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Summary

To ensure a certain level of food safety in dairy products it is required to apply heat
treatment to inactivate micro-organisms and/or harm-full enzymes which naturally occur
in the ingredients. Direct Contact Condensation is a suitable technology in which steam
is directly brought into contact with the product to achieve a fast heating rate, reaching
higher temperatures and as consequence intensify the process and minimize product dam-
age. However, when the mixing of the two fluids is not done efficiently it can cause severe
damage to the product resulting in a loss of quality and even loss in production efficiency.
Modelling the transport phenomena in DCC is beneficial to optimize the process however
experimental data for validation was lacking.
In this work an experimental set-up was presented in which a transparent steam injector
was incorporated to visualize the steam cavity. The steam cavity was recorded using
a high speed camera and an image processing protocol was developed to analyze the
data. The experimental data and image analysis supplemented with temperature and
pressure measurement, were processed with Machine Learning (ML) models to develop a
data driven model to predict the regime maps. The ML algorithms identified that the
best parameters to generate condensation regime maps are the steam pressure, subcooling
temperature, water Prandtl number, velocity ratio between gas/liquid and the channel
pressure. The condensation outcomes were presented with various two-dimensional regime
maps. New regime maps are proposed using the Prandtl number and velocity ratio as
dimensionless parameters. When introducing a second steam cavity it was found that
this cavity influenced the temperature gradient to such an extent that the two jets show
oscillating behaviour, which has been classified as "Interfacial oscillation". Increasing the
channel pressure reduces the regime map such that only chugging and bubbling regime
were observed.
The regime maps are a useful tool to identify what type of flow regime is to be expected
when operating a DCC process. It however does not provide insights in the transport
phenomena or determine the performance of the process. The use of validated, transient
models to predict temperature, phase fraction and velocity gradients is essential and can
improve the operation of DCC. It was chosen to develop a one-dimensional two-fluid model
to gain on computational speed. The benefit of this approach is that the model can sim-
ulate time-scales up to hours to match the time-scales of protein induced fouling. The
model was tested against a wide range of steam mass fluxes, inlet water temperatures,
water Reynolds number and channel pressures to prove the steady-state performance. In
addition two dynamic tests were conducted in which the water flow rate was step wise
decreased or the steam pressure was adjusted throughout the experiment. In general the
model showed good agreement provided that the flow inside the channel was homoge-
neous.
Whilst the 1D model performed well and showed good agreement with experimental data
it also demonstrated that it requires homogeneous flow. The use of a Computational Fluid
Dynamics (CFD) model is useful to investigate flow directionality, temperature gradients
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and to optimize the injector design. The CFD model presented in this work uses an
Eulerian Multiphase model (EMP) with a RANS k-ω turbulence model. The experimental
data generated was only suitable for qualitative validation due to the formation of large gas
bubbles as well as the volume averaged velocity profiles due to the LED front lighting. The
experimental data was obtained using a high-speed camera and PIVlab to obtain velocity
fields. The model does produce a similar flow structure, and velocity gradients. Local
hotspots were detected in the predicted temperature fields when the "jetting" regime was
observed. The simulations for the experiments in the "bubbling" regime featured a large
radial temperature gradient which is inline with the observations with the 1D model.
The objective of high heat treatment, using Direct Contact Condensation (DCC), is to en-
sure a high level of food safety. The industrial challenge, in the food industry, is to balance
food safety with product quality and process efficiency. The product quality is affected by
several heat induced side reactions such as maillard and protein denaturation. The process
efficiency is mostly determined by protein fouling as a consequence of denaturation. The
formation of a protein rich deposit layer causes fouling of the system resulting in a loss
of effective production time and an increase in cleaning cycles. To model this phenomena
a transient flowsheet model was developed that features a laminar flow heat-exchanger
and a steam injector. Protein denaturation was modelled using a reversible unfolding
reaction step followed by a pseudo second order aggregation step. Pilot scale experiments
were conducted to generate samples throughout the process to determine the degree of
denaturation and validate the model. The formation of the deposit layer is described in
the segment after the DCC using a flow averaged model incorporating diffusion of species
through the mass boundary layer as well as adsorption to the wall and desorption from
the wall. The addition of desorption kinetics was necessary to incorporate the increase
of friction due to decreasing hydrodynamic area. The model shows good agreement with
experimental data and is capable of capturing the process dynamics, both for the heat
exchanger and the DCC. The deposit layer formation model is in agreement with the trend
observed in the experimental data but is not fully capturing the process dynamics.
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Samenvatting

Om een hoog niveau van voedselveiligheid te garanderen, en daarbij een langere houdbaar-
heid datum, krijgen zuivel producten een hitte-behandeling om bacteriën en enzymen te
deactiveren. Verhittings technieken waarbij verzadigde stoom rechtstreeks in het product
wordt geïnjecteerd genieten de voorkeur vanwege de snelle energie overdracht en korte
proces tijden. Hierdoor wordt het risico op product schade zoals Maillard reacties of eiwit
denaturatie verminderd. Dit is echter wel op voorwaarde dat de twee stromen (stoom en
product) homogeen mixen en recirculatie vermeden wordt. Wanneer dit niet het geval is
dan is er een risico dat het product wordt oververhit waardoor het product significante
schade oploopt dat impact zal hebben op geur, kleur en smaak. Daarnaast zal de produc-
tie lijn, als gevolg van eiwit reacties, vervuild raken waardoor de productie kosten oplopen
door verlies in operationele efficiëntie en toename in schoonmaak cycli. Het kan voordelig
zijn om de impact van het toegepaste proces (de techniek als mede de operationele condi-
ties) op de product kwaliteit en proces efficiëntie vooraf te voorspellen om zodoende het
proces te optimaliseren en risico’s te verminderen.
Om het voorspellend vermogen van een model te valideren, is het noodzakelijk om kwalita-
tief sterke experimentele data te verzamelen. Hiervoor was een pilot schaal experimentele
opstelling ontworpen waarin een stoom injector met een transparant segment was ver-
werkt. Het transparante segment, waarin een saffier glasplaat is verwerkt, werd verlicht
met 2 LED lampen en de stoom pluim werd opgenomen met een hoge-snelheids camera.
Een combinatie van camera beelden en sensor data zijn geanalyseerd met behulp van
Machine Learning (ML) algoritmes. Hieruit werden de belangrijkste parameters die het
proces beïnvloeden geïdentificeerd. Parameters zoals Prandtl getal, snelheid ratio’s tussen
stoom/product, subcooling temperatuur, stoomdruk en kanaaldruk zijn gebruikt om de
condensatie regimes in kaart te brengen. Deze techniek was ook valide met de introductie
van een tweede stoom pluim en identificeerde een extra regime ("Interfacial oscillation")
als gevolg van fluctuerende temperatuur gradiënten.
De condensatie kaarten zijn nuttige middelen om een inschatting te maken van wat voor
type gedrag de stoom pluim zal vertonen onder bepaalde operationele condities. Ze ge-
ven echter geen inzicht in temperatuur gradiënten. Om dit te voorspellen is een een-
dimensionaal dynamisch model ontwikkeld om stof en warmte overdracht te berekenen.
Het voordeel van dit model is de snelle convergentie, dat in een aantal seconden plaats
vind, en hierdoor kan het model toegepast worden om lange productie tijden te simuleren.
Dit is relevant omdat eiwit vervuiling op dezelfde tijdschaal plaats kan vinden. Het model
was getest tegenover stationaire data om zodoende de macroscopische voorspellingen te
valideren. Daarnaast werd het model ook getest tegenover dynamische data waarin het
waterdebiet stapsgewijs werd aangepast en de stoomdruk werd gevarieerd. Voor beide
dynamische testen reageerde het model adequaat en betrouwbaar mits de stroming in
het kanaal homogeen was. Voor experimenten waarbij de stoom pluim marginaal het ka-
naal penetreerde, en daardoor een radiale temperatuur gradiënt veroorzaakte, waren de
resultaten minder betrouwbaar.
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Doordat het 1D model vooral werkt onder voorwaarde dat de stroming homogeen is, is het
noodzakelijk om een Computational Fluid Dynamics (CFD) model te ontwikkelen. Dit
type model is in staat om de drie-dimensionale stroming te modelleren en hiermee de vloei-
stof stroming (snelheid en richting) en temperatuurgradiënten te bepalen. Hiermee kan
het ontwerp van de injector geoptimaliseerd worden of condities bepaald worden waarin de
stroming al dan niet homogeen is. In dit CFD model is de meer fase fysica gemodelleerd als
Eulerian-Eulerian meer-fase met een k-ω RANS model. Om dit model te valideren zijn de
beelden van de hoge-snelheids camera geanalyseerd met behulp van PIVlab om de snelheid
en richting in kaart te brengen. De beperkingen van deze methode zijn enerzijds afkomstig
van de belichtingsmethode. Door de LED lampen die aan het vooraanzicht geplaatst zijn,
naast de camera, ontstaat er een volume gemiddelde snelheid vector. Dit maakt een di-
recte vergelijking met model data onmogelijk. Een andere beperking was fysisch bepaald
doordat er grote gasbellen gevormd werden die invloed uitoefenen op de meetmethode.
Hierdoor zijn de experimentele resultaten enkel geschikt voor een kwalitatieve validatie.
De model resultaten kwamen overeen met de gegenereerde snelheidsvectoren en lieten de-
zelfde recirculatie patronen zien. De analyse van de temperatuur voorspellingen lieten
zien dat condities waarin een "jet-condensatie regime ontstond, dat de recirculatie patro-
nen verantwoordelijk zijn voor oververhitting. De condities waarin "bubbel-condensatie
plaats vond resulteerde in marginale stoom pluim penetratie en daardoor tot een radiale
temperatuurgradiënt.
De industriële uitdaging voor hittebehandeling is om een balans te vinden tussen voed-
selveiligheid, productkwaliteit en productie-efficiency. De laatste twee aspecten worden
vooral bepaald door hittegevoelige reacties zoals eiwit denaturatie en vervuiling. De for-
matie van een eiwitrijke vervuiling laag zorgt ervoor dat productietijden verkort worden
en schoonmaak cycli toenemen. Om dit proces te modelleren zijn experimenten op proef-
fabriek schaal uitgevoerd waarin twee laminaire buizen warmtewisselaar de voorverwar-
ming van het product verzorgden en een stoom-injector om de sterilisatiegraad te behalen.
Dit proces is in zijn geheel gemodelleerd met behulp van een flowsheet model waarin alle
productiestappen verwerkt zijn. De eiwit reacties zijn verwerkt in een drie-staps reactie
model met daarin een reversibele ontvouwing en een tweede orde aggregatie reactie. Het
reactie model is gevalideerd tegenover monster analyse uit de proeffabriek experimenten en
de druksensoren zijn gebruikt om het vervuilingsmodel te valideren. Het vervuilingsmodel
is geïmplementeerd in het stromingsmodel na de stoom-injector en bevat een adsorptiemo-
del van bulkvloeistof naar de wand alsmede een desorptiemodel als gevolg van turbulente
fricties. De procesdynamiek werd goed door het model gerepresenteerd en het effect van
de formatie van de vervuilingslaag op de procesdruk werd accuraat voorspeld.
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Chapter1
Introduction

Heat treatment is applied in the food industry to ensure a certain level of food safety for the
final product by inactivating micro-organisms and/or harmfull enzymes which naturally
occur in the ingredients. The level of required food safety is strongly related to the target
group of the product and is directly linked to the applied temperature and the duration
at which this temperature is maintained. Fresh dairy products, for instance, require a
minimum pasteurization time of 30 min at 69◦C (or 30 seconds at 80◦C). However, dairy
products that need to remain stable on the shelf at ambient conditions require a more
strict heat treatment in the temperature range of 135-150◦C to also destroy spore-forming
bacteria [1–3]. The objective of heat treatment is to achieve a certain degree of inactivation
of bacteria. This is expressed using the F0-value given by Equation 1.1 in which ∆t is
the average residence time, T the target temperature, Tref and zref are respectively the
reference temperature and temperature resistance coefficient for the species of interest
[4].

F0 = ∆t10
(T −Tref )

zref (1.1)

When indirect heating technologies are employed, the heating rate is significantly low and
therefore the product can get severely damaged and which results in a lower sterilization
temperature for longer time to achieve the desired F0-value. With direct contact heating
the heating rate is fast and therefore a higher temperature for a short time is achievable to
reach the same F0-value as when working with indirect heating technologies. An example
of these differences for a F0 = 6 min is given by Figure 1.1. This process intensification
is beneficial for product stability as well as process efficiency. The drawback of Ultra
High Heat-Treatment (UHT) temperature regimes is the additional side reactions that
may cause colour formation, loss of nutrients [5] and a reduced process efficiency [6–8].
The reduction in process efficiency is a result of the formation of a protein-rich deposit
(fouling) layer, which increases the resistance for heat transfer. The consequences are a
higher energy consumption to compensate for the loss in efficiency for energy transfer as
well as an increase of the amount of cleaning cycles. Both of these have a significant
impact on the sustainability of dairy processing as well as on the optimal utilization of
processing equipment.
In order to increase the food safety and minimize the rate of chemical reactions it can
be favorable to apply direct heating technologies instead of indirect heating technologies.

1



Chapter 1 Introduction

Figure 1.1: A comparison between UHT process with direct and indirect heating technolo-
gies. The pre-heating is generally the same in which indirect heating methods
are used to pre-heat the product until 85◦C. After this step, with direct heat-
ing technologies, the product is heated to 150◦C and kept at that temperature
for a short time. Using a vaccuum vessel the added steam is flashed and the
product is cooled and afterwards indirect heating methods are used to further
cool the product. Both processes achieve a F0 = 6 min.

The latter features a slow heating rate and as a result the side reactions are more severe.
There are two options for direct heating methods: Direct Steam Injection (DSI) and
Steam Infusion (SI). Malgren et al. [9] found that both technologies provide food safe
products with no significant differences in chemical composition. The main difference is
in the particle size distribution of the large protein aggregates which can result from the
bubble formation during steam injection. However in practice this depends on the type of
steam injector used. In industrial applications it is most common that the DSI is applied
for low solid content processes (up-to 35% dry matter) and the SI unit for high solid
content processes (up-to 50% dry matter). At this stage the hypothesis is that the bubble
formation by steam injection causes the larger aggregates, however, it is not clear what the
exact effect of different types of injectors is on the heat-transfer and reaction pathways and
associated chemical kinetics. To study this phenomena it would be necessary to develop
models to predict the condensation behaviour and study the impact on protein reactions.
This thesis focusses on the application of a DSI as it is mostly used in the industry.
The most commonly applied model for protein denaturation and fouling is the model
described by De Jong et al. [7]. This model describes the process of fouling related to
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1.1 Direct Steam Injection

the denaturation of β-lactoglobulin, by considering three states of the protein: native,
unfolded and aggregated. Furthermore the model assumes a pseudo-second order reaction
for aggregation and a first order denaturation of the native β-lactoglobulin [10]. This
relatively simple description of the reaction mechanism does not take into account the
refolding of the Whey protein [11]. As a result the total amount of denatured protein is
over-estimated [9] and the location of fouling deposit is estimated wrongly. Furthermore
it leaves out the effect of pH and presence of minerals in solution or ionic strength, which
can have a radical outcome on reaction kinetics of aggregation with only a small change in
concentration [12–14]. Currently most literature describes the effect of these parameters
in a qualitative manner, a quantitative description of these phenomena, however, has not
yet been reported.

1.1 Direct Steam Injection

There are two methods for direct heating: steam injection and steam infusion. Both
mechanisms achieve high heating rates and allow direct contact condensation (DCC). For
steam injection, pressurized steam is injected and condensed into the stream of flowing
milk. For steam infusion the milk is sprayed into a steam infusion chamber. Steam infusion
is far more expensive to apply in the industry. It can be used to process milk concentrates
up to 50% dry matter whilst an injector is limited to 30% dry matter. Both systems dilute
the milk and thus increase the milk volume. The steam that is condensed into the milk is
removed by vaporization in a vacuum chamber after the sterilization step[15].
Direct steam injection can cause high temperature and velocity gradients. One of the
challenges of DCC is to uniformly distribute the heat through the processing unit. Direct
heating will, if poorly executed, cause a non-uniform product. Parts of the product stream
will contain denatured proteins due to extensive overheating. Furthermore, parts might
not be heated enough to destroy the bacterial spores that can cause spoilage. However, the
intended result of direct steam injection, if executed right, would lead to a uniform product
stream with limited protein denaturation, while still destroying all biological material.
Extensive research into the steam injection process could prevent design flaws.
There are different types of steam injectors. The injector in Figure 1.2 is an example of
cross injection of steam into a cold product stream[16, 17].

Figure 1.2: A steam injector[18]
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Chapter 1 Introduction

The injector in Figure 1.2 is a direct steam injector using a manifold. The manifold has
several nozzles, located in the wall of the inner pipeline. Steam is added in the outer
cylinder of the manifold counter-currently, whilst the product stream runs through the
inner pipe. The pressure of the steam is higher than the pressure of the product stream,
ensuring that steam flows through the nozzles, condensing into the product[18]. There is
still much to know about the mixing and heating rate of a manifold injector. A numerical
study could help fine-tune a multiple hole injection system, to ensure good mixing rates
in order for the product to be uniformly heated. An accompanying experimental study is
necessary to validate numerical models.

1.2 Heat induced protein reactions

When milk is heated a number of different chemical reactions occur that change the physics
and chemistry of the product. The chemical reactions that are of interest and relevant for
this work are those that impact the protein. Therefore this section will focus on protein
reactions.

1.2.1 Whey protein interactions

Whey proteins are nowadays popular amongst athletes as they have a well-recognized
nutritional benefit such as protection to muscle loss, enhanced muscle synthesis and im-
proved glycemic control [19–22]. In bovine milk whey proteins account for roughly 20% of
the proteins. In this section the structure and stability of whey proteins are discussed.

Table 1.1: Composition of Whey proteins per kg bovine milk [23]
Component amount (wt%) diameter (nm)

Whey 6.0-6.2
β-lactoglobulin 3.1-3.5 7
α-lactalbumin 1.2-1.3 3.5
BSA 0.4 12
Other 1.9-2.3 7-12
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1.2 Heat induced protein reactions

Whey proteins (listed in Table 1.1) are globular proteins with a well defined tertiary
structure when in native state. The forces that are resposible to maintain this structure
are:

• Covalent disulphide bonds
• Electrostatic forces
• Hydrophic interactions
• Ionic bonds (salt bridges)
• van der Waals forces
• Hydrogen bonds

The covalent disulphide bonds are not only responsible for the protein structure (in-
tramolecular force) but also play an important role for protein aggregation (intermolecular
force) upon disruption of this tertiary structure. In general the stability of the globular
protein is either disrupted by strong pH variations or by temperature. In this work the
stability is mostly effected by temperature which causes the unfolding of the protein (i.e.
the tertiary structure is lost). As a result reactive groups are exposed which can result
in protein aggregation. The unfolded protein can also fold back into a (misfolded) native
protein. The aggregated protein is viewed to be a denatured protein.

Effect of pH on whey protein stability

The pH of the system has a strong influence on the stability of the protein structure, both
for Whey and Casein proteins. The electrostatic interactions of proteins are influenced by
the pH. The proteins contain several amino acids with ionizable groups such as Aspartic
Acid (Asp). Glutamic acid (Glu), Lysine (Lys), Arganine (Arg) and Histine (His). The
net charge of the protein molecule at a neutral pH is either positive or negative depending
on the relative number of charged amino acids that are present in the structure. At the
isoelectric pH (pI) the net charge of the protein is zero [24]. The electrostatic interac-
tion can influence the attractive/repulsiveness of intramolecular interactions but may also
influence the intermolecular interactions by strengthening the interaction between the in-
ternal amino groups. It is expected that for pH higher then the pI that the electrostatic
repulsion increases.
Next to the electrostatic interaction, the pH also influences the reactivity of the free SH-
groups, which has the ability to form disulfide bridges intra as well as inter molecular.
The free SH groups are active between 6.5 < pH < 8 and and form the strongest links for
aggregation in this range [25, 26]. This was also found in the result of Leeb et al. [13] in
which the particle size decreased with increasing pH.

1.2.2 Whey-Casein interactions

The major part of the protein composition in bovine milk consists of caseins (∼ 80% of
all proteins). Normally the casein protein is found in a micellar form of which the debate
regarding its structure is still ongoing. The casein protein is a cluster of different types of
casein as listed by Table 1.2. Currently the main accepted model of the casein micelle is the
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model of Holt et al. [27]. The model emphasises the role of a colloidal calcium phosphate,
in which calcium is bound by (in)organic phosphates, that acts as an important building
block. The micelle is stabilized both by electrostatic and by steric repulsion by κ-casein
which is located at the surface which causes the micelle to be "hairy". The exact shape
and size of the micelle is however still under debate as the sample preparation influences
the micelle.

Table 1.2: Composition of Casein per kg bovine milk [28]
Component amount (wt%)

Casein 26.92
αs1-Casein 10.25
αs2-Casein 2.75
β-Casein 9.6
κ-Casein 3.45

The interaction of the casein micelle and whey proteins (WP) occurs via κ-casein located
at the micelle surface. The reaction pathway schematic (Figure 1.3) gives a proper repre-
sentation of the different phenomena [29]. Via pathway A the whey proteins form primary
whey protein aggregates which either remain in the liquid phase or can bind itself to the
casein micelle. Alternatively an unfolded whey protein can attach itself to the casein mi-
celle (pathway B). The complex formation of WP and κ-casein might as well take place in
the liquid phase after the dissociation of κ-casein following pathway C or larger aggregates
are formed after dissociation of complexes from the micelle surface (pathway D).
These reaction pathways are highly influenced by process conditions as well as the pH,
calcium level and concentration of lactose. Especially the dissociation of κ-casein and the
micelle bound complexes is influenced by the pH.
In the range of 6.0 <pH< 8.0 the main driver of protein aggregation are the free thiol-
groups. With increasing pH more thiol groups are activated and thus the reactivity in-
creases [25, 26]. This also influences the reaction pathway for casein-whey interaction as
illustrated in Figure 1.4 from the work of Vasbinder et al. [30]. At low pH the amount of
activated thiol-groups is low and the aggregates that are being formed are large and stick
to the surface of the micelle [30, 31]. With increasing pH the denatured WP will form
a mono-layer at the surface of the casein micelle. With a near-neutral pH complexes are
found in the liquid phase (pathway A and B). It is thus in line with the work of Leeb et
al. [13] who concluded that the size distribution decreases with increasing pH. It is worth-
while to note that Anema et al. [32] concluded that (within the range 6.5 <pH< 6.7) the
main cause of changes in casein micelle size was by whey-protein aggregation but that the
association rate between whey and casein was much lower than the loss in native protein.

In practice the (high protein) dairy products are produced in a pH range of 6.5 <pH< 6.9.
Within this range the reaction between κ-casein and unfolded β-lactoglobulin takes place
at the surface of the casein micelle. Therefore it is proposed to adjust the aggregation
reaction to take into account the reaction between WP and casein in the productional
range. It is not favorable to go above or below this pH range. Below this pH range
the recipe is highly instable as the aggregation goes fast due to lower repulsions as the

6



1.2 Heat induced protein reactions

Figure 1.3: Schematic overview of the reaction pathways for protein aggregation [29]. The
casein micelle has a radius of 50nm and β-lactoglobulin has a radius of 3.5nm
[27].

Figure 1.4: Schematic representations of the interaction of casein micelles and whey pro-
teins at different pH values [30].

pH moves towards the iso-electric point. Above this pH range the casein micelle loses
integrity as κ-casein starts to dissociate and the micelle becomes heat-sensitive. As a
consequence the micelles loses the steric repulsion and simultanously the electrostatic
repulsion decreases. Equation 1.2 represents the reaction between unfolded whey protein
(cU ) and Casein (cC) both with an unidentified reaction order (n1 and n2)

n1cU + n2cC

kA2−−→ cA (1.2)
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1.2.3 Protein fouling

Fouling in heat-exchangers and holding cells limit both production time and cause a loss
in efficiency in heat transfer. The mechanism of fouling as well as the composition of the
fouling layer has been investigated extensively over the last decade but there is no align-
ment on the exact mechanism of fouling. Moreover the models published have only been
validated for temperatures lower than T< 95◦C. The differences in protein composition
found in Table 1.3 show that it might not be feasible to have a single reaction model in
place. In high-protein production, both on factory and pilot plant scale, it was observed
that the pipes and heat-exchangers are completely blocked during thermal processing when
the temperature approaches the UHT region (i.e. T> 100◦C).

Table 1.3: Composition (% DM) of type A deposit layer (T< 100◦C) and type B (T>
100◦C) deposit layer in of a PHE with comparison to bulk fluid composition.

T< 100◦C [33] T> 100◦C [34]
Component Skimmed Milk Deposit Whole Milk Deposit

Total Protein 37.20 44.40 26.83 15-20
Whey 6.10 33.30 5.37 3.45-4.6
Casein 31.10 11.10 21.50 11.55-15.40

Minerals 7.40 45 5.69 70-80
Calcium 1.32 15.70 - -
Phosphate 2.04 23.00 - -
Lactose 52.60 0.02 39.84 -

The model of de Jong et al. [10] is at this moment the most accepted fouling model and
has been applied by various researchers [35, 36]. The mechanism of fouling is however still
a matter of debate. In line with the findings in Table 1.3 Visser et al. [33] proposed to
correlate the reaction mechanism to the concentration of whey proteins for temperatures
lower than 100◦C. Even though they found traces of casein in the deposit layer it was
assumed that the casein micelles are entrained by whey proteins rather than participating
in the reaction (Figure 1.5b). It is known that non-soluble minerals play a role in deposit
layer formation but it is not clear what this role exactly is and which layer is formed first,
proteins or minerals [33, 37]. The reaction model proposed by de Jong et al. [10] follows
the conclusions of Visser et al. [33] and proposes to link the model to the unfolded whey
protein as this intermediate state contains the reactive thiol groups that may cause the
deposit formation. Another reaction mechanism was proposed by Georgadis et al. [35]
in which they developed a model including a hydrodynamic boundary layer in which the
deposit layer is formed. Interestingly no motivation was given whether the aggregates are
responsible for the formation of the deposit layer.
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(a) Mechanism proposed by [35]

(b) Complex mechanism with the interplay of
whey/casein and salt particles [33].

Figure 1.5: Mechanisms of fouling

As the experimental data that was used to derive these models was obtained for temper-
ature ranges between 65◦C<T< 95◦C it can be that these models are not valid at higher
temperatures. Based on the finding of Burton et al. [34] it is likely that the reaction
mechanism and related model is casein dominated for UHT temperature ranges. It is
therefore important to have data on the protein composition to establish the right model
and to validate the kinetic model.

1.3 Thesis outline

The outline of this thesis is as follow:
• Chapter 2: This chapter presents the experimental set-up and the generation of

regime maps to describe the process mechanisms. A machine learning algorithms
were employed to identify the key-influencing parameters, optimze the regime maps
and develop a predictive model.

• Chapter 3: In this chapter a one-dimensional transient model is presented to pre-
dict the performance of a DSI, the temperature, velocity and pressure gradients.
The benefits of this modelling approach is the low computational costs whilst being
accurate.

• Chapter 4: Whilst the 1D model demonstrated good agreement with experimental
data it also demonstrated that it works best for homogeneous flow conditions. In
this chapter a CFD model is presented that is suitable to assess the flow homogeneity
and predict temperature gradients. Such a model is beneficial to support equipment
design.

9
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• Chapter 5: In this chapter a model is presented to predict the performance of a
pilot-plant line that contains tubular heat-exchangers and a DSI. This model predicts
the performance of the equipment, the temperature gradient and pressure profiles.
This information is crucial to predict the denaturation of proteins and fouling in the
DSI.
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Chapter2
An objective classification of condensation
regimes in Direct Contact Condensation

Abstract

Intensified heat treatment, using Direct Contact Condensation (DCC), is applied in the
production of dairy products to ensure a high level of food safety. The key challenge with
a DCC are the protein reactions and fouling that limit operational efficiency and sustain-
ability. Using a condensation regime map can improve operational decision making. Pilot
plant scale experiments were conducted for a wide range of steam mass fluxes and inlet
temperatures at high and low channel pressures. High-Speed images were recorded and
analysed to obtain penetration lengths and plume area. The experimental data and image
analysis supplemented with temperature and pressure measurement, were processed with
Machine Learning (ML) models to develop a data driven model to predict the regime
maps. The Linear Discriminant Analysis (LDA) was found to be the most suitable model.
From the machine learning models it was also found that the best parameters to make a
condensation regime map are the steam pressure, channel pressure, subcooling tempera-
ture, water Prandtl number and the relative velocity ratio between gas and liquid. The
condensation outcomes were presented with various two-dimensional regime maps. New
regime maps are proposed using the Prandtl number and velocity ratio as dimensionless
parameters.
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List of symbols

Symbol Description Units
cp Specific heat capacity J/kgK
µ Dynamic viscosity Pas
k Thermal conductivity W/mK
vi Velocity of phase "i" m/s

Tsat Saturation temperature K
Ti Temperature of phase "i" K
hi Enthalpy of phase "i" J/kg
d32 Gas bubble diameter m
aif Interface area bubble-liquid m−1

mg−→l Condensation volumetric rate kg/m3s
αi Heat transfer coefficient phase "i" W/m2K
εg Volume fraction of gas −

This chapter is based on S.S. Safavi Nic, T.H.P. van Veen, K.A. Buist, R.E.M. Verdurmen,
and J.A.M. Kuipers. An objective classification of condensation regimes in Direct Contact
Condensation. AIChE Journal (Apr. 2023)[38].
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It is therefore important that the flow patterns in the injector are such that the residence
times are as short as possible and that hot condensate mixes rapidly with the cold milk.
Mapping the behavior of steam condensation into a condensation regime map can improve
operational decision making.

Table 2.1: Description of the distinguished condensation regimes [39–41].
Chugging (C) Steam-water interface fluctuates around the nozzle exit and

moves in and out of the nozzle
Bubbling (B) Bubble formation around the nozzle exit, cyclic growth, de-

tachment and collapse
Jetting (J) Steam velocity was (super)sonic and the steam-water interface

was stable and smooth

A regime map provides an overview of the type of condensation behaviour that can be
observed under certain operational conditions. The most relevant operational regimes
can be found in Table 3.2. In addition to the mentioned regimes some researchers also
identified several. However, for many of these subcategories it is not clear at what exact
conditions these experiments were performed [42, 43]. This was also reported by Heinze
et al[44] when using the experimental data from Xu et al [45] to validate the model in
their work. An overview of most relevant research is provided in Table 5.1. Parameters
such as steam pressure and channel pressure are not reported precisely, usually only as
an indicative range or not reported [39, 40, 46]. These parameters are important because
they influence the physical properties of steam and the saturation temperature of water.
Clerx et al [47] reported the exact experimental conditions per run however the results
were not used to generate reliable regime maps.

Table 2.2: Overview of various research on steam injection into stagnant pool and flowing
water bodies. Experimental data is listed however not all values are reported
(NR).

Injector type Orientation Water temperature Steam mass flux Channel pressure Steam pressure Author
[◦C] [kgm−2s−1] [bar] [bar]

Stagnant pool Vertical 60-90 0-50 atm NR [40, 46]
Co-Current Vertical 10-90 0-1500 NR NR [39]
Cross flow Vertical 25-74 40-135 2.44-3.16 2.2-3.5 [47]
Co-current Vertical 20-70 110-500 1.5 2-8 [42, 45]
Co-current Horizontal 20-60 200-650 1-5 1-5 [43]
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The goal of the present work is to investigate the critical parameters that determine the
boundaries of condensation regimes of direct steam injection in industrial applications.
A data driven model was used to predict the regime boundaries to elucidate the role of
critical parameters. This study is divided into three parts; (1) producing a condensation
regime map using a pilot-plant scale setup with industrial conditions; (2) determining
which parameters are most influential in controlling the condensation regime and finally
(3) developing a data driven model to predict the regime map.
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2.2 Materials and methods

2.2.1 Experimental set-up

The experimental setup is schematically represented in Figure 2.1. As can be seen from
the diagram, the setup has a fully closed water cycle and a steam generation input. Water
is stored in a 339 L cylindrical stainless steel tank (1) and is fed to the rectangular
injection channel using a Optidrive E3 IP66/NEMA 4X pump with a capacity of 275-890
L/h. Steam is generated (3) using a CERTUSS E6-72M electrical steam generator with a
capacity of 0-48 kg/h at 9 bar. A pressure reduce valve (4) is used to control the pressure
and mass flow rate towards the injector. The latter is measured using a Proline Promass
80F Coriolis mass flow sensor. An ADCA FLT16 float and thermostatic steam trap (5)
is introduced before injection into the channel to remove remaining condensate and inert
gases to ensure a steady flow of saturated steam into the channel. The channel pressure
is regulated using a back pressure control valve (6). The injector channel is illuminated
by two LED lights (10) and are placed on both sides of the camera. The condensation
phenomenon is recorded using a FASTCAM SA-Z 2100K-M-128GB high-speed camera at
20kHz(11) with a Sigma 105mm F/2.8 EX DG OS HSM Macro lens. The heated water is
stored in a second 339 L stainless steel water buffer tank (7) before it is taken on by the
heat-exchanger (9) to cool and returned to the feed tank. An overview of the experimental
conditions is reported in Table 2.3.
The steam injector is a rectangular channel with two injection points, as shown schemat-
ically in figure 2.2. The first segment of the injector is 415 mm long and is required for
flow stabilization. The length was taken as 40 times the hydraulic diameter. The injection
points are placed after the flow development segment and both have a diameter of 4 mm.
The steam can be directed either through the top, bottom or both injectors using valves.
The mixing segment is optically accessible using Sapphire glass, placed on the front and
backside of the injector. The injector has in total 8 sensor slots placed on the top side (A)
and 8 on the bottom (B). The first sensor after the injection point is placed 6.5 mm after
the injection point. The distance to the other sensor slots is 19 mm with exception of a
27 mm distance between sensor slot 6, 7 & 8.
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Figure 2.1: Schematic representation of the experimental rig. (1) Water tank, (2) Pump,
(3) Steam generator, (4) Pressure reduce valve, (5) Condensate drain, (6) Back
pressure valve, (7) Hot water tank, (8) Pump, (9) Plate heat exchanger, (10)
LED front lighting (11) High speed camera, (12) data logger, (13) Computer

.

The sensor slots are suitable to place temperature and pressure sensors. Temperature is
measured with type 12 mineral insultated T-type thermocouples. Pressure is measured
with MAKS-6(X) ultraminiature high temperature pressure transducers from Kulite. All
sensor data is collected using a NI cDAQ-9185 data acquisition system (12) (with modules
NI-9220, NI 9401 and NI 9213), which is transferred to a computer (13) and logged via
LabVIEW-software. The recordings of the high-speed camera are processed via Photron
FASTCAM Viewer 4.

20



2.2 Materials and methods

Figure 2.2: Schematic representation of the steam injector. L=615 mm, H=20 mm,W=7
mm. The channel has a 100 mm long sapphire glass window placed front and
back for optical access of the injector

.

Table 2.3: Overview of the experimental conditions.
Variable Value Accuracy Unit
Liquid inlet temperature 15-85 0.4% °C
Channel pressure 1.2-4.2 1.1% bar
Steam pressure 1.2-8.2 0.5% bar
Steam mass flux 10-1100 0.8% kgm−2s−1

Subcooling 130-280 0.4% °C
Water Reynolds number 7300-12500 (-)

2.2.2 Image analysis

Objective classification methods for condensation regime determination are necessary to
study the subtle transitions between regimes that cannot be determined visually and
are subjected to operator biases. To this end, automated processing of the recording is
preferred to analyze and compute relevant condensation characteristics such as the steam
plume length. In this work, the Image Processing Toolbox in MATLAB R2020b is used to
analyze the images and determine properties such as the plume length, area and oscillation
characteristics.
The MATLAB scripts loads the original image (figure 2.3a) and proceeds, in the case of
jetting and bubbling with binarization (figure 2.3b) of this image, depending on a manually
fixed threshold value that is applied to the complete image. The use of a manually fixed
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threshold can be sensitive to a bias affecting the objective regime classification. For this
reason in subsubsection 2.2.2 the sensitivity of this parameter is assessed. As a result the
image is processed such that only the steam bodies of interest remain. This processing
involves two steps; filling and clearing. First, holes in the image are filled. After the
filling step, small objects that are not of interest are removed resulting in Figure 2.3c.
When these steps have been performed, the resulting binary image shows only the steam
bodies of interest. These steam bodies are then labeled to allow for individual analysis.
Individually connected areas where a steam body is present are now labeled with ascending
integers such that the first body is labeled with 1’s in the matrix. Finally the properties
of these regions, suchs as area, centroid and extrema of the steam body are determined.
An example can be found in Figure 2.3d.

(a) Original image (b) Binarized image

(c) Cleaned image (d) Analyzed image

Figure 2.3: Steps of image pre-processing for bubbling and jetting regimes.

For the chugging regime, some additional processing steps are required before the bina-
rization of the image. Due to weak internal reflection of light (see Figure 2.4a), some
steam pockets appear darker than the background. Therefore, these steam pockets are
rejected in the binarization due to the global thresholding. The visibility of steam bodies
can be improved by using filters and contrasting to enhance edges of the pockets, and sub-
sequently filling these pockets. Accordingly, a new step is added to the existing procedure:
texture analysis, which is the characterization of various regions by texture in an image.
This is done by quantifying texture qualities (e.g. rough/smooth) as a function of spatial
variation in pixel intensities [48]. The images are processed using a local standard devia-
tion filtering which returns an image that has equal dimensions as its original, but each
pixel entry is now the result of the standard deviation of a defined neighborhood, 3-by-3 in
this work. On edges in the original image, the local standard deviation is high due to high
local variation in pixel intensity. An example is provided by Figure 2.4b. After rescaling
and adjusting the image, the pixels on the edges have now a high intensity, allowing the
edge to pass the binarization process as shown by Figure 2.4c. The hole filling function
is especially helpful in the chugging regime where the absolute pixel intensity of the re-
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gions cells are relatively low, but the variation between the bubble and the background is
relatively high.

(a) Original image (b) Texture segmented image

(c) Adjusted image (d) Binarized image

(e) Cleaned image (f) Analyzed image

Figure 2.4: Steps of image pre-processing for chugging regime.

Thresholding Verification

In order to apply image binarization it is necessary to determine a threshold value, as
described in subsection 2.2.2. This process is susceptible to bias, as employing a low
threshold results in loosened binarization where the steam plume characteristics could be
artificially increased. For each experiment the appropriate threshold is selected enabling
the correct determination of the plume characteristics.
Figure 2.5 shows a sensitivity plot for the penetration length for various thresholds. Ap-
plying a low value (i.e. a wide threshold) captures more grey pixels and increases the
binarization area. A high value (i.e. a narrow threshold) results in a lower penetration
length. The penetration length decreases linearly by increasing the threshold. After a
specific threshold, all pixels are converted to black and no steam plume can be detected,
which is indicated by the abrupt ending of the graph. The standard deviation however
flattens out and reaches a minimum. This implies that the overall variance of the measure-
ment is minimized at the minimum of the graph. At this threshold value, the binarization
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Figure 2.5: Sensitivity of the penetration length and standard deviation for a range of
thresholds levels from wide to narrow.

is expected to resemble the original image closest and should therefore be selected. This
method is employed for each digital image analysis to ensure consistency among the ex-
periments and obtain the best possible accuracy in determining the penetration length.

2.3 Machine learning models

The goal of this work is to investigate the critical parameters that determine the bound-
aries of the condensation regimes. In our study 299 experiments were conducted with
79 different variables being logged whereas 2000 frames were recorded and saved per ex-
periment. This data can be used to find correlations between various system parameters
and the condensation process. Machine learning (ML) is implemented to facilitate data
processing and utilize algorithms to build a model that can classify samples based on the
input data.
The machine learning methods used in this work focus on statistical classification and
used to assign a specific class (regime) to experimental samples using existing data on
explanatory variables termed features. In this work, three classification models will be
implemented and compared; the k-NN algorithm preceded by principal component analysis
(PCA), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA).
The general implementation structure is visualized in Figure 2.6. The first step in this ap-
proach is data pre-processing (1). In this step a feature selection method is applied to iden-
tify the situation where two or more parameters are highly linearly related, (multi)collinearity.
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Additionally, in this step a separation is made in which data is divided into a training and
testing set using a 80/20 ratio.
The next step is to reduce the dimensionality (2) of the data set. There are several benefits
of this step. Firstly, dimensionality reduction vastly reduces computation time because
computation in high-dimensional data is costly [49]. Secondly it can remove random noise
from the data and finally it removes unwanted degrees of freedom and thereby reduces
the impact of properties that do not hold much variance and therefore reduce predictive
power of the algorithm [50, 51]. Feature selection as dimension reduction is applied on
the data set for all models.
Additionally, prior to application of the k-NN model, principal component analysis (PCA)
is implemented, which is one of the most commonly applied dimension reduction methods
in general and for k-NN specifically [52, 53]. PCA is an unsupervised model that applies a
statistical procedure that computes linearly uncorrelated variables (principal components)
as new features to replace the existing features. The main idea of principal component
analysis is to simplify a high-dimensional data set by computing and selecting the two
principal components as new variables that retain maximum information from the dimen-
sion reduction. The principal components are a linear combination of all features in the
data set with weight coefficients termed loadings, and are all orthogonal to each other.
The principal components have directions that represent the spread of the data (variance)
and have magnitudes that represent how much variance is captured by the principal com-
ponent. Ideally, all variance is retained by the first two principal components to ensure
no information is lost in the dimension reduction to two variables. The discriminants in
LDA and QDA are similar in form, but while PCA focuses the principal components to
capture maximum variance in the data set, LDA and QDA compute the discriminants to
have maximum separability between classes.
After the dimension reduction is applied the ML models can be trained (3). The model
performance is analyzed for all three classification models using scores for precision, recall
and f1 for each class together with the amount of samples in the testing set of this class.
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Figure 2.6: Visual flow diagram of the machine learning implementation procedure.

2.4 Results and discussion

2.4.1 Machine learning results

Before the models are used, feature selection was performed by inspection of Pearson and
Spearman correlation matrices to reduce multicollinearity and improve predictive power.
From the 79 logged variables 26 features were chosen to remain in the data set, which are
shown in Table 7.1. In the models, the principal components (PC) and linear discriminants
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(LD) are comprised of a linear combination of all these features.
After the feature selection the machine learning models are able to identify the key param-
eters for determining the condensation regimes. The main features are listed in Table 2.4.
Three classification models were implemented and their performance is evaluated in this
section. The parameters for k-NN and QDA were not further investigated for visualizing
regime maps due to the poor performance of these models as will be explained in the
following section. In addition a Buckingham Pi analysis was performed and the outcome
of this methodology is also listed in Table 2.4.

Table 2.4: Overview of the identified defining features per origin. These features have
received the largest coefficient from the ML models and therefore identified as
most important.

Method Identified features
k-NN with PCA σout, PG,in, Tout

LDA µout, cp,out, kout, PG,in, ∆Tsubcooling

QDA -
Buckingham-pi vG

vL

The first step in evaluating the performance of the k-NN model is choosing the right
method and the optimal value for k. There are two main methods applied in this work
for classifying a new sample; by majority of neighbors or by also taking their distance
into account. Generally, large k’s are less affected by noise and result in smoother class
boundaries [54]. Figure 2.7 shows the total accuracy of the model based on the method
used and the amount of neighbors selected. As can be observed, the unweighted method
yields better accuracy, with an optimum at k = 10. Generally, the accuracy is largely
unaffected by selecting a different k, as the variation in k only yields an improvement of a
few percent for each method. The general trend and variations are very common and in
line with existing works in literature [54, 55].

After optimizing the model, the k-NN algorithm preceded by PCA is still a mediocre
model for predicting the regimes. Table 2.5 shows the confusion matrix for the model
which indicates correct predictions for each class, leading to the accuracy report shown in
Table 2.6. In this table the macro average per score is the regular average of each score.
The weighted average takes into account the support of each class and averages the value
attributed to each score for each class accordingly.

As can be seen in the diagonal of the confusion matrix, only 40 out of 50 testing samples
were correctly predicted, resulting in an accuracy of 80.0%. Overall, the accuracy of
predicting the bubbling regime is good, as 28 of 29 samples are correctly classified as
shown with the recall score of 0.97.
While the bubbling regime can be predicted well with this model, the chugging and jetting
samples, however, are often mislabeled, mostly as bubbling. One explanation for this
specific mislabeling could be the slightly unbalanced training set, as half of the samples
belong to the bubbling regime. This may lead to a bias towards the bubbling regime. For
the three classification models, this bias is especially problematic for the k-NN model, as it
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Figure 2.7: Accuracy of the k-NN model by method and amount of neighbors.

classifies a new sample based on the majority of votes. When one class is represented more
than the others, it will become the majority more quickly. Introducing a more balanced
data set could improve the performance of the k-NN model.
An explanation for the general mediocre performance of this model is the relatively low
amount of variance captured by the principal components. PC1 accounts for 55.5% for
the total variance, while PC2 captures 17.5% of variance. This means that 27% of the
information from the variables is lost in the dimension reduction step of PCA.

Table 2.5: Confusion matrix for the k-NN model.
Predicted

Bubbling Chugging Jetting
Bubbling 28 0 1

Actual Chugging 6 7 0
Jetting 3 0 5
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Table 2.6: Accuracy metrics scores for the k-NN model.
Precision Recall F1-score Support

Bubbling 0.76 0.97 0.85 29
Chugging 1.00 0.54 0.70 13
Jetting 0.83 0.62 0.71 8
Accuracy 0.80 50
Macro average 0.86 0.71 0.75 50
Weighted average 0.83 0.80 0.79 50

Linear Discriminant Analysis

Linear discriminant analysis performs very well as a classification model for the data set.
The confusion matrix and accuracy scores can be observed in Table 2.7 and Table 2.8 re-
spectively. As can be observed in the confusion matrix, only two samples are misclassified,
leading to an accuracy of 96%. The jetting regime scores perfectly, as can also be seen
in Table 2.8. The lowest score in this table is the recall of the chugging regime with 0.85,
which is still a relatively good score. This implies that linear discriminant analysis is very
well suited as a classification model. An explanation for the improved performance com-
pared to the k-NN model can be found in the dimensionality reduction step. While PCA
aims to achieve maximum variance between its axes, LDA tries to maximize separation
between the classes. The explained variance of the linear discriminants can also be com-
pared to the principal components. LD1 contains approximately 73.1% of total variance
and LD2 captures 26.9%, compared to 55.5% and 17.5% of PC1 and PC2 respectively.
Extremely little information is lost in the dimension reduction step of LDA compared to
PCA, which contributes to the high accuracy of the LDA model. A visual of the high
accuracy of the LDA model can be observed in Figure 2.8.

Table 2.7: Confusion matrix for the LDA model.
Predicted

Bubbling Chugging Jetting
Bubbling 29 0 0

Actual Chugging 2 11 0
Jetting 0 0 8
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Table 2.8: Accuracy metrics scores for the LDA model.
Precision Recall F1-score Support

Bubbling 0.94 1.00 0.97 29
Chugging 1.00 0.85 0.92 13
Jetting 1.00 1.00 1.00 8
Accuracy 0.96 50
Macro average 0.98 0.95 0.96 50
Weighted average 0.96 0.96 0.96 50
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Figure 2.8: Linear discriminant analysis decision boundaries.

Quadratic Discriminant Analysis

The last model, quadratic discriminant analysis, was applied to the data set and yields
average results. Table 2.9 and Table 2.10 respectively show the confusion matrix and the
accuracy scores for the QDA model. As shown in the diagonal of the confusion matrix,
the model is fairly good in predicting the classes of the testing set with 86% accuracy.
The precision for predicting the bubbling regime is the lowest of the three with 82% (28
out of 34 correct predictions). This result is similar to LDA, but quite different from the
relatively high precision score for bubbling in the k-NN model, which was reasonably good
at predicting the bubbling regime compared to the others. Another surprising detail can
be found in the recall of the chugging regime with a score of 0.69. This means that the
model does not perform well in predicting the chugging regime.
QDA performs worse than LDA, which can be explained in several ways. One of the
main differences between LDA and QDA is the way they treat covariance matrices. LDA
assumes that all classes share a common covariance matrix due to the assumption of a
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Table 2.9: Confusion matrix for the QDA model.
Predicted

Bubbling Chugging Jetting
Bubbling 28 1 0

Actual Chugging 4 9 0
Jetting 2 0 6

Table 2.10: Accuracy metrics scores for the QDA model.
Precision Recall F1-score Support

Bubbling 0.82 0.97 0.89 29
Chugging 0.90 0.69 0.78 13
Jetting 1.00 0.75 0.86 8
Accuracy 0.86 50
Macro average 0.91 0.80 0.84 50
Weighted average 0.87 0.86 0.86 50

multivariate Gaussian distribution [56]. QDA however assumes that each class has its own
covariance matrix. This difference between the methods leads to a bias-variance trade-off.
For QDA, a separate covariance matrix is calculated for every class, tripling the amount
of parameter estimations in this work. The LDA model becomes linear in x (amount of
measurements) by assuming every class shares the same covariance matrix. Therefore,
LDA becomes a less flexible classifier and thus has considerably lower variance, which can
lead to improved prediction performance [57]. The trade-off is that if the assumption of
a shared covariance matrix is off, the LDA model may suffer from high bias as it is less
flexible. LDA is typically better than QDA with small data sets and so reducing variance
is critical [58].

2.4.2 Regime maps

The key outputs of the machine learning models, next to the predictive power, are the key
process variables that influence these regimes. The added value of this approach is that
it allows us to redefine the regime maps using objectively chosen process variables. The
variables of interest are the steam pressure (Ps), subcooling (Tsc = Ts − Tw), the water
Prandtl number (Equation 3.12) at the exit of the injector and the dimensionless velocity
ratio between gas and liquid (Equation 2.2).

Pr =
cpµ

k
= momentum diffusivity

thermal diffusivity
(2.1)

Πv = vG

vL
(2.2)
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In this research it has been chosen to work as much as possible with dimensionless numbers
to depict the regime maps as it makes it less dependent on our specific experimental set-
up and operating conditions. The proposed regime map is a combination of the Prandtl
number and the velocity ratio of gas and liquid. The Prandtl number was identified
by the LDA analysis as a critical parameter for defining regimes. Figure 2.9 shows the
regime map for two different back pressure settings and shows good separation between
the regimes. In Figure 2.9a all three regimes can be discovered. For higher water inlet
temperatures (and as a consequence, lower Prandtl numbers) the regime switched again
from jetting to bubbling. When the back pressure was increased the jetting regime was
no longer observed as shown in Figure 2.9b. At higher back pressure, the steam pressure
also increased. There are then several combined physical effects that occur. Firstly at
elevated channel pressure, the saturation temperature is increased. At the same time a
higher steam pressure is required, resulting in a higher degree of subcooling. These effects,
combined in Equation 2.3, increase the rate of condensation and as a consequence the
steam cavity penetrates less into the channel. Finally, due to the elevated pressure the
gas bubble size distribution decreases, resulting in a higher interfacial area as shown in
Equation 2.4.

mg−→l = aif
αl (Tsat − Tl) + αg (Tsat − Tg)

hg,if − hl,if
(2.3)

aif = 6εd

d32
(2.4)

The influence of the channel pressure is also found in the interphase heat transfer coefficient(αl).
This quantity can be estimated using a Nusselt correlation as given by Equations 3.10 and
3.11. The impact of the channel pressure is found in the Reynolds number (Equation 4.10)
of the dispersed gas phase. The Reynolds number is not only influenced by the gas bubble
size (d32) but also by the relative vapour velocity which is influenced by the density of
steam.

Nul = αl · db

k
(2.5)

Nul = 2 + 0.4Re1/2
g Pr1/3

l (2.6)

Reg =
ρl |vg − vl| d32

µl
(2.7)

The main drawback of working with the Prandtl number and dimensionless velocity is
that these parameters are less intuitive for the use of regime maps. Another set of param-
eters identified by the machine learning are the steam pressure and degree of subcooling,
Figure 2.10. The benefit of this regime map is that the variables used are intuitive for
operational decision making as well as that it shows clear distinction between regimes.
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(a) channel pressure pc = 1.25bar (b) pc = 4.25bar

Figure 2.9: Regime map based on the Prandtl number and dimensionless velocity. Re =
12500 at different back pressures.

(a) Open back pressure valve (b) (Partially) closed back pressure valve

Figure 2.10: Regime map based on the steam pressure and degree of subcooling. Re =
12500 at different back pressures.
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2.4.3 Impact of elevated liquid temperature

As discussed in the previous section, when the Prandtl number is decreased the jetting
regime is no longer observed. This is a direct consequence of increasing the liquid inlet
temperature. When the liquid temperature is increased, the driving force for condensation
decreases. This allows the steam cavity to penetrate deeper into the channel and occupy
a larger area, as shown in Figure 2.11. Both the penetration length (ls) and the area
(As) are normalized by dividing the values by the injector diameter (dN ) and its area
respectively (AN ). As the steam cavity penetrates deeper and the surface area increases,
more condensation can occur, in turn reducing the steam cavity size. This effect yields
the bubbling regime instead of the jetting regime and is consistent with observations in
literature [59].
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Figure 2.11: Penetration length and area as a function of liquid inlet temperature at a
steam mass flux of 315kgm−2s−1, channel pressure = 1.7 bar, steam pressure
= 4.2 bar, Re = 12500.

2.4.4 Impact of second injection point

The images in Figure 2.12 show dual injection experiments for different steam pressures at
an inlet temperature of 17◦C. For these experiments, the same classification can be applied
as established for single point injection. With increasing liquid inlet temperature, this
classification leads to problems at high steam mass fluxes. Figure 2.13 shows experiments
for the same steam pressures but a liquid inlet temperature of 56◦C. The chugging and
the bubbling regime do not look very different, but for the jetting regime, the steam
cavities have merged into one large steam plume. Once the steam plumes combine, no
more jetting can be observed. Although the condensation potential has decreased due to
the increased liquid inlet temperature, the area of the steam plumes also increases. The
increased size of the steam plume gives more available area for cooling. As a result of
this, the condensation potential increases again. This variation in condensation potential
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results in an bubbling-like behavior of the steam plume.
Consequently, the bubble and jetting distinction can not be used anymore. Therefore, the
same classification as in literature is assigned for this regime; Interfacial Oscillation. When
the liquid inlet temperature increases to about 85◦C, the temperature inside the channel
reaches above 110◦C. At this point, the condensation rate has decreased to such an extent
that at higher steam mass fluxes, complete condensation within the measurement region
is no longer possible. This regime is classified as partly non-condensing. Figure 2.14 shows
images for the experiments performed under the same steam pressures as previous exper-
iments. However, now with a liquid inlet temperature of 85◦C. These images illustrate
that steam cavities overlap even at low steam pressure. Moreover, for the highest steam
pressures, almost the whole measurement area is filled with steam, indicating that almost
no condensation occurs.

(a) Chugging (b) Bubbling (c) Jetting

Figure 2.12: Dual steam injection experiments at a liquid inlet temperature of 17◦C. Water
flows from left to right.

(a) Chugging (b) Bubbling (c) Interfacial Oscillation

Figure 2.13: Dual steam injection experiments at a liquid inlet temperature of 56◦C.

(a) Interfacial Oscillation (b) Interfacial Oscillation (c) Partial non-condensing

Figure 2.14: Dual steam injection experiments at a liquid inlet temperature of 85◦C.

Figure 2.15 shows the regime map for two different back pressure settings and displays a
reasonable separation between the regimes. For the experiments performed at low channel
pressure it was found that at the lowest Prandtl values and a high gas velocity that the
system switched from interfacial oscillation to non-condensing. When the back pressure
was increased to 4.25 bar only the chugging and bubbling regime was observable. It can
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be concluded that, even though there is a strong relationship between the two parameters,
that it is a challenge to differentiate between various regimes.
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Figure 2.15: Regime map for dual steam injection, showing the Prandtl number for the
water outlet versus the ratio of gas and liquid velocity at Re=12500. Left for
a low channel pressure (1.25 bar) and on the right for a high channel pressure
(4.25 bar).

The degree of subcooling (TS −TW ) and steam pressure have also been identified (subsec-
tion 2.4.2) as important process parameters for regime classification. The benefit of these
parameters is that they are easily controlled and more intuitive than the Prandtl number
and velocity ratio. The results are shown in Figure 2.16, it can be observed that the dif-
ferentiation between regimes is more distinct in comparison with the regime classification
shown in Figure 2.15, especially for the transition from jetting to interfacial oscillation.
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Figure 2.16: Regime map showing the degree of subcooling versus the steam pressure
Re=12500 for dual steam injection. Left for low channel pressure and right
for a high channel pressure.
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2.5 Conclusion

The objective of this chapter was to experimentally investigate which parameters play a
role in the direct steam condensation process. Pilot plant scale experiments were con-
ducted for a wide range of steam mass fluxes and inlet temperatures at high and low
channel pressures. The results were processed using an image analysis protocol to obtain
relevant steam cavity properties and further processed with machine learning models to
provide objective classification and regime prediction possibilities.
The experimental campaign yielded 299 experiments with 79 different logged variables
and 2000 frames recorded per experiment that were used to generate the regime maps.
This large amount of data has not been observed in previous research. It was also found
that it is important to properly note, besides steam pressure, the channel pressure as it
has a significant effect on the condensation regime boundaries. The inlet temperature
effect on condensation regime is small, but it does have a large effect on the steam cavity
penetration length.
Regarding machine learning, the k-NN and QDA classification models perform reasonably
well. Moreover, it can be concluded that LDA is the superior classification model with
96% accuracy, being able to both classify regimes in an objective fashion and predict
the regime for new samples. A parameter study was performed via the inspection of
the linear discriminants, which led to the insight that the outlet Prandtl number is a
good predictor for condensation regimes. Besides the Prandtl number, the steam pressure,
channel pressure, subcooling, velocity ratio are better variables for regime maps than steam
mass flux and inlet temperature respectively. It is recommended to use steam pressure
and subcooling as key variables for regime maps and to report the channel pressure.
In addition it was demonstrated that this method is scalable to a dual injection setup lead-
ing to the introduction of new regimes. The second jet influences the temperature gradients
to such an extent that the two jets show oscillating behaviour, which has been classified
as "Interfacial oscillation". When the degree of subcooling decreased the steam cavity
occupies most of the visualization area classified as a partial non-condensing regime. Con-
sidering that the preferred condensation regime is the jetting regime it can be concluded
that at low channel pressure the operational window for achieving jetting is very small.
It is recommended to work with a large degree of subcooling at higher steam pressure
when operating at a low channel pressure in order to avoid the partial non-condensation
region. When the channel pressure was increased to 4 bar, the only regimes observed are
the chugging and bubbling regime. This is in line with our previous observations. Under
such conditions it is recommended to maintain a 1 bar pressure difference between the
steam pressure and channel pressure to avoid the chugging regime.
For future work it is recommended to firstly increase the liquid viscosity to match the
profile of high protein dairy products. It can be expected that the viscosity of the liquid
influences the regime map via the Prandtl number. It is important to map the regimes
using representative viscosity profiles which will be subject to further research.
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Data package

The full set of experimental data as well as the scripts to analyse the data are avail-
able as an integral data package. The data package can be accessed via this DOI:
https://doi.org/10.4121/21541776.v1
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Chapter3
A transient mechanistic two-fluid model for
Direct Contact Condensation

Abstract

Intensified heat treatment, using Direct Contact Condensation (DCC), is applied in the
production of dairy products to ensure a high level of food safety. The key challenge with
DCC are the protein reactions and fouling that limit operational efficiency and sustain-
ability. The use of validated, transient models to predict temperature, phase fraction and
velocity gradients is essential and can improve the operation of DCC. Pilot plant scale
experiments were performed for a wide range of steam mass fluxes, inlet water tempera-
tures, water Reynolds number and channel pressures to validate a transient 1D two-fluid
model. The model was tested against steady-state experimental data and showed good
agreement. In addition the model was tested against transient data in which either the
water flow rate was step wise decreased or the pressure was adjusted throughout the ex-
periment. In general the model followed the experimental trend well provided that the
flow inside the channel is homogeneous.
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List of symbols

Symbol Description Units
ε Volume fraction −
ρ Density kg/m3

v Velocity m/s
aif Specific interfacial area 1/m

ϕ”
MT Condensation mass flux kg/m2 · s
q Heat flux W/m2

h Enthalpy J/kg
ac Heat transfer coefficient continuous phase W/m2 ·K

Tsat Saturation temperature K
T Temperature K

ϕ”
V →L Heat flux vapor to liquid W/m2

ϕ”′

loss Heat loss W/m3

Nuc Nusselt continuous phase −
db Bubble diameter m
k Thermal conductivity W/m ·K

Prc Prandtl continuous phase −
µc viscosity Pa·s

F D
c→d Drag force kg ·m/s2

CD Drag Coefficient −
Eo Eötvös number −

F W
l→w Wall friction force kg ·m/s2

dh Hydraulic diameter m
Cw Wall friction coefficient −
Re Reynolds number −

F V M
c→d Virtual mass force kg ·m/s2

CV M Virtual mass coefficient −

This chapter is based on S.S. Safavi Nic, T.E. Kuipers, K.B. Buist, R.E.M. Verdurmen, and
J.A.M. Kuipers. A transient mechanistic two-fluid model for Direct Contact Condensation.
Chemical Engineering Science (2023) [60].
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3.1 Introduction

The previous chapters an experimental study was reported to generate regime maps utiliz-
ing a machine learning approach to predict the prevailing operating regime, ranging from
chugging, bubbling and jetting. However, these regime maps do not predict a priori what
the performance and temperature gradients of a DCC process will be.
To predict temperature gradients while using limited experimental data the best option
would either be a Computational Fluid Dynamics (CFD) approach or reduced dimensional-
ity models, such as 1D models. An overview of several reported studies on DCC modelling
are given in Table 4.1. The benefit of the use of 1D phenomenological models is their low
computational costs allowing the model to simulate time scales up to hours. However
these models require strong assumptions which limits their applicability to specific flow
regimes and operating conditions. CFD models provide the added value that the impact
of geometry of the DCC design and nozzle position on the condensation rate and mixing
behaviour can be investigated. CFD models are computationally expensive, limiting the
time scales that can be covered to a few seconds. These time scales are enough to gather
statistics on the hydrodynamic behavior, but unfortunately are not enough to study the
formation of protein deposit layers as the time scales involved can approach to several
hours [61]. A 1-Dimensional model that is less computationally expensive would be able
to address phenomena prevailing at these time scales.
The available 1D models are typically steady-state, covering macroscopic features of the
multiphase system. Zhang et al. [62] and Ma et al. [63] both employed a 1D two-fluid
model for a steady state situation. In their model the complexity of the steam injector was
treated with a compartment approach. Whilst this approach is sufficient for calculating
the exhaust temperature and an overal temperature profile it is not suitable to obtain
the temperature gradient that is required. Heinze et al. [44] developed a 1D model and
numerically solved the governing equations to obtain detailed information of the temper-
ature profile in DCC. Their steady-state model takes into account the dominant physical
processes of condensation at the interface of the two-phase jet, droplet condensation and
flowing water. Although their model accounts for all the important phenomena, unfortu-
nately detailed eperimental validation was not reported.

Table 3.1: Overview of key models for DCC
Authors Method Approach Deliverable
Zhang et al. [62] 1D Compartmentalized Predicting pressure drop and tem-

perature change over each compart-
ment

Ma et al. [63] 1D Compartmentalized Predicting critical pressure at the
nozzle exit

Heinze et al. [44] 1D Three fluid model Predicting steam plume length
Gulawani et al. [64] CFD RANS Validating predicted heat transfer

coefficient values
Pacenko et al. [65] CFD DIM-LES Development of an improved CFD

model for industrial applications
Dahikar et al. [66] CFD LES and RANS Evaluation of predicted velocity

against experimentally obtained ve-
locity
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The goal of this research is to present a 1D transient two-fluid model to predict the
gradients inside a steam injector including the prediction of the exhaust temperature.
Our model accounts for an interface at the jet as well as bubble condensation and is
validated with experimental data. This study is therefore divided into three parts: (1)
description of the experiments (2) model description and (3) model validation using both
a steady state and transient 1D model.
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3.2 Model description

Our model takes a classical two-fluid approach in which the vapour (V) and liquid (L)
phase are modelled separately. The experimental set-up described in chapter 2 can be
operated at a liquid Reynolds number in the range of 5646 < ReL < 15000. A schematic
representation can be found in Figure 3.1. The use of saturated steam allows for the
assumption that the condensation mode is heat transfer limited rather than mass transfer
limited. The steam properties are derived from the steam thermodynamic table [67].
Steam is injected into the flowing liquid under a 30◦ angle over a distance of 6.97 mm.
In the model steam is added over this length assuming no steam mass or velocity at the
boundary condition.

Figure 3.1: (a) Schematic overview of the 1D model illustrating the prevailing phases and
their interactions. The water flows from left to right and steam is injected with
an angle of 35◦. For the bulk liquid the wall friction force (Fwall) and heat loss
to the environment (ϕ′′′

loss) are taken into account. (b) Schematic overview of
the accounted phenomena for a bubble. For the thermal energy equations (1)
the heat flux of vapor to bubble surface (2) heat flux from bubble surface to the
liquid phase and (3) the heat flux directly from vapor to liquid are included.

The model is based on the assumption that there are three types of flow interactions based
on the phase boundary; a bubbly regime in which gas is dispersed in the liquid, a dispersed
droplet regime and an interface regime. The employed thresholds for the regime changes
are listed in Table 3.2.

Table 3.2: Threshold values for regimes accounted for in the 1D model.
Bubbly 0 < ε < 0.3
Interface 0.3 < ε < 0.7
Droplet 0.7 < ε < 1.0
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3.2.1 Continuity equations

Below, in Equation 5.13, the unsteady continuity equations are given where coefficient ξi

determines the direction of the mass transfer, εi the volume fraction of phase i, ρi the
density, vi velocity and aif the specific interfacial area.

∂εiρi

∂t
= −∂εiρivi

∂z
+ aif ξiϕ

”
MT (3.1)

The latter quantity (aif ) is calculated assuming a spherical shape of the dispersed bubbles.
It is assumed that the bubble diameter d32 = 0.1 mm and is taken uniform throughout
the channel.

aif = 6εd

d32
(3.2)

ξi =

{
+1, i = Liquid
−1, i = Vapour

(3.3)

The condensation mass flux (ϕ”
MT ) is represented with a two-resistance model given by

Equation 3.4, with the heat flux qi and the enthalpy (hi) difference between the phases.

ϕ”
MT = Σqi

hV − hL
(3.4)

The heat flux is defined in Equation 3.5 in which the heat transfer coefficient (αi) of the
specific phase is required as well as the temperature difference between the saturation
temperature (Tsat) and the phase temperature (Ti).

qi = αi(Tsat − Ti) (3.5)

3.2.2 Thermal energy equations

For the thermal energy equations the heat flux associated with condensation(ϕ”
MT ), the

interphase heat flux (ϕ”
V →L) and the thermal energy loss across the solid wall (ϕ′′′

loss) are
required for a complete model.

∂εiρihi

∂t
= −∂ρiviεihi

∂z
+ aif ξi

(
Φ”

MT + ϕ”
V →L

)
− ϕ

′′′

loss (3.6)

The energy released from condensation is calculated using the enthalpy of steam. Thermal
equilibrium inside bubbles is assumed hence the heat transferred from steam to the liquid
phase can be calculated with Equation 3.8. The energy loss is finally calculated using an
overal heat transfer coefficient (Uw) and the local driving force(Ti − T∞)

Φ”
MT = hV ϕ”

MT (3.7)

ϕ”
V →L = αc(TV − TL) (3.8)
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ϕ
′′′

loss = δw

HcBc
Uw(Ti − T∞) (3.9)

Both for the interphase heat flux as well as for the condensation rate it is required to
calculate the regime heat transfer coefficient (αi). For the dispersed phase the heat transfer
coefficient is taken as αd = 104 [44]. The heat transfer coefficient for the continuous phase
can be calculated using a Nusselt relation in Equations 3.10, 3.11, 3.12.

Nuc = αc · db

k
(3.10)

Nuc = 2 + 0.4Re
1/2
d Pr1/3

c (3.11)

Prc =
µc · cp,c

kc
(3.12)

3.2.3 Momentum equations

Below the momentum equations (Equation 3.13) are given from which the velocity of
phase i can be onbtained.

∂εiρivi

∂t
= −∂εiρiv

2
i

∂z
− εi

∂p

∂z
+ ΣF + vgaif ξiΦ”

V →L (3.13)

In Equation 3.13 the total sum of the forces takes into account the interphase drag force
(Fc→d, wall friction force (Fl→wall) and the virtual mass force (F V M

c→d). Gravitational forces
are neglected due to the horizontal positioning of the channel.

ΣF = F D
c→d − F W

l→wall + F V M
c→d (3.14)

Drag force

The drag force acting on the dispersed phase is given by Equation 3.15 and takes into
account the relative velocity difference. The drag force on the continuous phase is given
by: F D

d→c = −F D
c→d

F D
c→d = CD

1
4

aif
1
2

ρc |vc − vd| (vc − vd) (3.15)

The drag coefficient (CD) is valid for dilute flow conditions and corrects the drag coefficient
for isolated bubbles (CD0) by including the bubble swarm effect (f(εV )).

CD = f(εV )CD0 (3.16)

The correction function (f(εV )) is given by the power-law correction in Equation 4.8 [68].
This power law function has a discontinuity at which for volume fractions larger than this
threshold the vapour phase is no longer dispersed. The empirical parameter (CA)is usually
in the range −3 < CA < −1. Buffo et al[68] found, after performing a sensitivity analysis,
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that this value is CA = −1.3.

f(εV ) =

{
(1− εV )CA εV ≤ 0.5
1 εV > 0.8

(3.17)

The single bubble drag coefficient (CD0) is calculated the well-known Tomiyama correla-
tion [69] obtained from experiments in fully contaminated air-water systems.

CD0 = max
[

24
Red

(
1 + 0.15Re0.687

d

)
,

8
3

Eo
Eo + 4

]
(3.18)

Here the dispersed phase Reynolds number and the Eotvos number are defined by Equa-
tion 4.10 and Equation 4.11. The relative velocity is |vg − vl|, g the gravitational acceler-
ation and ρc, σ and µc respectively the density, surface tension and the dynamic viscosity
(µc) of the continuous phase.

Red =
ρc |vg − vl| db

µc
(3.19)

Wall friction

The wall friction (Equation 3.20) is calculated only for the liquid phase and uses the
ratio between the perimeter and channel area as hydrodynamic diameter (dh), as given by
Equation 3.21.

F W
l→w = CW

1
2

ρlv
2
l dh (3.20)

dh =
2Hp + 2Wp

Hp ·Wp
(3.21)

The wall friction coefficient was determined using the Kowalski equation (Equation 3.22)
[70].

CW = 0.079 · (ReL)−1/4 (3.22)

The liquid phase Reynolds number can be computed using Equation 3.23.

ReL = ρlvldh

µl
(3.23)

Virtual mass force

The general definition of the virtual mass force (Equation 3.24) takes into account the
relative acceleration or deceleration for a particle (or in this case a bubble) moving in a
liquid. The virtual mass force is, together with the drag force, an important component
of the interfacial momentum transfer. The virtual mass force in Equation 3.24 acts on
the dispersed phase. When acting on the dispersed phase the virtual mass force has the
opposite sign, similar as with the drag force.

F V M
c→d = CV M ρcεd

(
vc

∂vc

∂z
− vd

∂vd

∂z

)
(3.24)
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The virtual mass coefficient CV M is calculated with Equation 3.25 and is composed of the
virtual mass coefficient of a single isolated bubble (CV M0 = 0.5) and the bubble swarm
effect. The coefficients for this equation are found in Table 3.3[71].

CV M = CV M0 +
3∑

k=1

{[
ak,0 + ak,1ln

(
ρd,i

ρc

)]
· (1− εc)k

}
(3.25)

Table 3.3: Coefficients for the Virtual Mass Coefficient in Equation 3.25 [71]
k ak,0 ak,1

1 0.130± 0.007 0.047± 0.002
2 −0.58± 0.04 −0.066± 0.005
3 1.42± 0.06

3.2.4 Initial Conditions and Boundary Conditions

The detailed design of the steam injector (??) and the schematic overview of the injection
nozzle in Figure 2.2 show that steam is injected into the liquid under an angle of 35◦.
Therefore, the boundary conditions are slightly modified to incorporate the axial injection
of steam.
At the boundary (z = 0) the volume of steam is set to εV = 10−6. The added mass,
energy and momentum are then added to Equations 5.13, 3.6 and 3.13. The added mass
is calculated within the region z < 6.97 mm and is represented by Equation 3.26. In which
the ratio of the steam mass flux (ϕ”

V ) at the nozzle over the length of the nozzle (Linj).

Γm = ϕ”
V

Linj
(3.26)

The enthalpy of vapour is calculated using an empirical correlation derived from the steam
tables [67] in which Psteam is the steam pressure in bar.

hV (z = 0) = 253.6P 3
steam − 4762.3P 2

steam + 37124Psteam + 2649.3× 103; (3.27)

The velocity profile of steam is assumed to be fully developed at the highly turbulent
conditions. The system is initialized assuming a steady state defined by equations 5.13,
3.6 and 3.13.
The thermodynamic properties of vapor are derived using empirical equations from the
steam tables [67]. The saturation temperature (Tsat) and the vapor phase temperature at
the boundary (TV (z = 0)) are calculated using Equation 3.28. The saturation temperature
is calculated using the channel pressure whereas the vapor temperature at the boundary
is calculated using the steam pressure (again in bar).

TV (z = 0) = −0.9392(Psteam)2 + 17.036Psteam + 363.662 (3.28)

The saturation temperature is calculated via Equation 3.28, however the channel pressure
is used rather than the steam pressure.
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The numerical details of the model are listed in Table 3.4. It should be mentioned here
that the numerical domain is significantly smaller than the actual channel. An important
detail is that the discretisation grid has had a logarithmic transformation. This means
that the spacing between grid points is not homogeneous. Due to the large gradients that
are expected early in the channel it was chosen to have a narrow grid spacing and increase
it downstream.

Table 3.4: Numerical details of the model.
Configuration Value
Lenght 30 mm
Discretisation method Backward Difference
Order 1st order
Steps 50
Grid spacing Logarithmic

3.2.5 Model results

In Figure 3.2 the volume fraction, temperature, velocity and pressure are shown as function
of the axial coordinate. The volume fraction of the vapour phase first increases till the
end of the injection zone, after which it decreases. The steam is added linearly over the
injection zone. However, since mass transfer to the liquid phase due to condensation
occurs along this zone, the volume fraction of gas does not increase linearly along the
injection zone. After the injection length the volume fraction of gas continuously decreases
due to condensation, until the gas volume fraction 0.001 is reached. From here on, the
condensation and heat transfer are neglected and the volume fraction of gas stabilizes
around 0.001.
The inlet velocity of the phases equal the superficial velocities at the boundary. In the
injection zone the liquid phase velocity increases but beyond this zone it decreases due
to friction forces. The kinetic energy of the gas phase transferred to the liquid phase
is relatively small, as reported by Qiu et al. [72]. The temperature of the phases also
equalize as they are driven by the heat transfer Equation 3.8. From the results shown in
Figure 3.2 it can be concluded that the model performs as expected and will subsequently
be compared with experimental data.
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(a) Volume fraction of the phases (b) Phase temperature

(c) Phase velocity (d) Channel pressure

Figure 3.2: Results of steady state hydrodynamic model to describe direct contact con-
densation (liquid flow rate: 12.05 L min−1, steam mass flow rate: 7.6 g s−1,
channel pressure: 2.13 bar, steam pressure 5.47 barg).
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3.3 Materials and methods

In our experimental set-up (as explained in subsection 2.2.1) several types of sensors
are incorporated for pressure and temperature measurements at various locations. A
schematic overview of the sensor lay out for these measurements is shown in Figure 2.1
and Figure 2.2. Before and after the injector a magnetic-inductive flow meter (accuracy:
0.8 % of measured value) is installed. The steam mass flow rate is measured indirectly
by calculating the difference between the outlet and inlet mass flow rate. The pressure of
the injected steam is measured with a pressure transmitter (accuracy: 0.5 %) at the two
inlet lines. Calibrated pressure sensors from Kulite (accuracy: 1.1 %) are placed at several
locations on the injector. To measure the temperature of the steam boiler, a thermocouple
is placed after the opening valve of the steam boiler. The other thermocouples (T-class 1)
are placed in the two injection lines and at several locations on the injector. The accuracy
is ± 0.5◦ C for the range -40 to +125 ◦ C and ±0.4◦C for the range between +125 to
+350◦C. The measured temperature at the entrance of the injector is used to determine the
liquid temperature. In Figure 2.2 the numbering system of the sensor locations is shown,
Table 3.5 indicates the pressure (P) and temperature (T) sensors connected on the different
sensor locations. The pressure and temperature sensors are connected alternately.

Table 3.5: Connected pressure (P) and temperature (T) sensors on different sensor loca-
tions of the injector.

Sensor location 1 2 3 4 5 8
A P T P T P T
B T P T P T P

The sensors are connected to a CompactDAQ system of National instruments and the
data is collected using LabVIEW software of the same supplier. The CompactDAQ, type
9185, consist of two different modules. The pressure and flow rate meters are connected
to a NI-9220 which records the voltage values. The temperature sensors are connected
to a NI-9213 which directly converts the voltage from the thermocouples to a digital
temperature.

3.3.1 Experimental conditions

For the validation of the model both steady-state performance as dynamic response tests
are performed. The experimental conditions used for the steady-state test are listed in
Table 3.6. The experiments cover a broad range of water Reynolds numbers with varying
water temperature, channel pressure, steam mass flux and steam pressure.
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Table 3.6: Experimental conditions that have been applied for steady-state model valida-
tion. The experiments are clustered by the water Reynolds number and the
water temperature, channel pressure, steam mass flux and steam pressure were
varried.

Experiment ReL Water temperature Channel pressure Steam flux Steam Pressure
[-] [◦C] [bar] [kg/(m2 · s)] [bar]

1

5699

34.9 1.04 503 3.86
2 35.1 1.01 661 4.85
3 48.0 1.03 688 4.52
4 58.0 1.05 700 4.02
5

7028

16.5 3.12 315 4.96
6 16.7 1.20 238 3.31
7 16.4 1.15 490 4.40
8 16.9 3.88 233 4.87
9 17.3 3.87 533 5.54
10 17.4 3.93 287 4.48
11 17.4 3.93 287 4.48
12 17.7 3.95 422 5.02
13 17.7 3.95 605 5.79
14 17.8 3.92 817 7.30
15 36.4 1.24 754 6.10
16 50.7 1.24 727 5.55
17 63.5 1.28 728 4.76
18

14811
34.6 1.24 754 5.55

19 50.1 2.13 754 6.47
20 64.8 2.11 767 6.48

For the dynamic tests either the steam pressure or the liquid mass flow rate was adjusted.
For the first test the steam pressure was increased from value A to value B and returned
to A after a while. This was performed under three different Reynolds conditions. The
second test was by step wise adjusting the mass flow rate of the liquid from high to low.
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3.4 Results and discussion

In Figure 3.3 the temperature profile across the injector channel is plotted for various
Reynolds numbers using a constant steam mass flux and pressure. It can be observed that
for large Reynolds numbers that the top sensors registers a higher temperature than the
bottom sensors and that the difference decreases along the length of the injector. This is
a result of a small steam penetration into the liquid causing reduced mixing and therefore
development temperature gradients. To enable a meaningful comparison the model results
are compared against the averaged data of sensors 4, 5 and 8 and are given by Figure 3.4.
The model predictions are plotted against the experimental data, averaged over time. The

Figure 3.3: Temperature profile across the length of the injector. It can be observed that
the depending on the Reynolds number (Rew) there is a difference between
the various sensors. SMF = 204 kg/m2s, Steam pressure = 4.45 bar

experiments are performed using three different Reynold values and color coded for the
steam mass flux that was applied. The predicted values are well aligned with the observed
experimental values. This shows that the model performance for steady state conditions
is good regarding the exhaust temperature of the DCC. This finding indicates that the
overall heat balance, heat and mass transfer rates and condensation characteristics are well
represented. The results, presented in Figure 3.4, helps to predict the expected exhaust
temperature of a steam injector. However, the added value of the developed model is its
ability to study the transient response of DCC units with respect to disturbances in key
process conditions. Consequently dynamic tests have also been performed.
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3.4 Results and discussion

Figure 3.4: Steady-state model results. Model predictions are plotted against measured
temperature at the exit of the steam injector. Model shows good agreement
with the performed experiments.

3.4.1 Dynamic test

The first dynamic test is performed by increasing the water flow rate whilst keeping the
rest of the conditions constant. For the second test the water flow rate is set at the three
Reynolds numbers used in Figure 3.4 and during the run the steam pressure is increased
and then decreased to the starting value.
For the first dynamic test the water Reynolds number was set to the highest value and
then step-wise decreased, as shown in Figure 3.5. The steam pressure was kept constant
throughout the experiment. The model itself features more fluctuations than the exper-
imental data. The response to small fluctuations in the steam mass flow measurements
have a stronger effect in the model than in the experiments. This is mostly because the
model assumes plug flow. In reality recirculation zones exist due to the transient conden-
sation phenomena. Furthermore, the penetration of the steam plume is highly dependent
on the Reynolds number. For larger Reynolds numbers the plume penetrates less into the
channel and that causes the sensors at the top of the channel to record a higher tempera-
ture than the sensors at the bottom. This is noticeable for the first part of the experiment.
The variation between the sensors is largest for the highest Reynolds number. The model
predictions fall within the error range of values recorded by the sensors. Upon decreasing
the Reynolds number the model follows the experimental results well. The fluctuations
are still there but the model oscillates around the measured values within an acceptable
tolerance.
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Figure 3.5: [Left axis] The measured water outlet temperature is plotted against the pre-
dicted values as a function of time. The experimental data shows a large
variation for low high Reynolds numbers. [Right axis] The water Reynolds
number (ReL) is step-wise decreased throughout the experiment. SMF = 204
kg/m2s, Steam pressure = 4.45bar.

In the second test the steam pressure was increased and subsequently decreased, the results
are shown in Figure 3.6 for three different Reynolds numbers. Similar to the results in
Figure 3.5 the experiment with the largest Reynolds number exhibits the largest variation
between the sensors. This is again due to the small penetration depth of steam into
the liquid. These experiments have been time-averaged over a longer period because the
increase in steam pressure causes the steam mass flow rate sensor to fluctuate stronger.
While this fluctuation has a minor effect on the measurement it has a substantial effect
on the model outcome.

56



3.4 Results and discussion

Figure 3.6: The measured water outlet temperature is plotted against the predicted values
as a function of time. The steam pressure and as a consequence the steam
mass flux (SMF) were increased and returned to the original value. Applied
conditions were: SMF = 620-850 kg/m2s, Steam pressure = 4-5 bar
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3.5 Conclusion and future work

In this chapter a model was presented to predict the performance of a steam injector using
a one-dimensional transient approach. The model was validated against experimental
data reported in this study. It was found that the simulated velocity, volume fraction
and temperature profiles pare in accordance with the expectations. The validation of the
model was carried out using steady-state conditions as well as transient conditions. In
all conditions the average of the last three sensors was taken in order to obtain as proper
basis for comparison. The steady state validation showed that the model is accurate in its
predictions. For the dynamic tests the water Reynolds number was step-wise decreased
whilst keeping the steam mass flux and pressure constant. For the highest Reynolds
number the sensors show the largest variation. This is attributed to a smaller steam
penetration depth into the liquid causing in-homogeneous flow. With decreasing Reynolds
number the penetration depth increases and as a consequence the mixing improves. Similar
behaviour was observed for the second dynamic test in which the steam pressure was
increased at various Reynolds numbers. This shows that the model is well-suited for
steam injector design and operation in which the fluids are well mixed and feature plug
flow behaviour. In future work we will present a more detailed CFD model for more
detailed and refined predictions.
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Chapter4
A Computational Fluid Dynamics model to
analyze the mechanics inside a Steam Injector

Abstract

The use of a Computational Fluid Dynamics (CFD) model is used for a DCC process to
investigate flow directionality, temperature gradients and to optimize the injector design.
The CFD model presented in this chapter uses an Eulerian Multiphase model (EMP) with
a RANS k-ω turbulence model. The model was qualitatively validated against experimen-
tal data. The experimental data was obtained using a high-speed camera and PIVlab
to obtain velocity fields. The obtained data is only suitable as qualitative data due to
formation of a large steam cavity and bubbles which in combination with volume-based
lighting leads to difficulties in obtaining a complete vector field. The model however does
produce a similar flow structure, and velocity gradients. In addition from the CFD simu-
lations it is apparent that the "jetting" regime leads to the formation of a local hot-spot
whilst the radial temperature distribution is homogeneous. Finally it is also found that
the "bubbling" region features a larger radial temperature gradient.
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Chapter 4 A CFD model to analyze the mechanics inside a Steam Injector

4.1 Introduction

In our previous research [38] an experimental study was reported to generate regime
maps utilizing a machine learning approach to predict the prevailing operating regime,
ranging from chugging, bubbling and jetting. However, these regime maps do not predict
a priori what the performance and temperature gradients of a DCC process will be. In
the previous chapter a 1D model was used to predict the temperature profiles. Whilst the
model results were in good agreement with experimental data limitations were encountered
in the heterogeneous flow regime.
To obtain data on temperature gradients with limited access to experimental data a viable
option would be a Computational Fluid Dynamics (CFD) approach. An overview of several
reported studies on DCC modelling are given in Table 4.1. CFD models provide the added
value to model and study the impact of geometry of the DCC design and nozzle position on
the condensation rate and mixing behaviour. CFD models are computationally expensive,
limiting the time scales for simulations to a few seconds. These time scales are however
sufficient to gather statistics on the hydrodynamic behavior, but unfortunately are not
suited to study the formation of protein deposit layers as these time scales can approach
to several hours [61]. The assumption of well-defined 1D homogeneous flow as in the 1D
models however does not always hold as, depending on the flow regime, steam can either
penetrate marginally into the flowing liquid causing a radial temperature gradient or can
penetrate significantly causing flow recirculation as described in chapter 3. The application
of a CFD model is beneficial to study the flow behaviour, condensation dynamics and
temperature gradients in more detail. From an industrial perspective this has the benefit
to provide either understanding of the systems performance during operation or to evaluate
system performance prior to purchasing.
The work published in literature using the computational approach consists out of CFD-
studies and simplified models. For CFD modelling Pecenko et al. (2010) [65] adopted
a diffuse-interface model coupled with Large Eddy Simulations (LES) for turbulent mul-
tiphase flow. Dahikar [66] performed CFD-simulations using both LES and k-ε RANS
(Reynolds-Averaged Navier-Stokes) models and compared the results with PIV measure-
ments of steam injection in a pool of water. Gulawani et al. (2009) [73] executed both
experiments and CFD-simulations. These simulations, showed to be in good agreement
with the experiments. However their model was specifically designed and fine-tuned for
this experimental setup and therefore the general applicability of this model is question-
able.
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Table 4.1: Overview of key CFD models for DCC.
Authors Method Approach Deliverable
Gulawani et al.[64] CFD RANS Validating predicted heat transfer

coefficient values
Pacenko et al.[65] CFD DIM-LES Development of an improved CFD

model for industrial applications
Dahikar et al.[66] CFD LES and RANS Evaluation of predicted velocity

against experimentally obtained ve-
locity

The goal of this research is to present a transient CFD two-fluid model to predict the
gradients inside a steam injector including the prediction of the exhaust temperature.
Our model accounts for an interface at the jet as well as bubble condensation and is
validated with experimental data. This study is therefore divided into three parts: (1)
description of the experiments (2) model description and (3) model validation.
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4.2 Model description

Our model takes a classical two-fluid approach in which the vapour (V) and liquid (L)
phase are modelled separately. The experimental set-up described in chapter 2 can be
operated at a liquid Reynolds number in the range of 5646 < ReL < 15000. The system is
modelled using a Reynolds-Averaged Navier Stokes (RANS) turbulence model. The choice
of this model over a scale-resolving model is that it is less computationally expensive. The
RANS turbulence model that is employed is the k-ω model [74] adaptation of Menter [75].
The phases are modelled as interpenetrating continua. The schematic representation is
similar as presented in Figure 2.2, however in this work the Virtual Mass force (VMF) is
not included. The use of saturated steam allows for the assumption that the condensation
mode is heat transfer limited rather than mass transfer limited. The steam properties are
derived from the steam thermodynamic table [67].
The model is based on the assumption of three types of flow interactions based on the
nature of the phase boundary; a bubbly regime in which gas is dispersed in the liquid, a
dispersed droplet regime and an interface regime. The employed thresholds for the regime
changes are listed in Table 3.2.

4.3 Eulerian Multiphase Flow

The DCC-system used in the experimental setup contains only one component, water.
However, the water can be either in the gas phase or the liquid phase. The DCC system
can behave as two separate continuous phases and or as a continuous-dispersed system.
Therefore, the Eulerian multiphase flow modelling approach has been adopted, since it is
specifically designed to describe more than one phase and is not limited to a continuous and
dispersed phase. Furthermore, a choice was made for the Eulerian multiphase segregated
flow instead of using a Eulerian multiphase mixture approach, which is often applied to
purely bubbly or droplet flow where the phases are miscible. For the Eulerian multiphase
mixture approach, the transport equations of mass, momentum and energy are solved
together for the mixture. While for the first case, Eulerian multiphase segregated flow, for
each phase the transport equations where solved, but the phases share a common pressure
field.
The shared flow domain is occupied by the two phases, where the presence of each phase
is represented through its volume fraction ε.

Vi =
∫

V

εidV (4.1)

The volume fraction of the liquid (product) and the gas (steam) phase is defined according
to Equation 4.2.

εl + εg = 1 (4.2)

The conservation equation of mass, momentum and energy for phase i are respectively
given by Equation 4.3, 4.4 and 4.5. The i and j subscripts represent the phase indices.
The DCC system consists out of two phases, either steam or liquid water as given by
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4.3 Eulerian Multiphase Flow

Equation 4.2.

∂

∂t

∫
V

εiρidV +
∮

A

εiρivi · dA =
∫

V

∑
j ̸=i

(Γj→i − Γi→j) dV +
∫

V

Sε
i dV (4.3)

The continuity equation is dependent on the volume fraction ε, the density ρ, volume V,
velocity v, the mass transfer rate to phase i from phase j Γj→i, the mass transfer to phase
j from phase i Γi→j and the user-defined phase mass source term Sε. This last term is
currently excluded in our model.
The momentum equation is given by Equation 4.4. The left-hand side contain the material
derivative of momentum. Whereas the right-hand side the equation accounts for the effect
of hydrostatic forces, the gravitational forces, the viscous and interaction forces. The last
term on the right is the momentum exchange due to mass transfer.

∂
∂t

∫
V

εiρividV +
∮

A
εiρivi ⊗ vi · dA = −

∫
V

εi∇pdV +
∫

V
εiρigdV

+
∮

A
[εi (τi + τ t

i )] · da +
∫

V
MidV +

∫
V

(Fint)i dV +
∫

V
Sε

i dV +∫
V

∑
j ̸=i (Γj→ivj − Γi→jvi) dV

(4.4)

Here, p is the pressure, g the gravity vector, τ and τ t are respectively the molecular and
turbulent stresses, M the inter-phase momentum transfer (virtual mass and drag forces),
(Fint) the internal forces and the Sε is in this case the phase momentum source term,
which also is excluded in our model.
Lastly, the third governing equation, the conservation of internal energy is given by Equa-
tion 4.5.

∂
∂t

∫
V

εiρiEidV +
∮

A
εiρiHivi · dA =

∮
A

εiλeff,i∇TidA+∮
A

τi · vidA +
∫

V
fi · vidV +∫

V

∑
j ̸=i QijdV +

∫
V

∑
(ij) Qij

i dV +
∫

V
Su,idV +∫

V

∑
j ̸=i (Γij − Γji) hi (Tij) dV

(4.5)

E is the total phase energy, H the total phase enthalpy, λeff the effective thermal conduc-
tivity, T the temperature, fi the body force vector, Qij and Q

(ij)
i respectively the heat

transfer rate from phase j to phase i and the heat transfer rate from phase pair interface
(ij) to phase i. The first term accounts for transfer due to a temperature difference between
phases, the second account for phenomena such as condensation. Su represents the energy
source and is set to zero and h(Tij) the phase enthalpy that is evaluated at the interface
temperature Tij .

4.3.1 Closures

To be able to solve the system a few closures are introduced and have been listed in
Table 4.2. First of all, the inter-phase momentum transfer between the phases needs to
be specified taking into account Newton’s third law. The momentum transfer contains
several forces such as the drag force. The drag-force between the dispersed phases is given
by Equation 4.6. Here, Wt is the weight function added to take into account the different
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drag forces in the different regimes, CD is the drag coefficient and vr the relative velocity
between the dispersed phase d and the continuous phase c (vd−vc), acd is the interface area
between the continuous and dispersed phase. The drag coefficient (CD) is valid for dilute
flow conditions and corrects the drag coefficient for isolated bubbles (CD0) by including
the bubble swarm effect (f(εV )). The correction function (f(εV )) is given by the power-
law correction in Equation 4.8 [68]. This power law function has a discontinuity at which
for volume fractions larger than this threshold the vapour phase is no longer dispersed.
The empirical parameter (CA) is usually in the range −3 < CA < −1. Buffo et al[68]
found, after performing a sensitivity analysis, that this value is CA = −1.3. The single
bubble drag coefficient (CD0) is calculated with the well-known Tomiyama correlation [69]
obtained from experiments in fully contaminated air-water systems. This is applied for the
Bubbly and Droplet regimes. Here the dispersed phase Reynolds number and the Eotvos
number are defined by Equation 4.10 and Equation 4.11. The relative velocity is |vg − vl|,
g the gravitational acceleration and ρc, σ and µc respectively the density, surface tension
and the dynamic viscosity (µc) of the continuous phase.
The Strubelj-Tiselj correlation, given by Equation 4.12, is chosen for the Interface regime.
It accounts for a large interface. Also a relaxation time is required. Low relaxation time
scale tSC helps instantaneous equalizing of velocities of both of the phases and reduces
the slip in that region. tSC is taken at 0.01 s. Here, εp and εs are respectively the volume
fraction of the continuous phase and the volume fraction of the dispersed phase. ρp and
ρs are the densities of the primary and secondary phase [76].
The turbulent dispersion force takes into account the natural redistribution of mass due
to non-uniformities of phase concentration and is implemented in the CFD model with
Equation 4.13 where W the weight function values are from the regime onsets, CD is the
drag coefficients per regime earlier defined. ν is the turbulent kinetic viscosity and Pr the
Prandtl number. Both have specific values for either the primary or secondary phase, or
even the intermediate regime.
The energy Ei is related to the total enthalpy Hi by Equation 4.15. In addition the
total enthalpy is calculated with the phase enthalpy hi, Equation 4.16. Here, hREF

i and
T REF

i are respectively the heat of formation and the temperature of phase i at a reference
temperature. It is assumed that the mass transfer happens through phase change only, in
this case the steam is condensed into the product phase water. The heat transfer rates
have to satisfy the heat balance in Equation 4.18 with ∆hij as the heat of evaporation,
the heat required to produce phase i from phase j. It can be calculated from the phase
enthalpy at the inter-phase temperature (Tij).
The mass transfer from the gas to the liquid can be calculated with the Spalding evapora-
tion and condensation model. The model is generally used for multi-component systems.
The 1D-condensation model in this report is used to describe a one-component process
(steam condenses into liquid water). Furthermore, the Spalding model is designed for
systems with a liquid dispersed phase. The definition of the Spalding model can then be
found in Equation 4.21-4.23 with g∗ as the mass transfer conductance in kg m−2 s−1, B is
the Spalding transfer number, which is the definition for the driving force of condensation.
The Spalding transfer number takes the ratio between the temperature difference between
the phases and the latent heat of vaporization (hV ).
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Table 4.2: Closure equations to calculate interphase momentum, energy and mass transfer.

F D
d→c =

∑
t=F R,IR,SR

WtCD
1
2

ρc |vr|
(acd

4

)
vr (4.6)

CD = f(εV )CD0 (4.7)

f(εV ) =

{
(1− εV )CA εV ≤ 0.5
1 εV > 0.8

(4.8)

CD0 = max
[

24
Red

(
1 + 0.15Re0.687

d

)
,

8
3

Eo
Eo + 4

]
(4.9)

Red =
ρc |vg − vl| db

µc
(4.10)

Eo =
g (ρc − ρd) d2

b

σ
(4.11)

F D
IR = 1

tSC
εpεs (εpρp + εsρs) vr (4.12)

F T D
d→c =

(
Wfr

Cfr
D νp

Prp
+ Wir

Cir
D νir

Prir
+ Wsr

Csr
D νs

Prs

){
∇εs

εs
− ∇εp

εp

}
(4.13)

λeff,i = λi +
µt,icp,i

Prt,i
(4.14)

Ei = Hi −
p

ρi
(4.15)

Hi = hi + |vi|2

2
(4.16)

hi(Ti) = hREF
i +

∫ Ti

T REF
i

cp,i(T ′)dT ′ (4.17)

Q
(ij)
i + Q

(ij)
j + Φ”

MT = 0 (4.18)

Φ”
MT = ∆hijΓg→l (4.19)

∆hij = hi(Tij)− hj(Tij) (4.20)

Γg→l = g∗ · ln(1 + B) (4.21)

g∗ = kl ·Nud

cp · db
(4.22)

B =
cp (TV − TL)

hV
(4.23)
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4.4 Materials and methods

The CFD model was implemented in Siemens Star-CCM+ version 18.02.008-r8. Only the
segment illustrated in red in Figure 4.1 has been meshed and resolved. This allows the
use of the sensor values as boundary conditions and the simulation domain is taken until
after the saphire window.

Figure 4.1: The simulation domain has been highlighted in red. The domain starts from
the first sensors and extends to the first sensor after the glass window. The
total length of the domain is 210 mm.

The mesh was generated using a polyhedral mesher with local refinement around the
injection area and is shown in Figure 4.2. Local refinement is required for two reasons.
The first is the large velocity difference between the liquid and vapour phase. The second
is that due to condensation the boundary between vapour and liquid is dynamic and can
collapse. To prevent numerical instability due to condensation a locally smaller mesh is
required.
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Figure 4.2: A 2D representation of the polyhedral mesh with local refinement around the
injection area. In total 430k cells are generated.

4.5 Experimental set-up

In our experimental set-up several types of sensors are incorporated for pressure and
temperature measurements at various locations. A schematic overview of the sensor layout
for these measurements is shown in Figure 2.1 and Figure 2.2. Before and after the injector
a magnetic-inductive flow meter (accuracy: 0.8 % of measured value) is installed. The
steam mass flow rate is measured indirectly by calculating the difference between the
outlet and inlet mass flow rate. The pressure of the injected steam is measured with a
pressure transmitter (accuracy: 0.5 %) at the two inlet lines. Calibrated pressure sensors
from Kulite (accuracy: 1.1 %) are placed at several locations on the injector. To measure
the temperature of the steam boiler, a thermocouple is placed after the opening valve of
the steam boiler. The other thermocouples (T-class 1) are placed in the two injection lines
and at several locations on the injector. The accuracy is ± 0.5◦ C for the range -40 to
+125 ◦ C and ±0.4◦C for the range between +125 to +350◦C. The measured temperature
at the entrance of the injector is used to determine the liquid temperature.
The sensors are connected to a CompactDAQ system of National instruments and the
data is collected using LabVIEW software of the same supplier. The CompactDAQ, type
9185, consist of two different modules. The pressure and flow rate meters are connected
to a NI-9220 which records the voltage values. The temperature sensors are connected
to a NI-9213 which directly converts the voltage from the thermocouples to a digital
temperature.
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4.5.1 PIV measurements

To gain insight into the flow behavior inside the injector channel during steam injection,
PIVlab is used. PIVlab is a graphical user interface particle image velocimetry software
package, which is programmed in Matlab and requires the image processing toolbox. PIV
analysis consists of three main steps, image pre-processing, image evaluation, and post-
processing [77]. The PIVlab environment facilitates these three steps. Figure 4.3b shows
the result of the image after the first pre-processing step. A contrast limited adaptive
histogram equalization (CLAHE) and an intensity high pass are applied during this step.
CLAHE enhances the readability of the image data by amplifying contrast in an im-
age. The high-intensity pass emphasizes the bubbles by removing the high-intensity light
reflecting from the steam plume. For the CLAHE and the high pass kernel size, the rec-
ommended sizes of PIVlab are used, 64 and 15 pixels, respectively. The next step is the
image evaluation step. This step applies the Fast Fourier Transform window deformation.
Small interrogation areas of a pair of images are combined to derive the most probable
particle, or in this case, bubble displacement. A multi-pass method is applied where an
interrogation area of 64 pixels is first analyzed, and a smaller area of 32 pixels afterwards.
Finally, image post-processing is applied. This step involves velocity and image-based
validation. Velocity validation is applied manually by choosing acceptable velocity limits.
The image validation allows the user to choose low and high-contrast filters. PIVlab also
suggests values for both filters. For the low contrast filter, a value of 0.0073 was suggested,
which gave satisfying results. The suggested high contrast filter removed all the vectors,
so a value of 0.7 was manually determined. Figure 4.3c shows the final PIV after all the
processing steps. In the final step also, the appearance of the arrows can be altered. More-
over, the software can create velocity and vorticity images based on vector data. It should
be noted that there are no tracer particles used, so only the movement of the bubbles can
be used by PIVlab to establish the flow patterns. In contrast to tracer particles, these
bubbles differ in size and shape, resulting in a less accurate prediction of the movement
inside the channel. Nevertheless, this method still can provide a general idea of the main
flow directions, but should not be used as a quantitative measurement of velocity.
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4.5 Experimental set-up

(a) Original Image.

(b) Pre-processing step.

(c) Final PIV image after image validation.

Figure 4.3: For the PIV analysis the original image (Figure 4.3a) is first pre-processed
(Figure 4.3b) prior to the PIV analysis. After the PIV analysis outliers are
removed and velocity magnitude is calculated Figure 4.3c.
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4.6 Results and discussion

4.6.1 Open back pressure valve

For the simulation at low channel pressure an experiment with a channel pressure of 1.6
bar is used with a water inlet flow rate of 88.6 g s−1 and a steam mass flow rate of 7.7 g s−1.
For this experiment we can clearly observe a jetting behaviour. The original image, as
well as the PIV results are given in Figure 4.3. Due to the low channel pressure the steam
plume penetrates the channel and causes large, deformable bubbles that are not ideal for
PIV analysis.
The PIV image corresponding to this experiment is show in Figure 4.3c. The segment
in which the steam plume is dominant has been excluded from the image analysis as it
generates unreliable data. The liquid velocity profile shows two major recirculation areas.
One directly at the beginning of the image and one after the steam plume. The steam
plume pushes the fluid to the bottom of the injector forcing the two recirculation areas.
In Figure 4.4, the simulated velocity profile of a steam injection process with a low channel
pressure is shown. The simulated recirculating flow before injection extends all the way to
the bottom of the channel, similarly to the PIV image shown in Figure 4.3c. The simulated
recirculating pattern after injection is also discernible in Figure 4.3c. This circulating flow
profile is located more in the center of the channel. Additionally, after injection a strong
forward moving flow is seen, in the simulation, at the bottom of the channel and a backward
moving flow at the top. Even the expected magnitude of the velocity is approximately the
same. Although, in Figure 4.3c, the movement of the bubbles is tracked and one should
be cautious with assuming that the liquid has exactly the same velocity. Altogether, the
simulation is capable of predicting the main important features of the flow.
Figure 4.5 shows the temperature profile and similarly to Figure 4.8, the temperature
profile is largely determined by the flow profile. The temperature is distributed due to the
flow patterns given in Figure 4.4. The circulating pattern before injection increases the
temperature already slightly. After injection, in the middle of the recirculation pattern,
a local minimum of temperature can be found. But most interesting is the local hotspot,
it is not formed at the location of the steam jet, but more on the right side of the steam
jet. An explanation can be provided with the recirculating pattern. The heat, due to the
recirculating pattern, is transferred from the bottom to the top. From the top the liquid
flows directly into the jet again. This results in a pre-heated fluid being heated even more,
which creates a local hotspot.
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Figure 4.4: Velocity map obtained from the CFD model. The vectors show the same
directionality and location of vortices as the experiment does. The timestep
on average was 5× 10−6 seconds with 15 implicit iterations. Liquid flow rate:
88.6 g s−1, steam mass flow rate: 5 g s−1, open back pressure valve (channel
pressure: 1.3 bar)

Figure 4.5: Simulated temperature profile for steam injection with low channel pressure

4.6.2 Partially closed back pressure valve

An experiment with a channel pressure of 4 bar was simulated as wel using a water inlet
flow rate of 240 g s−1 and a steam mass flow rate of 5 g s−1. These conditions resulted in
an outlet temperature of 33.1 ◦C. The PIV image taken from this experiment is shown in
Figure 4.6.
Figure 4.7 can be compared to the flow direction given in Figure 4.6. The simulated
velocity is mostly increased in the upper part in the channel. Furthermore, there is flow
reversal in the lower region of the channel. Lastly, just below the exit of the steam nozzle
the back flow from the lower region and the forward flow before injection joins the forward
flow due to steam injection. The flow direction profile presented in Figure 4.6 features all
three phenomena that were mentioned.
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Figure 4.6: Velocity vectors generated by PIVLab. The experimental conditions caused
the process to operate in the "bubbling" regime. The area in which the steam
plume resides has been omitted from the analysis. ϕw

m = 240 g s−1, ϕs
m =

5 g s−1, PBP V = 4 bar, T w
in = 15◦C.

Figure 4.7: Velocity map obtained from the CFD model. The vectors show the same
directionality and location of vortices as the experiment does. The time step
on average was 3× 10−5 seconds with 15 implicit iterations.

Figure 4.8 shows the temperature profile in the channel. Interesting to observe is a temper-
ature front that is formed under the steam jet. This can be explained by the flow behavior
visualized in Figure 4.7. The recirculation pattern leading to flow reversal moves the heat
also to the lower regions of the channel. However, the back flow "collides" with the cold
forward moving stream, which produces an upward moving stream joining the hot liquid
again. This temperature profile must be improved by a more homogeneous distribution
of the injected heat, the liquid temperature close to injection location is more than 30
degrees higher than the outlet temperature. The outlet temperature for this simulation
equals 34.3 ◦C, which is in close agreement to the 33.1 ◦C obtained experimentally.
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4.6 Results and discussion

Figure 4.8: Simulated temperature profile for steam injection with high channel pressure.
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4.7 Conclusion

In this chapterthe use of a commercial CFD-package was reported to investigate the veloc-
ity and temperature distributions inside a rectangular channel with steam injection. The
Eulerian/Eulerian multiphase approach with a multiple-flow regime topology was adopted
for this purpose. The turbulence was modelled using k-ω RANS-model. The experimental
data was generated using a high-speed camera and PIVlab to obtain velocity maps. The
experimental method required the use of LED-front lighting due to the positioning of a
bottom injection point and sensor placement. These two factors combined made it not
feasible to use a laser to illuminate the PIV field of interest. Small dispersed gas bubbles
proved to be useful as PIV particle trackers, however, at low back-pressure the size of these
bubbles is too large to be used as proper tracer particles. In addition the LED front light-
ing resulted in a volume-averaged velocity profile data which can not be directly compared
to the CFD results. The obtained data was therefore used to qualitatively validate the
CFD model predictions featuring a transition due to the altered channel pressure. For the
jetting regime the steam plume penetrates the channel and produces two re-circulation
zones which are both captured by the model. The simulations also revealed that the
re-circulation causes a local zone with elevated temperature. The experiment with the
bubbling regime used a partially closed back-pressure valve. Here the re-circulation zone
was also captured. In comparison to the experiment with the jetting regime, this experi-
ment did not show a large over-heated region. The predicted temperature field featured a
strong radial gradient rather than an axial gradient.

4.7.1 Recommendation

While the qualitative validation is useful as a first model validation, it is still not sufficient
to claim that the model is properly validated. There are several improvements necessary
that should be implemented in the model as well as the experimental setup.
Experimentally it would be recommended to simplify the steam injector design by remov-
ing the injection point and sensors at the bottom. This would enable the use of a laser to
properly illuminate the channel for quantitative PIV data with fluorescent tracer particles.
In addition it is recommended to invest in a fast high-resolution Infra Red (IR)-camera.
This would provide insights into the temperature gradients and its dynamics.
The model improvements are mostly focussed on the multi-phase interaction. The applied
method assumes a multiple-flow interaction profile. However, our experimental data reveal
the existence of a clear steam cavity and dispersed gas. It would be interesting to develop
a model that uses a Volume of Fluid (VOF) approach to simulate the steam cavity and
combine it with a Continious-Dispersed EMP model.
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Chapter5
Dynamic model to predict heat-induced protein
denaturation and fouling in a Direct Contact
Steam Condensation process

Abstract

High heat treatment, using Direct Contact Condensation (DCC), is applied in the produc-
tion of dairy products to ensure a high level of food safety. During this process a protein
rich deposit layer can be formed causing fouling of the system resulting in a loss of effective
production time and an increase in cleaning cycles. The dynamics of the heat treatment
process is modelled, including the description of the pre-heating step with two laminar flow
tubular heat-exchangers followed by a DCC. In this system the bulk reactions for whey
proteins are modelled using unfolding, re-folding and aggregation kinetics. The formation
of the deposit layer is described in the segment after the DCC using a flow averaged model
incorporating diffusion of species through the mass boundary layer as well as adsorption
to the wall and desorption from the wall. The desorption kinetics are key as the protein
deposit layer releases from the wall once the wall friction increases due to the decreasing
area available for throughflow. The model shows good agreement with experimental data
and is capable of capturing the process dynamics, both for the heat exchanger and the
DCC. The deposit layer formation model is in agreement with the trend observed in the
experimental data but is not fully capturing the process dynamics.
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List of symbols

Symbol Description Units
vz Velocity axial direction m/s
µ Viscosity Pa/s
P Pressure Pa
ρ Density kg/m3

z Axial coordinate -
r Radial coordinate -
⟨v⟩ Average velocity m/s
Dh Hydraulic diameter m
4f Fanning friction factor -
λ Thermal conductivity W/ (K ·m)
U Heat transfer coefficient W/

(
K ·m2)

Ashell Hydraulic area shell side m2

T i Temperature medium (M)/ product (P) ◦C
ci Concentration protein in state i kg/m3

ki Reaction rate -
ln (k0i) pre-exponential factor -

Eai Activation energy J/mol
δh Hydrodynamic boundary m
dh Corrected hydrodynamic diameter m
dh0 Initial hydrodynamic diameter m
cF Concentration deposited protein kg/m3

c∗
i Concentration species i in the boundary layer kg/m3

a Thermal diffusivity m2/s
ρf Density deposit layer kg/m3

δf Thickness deposit layer m
km Mass transfer coefficient m/s
η Dimensionless radius -
ζ Dimensionless length -

cT P Total protein concentration kg/m3

cpH4.6 Total protein after acidification kg/m3

cnative Sum of the concentration native & unfolded protein kg/m3

β Momentum correction factor -
rR Rate of deposit release m/s
βR Empirical release rate parameter m/s

This chapter is based on S.S. Safavi Nic, K.B. Buist, R.E.M. Verdurmen, and J.A.M.
Kuipers. Dynamic model to predict heat-induced protein denaturation and fouling in a
Direct Contact Steam Condensation process. Chemical Engineering Science X 8 (2020),
pp. 841855. [61].
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5.1 Introduction

5.1 Introduction
Heat treatment is applied in the food industry to ensure a certain level of food safety
for the final product by inactivating micro-organisms and/or harm-full enzymes which
naturally occur in the ingredients. The level of required food safety is strongly related
to the target group of the product and is directly linked to the applied temperature
and the duration at which this temperature is maintained. Fresh dairy products, for
instance, require a minimum pasteurization time of 30 min at 69◦C (or 30 seconds at 80◦C).
However, dairy products that need to remain stable on the shelf at ambient conditions
require a more strict heat treatment in the temperature range of 135-150◦C up to 5
seconds as to also destroy spore-forming bacteria [1–3]. The drawback of Ultra High Heat-
Treatment (UHT) temperature regimes is the additional side reactions that may cause
colour formation, loss of nutrients [5] and a reduced process efficiency [6–8]. The reduction
in process efficiency is a result of the formation of a protein-rich deposit (fouling) layer,
which increases the resistance for heat transfer. The consequences are a higher energy
consumption to compensate for the loss in efficiency for energy transfer as well as an
increase of the amount of cleaning cycles. Both of these have a significant impact on
the sustainability of dairy processing as well as on the optimal utilization of processing
equipment. To support the optimization of a dairy factory, we present a model based
approach that properly describes the process of the heat induced denaturation as well as
the mechanism and rate of formation of the deposit layer.
One of the main drivers for the deposit layer formation is the denaturation of whey pro-
teins, in particular β-lactoglobulin. β-Lactoglobulin is a globular whey protein that, in
its native form, is found in a tertiary structure. The tertiary structure is stabilized by
several interactions such as; hydrogen bonds, hydrophobic interactions, electrostatic bond,
disulfide bonds and Van der Waals forces. Upon heating the whey protein loses its na-
tive structure and unfolds to the secondary structure exposing the reactive thiol group
thus enabling the aggregation of β-lactoglobulin, which can be referred to as denatured
whey protein. The associated reaction pathway is schematically represented in equation
5.1. The prediction of the concentration profiles of native, unfolded and aggregated β-
lactoglobulin is a key element in modelling protein fouling as the latter is correlated to
the unfolded whey protein[10]. However, most reaction kinetic models either use a two-
step reaction pathway without refolding [10, 78] or a one-step model lumping the native
and unfolded protein together [79, 80]. The first method is limited as it predicts a lower
concentration of native protein than measured [9] and the latter is not suited for use in
fouling modelling as information on the unfolded, reactive protein is lost. An overview of
the most relevant models, reported in literature, is provided in Table 5.1.

Native←−→ Unfolded −−→ Aggregated (5.1)

The protein fouling models [10, 79] focus mostly on the so-called type A deposit formation
[34] which is mostly composed out of proteins, in particular whey proteins [81, 82]. It
is commonly accepted that the type A deposit is formed in the temperature range of
75◦C<T< 110◦C [6, 10, 33, 34]. At higher temperatures a mineral rich deposit layer was
observed, which is referred to as type B deposit [33, 34, 37]. Literature on protein induced
fouling (type A) are mostly applicable in the temperature range of 75◦C<T< 110◦C.
These models put emphasis on the thermal resistance build-up inside heat-exchangers for
skimmed milk systems [10, 33, 35, 36] or pure whey protein systems [6, 83]. However,
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in practice the operational limitations are not found in the heat exchangers where the
increase of energy consumption is negligible. A more significant process limiting step is
found in the steam injector where the unit is operated at constant outlet pressure. Due to
the formation of the deposit layer the hydraulic diameter of the piping reduces, increasing
the pressure drop and as a consequence increasing the steam pressure. The aim of this
research paper is to present a reversible denaturation model combined with a fouling model
that can predict the process performance as a function of steam pressure to the system.

Table 5.1: Overview of research on protein reaction modelling and protein fouling mod-
elling.

Model purpose Solution Comments Reference
Method

Denaturation Analytical 70◦C < T < 90◦C [6, 10]
and fouling rates 2 step reaction
Denaturation Analytical 70◦C < T < 90◦C [84]
and fouling rates Empirical 1 step reaction

Fouling empirical
Fouling UHT Empirical Statistical, no reactions [85]
process
Dynamic modelling Numerical Fouling by aggregates [35]

1D transient
Dynamic modelling Numerical Fouling by aggregates [36]

2D transient
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5.2 Model description

5.2 Model description

To study the protein kinetics and fouling rates an OMVE-100 (Utrecht, The Netherlands)
pilot scale UHT-process is used, as schematically represented in figure 5.1. The process
consists of three tubular heaters, two for pre-heating and one for cooling. Each heat
exchanger has its own supply of heating/cooling medium. After the second pre-heater the
product enters the steam injector for sterilization and is maintained at the sterilization
temperature for 5.6 seconds in a pipe. The flash-cooler is used to rapidly cool the product
and as a consequence the added steam is extracted again. In this section the model
for this process will be described. The model consist of three separate sections with
an interconnected set of equations to allow for mass, momentum and heat transport.
Firstly the governing equations for the heat exchanger will be described followed by the
reaction mechanism and associated kinetics. Afterwards the numerical set-up of the DCC
is described and finally the holding cell is modeled where the formation of the deposit
layer is most critical, leading to an increase of the steam pressure which is of interest.

Figure 5.1: Schematic representation of the OMVE-100 pilot plant UHT-process
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5.2.1 Heat exchanger

The pilot plant UHT line operates at laminar flow conditions with a maximum Reynolds
number of Re∼1900 depending on the fluid temperature. A schematic description of the
model in this section is represented in figure 5.2. For convenience a 2D flow model is used,
assuming fully developed laminar flow in the domain 0 < r < R1. The heating medium is
located in the domain R1 < r < R2 for which a 1D lumped model is sufficient.

Figure 5.2: Schematic representation of the heat exchanger model. On the product side
the velocity gradient is modelled assuming fully developed laminar flow in the
domain 0 < r < R1. On the heating medium side a 1D model is applied
assuming no gradients in radial direction.

Momentum balance

The simplified z-momentum balance is given by (5.2) which can be integrated once to
obtain (5.3) for the domain 0 < r < R1.

0 = −∂P

∂z
+ 1

r

∂

∂r

(
rµ

∂(vz)
∂r

)
(5.2)

∂(vz)
∂r

= − r

2µ

(
−∂P

∂z

)
(5.3)

The velocity distribution depends on the pressure gradient which is given by the Fanning
equation in differential form:

−∂P

∂z
= 4f

1
Dh

1
2

ρ
〈
v2〉 (5.4)

Where the friction factor can be estimated from equation 5.5 for a Reynolds number
Re < 2100.

4f = 64
Re

(5.5)

Re = ρ ⟨v⟩Dh

µ
(5.6)
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5.2 Model description

Thermal energy balance

The transient thermal energy balance (equation 5.7) is applied on the domain 0 < r < R1
and accounts for convective as well as diffusive transport. With T P representing the
product temperature.

∂T P

∂t
= −v(r)∂T P

∂z
+ a

[
1
r

∂

∂r

(
r

∂T P

dr

)
+ ∂2T P

∂z2

]
(5.7)

On the product side three boundary conditions need to be specified. At the pipe entrance
the temperature is equal to the inlet temperature.[

T P
∣∣
z=0 = T P

in 0 < r < R1
]

(5.8)

The boundary condition at the tube centre can be expressed using the symmetry assump-
tion.

∂T P

∂r

∣∣∣∣
r=0

= 0 (5.9)

At the interface between the wall and the liquid the heat flux can be described using
Newton’s law of cooling. The heat flux at the wall requires as driving force the temperature
difference between the heating medium (T M ) and the product temperature at the wall
(T P (z, R1)).

λ
∂T P

∂r

∣∣∣∣
r=R1

= U(z)
[
T M (z)− T P (z, R1)

]
(5.10)

The heating medium (usually water) has a flow rate around 500 l/hr and flows through a
slot of roughly 5 mm. This will lead to a Reynolds number of approximately 22000 and
consequently we use a simple lumped 1D model for the heating medium (5.11). With the
mass flow rate (ϕm) and shell area (Ashell).

ρAshellcp
∂T M

∂t
= ϕmcp

∂T M

∂z
− UπD

(
T M (z)− T P (z, R1)

) (5.11)

With respect to the energy balance on the product side the convective energy transport
term in equation 5.11 does not have the minus sign as the flow direction is in the opposite
direction of the axial domain. As a result the boundary condition of the heating medium
is located at the end of the axial domain.

T M (z = L) = T M
in (5.12)

Analogous to the energy balance the mass balance of the product side can be formulated
accounting for convective and diffusive transport. However for the species balance only
diffusive transport in the radial direction is considered.

Mass balance and reaction kinetics

For the mass balance the adaptation of equation 5.7 leads to equation 5.13 in which the
diffusion coefficient (D) is introduced, the concentration of component i (ci) as well as the
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reaction with the source/sink term (Si). The boundary conditions are analogous to the
temperature balance with the exception that there is no mass transfer at the wall.

∂ci

∂t
= −v(r)∂ci

∂z
+ D

[
1
r

∂

∂r

(
r

∂ci

dr

)]
+ Si (5.13)

The reaction mechanism assumes a first order reversible unfolding mechanism, the ag-
gregation reaction is assumed to be pseudo-second order [10] with reaction only between
unfolded whey proteins at an operation pH of 6.8 [30, 86].

cN
k1←−→

k−1
cU

k2−−→ cA (5.14)

This results in the following three step reaction model in which the reaction rates (ri) can
be substituted into the source/sink term of equation 5.13. It is important to note that the
refolding reaction (k−1cU ) is only applicable in temperature ranges up to 120◦C[81]. rN = −k1cN + k−1cU

rU = k1cN − k−1cU − k2c2
U

rA = k2c2
U

 (5.15)

The temperature dependence of the reaction rate can be estimated using the Arrhenius
equations:

ki = k0iexp
(
−Eai

RT

)
(5.16)

The reaction rate constant for aggregation is classified to have a conditional switch for
temperatures lower than T < 90◦C (the unfolding limited regime) and for temperatures
higher than T > 90◦C (the aggregation limited regime) [13, 81, 87, 88].

5.2.2 Steam Injection

To reach sterilization temperatures an annular gap steam injector (figure 5.3) was used.
The product enters the injector with a pipe diameter of 10 mm and is compressed to
an injection nozzle with a diameter of 2 mm. The steam pipe (point 8) has a diameter
of 14 mm and is compressed to an annular slit of 2 mm. The product and the steam
are put in contact in the mixing chamber and the key assumption is that the steam is
fully condensed at the end of the injector. To predict the pressure profile of this system,
equation 5.4 is applied to calculate the pressure at each point. The losses in the Fanning
equation were calculated by applying a momentum correction factor (β) between segments
4-5, the segment with the most sudden expansion [63].

5.2.3 Holding cell model

The purpose of the holding cell is to maintain a fixed temperature for a specific residence
time. The deposit layer is most significantly formed in this segment of the process and
causes the pressure in the system to increase. The process of the formation of the deposit
layer consists of the following steps:
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Figure 5.3: Schematic representation of the steam injector. The pressure drop between
each segment is calculated using the steady-state Bernoulli equation. Segment
1-4: Initial product inlet to the injection nozzle. Segment 8-9-4: Inlet steam
to the steam annulus. Segment 4-5: Inlet mixing chamber. Segment 5-6:
Mixing/condensation chamber. Segment 6-7: Exit segment

• A bulk reaction for the unfolding, refolding and aggregation of the protein.
• Mass transfer through the hydrodynamic boundary (δh) [10, 35, 36].
• Deposit formation by the unfolded, reactive protein.
• Adjusted hydrodynamic diameter (dh = dh0 − δf ).
• Increase in pressure drop.
• Increase in local velocity.

Figure 5.4: Schematic representation of the deposit layer formation process.

Due to the formation of the deposit layer it is not valid to assume a constant velocity profile.
The average velocity (⟨v⟩) is calculated locally using the adjusted hydraulic diameter from
equation 5.17. It is assumed that steam is fully condensed, the temperature is fully
developed and energy losses are neglected.

Ah0 ⟨v0⟩ = Ah ⟨v⟩ (5.17)

Due to the changes in hydrodynamic diameter is would not be appropriate to apply the
Fanning equation to calculate the pressure profile. For this reason equation 5.18 is in-
troduced assuming symmetry, transient behaviour and including the changes in kinetic
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energy. Both the initial condition as well as the boundary condition follow the same
approximation as equation 5.17.

1
2

ρ
∂v2

∂t
= −1

2
ρ

(
∂v2v

∂z

)
− ∂pv

∂z
− 4f(z) ρ

dh

1
2

v2v (5.18)

The species balance (equation 5.13) is replaced by an equation (5.19) accounting for accu-
mulation, convective transport and mass transport to the wall.

∂ci

∂t
= −v

∂ci

∂z
− km

m
(ci − c∗

i ) + Si (5.19)

The factor m represents the equilibrium concentration between the concentration of un-
folded protein in the bulk and in the boundary layer with a value of 0.3 [10]. The adhesion
to the surface is derived from previous work [10, 35, 36].

ρf
∂δf

∂t
= kf c∗

U (5.20)

The mass transfer coefficient (km) can be approximated using the Sherwood correlation
for laminar tube flow:

km = D

δH
(5.21)

Sh = kmdH

D
(5.22)

Combining equation 5.21 and 5.22 results in the correlation for the thickness of the mass
boundary layer.
The Sherwood number equation 5.23) for laminar flow has to be estimated taking into
account the entrance length of the tube [89]. It is assumed that the flow doesn’t fully
develop due to the growth of the deposit layer.

Sh = 3.66 + 0.065ReSc

1 + 0.04
(
ReSc dh

∆x

) 2
3

(5.23)
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5.3 Model implementation and verification

5.3.1 Model implementation

The model has been implemented using gPROMS FormulatedProducts 1.4 using the flow-
sheeting and custom model capabilities. The model has been implemented with the techni-
cal and numerical details listed in table 5.2. The physical properties are listed in table 5.4.
The viscosity has been measured using an Anton Paar MCR102 (with a conical geometry
CP50-1) and empirically correlated using equation 5.25 . The steam properties equations
are derived from the steam thermodynamic table [90] (specified in table 5.4) and is valid
up to a pressure of p = 9 bar. The density of the deposit layer was assumed to be the same
as in previous publications [10]. The process conditions were used as set-points and listed
in table 5.5 in which the injector entrainment ratio is defined as the mass ratio between
the product and steam:

ω = ϕP
m

ϕS
m

(5.24)

Table 5.2: Technical and numerical details of the tubular heat exchangers.
Length

Heater 1 17m
Heater 2 21m
Cooler 21m
Holding cell 2.4m

Diameter
Product tube diameter 10mm
Shell diameter 18mm
Holding cell 10mm

Discretization method Product side
[Axial] Material, 1st order N=50
[Axial] Energy, 2nd order N=50
[Radial] Material & Energy, 2nd order M=50

Discretization method Shell side
[Axial] Material & Energy, 1st order N=50

µ = ΣN=5
i=0 biT

i (5.25)
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Table 5.3: Technical details of the steam injector. The length is specified for segments
as specified in Figure 5.3. At the injection point (4) the steam side (S) and
product side (P) are tagged respectively.

Segment Length (mm) Din (mm) Dout (mm)
1-2 147 10 10
2-3 8.5 10 6.5
3-4P 16 6.5 3
4P -5 5.9 3 22.5
5-6 64 22.5 22.5
6-7 23.1 22.5 10
8-9 49.2 14 14
9-4S 84.1 14 1

Table 5.4: Physical properties of the milk and steam.
Density 1030 kg/m3

Viscosity b0 = 0.00571 Pa · s
b1 = −6.114× 10−6 Pa · s/◦C

b2 = −3.83140× 10−6 Pa · s/◦C2

b3 = 1.24316× 10−7 Pa · s/◦C3

b4 = −1.39491× 10−9 Pa · s/◦C4

b5 = 5.56981× 10−12 Pa · s/◦C5

Steam temperature Tsteam = 36.701ln(p)− 327.54 ◦C
Steam enthalpy ∆H = 43002ln(p) + 2181.8× 103 J/kg

Table 5.5: Process set-points. The actual values are logged and used as inputs for the sim-
ulation. The Injector entrainment ratio is a calculated value as a consequence
of the DCC temperature set-point

Product flowrate 100 lt/hr
Heater 1 medium flowrate 415 lt/hr
Heater 1 Medium temperature in 63◦C
Heater 2 medium flowrate 500 lt/hr
Heater 2 Medium temperature in 86◦C
Back-pressure steam injector 3.8 barg
DCC temperature set-point 135◦C
Injector entrainment ratio 22.5

5.3.2 Numerical verification

The implementation of the heat transfer model has been tested using firstly the classi-
cal transient thermal conduction case and secondly the steady-state case for convection-
diffusion with a fixed wall temperature. The classical transient conduction case was ob-
tained by assuming no flow in an infinite long cylinder with a fixed wall temperature (T1)
and a uniform temperature (T0) across the radial domain.
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The analytical solution for this case (as represented by figure 5.5) introduces the dimen-
sionless temperature (equation 5.26), time (τ = at/d2) and position (η = r/R) variables
as well as Bessel functions (J0 and J1) of the first kind [91].

Θ = T − T0

T1 − T0
(5.26)

The verification results are shown in figure 5.5, showing a very good agreement between,
the numerical model and the analytical model.

Θ = 2Σ∞
n=1

1
βnJ1(βn)

exp
(
−β2

nτ
)

J0 (βnη) (5.27)
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Figure 5.5: Evaluating numerical and analytical (x) results for the heat conduction test.
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The second case for verification is the classical case of steady-state convection/diffusion in a
tube with a fixed wall temperature. The aim is to calculate the (fully developed) Nusselt
number and confirm for convergence to Nu= 3.66. The Nusselt value was estimated
using equation 5.28 in which Θw represents the dimensionless wall temperature, Θb the
dimensionless bulk fluid temperature and the dimensionless axial position (ζ = x/L). The
verification exercise clearly demonstrates (figure 5.6) that the numerical model has an
asymptote for the Nusselt number at Nu=3.66.

Nu = 2
Θ1 −Θb

∂Θ
∂ζ

∣∣∣∣
ζ=1

(5.28)

0,0 0,2 0,4 0,6 0,8 1,0
3,0
3,5
4,0
4,5
5,0
5,5
6,0
6,5
7,0

N
us

se
lt

Position

 Model
 Asymptote

Figure 5.6: Nusselt number converges to an asymptote at Nu= 3.66.
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5.4 Materials and methods

5.4.1 Materials

A model system for a dairy product at 30% total dry matter was made in demineralised
water, the composition in listed in table 5.6. The pH of the formulation was adjusted to
6.8 using NaOH. For the acidification of the milk for the protein nativity analysis a 7M
HCl solution was used. The pressure measurements in the UHT process were conducted
with a Flush pressure sensor of IFM electronics (0.2% standard deviation) whereas the
temperature was measured with a PT100 thermocouple (1%). Samples were drawn after
each heating step in the process line using fully opened sample valves and drawing 50 mL.
The experiments have been performed in duplo and per experiment three samples were
drawn from the sample valve.

Table 5.6: Composition of the product matrix
Component Composition (wt%)

Total Protein 5
Whey 3
Casein 2

Lactose 24
Minerals 1

5.4.2 Protein content measurement and degree of aggregation

The total protein concentration (cT P ) was measured using the method of Dumas using
an Elementar Rapid Max N Exceed. The system was calibrated using Asparic acid and
the reference sample was Infantrini, a commercially available product. The measure-
ment requires a 300 mg sample contained in an aluminum sample holder and burned at
900◦C. The gases were reduced and purified with activated carbon and the resulting ni-
trogen was analysed with a heat conductivity detector. The nitrogen concentration was
converted to a protein concentration using a conversion factor of 6.25. The degree of
aggregation/denaturation was determined by firstly acidifying the sample to pH 4.6 using
7M HCl solution, centrifuging at 20000 g for 30 min and then measuring the supernatant
for total protein (cpH4.6). The fraction native protein was then determined via equation
5.29 [Dumpler2016, 81, 87]. The protein fraction of the fouling layer was measured by
firstly making a 15 wt% dry matter solution and then measuring the total protein. The
deposit layer was collected by firstly opening the back pressure control valve followed by
a pressurized rinse with cold demineralised water.

cnative =
cpH4.6

cT P
(5.29)
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5.5 Results and discussion

5.5.1 Heat transfer and reaction kinetics

First the simulation results for the heat transfer equipment will be presented, see Fig-
ure 5.7 where the temperatures of heaters 1 & 2 are shown. The calculation was initiated
with steady-state solutions for both the energy and species balances. The input parame-
ters for the simulations are the experimental flow rates and temperatures at the inlet on
the product and the heating medium side. The experimental data was filtered with the
Savitzky-Golay filter[92]. It can be observed that the model follows the dynamics of the
inlet conditions and predicts accurately the outlet conditions.

 Standard deviation
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re

 (°
C

)

Time (min)

Figure 5.7: Model prediction (red) mapped against the temperature measurements (blue)
as a function of time.

The results for the predicted protein nativity are shown together with the experimental
data in Figure 5.8. The (small) initial difference between the predicted and measured
protein nativity is due to variations in raw material. However, the relative standard devi-
ation is smaller for these samples in comparison to the samples drawn later in the process
(RSD=7%) which is an accumulative result of errors in the sampling and measurement.
From the experimental data the kinetic parameters were estimated and given in Table 5.7.
The obtained rate of aggregation is of a similar order of magnitude as found by other
researchers [10, 78, 80, 81].
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Figure 5.8: Predicted and measured native protein fractions as a function of the process
residence time.

Table 5.7: Kinetic parameters fitted from the experimental data.
Reaction type Eai (kJ/mol) ln(k0i)

k1 “Unfolding” 325.83 122.7
k−1 “Re-folding” 177.4 70.96
k2 “Aggregating” (T< 90◦C) 292.84 89.84
k2 “Aggregating” (T> 90◦C) 51.17 9.82

The obtained reaction kinetics have been implemented into a flowsheet model of the overall
process to predict the concentration profile of the whey protein throughout the process
(Figure 5.9). It can be seen that the fraction native and unfolded cross around 70◦C
which is in line with previous research [93, 94]. The third reaction step, aggregation, is
observed to start around 75◦C which is also an acceptable temperature range [93, 95]. The
refolding of the protein is most prominently observed during the cooling period, after the
high heat-treatment, at which the fraction aggregated protein remains constant, fraction
unfolded protein decreases and the fraction native (folded) protein increases. The sharp
changes located at 125 seconds are a result of the rapid increase in temperature causing an
accelerated reaction rate. The bends at the end of each heat-exchanger is a result of the
boundary conditions. The outlet conditions are averaged and passed to the next model
block.
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Figure 5.9: Prediction of the protein fractions as a function of temperature and the process
residence time. The temperature profile and the fractions are averaged values.
The sum of the protein fractions equals the total whey protein concentration.

5.5.2 Validation of steam injector and fouling model

The steam injector model was validated by comparing the predicted outlet pressure against
the experimental data. The simulation was supplied with the pressure measurement on
product and steam side before the injector and the outlet pressure of the steam injector
was predicted and compared against experimental data, as shown in Figure 5.10. The
simulation results are in good agreement with the experimental data and the momentum
correction factor (β) is estimated to be 0.975.
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 Standard deviation

Figure 5.10: Predicted and measured outlet pressure of the steam injector as a function
of the experimental run time. The model has been supplied with the inlet
pressure, flow rate and temperature on the product side. The steam pressure
and temperature was measured and the flow rate is calculated from the energy
balance. The momentum correction factor is estimated to be β = 0.975

The composition of the deposit layer was determined in terms of dry matter and protein
content (Table 5.8), yielding an average protein content of 66.37% ± 1.45%. This value is
significantly higher than reported in previous studies where the deposit layer contained 15-
20% protein for temperatures T> 100◦C) [33, 34, 37, 83]. The difference in composition
of the fouling layer, can be attributed to a difference in heating rate. In many earlier
studies analysis on the deposit layer has been performed at relatively low heating rates
1◦Cs−1 and high Reynolds number [83, 96]. However, in this work, due to the constraints
of the product formula the heating rate was 83.3◦Cs−1 whereas the Reynolds number
was relatively low. Moreover, the product composition of the referred research was either
whole milk or skimmed milk which has a significantly different product matrix than used
in this research. Due to the large differences in heating rates, flow regimes and product
features a direct comparison with literature results is not appropriate.

Table 5.8: Composition of the deposit layer after dissolving in demi-water
Sample Dry matter Protein content
1 14.84 ± 0.24 10.07 ± 0.51
2 17.23 ± 0.23 11.19 ± 0.51

In figure 5.11 the predicted and measured steam pressure profiles are shown as a function
of time for two different scenario’s. The first only considers the adsorption of unfolded
protein to the wall [10] whereas the second scenario, introduced in this study, the release
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 Standard deviation

Figure 5.11: Comparison between the literature model [10] without desorption, proposed
model and measured data as a function of time. Process set-points: Temper-
ature T = 135◦C, 3.6 barg back-pressure.

of adsorbed protein into the bulk (Equation 5.30) is included. During the formation of
the deposit layer the hydrodynamic area of the tube decreases resulting in an increase
of the overall pressure drop as well as an increase in local velocity and skin friction at
the wall. When the friction forces are stronger than the cohesion force of the deposit
layer it can result in the sudden release of the deposit layer. This process has a strong
dependency on the Reynolds number as well as on the composition of the product matrix.
Due to a research gap on the physical properties of the deposit layer it is not possible
to introduce a mechanistic model to incorporate this behaviour. Instead an empirical
correlation (Equation 5.30) is introduced to describe the rate of desorption (rR) as a
function of the flow rate which includes a fit parameter (βR) and the Reynolds number.
With the inclusion of this parameter the exponential growth of the pressure profile can
be damped and the disturbances can be introduced. The overall pressure increase is well
captured by the model, however, the fluctuations are not captured with the same degree
of accuracy as the thermal and mechanical balances presented earlier. In order to validate
the desorption model the same experiment was executed with a target temperature of
150◦C and the results are shown in Figure 5.12 together with the experiments with a
135◦C DCC target temperature. It was found that the trend was again followed using the
kinetic data estimated from the experiment at 135◦C. The obtained reaction kinetics and
the fit parameter are listed in Table 5.9.

rR = −βRRe (5.30)
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Figure 5.12: Comparison between simulation results at T= 135◦C and T= 150◦C and the
corresponding experimental data. The kinetic parameters were fitted from
the experimental data with T= 135◦C and used to simulate the experimental
data at T= 150◦C.

Table 5.9: Deposit layer adsorption and desorption kinetics fitted from the experimental
data.

ln(k0) 3.61
Eaf 20.74 kJ mol−1

βR 1.69× 10−6m s−1
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5.6 Conclusion

Dairy products that need to remain food safe on the shelf at ambient conditions require
a high heat treatment to ensure the right level of food safety. A sterilization process with
Direct Contact Condensation (DCC) is often applied to satisfy the food safety criteria.
During this process a protein rich deposit layer can be formed causing which can result in
a loss of effective production time and an increase in cleaning cycles. In this chapter the
dynamics of the heat treatment process have been modelled by describing the pre-heating
as well as the high heat treatment step with the DCC. The model accurately represented
the physical quantities such as the system pressure as well as the thermal performance
of the tubular heat-exchangers. The reaction model proposed in this study includes a
reversible unfolding reaction in which the protein loses/regains its tertiary structure as
well as aggregation of the unfolded protein. The formation of the deposit layer is described
by combining adsorption and desorption kinetics with the latter being a function of the
Reynolds number. When the deposit layer builds-up the hydrodynamic area decreases
causing an increase in wall friction which causes the release of the deposit layer. The
model shows good agreement with experimental data and is capable of capturing the
process dynamics, both for the heat exchanger and the steam injector. The deposit layer
formation model is in agreement with the trend observed in the experimental data but
is not fully capturing the process dynamics. The industrial relevance of this model is to
predict process performance and efficiency. In future work it is recommended to research
the material properties of the protein deposit layer in detail to improve the release rate
model.
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Chapter6
Epilogue

6.1 Conclusions

Dairy products that need to remain food safe on the shelf at ambient conditions require
a high degree of heat treatment to ensure the right level of food safety. A high-heat
treatment (HHT) process with Direct Contact Condensation (DCC) is often applied to
satisfy the food safety criteria. During this process a protein rich deposit layer can be
formed which can result in a loss of effective production time and an increase in cleaning
cycles. The work reported in this thesis has been aimed at understanding and modelling
the complex multiphase flow for DCC, especially to generate methods to optimize the
design & operation of a HHT line. Experimental and computational methods have been
employed to study the complex and dynamic condensation behaviour of steam in a cross
flow injector. The computational methods have been developed such that large time scales
can be resolved at low computational cost. In addition a CFD model has been employed to
study the transport phenomena inside the injector and allow optimization of the geometry.
Finally a full HHT process was simulated to predict protein denaturation and fouling.
In chapter 2, an experimental campaign was conducted to investigate which parameters
play a role in the direct steam condensation process. The results were processed using an
image analysis protocol to obtain relevant steam cavity properties and further processed
with machine learning models to provide objective classification and regime prediction
possibilities. The experimental campaign yielded 299 experiments with 79 different logged
variables and 2000 frames recorded per experiment that were used to generate the regime
maps. It was also found that it is important to properly note, besides steam pressure,
the channel pressure as it has a significant effect on the condensation regime boundaries.
In addition machine learning algorithms were employed of which the LDA is the superior
classification model with 96% accuracy, being able to both classify regimes in an objective
fashion and predict the regime for new samples. A parameter study was performed via
the inspection of the linear discriminants, which led to the insight that the outlet Prandtl
number is a good predictor for condensation regimes. Besides the Prandtl number, the
steam pressure, channel pressure, subcooling, velocity ratio are better variables for regime
maps than steam mass flux and inlet temperature respectively. It is recommended to
use steam pressure and subcooling as key variables for regime maps and to report the
channel pressure. This method also proved scalable to a dual injection setup leading to
the introduction of new regimes. The second jet influences the temperature gradients to
such an extent that the two jets show oscillating behaviour, which has been classified as
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"Interfacial oscillation".
In chapter 3, a transient one-dimensional two-fluid model based on a multiple flow regime
was presented. The model was designed to predict the performance and gradients inside a
steam injector at low computational costs. The benefit of such an approach is that it could
be used in a flow-sheeting environment in which the entire HHT process can be simulated.
The model was validated using both steady-state conditions as well as transient conditions.
In all conditions the average of the last three sensors was taken in order to obtain a proper
basis for comparison. The steady state validation showed that the model is accurate in
its predictions. Whilst the model demonstrated good agreement for the dynamic tests it
also proved to be limited in conditions in which the steam cavity is small and the flow
becomes heterogeneous. This indicates that the model is well-suited for steam injector
designs and operational conditions in which the fluids are well-mixed and feature plug
flow behaviour.
In chapter 4, a Computational Fluid Mechanics model was presented using a commer-
cial package. The employed model used a Eulerian Multiphase (EMP) approach with a
multiple-flow regime topology. The model was validated again PIV data generated using
a high-speed camera and PIVlab for its analysis. The PIV data could only be used for
a qualitative validation as a consequence of the lighting method that had to be adopted
to illuminate the particles. In addition the formation of large gas bubbles in experiments
with an open back pressure valve leads to unreliable velocity data. Nevertheless the CFD
model demonstrated similar flow patterns, vortical flow structures and directionality. In
addition it allowed the analysis of the temperature gradients in more detail. It was found
that for open back pressure experiments (conditions in which the 1D model is accurate)
there is a formation of a local hot-spot as a consequence of recirculation. It also became
clear that for experiments with an elevated back-pressure the local hot-spot dissapears
but that the temperature is no longer homogenous in the radial direction, which is in line
with the conclusions found in chapter 3. The CFD model, whilst needing more validation
and development, shows potential in investigating the dynamics inside the steam injector
and optimizing its design.
In chapter 5, the dynamics of the heat treatment process have been modelled by de-
scribing the pre-heating as well as the high heat treatment step with DCC. The reaction
model proposed in this study includes a reversible unfolding reaction in which the protein
loses/regains its tertiary structure as well as aggregation of the unfolded protein. The
formation of the deposit layer was described by combining adsorption and desorption ki-
netics with the latter being a function of the Reynolds number. The model shows good
agreement with experimental data and is capable of capturing the process dynamics, both
for the heat exchanger and the steam injector. The deposit layer formation model is in
agreement with the trend observed in the experimental data but is not fully capturing the
process dynamics.
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6.2 Outlook

The work reported in this thesis has made a contribution to experimentally investigating
the condensation mechanism of steam in water and its associated modelling. There are
still aspects that future studies should address to further advance this study, both exper-
imentally and numerically. The experimental work reported in chapter 2 regime maps
did not consider the impact of high-viscous fluids. When dealing with high-protein dairy
products the viscosity is significantly higher than that of water [97, 98]. Moreover, due to
heating the viscosity is expected to increase [86]. Investigating sensitivity of the regime
map towards viscosity (changes) is relevant as it would indicate that a product-specific
approach would be required in the operation of the DSI. It can be anticipated that when
the viscosity increases that the steam cavity has more difficulty to penetrate into the liquid
causing a shift of the regime maps to the right.

In chapter 3 a transient one-dimensional model was proposed. The model demonstrated
to be of good accuracy and capable to handle the dynamic features. It can be industrially
relevant to extend this model with the denaturation and fouling model presented in chap-
ter 5. This would add to the model complexity but can also increase the accuracy of the
predicted protein concentrations. Another relevant upgrade to the model is to include a
microbial growth [7, 99, 100] and inactivation model [4]. The application of such a model
is to simulate the entire HHT process and identify the optimal process conditions between
product quality, food safety and process efficiency.

The CFD model presented in chapter 4 showed qualitatively to be in good agreement with
experimental data. However, the validation could be improved significantly by adjusting
the steam injector design. The design should be simplified by removing the injection
point and sensors at the bottom of the injector. This would enable the incorporation
of a glass window for including a laser sheet for the PIV analysis. It has to be noted
that by removing the sensors at the bottom it would become difficult to assess if the
temperature profile is fully developed. Using a high-speed InfraRed (IR) camera could
overcome this and also support the validation of the predicted temperature profiles. The
model itself could improve by changing the multiphase strategy from Eulerian Multiphase
with multiple-flow regimes to a Volume Of Fluid (VOF) approach to simulate the steam
cavity. The remaining of the multiphase interaction can then be represented using a
Continous-Dispersed (CD) method. This offers the benefit that the steam cavity will be
better described. The CD method has the advantage over the multiple-flow regime that
it reduces from 9 closures to 3 in total (Nusselt and drag correlations).
The model presented in chapter 5 focussed on dairy proteins. Currently the market seg-
ment of plant-based products increasing and new products aimed to serve as a proper
high-protein substitute are emerging. There is a need to grow the knowledge of the heat
induced changes of these products and to predict the fouling rate of these products. This
will support in accelerating product development but also up-scaling production (capacity)
and increasing first-time-right. The main challenge for plant-based proteins is that it lacks
the rich literature database that dairy proteins have. It is recommended to employ data-
driven models next to experimental analysis to rapidly identify mechanisms and generate
mechanistic models.
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Chapter7
Appendix A

Table 7.1: Features used in data set for models.
Parameter Symbol Unit
Liquid inlet temperature TL,in °C
Subcooling ∆Tsubcool = TL,in − TG,in °C
Steam mass flux G kg/(m2s)
Liquid inlet Reynolds number ReL,in -
Steam inlet pressure PG,in bar
Channel pressure Pchannel bar
Channel pressure coefficient of variation CVP,channel = σP,channel

Pchannel
-

Normalized penetration length PL -
Normalized steam plume area AG -
Penetration length coefficient of variation CVP L -
Steam plume area coefficient of variation CVA,G -
Liquid temperature near the injector TL,inj °C
Liquid outlet temperature TL,out °C
Temperature increase ∆Tout−in = TL,out − TL,in °C
Inlet liquid specific heat capacity cP,L,in J/(kgK)
Outlet density ρL,out kg/m3

Outlet viscosity µL,out kg/(ms)
Outlet enthalpy HL,out J
Outlet entropy of phase i SL,out J/K
Outlet internal energy of phase i UL,out J
Outlet specific heat capacity cP,L,out J/(kgK)
Outlet speed of sound of liquid cL,out m/s
Outlet thermal conductivity kL,out J/(mKs)
Outlet surface tension σL,out J/m2
Outlet liquid reduced pressure PR,out -
Liquid outlet mass flow rate ṁL,out kg/s
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