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1
I N T R O D U C T I O N

This thesis concerns one of the most fundamental topics in numerical linear alge-
bra: the low-rank approximation of matrices. This chapter is a brief introduction
to this problem.

With the proliferation of big data matrices, dimensionality reduction has be-
come an important tool in many data analysis applications. Approximating a
data matrix with one of lower rank is a widely used technique for unsupervised
linear dimensionality reduction.

Given a data matrix A ∈ Rm×n (without loss of generality, throughout the
thesis unless otherwise stated, we assume m ≥ n), we compute its low-rank
approximation by finding rectangular factors U and V such that

A ≈ U V⊤ ,
m × n m × k k × n

(1.1)

for some target rank k ≪ min(m, n). In many applications, the data matrix
has a low numerical rank and can therefore be well approximated by a low-
rank matrix [90]. Data matrices of low rank arise in the discretization of PDEs,
machine learning applications, text document analysis, and genomics [11, 41, 68].
Having a low-rank representation of A is advantageous in terms of storage and
computational efficiency. For example, multiplying a dense matrix A by a vector
x ∈ Rn costs O(mn) operations; for a rank-k factorization A ≈ UV⊤, the cost of
a matrix-vector multiplication reduces to O((m + n)k).

There are several methods of low-rank matrix approximation for a given
problem; however, the approximated data often consist of derived features that
are either no longer interpretable or difficult to interpret in the original context.
The singular value decomposition (SVD) is a widely used method for optimally
approximating and compressing data. However, it can be challenging for domain
experts of the field from which the data are drawn to interpret the singular
vectors that result from the decomposition because they are a linear combination
of all the data features.

In some applications, it is important to find an approximation that preserves
the original characteristics of the data, such as sparsity, nonnegativity, and integer
values, while also being interpretable. One way to achieve this is through an

1



2 introduction

interpolative decomposition or a CUR decomposition. This decomposition has
first been introduced by Goreinov et al. [52] as the pseudoskeleton decomposition.
A CUR decomposition involves using a subset of the rows and columns of a
matrix to approximate it. More specifically, in a CUR matrix factorization with
a desired rank of k, the matrix A ∈ Rm×n is represented by the matrix product
C · U · R, where C ∈ Rm×k and R ∈ Rk×n contain a carefully selected subset
of the columns and rows of A, respectively, and U ∈ Rk×k is computed such
that the low-rank approximation to A holds. Since CUR decompositions are
constructed from actual data elements, the factors are easily interpretable by
practitioners of the field from which the data are drawn, as long as the original
data is understandable. Qualitatively, the selected subsets of rows and columns
are deemed to capture the most relevant information hidden in the underlying
matrix structure.

The original motivation for this research stems from a project of AcomeA SGR.
AcomeA SGR is an asset management company that offers, besides traditional
systems of investment, an online app (Gimme5) where single investors may invest
any amount of money in a range of mutual funds that can be claimed at any time.
The app is mostly used by small investors like students, young people, etc. as
“piggy banks". The project aims to identify customers (using the app) who have a
financial potential larger than their actual investments, to apply target marketing
strategies. Financial potential measures the investment capacity of customers
in this context, i.e., the amount of money an investor can invest consistently
over a long period. The financial potential of an investor provides AcomeA with
directions to focus its marketing efforts in the most cost-effective way possible.
Rather than trying to reach every customer who could use Gimme5, focusing a
marketing plan to fit a smaller and possibly, customers with unexploited financial
potential can allow the company to carve out a niche for Gimme5. For this project,
we leverage a CUR decomposition for customer profiling and targeted marketing.

The data matrix is structured as follows: each row corresponds to an investor,
and each column represents a specific feature that characterizes the investor’s
investment behavior, socio-demographic background, geolocation data, and esti-
mated financial potential. A CUR decomposition is employed to select a subset
of the most relevant columns and rows. The selected rows are the subset of
investors that exhibit characteristics or behaviors that are considered influential
in understanding the financial potential and investment behavior. Each selected
row corresponds to an investor profile, a summarized representation of their
investment behaviors, estimated financial potential, and relevant attributes. These
profiles provide a concise yet informative snapshot of each investor’s characteris-
tics, facilitating easy comparison and analysis. Additionally, the selected rows
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are essential for segmenting investors based on shared characteristics. Clustering
investors with similar profiles enables the creation of distinct segments, each
representing a group of investors with comparable investment behaviors and in-
ferred financial potential. The segments allow for the implementation of targeted
marketing strategies tailored to the unique preferences and needs of each group.

The selected columns represent the most informative features that drive investor
differentiation. They serve as the building blocks for creating investor profiles.
Each column’s values contribute to defining an investor’s profile, capturing their
behavior and characteristics. These columns collectively form a comprehensive
representation of an investor’s investment tendencies, financial potential, and
relevant attributes. Furthermore, they play a crucial role in defining the criteria
for segmenting investors. The shared attributes within these columns guide the
formation of segments that exhibit similar investment behaviors and financial
potential. The segments enable targeted marketing efforts that resonate with
specific investor groups.

In summary, we use the selected rows and columns to enhance the understand-
ing of investor behavior and financial potential, enabling us to develop more
effective marketing strategies and refine engagement efforts for a diverse investor
base.

A CUR decomposition possesses several compelling properties:

• Enhanced data interpretation: One of the notable advantages of a CUR
decomposition lies in the identification of subsets of rows and columns
that contribute significantly to the structure of the original matrix. These
identified subsets often hold valuable insights for data interpretation. In
scenarios where understanding the underlying patterns of the data is crucial
like in the case of investor profiling, the information about selected rows
and columns aids in clarifying the meaningful aspects of the data.

• Preservation of matrix properties: A CUR decomposition preserves impor-
tant characteristics of the original matrix. This is particularly evident when
the matrix possesses specific attributes, such as sparsity or nonnegativity.
When the matrix is sparse or nonnegative, the resulting factors C and R also
inherit these properties. This feature is crucial when dealing with data that
has inherent characteristics, as it ensures that the approximation retains the
same structural qualities.

• Memory and computational efficiency: A CUR decomposition stands out for
its memory efficiency, making it a practical choice when dealing with large
data sets. In particular, when the entries of the matrix itself are available or
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can be inexpensively retrieved, then, once the important column and row
indices are determined, there is no need to explicitly store the factors C and
R. Additionally, the process of selecting the subsets of columns and rows
in a CUR decomposition can often be achieved using efficient algorithms,
e.g., randomized algorithms. This leads to faster computations compared
to some other factorization methods like the SVD while achieving good
approximation quality.

Column or row subset selection is a long-standing problem in numerical
linear algebra that has recently seen significant advancements in theoretical and
algorithmic developments in the fields of numerical linear algebra and theoretical
computer science. This problem has a wide range of applications, including
scientific computing, model reduction, and statistical data analysis.

The primary focus of the work presented in this thesis is to improve existing
deterministic techniques and develop new tools for the analysis of a CUR
factorization and its generalizations.

In the first part of this thesis (Chapters 2, 3, 4, and 5), we give a brief review
of four different types of low-rank approximations: the singular value decompo-
sition; a rank-revealing QR factorization; column subset selection, which aims
at selecting k columns of A that well approximate the column range of A; and
a CUR approximation, which uses k rows and columns of A to approximate A.
We discuss deterministic algorithms for building low-rank approximations of a
matrix using some rows or columns of the matrix itself. We provide a modified
version and an extension of an existing CUR decomposition algorithm. We also
propose a new column or row selection strategy that iteratively invokes existing
column subset selection methods.

A CUR factorization is designed to handle one data matrix at a time. Various
practical applications involve multiple data matrices, in which one is tasked with
extracting the most discriminative information of one data set relative to others.
Additionally, the multiple data sets may also provide information complementary
to each other and one is interested in discovering the underlying structure shared
by two different representations of a given data. In the second part of the thesis
(Chapters 6 and 7), we generalize a CUR decomposition to the setting where we
have multiple data sets.

organization of the thesis

The thesis is divided into two parts corresponding to the two broad topics
mentioned above. Each part contains a more detailed introductory chapter. Our
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contributions are presented in Chapters 3, 4, 5, 6, and 7 which are based on the
papers [42–46]. Finally, a conclusion that will summarize the contributions of the
thesis, attempt to put them into perspective and give some directions for further
research.





Part I

L O W- R A N K M AT R I X A P P R O X I M AT I O N
B A S E D O N C O L U M N S A N D R O W S

The problem of approximating a matrix with a lower-rank matrix
plays a fundamental role in data analysis and is widely used for
linear dimensionality reduction. The primary objective is to represent
a given matrix as the product of two or three matrices with smaller
dimensions, thereby constructing a low-rank matrix approximation.
This process facilitates data compression, noise reduction, and efficient
computation.

This part of the thesis aims to provide an overview of some exist-
ing techniques employed for low-rank matrix approximations. These
methods encompass a range of approaches, such as the SVD, a pivoted
QR factorization, and a CUR decomposition. Each of these techniques
involves different mathematical formulations and algorithms, allowing
for various trade-offs between accuracy, interpretability, and computa-
tional complexity.

We propose new algorithms that leverage a subset of the original ma-
trix’s rows and columns to construct a low-rank matrix approximation.
By carefully selecting these subsets, we can capture the most influen-
tial features of the data while significantly reducing the dimensionality.
This approach enhances the efficiency of the approximation process
and enables the interpretation and analysis of large-scale data sets
that would otherwise be computationally intractable.

Through numerical experiments, we demonstrate the effectiveness and
efficiency of our proposed algorithms compared to existing techniques.
We showcase their performance on diverse data sets, highlighting their
advantages and possible limitations.





2
L O W- R A N K M AT R I X A P P R O X I M AT I O N S

In Chapter 1, we mentioned that the goal in many applications is not just to
compute any factorization satisfying equation (1.1), but also to impose additional
constraints on the factors U and V. In this chapter, we will describe different
specific low-rank matrix decompositions that incorporate these constraints.

2.1 the singular value decomposition

The SVD gives the best low-rank approximation of a matrix when the approxi-
mation error is in terms of Frobenius or spectral norm. Every matrix A ∈ Rm×n

(without loss of generality m ≥ n) admits an economy-sized SVD of the form

A = UΣV⊤, (2.1)

where U ∈ Rm×n and V ∈ Rn×n are matrices with orthonornal columns, and
Σ = diag(σ1, . . . , σn) is a diagonal matrix containing the nonincreasing singular
values σ1 ≥ · · · ≥ σn ≥ 0. The orthonormal columns of U and V are the left and
right singular vectors, respectively. We can find a truncated SVD (TSVD) of A by
setting all but the first k < rank(A) largest singular values to zero and using only
the first k columns of U and V.

Given a target rank k, the problem of minimizing ∥A − Ak∥ for the spectral or
Frobenius norm has a well-known solution given by the Eckart–Young–Mirsky
theorem. Here, Ak is a rank-k approximation of A.

Theorem 2.1. (Eckart–Young–Mirsky Theorem, see, e.g., [63]) Let Uk and Vk contain
the first k left and right singular vectors, respectively, and Σk be the leading k × k
submatrix of Σ. For ξ = 2 or F, it holds that

min
Ak∈Rm×n

rank(Ak)≤k

∥A − Ak∥ξ = ∥A − UkΣkV⊤
k ∥ξ .

The minimal error is achieved by the truncated SVD of A. The minimizer Ak is unique if
and only if σk ̸= σk+1.

In terms of Frobenius norm, the right-hand side of the above equation equals√
σ2

k+1 + · · ·+ σ2
n and for spectral norm it equals σk+1.

9



10 low-rank matrix approximations

2.2 rank-revealing qr decomposition

A rank-revealing QR (RRQR) factorization is a numerical technique used to
compute the QR factorization of a matrix while also revealing its numerical rank
and providing information about the importance of its columns. It is particularly
valuable when dealing with ill-conditioned or nearly rank-deficient matrices,
where standard QR factorization might not provide accurate rank information
due to numerical errors.

The goal of an RRQR factorization is to identify a permutation of the columns
of the original matrix A such that the resulting matrix T has a clear block structure
with a well-defined upper triangular part and a lower triangular part close to zero.
This reveals the numerical rank and helps identify the (nearly) linearly dependent
columns. Given matrix A ∈ Rm×n with m ≥ n, consider a QR factorization of the
form

A Π = Q

[
T11 T12

0 T22

]
,

m × n n × n m × n n × n

where Q is a matrix with orthonormal columns, T11 ∈ Rk×k is upper triangular
with nonnegative diagonal entries, T12 ∈ Rk×(n−k), T22 ∈ R(n−k)×(n−k), and Π is
a permutation matrix chosen to reveal linear dependence among the columns of
A. Usually k is selected such that ∥T22∥ is sufficiently small. By the interlacing
property of singular values, for any permutation Π, it holds that

σmin(T11) ≤ σk(A) and σmax(T22) ≥ σk+1(A),

where σmin and σmax denote the smallest and largest singular values, respectively.
Suppose A has a numerical rank k and σk+1 ≪ σk. The aim in an RRQR factoriza-
tion is to find a Π such that σmin(T11) is maximized and σmax(T22) is minimized,
i.e.,

σmin(T11) ≈ σk(A) and σmax(T22) ≈ σk+1(A).

A common method for computing a rank-revealing factorization is a QR factor-
ization with column pivoting. The upper triangular matrix T of a column-pivoted
QR factorization satisfies the condition [93, Subsection 2.2, p. 3]

|Tkk|2 ≥
j

∑
i=k

|Tij|2, j = k + 1, . . . , n, k = 1, . . . , n.
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Given p, a vector of indices, we can express Π as I(:, p). Suppose we partition Q
so that

A(:, p) = [Q1 Q2]

[
T11 T12

0 T22

]
= Q1 [T11 T12] + Q2 [0 T22], (2.2)

where Q1 ∈ Rm×k, Q2 ∈ Rm×(n−k), and Âk := Q1 [T11 T12], we have

∥AΠ − Âk∥ ≤ ∥T22∥

to be the error bound of a truncated column-pivoted QR decomposition of A.
This implies that Q1 is an approximation of the range of A and as long as ∥T22∥
is small, A(:, p) can be approximated by Âk. A low-rank approximation of the
matrix A can be derived by neglecting the submatrix T22 in a column-pivoted QR
factorization of A.

To compute a pivoted QR factorization, one may use the column-pivoted Gram–
Schmidt algorithm [48]. A QR factorization with column pivoting works well in
practice; however, there are examples where it fails to produce a factorization that
yields a small ∥T22∥ (see, e.g., [53]). To circumvent this, QR factorization with
other pivoting choices to compute an RRQR factorization have been proposed [14,
15, 48, 53]. The computational complexities of these methods are slightly larger
than the standard QR decomposition algorithm.

2.3 the column subset selection problem and cur factorization

The column subset selection problem is closely connected to a pivoted QR
factorization [14, 15, 53, 93]. The aim is to find a subset of the columns of a real
matrix, such that, the subset represents the entire matrix well and is far from
being rank deficient. That is, determine an index set p ∈ {1, . . . , n} containing k
distinct entries such that the corresponding k columns A(:, p) represent a good
approximation of the column range of A. More precisely, the following is the
definition of a column subset selection problem.

Problem 2.2. Given A ∈ Rm×n and a positive integer k, select k columns of A to
form C ∈ Rm×k such that the residual ∥A−CC+A∥ξ , for ξ = 2 or F, is minimized
over all possible (n

k) choices for C.

Selecting k out of n (with k ≪ n) columns such that ∥A − CC+A∥ξ is mini-
mized requires O(nk) time. Finding an exact solution to this problem will be
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prohibitively slow for large data sizes and becomes computationally intractable.
Therefore, researchers have focused on computing an approximate solution to
the problem.

Closely related to the column subset selection problem is a CUR decomposition,
which gives a low-rank approximation explicitly expressed in terms of a small
number of columns and rows of A. The CUR factorization problem has been
widely studied in the literature [8, 10, 17, 31, 32, 51, 52, 72, 83, 93, 94]. One can
obtain a CUR decomposition by using a column subset selection algorithm on
A and on A⊤ to construct C and R, respectively. Existing CUR algorithms use
a column subset selection procedure to form the matrix C and R. The methods
for constructing a CUR decomposition can be categorized into two broad groups,
i.e., randomized and deterministic algorithms. In this thesis, we will restrict our
discussions to deterministic algorithms and the selection of exactly k columns
and rows.

A rank-k CUR decomposition of an arbitrary matrix A ∈ Rm×n is of the form
(In line with [87], we will use the letter M rather than U for the middle matrix
because we use the letter U in other decompositions)

A ≈ CMR := AP · M · S⊤A. (2.3)

Here, P is an n× k (where k < min(m, n)) index selection matrix with some columns
of the identity matrix In that selects certain columns of A. Similarly, S is an m × k
matrix with columns of Im that selects certain rows of A; so C is m × k and R
is k × n, both of rank k. We construct the k × k matrix M of full rank such that
the decomposition is as close to A as possible. Given matrices C and R of full
rank, a standard procedure to determine M is (see, e.g., [83, Sec. 2], where also
an alternative is presented) by two consecutive least squares problems:

1: Solve the least squares problem CX ≈ A for X ∈ Rk×n

with solution X = (C⊤C)−1C⊤A.
2: Solve the least squares problem R⊤M⊤ ≈ X⊤ for M ∈ Rk×k

with solution M = XR⊤(RR⊤)−1.
Both steps are optimal in terms of the spectral and Frobenius norms. It is

important to note that the solution in the spectral norm may not be unique.
Similar to the column subset selection problem, obtaining an optimal subset of
k columns and rows is a combinatorial problem—a trivial algorithm takes nk

and mk time, respectively, so existing procedures seek an approximate solution.
Consequently, given k, a CUR decomposition is not unique; there are several ways
to obtain this form of approximation to A with different techniques of choosing
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the representative columns and rows. Many algorithms for this decomposition
using the TSVD as a basis have been proposed [10, 33, 72, 83, 94].

The optimal rank-k approximation error in terms of the spectral or Frobenius
norm given by

min
Uk∈Rm×k

∥A − UkU+
k A∥ξ , for ξ = 2 or F,

provides a lower bound for ∥A − CMR∥ξ . Most algorithms proposed in the
literature seek to construct C and R such that

∥A − CMR∥ξ ≤ µ · ∥A − Ak∥ξ (2.4)

for some modest value of µ. In other words, existing methods for a CUR decom-
position aim to find an approximation that is at least as good as the SVD.

2.4 deterministic algorithms for a cur factorization

In the following sections, we summarize some well-known and most relevant
deterministic index selection algorithms for computing a CUR factorization.

2.4.1 Leverage scores sampling

The deterministic column subset selection algorithm proposed by Jolliffe [66] is
one of the first column subset selection algorithms. The algorithm corresponds
to the largest leverage scores for some target rank k. A leverage score is used
to determine the impact of a specific row or column in a matrix on the overall
matrix. It can be thought of as representing the influence or “leverage” that a
particular row or column has on the rest of the matrix.

Definition 2.3. Given a data matrix A ∈ Rm×n, consider any matrix Q ∈ Rm×n

with orthonormal columns such that Range(Q) = Range(A). The ith leverage score
corresponding to the ith row of A is defined as

ℓ(i) := ∥Q(i, :)∥2, for i = 1, . . . , m.

Since ∥Q∥F =
√

n, we have that
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ℓ(i) ≥ 0 for all i and
m

∑
i=1

ℓ(i) = n.

Note that the leverage score does not depend on the particular choice of the
orthonormal basis matrix Q. Leverage scores are typically computed using the
singular vectors of A.

Most leverage-score-based CUR decomposition algorithms involve randomized
sampling [10, 31, 33, 72, 94]. Papailiopoulos, Kyrillidis, and Boutsidis [77] provide
a provable approximation guarantee for the deterministic leverage score sampling
summarized in Algorithm 1. The authors show that, when the leverage scores
follow a moderate power-law decay, deterministic sampling can be just as accurate
as randomized sampling.

Algorithm 1: Deterministic leverage scores sampling [77]
Data: A ∈ Rm×n, k, θ = k − ε, ε ∈ (0, 1)
Result: Column index set p ∈ Nc

+

1 Compute V ∈ Rn×k (top right singular vectors of A)
2 Sort in a nonincreasing order ℓi = ∥V(i, :)∥2 for i = 1, . . . , n
3 Find index c such that: c = argminc

(
∑c

i=1 ℓi > θ
)

4 If c < k, set c = k
5 Index set p contains the indices of c largest leverage scores

Given a stopping parameter θ and target rank k, the deterministic leverage
score sampling algorithm selects at least c ≥ k column indices. It is worth noting
that an upper bound on the number of column indices c that this algorithm can
select is not immediate. In [77], the authors show how the stopping parameter
θ = k − ε for some ε ∈ (0, 1) directly controls the number of output columns c.
We refer the reader to [77] for more details on the theoretical analysis.

Leverage-score type procedures for constructing a CUR decomposition gener-
ally involve oversampling of rows and columns beyond the specified target rank
k. Drineas, Mahoney, and Muthukrishnan [33] develop a sampling procedure
using normalized leverage scores, which provide a “near optimal” approximation
guarantee, i.e., the CUR approximation has an error close to that of the best rank-k
approximation. The scores are computed from the k leading singular vectors of
A, which are then used to form a probability distribution for identifying the
“highly influential” rows and columns to include in the factorization [33, 72].
Mahoney and Drineas [72] demonstrate that, given a target rank k and an error
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parameter ε, their leverage-score based algorithm can provide an approximation
of a matrix A using a random subset of columns C ∈ Rm×c and rows R ∈ Rm×r.
The authors show that for some 0 < ε < 1, with a constant probability, the
approximation satisfies a relative error bound: ∥A − CMR∥F ≤ (2 + ε)∥A − Ak∥F
when the number of sampled columns and rows are c = r = O(k ε−2 log k). Here,
Ak represents the optimal rank-k approximation of A and M = C+AR+. Wang
and Zhang [94] also discuss similar ideas, proposing a CUR factorization using
an adaptive sampling method that relies on leverage scores based on residuals
computed during the process of constructing the decomposition.

2.4.2 MaxVol Algorithm

The MaxVol algorithm [50, 51] is a commonly used deterministic method for
obtaining a CUR factorization of a matrix. This technique involves selecting a
subset of rows and columns from the input matrix to create a smaller, well-
conditioned submatrix. The MaxVol scheme is a search method that aims to find
the submatrix with the largest volume in a tall-thin matrix. Here, the volume
of a matrix is defined as the absolute value of its determinant. The MaxVol
method is first introduced by Goreinov et al. [51], who used it to construct a
rank-k CUR factorization called the pseudoskeleton approximation. Oseledets and
Tyrtyshnikov [75] later developed a cross-approximation scheme that alternates
between selecting rows and columns using the MaxVol algorithm.

Algorithm 2: MaxVol: Approximation to dominant submatrix [50]

Data: U ∈ Rm×k with m > k, convergence tolerance δ (default 0.01)
Result: s ∈ Nk

+ indices
1 s ← k first indices of pivoted rows from LU decomposition of U
2 repeat
3 Set Û ← U(s, :) and B ← UÛ−1

4 Find the element of maximum absolute value in B: (i, j) ← argmax |bij|
5 if |bij| > 1, swap rows i and j in B: s(j) = i
6 until ∀ (i, j): |bij| < 1 + δ ;

Given a tall-thin matrix U ∈ Rm×k, the MaxVol procedure searches for k row
indices such that the resulting k × k upper submatrix Û is dominant in U [50].
This means that |UÛ−1|ii ≤ 1. While the dominant property does not necessarily
imply that Û has the maximum volume, it does guarantee that Û is locally
optimal; meaning that replacing any row in Û with a row from U that is not
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already present in Û will not increase the volume. The procedure for finding a
dominant submatrix using the MaxVol algorithm is outlined in Algorithm 2.

A useful initialization step for the MaxVol algorithm is to use the pivoted rows
from the LU decomposition of the input matrix as the starting point [50]. The
parameter δ is the convergence tolerance to find pivot elements; this parameter
serves as a stopping criterion and should be sufficiently small (a good choice can
be 0.01) [50]. Note that by swapping the rows as done in Line 5, the volume of
the upper submatrix in B is increased, and also in U until convergence. The most
expensive part of the iterations is Line 3; this needs a k × k matrix inversion and
O(mk2) operations for the matrix multiplication. Goreinov et al. [50] describe
a speed optimization process that avoids expensive matrix multiplications and
inversions. We refer the reader to [50] for a more detailed explanation of the
MaxVol approach.

2.4.3 Discrete empirical interpolation method

The discrete empirical interpolation method (DEIM) is a deterministic greedy
index selection algorithm originally presented in [16], as a discrete variant of the
empirical interpolation method proposed in [5] in the context of model order
reduction for nonlinear dynamical systems. Sorensen and Embree [83] show
that this procedure is a viable index selection algorithm for constructing a CUR
factorization. The DEIM scheme plays an important role in all the newly proposed
methods in this thesis.

The procedure works on the columns of specified basis vectors sequentially.
The basis vectors must be linearly independent. Assuming we have a full-rank
basis matrix U ∈ Rm×k with k < m, to select k rows from U, the DEIM procedure
constructs an index vector s ∈ Nk

+ such that it has nonrepeating values in
{1, . . . , m}. Defining the selection matrix S as an m × k identity matrix indexed
by s, i.e., S = I(:, s) and x(s) = S⊤x (cf. [83]), we have an interpolatory projector
defined through the DEIM procedure as

S = U(S⊤U)−1S⊤.

We can show that S⊤U is nonsingular (see [83, Lemma 3.2]). The term interpolatory
projector stems from the fact that for any x ∈ Rm, we have

(Sx)(s) = S⊤Sx = S⊤U(S⊤U)−1S⊤x = S⊤x = x(s),
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implying the projected vector Sx matches x in the s entries [83].
Although the DEIM index selection procedure is basis dependent, if the inter-

polation indices are determined, the DEIM interpolatory projector is independent
of the choice of basis spanning the space Range(U).

Proposition 2.4. ([16, Def. 3.1, (3.6)]). Let Q be an orthonormal basis of Range(U).
Then,

U(S⊤U)−1S⊤ = Q(S⊤Q)−1S⊤.

This proposition allows us to take advantage of the special properties of a matrix
with orthonormal columns in cases where our input basis matrix is not (see
Proposition 6.8 and Theorem 7.5).

We will now describe the DEIM index selection process. To select the indices
contained in s, the columns of U are considered successively. The first interpola-
tion index corresponds to the index of the entry with the largest magnitude in the
first basis vector. The rest of the interpolation indices are selected by removing
the direction of the interpolatory projection in the previous basis vectors from the
subsequent one and finding the index of the entry with the largest magnitude in
the residual vector.

To form s, let uj denote the jth column of U and Uj be the matrix containing
the first j columns of U. Similarly, let sj contain the first j entries of s, and let
Sj = I(:, sj). More precisely, we define s1 such that |u1(s1)| = ∥u1∥∞ and the jth
interpolatory projector Sj as

Sj = Uj(S⊤
j Uj)

−1S⊤
j .

To select sj, remove the u1, . . . , uj−1 components from uj by projecting uj onto
indices {s1, . . . , sj−1}; thus,

rj = uj − Sj−1uj. (2.5)

Then take the index of the entry with the largest magnitude in the residual, i.e.,
sj, such that

|rj(sj)| = ∥rj∥∞.
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As noted in [16], in case of a tie, e.g., |(rj)i| = |(rj)ℓ| for i ̸= ℓ, the smaller index
is picked. This process will never produce duplicate indices as noted in the paper
“A DEIM-induced CUR decomposition” [83, p. A1458]. In a nutshell, we find the
indices via a nonorthogonal Gram–Schmidt-like process (oblique projections) on
the u-vectors. Since the input vectors are linearly independent, the residual vector
r is guaranteed to be nonzero.

Algorithm 3: Discrete empirical interpolation index selection method [16]

Data: U ∈ Rm×k with k ≤ m (full rank)
Result: Indices s ∈ Nk

+ with non-repeating entries
1 s(1) = argmax1≤i≤m |(U(:, 1))i|
2 for j = 2, . . . , k do
3 U(:, j) = U(:, j)− U(:, 1 : j − 1) · (U(s, 1 : j − 1) \ U(s, j))
4 s(j) = argmax1≤i≤m |(U(:, j))i|
5 end

This DEIM algorithm forces the selection matrix S to find k linearly independent
rows of U such that the local growth of ∥(S⊤U)−1∥ is kept modest via a greedy
search [16, p. 2748] as implemented in Algorithm 3 1. It is worth mentioning that,
the DEIM index selection process is limited by the rank of the basis matrix; i.e.,
the number of indices to be selected can be no more than the number of basis
vectors available.

In [34], Drmac and Gugercin propose a column-pivoted QR factorization-based
DEIM called QDEIM, which is much simpler than the original DEIM with a
bound that is in the same order of magnitude as the DEIM projection error bound.
The availability of a column-pivoted QR implementation in many open-source
packages makes this algorithm an efficient alternative index selection scheme.

Algorithm 4: QDEIM index selection scheme [34]

Data: U ∈ Rm×k with k ≤ m (full rank)
Result: Indices s ∈ Nk

+ with non-repeating entries
1 [∼,∼, pivot] = qr(U⊤) (column-pivoted QR on U⊤)
2 s = pivot(1 : k)

To construct a rank-k DEIM-type CUR decomposition, one first applies Algo-
rithm 3 to the k leading right and left singular vectors to obtain the column and

1 Note that the forward and back slash operators used in the algorithms are Matlab-type notation
for solving linear systems and least-squares problems.
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row indices for forming the factors C and R, respectively. Similarly, using the
QDEIM approach [34] as summarized in Algorithm 4, one can apply a column-
pivoted QR procedure on the transpose of the leading k right and left singular
vectors to find the indices for constructing the factors C and R. Then, given
full-rank matrices C and R, the middle matrix is computed as M = C+AR+.

Using the results of the error analysis of the DEIM procedure in [83] (cf. also
Section 4.2.4), a CUR factorization is formed such that

∥A − CMR∥ ≤ 2k
(√

mk
3 +

√
nk
3

)
σk+1.

Analogously, using the results from [34] for the QDEIM scheme, one can derive
the k column and row indices for constructing C and R such that

∥A − CMR∥ ≤
√

4k+6k−1
3

(√
m−k+1
σmin(U)

+
√

n−k+1
σmin(V)

)
σk+1,

where U and V contain the k-leading left and right singular vectors. Notice
that both bounds feature an exponential dependence on k and depend on the
dimension of the matrix.

Although the computation of an (approximate) SVD is a prerequisite for the
CUR algorithms discussed and proposed in this thesis, it is important to highlight
that there exist alternative procedures for constructing a CUR factorization that
do not rely on the SVD. These alternative methods are often designed to reduce
computational complexity. The works of [7, 23, 24, 85, 93] present deterministic
algorithms for column subset selection and a CUR factorization that leverages a
column-pivoted QR decomposition. The column-pivoted QR decomposition is a
cheaper alternative to the SVD.

2.4.4 Rank-revealing QR factorization

The classical truncated column-pivoted QR factorization is another approach
for computing a CUR factorization [93]. Notice that from (2.2), Q1T11 equals
the first k columns of A(:, p), so we can form C = Q1T11. To construct a CUR
decomposition, one may apply a Gram–Schmidt-based pivoted QR algorithm to
the matrices A and A⊤ to obtain the matrices C and R, respectively [7, 85].

Alternatively, Voronin and Martinsson [93] show how to compute a CUR
factorization via a two-sided interpolative decomposition (ID), which in turn can
be constructed from a column-pivoted QR factorization. Given matrix A ∈ Rm×n,
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an m × k matrix C whose columns constitute a subset of those of A, and a k × n
matrix M̃, such that

• some size-k subset of the columns of M̃ form the k × k identity matrix, and

• no entry of M̃ has absolute value greater than 1,

CM̃ is an interpolative decomposition of A [21, 93]. One could equally approxi-
mate the matrix as A ≈ M̂R, where R contains k rows of A and the properties of
M̂ are analogous to those of M̃. Both interpolative and CUR decompositions share
the common goal of identifying appropriate column and/or row subsets of A
such that the selected columns and/or rows adequately span the column and/or
row spaces of the original matrix. Constructing an ID and a CUR decomposition
via a two-sided interpolative decomposition [93] are summarized in Algorithms 5
and 6.

Algorithm 5: Rank-k interpolative decomposition [93]
Data: A ∈ Rm×n and desired rank k ≤ m
Result: A rank-k ID A ≈ CX⊤

1 Perform a rank-k column-pivoted QR; AΠ = Q1T1
2 Define the ordered set p via I( :, p) = Π
3 Partition T1: T11 = T1( :, 1 : k), T12 = T1( :, k + 1 : n)
4 C = A( :, p(1 : k)) and X = Π · [Ik T11\T12]

⊤

Algorithm 6: Rank-k CUR-ID [93]
Data: A ∈ Rm×n and desired rank k ≤ m
Result: A rank-k CUR decomposition A ≈ CMR

1 Perform Algorithm 5 on A so that A ≈ CX⊤
c

2 Perform Algorithm 5 on C⊤ so that C⊤ ≈ C⊤( :, s(1 : k)) X⊤
r

3 Construct R = A( :, s(1 : k)) and M = X⊤
c /R

contributions of part i

In [83], it has been demonstrated that the discrete empirical interpolation method
can be used to select indices to formulate a CUR factorization. However, the
DEIM scheme has two notable limitations: First, the number of column or row
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indices that can be selected is limited to the rank of the input matrix. Secondly, the
DEIM procedure locally selects the index corresponding to the largest magnitude
element of a vector. A potentially problematic case is if multiple entries in the
vector have nearly the same magnitude. Thus, the DEIM scheme faces a difficult
choice when the local maximizer is (nearly) nonunique.

Chapter 3 of the thesis presents an extension to overcome the first limitation.
The proposed procedure allows for choosing a number of indices greater than
the rank of the input matrix. For this algorithm, we combine the strength of
deterministic leverage scores and the DEIM schemes.

In Chapter 4, a modification of the DEIM method is introduced to tackle the
second drawback. We present new methods for approximating large matrices that
are based on the DEIM scheme but designed to be less greedy and more efficient.
The proposed techniques are based on the rank-revealing QR factorization and the
concept of the maximum volume. The new schemes may also be a good solution
where the DEIM procedure faces a difficult choice when the local maximizer is
(nearly) nonunique because the optimization is done over more indices instead
of just one.

Chapter 5 introduces new columns or rows selection strategies that iteratively
invoke the DEIM algorithm. These iterative subselection procedures can poten-
tially result in a better CUR approximation accuracy and also allow for flexibility
in the index selection process. In the sense that, the method can be used with
different criteria for selecting the subset of columns and rows, depending on the
specific problem or application. Thus, it allows for a flexible and customizable
approach to a CUR decomposition.





3
A H Y B R I D D E I M A N D L E V E R A G E S C O R E S B A S E D M E T H O D
F O R C U R I N D E X S E L E C T I O N

The discrete empirical interpolation method is shown to be a viable index selection
strategy for formulating a CUR factorization. A notable drawback of the original
DEIM algorithm is that the number of column or row indices that can be selected
is limited to the rank of the input matrix. We propose a new variant of the DEIM
scheme, which we call L-DEIM, a combination of the strength of deterministic Adapted

from [43]leverage score sampling and the DEIM procedure. This method allows for the
selection of a number of indices greater than the rank of the input matrix. Since
the DEIM technique requires (approximate) singular vectors as input matrices,
L-DEIM is particularly attractive when computing a rank-k SVD approximation is
expensive even for moderately small k; this is because the L-DEIM procedure uses
a lower-rank SVD approximation instead of the full rank-k SVD. We empirically
demonstrate the performance of L-DEIM, which despite its efficiency, may achieve
comparable results to the original DEIM and even better approximations than
some state-of-the-art methods.

3.1 introduction

Large matrices often represent data sets, which can be difficult to manage due to
their size, particularly with the growth of the internet and the rise of industrial
data. Examples of these data sets include text documents, customer databases,
stocks, and financial transactions. Dimension reduction is often necessary for data
analysis, and in many applications, interpretable dimension reduction is required,
which can be achieved through a CUR decomposition. This factorization as
mentioned in Chapter 1 involves selecting a subset of column and row indices of
the original data matrix, which can be accomplished by using the DEIM algorithm.
While the DEIM algorithm has proven to be useful in many scenarios, it has
certain limitations; one of which is that it is not possible to select more indices than
the number of available basis vectors. However, there are application scenarios
where oversampling is beneficial. Consider the problem of class identification. In
some cases, the number of classes in a data set may be larger than the rank of
the matrix; this can occur when the number of derived features or time samples

23
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per observation is small compared to the number of classes. For example, in the
case of time series data, if there are a large number of classes but only a few time
samples per observation, the DEIM algorithm can only detect as many classes as
there are time samples. As data sets continue to grow in size, it is becoming more
common for the number of observations to be much larger than the number of
features or time samples per observation. An example of this is the identification
of different beat morphologies in electrocardiogram (ECG) tracings, where there
may be billions of tracings with only a few hundred samples per beat, but a large
number of distinct beat morphologies (see, e.g., [61]).

In an attempt to address this limitation of the DEIM scheme, we propose a
new extension called L-DEIM. The L-DEIM scheme combines the strengths of
deterministic leverage scores sampling [77] and the DEIM procedure [83] (also
see, Algorithms 1 and 3). Our new approach is an alternative deterministic index
selection method which allows for oversampling of indices beyond the rank of the
input basis matrix. Since the DEIM scheme relies on the SVD or its approximation,
the proposed approach may be particularly attractive in a setting (for example
big data problems) where we want a rank-k̂ CUR decomposition and computing
a rank-k̂ SVD approximation is expensive even for moderately small k̂. This new
algorithm allows us to select k̂ indices without having to compute the full rank-k̂
SVD by using a lower-rank SVD approximation instead. It may be viewed as an
approach to reuse the same information to further improve the approximation.

3.2 l-deim

We now introduce the new deterministic index selection scheme for a CUR
factorization, which allows for oversampling of column and row indices. Our
starting point is the method from the earlier work [83], which derives a rank-k̂
CUR factorization by applying DEIM to the leading k̂ singular vectors. Given the
promising results of this algorithm compared to other state-of-the-art methods for
a CUR approximation, our proposed algorithm builds on the DEIM procedure.

Constructing a rank-k̂ CUR decomposition using the L-DEIM scheme requires
a rank-k SVD where k < k̂. The integer k is the number of available (approximate)
singular vectors, while k̂ is the number of indices to be selected. To select the
k̂ indices, the proposed method performs the original DEIM to find the first k
indices while keeping the residual singular vector in each index selection step
of the DEIM procedure. The residual singular vector is the error between the
input singular vector and its approximation from interpolating the previous
singular vectors at the selected indices (also see (2.5)). At the end of the iteration,
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using the idea of leverage scores, we compute the 2-norm of the rows of the
residual singular vectors to select the additional k̂ − k indices. The procedure is
summarized in Algorithm 7. Note that the vectors of U in Line 6 of Algorithm 7
are the residual singular vectors and not the original singular vectors.

Algorithm 7: L-DEIM index selection

Data: U ∈ Rm×k and V ∈ Rn×k, target rank = k̂, with k ≤ k̂ ≤ min(m, n)
Result: column and row indices p, s ∈ Nk̂

+, respectively, with
non-repeating entries

1 s(1) = argmax1≤i≤m |(U(:, 1))i|
2 for j = 2, . . . , k do
3 U(:, j) = U(:, j)− U(:, 1 : j − 1) · (U(s, 1 : j − 1) \ U(s, j))
4 s(j) = argmax1≤i≤m |(U(:, j))i|
5 end
6 Compute ℓi = ∥U(i, : )∥ for i = 1, . . . , m
7 Remove entries in ℓ corresponding to the indices in s
8 s′ = k̂ − k indices corresponding to k̂ − k largest entries of ℓ
9 s = [s; s′]
10 Perform 1–9 on V to get index set p

From Algorithm 7, if k̂ = k then the algorithm reduces to the standard DEIM
(i.e., Algorithm 3). We note that if the target rank is not specified, given k, we
can select at least k indices but the upper bound on the number of indices to be
selected is not immediate; we can select an arbitrary number of indices. Similar
to leverage scores sampling, the L-DEIM allows for oversampling of columns and
rows. Given the target rank k̂, the DEIM procedure involves O((m + n) k̂2) while
the L-DEIM scheme involves O((m + n) k2) for selecting the first k indices and
O((m + n) k) for selecting the additional k̂ − k indices.

L-DEIM projection error bound

To provide an analysis for the L-DEIM projection error bound, we begin by
revisiting some properties of the DEIM index selection algorithm.

Given a full-rank matrix V ∈ Rn×k with k < n, we construct the index set
p ∈ Nk

+ by choosing k distinct rows from V. Suppose P = I(:, p) is an n × k
selection matrix, it can be shown that V⊤P is nonsingular [83, Lemma 3.2]. The
interpolatory projector defined through the DEIM index selection scheme is
P = P(V⊤P)−1V⊤.
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Suppose, however, that we want to select k̂ > k distinct row indices from
V to form the index set p ∈ Nk̂

+. Then, letting P = I(:, p) ∈ Rn×k̂, we have
that V⊤P is no longer square. Assuming V⊤P is of full row rank, we can use
the Moore–Penrose pseudoinverse of V⊤P to define an interpolatory projector
P = P(V⊤P)+V⊤. The proof of the L-DEIM projection error for P closely follows
that presented in [83].

Proposition 3.1. Given A ∈ Rm×n and V ∈ Rn×k with orthonormal columns where
k < n, let P ∈ Rn×k̂ with k < k̂ < n be a selection matrix and V⊤P be of full-rank. Let
P = P(V⊤P)+V⊤. Then,

∥A − AP∥ ≤ ∥A(I − VV⊤)∥ ∥(V⊤P)+∥.

In particular, if V contains k leading right singular vectors of A, then

∥A − AP∥ ≤ σk+1 · ∥(V⊤P)+∥.

Proof. We have that V⊤P = V⊤P(V⊤P)+V⊤ = V⊤, which implies that V⊤(I −
P) = 0. Therefore,

∥A − AP∥ = ∥A(I − P)∥ = ∥A(I − VV⊤)(I − P)∥
≤ ∥A(I − VV⊤)∥ ∥I − P∥.

Note that, since k < n, we know that P ̸= 0 and P ̸= I, and hence (see, e.g., [89])

∥I − P∥ = ∥P∥ = ∥P(V⊤P)+V⊤∥ = ∥(V⊤P)+∥.

Given that V contains the k leading right singular vectors we have ∥A(I −
VV⊤)∥ = σk+1.

Let us now consider the operation on the left-hand side of A. Given the row-
selection projection S = U(S⊤U)+S⊤, where U ∈ Rm×k contains the k leading
left singular vectors and S ∈ Rm×k̂, such that S⊤U is of full rank, analogous to
Proposition 3.1 we have the following projection error bound:

∥A − SA∥ ≤ σk+1 · ∥(S⊤U)+∥.

We will now use Proposition 3.1 to find a bound for the approximation error
of an L-DEIM based CUR factorization of A. The following proposition is a slight
generalization of [83, Lemma 4.2] and we closely follow the proof technique of
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Sorensen and Embree [83]. As in [83] we first show in the following proposition
that the error bounds of the interpolatory projection of A onto the chosen rows
and columns equally apply to the orthogonal projections of A onto the same row
and column spaces.

Proposition 3.2. (Slight generalization of [83, Lemma 4.2]) Given the selection matrices
P, S, let C = AP and R = S⊤A. Let C ∈ Rm×k̂ and R ∈ Rk̂×n be full rank matrices
with k̂ < min(m, n), and V⊤P and S⊤U be of full row and column rank, respectively.
We have the bound for the orthogonal projections of A onto the column and row spaces:

∥(I − CC+)A∥ ≤ σk+1 · ∥(V⊤P)+∥,

∥A(I − R+R)∥ ≤ σk+1 · ∥(S⊤U)+∥.

Proof. This proof is a minor modification of that of [83, Lemma 4.2]; we
closely follow their proof technique. With C = AP of full rank, we have C+ =
(P⊤A⊤AP)−1(AP)⊤. With this, the orthogonal projection of A onto Range(C) can
be stated as

CC+A = (AP(P⊤A⊤AP)−1P⊤A⊤)A.

Let ΠP = P(P⊤A⊤AP)−1P⊤A⊤A, note that ΠPP = P since ΠP is an oblique
projector on Range(P). We can rewrite CC+A as AΠP. Hence, the error in the
orthogonal projection of A will be (I − CC+)A = A(I − ΠP). Since

ΠPP = P(P⊤A⊤AP)−1P⊤A⊤AP(V⊤P)+V⊤ = P,

we have

A(I − ΠP) = A(I − ΠP)(I − P) = (I − CC+)A(I − P),

Consequently

∥(I − CC+)A∥ = ∥A(I − ΠP)∥ = ∥(I − CC+)A(I − P)∥
≤ ∥(I − CC+)∥ ∥A(I − P)∥.

With C being nonsquare, we have ∥I − CC+∥ = 1 (see, e.g., [89]) and ∥A(I −
P)∥ ≤ σk+1 · ∥(V⊤P)+∥ from Proposition 3.1. It follows that

∥(I − CC+)A∥ ≤ σk+1 · ∥(V⊤P)+∥.

In a similar vein, with R = S⊤A and R+ = R⊤(RR⊤)−1 we have that R+ =
A⊤S(S⊤AA⊤S)−1 and the error in the orthogonal projection of A is A(I − R+R) =
(I − ΠS)A, where ΠS = AA⊤S(S⊤AA⊤S)−1S⊤. Thus,

(I − ΠS)A = (I − S)(I − ΠS)A = (I − S)A(I − R+R)
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and

∥A(I − R+R)∥ ≤ ∥(I − S)A∥ ∥(I − R+R)∥ ≤ σk+1 · ∥(S⊤U)+∥.

This result helps to prove an error bound for the L-DEIM CUR approximation
error. For the following theorem, we again closely follow the approach of [83]
which also follows a procedure in [72]. Let M = (C⊤C)−1C⊤AR⊤(RR⊤)−1 =
C+AR+.

Theorem 3.3. (Generalization of [83, Thm. 4.1]) Given A ∈ Rm×n and the k leading
left and right singular vectors U and V, respectively, let P ∈ Rn×k̂ and S ∈ Rm×k̂ be
selection matrices so that C = AP and R = S⊤A are of full rank. Assuming V⊤P and
S⊤U are of full rank, then with the error constants

ηp := ∥(V⊤P)+∥, ηs := ∥(S⊤U)+∥,

we have

∥A − CMR∥ ≤ (ηp + ηs) · σk+1.

Proof. By the definition of M, we have

A − CMR = A − CC+AR+R = (I − CC+)A + CC+A(I − R+R).

Using the triangle inequality, it follows that [72, 83]

∥A − CMR∥ = ∥A − CC+AR+R∥
≤ ∥(I − CC+)A∥+ ∥CC+∥ ∥A(I − R+R)∥,

and the fact that CC+ is an orthogonal projector with ∥CC+∥ = 1,

∥A − CMR∥ ≤ σk+1 · ∥(V⊤P)+∥+ ∥(S⊤U)+∥ · σk+1.

Notice that the difference between the error bounds in Theorem 3.3 and [83,
Thm. 4.1] is the Lebesgue constant for the discrete interpolation, i.e., ηs and ηp
for the L-DEIM and the DEIM scheme. In [83, Lemma 4.4], the authors present
an upper bound on the DEIM selection scheme error constants. We show here
that this bound holds for the error constants from the L-DEIM selection scheme.
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Given a matrix with orthogonal columns U ∈ Rm×k, we define the selection of
k and k̂ rows of U (where k̂ > k) by the DEIM and L-DEIM scheme, respectively,
as

[
S⊤

D

S⊤
L

]
U =:

[
ZD

ZL

]
=: Z,

where SD selects k rows and SL selects additional (k̂ − k) rows. The error con-
stant of the DEIM procedure is σ−1

min(ZD) while that of the L-DEIM algorithm is
σ−1

min(Z) ≤ σ−1
min(ZD). This implies that any upper bound for σ−1

min(ZD) is also an
upper bound for σ−1

min(Z). Therefore, given that k < k̂ < min(m, n), we have

ηp := ∥(V⊤P)+∥ <
√

nk
3 2k , ηs := ∥(S⊤U)+∥ <

√
mk
3 2k.

For constructive proofs and further explanation of the bound on the Lebesgue
constant for the discrete interpolation, we refer the reader to [83, Lemma 4.4].

3.3 numerical experiments

In our first experiment, with the target rank k̂ fixed, we investigate how the CUR
approximation accuracy of L-DEIM varies as k increases. The aim is to observe
how fast the accuracy of a rank-k̂ L-DEIM CUR approximation using k < k̂
singular vectors approaches that of a rank-k̂ DEIM CUR approximation and the
optimal rank-k̂ approximation. Similar to [83], we generate a sparse, nonnegative
matrix A ∈ Rm×n, with m = 10000 and n = 300, of the form

A =
10

∑
j=1

2
j

xj y⊤
j +

300

∑
j=11

1
j

xj y⊤
j ,

where xj ∈ Rm and yj ∈ Rn are sparse vectors with random nonnegative entries
(i.e., xj = sprand(m, 1, 0.025) and yj = sprand(n, 1, 0.025). We fix k̂ = 30 and
vary k from 1, . . . , 30, i.e., k̂ = 30k, · · · , k̂ = k, and similarly for k̂ = 20. We
generate 100 random matrices of A and Fig. 3.1 reports the average relative errors
∥A − CMR∥/∥A∥. We observe that the approximation quality of the L-DEIM
procedure is comparable to that of the DEIM scheme when k is at least k̂

2 .
Using real data sets, we perform some experiments to compare the approxima-

tion quality and runtimes of the new method L-DEIM with the existing determin-
istic methods discussed in Chapter 2. We use the relative error ∥A − CMR∥/∥A∥
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Figure 3.1: The relative approximation errors of the L-DEIM scheme for varying k singular
vectors in constructing a rank-k̂ CUR factorization compared with the standard
DEIM and the optimal rank-k̂ approximation.

and runtimes for selecting the column and row indices as the evaluation criteria.
The application domains of the data sets are Internet term document analysis, ge-
nomics, and image analysis. The first is the cancer genetics data set gse10072 from
the National Institutes of Health [71]. This data set has 107 patients described
by 22283 probes. There are 58 patients with tumors and 49 without. We center
the 22283 × 107 genetics data matrix by subtracting the mean of each row from
the entries in that row. We also use the cifar-10 data set [70], a collection of 60000
32× 32 pixel color images in ten different classes, with 6000 images per class. The
data set is divided into 50000 training set images and 10000 testing set images.
We use the training data set. The ten classes in the cifar-10 dataset are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The cifar-10 dataset is
commonly used as a benchmark dataset for image classification tasks in machine
learning research. Each image in the cifar-10 data set has been reshaped into a 1D
array of length 3072, resulting in a 50000 × 3072 dense matrix. Our last data set
is a 29610 × 29610 low-rank sparse matrix from the SuiteSparse Matrix collection
[26] called g7jac100. This data matrix is one of the matrices from an “Overlapping
Generations Model” used to study the social security systems of the G7 nations
compiled by CEPII, a research institute in Paris.
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Table 3.1: Various examples and dimensions considered.

Exp. Name Matrix m n

1 gse10072 Sparse 22283 107

2 cifar-10 Dense 50000 3072

3 g7jac100 Sparse 29610 29610

For the first data set, due to its small size, we compute the full SVD for all the
algorithms using the Matlab in-built function svd while for the other two data
sets, we compute only the leading k or k̂ singular vectors using the function svds
in Matlab. The reported runtimes include the time taken to compute the leading
singular vectors, except for the gse10072 dataset, where we computed the full
SVD for all methods and did not include this time.

From Fig. 3.2, we see that the approximation quality of the proposed method
L-DEIM can be as good as the original DEIM while the L-DEIM enjoys favorable
runtimes. Both DEIM and L-DEIM have considerably lower approximation errors
than the other methods. It is also worth pointing out that although the execution
times for both the leverage scores sampling and the L-DEIM are not significantly
different for the last two data sets, the improvement in approximation error of
L-DEIM over the leverage scores is quite significant. We observe from the results
not presented here that computing the leverage scores using only the leading two
singular vectors yields better approximation results, although not as good as the
other index selection methods evaluated here.

Table 3.2 reports the computational times of the various algorithms evaluated in
each of three phases: 1) computing the partial the SVD, 2) generating the k̂ indices,
3) forming the CUR approximation for computing a rank-500 approximation of
the g7jac100. For the DEIM and QDEIM-based CUR factorization, we compute the
first 500 singular vectors while for the L-DEIM and leverage score sampling, we
compute the first 250 singular vectors. It is evident that compared to the DEIM
method, the L-DEIM approach achieves a significant reduction in computational
time not only in computing a rank-k SVD instead of a rank-k̂ SVD but also in
selecting the indices. This is because selecting the additional k indices (suppose
k̂ = 2k) involves O((m + n) k2) operations for the DEIM scheme compared to
O((m + n) k) operations for the L-DEIM procedure.
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Figure 3.2: The relative approximation errors (first column) and runtimes (second column)
of the L-DEIM scheme compared with the standard DEIM, QDEIM, and
leverage scores sampling (LS) techniques using the three real data sets. For
the L-DEIM and LS methods, we use k = k̂/2 singular vectors.
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Table 3.2: Computational times of the various algorithms in each of three phases: 1)
computing the partial the SVD, 2) generating the k̂ indices, 3) forming the CUR
approximation using the g7jac100 data.

Method Computational time(s)

SVD k̂ index selection CMR

DEIM 69.87 16.46 82.79

QDEIM 69.87 4.26 80.30

LDEIM 17.69 4.18 38.13

LS 17.69 0.06 40.45

3.4 final considerations

We have presented a new extension of the DEIM index selection algorithm (L-
DEIM) to identify additional indices for constructing a rank-k̂ CUR decomposition
using a lower-rank SVD approximation. This technique is especially useful in a
setting (for example big data problems) where computing a full rank-k̂ SVD is
relatively expensive. Since L-DEIM allows for oversampling, we only compute a
smaller set of left and right singular vectors, hence, we can reduce computational
complexity and memory resources. The algorithm may be viewed not only as an
extension of DEIM but also as an alternative index selection method for a CUR
factorization. The L-DEIM procedure may also be suitable for point selection in the
context of model order for nonlinear dynamical systems. Although the proposed
algorithm is computationally more efficient than the original DEIM, experiments
show that the approximation accuracy of both methods may be comparable
when the target rank k̂ is at most twice the available k singular vectors. For all
results presented in Section 3.3, we assume that given a target rank k̂, 2k = k̂ in
Algorithm 7. From the first experiment (also experiments not presented here),
if k ≪ 1

2 k̂ in Algorithm 7, then the rank-k̂ CUR approximation quality of the
L-DEIM procedure which uses k singular vectors may generally be worse than the
rank-k̂ CUR factorization quality of the standard DEIM scheme which requires
k̂ singular vectors. However, we stress that the L-DEIM is considerably cheaper
and allows for oversampling of indices.

The model order reduction community has delved deeper into the idea of index
oversampling concerning the DEIM and QDEIM approaches. Several references,
including [74, 80, 100], have explored this concept. In light of this, future studies
comparing the L-DEIM with these proposed extensions of the DEIM procedure
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within the framework of a CUR decomposition as well as model order reduction
applications are necessary.



4
B L O C K D I S C R E T E E M P I R I C A L I N T E R P O L AT I O N M E T H O D S

This chapter presents two block variants of the discrete empirical interpolation
method for a CUR factorization. The block DEIM algorithms are based on the
concept of the maximum volume of submatrices and a rank-revealing QR factor- Adapted

from [46]ization. We also present a version of the block DEIM procedures, which allows
for adaptive choice of block size. The results of the experiments indicate that the
block DEIM algorithms exhibit comparable accuracy for low-rank matrix approx-
imation compared to the standard DEIM procedure. However, the block DEIM
algorithms also demonstrate potential computational advantages, showcasing
increased efficiency in terms of computational cost.

4.1 introduction

In this chapter, we propose two different block DEIM procedures and an adaptive
variant of the block techniques. There are three motivating factors for a block
DEIM scheme:

• The DEIM algorithm may be considered a greedy algorithm for finding a
submatrix with the maximum absolute determinant in a thin-tall matrix: it
locally selects the index corresponding to the largest magnitude element of
a vector. A block DEIM method shares the same principle but may be less
greedy since the optimization is done over more indices instead of just one.

• The proposed block DEIM procedures will generally have higher flop counts
than the standard DEIM algorithm. However, in practice, we expect the
block DEIM schemes to have higher flop performance than the classical
DEIM algorithm as they are mainly based on level 3 BLAS building blocks,
which perform matrix-matrix operations.

• A block DEIM scheme may be a good solution where the DEIM procedure
faces a difficult choice when the local maximizer is (nearly) nonunique.
Given the basis vectors vi for i = 1, . . . , k, indeed, in [83, Footnote 3]
it is already hinted that a potentially problematic case is if multiple en-
tries in a vector being considered have nearly the same magnitude, e.g.,
|(v1)ℓ| ≈ |(v1)j| for ℓ ̸= j, then the DEIM scheme may sometimes make a

35
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relatively arbitrary choice. However, in cases where the nonselected large-
magnitude entries in v1 are not influential in the subsequent vi vectors, their
corresponding indices may never be picked, despite their equal importance
(see Example 4.1).

Our selection criterion for the block-b case will consist of maximizing the
modulus of the determinant (volume) over many possible b × b submatrices. By
default, we set b to 2, but one can choose any value for b as long as it is within
the range 2 ≤ b < k. We also discuss the option of taking adaptive values of b. To
motivate the discussion, let us first consider a small illustrative example.

Example 4.1. Consider the matrix of left singular vectors (where, e.g., ε = 10−15)

U =




1
3

√
3 + ε 0

1
3

√
3 1

2

√
2 + ε

1
3

√
3 − 1

2

√
2


, corresponding to singular values σ1, σ2.

It may easily be checked that independent of the σi, standard DEIM will pick
the first index, followed by the second. However, it is clear that the second and
third indices are a better choice, especially if σ2 is close to σ1. For instance, if

A = U ·

 1 0

0 0.99


, working with a determinant of 2 × 2 submatrices gives a better

result. Since
det




1
3

√
3 1

2

√
2 + ε

1
3

√
3 − 1

2

√
2



 >

det



1
3

√
3 + ε 0

1
3

√
3 1

2

√
2 + ε



,

a block DEIM variant with block size 2 picks the more appropriate indices 2 and
3. Additionally, as noted in Section 2.4.3, the DEIM scheme attempts to minimize
the quantity ∥(S⊤U)−1∥, where S is an index selection matrix. From our simple
example above, we have that
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−1 <





1
3

√
3 + ε 0

1
3

√
3 1

2

√
2 + ε



−1.

This implies that the rows selected by the block DEIM schemes we will discuss
yield a smaller quantity ∥(S⊤U)−1∥ compared to the DEIM procedure.

The outline of the chapter is as follows: Section 4.2 describes how the DEIM
scheme can be blocked using either the concept of the maximum determinant
or volume of submatrices or a column-pivoted QR factorization. We discuss the
newly proposed block DEIM algorithms and their computational complexities
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and state a well-known error bound for the approximation. Section 4.3 reports
the results from numerical experiments evaluating the computational efficiency
and approximation quality of the various block DEIM procedures. Section 4.4
summarizes this chapter’s key points and results. Some main properties of the
methods are summarized in Table 4.1.

Table 4.1: Overview of the various variants with their properties. All methods have the
SVD as a basis. The quantity η appears in error upper bounds and is discussed
in Section 4.2.4.

Method \ Properties SVD Block Adapt. Tunable Greediness η Speed

Standard DEIM + − − − High Medium Moderate

B-MaxVol (Section 4.2.1) + + − + Low Low Fast

B-RRQR (Section 4.2.2) + + − + Low Low Fast

B-Adaptive (Section 4.2.3) + + + + Medium Medium Variable

4.2 block deim

This section introduces three new block variants of the DEIM procedure. We
combine the index selection algorithms discussed in Section 2.4 to design our
block DEIM algorithms. The block DEIM algorithms select a b-size set of indices
at each step using a block of singular vectors and then update the subsequent
block of vectors using the oblique projection technique in the standard DEIM
procedure. The main difference between the block DEIM and the traditional
DEIM scheme resides in the b-size indices selection. In the standard DEIM, we
select the indices by processing one singular vector at a time, each iteration step
produces an index whilst the block version processes a block of singular vectors
at a time, and each step provides an index set of size b. As a result, this may lead
to a different selection of indices. For ease of presentation, we assume that the
number of singular vectors k is a multiple of the block size b and 2 ≤ b < k.

4.2.1 Block DEIM based on maximum volume

As the first block variant, we introduce a block DEIM-MaxVol procedure (B-DEIM-
MaxVol). For the standard DEIM method, each next index is picked greedily
based on the maximal absolute value of an oblique projected singular vector. For
this block variant, in every step, we greedily pick a fixed number (b) of indices
based on an (approximate) maximal volume (absolute value of determinant) of
a b × b submatrix of the projected singular vectors. To this end, we exploit the
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MaxVol scheme [50] described in Chapter 2 to efficiently find a submatrix with
the approximately maximal determinant (with a given tolerance δ) in a thin-tall
matrix. This gives the pseudocode as displayed in Algorithm 8.

Algorithm 8: Block DEIM index selection based on MaxVol

Data: U ∈ Rm×k, V ∈ Rn×k, k ≤ min(m, n), block size b (with b | k),
convergence tolerance δ (default 0.01)

Result: Indices p, s ∈ Nk
+ with non-repeating entries

1 for j = 1, . . . , k/b do
2 s((j − 1)b + 1 : jb) = MaxVol(U(:, (j − 1)b + 1 : jb), δ)
3 p((j − 1)b + 1 : jb) = MaxVol(V(:, (j − 1)b + 1 : jb), δ)
4 Let cols = jb + 1 : jb + b
5 U(:, cols) = U(:, cols)− U(:, 1 : jb) · (U(s, 1 : jb) \ U(s, cols))
6 V(:, cols) = V(:, col)− V(:, 1 : jb) · (V(p, 1 : jb) \ V(p, cols))
7 end

In Lines 5 and 6 of Algorithm 8, we use the oblique projection technique as in
the standard DEIM scheme to update the subsequent blocks of singular vectors.

We will now describe how Algorithm 8 selects the row indices, the selection
of the column indices follows similarly. Algorithm 8 starts from the leading-b
dominant left singular vectors Ub, and the first set of index vector sb corresponds
to the b row indices of the dominant submatrix in Ub, which is obtained by
applying Algorithm 2 to Ub. Let s = [sb], Sb = Im(:, sb), and define an oblique
projection operator as Sb = Ub(S⊤

b Ub)
−1S⊤

b .
Suppose we have (j − 1)b indices, so that

s(j−1)b =




s1
...

s(j−1)b


, S(j−1)b = Im(:, s(j−1)b), U(j−1)b = [u1, . . . , u(j−1)b],

and

S(j−1)b = U(j−1)b (S
⊤
(j−1)bU(j−1)b)

−1 S⊤
(j−1)b.

Let Ujb = U(:, jb + 1 : jb + b). Compute the residual Ejb = Ujb − S(j−1)bUjb
(see Line 5 of the algorithm), and select the next set of b indices by applying
Algorithm 2 to Ejb. It is worth noting that, using this oblique projection operator
S(j−1)b on Ujb ensures that the s(j−1)b entries in Ejb are zero, which guarantees
nonrepeating indices. At the end of the iteration, the algorithm returns a column
and row index set of size k.



4.2 block deim 39

The following are two potential benefits of Algorithm 8 compared to standard
DEIM.

• Approximation-wise, the greedy selection is not column-by-column, but
carried out on a block of columns, possibly leading to a better pick of
indices. Since the value of b is modest (typically 2), this procedure is still
very affordable.

• Computationally, the block procedure may have some benefits over the
vector-variant, for instance in the work for the oblique projection.

The computational cost of this algorithm is dominated by two calls of the
MaxVol procedure and the block updates. The initialization step of Algorithm 2
requires a permutation of the input matrix, which can be done via the LU factor-
ization. Given an n × b matrix, the LU decomposition requires O(nb2) operations.
Furthermore, the dominant cost of each iteration in the MaxVol algorithm is
the multiplication of an n × b matrix and a b × b matrix, for a cost of O(nb2)
operations. Let κ ∈ N+ denote the number of iterations performed. The com-
putational complexity of the MaxVol procedure is O(κnb2). The cost of the two
calls of MaxVol is O(κ(m + n)b2) and the block updates cost O((m + n)kb). Given
that we have k/b iterations in Algorithm 8, the total cost of the B-DEIM-MaxVol
algorithm is O((m + n)(κbk + k2)). A crude bound on the number of iterations
in Algorithm 2 is κ ≤ (log |det(Ûdom)| − log |det(Ûini)|)/ log(1 + δ), where Ûini is
the submatrix at the initialization step and Ûdom is the dominant submatrix in
Algorithm 2, respectively [50].

4.2.2 Block DEIM based on RRQR

The MaxVol algorithm seeks to find a good approximation of a submatrix with
the maximum volume in a given input matrix. It is noted in [34, Remark 2.3] that
the pivoting in an RRQR factorization can be interpreted as a greedy volume
maximizing scheme. Practical experience shows that the index selection via a
column-pivoted QR factorization may be more computationally efficient than the
MaxVol method.

Additionally, Khabou et al. [67] propose a block LU factorization with panel
rank-revealing pivoting (LU-PRRP) procedure by employing a strong rank-
revealing QR (RRQR) panel factorization. The algorithm computes the block
LU-PRRP as follows: at each step of the block factorization, a block of columns is
factored by performing a strong RRQR factorization [53] on its transpose. Pivoting
is done by applying the permutation matrix returned on the entire original matrix
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followed by an update of the trailing matrix. As noted in [83], the DEIM index
selection procedure is equivalent to the index selection of partially pivoted LU
decomposition.

With this knowledge, we propose an alternative block DEIM variant (B-DEIM-
RRQR), which combines the components of the standard DEIM scheme and an
RRQR factorization, implemented in Algorithm 9.

Algorithm 9: Block DEIM index selection based on RRQR

Data: U ∈ Rm×k, V ∈ Rn×k, k ≤ min(m, n), block size b (with b | k)
Result: Indices p, s ∈ Nk

+ with non-repeating entries
1 for j = 1, . . . , k/b do
2 Perform a column-pivoted QR on U(:, (j − 1)b + 1 : jb)⊤ and

V(:, (j − 1)b + 1 : jb)⊤, giving the permutations Πs and Πp
3 s((j − 1)b + 1 : jb) = Πs(1 : b)
4 p((j − 1)b + 1 : jb) = Πp(1 : b)
5 Let cols = jb + 1 : jb + b
6 U(:, cols) = U(:, cols)− U(:, 1 : jb) · (U(s, 1 : jb) \ U(s, cols))
7 V(:, cols) = V(:, col)− V(:, 1 : jb) · (V(p, 1 : jb) \ V(p, cols))
8 end

During each step of the index selection process, we use a block size, b, and a
block of singular vectors. Firstly, we perform a QR decomposition with column
pivoting on the transpose of the leading-b singular vectors, selecting indices
corresponding to the first b pivots as the initial set of indices. We then update
the next block of singular vectors based on the updating method used in the
B-DEIM-Maxvol algorithm and perform a column-pivoted QR on the transpose
of the updated block (repeat these two steps until all k indices are selected).

The B-DEIM-RRQR may be viewed as a hybrid standard DEIM and QDEIM
scheme [34]. The QDEIM selects k indices by performing one column-pivoted
QR while our B-DEIM-RRQR algorithm selects the k indices by performing
k/b rounds of column-pivoted QR. Note that when the block size b = k, this
B-DEIM-RRQR algorithm is just the QDEIM scheme.

The cost of the B-DEIM-RRQR scheme is dominated by two QR factorizations
and block updates. Given an n × b matrix, a QR factorization requires O(nb2)
operations hence the cost of the two QR decompositions here is O((m+ n)b2) and
the block updates cost O((m+ n)kb). Since there are k/b iterations in Algorithm 9,
the total cost of the B-DEIM-RRQR scheme is therefore O((m + n)(kb + k2)).
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4.2.3 Adaptive block DEIM

To combine the strength of standard DEIM with a block version, we also consider
adaptive choices for the block size b. In particular, we propose the following
variant called AdapBlock-DEIM: perform block DEIM if for the singular vector vj
being considered the two largest elements are (nearly) equal (see Example 4.1),
i.e.,

{
block DEIM if |(vj)i| ≈ |(vj)ℓ| for i ̸= ℓ,

standard DEIM otherwise.

In Algorithm 10, we show an implementation of the adaptive block DEIM using
the block DEIM variants discussed in Section 4.2. The parameter ρ is the desired
lower bound on the ratio |(vj)i| / |(vj)ℓ| for i ̸= ℓ. We note that although our
criterion for switching from a standard DEIM scheme to a block DEIM method
is based on how close the two largest entries (magnitude) in the vector being
considered are, other criteria can be used.

4.2.4 Error bounds

The following proposition restates a known theoretical error bound for a CUR
approximation, which holds for the block DEIM algorithms proposed in this
chapter. A detailed constructive proof is in [83]; we provide the necessary details
here for the reader’s convenience. Let P ∈ Rn×k and S ∈ Rm×k be matrices with
some columns of the identity indexed by the indices selected by employing any
of the three block DEIM algorithms.

Proposition 4.2. [83, Thm. 4.1] Given A ∈ Rm×n and a target rank k, let U ∈ Rm×k

and V ∈ Rn×k contain the leading k left and right singular vectors of A, respectively.
Suppose C = AP and R = S⊤A are of full rank, and V⊤P and S⊤U are nonsingular.
Then, with M = C+AR+, a rank-k CUR decomposition constructed by either of the block
DEIM schemes presented in this chapter satisfies

∥A − CMR∥ ≤ (ηs + ηp) σk+1 with ηs <
√

nk
3 2k , ηp <

√
mk
3 2k,

where ηp = ∥(V⊤P)−1∥, ηs = ∥(S⊤U)−1∥.
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Algorithm 10: Adaptive block DEIM index selection

Data: U ∈ Rm×k, V ∈ Rn×k, k ≤ min(m, n), block size b, ρ (default 0.95),
tolerance δ (default 0.01), method (MaxVol or QR)

Result: Indices p, s ∈ Nk
+ with non-repeating entries

1 j = 1
2 while j ≤ k do
3 if j > 1 then
4 ũ = U(s(1 : j − 1), 1 : j − 1) \ U(s(1 : j − 1), j)
5 U(:, j) = U(:, j)− U(:, 1 : j − 1) · ũ
6 end if
7 [u, ind] = sort(|U(:, j)|) (in descending order)
8 if (j + b − 1 > k) or (u(2) < ρ · u(1)) then s(j) = ind(1); j = j + 1
9 else
10 cols = j + b − 1
11 if j > 1 then
12 Ũ = U(:, j + 1 : cols); Û = U(s(1 : j − 1), j + 1 : cols))
13 Ũ = Ũ − U(:, 1 : j − 1) · (U(s(1 : j − 1), 1 : j − 1) \ Û
14 U(:, j + 1 : cols) = Ũ
15 end if
16 if method = MaxVol
17 s(j : cols) = MaxVol(U(:, j : cols), δ)
18 else
19 Perform a column-pivoted QR on U(:, j : cols)⊤, giving
20 permutation Πs
21 s(j : cols) = Πs(1 : b)
22 end if
23 j = j + b
24 end if
25 end
26 Repeat the procedure on V to get indices p

Proof. Let P = P(V⊤P)−1V⊤ and S = U(S⊤U)−1S⊤ be oblique projectors. Note
that V⊤P = V⊤ and SU = U, implying that V⊤(I − P) = 0 and (I − S)U = 0.
Using M = C+AR+, we have

∥A − CMR∥ = ∥A − CC+AR+R∥ = ∥(I − CC+)A + CC+A(I − R+R)∥
≤ ∥(I − CC+)A∥+ ∥CC+∥ ∥A(I − R+R)∥.
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Leveraging the fact that CC+ is an orthogonal projector, ∥CC+∥ = 1 and [83,
Lemma 4.1 and 4.2]

∥(I − CC+)A∥ ≤ ∥A(I − P)∥ = ∥A(I − VV⊤)(I − P)∥
≤ ∥(V⊤P)−1∥ ∥A(I − VV⊤)∥,

∥A(I − R+R)∥ ≤ ∥(I − S)A∥ = ∥(I − S)(I − UU⊤)A∥
≤ ∥(S⊤U)−1∥ ∥(I − UU⊤)A∥,

we have that

∥A − CMR∥ ≤ ∥(V⊤P)−1∥ ∥A(I − VV⊤)∥+ ∥(S⊤U)−1∥ ∥(I − UU⊤)A∥.

Since U and V contain the leading k left and right singular vectors, respectively,
∥(I − UU⊤)A∥ = ∥A(I − VV⊤)∥ = σk+1. Hence

∥A − CMR∥ ≤ (∥(V⊤P)−1∥+ ∥(S⊤U)−1∥) · σk+1.

Proposition 4.2 suggests that the quality of an index selection method may be
assessed using the error constants ηs and ηp [83]. Fig. 4.1 illustrates the difference
in the values of ηs = ∥(S⊤U)−1∥ computed by DEIM, B-DEIM-RRQR, and B-
DEIM-MaxVol using 50 randomly generated matrices with orthonormal columns
of size 10000× 100. In most cases, the block DEIM variants provide smaller values
of ηs; this may be an indication that the indices picked by the block DEIM variants
are better for approximating than those selected by the DEIM scheme. We also
observe that the values of ηs become smaller as we increase the block sizes.

4.3 numerical experiments

In this section, we conduct several sets of illustrative experiments to show the
effectiveness of the block DEIM variants, i.e., B-DEIM-MaxVol, B-DEIM-RRQR,
and AdapBlock-DEIM, proposed in this chapter using synthetic and real data sets.
We evaluate the algorithms by applying them to data analysis problems in several
application domains: recommendation system analysis, model order reduction,
economic modeling, and optimization. We use real-world sparse and dense data
matrices with sizes ranging from small to large scale. An overview is presented in
Table 4.2. We compare the performance of our algorithms for constructing a CUR
approximation with three state-of-the-art deterministic algorithms: DEIM [83],
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Figure 4.1: Comparison of the value ηs = ∥(S⊤U)−1∥ in DEIM, B-DEIM-RRQR, and
B-DEIM-MaxVol with different block sizes using 50 random matrices with
orthonormal columns of size 10000 × 100.

QDEIM [34], and MaxVol [50]. All these algorithms require the leading k right and
left singular vectors to construct a rank-k CUR factorization. We use these two
evaluation criteria: the rank-k approximation relative error ∥A − CMR∥ / ∥A∥;
the computational efficiency, i.e., the runtime scaling for the rank parameter
k. Here, the runtime measures the time it takes each algorithm to select the
desired number of column and row indices. We do not consider the run time
for computing the singular vectors since all the methods we consider require the
SVD. However, it is important to note that the total cost of selecting the indices
may be dominated by the computational cost of the SVD. Our experiments are
not meant to be exhaustive; however, they provide clear evidence that the block
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DEIM schemes proposed in this chapter may provide a comparable low-rank
approximation while being computationally more efficient.

In the implementation, we perform the column-pivoted QR factorization and
the truncated SVD using the MATLAB built-in functions qr and svds [3], respec-
tively (and svd for small cases). For the MaxVol algorithm, we use a MATLAB
implementation by [69] made available on GitHub1. Unless otherwise stated, in
all the experiments we use as default block size b = 5 for small/mid-size matrices
and b = 10 for large-scale matrices, the AdapBlock-DEIM method parameter
ρ = 0.95, and the MaxVol scheme convergence tolerance δ = 0.01.

Table 4.2: Various examples and dimensions considered.

Exp. Domain Matrix m n

1 Recommendation system Dense 14116 100

2 Economic modeling Sparse 29610 29610

3 Optimization Sparse 29920 29920

4 Model order reduction Sparse 23412 23412

5 Structural engineering Sparse 22044 22044

6 Synthetic Dense 2000 4000

Experiment 4.3. In this first set of experiments, we aim to evaluate how our
proposed block-DEIM variants compared with the existing deterministic methods
mentioned earlier on a small matrix. Our data set is from the recommendation
system analysis domain, where one is usually interested in making service or
purchase recommendations to users. One of the most common techniques for
recommendation systems is collaborative filtering, which involves recommending
to users items that customers with similar preferences liked in the past. The Jester
data set is often used as a benchmark for recommendation system research [47].
This data matrix consists of 73421 users and their ratings for 100 jokes. We only
consider users who have ratings for all 100 jokes resulting in a 14116× 100 matrix.
We center the matrix by subtracting the mean of each column from all entries in
that column.

Based on the observations from Fig. 4.2, we can conclude that the block DEIM
methods generally provide slightly more accurate approximations compared to
state-of-the-art methods. It is also important to note that the error of the MaxVol
and QDEIM approximations do not always decrease monotonically as the rank k
increases. When considering the runtime, both the B-DEIM-MaxVol and B-DEIM-
RRQR algorithms demonstrate significantly lower computational times compared

1 github.com/bokramer/CURERA/blob/master/maxvol.m
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Figure 4.2: Relative approximation errors (left) and runtimes (right) as a function of k
for the block DEIM CUR approximation algorithms compared with some
standard CUR approximation algorithms using the Jester data set.

to the original DEIM scheme. In these small/mid-scale experiments, the adaptive
variants of the block DEIM methods do not seem to improve runtimes compared
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to the DEIM procedure. There could be several reasons for this observation: the
adaptive variants of block DEIM methods involve additional computations and
operations compared to the standard DEIM procedure. These additional steps
may introduce computational overhead that offsets the potential gains in runtime.
In small/mid-scale scenarios, the overhead might outweigh the benefits. On the
other hand, it is evident that the B-DEIM-MaxVol algorithm and its adaptive
variant are more efficient than the standard MaxVol approach. By using the block
DEIM variants, we gain improvements in both accuracy and speed compared to
the standard MaxVol method. Additionally, the B-DEIM-RRQR method proves to
be equally efficient as the QDEIM procedure while providing a more accurate
approximation.

Experiment 4.4. In the subsequent series of experiments, we turn our attention to
evaluating the performance of our proposed block-DEIM variants when dealing
with large-scale data. With a block size of b = 10 selected for this particular set
of experiments, our primary goal is to gain insights into how our block-DEIM
approaches tackle the challenges presented by large-scale data sets and to assess
their effectiveness and efficiency in this context. To conduct these evaluations,
we use a set of standard test matrices specifically designed for sparse matrix
problems. These data matrices are sourced from the publicly available SuiteSparse
Matrix Collection [26]. The diverse nature of these matrices allows us to assess
the effectiveness of our approaches across various problem domains.

The first test matrix, referred to as g7jac100, is derived from the “Overlap-
ping Generations Model” used to study the social security systems of the G7
nations. It is a sparse matrix with dimensions 29610 × 29610 and contains 335972
numerically nonzero entries. Notably, this matrix has a low rank of 21971. The
second matrix, named net100, originates from an optimization problem. It has
dimensions of 29920 × 29920 and contains 2033200 numerically nonzero entries.
Similar to the previous matrix, net100 also possesses a low rank, specifically 26983.
The Abacus-shell-ld matrix, associated with model order reduction, has dimensions
23412 × 23412 and represents a rank-2048 structure. It contains 218484 nonzero
entries. Lastly, we have pkustk01, a symmetric positive-definite matrix derived
from a civil engineering problem. This matrix has dimensions of 22044 × 22044,
a low rank of 3732, and consists of 979380 nonzero entries.

In the case of large-scale data sets, similar to the small/mid-scale experiments,
in Figs. 4.3, 4.4, 4.5, and 4.6 the block DEIM variants maintain comparable recon-
struction errors as the existing methods. This finding aligns with our observations
from the small/mid-scale experiments. However, there are notable differences
in terms of algorithm efficiency. Unlike the small/mid-scale cases, where the
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Figure 4.3: Relative approximation errors (left) and runtimes (right) as a function of k
for the block DEIM CUR approximation algorithms compared with some
standard CUR approximation algorithms using the g7jac100 sparse matrix.

adaptive variants have similar runtimes as the DEIM scheme, in the large-scale
experiments, the adaptive variants demonstrate better computational efficiency



4.3 numerical experiments 49

100 200 300 400 500

0.6

0.7

0.8

rank-k

∥A
−

C
M

R
∥

/
∥A

∥
MaxVol methods

100 200 300 400 500
0

5

10

15

rank-k

ti
m

e(
s)

DEIM B-DEIM-MaxVol
MaxVol AdapBlock-MaxVol

100 200 300 400 500

0.6

0.7

0.8

rank-k

∥A
−

C
M

R
∥

/
∥A

∥

RRQR methods

100 200 300 400 500

0

5

10

15

rank-k

ti
m

e(
s)

DEIM B-DEIM-RRQR
Q-DEIM AdapBlock-RRQR

Figure 4.4: Relative approximation errors (left) and runtimes (right) as a function of k
for the block DEIM CUR approximation algorithms compared with some
standard CUR approximation algorithms using the net100 sparse matrix.

than the standard DEIM scheme. On the other hand, the B-DEIM-MaxVol and
B-DEIM-RRQR schemes showcase better speed efficiency overall. These block
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Figure 4.5: Relative approximation errors (left) and runtimes (right) as a function of k
for the block DEIM CUR approximation algorithms compared with some
standard CUR approximation algorithms using the Abacusa-shell-ld sparse
matrix.
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Figure 4.6: Relative approximation errors (left) and runtimes (right) as a function of k
for the block DEIM CUR approximation algorithms compared with some
standard CUR approximation algorithms using the pkustk01 sparse matrix.

DEIM variants prove to be effective in achieving a balance between accuracy and
computational efficiency in the context of large-scale data. Consistent with previ-
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ous findings, the MaxVol algorithm generally remains the least efficient method,
with one exception in the case of the gijac100 data set. These results highlight the
importance of considering the specific characteristics and requirements of the
data sets when selecting an appropriate algorithm.

Experiment 4.5. Following the experiments in [93], our test matrix in this experi-
ment is a full-rank data set A ∈ R2000×4000 that has the structure of the SVD, i.e.,
A = UΣV⊤. The matrices U and V have random orthonormal columns obtained
via a QR factorization of a random Gaussian matrix, and the diagonal matrix Σ
has entries that are logspace ranging from 1 to 10−3.

Using two of the block DEIM algorithms proposed: the B-DEIM-MaxVol and
B-DEIM-RRQR, in Fig. 4.7, we investigate how varying block sizes, i.e., b =
(2, 5, 10, 20) may affect their approximation quality and computational efficiency.
For each fixed block size, maintaining the properties of A, we generate five
different test cases and compute the averages of the evaluation criteria for the
range of k values.

We observe that for increasing block sizes, both algorithms become considerably
faster. On the other hand, the approximation quality of the varying block sizes
may not degrade significantly. In this experiment, given the various values of k,
the errors are almost similar irrespective of the block size.

4.4 final considerations

This chapter presents various block variants of the discrete empirical interpolation
method for computing CUR decompositions. We exploit the advantages of the
classical DEIM procedure, a column-pivoted QR decomposition, and the concept
of maximum determinant or volume of submatrices to develop these block
variants. We have then presented a version of the block DEIM, which allows for
an adaptive choice of block size.

We perform the following procedures in the block DEIM based on RRQR; at
each iteration step, we compute a QR factorization with column pivoting on
the transpose of a block of singular vectors to obtain the indices corresponding
to the first b columns. Then, we update the next block of vectors using the
interpolatory projection technique in the DEIM algorithm (repeat these two steps
until all indices are selected). A similar procedure is used in the block DEIM
based on MaxVol; the difference here is instead of using a column-pivoted QR
decomposition, we use the MaxVol method.

Numerical experiments illustrate that the accuracy of a CUR factorization
using the newly proposed block DEIM procedures is comparable to the classical
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Figure 4.7: Runtimes and average approximation errors for the B-DEIM-RRQR (up) and
B-DEIM-MaxVol (down) CUR approximation algorithms as a function of k for
varying block sizes using large matrices of size 2000 × 4000.

DEIM, MaxVol, and QDEIM schemes. The experiments also demonstrate that
the block variants, regarding computational speed, may have an advantage over
the standard DEIM and MaxVol algorithms. Relative to the QDEIM algorithm,
the B-DEIM-RRQR scheme sometimes yields lesser approximation errors while
maintaining comparable runtimes. Using the B-DEIM-RRQR and B-DEIM-MaxVol
methods, we have also illustrated how increasing the block size improves the
speed of the algorithms but may not necessarily degrade the approximation
quality significantly. Table 4.1 displays a schematic overview of some properties
of the various methods.





5
A D E I M - C U R FA C T O R I Z AT I O N W I T H I T E R AT I V E S V D S

A CUR factorization is often used as a substitute for the singular value de-
composition, especially when a concrete interpretation of the singular vectors
is challenging. Moreover, if the original data matrix possesses properties like
nonnegativity and sparsity, a CUR decomposition can better preserve them. An
essential aspect of this approach is the methodology used for selecting a subset of
columns and rows from the original matrix. This study investigates the effective-
ness of one-round sampling and iterative subselection techniques and introduces
new iterative subselection strategies based on iterative SVDs. Our contribution Adapted

from [44]aims to improve the approximation quality of the DEIM scheme by iteratively
invoking it in several rounds, in the sense that we select subsequent columns
and rows based on the previously selected ones. That is, we modify A after each
iteration by removing the information that has been captured by the previously
selected columns and rows. We also discuss how iterative procedures for com-
puting a few singular vectors of large data matrices can be used with the new
iterative subselection strategies.

5.1 adaptive sampling for column subset selection problem

The iterative subselection strategies proposed in this chapter are related to the so-
called adaptive sampling for column subset selection. In this section, we provide an
overview of the adaptive sampling technique proposed by Deshpande et al. [28].
The authors introduce a probabilistic method that iteratively selects a subset of
columns in multiple rounds to construct a rank-k approximation of a matrix. This
approach has been demonstrated to provide improved accuracy and flexibility
compared to one-round sampling methods. One-round sampling methods refer to
selection schemes that obtain all k columns in a single round.

The adaptive sampling method of [28] as summarized in Algorithm 11 involves
alternating between two steps in each round: selecting a subset of columns
and updating the probability distribution over all columns. The selection of
columns in each round is influenced by the columns picked in previous rounds.
Suppose we aim to select k subsets of columns from matrix A. The process begins
with an initial probability distribution and randomly selects c < k columns

55
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to form a matrix C. The selection of columns is based on the norms of the
columns, as described in [28, 37]. Each column j is chosen with a probability
pr(j)

i = ∥E(j)
i−1∥

2 / ∥Ei−1∥2
F (as in Line 5 of Algorithm 11). After selecting c columns,

the probabilities are updated based on the chosen columns, and c new columns
are sampled and added to the matrix C. This iterative process continues until all k
columns are selected. Note that assigning zero probability to previously selected
indices, as described in Line 4, represents a sampling without replacement
strategy.

Algorithm 11: Adaptive sampling for column subset selection [28]
Data: A ∈ Rm×n, target rank k, # rounds t, columns per round c
Result: C ∈ Rm×tc

1 p = [ ]; E0 = A
2 for i = 1, . . . , t do
3 for j = 1, . . . , n do
4 if j ∈ p then pr(i)j = 0 (sample without replacement)

5 else pr(j)
i = ∥E(j)

i−1∥
2 / ∥Ei−1∥2

F
6 end
7 pi = set of c indices sampled according to pri
8 p = [p pi]
9 C = A( :, p); Ei = A − CC+A

10 end

The authors present a detailed explanation and theoretical analysis of this adap-
tive sampling technique, emphasizing its advantages and diverse applications
[28]. The algorithm improves the accuracy of a CUR decomposition compared
to one-round sampling methods as demonstrated in [28, 29, 79, 94]. Moreover, it
allows for flexibility by accommodating different criteria for selecting column and
row subsets based on specific problem requirements, which we will also discuss
in Section 5.2. In their approach (Algorithm 11), a constant number of columns is
selected per iteration, and the residual is computed as E = A − CC+A.

Nevertheless, one notable drawback of this adaptive sampling technique is its
probabilistic nature, introducing randomness into the index selection process. This
randomness may sacrifice predictability to some extent. Applying the algorithm
multiple times to the same data may lead to inconsistent factorizations, yielding
varying CUR decompositions across runs. This lack of predictability may hamper
the reproducibility of the decomposition. Moreover, the unpredictable nature may
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impact downstream tasks reliant on the CUR decomposition, potentially leading
to inconsistent outcomes. As a result, the practical use of a CUR decomposition
by this type of probabilistic algorithm may be compromised.

To address this limitation, in the next section, we introduce a modified approach
based on the DEIM scheme to implement the iterative subselection algorithm
proposed by Deshpande et al. [28] and also propose a new iterative subselection
strategy. By incorporating the DEIM scheme, our method provides a deterministic
technique for iterative subselection of column indices, in contrast to the original
methods that employed a probabilistic approach [10, 28, 29, 79, 94]. This deter-
ministic nature enhances the reproducibility of the CUR decomposition, making
it more suitable for practical applications.

5.2 small-scale deim type cur with iterative svds

In this section, we introduce new index-picking schemes for constructing a CUR
decomposition. The standard DEIM scheme determines an SVD of A once, after
which the indices are picked iteratively “locally optimal”. The new methods that
we present now compute an SVD in every iteration. The algorithms adaptively
select columns and rows of A in several rounds. In each iteration, we modify A
by removing the information that has been captured by the previously selected
columns and rows. The time complexities of the various methods after t rounds
are summarized in Table 5.1. This includes the computational time for computing
an SVD and an updated A (residual) matrix in every round.

Table 5.1: Summary of the dominant work of the different algorithms after t rounds. The
time complexity column excludes the computational cost of the DEIM scheme
as it is approximately the same for all algorithms.

Method Matrix SVD Time

svd X or M Residual (E)

CADP-CX (Algorithm 12)
Small Full O(tmn2) O(tmnk) O(tmnk)DADP-CX (Algorithm 13)

DADP-CUR (Algorithm 14)

Large: DADP-CX (Algorithm 16) Large Few O(mn · nrin) O(mnk) –

The complexity estimates and the other descriptions are similar for the first
three algorithms. It is important to highlight that when constructing a CUR
factorization using Algorithms 12 and 13, one needs to perform almost twice the
number of SVDs, X, and E, compared to what is required by Algorithm 14. For
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the large-scale algorithm, estimating the precise time complexity of computing
a low-rank SVD using an iterative method (refer to Algorithm 15), as done in
Algorithm 16, can be challenging. The iterative approach involves a series of
matrix-vector multiplications and orthogonalization steps. The computational cost
of the Lanczos algorithm is typically dominated by matrix-vector multiplications,
which is O(mn) times the total number of inner iterations (denoted by nrin in the
table) needed. It is worth noting that we do not explicitly compute the residual
in Algorithm 16 as done in Algorithms 12, 13, and 14.

5.2.1 A DEIM based adaptive sampling for column subset selection

We present a deterministic variant of the iterative subselection scheme discussed
in Section 5.1. The newly proposed algorithm (CADP-CX) builds upon the
original adaptive sampling algorithm [28] by leveraging the benefits of the DEIM
technique. The procedure is summarized in Algorithm 12. The method involves
iteratively selecting a constant number of column indices, denoted as c, from A in
multiple rounds. We start by computing the leading c < k singular vectors of A.
Next, we apply the DEIM scheme (Algorithm 3) to these singular vectors, resulting
in the first set of c indices. We then update A by computing the residual matrix E
using the interpolative decomposition (as described in Line 7 of Algorithm 12).
Next, we compute the leading c singular vectors of E and apply the DEIM
procedure again to obtain the next set of c indices. This process is repeated until
we have selected all k required indices.

Algorithm 12: DEIM based adaptive sampling for column subset selection
Data: A ∈ Rm×n, target rank k, columns per round c (with c | k)
Result: C ∈ Rm×k

1 p = [ ]; E0 = A
2 for i = 1, . . . , k/c do
3 Compute [∼,∼, V] = svd(Ei−1)
4 V(p, : ) = 0
5 pi = deim(V(:, 1 : c)) (Iteratively pick c indices)
6 p = [p pi]
7 C = A( :, p); X = C\A; Ei = A − CX
8 end

One consequence of using the DEIM scheme here is that each column of A
has a chance of being selected in subsequent iterations, even if it was selected
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in a previous iteration. This could result in the selection of previously chosen
columns in subsequent iterations. Line 4 of Algorithm 12 is a possible sample
without-replacement strategy that can alleviate this problem. Since the DEIM
procedure selects the index corresponding to the entry of the largest magnitude in
a given vector, when these indices are zeroed out after being chosen, it guarantees
that they will not be selected again.

With regards to the memory and computational complexity, computing the
residual in Line 7 involves a full iteration over the matrix, which has a space
complexity of O(mn). Given that we use the DEIM procedure and select c
columns per iteration, in terms of computational complexity, a full SVD requires
O(mn2), one run of the DEIM algorithm requires O(mc2), and computing the
residual in Line 7 costs O(mnk). The overall time complexity after t rounds is
O(tmn2 + tmc2 + tmnk).

5.2.2 A new iterative subselection method

In Algorithm 13, we introduce a new iterative subselection strategy (DADP-CX)
for a CUR factorization, which differs from the method employed in our new
Algorithm 12 and the adaptive sampling procedures in previous works [10, 28,
79, 94]. In contrast to the previous strategy, which selects a fixed number of
columns or rows in each iteration, this new strategy dynamically adjusts the
selection schedule based on the decay of the singular values of the data (the
relative magnitudes of the singular values).

The motivation behind this new approach is to adapt the subselection process
according to the significance of the singular values. By considering the decay
pattern of the singular values, we can prioritize the selection of columns or rows
that contribute the most to the data’s overall structure and information. The
decay of singular values provides valuable information about the significance of
different components in the data. By leveraging this information, the iterative
subselection strategy can adapt to the specific characteristics of the data and
prioritize the selection of columns or rows that contribute the most to its structure.
This adaptability allows for a more data-driven selection process.

With a user-defined threshold δ ∈ (0, 1], the small-scale version of our method
begins by computing the leading singular vectors corresponding to the singular
values greater than the threshold multiplied by the largest singular value of A, i.e.,
all σi > δ · σ1. Let b denote the number of singular values satisfying this condition.
Additionally, we introduce an extra parameter ℓ to establish an upper limit on
the number of indices per round, taking into account the number of singular
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Algorithm 13: Singular value decay-based iterative DEIM with one-sided
projected residual

Data: A ∈ Rm×n, desired rank k, threshold parameter δ ∈ (0, 1], upper
limit ℓ

Result: Low-rank CUR decomposition Ak = A(:, p) · M · A(s, :)
1 Set E = A; p = [ ]; s = [ ]
2 while length(p) < k do
3 Compute [∼, Σ, V] = svd(E)
4 V(p, : ) = 0
5 Let b be the last index i ≤ k − length(p) with σi > δ σ1
6 c = min(b, ℓ); pc = deim(V(:, 1 : c))
7 p = [p pc]; C = A(:, p); X = C\A
8 E = A − CX (Update matrix)
9 end
10 Repeat steps 1–9 on A⊤ to find the row indices s
11 M = A(:, p) \ (A / A(s, :))

values that exceed the threshold. Consequently, we select the first c = min(b, ℓ)
column indices denoted by pc by applying the DEIM scheme to the leading c
right singular vectors (Vc).

Subsequently, we proceed to construct an interpolative decomposition using
the chosen column indices and compute the residual matrix E by subtracting
this approximation from A, i.e., E = A − CC+A. To determine the next set
of indices, we repeat the aforementioned process on E. Thus, we compute the
leading singular vectors of E corresponding to singular values greater than δ

times the largest singular value of E and repeat the procedure mentioned earlier.
As previously mentioned, since the DEIM scheme selects indices corresponding
to entries with the largest magnitude, we set the entries in the right singular
vectors that correspond to the previously selected indices to zero. This prevents
the selection of duplicate indices. We continue this procedure until all k indices
are selected. We expect that the multiple passes through A would lead to a
reduced approximation error. It is worth mentioning that in Line 10, there is no
need to compute the initial SVD of A⊤ since we can store the initial left singular
vectors from the SVD of A.

In addition to the new selection strategy described in Algorithm 13, we also
define an alternative way to compute the residual in the index selection process,
which is presented in Algorithm 14. The newly proposed iterative subselection
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algorithms (Algorithms 12 and 13) and existing adaptive sampling procedures
such as those outlined in [10, 28, 29, 79, 94] define the residual as the error
incurred by projecting the matrix A onto either the column space of C or the
row space of R, i.e., E = A − CC+A or E = A − AR+R, respectively. In contrast,
this new method (DADP-CUR) defines the residual as the error incurred by
simultaneously projecting A onto both the column space of C and the row space
of R. This means computing a CUR factorization at each step using only the
selected columns and rows.

Algorithm 14: Singular value decay-based iterative DEIM with two-sided
projected residual

Data: A ∈ Rm×n, desired rank k, threshold parameter δ = (0, 1], upper
limit ℓ

Result: Low-rank CUR decomposition Ak = A(:, p) · M · A(s, :)
1 Set E = A; p = [ ]; s = [ ]
2 while length(p) < k do
3 [U, Σ, V] = svd(E)
4 Set V(p, : ) = 0, U(s, : ) = 0
5 Let b be the last index i ≤ k − length(p) with σi > δ σ1
6 c = min(b, ℓ); pc = deim(V(:, 1 : c)); sc = deim(U(:, 1 : c))
7 p = [p pc], s = [s sc]
8 M = A(:, p) \ (A / A(s, :))
9 E = A − A(:, p) · M · A(s, :) (Update matrix)

10 end

By considering the simultaneous projection onto the column and row spaces,
we aim to use a residual that provides a more accurate representation of the error
in the CUR factorization. It takes into account the combined effect of selecting
specific columns and rows on capturing the underlying structure and information
in the data. This approach offers several potential advantages. It allows for
a more comprehensive assessment of the error in the index selection process,
considering the contributions from both the columns and rows. Furthermore, it
ensures that the residual accurately reflects the approximation quality obtained
by a CUR factorization using the selected columns and rows. Additionally, it has
the potential to reduce computational costs compared to Algorithm 13, as the
latter approach involves performing nearly twice the number of SVDs required by
Algorithm 14. Without showing specifics, it is worth mentioning that Algorithm 12
can be adapted using the newly defined residual.
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Note that when δ = 0, both Algorithms 13 and 14 are equivalent to the
DEIM-type CUR factorization. In terms of time complexity, suppose we need
t iterations in Algorithms 13 and 14 to select all k columns and rows. The
cost of solving E is O(tmnk). The cost of an SVD and one run of the DEIM
scheme are O(mn2) and O(nc2), respectively, where c is the maximum number
of columns selected per iteration. Therefore, the overall cost of the algorithms is
O(tmn2 + t(m+ n)c2 + tmnk). However, constructing C and R using Algorithm 13
requires two runs of it. Thus, its cost is almost twice that of Algorithm 14.

For small matrices, these iterative subselection techniques may be worthwhile
as the costs are modest and the quality of the approximations may increase.
However, these schemes may be especially interesting for large matrices, for
which an SVD may be too expensive, and iterative methods are used to compute
the left and right singular vectors. We will study this situation in the next section.

5.3 large-scale deim type cur with iterative svds

For large-scale matrices, taking an SVD every round in Algorithms 12, 13, and 14
will usually be prohibitively expensive. Indeed, even one (reduced) SVD will
be too costly, which means that the standard DEIM-type CUR decomposition is
generally not affordable. However, the proposed algorithm is suitable for large-
scale data, as approximating the largest singular vectors by iterative (Krylov)
methods is usually a relatively easy task. Additionally, here, we do not explicitly
compute the residual matrix as done in the proposed algorithms; this is done
implicitly in the computation of the approximate singular vectors. Furthermore,
instead of computing the full SVD as we do in Algorithms 12, 13, and 14, we now
carry out:

1: Approximate Û and V̂ of E.
This can efficiently be carried out by an implicitly restarted version of Lanczos

bidiagonalization (see, e.g., [3]). The idea is as follows. Let k < k̂ be the minimal
and maximal dimension of the subspaces. We first carry out k̂ steps of Lanczos
bidiagonalization summarized by the matrix equations

EV̂̂k = Ûk̂Bk̂, E⊤Ûk̂ = V̂̂kB⊤
k̂
+ βk̂v̂k̂+1e⊤

k̂
,

where Bk̂ is bidiagonal. The singular values of Bk̂ are approximations to those of
E, and the singular vectors lead to approximations to those of E. With the SVD
Bk̂ = WΣ̂Z⊤, we get

E(V̂̂kZ) = (Ûk̂W)Σ̂, E⊤(Ûk̂W) = (V̂̂kZ)Σ̂ + βk̂v̂k̂+1(W
⊤ek̂)

⊤,
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For any upper triangular matrix Σ̂ an elegant implicit restart procedure is possible;
here Σ̂ is even diagonal. Order the singular values in the desired way; in this case
nonincreasingly. Partition the transformed basis, redefining Ûk and V̂k:

(Ûk̂W) =: [Ûk Ûk̂−k], (V̂̂kZ) =: [V̂k V̂̂k−k], Σ̂ =
[

Σ̂k

Σ̂k̂−k

]
, (5.1)

and redefine Bk = Σ̂k, βk+1 := βk̂+1, v̂k+1 := v̂k̂+1, and fk := W⊤ek̂. We can now
conveniently restart from the decomposition

EV̂k = ÛkBk, E⊤Ûk = V̂kB⊤
k + βkv̂k+1f⊤k .

The pair (Ûk, V̂k) may be viewed as a pair of approximate invariant spaces
with error ∥fk∥. The spaces are expanded with Lanczos bidiagonalization to
dimension k̂, after which the selection procedure is carried out again. This
scheme is repeated until the quantify ∥fk∥ is sufficiently small. We summarize the
method in Algorithm 15. Note that MATLAB built-in function svds is a different
implementation of a related technique.

Algorithm 15: Implictly restarted Lanczos bidiagonalization [3]
Data: E ∈ Rm×n, desired rank k, initial vector v1, minimum and maximum

dimension k < k̂, tolerance tol
Result: Approximation to k largest singular triplets (σi, ui, vi), giving best

low-rank approximation Ek = ÛkΣ̂kV̂⊤
k

1 Generate EV̂k = ÛkBk, E⊤Ûk = V̂kB⊤
k + βk+1v̂k+1f⊤k

2 for i = 1, 2, . . . do
3 Expand to EV̂̂k = Ûk̂Bk̂, E⊤Ûk̂ = V̂̂kB⊤

k̂
+ βk̂+1v̂k̂+1f⊤

k̂
4 Determine SVD Bk̂ = WΣ̂Z⊤

5 Partition according to (5.1), restart with Ûk, V̂k,
6 redefining Bk := Σ̂k, βk+1 := βk̂+1, v̂k+1 := v̂k̂+1, fk := W⊤ek̂
7 Stop if ∥fk∥ ≤ tol
8 end

In Algorithm 16 we provide the large-scale version of Algorithm 13 by employ-
ing Algorithm 15. Without showing details, it is worth noting that this can also
be adapted for Algorithms 12 and 14. It is important to note that the threshold
parameter δ and the upper limit ℓ on the number of indices to be selected per
round are incorporated within the implementation of Algorithm 15. The efficiency
of this method is because for the procedure in Algorithm 15, we do not need
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Algorithm 16: Large-scale: Singular value decay-based iterative DEIM with
one-sided projected residual
Data: A ∈ Rm×n, desired rank k, threshold parameter δ ∈ (0, 1], upper

limit ℓ
Result: Low-rank CUR decomposition Ak = A(:, p) · M · A(s, :)

1 Set E = A; p = [ ];
2 while length(p) < k do
3 Compute [∼, Σ, V] = svds(E) (Algorithm 15)
4 finding σb, the last index i ≤ k − length(p) with σi > δ σ1 or
5 at most σℓ. Let c = min(b, ℓ)
6 V(p, : ) = 0; pc = deim(V(:, 1 : c))
7 p = [p pc]; C = A(:, p)
8 Update an incremental QR decomposition C = QT
9 E@(x) y = Ax; y = y − Q(Q⊤y); (Update matrix implicitly)
10 with transpose E⊤@(x) y = x − Q(Q⊤x); y = A⊤y
11 end
12 Repeat steps 1–9 on A⊤ to find the row indices s
13 M = A(:, p) \ (A / A(s, :))

the matrix E in explicit form; only matrix-vector products (MVs) with E and E⊤

are necessary (see Line 9). The routine of Algorithm 15 also takes several MVs
that depend on the distribution of the singular value and the starting vector. The
cost of computing the singular values and vectors in Line 3 depends on the total
number of inner iterations of Algorithm 15. The number of iterations required
by the Lanczos algorithm depends on the size of the matrix. In a matrix-vector
product Ex for a vector x, the component Ax costs O(mn) for a full matrix. In
the case of a sparse matrix with d nonzeros entries per row, the cost reduces to
O(md). The aggregated cost of Line 8 is only O(mk2). In Line 9, the computation
of Q(Q⊤x) requires O(mk) operations. The cost of solving the least squares prob-
lem M = C+AR+ would be O(mnk), which is relatively expensive. Nevertheless,
it is important to highlight that this step is necessary for all CUR methods as the
final step.

As previously mentioned, it is not necessary to compute the initial SVD of A⊤

in this case, as we can simply retain the initial left singular vectors obtained from
the SVD of A. The value of δ will typically depend on the data set. A value close
to 1 may be favorable for the approximation result but is more expensive since
Algorithm 15 needs to be carried out approximately k times. However, having
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δ = 1 implies that we select one index per iteration, and thus, we need just the
first right and left singular vectors of E corresponding to the largest singular
value. We can reduce the computational cost by specifying an earlier convergence
criterion for finding the approximate leading right and left singular vectors.
We use Wedin’s theorem for this. The theorem bounds the distance between
subspaces and the proof is in (cf., e.g., [86, pp. 260–262]).

Theorem 5.1. (Wedin’s Theorem) Given E ∈ Rm×n, let

[U1 U2 U3]
⊤ E [V1 V2] =




Σ1 0
0 Σ2

0 0


 ,

be the SVD of E (where the singular values are not necessarily nonincreasing). The
singular subspaces of interest are in the column spaces of U1 and V1. Let the inexact/ap-
proximate singular subspaces be in the column spaces of U1 and V1 in the decomposition

[ U1 U2 U3]
⊤ E [ V1 V2] =




Σ1 0
0 Σ2

0 0


 .

Now let Φ be the matrix of canonical angles between Range(U1) and Range( U1), and
Θ be the matrix of canonical angles between Range(V1) and Range( V1). Given the
residuals F1 = E V1 − U1Σ1, F2 = E⊤ U1 − V1Σ1, suppose that there is a number α > 0
such that

min |σ(Σ1)− σ(Σ2)| ≥ α and σmin(Σ1) ≥ α.

Then


∥sin Φ∥2

F + ∥sin Θ∥2
F ≤


∥F1∥2

F + ∥F2∥2
F

α
.

Theorem 5.1 shows that the computed singular vectors extracted by the projection
method are optimal up to the factor in the right-hand side of the above inequality.
This implies that any change in the entries of the computed singular vectors is
bounded by this factor. Note that Σ2 is unknown. For our context, we use Σ2 as
an approximation to Σ2. Since we are only concerned with approximating the
first leading right singular vector v1, we approximate α ≈ σ1 − σ2. Let m1(v1)
and m2(v1) denote the largest and second-largest entries in v1, respectively, and
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let f2 = E⊤û1 − σ̂1v̂1 be the residual vector (associated with residual matrix F2).
The above svds routine results in f1 = Ev̂1 − σ̂1û1 = 0 (associated with residual
matrix F1). The DEIM algorithm selects the index corresponding to the largest
element in the magnitude of a vector. Therefore, when δ = 1, one can set an
early convergence criterion to find the first singular vector that corresponds to
the largest singular value, using the following approximate bound:

m1(v̂1)− m2(v̂1) ≲ 2
∥f2∥

σ̂1 − σ̂2
.

Remark 5.2. In [83, Thm. 4.1], Sorensen and Embree provide a theoretical error bound
that applies to a general class of CUR factorizations (see Proposition 4.2). We note that
this bound also holds for our proposed methods in this chapter. A detailed constructive
proof of this bound is in [83], but we provide the necessary details in Section 4.2.4 for the
reader’s convenience.

5.4 numerical experiments

We conduct numerical experiments to evaluate the empirical performance of the
DEIM scheme [83], the QDEIM procedure [34], the MaxVol method [50], and the
iterative subselection techniques discussed in this chapter. The following are the
iterative subselection methods we evaluate:

CADP-CX: refers to Algorithm 12.

DADP-CX: represents Algorithm 13.

DADP-CUR: corresponds to Algorithm 14.

CADP-CUR: denotes the adapted version of Algorithm 12 with the residual
defined as E = A − CMR.

To assess the effectiveness of our algorithms, we test them on various data anal-
ysis tasks in different application domains, such as analyzing recommendation
systems, categorizing text and retrieving information, and image compression.
Our evaluation includes synthetic and real-world data matrices, both sparse and
dense, with varying sizes ranging from small to large scale, which we summarize
in Table 5.2. In the implementation, we perform the column-pivoted QR factor-
ization and the reduced SVD using the MATLAB built-in functions qr and svd,
respectively. For Algorithms 15 and 16, we use our implementation of the Lanczos
bidiagonalization method of [3] by incorporating the threshold parameter δ and
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upper limit ℓ on the number of singular vectors to be computed. Unless otherwise
stated, in all the experiments we use as default the number of rounds t = 10, the
parameter δ = 0.8, and upper limit ℓ = k/10.

Table 5.2: Various examples and dimensions considered.

Exp. Domain Matrix m n

1 Synthetic Sparse 100000 300

2 Text categorization Sparse 139 15210

3 Text categorization Sparse 8293 18933

4 Image compression Dense 13500 5000

5 Recommendation system Dense 14116 100

6 Image compression Dense 50000 3072

Experiment 5.3. In our first experiment, we investigate how different choices
of δ and the number of rounds t affect the approximation accuracy of the var-
ious iterative subselection strategies. We use the relative approximation error
∥A − CMR∥ / ∥A∥ as the evaluation metric. For this experiment just as in [83], we
generate a sparse, nonnegative matrix A ∈ Rm×n, with m = 100000 and n = 300,
of the form

A =
10

∑
j=1

2
j

xj y⊤
j +

300

∑
j=11

1
j

xj y⊤
j ,

where xj ∈ Rm and yj ∈ Rn are sparse vectors with random nonnegative entries
(i.e., xj = sprand(m, 1, 0.025) and yj = sprand(n, 1, 0.025).

From Fig. 5.1 we observe that increasing the number of rounds t or δ does not
necessarily lead to a monotonic decrease in the approximation errors. The result
implies that to get the optimum advantage of using the iterative subselection
strategies one needs to carefully choose the parameter δ or the number of rounds.
For this experiment, we also observe that using the residual E = A − CMR
instead of A − CC+A for the iterative subselection yields better approximation
errors in the delta strategy while it produces worse approximation errors in the
constant number of columns strategy.

Experiment 5.4. Our next experiment is to demonstrate that the iterative subse-
lection techniques yield better approximation results than one-round sampling.
We perform the experiment using four real data sets and report the relative
approximation error ∥A − CMR∥ / ∥A∥ of each algorithm on each data set.
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Figure 5.1: Relative approximation errors for the various iterative subselection DEIM CUR
approximation algorithms for k = 30. The right figure represents selecting a
constant number of columns and rows per iteration and the left is the delta
strategy. In all cases, increasing the number of rounds or delta does not lead
to a monotonic decrease in the approximation errors.

The first two data sets are relevant to applications in text categorization and
information retrieval. In such data analysis problems, a “bag of words” approach
is commonly employed to represent documents. We opt for the Reuters-21578
text categorization collection, which comprises documents that were featured on
Reuters’ newswire in 1987. This data set is extensively used as a benchmark in the
text classification community, consisting of 21578 documents categorized into 135
categories. For our experiment, we use the preprocessed data set, which has 18933
unique terms and 8293 documents [12]. We normalize the rows of the sparse
matrix, which has dimensions 8293 × 18933, to have a unit length. The second
data set, the Internet term document data, is from the Technion Repository of
Text Categorization Datasets (TechTC) [40]. We use the test set 26, which consists
of a collection of 139 documents on two topics with 15210 terms describing each
document1. As in [83], the 139 × 15210 TechTC matrix rows are scaled to have a
unit 2-norm.

The third data set is the Gisette data [54]. Gisette is a handwritten digit recog-
nition problem. The problem is to separate the highly confusable digits ‘4’ and
‘9’. The digits have been size-normalized and centered in a fixed-size image of
dimension 28 × 28. The resulting data set is of dimension 13500 × 5000.

1 http://gabrilovich.com/resources/data/techtc/
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The next data set pertains to the recommendation system analysis field, where
the primary objective is to provide service or purchase suggestions to users.
Collaborative filtering is a commonly used technique in recommendation systems,
which involves recommending items to users that were previously liked by
customers with comparable preferences. The Jester data set is frequently employed
as a benchmark in recommendation system research [47]. The data set comprises
73421 users and their ratings for 100 jokes. We limit our analysis to users who
have provided ratings for all 100 jokes, resulting in a 14116 × 100 matrix. We
normalize the matrix by subtracting the mean of each column from all the entries
in that column.

From Fig. 5.2, we can see that in all cases our iterative subselection-based CUR
algorithm has a lower approximation error than all the one-round deterministic in-
dex selection algorithms considered. We also observe that the approximation error
of the QDEIM and the MaxVol techniques do not always decrease monotonically
with increasing k values. We choose the number of rounds for the CADP-CUR
and CADP-CX algorithms to be t = 10, and the parameter δ = 0.8 and upper
limit ℓ = k/10 for the DADP-CUR and DADP-CX algorithms. The results of all
four proposed iterative subselection algorithms are comparable.

Experiment 5.5. As stated in Section 5.3, when dealing with large-scale matrices,
performing a full (even reduced) SVD in each iteration of algorithms 12, 13, and
14 can often become excessively costly. To evaluate the efficiency of the proposed
algorithms, which compute the full SVD, compared to their respective large-scale
versions that employ Lanczos bidiagonalization to find a limited number of
singular vectors (refer to Algorithm 16), we conduct experiments using a large-
scale data set. Specifically, we used the cifar-10 data set, which consists of 60000
color images sized 32 × 32 pixels, divided into ten different classes with 6000
images per class. The data set is divided into 50000 training set images and 10000
test set images. We focus on the training data set containing 50000 images. Each
image in the data set has been reshaped into a 1D array of length 3072, resulting
in a dense matrix of size 50000 × 3072. For our analysis, we approximate this
matrix using a rank-100 approximation.

Table 5.3 presents the results obtained from running the various algorithms. We
observe that the large-scale variants (i.e., the various adaptations of Algorithm 16),
which employ an iterative method for computing a few SVDs, demonstrate
higher efficiency while maintaining comparable approximation quality compared
to the algorithms that compute the full SVD. Notably, both for the full SVD
and the iterative SVD routines, the algorithms with the residual defined as
E = A − CMR exhibit greater efficiency than those with the residual computed
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Figure 5.2: Relative approximation errors as a function of k for the various iterative
subselection DEIM CUR approximation algorithms compared with some
standard CUR approximation algorithms using real data sets.

as E = A − CC+A. Therefore, our new approach to computing the residual for
the iterative subselection proves to be more efficient than the existing method
while maintaining similar approximation accuracy for this experiment.
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Table 5.3: Comparison of large-scale iterative subselection algorithms (iterative method
for computing few SVDs) and small-scale iterative subselection algorithms (full
SVD computation) on the cifar-10 data set approximation.

Method Full SVD Iterative SVD

Relative error Runtime (s) Relative error Runtime (s)

CADP-CUR 0.028 3.24 · 102 0.028 1.61 · 102

DADP-CUR 0.027 5.06 · 102 0.027 1.66 · 102

CADP-CX 0.026 6.21 · 102 0.026 5.40 · 102

DADP-CX 0.026 1.15 · 103 0.026 5.78 · 102

5.5 final considerations

New approaches for selecting subsets of columns and rows using iterative sub-
selection strategies have been presented. The first one is a DEIM adaptation of
the so-called adaptive sampling [28] for column subset selection. This procedure
follows a fixed selection schedule, choosing a predetermined number of columns
or rows in each iteration. In contrast, the second proposed iterative subselection
strategy dynamically adjusts the selection schedule based on the decay of the
singular values of the data. This approach aims to prioritize the selection of
columns or rows that contribute the most to the overall structure and information
of the data. By considering the significance of singular values and leveraging
their decay pattern, the algorithm can adapt to the unique characteristics of the
data, resulting in a more data-driven selection process.

Additionally, we also introduce an alternative approach for computing the
residual in the index selection process. The first two iterative subselection al-
gorithms we propose, i.e., Algorithm 12 and Algorithm 13, as well as existing
adaptive sampling procedures [10, 28, 29, 79, 94], define the residual as the error
resulting from projecting the matrix A onto either the column space of C or the
row space of R, i.e., E = A − CC+A or E = A − AR+R, respectively. In contrast,
our new method defines the residual as the error incurred by simultaneously
projecting A onto both the column space of C and the row space of R. This entails
computing a CUR factorization at each step using only the selected columns and
rows.

We have also discussed how iterative procedures for computing a few singular
vectors of large data matrices can be used with the newly proposed strategies.
We have presented an adaptation of Algorithm 13 for the large-scale case in
Algorithm 16, which can straightforwardly be adapted for Algorithm 12 and
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Algorithm 14. To the best of our knowledge, Algorithm 16 is the first DEIM-type
algorithm for large-scale data sets.

For each of the iterative subselection strategies proposed in this chapter, we
invoke the DEIM index selection method. However, we note that other determin-
istic index selection schemes such as the QDEIM technique [34] and the MaxVol
procedure [50] may be employed. We have demonstrated through empirical anal-
ysis that the proposed methods in this chapter can produce better approximation
results than the traditional method of one-round sampling of all columns and rows.

Overall, the proposed techniques may be useful for improving the accuracy of
a CUR decomposition, but may also introduce additional complexities that need
to be carefully addressed. The choice of whether to use the proposed iterative
subselection methods or not may depend on the specific problem or application, as
well as the trade-offs between accuracy, complexity, and computational resources.



Part II

G E N E R A L I Z AT I O N S O F C U R D E C O M P O S I T I O N

Over the decades, several generalizations of the SVD corresponding
to the product or quotient of two to three matrices have been pro-
posed. The most commonly known generalization is the generalized
SVD (GSVD), also referred to as the quotient SVD of a matrix pair
(A, B) [22], which corresponds to the SVD of AB−1 if B is square and
nonsingular. Another generalization is the restricted singular value
decomposition (RSVD) of a matrix triplet (A, B, G) [97] which shows
the SVD of B−1AG−1 if B and G are square and nonsingular.

Similarly, in the next two chapters of the thesis, we have proposed two
generalizations of an SVD-based CUR decomposition: in Chapter 6,
a generalized CUR (GCUR) decomposition of a matrix pair (A, B)
[42] and in Chapter 7, a restricted SVD-based CUR (RSVD-CUR)
decomposition of a matrix triplet (A, B, G) [45]. The RSVD-CUR is
more general than the GCUR decomposition. One can derive a GCUR
decomposition from an RSVD-CUR factorization given special choices
of the matrices B or G.





6
G E N E R A L I Z E D C U R D E C O M P O S I T I O N F O R M AT R I X PA I R S

In this chapter, we propose a generalized CUR decomposition for matrix pairs
(A, B). Given matrices A and B with the same number of columns, such a de-
composition provides low-rank approximations of both matrices simultaneously
in terms of a subset of their rows and columns. We obtain the indices for select-
ing the subset of rows and columns of the original matrices using the discrete Adapted

from [42]empirical interpolation method on the generalized singular vectors. When B
is square and nonsingular, there are close connections between the GCUR of
(A, B) and the DEIM-induced CUR of AB−1. When B is the identity, the GCUR
decomposition of A coincides with the DEIM-induced CUR decomposition of A.
We also show a similar connection between the GCUR of (A, B) and the CUR of
AB+ for a nonsquare but full-rank matrix B. While a CUR decomposition acts
on one data set, a GCUR factorization jointly decomposes two data sets. The
algorithm may be suitable for applications where one is interested in extracting
the most discriminative features from one data set relative to another data set. In
numerical experiments, we demonstrate the advantages of the new method over
the standard CUR approximation for recovering data perturbed with colored
noise and subgroup discovery.

6.1 introduction

Given a matrix pair A and B with the same number of columns: A is m × n,
B is d × n and of full rank, we introduce a generalized CUR decomposition.
The intuition behind this GCUR decomposition is that we can view it as a CUR
decomposition of A relative to B. As we will see in Proposition 6.4, when B is square
and nonsingular, the GCUR decomposition has a close connection with the CUR
of AB−1. The GCUR is also applicable to nonsquare matrices B; see the examples
in Section 6.4. We also show in Proposition 6.4 that if B is nonsquare but of a full
rank, we still have a close connection between the CUR decomposition of AB+

and the GCUR decomposition. Another motivation for this GCUR decomposition
comes from a footnote remark by Mahoney and Drineas [72, p. 700]: “For data
sets in which a low-dimensional subspace obtained by the SVD failed to capture

75
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category separation, CUR decompositions performed correspondingly poorly.”
This is evident in Experiment 6.14.

Inspired by the work of Sorensen and Embree [83], we present a GCUR de-
composition algorithm based on the discrete empirical interpolation method. In
[83], the authors used DEIM as an index selection technique for constructing the
C and R factors of a CUR decomposition. The DEIM algorithm independently
selects the column and row indices based on the right and left singular vectors of
a data matrix A, respectively. Our new GCUR method uses the matrices obtained
from the GSVD instead. Besides using DEIM on the GSVD for index selection,
we can also use other CUR-type index selection strategies for the GCUR (see also
Section 6.5). The proposed method can be used in situations where a low-rank
matrix is perturbed with noise and the covariance of the noise is not a multiple
of the identity matrix. It may also be appropriate for applications where one is
interested in extracting the most discriminative information from a data set of
interest relative to another data set.

The following simple example shows that using the matrices obtained from the
GSVD instead of the SVD can lead to more accurate results when approximating
data with colored noise. Unlike white noise, colored noise is correlated. In discrete
time, the noise samples of colored noise need not be independent. In terms of
the Fourier transform, some frequencies are more present than others. As in
[57, p. 55] and [78], we use the term “colored noise” for the noise of which the
covariance matrix is not a multiple of the identity.

Example 6.1. We consider a full-rank matrix AE representing low-rank data and
want to try to recover an original low-rank matrix perturbed by colored noise. Our
test matrix AE is a rank-2 matrix A of size 3 × 3 perturbed by additive colored
noise E with a given desired covariance structure, i.e., AE = A + E. We take

A =




1 0 1

0 2 2

1 1 2


, E⊤E =




1.0 0.8 0.3

0.8 1.0 0.8

0.3 0.8 1.0


.

We generate the colored noise as an additive white Gaussian noise multiplied by
the Cholesky factor (R) of the desired covariance matrix. The matrix AE is, as
a result, a sum of a rank-2 matrix and a correlated Gaussian noise matrix. We
compute the SVD of both A and AE. The k dominant left singular vectors of A
are denoted by Wk, while those of AE are Wk. We also compute the GSVD of
(AE, R) and denote the k dominant left generalized singular vectors by Uk. Since
we are interested in recovering A, we examine the angle between the leading
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k-dimensional exact left singular subspace Range(Wk) and its approximations
Range(W̃k) and Range(Uk). We generate 1000 different test cases and take the
average of the subspace angles. The subspace angles are computed using the
Matlab inbuilt function subspace.

Table 6.1 shows the results for k = 2 and three different noise levels. We observe
that the approximations obtained using the GSVD in terms of subspace angles
are more accurate than those from the SVD: about 40% gain in accuracy. This
illustrates the potential advantage of using generalized singular vectors in the
presence of colored noise.

Table 6.1: The average angle between the leading two-dimensional exact singular sub-
space Range(W2) (which is the range of A) and its approximations Range(W̃2)

and Range(U2) for different values of the noise level ε. The subspaces
Range(U2) and Range(W̃2) are from the SVD of AE and the GSVD of (AE, R),
respectively.

ε Method Subspace angle

5 · 10−2 SVD 1.7 · 10−2

GSVD 1.2 · 10−2

5 · 10−3 SVD 1.7 · 10−3

GSVD 1.1 · 10−3

5 · 10−4 SVD 1.7 · 10−4

GSVD 1.1 · 10−4

Inspired by this example, we expect that the GCUR compared to the CUR may
produce better approximation results in the presence of nonwhite noise, as it is
based on the GSVD instead of the SVD. We show in Section 6.4 that the GSVD
and the GCUR may provide equally good approximation results even when we
use an inexact Cholesky factor.

The outline of the chapter is as follows: Section 6.2 gives a brief introduction
to the GSVD. We also discuss the truncated GSVD and its approximation error
bounds. Section 6.3 introduces the new GCUR decomposition with an analysis of
its error bounds. In Algorithm 17, we present a DEIM type GCUR decomposition
algorithm. Results of numerical experiments are presented in Section 6.4, followed
by conclusions in Section 6.5.
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6.2 generalized singular value decomposition

The GSVD appears throughout this chapter since it is a key building block of the
proposed algorithm. This section gives a brief overview of this decomposition.
The original proof of the existence of the GSVD has first been introduced by Van
Loan in [91]. Paige and Saunders [76] later presented a more general formulation
without any restrictions on the dimensions except for both matrices to have the
same number of columns. Other formulations and contributions to the GSVD have
been proposed in [84, 88, 92]. For our applications in this chapter, let A ∈ Rm×n

and B ∈ Rd×n with both m ≥ n and d ≥ n. Following the formulation of the
GSVD proposed by Van Loan [91], there exist matrices U ∈ Rm×m, V ∈ Rd×d

with orthonormal columns and a nonsingular X ∈ Rn×n such that

U⊤AX = Γ = diag(γ1, . . . , γn), γi ∈ [0, 1],

V⊤BX = Σ = diag(σ1, . . . , σn), σi ∈ [0, 1],
(6.1)

where γ2
i + σ2

i = 1. Although traditionally the ratios γi/σi are in nondecreasing
order, for our purpose we will instead maintain a nonincreasing order. Thus,
1 ≥ γ1 ≥ · · · ≥ γn ≥ 0 and 0 ≤ σ1 ≤ · · · ≤ σn ≤ 1. The matrices U and
V contain the left generalized singular vectors of A and B, respectively, and,
similarly, X contains the right generalized singular vectors and is identical for
both decompositions. While the SVD provides two sets of linearly independent
basis vectors, the GSVD of (A, B) gives three new sets of linearly independent
basis vectors (the columns of U, V, and X) so that the two matrices A and B are
diagonal when transformed to these new bases. We note that only the reduced
GSVD is needed, so that we can assume that U ∈ Rm×n, V ∈ Rd×n, and Γ and Σ
are n × n.

Our analysis is based on the following formulation of the GSVD presented in
[92]. Let Y := X−T in the GSVD of (6.1). Then A = UΓY⊤ and B = VΣY⊤. Let
us characterize matrix Y. (In fact, Matlab’s gsvd routine renders Y instead of X.)
Since

A = U Γ Y⊤, B = V Σ Y⊤, (6.2)

this implies that we have the following congruence transformations:

A⊤A = Y(Γ⊤Γ)Y⊤, B⊤B = Y(Σ⊤Σ)Y⊤.

From the above, it follows that A⊤A has the same inertia as Γ⊤Γ and the same
holds for B⊤B and Σ⊤Σ (here this mainly gives information on the number of
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zero eigenvalues). We also see that, provided A and B are of full rank, these
similarity transformations hold:

(B⊤B)(A⊤A)−1 = Y(Σ⊤Σ)(Γ⊤Γ)−1Y−1 = Y diag(σ2
i /γ2

i )Y−1,

(A⊤A)(B⊤B)−1 = Y(Γ⊤Γ)(Σ⊤Σ)−1Y−1 = Y diag(γ2
i /σ2

i )Y−1.
(6.3)

The columns of the matrix Y are therefore the eigenvectors for both (A⊤A)(B⊤B)−1

and its inverse (B⊤B)(A⊤A)−1. The GSVD avoids the explicit formation of the
cross-product matrices A⊤A and B⊤B (see also Experiment 6.14).

Truncated GSVD. In some practical applications it could be of interest to
approximate both matrices (A, B) by other matrices (Ak, Bk), said truncated, of
a specific rank k. To define the truncated GSVD (TGSVD), let us partition the
following matrices:

U = [Uk Û], V = [Vk V̂], Y = [Yk Ŷ], Γ = diag(Γk, Γ̂), Σ = diag(Σk, Σ̂). (6.4)

For use in Section 6.3, we define TGSVD for (A, B) as (cf. [57, (2.34)])

Ak := UkΓkY⊤
k , Bk := VkΣkY⊤

k , (6.5)

where k < n. Then it follows that A − Ak = Û Γ̂ Ŷ⊤. The following proposition is
useful for understanding the error bounds for the GCUR. The first and second
statements of the following proposition are from [56]; while the third statement
may not be present in the literature yet, it is straightforward.

Proposition 6.2. Let A = U Γ X−1 = U Γ Y⊤ as in (6.1), with Y = X−T. Let ψi(A)
and ψi(Y) be the ith singular value of matrix A and Y, respectively, and let ψmin be the
minimum singular value. Then, for i = 1, . . . , n (see, e.g., [56, pp. 495–496]),

γi · ψmin(Y) ≤ ψi(A) = ψi(U Γ Y⊤) ≤ ψi(Γ) ∥Y∥ = γi · ∥Y∥,

so
ψi(A)

∥Y∥ ≤ γi = ψi(Γ) = ψi(U⊤AY−T) ≤ ψi(A) ∥Y−1∥.

Moreover,

γk+1 · ψmin(Ŷ) ≤ ∥A − Ak∥ ≤ γk+1 · ∥Ŷ∥.

Proof. This follows from (6.2) and the well-known property that, for the product
of two matrices, we have ψi(A)ψmin(B) ≤ ψi(AB) ≤ ψi(A) ∥B∥ (see, e.g., [64,
p. 89]).

The results above are relevant tools for the analysis and understanding of the
GCUR and its error bounds, which we will introduce in Section 6.3.
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6.3 generalized cur decomposition and its approximation prop-
erties

In this section, we describe the proposed GCUR decomposition and provide a
theoretical analysis of its error bounds.

6.3.1 GCUR decomposition

We now introduce a new generalized CUR decomposition of matrix pairs (A, B),
where A is m × n (m ≥ n) and B is d × n (d ≥ n) and of full rank. This GCUR is
inspired by the truncated GSVD for matrix pairs, as reviewed in Section 6.2. We
now define a GCUR decomposition (cf. (2.3)).

Definition 6.3. Let A be m × n and B be d × n and of full rank, with m ≥ n and
d ≥ n. A GCUR decomposition of (A, B) of rank k is a matrix approximation of A and
B expressed as

Ak := CA MA RA = AP MA S⊤
A A ,

Bk := CB MB RB = BP MB S⊤
B B.

(6.6)

Here SA ∈ Rm×k, SB ∈ Rd×k, and P ∈ Rn×k are index selection matrices (k < n).

It is key that the same columns of A and B are selected; this gives a coupling
between the decomposition of A and B.

The matrices CA, CB and RA, RB are subsets of the columns and rows, respec-
tively, of the original matrices. In the rest of the chapter, we will mainly focus
our analysis on the matrix A; we can perform a similar analysis for the matrix
B (see also the comments at the end of this section). We have the vectors sA, p
containing the indices of the selected rows and columns such that CA = AP and
RA = S⊤

A A, where SA = I(:, sA) and P = I(:, p). The choice of p and sA is based
on the transformation matrices from the rank-k truncated GSVD. Given P and
SA, we construct the middle matrix MA as (C⊤

A CA)
−1C⊤

A AR⊤
A(RAR⊤

A)
−1.

The following proposition establishes a connection between the DEIM-GCUR
of (A, B) and the DEIM-CUR of AB−1 and AB+ for a square and nonsingular
B and a nonsquare but full-rank B, respectively. It is worth noting that this
proposition holds for DEIM-based CUR and GCUR algorithms. For alternative
ways of constructing CUR and GCUR decompositions (see Chapter 2), these
properties may not hold. Let the vector sB contain the indices of selected rows of
B.
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Proposition 6.4. (i) If B is a square and nonsingular matrix, then the selected row and
column indices from a CUR decomposition of AB−1 are the same as index vectors sA and
sB obtained from a GCUR decomposition of (A, B), respectively.

(ii) Moreover, in the special case where B = I, a GCUR decomposition of A coincides
with a CUR decomposition of A in that the factors C and R of A are the same for both
methods: The first line of (6.6) is equal to (2.3).

(iii) In addition, if B is nonsquare but of a full rank, we have a connection as in (i)
between the indices from a CUR decomposition of AB+ and the index vectors sA and sB
obtained from a GCUR decomposition of (A, B).

Proof. (i) We start with the GSVD (6.2). If B is square and nonsingular, then
the SVD of AB−1 can be expressed in terms of the GSVD of (A, B) and is equal
to U(ΓΣ−1)V⊤ [48]. Therefore, the row index selection matrix from the SVD of
AB−1 is equal to SA from the GSVD of (A, B), and, similarly, the column index
selection matrix obtained from the SVD of AB−1 is equal to SB since they are
determined using U and V, respectively.

(ii) If B = I, then from the second line of (6.2), we have that Y = VΣ−1. This
implies that the indices of the largest entries in the columns of Y are the same
as those of V. In this special case of B = I, we have AB−1 = A, so then, the left
and right singular vectors of A are contained in the U and V matrices from the
GSVD of (A, I), respectively. Hence, the selection matrix P in (6.6) obtained by
performing DEIM on Y is the same as the selection matrix P in (2.3) obtained by
applying DEIM to the right singular vectors of A.

(iii) If B is nonsquare but of full-rank n, then we still have a similar connection
between the GSVD of (A, B) and the SVD of AB+ because of the following.
Since the factors in the reduced GSVD B = VΣY⊤ are of full rank, we have
B+ = Y−TΣ−1V⊤. This means that AB+ = UΓΣ−1V⊤, so the index vectors sA
and sB from GCUR of (A, B) are equivalent to the selected column and row
indices from CUR of AB+, respectively.

Although we can obtain indices of a CUR decomposition of AB−1 using the
GCUR of (A, B), the converse does not hold. We emphasize that we need the
GSVD for the GCUR decomposition and cannot use the SVD of AB−1 or AB+

instead since the GCUR decomposition requires the Y matrix from (6.5) to find
the column indices. While we used the generalized singular vectors here, in
principle one could use other vectors, e.g., an approximation to the generalized
singular vectors.

To build the decomposition, it is relevant to know the dominant rows and
columns of A and B in their rank-k approximations. Given that Ak and Bk are
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rank-k approximations of A and B, respectively, how should the columns and
rows be selected? Algorithm 17 is a summary of how the DEIM index selection
can be used to construct a GCUR decomposition. We note that if we are only
interested in approximating the matrix A from the pair (A, B), we can omit line 4
as well as the second part of line 5; thus saving computational cost.

Algorithm 17: DEIM type GCUR decomposition

Data: A ∈ Rm×n, B ∈ Rd×n (with m ≥ n and d ≥ n), desired rank k
Result: A rank-k GCUR decomposition Ak = A(:, p) · MA · A(sA, :),

Bk = B(:, p) · MB · B(sB, :)
1 [U, V, Y] = gsvd(A, B) (according to nonincreasing GSVs)
2 p = deim(Y( :, 1 : k))
3 sA = deim(U( :, 1 : k))
4 sB = deim(V( :, 1 : k))
5 MA = A( :, p) \ (A / A(sA, : )), MB = B( :, p) \ (B / B(sB, : ))

Remark 6.5. The pseudocode in Algorithm 17 assumes the matrices from the
GSVD (i.e., U, V, and Y) correspond to a nonincreasing order of the generalized
singular values. This implies that we select the most “dominant” parts of A
and the least “dominant” parts of B. As a consequence of this assumption, the
relative approximation error of matrix A in (6.6) tends to be relatively modest.
However, it is important to note that the same cannot be guaranteed for the
relative approximation errors of matrix B. Since the least “dominant” parts of
matrix B are chosen for approximation, the resulting relative errors may be more
significant.

In terms of computational complexity, the dense GSVD method requires
O((m + d)n2) work, and the three runs of DEIM together require
O((m + n + d)k2) work, so the overall complexity of the algorithm is dominated
by the construction of the GSVD. (This might suggest iterative GSVD approaches;
see Section 6.5.)

In some applications, one might be interested in a generalized interpolative
decomposition, of which the column and row versions are of the form

A ≈ CAM̃A, B ≈ CBM̃B or A ≈ M̂ARA, B ≈ M̂BRB. (6.7)

Here M̃A = C+
AA is k × n, and M̂A = AR+

A is m × k; similar remarks hold for M̃B

and M̂B. As noted in [83], since the DEIM index selection algorithm identifies the
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row and column indices independently, this form of decomposition is relatively
straightforward. The column version of a generalized interpolative decomposition
can be obtained by ignoring Lines 3 and 4 in Algorithm 17 and computing Line 5
as M̃A and M̃B. On the other hand, the row version can be implemented by
omitting Line 2 and replacing Line 5 with M̂A and M̂B.

In generalizing a DEIM-induced CUR decomposition, we also look for a gen-
eralization of the related theoretical results. While the results presented in [83]
express the error bounds in terms of the optimal rank-k approximation, for our
GCUR factorization, the most relevant quantity is the rank-k GSVD approxima-
tion. In the following subsection, we present theoretical results for bounding the
GCUR approximation error.

6.3.2 Error bounds in terms of the SVD approximation

The error bounds for any rank-k matrix approximation are usually expressed
in terms of the rank-k SVD approximation error since it provides the optimal
low-rank approximation. We will show a result of this type in the following
proposition and also discuss its limitations.

We introduce the following notation: Let A = WΨZ⊤ = WkΨkZ⊤
k + W⊥Ψ⊥Z⊤

⊥
be the SVD of A, where Zk contains the largest k right singular vectors. Let Qk be
an n × k matrix with orthonormal columns.

It turns out in both [83] and this section that ∥A(I − QkQ⊤
k )∥ is a central

quantity in the analysis. In the DEIM-induced CUR decomposition work [83], the
right singular vectors are contained in Qk, but here we study this quantity for
general Qk. In our context, we are particularly interested in Qk as the orthogonal
basis of the matrix Yk in (6.5). Denote Qk = span(Qk) and Zk = span(Zk).

Proposition 6.6. Let Qk be an n × k matrix with orthonormal columns, Zk contain the
largest k right singular vectors of A, and ψi(A) be the ith singular value of A. Then

ψ2
k+1(A) ≤ ∥A(I − QkQ⊤

k )∥2 ≤ ψ2
k+1(A) + ∥A∥2 · sin2(Zk,Qk).

More precisely, we have

∥A(I − QkQ⊤
k )∥2 ≤ ψ2

k+1(A) +
k

∑
j=1

ψj(A)2 · sin2(zj,Qk).
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Proof. The lower bound follows from the SVD; the optimal Qk is Zk. We can
derive the upper bounds from

∥A(I − QkQ⊤
k )∥2 = ∥WkΨkZ⊤

k (I − QkQ⊤
k )∥2 + ∥W⊥Ψ⊥Z⊤

⊥(I − QkQ⊤
k )∥2

≤ ∥A∥2 · sin2(Zk,Qk) + ψ2
k+1 · sin2(Z⊥,Qk)

≤ ∥A∥2 · sin2(Zk,Qk) + ψ2
k+1.

Furthermore, more specifically,

∥A(I − QkQ⊤
k )∥2=

k

∑
j=1

ψ2
j (A) |z⊤j (I − QkQ⊤

k )|2 + ∥W⊥Ψ⊥Z⊤
⊥(I − QkQ⊤

k )∥2.

The significance of this result is that ∥A(I − QkQ⊤
k )∥ may be close to ψk+1(A)

when Qk captures the largest singular vectors of A well. For instance, in the
standard CUR, Qk is equivalent to Zk, so the quantity sin2(Zk,Qk) equals zero. If
the matrix B from (6.2) is close to the identity or is a scaled identity, we expect
that sin2(Zk,Qk) will be approximately zero. However, this sine will generally
not be small, as we illustrate by the following example.

Example 6.7. Let A = diag(1, 2, 3), and let B = diag(1, 20, 300). Denote by ej
the jth standard basis vector. Then clearly Z1 = z1 = e3, while the largest
right generalized singular vector q1 is equal to the largest right singular vec-
tor of AB−1 = diag(1, 0.1, 0.01), and hence Q1 = q1 = e1. This implies that
sin(Z1,Q1) = sin(z1, q1) is large.

6.3.3 Error bounds in terms of the GSVD approximation

With the above results in mind, instead of using the rank-k SVD approximation
error, we will derive error bounds for ∥A − CMR∥ (see (6.6)) in terms of the error
bounds of a rank-k GSVD approximation of A (see Proposition 6.2). Since we are
focusing on matrix A, we drop the subscript A in (6.6). The matrices C and R are
of full-rank k determined by the row and column index selection matrices S and
P, respectively, and M = C+AR+. From Algorithm 17, we know that S and P are
derived using the k columns of the matrices U and Y, respectively, corresponding
to the largest generalized singular value (see (6.5)).

We use the interpolatory projector given in Proposition 2.4. Therefore instead
of Y (see (6.2)), we use its orthonormal basis Q to exploit the properties of an
orthogonal matrix.
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We will now analyze the approximation error between A and its interpolatory
projection AP. The proof of the error bounds for the proposed method closely
follows the one presented in [83]. The second inequality of the first statement of
Proposition 6.8 is in [83, Lemma 4.1]. The first inequality of the first statement is
new but completely analogous. In the second statement, we use the GSVD. For
the analysis, we need the following QR-decomposition of Y (see (6.4)):

[Yk Ŷ] = Y = QT = [Qk Q̂]

[
Tk T12

0 T22

]
= [QkTk QT̂], (6.8)

where we have defined

T̂ :=

[
T12

T22

]
. (6.9)

This implies that

A = Ak + Û Γ̂ Ŷ⊤ = UkΓkY⊤
k + Û Γ̂ Ŷ⊤ = UkΓkT⊤

k Q⊤
k + Û Γ̂ T̂⊤Q⊤.

Proposition 6.8. (Generalization of [83, Lemma 4.1]) Given A ∈ Rm×n and Qk ∈
Rn×k with orthonormal columns where k < n, let P ∈ Rn×k be a selection matrix and
Q⊤

k P be nonsingular and ψmin be the minimum singular value. Let P = P(Q⊤
k P)−1Q⊤

k .
Then

ψmin(A(I − QkQ⊤
k )) ∥(Q⊤

k P)−1∥ ≤ ∥A − AP∥ ≤ ∥A(I − QkQ⊤
k )∥ ∥(Q⊤

k P)−1∥.

In particular, if Qk is an orthonormal basis for Yk, the first k columns of Y, then

γk+1 · ψmin(T22) · ∥(Q⊤
k P)−1∥ ≤ ∥A − AP∥ ≤ γk+1 · ∥T22∥ · ∥(Q⊤

k P)−1∥.

Proof. We have that Q⊤
k P = Q⊤

k P(Q⊤
k P)−1Q⊤

k = Q⊤
k , which implies Q⊤

k (I −P) =
0. Therefore,

∥A − AP∥ = ∥A(I − P)∥ = ∥A(I − QkQ⊤
k )(I − P)∥

≤ ∥A(I − QkQ⊤
k )∥ ∥I − P∥,

and also

∥A(I − QkQ⊤
k )(I − P)∥ ≥ ψmin(A(I − QkQ⊤

k )) ∥I − P∥ .

Note that, since k < n, we know that P ̸= 0 and P ̸= I, and hence (see, e.g., [89])

∥I − P∥ = ∥P∥ = ∥(Q⊤
k P)−1∥.
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With A = U Γ Y⊤, Ak = UkΓkY⊤
k , Y = QT, and Yk = QkTk, we have

A Qk Q⊤
k =

[
Uk Û

]
[

Γk 0
0 Γ̂

] [
T⊤

k 0

T⊤
12 T⊤

22

] [
Ik

0

]
Q⊤

k

= UkΓkT⊤
k Q⊤

k + Û Γ̂ T⊤
12Q⊤

k ,

and hence

A (I − QkQ⊤
k ) = (A − Ak)− Û Γ̂ T⊤

12Q⊤
k

= Û Γ̂ T̂⊤Q⊤ − Û Γ̂ T⊤
12Q⊤

k = Û Γ̂ T⊤
22Q̂⊤.

This implies

∥A (I − QkQ⊤
k )∥ ≤ γk+1 · ∥T22∥ and ∥A (I − QkQ⊤

k )∥ ≥ γk+1 · ψmin(T22).

Let us now consider the operation on the left-hand side of A. Given the set of
interpolation indices {s1, . . . , sk} determined from Uk, S = [es1 , . . . , esk ] and for a
nonsingular S⊤Uk, we have the DEIM interpolatory projector S = Uk(S⊤Uk)

−1S⊤.
Since Uk consists of the dominant k left generalized singular vectors of A and has
orthonormal columns, it is not necessary to perform a QR-decomposition as we
did in Proposition 6.8.

The following proposition is analogous to Proposition 6.8. The results are
similar to those in [83, p. A1461] except that here we use the approximation error
of the GSVD instead of the SVD.

Proposition 6.9. Given Uk ∈ Rm×k with orthonormal columns where k < m, let
S ∈ Rm×k be a selection matrix and S⊤Uk be nonsingular. Furthermore, let S =
Uk(S⊤Uk)

−1S⊤. Then, with T̂ as in (6.9),

γk+1 · ψmin(T̂) · ∥(S⊤Uk)
−1∥ ≤ ∥A − SA∥ ≤ γk+1 · ∥T̂∥ · ∥(S⊤Uk)

−1∥.

Proof. We have

∥A − SA∥ = ∥(I − S)A∥ = ∥(I − S)(I − UkU⊤
k )A∥.

Similar to before, since k < m, we know that S ̸= 0 and S ̸= I, and hence

∥I − S∥ = ∥S∥ = ∥(S⊤Uk)
−1∥.

Since (I − UkU⊤
k )A = A − UkΓkY⊤

k = Û Γ̂ Ŷ⊤ = Û Γ̂ T̂⊤Q⊤, we get

∥(I − UkU⊤
k )A∥ = ∥A − Ak∥ ≤ γk+1 · ∥T̂∥
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and ∥(I − UkU⊤
k )A∥ ≥ γk+1 · ψmin(T̂), from which the result follows.

We will now use Propositions 6.8 and 6.9 to find a bound for the approximation
error of the GCUR of A relative to B. As in [83], we first show in the following
proposition that the error bounds of the interpolatory projection of A onto the
chosen rows and columns apply equally to the orthogonal projections of A onto
the same row and column spaces.

Proposition 6.10. (Generalization and slight adaptation of [83, Lemma 4.2]) Given
the selection matrices P, S, let C = AP and R = S⊤A. Suppose that C ∈ Rm×k and
R ∈ Rk×n are full-rank matrices with k < min(m, n) and that Q⊤

k P and S⊤Uk are
nonsingular. With T̂ and T22 as in (6.8)–(6.9), we have the bound for the orthogonal
projections of A onto the column and row spaces:

∥(I − CC+)A∥ ≤ γk+1 · ∥T22∥ · ∥(Q⊤
k P)−1∥,

∥A(I − R+R)∥ ≤ γk+1 · ∥T̂∥ · ∥(S⊤Uk)
−1∥.

Proof. This proof is a minor modification of that of [83, Lemma 4.2]; we closely
follow their proof technique. With C = AP of full rank, we have
C+ = (P⊤A⊤AP)−1(AP)⊤. With this, the orthogonal projection of A onto
Range(C) can be stated as CC+A = (AP(P⊤A⊤AP)−1P⊤A⊤)A.
Let ΠP = P(P⊤A⊤AP)−1P⊤A⊤A, and note that ΠPP = P since ΠP is an oblique
projector on Range(P). We can rewrite CC+A as AΠP. Hence, the error in the
orthogonal projection of A will be (I − CC+)A = A(I − ΠP). Since ΠPP = P,
we have

A(I − ΠP) = A(I − ΠP)(I − P) = (I − CC+)A(I − P).

Therefore

∥(I − CC+)A∥ = ∥A(I − ΠP)∥ = ∥(I − CC+)A(I − P)∥
≤ ∥(I − CC+)∥ ∥A(I − P)∥.

With C being nonsquare, ∥I − CC+∥ = 1 (see, e.g., [89]), and
∥A(I − P)∥ ≤ γk+1 · ∥T22∥ · ∥(Q⊤

k P)−1∥ from Proposition 6.8, we have

∥(I − CC+)A∥ ≤ γk+1 · ∥T22∥ · ∥(Q⊤
k P)−1∥.

In a similar vein, with R = S⊤A and R+ = R⊤(RR⊤)−1, we have
R+ = A⊤S(S⊤AA⊤S)−1, and the error in the orthogonal projection of A is
A(I − R+R) = (I − ΠS)A, where ΠS = AA⊤S(S⊤AA⊤S)−1S⊤, so that

(I − ΠS)A = (I − S)(I − ΠS)A = (I − S)A(I − R+R)
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and

∥A(I − R+R)∥ ≤ ∥(I − S)A∥ ∥(I − R+R)∥ ≤ γk+1 · ∥T̂∥ · ∥(S⊤Uk)
−1∥.

This result helps to prove an error bound for the GCUR approximation error. For
the following theorem, we again closely follow the approach of [83] which also
follows a procedure in [72]. As stated in Definition 6.3, the middle matrix can be
computed as M = (C⊤C)−1C⊤AR⊤(RR⊤)−1 = C+AR+.

Theorem 6.11. (Generalization of [83, Thm. 4.1]) Given A ∈ Rm×n and Yk, Uk from
(6.5), let P and S be selection matrices so that C = AP and R = S⊤A are of full rank.
Let Qk ∈ Rn×k be the Q-factor of Yk and T̂ and T22 as in (6.8)–(6.9). Assuming Q⊤

k P
and S⊤Uk are nonsingular, then with the error constants

ηp := ∥(Q⊤
k P)−1∥, ηs := ∥(S⊤Uk)

−1∥,

we have

∥A − CMR∥ ≤ γk+1·(ηp · ∥T22∥+ ηs ·∥T̂∥) ≤ γk+1·(ηp + ηs)·∥T̂∥. (6.10)

Proof. By the definition of M, we have

A − CMR = A − CC+AR+R = (I − CC+)A + CC+A(I − R+R).

Using the triangle inequality, it follows that

∥A − CMR∥ = ∥A − CC+AR+R∥
≤ ∥(I − CC+)A∥+ ∥CC+∥ ∥A(I − R+R)∥,

and the fact that CC+ is an orthogonal projection with ∥CC+∥ = 1,

∥A − CMR∥ ≤ γk+1 · ∥T22∥ · ∥(Q⊤
k P)−1∥+ ∥(S⊤Uk)

−1∥ ∥T̂∥ · γk+1.

The last line of Theorem 6.11 can be related to the results in [83, Thm. 4.1]; both
theorems have the factors ηp and ηs. In [83], the error of a CUR approximation of
A is within a factor of ηp + ηs of the best rank-k approximation, obtained from
the SVD. Theorem 6.11 provides a bound in terms of γk+1 ≤ 1 from the GSVD
(6.1) and the additional factors ∥T̂∥ and ∥T22∥. The results presented in this
section suggest that a good index selection procedure that yields small quantities
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∥(Q⊤
k P)−1∥ and ∥(S⊤Uk)

−1∥ is desirable. To bound ∥T̂∥, we start by restating
the results of [57, Thm. 2.3] for the GSVD of (A, B). Defining

L :=

[
A
B

]
, it follows that ∥X−1∥ = ∥L∥ ≤ ∥A∥+ ∥B∥.

We know from (6.2) that X−T = Y, so we can restate the above inequality as
∥Y∥ ≤ ∥A∥+ ∥B∥. Given the partitioning and QR factorization of Y in (6.8), we
have that

∥T̂∥ = ∥QT̂∥ = ∥Ŷ∥ ≤ ∥Y∥ = ∥L∥ ≤ ∥A∥+ ∥B∥.

We note that we can exploit the tighter bound ∥L∥ ≤ (∥A∥2 + ∥B∥2)1/2 to improve
the bound on T̂ accordingly.

We note that where these results have been presented for matrix A in (6.6),
similar results can be obtained for B. The following error bound for the approxi-
mation of B is analogous to (6.10). As noted in Definition 6.3, the selection matrix
P is similar to the GCUR decomposition of A and B. Therefore, we have the
quantity ∥(Q⊤

k P)−1∥ in the error bound of both factorizations:

∥B − CBMBRB∥ ≤ ∥Σ̂∥·(∥(Q⊤
k P)−1∥·∥T22∥+ ∥(S⊤

B Vk)
−1∥·∥T̂∥)

≤ (∥(Q⊤
k P)−1∥+ ∥(S⊤

B Vk)
−1∥)·∥T̂∥.

Recall that the entries of Σ are sorted in nondecreasing order with the maximum
element being 1. Therefore, ∥Σ̂∥ = 1. It is worth noting that these bounds hold
regardless of the approach used to select the row and column indices. Since
the GCUR algorithm presented in this chapter is DEIM based, [83] provides
deterministic bounds for the error constants:

∥(Q⊤
k P)−1∥ <

√
nk
3 2k, ∥(S⊤

AUk)
−1∥ <

√
mk
3 2k, and ∥(S⊤

B Vk)
−1∥ <

√
dk
3 2k.

We refer the reader to [83, Lemma 4.4] for the constructive proofs and we will
give an example with the various quantities in Experiment 6.12.

6.4 numerical experiments

We now present the results of a few numerical experiments to illustrate the
performance of GCUR for low-rank matrix approximation. For the first two
experiments, we consider a case where a data matrix A is corrupted by a random
additive noise E and the covariance of this noise (the expectation of E⊤E) is
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not a multiple of the identity matrix. We are therefore interested in a method
that can take the actual noise into account. Traditionally, a prewhitening matrix
R−1 (where R is the Cholesky factor of the noise’s covariance matrix) may be
applied to the perturbed matrix [57] so that one can use SVD-based methods on
the transformed matrix. With a GSVD formulation, the prewhitening operation
becomes an integral part of the algorithm [58]; we do not need to explicitly
compute R−1 and transform the perturbed matrix. We show in the experiments
that using SVD-based methods without prewhitening the perturbed data yields
less accurate approximation results of the original matrix.

For the last two experiments, we consider a setting with two data sets collected
under different conditions, e.g., treatment and control experiment, where the
former has distinct variation caused by the treatment: signal-free and signal
recordings with the signal-free data set containing only noise. We are interested
in exploring and identifying patterns and discriminative features that are specific
to one data set.

Experiment 6.12. This experiment is an adaptation of experiments in [57, sec-
tion. 3.4.4, p. 66] and [83, Example. 6.1]; see also the motivating example in
Section 6.1. We construct matrix A to be of a known modest rank. We then per-
turb this matrix with a noise matrix E ∈ Rm×n whose entries are correlated. Given
AE = A + E, we evaluate and compare the GCUR and the CUR decomposition
on AE in terms of recovering the original matrix A. Specifically, the performance
of each decomposition is assessed based on the spectral norm of the relative
matrix approximation error, i.e., ∥A − Ã∥/∥A∥, where Ã is the approximated
low-rank matrix. We present the numerical results for four noise levels; thus,
E = ε ∥F∥

∥A∥F, where ε is the parameter for the noise level and F is a randomly
generated correlated noise. We first generate a sparse, nonnegative rank-50 matrix
A ∈ Rm×n, with m = 100000 and n = 300, of the form

A =
10

∑
j=1

2
j

xj y⊤
j +

50

∑
j=11

1
j

xj y⊤
j ,

where xj ∈ Rm and yj ∈ Rn are sparse vectors with random nonnegative entries
(i.e., xj = sprand(m, 1, 0.025) and yj = sprand(n, 1, 0.025), just as in [83]. Unlike [83],
we then perturb the matrix with a correlated Gaussian noise E whose entries have
zero mean and a Toeplitz covariance structure (in MATLAB desired-cov(F) =
toeplitz(0.990, . . . , 0.99n−1), R = chol(desired-cov(F)), and F = randn(m, n) · R)
and ε ∈ {0.05, 0.1, 0.15, 0.2}. We compute the SVD of AE and the GSVD of
(AE, R) to get the input matrices for the CUR and the GCUR decomposition,
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respectively. Figures 6.1a, 6.1b, 6.1c, and 6.1d compares the relative errors of the
proposed DEIM-GCUR (see Algorithm 17) and the DEIM-CUR for reconstructing
the low-rank matrix A for different noise levels. We observe that for higher noise
levels, the GCUR technique gives a more accurate low-rank approximation of
the original matrix A. The DEIM-GCUR scheme seems to perform distinctly well
for higher noise levels and moderate values of k. As indicated in Section 6.3, the
GCUR method is slightly more expensive since it requires the computation of
the TGSVD instead of the TSVD. We observe that, as k approaches rank(A), the
relative error of the TGSVD continues to decrease; this is not true for the GCUR.
We may attribute this phenomenon to the fact that the relative error is saturated
by the noise, considering we pick actual columns and rows of the noisy data.
Since ε indicates the relative noise level, it is therefore natural that for increasing k,
the quality of the TSVD approximation rapidly approaches ε. For this experiment,
we assume that an estimate of the noise covariance matrix is known, and therefore
we have the exact Cholesky factor; we stress that this may not always be the case.

Therefore, we now show an example where we use an inexact Cholesky factor
R̂. We derive R̂ by multiplying all off-diagonal elements of the exact Cholesky
factor R by factors that are uniformly random from the interval [0.9, 1.1]. Here,
the experiment setup is the same as described above with the difference that we
compute the GSVD of (AE, R̂) instead. In Figs. 6.2a and 6.2b, we observe that the
GCUR and the GSVD still deliver good approximation results even for an inexact
Cholesky factor R̂, which may imply that we do not necessarily need the exact
noise covariance.

We conclude this experiment with an illustration of the various quantities in
Theorem 6.11. In Fig. 6.3, we see that the upper bound in Theorem 6.11 may be a
rather crude bound on the true GCUR error. As in [83, Figure 4], the quantities
ηS and ηP may differ considerably in magnitude. While ∥T22∥ steadily decreases,
∥T̂∥ seems to stabilize as k increases.

Experiment 6.13. For this experiment, we maintain all properties of matrix AE
mentioned in the preceding experiment except for the column size, which we
reduce to 10000 (i.e., AE ∈ R10000×300) and instead of a sparse nonnegative matrix
A, we generate a dense random matrix A. As in [83, Example 6.2], we also modify
A so that there is a significant drop in the 10th and 11th singular values. The
matrix A is now of the form

A =
10

∑
j=1

1000
j

xj y⊤
j +

50

∑
j=11

1
j

xj y⊤
j ,
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Figure 6.1: Accuracy of the DEIM-GCUR approximations compared with the standard
DEIM-CUR approximations in recovering a sparse, nonnegative matrix A per-
turbed with correlated Gaussian noise (Experiment 6.12) using exact Cholesky
factor of the noise covariance. The relative errors ∥A − Ãk∥/∥A∥ (on the
vertical axis) as a function of rank k (on the horizontal axis) for ε = 0.05, 0.1,
0.15, 0.2, respectively.

For each fixed ε and k, we repeat the process 100 times and then compute the
average relative error. The results in Table 6.2 show that the advantage of the
GCUR over the CUR remains even when singular values of the original matrix A
decrease more sharply. We observe that the difference in the relative error of the
GCUR and the CUR is quite significant when the rank of the recovered matrix Ã
is lower than that of A (i.e., k ≪ 50).

The higher the noise level, the more advantageous the GCUR scheme may be
over the CUR one. Especially for moderate values of k, such as k = 10, the GCUR
approximations are of better quality than those based on the CUR. For higher
values of k, such as k = 30, the approximation quality of the CUR and GCUR
methods become comparable since they both start to pick up the noise in the
data columns. In this case, the GCUR does not improve on the CUR. Since it is



6.4 numerical experiments 93

5 10 15 20 25 30
0

0.1

0.2
cur gcur
svd gsvd

(a) ε = 0.1

5 10 15 20 25 30
0

0.1

0.2

(b) ε = 0.15

Figure 6.2: Accuracy of the DEIM-GCUR approximations compared with the standard
DEIM-CUR approximations in recovering a sparse, nonnegative matrix A
perturbed with correlated Gaussian noise (Experiment 6.12) using an inexact
Cholesky factor of the noise covariance. The relative errors ∥A− Ãk∥/∥A∥ (on
the vertical axis) as a function of rank k (on the horizontal axis) for ε = 0.15,
0.1, respectively.
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GCUR-error
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Figure 6.3: Various quantities from Theorem 6.11. Error constants ηP = ∥(Q⊤
k P)−1∥ (red

dashed) and ηS = ∥(S⊤
AUk)

−1∥ (red solid); multiplicative factors ∥T22∥ (green
solid) and ∥T̂∥ (green dashed); the GCUR true error ∥AE − (CMR)gcur∥ of
approximating AE in Experiment 6.12 (blue solid) and its upper bound (blue
dashed).

a discrete method, picking indices for columns instead of generalized singular
vectors, we see that the GCUR method yields higher reconstruction errors than
the TGSVD approach.

Experiment 6.14. Our next experiment is adapted from [1]. We create synthetic
data sets that give an intuition for settings where the GSVD and the GCUR may
resolve the problem of subgroups. Consider a data set of interest (target data),
A, containing 400 data points in a 30-dimensional feature space. This data set
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Table 6.2: Comparison of the qualities ∥A − Ãk∥/∥A∥ of the TSVD, TGSVD, CUR, and
GCUR approximations as a function of index k and noise level ε in Experi-
ment 6.13. The relative errors are the averages of 100 test cases.

k Method \ ε 0.05 0.1 0.15 0.2

10 TSVD 0.008 0.045 0.150 0.200

TGSVD 0.002 0.003 0.005 0.007

CUR 0.052 0.118 0.141 0.186

GCUR 0.053 0.088 0.112 0.134

15 TSVD 0.050 0.100 0.150 0.200

TGSVD 0.009 0.017 0.026 0.035

CUR 0.049 0.097 0.146 0.196

GCUR 0.046 0.091 0.138 0.185

20 TSVD 0.050 0.100 0.150 0.200

TGSVD 0.011 0.023 0.034 0.015

CUR 0.050 0.099 0.149 0.199

GCUR 0.049 0.097 0.146 0.198

30 TSVD 0.050 0.100 0.150 0.200

TGSVD 0.016 0.031 0.047 0.063

CUR 0.050 0.100 0.150 0.199

GCUR 0.050 0.099 0.149 0.199

has four subgroups (blue, yellow, orange, and purple), each of 100 data points.
The first 10 columns for all 400 data points are randomly sampled from a normal
distribution with a mean of 0 and a variance of 100. The next 10 columns of
two of the subgroups (blue and orange) are randomly sampled from a normal
distribution with a mean of 0 and a unit variance, while the other two subgroups
(yellow and purple) are randomly sampled from a normal distribution with a
mean of 6 and a unit variance. The last 10 columns of subgroups blue and yellow
are sampled from a normal distribution with a mean of 0 and a unit variance,
and those of purple and orange are sampled from a normal distribution with a
mean of 3 and a unit variance.

One of the goals of the SVD (or the related concept principal component analy-
sis) in dimension reduction is to find a low-dimensional rotated approximation of
a data matrix while maximizing the variances. We are interested in reducing the
dimension of A. If we project the data onto the two leading right singular vectors,
we are unable to identify the subgroups because the variation along the first 10
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columns is significantly larger than in any other direction, so some combinations
of those columns are selected by the SVD.

Suppose we have another data set B (a background data set), whose first 10
columns are sampled from a normal distribution with a mean of 0 and a variance
of 100. The next 10 columns are sampled from a normal distribution with a mean
of 0 and a variance of 9, and the last 10 columns are sampled from a normal
distribution with a mean of 0 and a unit variance. The choice of the background
data set is key in this context. Generally, the background data set should have the
structure we would like to suppress in the target data, which usually corresponds
to the direction with a high variance but is not of interest for the data analysis
[1]. With the new data, one way to extract discriminative features for clustering
the subgroups in A is to maximize the variance of A while minimizing that of B,
which leads to a trace ratio maximization problem [18]

Û := argmax
U∈Rn×k, U⊤U=Ik

Tr
[
(U⊤B⊤B U)−1(U⊤A⊤A U)

]
,

where n = 30 and k = 5 or k = 10. By doing this, the first dimensions are less
likely to be selected because they also have a high variance in data set B. Instead,
the middle and last dimensions of A are likely to be selected, as they have the
dimensions with the lowest variance in B, thereby allowing us to separate all four
subgroups. The solution Û ∈ Rn×k to the above problem is given by the k (right)
eigenvectors of (B⊤B)−1(A⊤A) corresponding to the k largest eigenvalues (cf.
[39, pp. 448–449]); this corresponds to the (“largest”) right generalized singular
vectors of (A, B) (the transpose of (6.3)). As seen in Fig. 6.4, projecting A onto the
leading two right generalized singular vectors produces a much clearer subgroup
separation (top-right figure) than projecting onto the leading two right singular
vectors (top-left figure). Therefore, we can expect that a CUR decomposition based
on the SVD will also perform not very well with the subgroup separation. In the
bottom figures is a visualization of the data using the first two important columns
selected using the DEIM-CUR (left figure) and the DEIM-GCUR (right figure). To
a large extent, the GCUR is able to differentiate the subgroups, while the CUR
fails to do so. We investigate this further by comparing the performance of subset
selection via DEIM-CUR on A and DEIM-GCUR on (A, B) (Algorithm 17) in
identifying the subgroup or class representatives of A; we select a subset of the
columns of A (5 and 10) and compare the classification results of each method. We
center the data sets by subtracting the mean of each column from all the entries
in that column. Given the class labels of the subgroups, we perform a 10-fold
cross-validation (i.e., split the data points into 10 groups and for each unique
group take the group as testing data set and the rest as training data set [65,
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p. 181]) and apply two classifiers on the reduced data set: ECOC (Error-Correcting
Output Codes) [30] and classification tree [4] using the functions fitcecoc and fitctree
with default parameters as implemented in MATLAB. It is evident from Table 6.3
that the TGSVD and the GCUR achieve the lowest classification error rate, e.g.,
for reducing the dimension from 30 to 10— 0% and 6.3%, respectively, using
the ECOC classifier and 0% and 9.5%, respectively, using the tree classifier. The
standard DEIM-CUR method achieves the worst classification error rate.

Figure 6.4: (Top left) We project the synthetic data containing four subgroups onto the
first two dominant right singular vectors. The lower-dimensional represen-
tation using the SVD does not effectively separate the subgroups. In the
bottom-left figure, we visualize the data using the first two columns selected
by DEIM-CUR. (Top right) We illustrate the advantage of using GSVD by
projecting the data onto the first two dominant right generalized singular
vectors corresponding to the two largest generalized singular values. In the
bottom-right figure, we visualize the data using the first two columns selected
by DEIM-GCUR. The lower-dimensional representation of the data using the
GSVD-based methods clearly separates the four clusters, while the SVD-based
methods fail to do so.

Experiment 6.15. We will now investigate the performance of the GCUR com-
pared to the CUR on higher-dimensional public data sets. The data sets consist of
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Table 6.3: k-Fold loss is the average classification loss overall 10-fold using SVD, GSVD,
CUR, and GCUR as dimension reduction in Experiment 6.14. The second and
third columns give information on the number of columns selected from the
data set using the CUR and GCUR plus the number of singular and generalized
singular vectors considered for the ECOC classifier, likewise for the fifth and
sixth columns for the tree classifier.

Method k-Fold Loss Method k-Fold Loss

5 10 5 10

TSVD+ECOC 0.638 0.490 TSVD+Tree 0.693 0.555

TGSVD+ECOC 0 0 TGSVD+Tree 0 0

CUR+ECOC 0.793 0.485 CUR+Tree 0.793 0.540

GCUR+ECOC 0.055 0.063 GCUR+Tree 0.075 0.095

single-cell RNA expression levels of bone marrow mononuclear cells (BMMCs)
from an acute myeloid leukemia (AML) patient and two healthy individuals.
We have data on the BMMCs before the stem-cell transplant and the BMMCs
after the stem-cell transplant. We preprocess the data sets as described by the
authors in [9]1 keeping the 1000 most variable genes measured across all 16856
cells (patient-035: 4501 cells and two healthy individuals; one of 1985 cells and
the other of 2472 cells). The data from the two healthy patients are combined
to create a background data matrix of dimension 4457 × 1000, and we use the
patient-035 data set as the target data matrix of dimension 4501 × 1000. Both
data matrices are sparse: The patient-035 data matrix has 1628174 nonzeros, i.e.,
about 36% of all entries are nonzero, and the background data matrix has 1496229
nonzeros, i.e., about 34% of all entries are nonzero. We are interested in exploring
the differences in the AML patient’s BMMC cells pre- and post-transplant. We
perform SVD, GSVD, CUR and GCUR on the target data (AML patient-035) to see
if we can capture biologically meaningful information relating to the treatment
status. For the GSVD and the GCUR procedure, the background data are taken
into account. As evident in Fig. 6.5, the GSVD and the GCUR produce almost
linearly separable clusters that correspond to pre- and posttreatment cells. These
methods evidently capture the biologically meaningful information relating to
the treatment and are more effective at separating the pre- and post-transplant
cell samples compared to the other two. For the SVD and the CUR, we observe
that both cell types follow a similar distribution in the space spanned by the first

1 https://github.com/PhilBoileau/EHDBDscPCA/blob/master/analyses/.
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three dominant right singular vectors and the first three important gene columns,
respectively. Both methods fail to separate the pre- and posttransplant cells.

Figure 6.5: Acute myeloid leukemia patient-035 scRNA-seq data.(Top left) A 3-D pro-
jection of the patient’s BMMCs on the first three dominant right singular
vectors. In the bottom-left figure, we visualize the data using the first three
genes selected by DEIM-CUR. The lower-dimensional representation using
the SVD-based methods does not effectively give a discernible cluster of the
pre- and post-transplant cells. (Top right) We illustrate the advantage of using
GSVD by projecting the patient’s BMMCs onto the first three dominant right
generalized singular vectors corresponding to the three largest generalized
singular values. In the bottom-right figure, we visualize the data using the first
three genes selected by DEIM-GCUR. The lower-dimensional representation
using the GSVD-based methods produces linearly separable clusters.

6.5 final considerations

We develop a new method, the DEIM-induced GCUR factorization with pseu-
docode in Algorithm 17. It is an extension of the DEIM-CUR decomposition for
matrix pairs. Just as the CUR decomposition has an interpolative decomposition
(see, e.g., [93]) associated with it, there is a generalized interpolative decomposition
(see (6.7)) associated with the GCUR decomposition.

When B is square and nonsingular, there are close connections between the
GCUR of (A, B) and the DEIM-induced CUR of AB−1. When B is the identity, the
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GCUR decomposition of A coincides with the DEIM-induced CUR decomposition
of A. There exists a similar connection between the CUR of AB+ and the GCUR
of (A, B) for a nonsquare but full-rank matrix B.

While a CUR decomposition acts on one data set, a GCUR factorization de-
composes two data sets together. An implication of this is that we can use it in
selecting discriminative features of one data set relative to another. For subgroup
discovery and subset selection in a classification problem where two data sets
are available, the new method can perform better than the standard DEIM-CUR
decomposition as shown in the numerical experiments. The GCUR algorithm can
also be useful in applications where a data matrix suffers from nonwhite (colored)
noise. The GCUR algorithm can provide more accurate approximation results
compared to the DEIM-CUR algorithm when recovering an original matrix with
low rank from data with colored noise. For the recovery of data perturbed with
colored noise, we need the Cholesky factor of an estimate of the noise covariance.
However, as shown in the experiments, even for an inexact Cholesky factor, the
GCUR may still give good approximation results. We note that, while the GSVD
always provides a more accurate result than the SVD regardless of the noise
level, the GCUR decomposition is particularly attractive for higher noise levels
and moderate values of the rank of the recovered matrix compared to the CUR
factorization. In other situations, both methods may provide comparable results.
In addition, the GCUR decomposition is a discrete method, so choosing indices
for columns and rows instead of the generalized singular vectors leads to higher
reconstruction errors than the GSVD approach.

Although we used the generalized singular vectors here, in principle one could
use other vectors, e.g., an approximation to the generalized singular vectors. We
have extended the existing theory concerning the DEIM-CUR approximation
error to this DEIM GCUR factorization; we derived the bounds of a rank-k GCUR
approximation of A in terms of a rank-k GSVD approximation of A.

Instead of the DEIM procedure for the index selection from the GSVD, it might
be possible to use alternative index selection strategies. For a CUR decomposition,
one alternative approach to DEIM is to perform a QR factorization with column
pivoting [34] on the transpose of the matrices from the truncated SVD. In [50,
51], the authors propose a CUR factorization where C and R are selected by
searching for submatrices of maximal volume in the singular vector matrices.
Another popular approach is selection via leverage score sampling [33, 72].
From experiment results not reported here, we observe that except for leverage
scores sampling, using the above strategies in the context of the GCUR produce
competitive results.
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Computationally, the DEIM-GCUR algorithm requires the input of the GSVD,
which is of the same complexity but more expensive than the SVD required for
DEIM-CUR. For the case where we are only interested in approximating the
matrix A from the pair (A, B), we can omit some of the lines in Algorithm 17,
thus saving computational cost. In the case that the matrices A and B are so large,
a full GSVD may not be affordable; in this case, we can consider iterative methods
(see, e.g., [62, 99, 102]).

While in this work we used the GCUR method in applications such as extracting
information from one data set relative to another, we expect that its promise may
be more general.



7
A R E S T R I C T E D S V D T Y P E C U R D E C O M P O S I T I O N F O R
M AT R I X T R I P L E T S

We present a new restricted SVD-based CUR (RSVD-CUR) factorization for
matrix triplets (A, B, G) that aims to extract meaningful information by providing
a low-rank approximation of the three matrices using a subset of their rows and
columns. The proposed method employs the discrete empirical interpolation
method to select the subset of rows and columns based on the orthogonal and
nonsingular matrices obtained through a restricted singular value decomposition
of the matrix triplet. We explore the relationships between a DEIM type RSVD- Adapted

from [45]CUR factorization, a DEIM type CUR factorization, and a DEIM type generalized
CUR decomposition, and provide an error analysis that establishes the accuracy
of the RSVD-CUR decomposition within a factor of the approximation error of a
rank-k restricted singular value decomposition of the given matrices.

The RSVD-CUR factorization can be used in applications that require approxi-
mating one data matrix relative to two other given matrices. We discuss two of
such applications, namely multi-view dimension reduction and data perturbation
problems where a correlated noise matrix is added to the input data matrix. Our
numerical experiments demonstrate the advantages of the proposed method over
the standard CUR approximation in these scenarios.

7.1 introduction

Given matrices A ∈ Rm×n, B ∈ Rm×ℓ, and G ∈ Rd×n of compatible dimensions,
we generalize a DEIM type CUR [83] method to develop a new coupled CUR
factorization of a matrix triplet. This decomposition is based on the knowledge
of the restricted singular value decomposition (RSVD). We call our proposed
factorization an RSVD based CUR factorization. Note that this RSVD does not
stand for randomized SVD (see, e.g., [55]). Both CUR decomposition and RSVD
algorithms have been well-studied. However, to the best of our knowledge, this
work is the first to combine both methods. The RSVD has been around for over
three decades now; this new method introduces a new type of exploitation of the
RSVD.

101
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In recent times, real-world data sets often contain multiple representations or
viewpoints, each providing unique and complementary information. One of the
motivations for the RSVD-CUR factorization comes from the canonical correlation
analysis (CCA) (see Section 7.2). CCA is a popular method for analyzing the
relationships between two sets of variables, and it has broad applications in
various fields [59, pp. 443–454]. CCA aims to find linear combinations of variables
from each data set that exhibit the highest correlation with each other. These
linear combinations, represented by the canonical vectors, form a basis for the
correlated subspaces of the data sets. The first canonical vector pair has the
highest correlation, and subsequent pairs have decreasing correlations. Using
an RSVD-CUR factorization in this context, our goal is to extract subsets of
columns or rows from these data matrices by exploiting the canonical vectors
of each matrix that maximize the correlations between them. As we will see in
Sections 7.2 and 7.3, the canonical vectors are equivalent to matrices from the
RSVD. We believe that the RSVD-CUR factorization can be useful for multi-view
dimension reduction and integration of information from multiple views in
multi-view learning, a rapidly growing area of machine learning that involves
using multiple perspectives to improve generalization performance [96]. Similar
to CCA, the RSVD-CUR factorization can handle two-view cases and may also be
employed as a supervised feature selection technique in multi-label classification
problems, where one view comes from the data and the other from the class
labels.

Another motivation for an RSVD-CUR factorization stems from applications
where the goal is to select a subset of rows and columns of one data set relative
to two other data sets. An example is a data perturbation problem of the form
AE = A + BFG where BFG is a correlated noise matrix (see, e.g., [6, 97]) and the
goal is to recover the low-rank matrix A from AE given the structure of B and G.
Conventionally, when faced with this kind of perturbation problem, to use an
SVD-based method, a prewhitening step is required to make the additive colored
noise a white noise using B−1 and G−1. However, with the RSVD formulation,
the prewhitening operation becomes an integral part of the algorithm. It is worth
pointing out that one does not necessarily need to know the exact noise covariance
matrices; the RSVD and RSVD-CUR may still deliver good approximation results
given inexact covariance matrices (see Experiment 7.7). An example of an inexact
covariance matrix is when we approximate the population covariance matrix by a
sample covariance matrix.

A further incentive for proposing an RSVD-CUR factorization arises within the
framework of generalized Gauss-Markov models with constraints. Considering
the ordinary or total least squares problem of the form Ax ≈ b, in many applica-
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tions, it is desirable to reduce the number of variables that are to be considered
or measured in the future. For instance, the modeler may not be interested in a
predictor such as Ax with all redundant variables but rather Ax̂, where x̂ has at
most k nonzero entries. The position of the nonzero entries determines which
columns of A, i.e., which variables to use in the model for approximating the
response vector b. How to pick these columns is the problem of subset selec-
tion, and one can use a CUR factorization algorithm. Consider the setting of
generalized Gauss-Markov models with constraints, i.e.,

min
x,y,f

∥y∥2 + ∥f∥2 subject to b = Ax + By, f = Gx, (7.1)

where A, B, G, b are given. Notice that where B = I and G = 0, this formulation
is a generalization of the traditional least squares problem. Since this equation
involves three matrices, an appropriate tool for its analysis will be the RSVD
[27, 57]. For variable subset selection in this problem, the RSVD-CUR may be a
suitable method that incorporates the error and the constraints (more details in
Section 7.5).

A short review of CCA is provided in Section 7.2. Section 7.3 gives a brief
overview of the RSVD. Section 7.4 introduces the new RSVD-CUR decomposition.
In this section, we also discuss some error bounds. Algorithm 19 summarizes
the procedure of constructing a DEIM type RSVD-CUR decomposition. Results
of numerical experiments using synthetic and real data sets are presented in
Section 7.5, followed by conclusions in Section 7.6.

7.2 canonical correlation analysis

This section briefly discusses CCA, one of our motivations for the proposed RSVD-
CUR approximation. CCA is one of the most widely used and valuable techniques
for multi-data processing. It is used to analyze the mutual relationships between
two sets of variables and finds a wide range of applications across many different
fields. In a web classification problem, usually, a web document can be described
by either the words occurring on the page (this, for instance, can be matrix B)
or the words contained in the anchor text of links pointing to this page (and
can be taken as matrix G). In a genome-wide association study, CCA is used
to discover the genetic associations between genotype data of single nucleotide
polymorphisms (SNPs) contained in B and phenotype data of gene expression
levels contained in G [20]. In information retrieval, CCA is used to embed both
the search space (e.g., images) and the query space (e.g., text) into a shared
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low dimensional latent space so that the closeness between the queries and the
candidates can be quantified [82]. Other applications include fMRI data analysis
[38], natural language processing, and speech recognition [2].

Let B ∈ Rm×ℓ, G ∈ Rd×n with m = d, be of full column rank and k ≤ min(ℓ, n).
CCA seeks to find the linear combinations of the form Bzi and Gwi for i = 1, . . . , k
that maximize the pairwise correlations across the two matrices [59, p. 443]. We
can define the canonical correlations ρ1(B, G), . . . , ρk(B, G) of the matrix pair
(B, G) as [49]

ρi(B, G) = max
Bz ̸=0, Gw ̸=0

Bz⊥{Bz1,...,Bzi−1}
Gw⊥{Gw1,...,Gwi−1}

ρ(Bz, Gw) =: ρ(Bzi, Gwi) :=
z⊤i B⊤Gwi

∥Bzi∥ ∥Gwi∥
. (7.2)

We have that ρ1(B, G) ≥ · · · ≥ ρk(B, G). The vectors of unit length Bzi/∥Bzi∥ and
Gwi/∥Gwi∥ are referred to as the canonical vectors of (B, G) and the canonical
weights are zi/∥Bzi∥ and wi/∥Gwi∥. As discussed in [49], there are several equiv-
alent ways to formulate CCA. We show a Lagrange multiplier formulation which
is suitable for our context and will serve as a motivation for the proposed decom-
position. The Lagrange multiplier function of the above constrained optimization
problem is [49]

f (z, w, λ, µ) = z⊤B⊤Gw − 1
2 λ (∥Bz∥2 − 1)− 1

2 µ (∥Gw∥2 − 1).

Differentiating the above with respect to z and w gives

B⊤Gw − λ B⊤Bz = 0 ,

G⊤Bz − µ G⊤Gw = 0.

We note that ρi(B, G) is not affected by the rescaling of Bwi and Gzi. Thus, there
is an optimal solution satisfying the constraints w⊤G⊤Gw = 1 and z⊤B⊤Bz = 1.
Hence, we solve the systems for that particular optimal solution. Premultiplying
the above equations by z⊤ and w⊤, respectively, together with the constraints
w⊤G⊤Gw = 1 and z⊤B⊤Bz = 1, we have that λ = µ and

[
B⊤G

G⊤B

] [
z
w

]
= λ

[
B⊤B

G⊤G

] [
z
w

]
. (7.3)
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The canonical weights and correlations are the generalized eigenvectors and
eigenvalues, respectively, of this generalized eigenvalue problem. We will show
in the next section how this problem relates to the RSVD of matrix triplets which
we exploit for our proposed RSVD-CUR factorization.

7.3 restricted svd

The RSVD of matrix triplets, as notably studied in [27, 97], is an essential building
block for the proposed decomposition in this chapter. We give a brief overview
of this matrix factorization here. The RSVD may be viewed as a decomposition
of a matrix relative to two other matrices of compatible dimensions. Given a
matrix triplet A ∈ Rm×n (where, without loss of generality, m ≥ n), B ∈ Rm×ℓ,
and G ∈ Rd×n, following the formulation in [97], there exist orthogonal matrices
U ∈ Rℓ×ℓ and V ∈ Rd×d, and nonsingular matrices Z ∈ Rm×m and W ∈ Rn×n

such that

A = Z DA W⊤, B = Z DB U⊤, G = V DG W⊤, (7.4)

which implies

[
A B
G

]
=

[
Z

V

] [
DA DB

DG

] [
W

U

]⊤
,

where DA ∈ Rm×n, DB ∈ Rm×ℓ, and DG ∈ Rd×n are quasi-diagonal matrices
1. We refer the reader to [97] for detailed proof of the above decomposition.
In the case of m < n, it is logical to take the transpose of the matrix triplet
and interchange the position of B and G to ensure compatible dimensions, i.e.,
(A⊤, G⊤, B⊤). With respect to the theory, applications and our experiments, we
focus on the so-called regular matrix triplet (A, B, G), i.e., B is of full row rank
and G is of full column rank [98].

Algorithms for the computation of the RSVD are still an active field of research;
some recent works include [22, 101]. As noted in [27], the RSVD can be computed
via a double GSVD (see Eq. (6.1)). The following is a practical procedure to
construct the RSVD using the GSVD. For ease of presentation, we first assume
that m = ℓ and d = n so that B and G are nonsingular. Then, we have the
following expression as the RSVD from two GSVDs:

1 A quasi-diagonal matrix, in this work, is a matrix that is diagonal after removing all zero rows
and columns.
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A B
G


=


U1

V1

 
Γ1 U⊤

1 B
Σ1

 
Y⊤

1

I



=


U1

V1

 
Γ1Σ−1

1 U⊤
1 B

I

 
Σ1Y⊤

1

I



=


U1Y2

V1

 
Σ⊤

2 Γ⊤
2

V2

 
V⊤

2 Σ1Y⊤
1

U⊤
2



=


U1Y2

V1V2

 
Σ⊤

2 ΓG Γ⊤
2

ΓG

 
Y1Σ1V2Γ−1

G

U2

⊤
.

In these four steps, we have first computed the GSVD of (A, G), i.e., A = U1 Γ1 Y⊤
1

and G = V1 Σ1 Y⊤
1 . Note that Σ1 is nonsingular since G is nonsingular. Next,

we compute the GSVD of the transposes of the pair (U⊤
1 B, Γ1Σ−1

1 ), so that
U⊤

1 B = Y2 Γ⊤
2 U⊤

2 and Γ1Σ−1
1 = Y2 Σ⊤

2 V⊤
2 . Moreover, ΓG is a nonsingular scaling

matrix that one can freely select (see, e.g., [101]). In this square case, we have
Σ⊤

2 = Σ2, but we keep this notation for consistency with the nonsquare case we
will discuss next.

In some of our applications of interest (see Experiment 7.8), we have that
ℓ = d > m ≥ n. In this case, we get the following modifications:


U1

V1

 


Γ1 U⊤
1 B

Σ1

0d−n,n






Y⊤
1

I



=


U1

V1

 


Γ1Σ−1
1 U⊤

1 B
I

0d−n,n






Σ1Y⊤
1

I



=


U1Y2

V1

 


Σ⊤
2 Γ⊤

2
V2

0d−n,n






V⊤
2 Σ1Y⊤

1

U⊤
2



=


U1Y2

V1 V2

 


Σ⊤
2 ΓG Γ⊤

2
ΓG

0d−n,n






Y1Σ1V2Γ−1
G

U2

⊤
.
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In these steps, we use V2 = diag(V2, Id−n). Algorithm 18 summarizes the proce-
dure for computing the RSVD of the so-called regular matrix triplets (A, B, G).

Algorithm 18: RSVD via a double GSVD

Data: A ∈ Rm×n, B ∈ Rm×ℓ, G ∈ Rd×n, m ≥ n, m ≤ ℓ, d ≥ n
Result: Z ∈ Rm×m, W ∈ Rn×n, U ∈ Rℓ×ℓ, V ∈ Rd×d DA ∈ Rm×n,

DB ∈ Rm×ℓ, and DG ∈ Rd×n (see (7.4))
1 Compute [U1, V1, Y1, Γ1, Σ1] = gsvd(A, G)
2 Set Σ1 = Σ1(1 : n, :)
3 Compute [U2, V2, Y2, Γ2, Σ2] = gsvd(B⊤U1, (Γ1Σ−1

1 )⊤)
4 a = diag(Σ2) (∈ Rn)

5 ΓG = diag(ai (a2
i + 1)−1/2), (i = 1, . . . , n)

6 if d = n, DG = ΓG; V = V1V2; end
7 if d > n, V = V1 · diag(V2, Id−n); DG = [ΓG; 0d−n,n]; end
8 Z = U1Y2; W = Y1Σ1V2Γ−1

G ; U = U2; DA = Σ⊤
2 ΓG; DB = Γ⊤

2

In the two GSVD steps, we emphasize that we maintain the traditional nonde-
creasing ordering of the generalized singular values in both GSVDs. That is, the
diagonal entries of Γ1 and Γ2 are in nondecreasing order while those of Σ1 and Σ2
are in nonincreasing order. Note that Σ1 is again nonsingular because G is of full
rank. With reference to (7.4), we define Z := U1Y2, W := Y1Σ1V2Γ−1

G , V := V1 V2,

U := U2, DA := Σ⊤
2 ΓG, DB := Γ⊤

2 , and DG :=


ΓG

0d−n,n


. The quasi-diagonal

matrices DA, DB, and DG have the following structure:

DA =


D1

0m−n,n


, DB =


D2 0n,m−n 0n,ℓ−m

0m−n,n Im−n 0m−n,ℓ−m


, DG =


ΓG

0d−n,n


,

D1 =




α1
. . .

αn


 , D2 =




β1
. . .

βn


 , and ΓG =




γ1
. . .

γn


 .

(7.5)

Note that, in view of the assumption that B and G are of full rank and m ≥ n,
1 > αi ≥ αi+1 > 0, 1 > γi ≥ γi+1 > 0, and 0 < βi ≤ βi+1 < 1.

Remark 7.1. Let Σ2 = diag(σ1, . . . , σn), for i = 1, . . . , n. As mentioned earlier, ΓG is
a scaling matrix one can freely choose. Given Σ2, we may, for instance, choose γi =
σi (σ

2
i + 1)−1/2, which are nonzero and ordered nonincreasingly (since the function
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t → t (t2 + 1)−1/2 is strictly increasing). This implies that αi = σ2
i (σ

2
i + 1)−1/2.

Given that β2
i + σ2

i = 1 from the second GSVD, we have that α2
i + β2

i + γ2
i = 1 for

i = 1, . . . , n. Note that αi
βiγi

≥ αi+1
βi+1γi+1

, which follows from the fact that αi/γi = σi,
which are nonincreasing.

We now state a connection of the RSVD with CCA, which is one of the mo-
tivations for our proposed decomposition. In [27], De Moor and Golub show a
relation of the RSVD to a generalized eigenvalue problem. The related generalized
eigenvalue problem of the RSVD of the matrix triplet (B⊤G, B⊤, G) with m = d as
shown in [27, Sec. 2.2] is

[
B⊤G

G⊤B

] [
z
w

]
= λ

[
B⊤B

G⊤G

] [
z
w

]
.

The above problem is exactly the generalized eigenvalue problem of the cca(B, G)
(see, e.g., [49]). Note that matrices B⊤B and G⊤G can be interpreted as covariance
matrices. In applications where these covariance matrices are (nearly) singular,
one may use the RSVD instead to find a solution without explicitly solving the
generalized eigenvalue problem.

7.4 rsvd-cur decomposition and its approximation properties

This section describes the proposed RSVD-CUR decomposition and provides
theoretical bounds on its approximation errors.

7.4.1 A restricted SVD based CUR decomposition

We now introduce a new RSVD-CUR decomposition of a matrix triplet (A, B, G)
with A ∈ Rm×n (where, without loss of generality, m ≥ n), B ∈ Rm×ℓ, and
G ∈ Rd×n where B and G are of full rank. This RSVD-CUR factorization is
guided by the knowledge of the RSVD for matrix triplets reviewed in Section 7.3.
We now define a rank-k RSVD-CUR approximation; cf. (2.3).

Definition 7.2. Let A be m × n, B be m × ℓ, and G be d × n. A rank-k RSVD-CUR
approximation of (A, B, G) is defined as

A ≈ Ak := CA MA RA := AP MA S⊤A ,

B ≈ Bk := CB MB RB := BPB MB S⊤B ,

G ≈ Gk := CG MG RG := GP MG S⊤
G G.

(7.6)
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Here S ∈ Rm×k, SG ∈ Rd×k, P ∈ Rn×k, and PB ∈ Rℓ×k (k ≤ min(m, n, d, ℓ)) are
index selection matrices with some columns of the identity that select rows and columns
of the respective matrices.

It is key that the same rows of A and B are picked and the same columns of A and
G are selected; this gives a coupling among the decompositions. The matrices
CA ∈ Rm×k, CB ∈ Rm×k, CG ∈ Rd×k, and RA ∈ Rk×n, RB ∈ Rk×ℓ, RG ∈ Rk×n

are subsets of the columns and rows, respectively, of the given matrices. Let the
vectors s, sG, p, and pB contain the indices of the selected rows and columns so
that S = I(:, s), SG = I(:, sG), P = I(:, p), and PB = I(:, pB). The choice of s, sG, p,
and pB is guided by the knowledge of the orthogonal and nonsingular matrices
from the rank-k RSVD. Given the column and row index vectors, following [72, 83,
85], we compute the middle matrices as MA = (C⊤

A CA)
−1C⊤

A AR⊤
A(RAR⊤

A)
−1, and

similarly for MB and MG. There are several index selection strategies proposed in
the literature for finding the “best” row and column indices. The approaches we
employ are the DEIM [16] and the QDEIM [34] algorithms, which are introduced
in Chapter 2.

A DEIM type CUR decomposition requires singular vectors or approximate
singular vectors. In this chapter, we apply the DEIM procedure or its variant
QDEIM to the nonsingular and orthogonal matrices from the RSVD instead. In
an SVD-based CUR factorization, the left and right singular vectors serve as bases
for the column and row spaces of matrix A, respectively. In our new context,
the columns of matrices Z and W from (7.4) may be viewed as bases for the
column and row spaces, respectively, of A relative to the column space of B and
the row space of G. The procedure for constructing a DEIM type RSVD-CUR is
summarized in Algorithm 19.

Algorithm 19: DEIM type RSVD-CUR decomposition

Data: A ∈ Rm×n, B ∈ Rm×ℓ, G ∈ Rd×n, desired rank k
Result: A rank-k RSVD-CUR decomposition Ak = A(:, p) · MA · A(s, :),

Bk = B(:, pB) · MB · B(s, :), Gk = G(:, p) · MG · G(sG, :)
1 Compute rank-k RSVD of (A, B, G) to obtain W, Z, U, V (see (7.4))
2 p = deim(W) (perform DEIM on the matrices from the RSVD)
3 s = deim(Z)
4 MA = A( :, p) \ (A / A(s, : ))
5 pB = deim(U) (optional)
6 sG = deim(V) (optional)
7 Compute MB and MG as in Line 4 if needed
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In this implementation, the user is supposed to specify k. We note that one
can also determine k by comparing the decaying restricted singular values αi

βiγi
against a given threshold. In some applications, the explicit approximation of B
or G may not be necessary. Thus, Lines 5, 6, and 7 in Algorithm 19 should only
be implemented if necessary.

Remark 7.3. (also see Remark 6.5) In Line 1 of Algorithm 19, the columns of W, Z,
U, and V corresponds to the k largest restricted singular values αi

βiγi
. This implies

that we select the most “dominant” parts of A and the least “dominant” parts
of B and G, so in (7.6) the relative approximation error of A tends to be modest,
while this may not be the case for the relative approximation errors of B and G.

In many applications, as we will see in Section 7.5, one is interested in selecting
only the key columns or rows and not the explicit A ≈ CAMARA factorization.
An interpolative decomposition aims to identify a set of skeleton columns or
rows of a matrix. A CUR factorization may be viewed as evaluating the ID for
both the column and row spaces of a matrix simultaneously. The following are
the column and row versions of an RSVD-ID factorization of a matrix triplet:

A ≈ CAM̃A, B ≈ CBM̃B, G ≈ CG M̃G, or

A ≈ M̂ARA, B ≈ M̂BRB, G ≈ M̂GRG.
(7.7)

Here, M̃A = C+
AA is k × n and M̂A = AR+

A is m × k; analogous remarks hold for
M̃B, M̃G, M̂B, and M̂G. Notice that in Algorithm 19, the key column and row
indices of the various matrices are picked independently. This algorithm can
therefore be restricted to select only column indices if we are interested in the
column version of the RSVD-ID factorization or select only row indices if we are
interested in the row version.

De Moor and Golub [27] show the relation between the RSVD and the SVD
and its other generalizations. We indicate in the following proposition the cor-
responding connection between a DEIM type RSVD-CUR and the (generalized)
CUR decomposition [42, 83].

Proposition 7.4. (i) If B and G are nonsingular matrices, then the selected row and
column indices from a CUR decomposition of B−1AG−1 are the same as index vectors
pB and sG, respectively, obtained from an RSVD-CUR decomposition of (A, B, G).

(ii) Furthermore, in the particular case where B = I and G = I, an RSVD-CUR
decomposition of A coincides with a CUR decomposition of A, in that the factors C and
R of A are the same for both methods: the first line of (7.6) is equal to (2.3).
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(iii) Lastly, given a special choice of B = I, an RSVD-CUR decomposition of A and G
coincides with a GCUR decomposition of (A, G) (see (6.6)), in that the factors CA, CG
and RA, RG of A and G are the same for both methods. In the dual case that G = I,
similar remarks hold.

Proof. (i) We start with the RSVD (7.4). If B and G are nonsingular, then the SVD
of B−1AG−1 can be expressed in terms of the RSVD of (A, B, G), and is equal
to U(D−1

B DAD−1
G )V⊤ given that B−1 = UD−1

B Z−1 and G−1 = W−TD−1
G V⊤ [27].

Consequently, the row and column index vectors from a CUR factorization of
B−1AG−1 are equal to the vectors sG and pB, respectively, from an RSVD-CUR
of (A, B, G) since they are obtained by applying DEIM to matrices V and U,
respectively.

(ii) If B = I and G = I, from (7.4), I = ZDBU⊤ and I = VDGW⊤ which implies
UD−1

B = Z and W⊤ = D−1
G V⊤. Hence, we find that A = UD−1

B DAD−1
G V⊤ which

is an SVD of A. Therefore the selection matrices P, S from CUR of A (2.3) are
equal to the selection matrices P = PB, S = SG from an RSVD-CUR of (A, I, I)
(7.6).

(iii) If B = I, again from (7.4), I = ZDBU⊤, which implies that UD−1
B = Z.

Then A = UD−1
B DAW⊤, G = VDGW⊤ which is (up to a diagonal scaling) the

GSVD of the matrix pair (A, G); see (6.1) [27]. Thus, the column and row selection
matrices from GCUR of (A, G) (see (6.6)) are the same as the column and row
selection matrices P, S, SG from (7.6), respectively.

7.4.2 Error analysis

We begin by analyzing the error of a rank-k RSVD of a matrix triplet A ∈ Rm×n

(where without loss of generality m ≥ n), B ∈ Rm×ℓ, and G ∈ Rd×n (where B and
G are of full rank). Given our applications of interest in Section 7.5, we consider
the case ℓ = d ≥ m ≥ n. To define a rank-k RSVD, let us partition the following
matrices

U = [Uk Û] , V = [Vk V̂] , W = [Wk Ŵ] , Z = [Zk Ẑ] ,

DA = diag(DAk , D̂A) , DB = diag(DBk , D̂B) , DG = diag(DGk , D̂G),

where D̂A ∈ R(m−k)×(n−k), D̂B ∈ R(m−k)×(ℓ−k), and D̂G ∈ R(d−k)×(n−k). We define
a rank-k RSVD of (A, B, G) as
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Ak := ZkDAkW
⊤
k , Bk := ZkDBkU⊤

k , Gk := VkDGkW
⊤
k , (7.8)

where k < n. It follows that

A − Ak = Ẑ D̂A Ŵ⊤, B − Bk = Ẑ D̂B Û⊤, G − Gk = V̂ D̂G Ŵ⊤. (7.9)

The following statements are a stepping stone for the error bound analysis of an
RSVD-CUR. Denote the ith singular value of A by ψi(A). Let A − Ak = Ẑ D̂A Ŵ⊤

as in (7.9). Then, for i = 1, . . . , n, ψi(Ẑ D̂A Ŵ⊤) ≤ ψi(D̂A) ∥Ẑ∥ ∥Ŵ∥ (see, e.g., [63,
p. 346]). Since the diagonal elements of D̂A are in nonincreasing order, we have
∥A − Ak∥ ≤ ψ1(D̂A) ∥Ẑ∥ ∥Ŵ∥ ≤ αk+1 · ∥Ẑ∥ ∥Ŵ∥ (see (7.5) for the structure of
DA).

Similarly, we have that ∥B − Bk∥ = ∥Ẑ D̂B Û⊤∥ ≤ ∥Ẑ∥ and ∥G − Gk∥ =
∥V̂ D̂G Ŵ⊤∥ ≤ γk+1 · ∥Ŵ∥. The first inequality follows from the fact Û has
orthonormal columns and the diagonal elements of D̂B are in nondecreasing
order with a maximum value of 1, so we have that ψ1(D̂B) = 1 (see (7.5) for the
structure of DB) and ∥Û∥ = 1. The second equality is a result of the fact that V̂
has orthonormal columns and the diagonal entries of D̂G are in nonincreasing
order, therefore, ψ1(D̂G) = γk+1 (see (7.5) for the structure of DG) and ∥V̂∥ = 1.

We now introduce some error bounds of an RSVD-CUR decomposition in
terms of the error of a rank-k RSVD. The analysis closely follows the error
bound analysis in [83] and Chapter 6 for the DEIM type CUR and DEIM type
GCUR methods with some necessary modifications. As with a DEIM type GCUR
method, here also, the lack of orthogonality of the vectors in W and Z from
the RSVD necessitates some additional work. We take QR factorizations of W
and Z to obtain their respective orthonormal bases to facilitate the analysis,
introducing terms in the error bound associated with the triangular matrix in the
QR factorizations.

For the analysis, we use the following QR decompositions of the nonsingular
matrices from the RSVD (see (7.4))

[Zk Ẑ] = Z = QZTZ = [QZk Q̂Z]

[
TZk TZ12

0 TZ22

]
= [QZk TZk QZT̂Z],

[Wk Ŵ] = W = QW TW = [QWk Q̂W ]

[
TWk TW12

0 TW22

]
= [QWk TWk QW T̂W ],

(7.10)
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where we have defined

T̂Z :=

[
TZ12

TZ22

]
, T̂W :=

[
TW12

TW22

]
. (7.11)

This implies that

A = Ak + Ẑ D̂A Ŵ⊤ = ZkDAkW
⊤
k + Ẑ D̂A Ŵ⊤

= QZk TZk DAk T⊤
Wk

Q⊤
Wk

+ QZT̂Z D̂A T̂⊤
WQ⊤

W ,

B = Bk + Ẑ D̂B Û⊤ = ZkDBkU⊤
k + Ẑ D̂B Û⊤ = QZk TZk DBkU⊤

k + QZT̂Z D̂B Û⊤ ,

G = Gk + V̂ D̂G Ŵ⊤ = VkDGkW
⊤
k + V̂ D̂G Ŵ⊤ = VkDGk T⊤

Wk
Q⊤

Wk
+ V̂ D̂G T̂⊤

WQ⊤
W .

(7.12)

Given QW ∈ Rn×k with orthonormal columns, from [83] and Algorithm 17 as well
as here, we have that the quantity ∥A(I − QWk Q⊤

Wk
)∥ is key in the error bound

analysis. Here, we have that ∥A(I − QWk Q⊤
Wk

)∥ may not be close to ψk+1(A) since
the matrix QWk is from the RSVD, therefore we provide a bound on this quantity
in terms of the error in the RSVD.

Let P be an index selection matrix derived from performing the DEIM scheme
on matrix Wk. Suppose QWk is an orthonormal basis for Range(Wk), with W⊤

k P
and Q⊤

Wk
P being nonsingular, we have the interpolatory projector P(W⊤

k P)−1W⊤
k =

P(Q⊤
Wk

P)−1Q⊤
Wk

(see Proposition 2.4 and also [16, Def. 3.1, (3.6)]). With this equal-
ity, we exploit the special properties of an orthogonal matrix by using the or-
thonormal bases of the nonsingular matrices from the RSVD instead for our
analysis. Let Q⊤

Wk
P and S⊤QZk be nonsingular so that P = P(Q⊤

Wk
P)−1Q⊤

Wk
and

S = QZk(S
⊤QZk)

−1S⊤ are oblique projectors.
In the following theorem, we provide bounds on the coupled CUR decomposi-

tions of A, B, and G in terms of the RSVD quantities. The upper bounds contain
both multiplicative factors (the η’s) and the αk+1, γk+1 (both bounded by 1), and
T-quantities, which are from the error of the truncated RSVD as defined in (7.8)
and (7.9).

Theorem 7.5. (Generalization of [83, Thm. 4.1] and Theorem 6.11) Given A, B, and
G as in Definition 7.2 and Zk ∈ Rm×k, Wk ∈ Rn×k, Uk ∈ Rℓ×k, and Vk ∈ Rd×k from
(7.8), let QZk ∈ Rm×k, QWk ∈ Rn×k be the Q-factors of Zk, Wk, respectively, and T̂Z,
TZ22 , T̂W, and TW22 as in (7.10)–(7.11). Suppose Q⊤

Wk
P, U⊤

k PB, S⊤
G Vk, and S⊤QZk are

nonsingular, then with the error constants (see Remark 7.1 for details on the quantities
αk+1 and γk+1)
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ηp := ∥(Q⊤
Wk

P)−1∥, ηs := ∥(S⊤QZk)
−1∥, ηpB := ∥(U⊤

k PB)
−1∥, ηsG := ∥(S⊤

G Vk)
−1∥,

we have

∥A − CAMARA∥ ≤ αk+1 · (ηp · ∥T̂Z∥ ∥TW22∥+ ηs · ∥TZ22∥ ∥T̂W∥)
≤ αk+1 · (ηp + ηs) · ∥T̂W∥ ∥T̂Z∥ ,

∥B − CBMBRB∥ ≤ ηpB · ∥TZ22∥+ ηs · ∥T̂Z∥ ≤ (ηpB + ηs) · ∥T̂Z∥ ,

∥G − CG MGRG∥ ≤ γk+1 · (ηp · ∥T̂W∥+ ηsG · ∥TW22∥)
≤ γk+1 · (ηp + ηsG) · ∥T̂W∥.

(7.13)

Proof. We will prove the result for ∥A − CAMARA∥; the results for ∥B −
CBMBRB∥ and ∥G − CG MGRG∥ follow similarly. We first show the bounds on the
errors between A and its interpolatory projections PA and AS, i.e., the selected
rows and columns. Then, using the fact that these bounds also apply to the or-
thogonal projections of A onto the same column and row spaces [83, Lemma 4.2],
we prove the bound on the approximation of A by an RSVD-CUR.

Given the projector P, we have that Q⊤
Wk

P = Q⊤
Wk

P(Q⊤
Wk

P)−1Q⊤
Wk

= Q⊤
Wk

, which
implies Q⊤

Wk
(I − P) = 0. Therefore the error in the oblique projection of A is (cf.

[83, Lemma 4.1])

∥A − AP∥ = ∥A(I − P)∥ = ∥A(I − QWkQ
⊤
Wk

)(I − P)∥
≤ ∥A(I − QWkQ

⊤
Wk

)∥ ∥I − P∥.

Note that, since k < n, P ̸= 0 and P ̸= I, it is well known that (see, e.g., [89])

∥I − P∥ = ∥P∥ = ∥(Q⊤
Wk

P)−1∥.

Using the partitioning of A in (7.12), we have

A QWk Q⊤
Wk

= [QZk Q̂Z]

[
TZk TZ12

0 TZ22

] [
DAk 0

0 D̂A

] [
T⊤

Wk
0

T⊤
W12

T⊤
W22

] [
Ik

0

]
Q⊤

Wk

= QZk TZk DAk T⊤
Wk

Q⊤
Wk

+ QZT̂ZD̂A T⊤
W12

Q⊤
Wk

,

and hence
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A (I − QWk Q⊤
Wk

) = (A − Ak)− QZT̂ZD̂A T⊤
W12

Q⊤
Wk

= QZT̂ZD̂A T̂⊤
WQ⊤

W − QZT̂ZD̂A T⊤
W12

Q⊤
Wk

= QZT̂ZD̂A T⊤
W22

Q̂⊤
W .

This implies

∥A (I − QWk Q⊤
Wk

)∥ ≤ ∥D̂A∥ ∥T̂Z∥ ∥TW22∥ ≤ αk+1 · ∥T̂Z∥ ∥TW22∥,

and

∥A(I − P)∥ ≤ αk+1 · ∥(Q⊤
Wk

P)−1∥ ∥T̂Z∥ ∥TW22∥.

Let us now consider the operation on the left side of A. Given that S⊤QZk is
nonsingular, we have the DEIM interpolatory projector S = QZk(S

⊤QZk)
−1S⊤. It

is known that (see [83, Lemma 4.1])

∥A − SA∥ = ∥(I − S)A∥ = ∥(I − S)(I − QZk Q⊤
Zk
)A∥

≤ ∥(I − S)∥ ∥(I − QZk Q⊤
Zk
)A∥.

Similar to before, since k < m, we know that S ̸= 0 and S ̸= I hence

∥I − S∥ = ∥S∥ = ∥(S⊤QZk)
−1∥.

In the same setting as earlier, we have the following expansion

QZk Q⊤
Zk

A = [QZk 0]

[
TZk TZ12

0 TZ22

] [
DAk 0

0 D̂A

] [
T⊤

Wk
0

T⊤
W12

T⊤
W22

] [
Q⊤

Wk

Q̂⊤
W

]

= QZk TZk DAk T⊤
Wk

Q⊤
Wk

+ QZk TZ12 D̂A T̂⊤
WQ⊤

W .

We observe that

(I − QZk Q⊤
Zk
)A = (A − Ak)− QZk TZ12 D̂A T̂⊤

WQ⊤
W

= QZT̂Z D̂A T̂⊤
WQ⊤

W − QZk TZ12 D̂A T̂⊤
WQ⊤

W

= Q̂Z TZ22 D̂A T̂⊤
WQ⊤

W .
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Consequently,

∥(I − QZk Q⊤
Zk
)A∥ = ∥Q̂ZTZ22 D̂A T̂⊤

WQ⊤
W∥ ≤ ∥D̂A∥∥TZ22∥ ∥T̂W∥

≤ αk+1 · ∥TZ22∥ ∥T̂W∥,

and

∥(I − S)A∥ ≤ αk+1 · ∥(S⊤QZk)
−1∥ ∥TZ22∥ ∥T̂W∥.

Suppose that CA and RA are of full rank. Given the orthogonal projectors CAC+
A

and R+
A RA and computing MA as (C⊤

A CA)
−1C⊤

A AR⊤
A(RAR⊤

A)
−1 = C+

A AR+
A , we

have (see [72, (6)])

A − CAMARA = A − CAC+
A AR+

A RA = (I − CAC+
A )A + CAC+

A A(I − R+
A RA).

Using the triangle inequality, it follows that [72, 83]

∥A − CAMARA∥ = ∥A − CAC+
A AR+

A RA∥
≤ ∥(I − CAC+

A )A∥+ ∥CAC+
A∥ ∥A(I − R+

A RA)∥.

Leveraging the fact that CAC+
A is an orthogonal projector so ∥CAC+

A∥ = 1, and
[83, Lemma 4.2]

∥(I − CAC+
A )A∥ ≤ ∥A(I − P)∥ , ∥A(I − R+

ARA)∥ ≤ ∥(I − S)A∥,

as a variant of Theorem 6.11 we have

∥A − CAMARA∥ ≤ αk+1·(∥T̂Z∥∥TW22∥∥(Q
⊤
Wk

P)−1∥+ ∥(S⊤QZk)
−1∥∥TZ22∥∥T̂W∥)

≤ αk+1 · (∥(Q⊤
Wk

P)−1∥+ ∥(S⊤QZk)
−1∥) · ∥T̂Z∥ ∥T̂W∥.

The last inequality follows directly from the fact that the norms of the submatri-
ces of T̂Z22 and T̂W22 are at most ∥T̂Z∥ and ∥T̂W∥, respectively.

Theorem 7.5 suggests that to keep the approximation errors as small as possible,
a good index selection procedure that provides smaller quantities ∥(U⊤

k PB)
−1∥,

∥(S⊤
G Vk)

−1∥, ∥(Q⊤
Wk

P)−1∥, and ∥(S⊤QZk)
−1∥ would be ideal. The DEIM proce-

dure may be seen as an attempt to attain exactly that. Meanwhile, the quantity
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αk+1 · ∥TZ∥ ∥TW∥ is a result of the error of the rank-k RSVD. Additionally, we
would like to point out that due to the connection of QDEIM with strong rank-
revealing QR factorization (matrix volume maximization), the upper bounds for
the error constants can be reduced to the theoretically best available one if the
QDEIM procedure for the selection of the indices is used instead of the DEIM
algorithm [34, 35].

Comparing the results of the decomposition of A in Theorem 7.5 to [83,
Thm. 4.1], we have that the σk+1 in [83, Thm. 4.1] is replaced by the error in
the RSVD through ∥(I − QZk Q⊤

Zk
)A∥ and ∥A(I − QWk Q⊤

Wk
)∥. Here, ∥(Q⊤

Wk
P)−1∥,

and ∥(S⊤QZk)
−1∥ are computed using the orthonormal bases of the nonsingular

matrices from the RSVD of A rather than the singular vectors. Compared with
the results in Theorem 6.11 where all quantities are a result of the GSVD, in
Theorem 7.5 we have an additional ∥TZ∥, and all quantities are a result of the
RSVD.

7.5 numerical experiments

In this section, we first evaluate the performance of the proposed RSVD-CUR
decomposition for reconstructing a data matrix perturbed with nonwhite noise.
We then show how the proposed algorithm can be used for feature selection in
multi-view classification problems. In Experiment 7.8, we only care about the key
columns of B and G so we do not explicitly compute the RSVD-CUR factorization.
We use the DEIM and the QDEIM index selection scheme interchangeably.

In Experiments 7.6 and 7.7, we consider two popular covariance structures [95]
for the correlated noise. The first covariance matrix has a compound symmetry
structure (CSS), which means the covariance matrix has constant diagonal and
constant off-diagonal entries. A homogeneous compound symmetry covariance
matrix is of the form

CSScov = ν2




1 ξ ξ ξ

ξ 1 ξ ξ

ξ ξ 1 ξ

ξ ξ ξ 1



, (7.14)

where ν and ξ (with −1 < ξ < 1) denote the variance and correlation coefficient,
respectively. The second covariance matrix we use has a first-order autoregressive
structure (AR(1)), which implies the matrix has a constant diagonal and the off-
diagonal entries decaying exponentially; it assumes that the correlation between
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any two elements gets smaller the further apart they are separated (e.g., in terms
of time or space). A homogeneous AR(1) covariance matrix is of the form

AR(1)cov = ν2




1 ξ ξ2 ξ3

ξ 1 ξ ξ2

ξ2 ξ 1 ξ

ξ3 ξ2 ξ 1



. (7.15)

Experiment 7.6. In our first experiment, we address the problem of matrix per-
turbation (The case AE = A + E of unstructured noise was already considered
in Chapter 6), specifically AE = A + BFG, where F is a Gaussian random matrix
and B and G are the Cholesky factors of non-diagonal noise covariance matrices.
The goal is to reconstruct a low-rank matrix A from AE assuming that the noise
covariance matrices or their estimates are known. The requirement that the noise
covariance matrices or their estimates should be known is not always trivial. We
evaluate and compare a rank-k RSVD-CUR and CUR decomposition of AE in
terms of reconstructing matrix A. The approximation quality of each decomposi-
tion is assessed by the relative matrix approximation error, i.e., ∥A − A∥ / ∥A∥,
where A is the reconstructed low-rank matrix. As an adaptation of the first
experiment in [83, Ex. 6.1] we generate a rank-100 sparse nonnegative matrix
A ∈ R10000×1000 of the form

A =
10

∑
j=1

2
j

xj y⊤
j +

100

∑
j=11

1
j

xj y⊤
j ,

where xj ∈ R10000 and yj ∈ R1000 are random sparse vectors with nonnegative
entries (in Matlab, xj=sprand(10000, 1, 0.025) and
yj=sprand(1000, 1, 0.025)). We then perturb A with a nonwhite noise matrix BFG
(see, e.g., [57, p. 55]). The matrix F ∈ R10000×1000 is random Gaussian noise. We
assume that B ∈ R10000×10000 is the Cholesky factor of a symmetric positive defi-
nite covariance matrix with compound symmetry structure (7.14) (with diagonal
entries 4 and off-diagonal entries 1), and G ∈ R1000×1000 is the Cholesky factor of
a symmetric positive definite covariance matrix with first-order autoregressive
structure (7.15) (with diagonal entries 1 and the off-diagonal entries related by
a multiplicative factor of 0.99). The resulting perturbed matrix we use is of the
form AE = A + ε ∥A∥

∥BFG∥BFG, where ε is the noise level.
Given a noise level, we compare the naive approaches (rank-k SVD-based

methods), which do not take the structure of the noise into account with the
methods (rank-k RSVD-based methods), which consider the actual noise. That
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is, we compute the SVD of AE and the RSVD of (AE, B, G) to obtain the input
matrices for a CUR and an RSVD-CUR decomposition, respectively. For each
noise level, we generate ten random cases and take the average of the relative
errors for varying k values.

Figure 7.1 summarizes the results of three noise levels (0.1, 0.15, 0.2). We ob-
serve that to approximate A, the RSVD-CUR factorization enjoys a considerably
lower average approximation error than the CUR decomposition. The error of the
former is at least half of the latter. Meanwhile, the average relative error of an
RSVD-CUR approximation unlike that of the RSVD (monotonically decreasing)
approaches ε after a certain value of k. This situation is natural because the RSVD-
CUR routine picks actual columns and rows of AE, so the relative error is likely to
be saturated by the noise. The rank-k SVD of AE fails in approximating A for the
given values of k. Its average relative error rapidly approaches ε; this is expected
since the covariance of the noise is not a multiple of the identity. The truncated
SVD of AE gives the optimal rank-k approximation to AE. However, here, the goal
is to reconstruct the noise-free matrix A hence, we measure the rank-k approxi-
mation error against the unperturbed A. To heuristically explain why the SVD
fails here, let us consider the ideal situation of a perturbation matrix E whose
entries are normally distributed with zero mean and standard deviation ν (white
noise). We have that the expected value of ∥E∥ is approximately ν

√
m [57]. Hence

if the singular values of unperturbed A decay gradually to zero, then the singular
values of the perturbed matrix AE are expected to decrease monotonically (by
definition) until they tend to settle at a level τ = ν

√
m determined by the errors

in AE [57]. Note that given that the rank of A is k, the singular values (ψi) of AE
will plateau at i = k + 1. We can therefore expect to estimate A in terms of the
rank-k SVD AE [57]. In this experiment, given the structure of the noise E = BFG,
the expected value of ∥E∥ is not approximately ν

√
m. As a result, the rank-k

SVD of AE fails to estimate A. We need algorithms that can take the actual noise
into account, which is typically done by the “prewhitening” process. Thus, given
the nonsingular error equilibration matrices B and G, we have that the error in
B−1AE G−1 is equilibrated, i.e., uncorrelated with zero mean and equal variance
(white noise). One may then approximate A by applying the truncated SVD to
the matrix B−1AE G−1, followed by a “dewhitening” by a means of left and right
multiplication with B and G, respectively [57]. However, it is worth noting that
even when B and G are nonsingular it may be computationally risky to work
with their inverses since they may be close to singular, and so in general it makes
sense to reformulate the problem with no inverses. Using the RSVD formulation,
this “prewhitening” and “dewhitening” process becomes an integral part of the
algorithm.
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Another observation worth pointing out is that a rank-k CUR of AE yields a
more accurate approximation of A compared to the rank-k SVD of AE, although
the column and row indices are selected using the singular vectors of AE. This
behavior can be attributed to the fact that the SVD is a linear combination of all the
perturbed data points, so the total noise is included in the rank-k approximation.
On the other hand, with the CUR approximation, the C and R factors are actual
columns and rows of AE, so selecting k columns and rows of AE implies that our
approximation would only contain part and not the total noise.

We also observe that the approximation accuracy of the QDEIM index selection
method is comparable to that of the DEIM scheme, although the former is simpler
and more efficient.

It is also worth noting that the improved performance of an RSVD-CUR
approximation compared to a CUR factorization is particularly more attractive
for higher noise levels with modest k values, i.e., when k is significantly less
than rank(A). One can observe from Fig. 7.1 that the range of k values that yield
the lowest approximation error measured against unperturbed A is between 10
and 20. Using the following k values (10, 15, 20), in Table 7.1, we investigate the
significant improvement of a DEIM-RSVD-CUR approximation over a DEIM-CUR
factorization. With noise level 0.1, we see that for the lowest error of a DEIM-
CUR, which corresponds to k = 15, a DEIM-RSVD-CUR produces about a 39%
reduction in the error. The improvement is even more significant if the noise level
is 0.2, where the rank-10 RSVD-CUR approximation reduces the rank-10 CUR
decomposition error (lowest error of the CUR) by about 50%.

Table 7.1: The approximation quality of a DEIM RSVD-CUR approximations compared
with DEIM-CUR approximations in recovering a sparse, nonnegative matrix
A perturbed with nonwhite noise. The average relative errors ∥A − Ãk∥ / ∥A∥
for k values (10, 15, 20).

Noise Method \ k 10 15 20

ε = 0.1
CUR-Ãk 0.100 0.084 0.089

RSVD-CUR-Ãk 0.064 0.051 0.049

ε = 0.2
CUR-Ãk 0.162 0.177 0.184

RSVD-CUR -Ãk 0.080 0.084 0.106

In Fig. 7.2, using the DEIM-RSVD-CUR decomposition of AE with noise level
ε = 0.1, we show the various quantities in Theorem 7.5. We observe that the upper
bound in Theorem 7.5 may be rather pessimistic, and the true DEIM-RSVD-CUR
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Figure 7.1: The approximation quality of RSVD-CUR approximations compared with
CUR approximations in recovering a sparse, nonnegative matrix A perturbed
with nonwhite noise. The average relative errors ∥A − Ãk∥ / ∥A∥ (on the
vertical axis) as a function of rank k (on the horizontal axis) for ε = 0.2, 0.15,
0.1, respectively.

error may be substantially lower in practice. As in [83, Fig. 4], the magnitude of
the quantities ηs and ηp may vary. We see that ∥T̂W∥ and ∥T̂Z∥ seem to stabilize
as k increases and both quantities are close to ∥AE∥.

Experiment 7.7. In this experiment, we investigate the use of inexact Cholesky
factors B̂ and Ĝ. In particular, we assume that the exact noise covariance matrices
B⊤B and G⊤G are unknown, and we compare the performance of the proposed
RSVD-CUR decomposition with that of a CUR factorization in reconstructing
A from AE. To generate the inexact Cholesky factors B̂ and Ĝ, we multiply
the off-diagonal elements of the exact Cholesky factors B and G by uniform
random numbers from the interval [0.9, 1.1]. We maintain the experimental setup
described in Experiment 7.6 using noise levels ε = 0.1, 0.2, except that here we
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Figure 7.2: Various quantities from Theorem 7.5 using the DEIM index selection scheme:
error constants ηp = ∥(Q⊤

W P)−1∥ (red dashed) and ηs = ∥(S⊤
A QZ)

−1∥ (red
solid); multiplicative factors ∥T̂Z∥ (green solid) and ∥T̂W∥ (green dashed);
an RSVD-CUR true error ∥AE − (CMR)rsvd−cur∥ of approximating AE in
Experiment 7.6 (blue solid) and its upper bound (blue dashed).

compute the RSVD of (AE, B̂, Ĝ) to obtain the input matrices for the RSVD-CUR
decomposition. Our results, presented in Figures 7.3a and 7.3b, suggest that the
RSVD and RSVD-CUR factorization still provide good approximation results
even when using inexact Cholesky factors. This finding may indicate that we may
not necessarily need the exact noise covariance.
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Figure 7.3: The approximation quality of RSVD-CUR factorizations using inexact
Cholesky factors of the noise covariance matrices compared with CUR de-
compositions in recovering a sparse, nonnegative matrix A perturbed with
nonwhite noise. The average relative errors ∥A − Ãk∥ / ∥A∥ (on the vertical
axis) as a function of rank k (on the horizontal axis) for ε = 0.1, 0.2, respec-
tively.
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Experiment 7.8. This experiment demonstrates the effectiveness of an RSVD-ID
(as defined in (7.7)) in discovering the underlying class structure that two views
of a data set share. We demonstrate that using an RSVD-ID as a feature selection
technique in multi-view classification problems can improve classification accu-
racy. Typically, multi-view classification problems aim to improve classification
accuracy by integrating information from different views into a unified represen-
tation. Two traditional approaches for dimension reduction in such problems are
concatenation and separation. The concatenation strategy merges different views
into a new feature space and applies traditional feature selection algorithms
such as an interpolative decomposition on the merged set, while the separation
strategy performs feature selection separately on each view. The concatenation
approach may overlook the unique statistical properties of each feature set, while
the separation strategy may miss important relationships between views. Given
that multiple views of data can offer complementary information, it is reasonable
to develop a feature selection algorithm that leverages all views and exploits their
relationships.

Consider the two views/feature sets as matrices B and G. We are primarily
interested in the key columns of B and G rather than their explicit CUR factor-
ization. An RSVD-ID may serve as an unsupervised feature selection method
for two-view data sets, leveraging the correlation between the views. While we
are interested in a subset of the columns of B and G, the problem involves three
matrices and requires the use of RSVD-ID. Specifically, we use A := B⊤G as the
cross-correlation between the two views, B as View1, and G as View2. We com-
pare the classification test error rate of the QDEIM-type RSVD-ID scheme with
that of the QDEIM-type ID algorithm. (Recall the relationship between cca(B, G)
and the RSVD of (B⊤G, B⊤, G) as discussed in Section 7.3.) We generate several
reduced feature sets and compare their classification performance as follows:

(i) Two reduced feature sets are created by applying the QDEIM-ID procedure
on each view separately, i.e., the separation strategy. We label the reduced
feature sets as ID-View1 and ID-View2.

(ii) Another two reduced feature sets are created by performing QDEIM-type
RSVD-ID on the two views, i.e., RSVD-ID of (A, B⊤, G). We label them
RSVD-ID-View1 and RSVD-ID-View2, which are the RSVD-ID selected
features of views 1 and 2, respectively.

(iii) The feature set labeled Fused-ID is a concatenation of the two reduced
feature sets from (i), i.e., [ID-View1, ID-View2].
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(iv) Concat-ID is another feature set formed by applying the QDEIM-ID scheme
on the column concatenation of both views. Note that here, the concatena-
tion of the views is done before the dimension reduction is performed, i.e.,
the concatenation strategy.

(v) Finally, we concatenate the two reduced feature sets from (ii) to get Fused-
RSVD-ID, i.e., [RSVD-ID-View1, RSVD-ID-View2].

To ensure a fair comparison, we present the results of the single views (i) and
(ii) in one table and the feature fusion results (iii), (iv), and (v) in a separate
table. This allows us to investigate the impact of incorporating complementary
information from all views on the classification performance of each feature set
and to determine which method yields the best results.

To demonstrate the effectiveness of our approach, we use the handwritten
digits data set from the UCI repository, which contains features of handwritten
numerals (0–9) extracted from Dutch utility maps [36]. The data set consists of
2000 digits, with 200 instances for each of the ten classes. We extract three types of
feature sets: Fourier descriptors, Karhunen–Loève coefficients, and image vectors.
The Fourier set contains 76 two-dimensional shape descriptors, the Karhunen–
Loève feature set consists of 64 features, and the ‘pixel’ feature set was obtained
by dividing the image of 30 × 48 pixels into 240 tiles of 2 × 3 pixels. We combine
these three feature sets to form three experiments of a two-view classification.
In the first experiment, we use the Fourier coefficients of the character shapes
(fou) and the Karhunen–Loève coefficients (kar) as view-1 and view-2, respectively.
The second experiment uses the pixel averages in 2 × 3 windows (pix) as the first
view and the Fourier coefficients of the character shapes (fou) as the second view.
Finally, the third experiment takes the pixel averages in 2× 3 windows (pix) as the
first view and the Karhunen–Loève coefficients (kar) as the second view. Table 7.2
summarizes the basic traits of the various data sets. We normalize all the data
sets to have a zero center and a standard deviation of one.

Table 7.2: Summary characteristics of multi-view data sets used in the experiments.

Data set Samples View 1 (B) View 2 (G)

Digits (fou vs. kar) 2000 76 64

Digits (pix vs. fou) 2000 240 76

Digits (pix vs. kar) 2000 240 64

In each experiment, we randomly split the normalized data into 75% training
and 25% testing data. For the randomization of the experiments, we perform
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20 cases using different random seeds. Tables 7.3 and 7.4 reports the average
classification test error rate of the default k-nearest neighbor (k-NN) classifier in
MATLAB for varying reduced dimensions.

Table 7.3: The average classification test error rate over 20 different random train-test
splits of the ‘pixel’, Fourier descriptors and Karhunen–Loève feature sets using
QDEIM-ID and QDEIM-RSVD-ID as a dimension reduction method for a k-
nearest neighbor classifier in Experiment 7.8.

Data/Method Rank-k ID-View 1 RSVD-ID-View1 ID-View2 RSVD-ID-View2

B=pix vs. G=fou
20 0.15 0.10 0.33 0.19

30 0.10 0.07 0.28 0.19

B=fou vs. G=kar
20 0.33 0.18 0.17 0.07

30 0.28 0.19 0.13 0.06

B=pix vs. G=kar 20 0.15 0.08 0.17 0.04

30 0.10 0.06 0.14 0.04

Table 7.4: The average classification test error rate over 20 different random train-test splits
of fused feature sets using QDEIM-ID and QDEIM-RSVD-ID as a dimension
reduction method for a k-nearest neighbor classifier in Experiment 7.8.

Data/Method Rank-k Fused-ID Concat-ID Fused-RSVD-ID

B=pix vs. G=fou
20 0.11 0.13 0.06

30 0.09 0.12 0.04

B=fou vs. G=kar
20 0.14 0.15 0.03

30 0.10 0.13 0.02

B=pix vs. G=kar 20 0.10 0.05 0.06

30 0.07 0.04 0.04

From the results, we observe that a QDEIM-RSVD-ID method consistently
performs better than a QDEIM-ID scheme. In particular, from the classification
results using single views, the QDEIM-RSVD-ID significantly improves the worse
QDEIM-ID single view results, as seen in columns 3 and 4 of Table 7.3. We notice
that using information from multiple views indeed reduces the classification
test error rate. Furthermore, in Table 7.4, we observe that feature fusion from
a QDEIM-type RSVD-ID approximation usually gives the least test error rate
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compared with the two other approaches involving the QDEIM-ID scheme, i.e.,
method (iii) and (iv).

Experiment 7.9. In certain applications, selecting the “best” feature subset is not
enough; cost considerations associated with those features also need to be taken
into account. For instance, in medical diagnosis, medical tests incur a cost and
risk, whereas symptoms observed by patients or medical practitioners are usually
cost-free. Thus, reducing monetary costs and sparing patients from unpleasant or
dangerous clinical tests (which can be quantified as costly variables) is essential.
In image analysis, feature acquisition processes’ time and space complexities
generally constitute the computational cost of features. As such, reducing this
cost by selecting only relevant and ideally “inexpensive” variables is a typical
modeler’s goal.

In this experiment, we evaluate the efficacy of the CUR, the GCUR, and
the RSVD-CUR methods in selecting relevant features that enhance prediction
accuracy while keeping feature acquisition costs low in the presence of correlated
noise. We demonstrate how RSVD-CUR factorization can be used in this context
using the Thyroid disease data set [81] from the UCI repository. The problem is
to determine whether a patient referred to the clinic has hypothyroidism. The
data set comprises three classes: normal (not hypothyroid), hyperfunction, and
subnormal functioning. Given that 92% of the patients are not hyperthyroid, a
good classifier must have an accuracy significantly higher than 92%.

This 21-dimensional data set has a separate training and testing set. The training
set consists of 3772 samples and the testing set consists of 3428 instances. The
data set comes with an intrinsic cost associated with 20 input features, which
we used to construct a diagonal matrix G ∈ R20×20. We, therefore, dropped the
feature that does not have an associated cost. Table 7.5 show the Thyroids data
set attributes. For our purpose, we add a small correlated noise perturbation
to the normalized training data set, e.g., ε = ∥AE − A∥ / ∥A∥ = 0.001, where
matrix A represents the original 20-dimensional training data set. (Note that we
only perturb the training data set.) We assume that the lower triangular matrix
B ∈ R3772×3772 is the Cholesky factor of a symmetric positive definite matrix
with first-order autoregressive structure (7.15) (with diagonal entries 1 and the
off-diagonal entries related by a multiplicative factor of 0.99). So the perturbation
matrix E = BẼ, where Ẽ ∈ R3772×20 is a random Gaussian matrix.

We evaluate the performance of the three algorithms based on the cost of
features selected and their classification test error rates. The DEIM index selection
procedure is used in this experiment. The standard CUR decomposition selects
ten columns of AE without considering the noise filter B and the cost matrix
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Table 7.5: Thyroid disease data features and their associated costs.

Feature Cost Feature Cost

age 1.00 query_hyperthyroid 1.00

sex 1.00 lithium 1.00

on_thyroxine 1.00 goitre 1.00

query_on_thyroxine 1.00 tumor 1.00

on_antithyroid_medication 1.00 hypopituitary 1.00

sick 1.00 psych 1.00

pregnant 1.00 TSH 22.78

thyroid_surgery 1.00 T3 11.41

I131_treatment 1.00 TT4 14.51

query_hypothyroid 1.00 T4U 11.41

G. The GCUR method selects a subset of ten columns of AE relative to G but
does not consider the noise. The RSVD-CUR method selects ten columns of
AE by incorporating all available prior information from (AE, B, G). To ensure
the validity of the results, we perform ten cases using different random seeds.
Table 7.6 presents the average total cost of the selected features and the average
classification test error rate, where we use the default k-nearest neighbor (k-NN)
classifier in MATLAB. The results shown in Table 7.6 indicate that methods

Table 7.6: Average classification test error rate and total cost of selected variables using
data set in Experiment 7.9. The k-NN model is trained using the perturbed
training data set.

Method/Criteria Error rate Cost

ε = 10−4 ε = 10−3

RSVD-CUR 0.07 0.07 10

GCUR 0.09 0.26 10

CUR 0.11 0.11 23.51

All features 0.07 0.07 76.11

incorporating cost information (i.e., GCUR and RSVD-CUR) lead to lower total
costs of features. The features selected by the RSVD-CUR result in the lowest
classification error rate, possibly because the RSVD-CUR considers the noise
structure during feature selection. When ε = 10−4, the average classification error
rate of the RSVD-CUR is approximately 28% and 57% lower than that of the
GCUR and the CUR, respectively. Furthermore, the error rates of the RSVD-CUR
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and the CUR are less sensitive to perturbation levels compared to the GCUR
(the error rate of the GCUR-selected features increases drastically from 0.09 to
0.26 as the noise level increases from 0.0001 to 0.001). Notably, the error rate of
using the full 20-dimensional feature set is similar to that of the RSVD-CUR’s 10-
dimensional feature set with lower cost. When ε = 10−3, both the RSVD-CUR and
the GCUR select the “pregnant” feature (with lower cost) as the most important,
while the CUR selects “TT4” (with higher cost) as the most important, resulting
in higher feature cost compared to the GCUR and the RSVD-CUR.

General Gauss-Markov model with constraints. We briefly describe another
possible application of the RSVD-CUR factorization here.

The RSVD-CUR decomposition may be used as a subset selection procedure in
the general Gauss-Markov linear models with constraints problem (7.1). “This
problem formulation admits ill-conditioned or rank-deficient B ∈ Rm×ℓ and G ∈
Rd×n (usually with d ≤ n) matrices” [27]. The matrix B may be considered a noise
filter and G may represent prior information about the unknown components
of x or may reflect the fact that certain components of x are more important or
less costly than others [27]. Minimizing ∥y∥2 + ∥f∥2 reflects that the goal is to
explain as much in terms of the columns of A (i.e., minimize ∥y∥2), taking into
consideration the prior information on the structure of the noise as well as the
preference of the modeler to use more of one predictor than others in explaining
the phenomenon [27]. It is easy to see that the problem has a solution if the linear
system

[
A B
G 0

] [
x
y

]
=

[
b
f

]

is consistent.
In many applications, it is desirable to reduce the number of variables that are

to be considered or measured in the future. As a result, it would be appropriate
to use a variable subset selection method that incorporates all available prior
information (i.e., B and G). Since this problem (7.1) involves three matrices, the
RSVD-CUR is a suitable procedure for variable subset selection. One may argue
that a CUR decomposition of B−1AG−1 may be used if B and G are nonsingular.
However, since the above problem admits an ill-conditioned or rank-deficient B,
such a formulation may not always be valid. Suppose we want to select k columns
of A and the corresponding columns of G, the above linear system reduces to

[
Ak B
Gk 0

] [
xk

y

]
=

[
b̂
f̂

]
,
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where Ak = A(:, p) and Gk = G(:, p). The index vector p is obtained by applying
Algorithm 19 to (A, B, G).

Example 7.10. The following examples are adapted from [25]. We give results for
three problems with m = ℓ = 1000 and n = d = 100. We denote by randn a matrix
or vector from the standard normal distribution and by randsvd(κ) a random
matrix with spectral norm condition number κ and geometrically distributed
singular values; generated by the routine randsvd in Matlab’s gallery. We consider
problems where either one of the matrices is ill conditioned. For all problems,
we take b = randn and f = randn. Table 7.7 reports the average relative errors
of 100 test cases for each problem using the original and reduced system. We
compute the errors as ∥(b, f)− (b̂, f̂)∥. In this RSVD-CUR type approach for a
Gauss–Markov application, typical behavior of slowly decaying decomposition
error is observed.

Table 7.7: Average relative errors of the original and reduced system for varying k values
for the various problems of Example 7.10.

Problem \ k 10 20 30

A B G

randsvd(10) randsvd(104) randn 0.29 0.27 0.25

randsvd(106) randsvd(10) randn 0.29 0.27 0.25

randsvd(104) randsvd(104) randsvd(10) 0.28 0.27 0.25

randn randn randn 0.29 0.27 0.25

7.6 final considerations

We have proposed a new low-rank matrix decomposition method, referred to as
RSVD-CUR factorization, which extends the CUR decomposition to matrix triplets
(A, B, G). The construction of the C and R factors is performed using the DEIM
or QDEIM index selection procedure, although other selection methods such
as a maximum volume algorithm [50] may be used instead. We have discussed
the relationship between this DEIM type RSVD-CUR and a DEIM type CUR or
GCUR for nonsingular B and G. When B = G = I, the RSVD-CUR decomposition
of A coincides with a CUR decomposition of A. Additionally, when B = I,
a DEIM type RSVD-CUR of (A, B, G) corresponds to a DEIM type GCUR of
(A, G), and similarly for the transpose of (A, B) when G = I. The RSVD-CUR
factorization can be applied to feature fusion and feature subset selection in multi-
view classification and multi-label classification problems. In data perturbation
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problems, the RSVD-CUR approximation can provide more accurate results than
a CUR factorization when reconstructing a low-rank matrix from a correlated
noise-perturbed data matrix. The RSVD-CUR factorization can also be used
as a subset selection technique in generalized Gauss-Markov problems with
constraints. The experiments in Section 7.5 demonstrate the effectiveness of the
RSVD-CUR factorization in these applications.
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A CUR factorization is used as an alternative to the well-known singular value
decomposition. There are several advantages to using a CUR factorization over
the SVD. Firstly, it uses a subset of the original matrix’s rows and columns, hence,
it can preserve important structures in the original matrix, while eliminating noise
or irrelevant data. Additionally, because the C and R matrices provide explicit
subsets of the original matrix’s columns and rows, the resulting factorization
can provide a more interpretable representation of the original data. This can be
especially useful in applications such as collaborative filtering, where the factors
correspond to user preferences and item features.

Unlike the SVD, which is a unique decomposition for any given matrix, a CUR
factorization, in general, is non-unique. This is because the C and R factors in the
CUR approximation can be chosen in many different ways, as long as they contain
appropriate subsets of the original matrix’s columns and rows. Additionally, the
middle matrix can be scaled or computed in various ways without affecting
the validity of the factorization. An essential aspect of the CUR factorization
is the methodology used for selecting a subset of columns and rows from the
original matrix. In this work, we have focused on developing new tools for CUR
factorization and improving existing techniques.

One provably appropriate technique for index selection in constructing a
CUR factorization is the discrete empirical interpolation method. In Chapter 3
we presented a new extension of the DEIM index selection algorithm called
L-DEIM, which can identify additional indices for constructing a rank-k̂ CUR
decomposition using a lower-rank SVD approximation. The method combines
the strength of deterministic leverage score sampling and the DEIM scheme. The
proposed procedure is particularly useful in scenarios such as big data problems
where computing a full rank-k̂ SVD is expensive. The L-DEIM scheme can be
viewed not only as an extension of DEIM but also as an alternative index selection
method for a CUR factorization. Although the L-DEIM algorithm can be more
computationally efficient than the original DEIM scheme, experiments suggest
that the approximation accuracy of both methods is comparable when the target
rank k̂ is at most twice the available k singular vectors.

Chapter 4 introduces several block versions of the discrete empirical interpo-
lation method for computing CUR decompositions. These variants leverage the
benefits of the classic DEIM procedure, a column-pivoted QR decomposition, and
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the idea of maximum determinant or volume of submatrices. We also present a
version of block DEIM that allows for flexible block size selection.

The block DEIM based on RRQR works as follows: at each iteration step, we
compute a QR factorization with column pivoting on the transpose of a block of
singular vectors to identify the indices corresponding to the first b columns. Next,
we update the next block of vectors using the interpolatory projection technique
from the DEIM procedure. We repeat these two steps until all indices are selected.
The block DEIM based on MaxVol follows a similar procedure, except instead of
using a column-pivoted QR decomposition, we use the MaxVol method.

The block DEIM variants provide effective alternatives for constructing a
CUR decomposition, exhibiting comparable accuracy and potentially improved
computational efficiency when compared to some existing methods.

In Chapter 5 new techniques for selecting subsets of columns and rows using
an iterative subselection strategy are introduced. Additionally, we discuss how
iterative procedures for computing a few singular vectors of large data matrices
can be used with these iterative subselection techniques. The new approaches
adaptively employ the DEIM scheme and are shown through empirical analysis to
produce better approximation results than the traditional DEIM procedure of one-
round sampling of all columns and rows. The proposed methods can be useful
techniques for improving the accuracy of a CUR decomposition. However, they
can also introduce additional complexities that need to be addressed carefully.
Whether to use iterative subselection schemes or not depends on the specific
problem or application, as well as the trade-offs between accuracy, complexity,
and computational resources.

Chapter 6 presents a new low-rank matrix approximation method called a
generalized CUR factorization, which is an extension of the DEIM-CUR decom-
position for matrix pairs. It decomposes two data sets together and may be
used in selecting discriminative features of one data set relative to another. The
GCUR algorithm may also be useful in applications where a data matrix suffers
from nonwhite (colored) noise and the goal is to recover the unperturbed matrix
given some information about the noise. We compare the new method with the
standard DEIM-CUR decomposition in numerical experiments and show that it
can perform better in subgroup discovery and subset selection in a classification
problem. The GCUR algorithm provides more accurate approximation results
compared to the DEIM-CUR algorithm when recovering an original matrix with
low rank from data with colored noise given some known information about the
noise.

In Chapter 7 we introduced the RSVD-CUR factorization, a new low-rank ma-
trix decomposition method that extends the CUR decomposition to matrix triplets
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(A, B, G). We explored the relationship between the DEIM type RSVD-CUR and a
DEIM type CUR or GCUR for nonsingular B and G. The RSVD-CUR factorization
can be employed for feature fusion and feature subset selection in multi-view
classification and multi-label classification problems. It can also provide more
accurate results than a CUR factorization when reconstructing a low-rank matrix
from data with structured colored noise perturbation problems. In addition, the
RSVD-CUR factorization can be used as a subset selection technique in gener-
alized Gauss-Markov problems with constraints. Our experiments confirm the
efficacy of the RSVD-CUR factorization in these applications.

outlook

The findings presented in this dissertation rely on specific assumptions and
choices made to effectively address the research questions. While the methods
discussed have been found to have limitations, we have also identified their
strengths and practical applications. Moving forward, we suggest potential areas
for further research that stem from the previous chapters.

In Chapter 3, Algorithm 7 extracts at least k̂ ≥ k column of A given rank-k
singular vectors. However, an upper bound on the number of output columns k̂
is not immediate. It would be an idea to investigate such an upper bound. Could
the stopping criteria depend on the decay of the “leverage scores"?

In Chapter 5, we introduced a basic iterative subselection strategy that requires
the user to specify a parameter δ to determine the number of selected columns or
rows in each iteration. However, there are still several open questions regarding
this approach. One of the primary questions is how to efficiently determine the
optimal value of δ. Additionally, it remains unclear whether varying δ in each
iteration can lead to improved theoretical bounds or better empirical performance.
These open questions present exciting opportunities for future research in the
field.

The proposed methods in Chapters 6 and 7 are based on the generalized
and restricted SVD, both of which are computationally intensive tasks. Future
research could focus on developing more efficient algorithms for the GCUR and
RSVD-CUR, which could make the methods even more practical for large-scale
problems. For the standard CUR, randomized algorithms and methods that
do not require the SVD have been proposed. It could be interesting to explore
such methods and pass-efficient algorithms for the GCUR and the RSVD-CUR
factorizations.
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We presented possible applications for the GCUR and the RSVD-CUR de-
compositions. We expect that the promise of the GCUR and the RSVD-CUR
methods may be more general than the applications considered in this thesis.
Future research could focus on exploring various applications and demonstrating
the effectiveness of the proposed method in real-world scenarios. Additionally,
the standard CUR decomposition has been shown to be useful in several ma-
chine learning methods. It could be interesting to explore how the two proposed
factorizations could be integrated with other machine learning techniques.

The CUR decomposition has been extended to tensors [73]. The extension of
the CUR decomposition to tensors involves finding a set of factor matrices that
can be multiplied together to reconstruct the original tensor. This is a challenging
problem due to the increased complexity of tensors, which have multiple modes
or dimensions. However, several techniques have been proposed to address this
issue [13, 19, 73]. These methods use the same principles as the original CUR
decomposition but adapt them to the tensor setting.

Recently, He et al. [60] extended the generalized singular value decomposition
from matrix pairs to tensor pairs. This extension has opened up new possibilities
for tensor decomposition, as it allows for the simultaneous decomposition of two
tensors. Given the promising results of the GCUR for matrix pairs, it would be
interesting to explore whether the GCUR can be adapted to tensor pairs using the
GSVD for tensors. This could lead to improved low-rank tensor approximation
methods, which could be used in a variety of applications, such as image and
video processing, scientific data analysis, and machine learning. Further research
in this area could help advance the field of tensor decomposition and lead to
breakthroughs in high-dimensional data analysis.
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S U M M A RY

In data analysis applications and machine learning, the data set is often repre-
sented by a matrix. Data matrices are usually large and in many cases, a key
step in the analysis is to approximate the data using a few features and/or a
few data points so that one can easily manipulate, understand, and interpret
the data. The most common and optimal approach for this approximation is
the truncated singular value decomposition. However, an alternative approach
is to identify a good subset of columns and rows in the data matrix; a CUR
factorization. A CUR decomposition is a substitute for the SVD, especially when
a concrete interpretation of the singular vectors is challenging. Moreover, if the
original data matrix possesses properties like nonnegativity and sparsity, a CUR
decomposition can better preserve them. This dissertation introduces three new
index selection methods for constructing CUR decompositions. Additionally, the
thesis proposes two new procedures that extend a traditional CUR decomposition
to handle matrix pairs and triplets.

Several methods have been proposed in the literature to carefully select a
subset of rows and columns from the given matrix that results in a small ap-
proximation error. One such procedure is a DEIM-induced CUR approximation.
This procedure applies the DEIM index selection algorithm to the right and left
singular vectors of the matrix to identify the indices of the columns and rows to
be selected. The DEIM procedure originated from the context of model reduction
of nonlinear dynamical systems. It locally selects an index corresponding to the
entry of the largest magnitude in a given vector. A notable limitation of the DEIM
scheme is that the number of indices that can be selected is limited to the num-
ber of available singular vectors. Given the promising results seen in previous
works, we build off of the DEIM procedure to develop a technique that allows for
the selection of additional indices (L-DEIM). The L-DEIM scheme performs the
original DEIM to find the first set of indices up to the number of singular vectors
available and then exploits the idea of leverage scores to select the additional
indices. Additionally, we develop several block variants of the DEIM scheme.
The block DEIM procedures share the same principle as the standard DEIM,
but they are a bit less greedy since the optimization is done over more indices
instead of just one. These block variants may generally be more computationally
efficient than the standard DEIM. Additionally, a block DEIM scheme may be a
good solution in situations where DEIM faces a difficult choice since the local
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maximizer is (nearly) nonunique. Furthermore, we propose an iterative variant
of the DEIM scheme. This procedure aims to improve the approximation quality
of the DEIM scheme by adaptively invoking it; in the sense that we modify the
original matrix after each iteration by removing the information that has been
captured by the previously selected columns and rows.

Although a CUR decomposition can be used in a vast number of applications,
it may still not be suitable for some applications. For example, when a matrix is
perturbed with non-white noise and one is interested in recovering the unper-
turbed matrix. Another application is in a setting where we have two matrices
and the goal is to find a low-rank representation of one relative to the other.
For this reason, we formulate two generalizations of a CUR decomposition to
cope with the problem of simultaneous decomposition of matrix pairs and matrix
triplets.

The first generalization, a generalized CUR decomposition for matrix pairs
provides low-rank approximations of two matrices simultaneously, in terms of some
of their rows and columns; where the same columns of the two matrices are
selected to give a coupling between the two decompositions. In contrast to the
CUR decomposition techniques that use singular vectors, we develop a technique
based on the matrices from the generalized singular value decomposition to select
the representative rows and columns of the two matrices. We derive an error
bound for the approximation quality of this generalized CUR decomposition in
terms of the error of the GSVD. We prove that a CUR decomposition can be con-
sidered a special case of a generalized CUR decomposition. The development of
this method has opened up new possibilities for generalizing CUR decomposition
to more than one matrix.

Our second generalization, a restricted SVD-based CUR (RSVD-CUR) decom-
position for matrix triplets provides a low-rank matrix approximation for three
matrices using a subset of their columns and rows. Here, we present a method
based on the restricted singular value decomposition to select the representative
columns and rows. We derive an error bound on the accuracy of this RSVD-CUR
decomposition in terms of the error of the restricted singular value decomposi-
tion. An RSVD-CUR factorization may be suitable for applications where one is
interested in approximating one data matrix relative to two other given matrices.
Two key applications that we discuss are the multi-view dimension reduction
(where one has multiple information rather than a single representation of a
data problem, e.g. computer vision tasks where an image can be described with
color, shape, and texture features of high dimensions) and (structured) data
perturbation problems with non-white noise matrix where we want to recover
the unperturbed data.



P U B L I C AT I O N S

[1] P. Y. Gidisu and M. E. Hochstenbach. “A generalized CUR decomposition
for matrix pairs.” SIAM J. Math. Data Science 4.1 (2022). Winner of a 2023
SIAM Student Paper Prize, pp. 386–409.

[2] P. Y. Gidisu and M. E. Hochstenbach. “A hybrid DEIM and leverage
scores based method for CUR index selection.” In: Progress in Industrial
Mathematics at ECMI 2021. Springer International Publishing, 2022, pp. 147–
153.

[3] P. Y. Gidisu and M. E. Hochstenbach. A DEIM-CUR factorization with
iterative SVDs. In Preparation. 2023.

[4] P. Y. Gidisu and M. E. Hochstenbach. A restricted SVD type CUR decomposi-
tion for matrix triplets. To appear in SIAM J. Sci. Comput. arXiv: 2204.02113
[math.NA].

[5] P. Y. Gidisu and M. E. Hochstenbach. Block discrete empirical interpolation
methods. arXiv: 2208.02213 [math.NA].

147





A C K N O W L E D G M E N T S

First and foremost, I would like to express my deepest gratitude to God for
His unwavering love, mercy, and grace that have sustained me throughout this
journey. To Him belongs all the praise, honor, and glory for eternity.

I am indebted to Prof. La Torre Davide for sharing the PhD application oppor-
tunity and encouraging me to pursue it.

My heartfelt thanks go to dr. M.E. Hochstenbach, my supervisor, for providing
me with the invaluable opportunity to embark on this PhD under his guidance. I
am grateful for his mentorship, support, and the thought-provoking problems he
presented to me. Michiel’s extensive knowledge in numerical linear algebra has
greatly benefited me and his guidance on research writing and presentation.

I would like to thank the committee members for providing a detailed review
of the thesis and some helpful discussions. This has helped improve the quality
of the document.

I extend my gratitude to Enna, Gaby, Jonelleke, Lut, and Diane for their
invaluable administrative support.

The experience within the CASA group has been made special by the warm
atmosphere and camaraderie. I would like to thank my old and new office mates
for the delightful conversations and memorable outings.

I also appreciate the support and meaningful interactions I have experi-
enced with my co-promoter Prof. Alessandra Micheletti, my industry supervisor,
Giuseppe Codazzi, and the BigMath group.

In May 2023, I had the opportunity to spend two weeks at Virginia Tech: Prof.
Mark Embree has been a great host and I appreciated the many discussion on
“CUR stuff” we had.

Last but certainly not least, my deepest thanks go to my family and friends.
Their unwavering encouragement and prayers throughout this entire journey
have been instrumental in my progress and successful completion of this project.
I dedicate this thesis to the memory of my late mum (Magdalene Afua Dah).

149





C U R R I C U L U M V I TA E

Perfect Yayra Gidisu, born on April 28, 1991, hails from Kpando, Ghana. She
completed her Economics and Political Science undergraduate studies with
honors at the University of Ghana in 2013. Seeking further academic achievements,
she relocated to Italy and earned a Master’s degree in Economics and Finance
with distinction, specializing in Quantitative Finance, from the University of
Milan in 2018. During her Master’s program, Perfect received the University of
Milan Merit Scholarship on two occasions and secured a coveted position in an
exchange program at Peking University HSBC Business School in China. Before
commencing her Master’s degree, she gained valuable professional experience
working in various roles at UT Bank in Ghana for three years.

In March 2019, Perfect commenced a doctoral research project at the Eindhoven
University of Technology in the Netherlands in collaboration with AcomeA
Sgr, an asset management company based in Milan. The research project is
supervised by dr. M.E. Hochstenbach and G. Codazzi. Her research is part of
the "BigMath: Big Data Challenges for Mathematics" project, which is funded by
the European Union’s Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie Grant Agreement No 812912.

Throughout her doctoral studies, she presented her research findings at sev-
eral seminars and conferences. Additionally, she was recognized as one of the
four finalists for the 2023 KWG PhD prize and her paper “A Generalized CUR
Decomposition for Matrix Pairs” (this is Chapter 6), has been selected as one
of the winners of the 2023 SIAM Student Paper Prize. During her pursuit of a
PhD, Perfect actively engaged in academic enrichment by attending two notable
summer schools: "High-Performance Data Analytics" in Aussois in June 2019,
and "School on The Mathematics of Machine Learning" at Centro De Giorgi in
Pisa in January 2023.

151




