engineer - Automatic root 

cause analysis Engineer  

 

A. Graph theory based method Verification   

B. Detecting pollutions  

C. Helps in comparative analysis between different au-

tomation tools   

 

7  Software development, require-

ment analysis, implementation 

and design 

 

A. Software development technical limitation   

B. Comparative analysis of different root cause auto-

mation tools  

C. Verification methods   

8 Data science engineer   

A. Casual influence context 

B. Data Reduction and chunking  

C. Event logs domain knowledge    

9  

Software engineers  

 

A. Domain knowledge sharing   

B. Technical brainstorming  

10 Functional engineer  A. Domain knowledge  

 

Stakeholder analysis is a crucial step in designing any tool or system. In the case of a tool to automate 

event log file analysis, it is important to consider the perspectives and concerns of various stakeholders. 

One of the stakeholder concerns is false positive results, which may lead to the tool missing important 

anomalies or root causes. To address this concern, the tool could incorporate additional methods for 

identifying and flagging potential false negatives, such as manual verification by human experts or 

machine learning algorithms. 

 

Another concern is keeping the tool up-to-date with changing environments and sequences. This re-

quires ongoing maintenance and updates to ensure the tool remains relevant and effective. Stakeholders 

may also express concern about false outliers or the interpretation of results, which can be addressed 

through clear and transparent documentation and explanation of the tool's processes and outputs. 

 

Verification is another challenge stakeholders may raise, as they will want to ensure the tool is accurate 

and reliable. This can be achieved through rigorous testing and validation processes, including both 

automated and manual verification. Window size can also be a problem, as it can affect the accuracy 

and usefulness of the tool's results. To address this, the tool could incorporate adjustable window sizes 

or adaptive algorithms to account for changing data patterns. 

 

Interconnected data and large amounts of data can also pose challenges, as stakeholders may be over-

whelmed by the sheer volume of information. To address this, the tool could incorporate data visuali-

zation techniques to make it easier to identify trends and anomalies. Stakeholders may also express a 

need for quick and accurate pointers to the root cause, which can be achieved through advanced algo-

rithms or machine learning techniques. 

 

Overall, stakeholder analysis plays a critical role in designing a tool to automate event log file analysis. 

By considering the concerns and perspectives of various stakeholders, the tool can be designed to meet 

the needs of all parties involved and provide valuable insights into the root causes of issues in complex 

systems. 

8.5    Eindhoven University of Technology 

 



Eindhoven University of Technology 

51 

 

Public 

This section describes the main stakeholders of the Eindhoven University of Technology. They are 

mainly responsible for ensuring that the quality of the project deliverables meets the EngD standards. 

The knowledge and experience of these stakeholders regarding the project business logic might be lim-

ited. However, they provide help and support from the academic point of view, if needed. Table 7 lists 

the main stakeholders and their concerns. Dr. Kruger was primarily involved in the project via PSG 

meetings. He got regularly updated either by emails or private meetings. Dr. Dajsuren occasionally 

participated in the PSG meetings and urgent situations meetings. 

 

Table 9 TU/e stakeholders 

Id Role Concerns 

1   

TU/e EngD ST Program 

Director  

 
A. Ensuring that the quality of the project is following the 

EngD program standards  

B. Trainee's graduation  

C. Project Success  

 

2   

TU/e Supervisor  
 
A. Monitoring the trainee’s progress  

B. Helping the trainee to overcome potential difficulties by 

giving directions in case of need  

C. Evaluating the project achievements  

 

3   

TU/e EngD Trainee  
 
A. On-time graduation  

B. Project success  

C. Developing project management and soft skills  

D. Developing technical skills, including designing skills and 

computer vision  

E. Stakeholder expectation management  

 

 

It is important to note that not all stakeholders have the same influence on and interest in the project. It 

is crucially important to figure out how each stakeholder could influence the project and its direction. 

During the project, the trainee tried to grab the attention of the stakeholders with less interest but high 

impact on the project by providing interesting results to increase their involvement to be able to request 

and get more specific information. 

Appendix B. Project Management     
 

Project management is one of the key factors in project success. It aims to define the project roadmap 

and strategies to tackle difficulties and risks within the project, facilitating the achievement of the pro-

ject goal within the given constraints. In this project, project management was done using earned-value 

analysis. During the first weeks of the project, the main milestones were determined, and later on, during 

each iteration, more detailed tasks were planned. The following sections explain the way of working, 

project planning, and risk management in this procedure. 

 

8.6    Project network diagram 

A project network diagram is an important tool because it helps teams visualize the activities that need 

to be completed over the duration of a project. It also gives crucial contexts such as task duration, 

sequence, and dependency. As it is also shown in Figure 5, a project network is a graph that shows the 

activities, duration, and interdependencies of tasks within your project.  



Eindhoven University of Technology 

52 

 

Public 

 

Literature reviewStart
Requirement 

elicitation
Prototyping

Design and 
Implementation

Verification and 
Validation

End

Each iteration

 

Figure 5 Project network diagram 



Eindhoven University of Technology 

53 

 

Public 

About the Author 

  

I am a skilled software engineer and machine learning enthusiast with a 

strong background in computer science. I have extensive experience de-

veloping software applications for a variety of industries, including sup-

ply chain management, health, and IT consulting and outsourcing. My 

passion for machine learning is demonstrated through my completion of 

advanced courses, participation in industry projects that involve data 

analysis and modeling, and the development of data-driven solutions to 

complex problems in diverse fields. Currently, I am pursuing an EngD 

program in the Netherlands to further expand my knowledge and skills 

in software development and machine learning. I am excited about ex-

ploring interesting opportunities to apply my expertise and further my 

career.  

 

  

  

 


