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Summary

measured or assessed through multiple 
executions with different procedures. 
These executions may yield multiple 
results, each with a designated time 
interval that reflects its temporal 
relevance. This ontological structure is 
used to create the previously mentioned 
semantic digital twin; Neo Dash. The goal 
of this dashboard is to allow the user 
to meaningfully explore the available 
data, and assess relevant challenges. 
The dashboard consists of four main 
functions: the map, query, table, and 
graph. The map visualizes the results of 
queries and analyses where possible. 
Initially, the map shows all neighborhoods 
of the city of Eindhoven, which can be 
explored manually by the user. The main 
interactive part of the dashboard is the 
query functionality which allows the 
user to build (compound) queries based 
on the properties that are available in 
the database. The dashboard uses the 
defined metadata to provide the user 
with the most suitable query options as 
numerical properties require different 
query functionalities than categorical or
nominal values. While the map 
represents the queried results visually, 
the table represents the results more 
classically. In contrast, the graph shows 
the relationships of the found results with 
other aspects of the data. For instance, if
the queried property shares measurement 
methods with other available properties. 
Combined, these functionalities aim to 
provide more meaningful data exploration 
and discovery than currently available 
methods. Lastly, to show the added value 

Cities increasingly contribute to overall 
energy consumption, which leads to a 
large set of challenges. However, there is 
only limited integration of energyrelated
data on an urban level. This limits 
possibilities for cross-domain monitoring,
simulation, and intervention. This project 
aims to adapt semantic web technologies 
to integrate cross-domain data and 
information on multiple scales, while also 
striving to develop a visualization to allow 
stakeholders to interpret and work with 
the data more intuitively. This would be a 
first step towards a semantic digital twin 
of the city under investigation (Eindhoven, 
the Netherlands). This semantic 
digital twin is based on Semantic Web 
Technologies and Linked Data, which is a 
method to transform data into structured 
graphs that allows for the integration of 
data on multiple levels. While this project 
is not the first of its kind to address 
urban challenges using Semantic Web 
Technologies, it tries to improve on 
existing ontologies that lack critical 
features that are deemed necessary for 
this project. Therefore, a new ontology 
is created, named the Neighborhood 
Energy Ontology (NEO). NEO described 
urban areas as neighborhoods that can 
have certain properties. These properties 
are related to the way they are measured
and the time frame over which they 
are relevant. Moreover, neighborhoods 
can contain other neighborhoods, and 
can therefore inherit properties from 
other neighborhoods. To summarize, 
neighborhoods of varying scales may 
possess multiple properties that can be 
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of this semantic data structure and the 
created digital twin several use cases are 
explored. Firstly, several definitions of 
energy poverty are explored. As no one 
definition of energy poverty is available, 
the three most common definitions are 
represented using a combination of the
map and a new graph representation 
visualizing the household income relative 
to the estimated cost of energy for that 
neighborhood. Moreover, the most 
recent definition includes the energetic 
quality of the household dwelling (energy 
label). Therefore, the analysis includes 
this building-level data as well. This use 
case shows how data from disparate 
sources can be combined using this 
method, and meaningfully represented 
using the created digital twin. The user 
is able to explore this issue from multiple 
perspectives and interact with the data 
in a novel way. Secondly, it is assessed 
how more temporally accurate data can 
be incorporated into the ontological 
structure previously discussed. Randomly 
generated energy use data is generated 
for the University of Technology campus’
buildings, which shows how this type 
of data can also be explored using the 
proposed digital twin. Moreover, it is 
assessed how such data could practically
be collected and monitored using existing 
technologies. This use case shows how 
individual or property managers can also 
benefit from this type of development. 
Thirdly, while the available data is rather 
extensive, some missing parts do create 
challenges in the first use case. Therefore, 
it is explored how Linked Data can be 

used as a basis for predictive analytics 
by estimating energy label categories 
for buildings that have no energy label 
available. Using a statistical model, it is 
estimated whether a building’s energy 
label is above or below C (labels range 
from A++++ to G). This model is able to 
perform this task with 89% accuracy 
(92% precision and 92% recall), which 
is deemed sufficiently accurate for the 
purposes of this project. This model is 
used to supplement the missing data 
when the user investigates individual 
data. Moreover, the energy poverty 
analysis which has been described 
previously is enriched using these 
categories, resulting in a more complete 
estimation of the overall scope of the 
issue for the city under investigation. The 
goal of this project was to provide more 
meaningful urban data using Semantic 
Web Technologies and Linked Data and 
create a digital twin on top of this data 
structure. The created semantic digital 
twin and underlying ontological data 
structure is a good first step towards 
this goal. The use cases show that 
more meaningful data can indeed be 
provided and that more a more holistic 
and insightful analysis can be performed 
using the proposed solution.
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1.1 State of the Art

1. INTRODUCTION

Growing urban populations (United 
Nations Department of Economics and 
Social Affairs, 2019) cause increased 
energy consumption in cities. As a result,
cities currently consume ‘two-thirds 
of primary energy resources and are 
responsible for more than 70% of 
Green House Gas emissions worldwide’ 
(Abbasabadi et al., 2019). Buildings in 
these cities account for 40% of global 
energy consumption (Corry et al., 2015). To 
address this issue, there is great potential 
in urban energy modeling which can  
result in increased energy use efficiency 
on an urban and building level (Ali et 
al., 2021). However, according to Curry 
et al. (2013), there is limited integration 
of traditional building information and 
other data, such as energy consumption. 
This limits possibilities for cross-domain 
monitoring, simulation, and interventions. 
More readily available information could
indeed facilitate the identification of 
problems and solutions concerning 
urban energy consumption (Ali et al., 
2020). Moreover, while many studies 
focus on integrating data on the building 
scale (Ali et al., 2019; Corry et al., 2015; Curry
et al., 2013; Degha et al., 2019), most goals 
for reducing energy use and Green 
House Gasses are set on a national level, 
and most action is taken at the city scale 
(Li et al., 2017). This project aims to adapt 
semantic web technologies to integrate 
crossdomain data and information 
on multiple scales, while also striving 
to visualize this integration to allow 
stakeholders to interpret and work with 
the data more intuitively. Placing this effort 

in the current digital twin paradigm, the 
definition provided by VanDerHorn and 
Mahadevan (2021) should provide some 
insight, as they describe a digital twin 
as ’a virtual representation of a physical 
system (and its associated environment 
and processes) that is updated through 
the exchange of information between 
the physical and virtual systems.’ This 
project aims to take the initial steps 
toward such a digital twin. To achieve this 
goal semantic web technologies (section 
1.1) will be implemented to take the first 
steps toward an interactive, semantic 
Digital Twin of the city of Eindhoven (the 
Netherlands).

Regarding traditional urban energy 
use modeling, Abbasabadi and Mehdi 
Ashayeri (2019) provide an overview of the 
currently available categories of modeling. 
First of all, the authors separate urban 
energy use models between top-down 
and bottom-up, where ’top-down models 
examine cities at a macro scale. They are 
not concerned with individual end-uses; 
rather, they treat the built environment 
as an energy user and utilize historical 
aggregated energy data to understand 
how energy is used in cities’. Conversely, 
bottom-up models ’localize energy use 
studies and considers urban attributes 
at the microscale of individual units, i.e. 
individual buildings or a collective set of 
buildings’. Furthermore, the distinction 
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is made between data-driven (statistical) 
and simulation models, within the 
bottom-up approach. The authors 
conclude that to date, only a limited 
number of tools exists to estimate energy 
use in urban or neighborhood contexts in 
an integrated manner and that existing 
tools such as CitySim, EnergyPlan, E-GIS, 
Urban Building Energy Models (UBEMs), 
Urban Modeling Interface (UMI), and 
City Building Energy Saver (cityBES), rely 
on the estimation of the energy use at 
city scale through a GIS-based platform, 
2D GIS and/or 3D GIS using CityGML 
(Abbasabadi and Mehdi Ashayeri, 2019).
Current urban modeling tools, therefore, 
are generally not capable of assessing 
energy use in an integrated manner, 
where data from multiple scales (top-
down and bottom-up) and domains can 
be integrated. As an alternative to more 
traditional urban (energy use) modeling, 
Semantic Web Technologies and Linked 
Data are explored as a possible solution. 
However, the concepts of ‘Semantic Web’ 
and ‘Linked Data’ need some explanation 
as well as some definitions. Moreover, 
already existing research within this 
field needs to be addressed. In short, 
‘semantic web technologies [...] allow 
to represent information in structured 
graphs and efficiently integrate (building) 
information of an entirely different nature. 
As a result, the development of software 
applications that rely on multiple 
information sources is in reach’ (Pauwels 
et al., 2017). The important element in this 
definition is the ’structured graphs’, at 
the core of these graphs ‘stands a flexible 
and generic language that allows to easily 
represent and combine information from 
diverse knowledge domains, namely 
RDF. The semantic web thus becomes a 
semantic network in which information 
is represented as directed labeled graphs 
(RDF graphs)’ (Pauwels et al., 2017). Here, 
it becomes clear that the structured 
graphs at the core of the semantic web 
are defined by the Resource Description 

Network (RDF), moreover, these RDF 
graphs are both labeled and directed. 
The idea of such a graph is represented 
in Figure 1, where ‘each node in such a 
graph represents a concept or object 
in the world, identified with a Unique 
Resource Identifier (URI)’ (Pauwels et 
al., 2017). As can be seen in the example 
of Figure 1, each trio (triple) is given by a 
‘subject’, ‘object’, and ‘predicate’, where 
each element is represented by an URI 
describing something in the world. This 
example states that the subject ‘building’
is connected to the object ‘roof’ by the 
predicate ‘has’, i.e. this building has a 
roof. What exact building this is or what 
specific roof it has can be defined by 
the URI linking to a unique resource 
defining the instance. Moreover, in the 
next linkage, the ‘roof’ can become 
the subject and be linked to a third 
object, and so forth. ‘By describing all 
information as such interlinked directed 
labeled graphs, a uniform representation 
of information is achieved, making 
information reusable by both humans 
and computer applications’ (Pauwels 
et al., 2017). Moreover, translating the 
RDF principle to its most basic form: 
‘The most basic elements describing 
such ontologies are contained in the 
RDF Schema (RDFS) vocabulary, which 
consists of the specifications of classes, 
subclasses, comments, and data types. 
An RDFS interpreter is able to infer 
extra RDF statements that are implicitly 
available via the RDFS constructs’ 
(Pauwels et al., 2017). In the example 
below, a ‘building element’ class could 
be defined and attributed to the ‘roof’ 
object, indicating that a ‘roof’ is (at least) 
a building element. These structures of 
classes and relationships are combined 
into ontologies, which can be considered 
predetermined semantic structures. 
Within the semantic web, an important 
aspect is the Open World Assumption 
(OWA). This assumption states that if 
the model does not specify something, 
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1. Introduction - State of the Art

it is neither necessarily false nor true. 
The example below does not specify 
that the building has a door. In a Closed 
World Assumption (CWA), this would 
mean that this building does not have a 
door (this is the case in traditional data 
and information technologies regarding 
buildings, e.g. Building Information Model 
(BIM)). In the OWA, however, this is not 
the case and the building might, or might 
not, have a door. The term ‘semantic web’ 
was coined by Tim Berners-Lee in 2001 
and was quite visionary as it included all 
features in the semantic web stack. The 
term ‘linked data’, on the other hand, was 
coined in 2006, also by Tim Berners-Lee,
in response to the finding that quite 
some data was being published on the 
web, seemingly following the semantic 
web idea but actually never linking to 
outside data, and thus in fact not realizing 
the initial core idea behind the semantic 
web, which is linking data. Therefore, 
Berners-Lee laid out four rules that need
to be followed to obtain linked data truly. 
These have by now evolved into the five 
stars of linked data (Pauwels et al., 2017). 
These five stars are defined as follows 
(Hausenblas and Kim, 2012): 1) Make your 
stuff available on the web (whatever 
format) under an open license. 2) Make 
it available as structured data (e.g. Excel 
instead of an image scan of a table). 3) 
Make it available in a non-proprietary 
open format (e.g. CSV instead of Excel). 4) 
Use URIs to denote things so that people 
can point at your stuff. 5) Link your data 
to other data to provide context. This five-
star system can be used as a measure 
of how well your data adheres to the 
principles of linked data as proposed by 
Tim Berners-Lee, where it is suggested to 
strive for as many stars as possible. This 
research will aim to achieve five stars, 
and link data to its appropriate context. 
This project is not the first to address the 
challenges described earlier, therefore, it 

is necessary to review a sample of already 
existing research. Regarding already 
existing ontological structures relevant to 
this project, the study by De Nicola and 
Villani (2021) gives a preliminary overview 
of available ontologies related to several 
urban topics. Regarding energy use, 
they identify several ontologies, however, 
they are considered unsuitable for this 
research. They can not describe urban 
data on differing urban levels, as they 
mostly relate to other urban units like 
microgrids (Chun et al., 2020), houses 
(Reinisch et al., 2011) or appliances 
(Daniele, 2020). Moreover, the authors 
give an overview of available ontologies 
describing urban systems, which are 
not aligned with the specific goal of 
this project as they mostly describe 
specific urban infrastructure or three-
dimensional geospatial objects. Besides 
these ontologies, SAREF4CITY (Poveda-
Villalon et al., 2020) can be considered. 
This ontology focuses on extending 
Smart Applications REFerence Ontology 
(SAREF) (Daniele et al., 2015) to create a 
common core of general concepts for 
smart cities and data-oriented to the 
Internet of Things (IoT) field (Poveda-
Villalon et al., 2020) and describes a data 
structure that allows for the description 
of several city objects, their geographical 
definition and corresponding 
measurements. While this ontology does 

Basis of RDF graphsF.1
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1.2 Problem Statement

reflect the core idea of this project, it is 
deemed unsuitable, as it is more aimed 
at structuring Internet of Things (IoT) 
data and Key Performance Indicator (KPI) 
measurements. Moreover, this project 
tries to capture urban data, without 
relying on a geographical definition as 
they are considered hard to work with 
and impractical for the implementation 
suggested in this project. Secondly, the 
Energy Management Key Performance 
Indicator Ontology (EM-KPI) can be 
considered. This ontology is created 
to describe the relationship between 
the master data sources for identifying 
energy performance problems and key 
areas for improvement and to help energy 
managers make informed decisions 
regarding energy efficiency measures 
(Li et al., 2019). Again, this ontology has 
similar goals as this project, however, is 
deemed unsuitable for the purposes of 
this project as it has an extensive focus 
on KPI measurement, energy systems, 
and building aspects, while this project is 
focused on purely urban data. Moreover, 
as will be explained below, the central 
concepts of the ontological structure 
created in this project is based on the 
Building Performance Ontology (BOP) 
(Donkers et al., 2021) and Building 
Topology Ontology (BOT) (Rasmussen 
et al., 2020). These ontological structures 
are considered to be able to describe 
building-level information and data in 
high detail and are therefore extended in 
this project. As the previously described 
ontologies are not connected to either 
BOT or BOP, they are not reused in this 
project. As mentioned, this project is 
not the first to address energy-related 
challenges on an urban (or building) 
scale. As will become clear in section 4, 
energy poverty (section 4.1) is a long-
standing issue with several analyses 
done in multiple countries (Mulder et 
al., 2023; Department for Business, 2020; 
Department for Energy Security & Net 

It has been described how cities and 
the built environment contribute 
significantly to the energy demand of 
the world, which causes a multitude 
of challenges. Where traditional urban 
energy use models can be categorized as 
topdown or bottom-up, these challenges 
need a more holistic approach where 
a range of spatial and temporal scales 
can be analyzed structurally. A lack 
of connected and meaningful data is 
seemingly a barrier to this approach. 
Therefore, Semantic Web Technologies 
seem an appropriate solution, however, 
no suitable development has been 
found. This project will, therefore, aim 
to create a semantic structure that is 
capable of describing urban (energy) 
data on multiple spatial and temporal 
scales (section 2), in order to gain 
insight into these challenges. Moreover, 
this structure will be designed to be 
highly practical in use (section 3) and 
applicable in multiple settings (section 
4). The practicality of the data structure 
will be explored through an interactive 
dashboard (semantic digital twin) which 
will show the implementation of several 
use cases.

Zero, 2023). Similarly, the prediction of 
energy consumption (and energy labels, 
section 4.3) is a rich field with large 
amounts of research being done (Zhao 
and Magoul`es, 2012; Kim and Cho, 2019; 
Wang et al., 2021; Kolter and Ferreira, 
2011; Amber et al., 2015). However, what 
these studies do not investigate is the 
potential of implementing Semantic 
Web Technologies in this context, in 
connection to a digital twin. Making 
this type of data more interactive, easily 
accessible, and meaningful to the user of 
this data.



12

2. INTEGRATION

Taking into account the ontologies 
described in section 1.1, a new ontological
structure has been created named 
Neighborhood Energy Ontology (NEO),
which reuses and extends multiple 
existing data structures. NEO tries to 
achieve the previously described goals 
by defining ‘neighborhoods’ as urban 
areas, which can contain other urban 
areas of a different (smaller) scale. These 
neighborhoods are linked to certain 
properties that are attributable to these 
areas, following a similar structure as 
defined in the Building Performance 
Ontology. In this project, neighborhoods 
are considered a ‘bop:FeatureOfInterest’ 
and therefore can be associated with 
a ‘bop:Property’. This structure is given 
in Figure 2 (namespaces are defined 
in Table 1). In this overview, it is shown 
how neighborhoods can contain other 
neighborhoods, of a different scale. 
NEO can therefore describe data on 
multiple levels, where a contained 
neighborhood might be assumed to 
inherit the properties described by the 
containing neighborhood. Moreover, 
multiple properties can be attributed to a 
neighborhood, which might come from 
different domains. Therefore, a more 
holistic description of urban data can be 
given. To create a high-level structure of 
these properties, the property structure 
in Figure 3 is adopted. This figure shows 
that a ‘neo:Neighborhood’ is a sub-
class of a ‘bot:Zone’, which allows for the 
previously described relationship where 
neighborhoods (zones) can contain 
other neighborhoods (zones). Moreover, 

neighborhoods can thus contain 
buildings (bot:Building) as shown in 
Figure 2. An anchor point for building 
information in NEO is the existing data 
structure of the Cadastre, Land Registry 
and Mapping Agency of the Netherlands 
(Dutch: Kadaster). Their Key Register for 
Addresses and Buildings (Dutch acronym 
BAG) is published as linked data and 
knowledge related to buildings, public 
spaces, cities are captured in the BAG2 
ontology (Kadaster, 2021). The building 
registration is reused in this project 
(Figure 2). Properties of the neighborhood 
are linked to a ‘bop:Execution’ and 
‘bop:Procedure’. As a single property can 
be measured (and therefore defined) 
through multiple methods, this structure 
allows for these differences to occur 
in the data. For example, an area’s 
population can be measured by multiple 
methods, and will likely deviate across 
different datasets. These measurements 
(of type bop:Execution) are linked to the 
same property but describe different 
values measured by different procedures. 
Conversely, different properties (e.g. the 
populations of multiple areas) might 
apply similar measurement procedures. 
Lastly, each execution of a property can 
have one or multiple results which provide 
a value (Figure 2, ‘Property Results’). Each 
result is assigned a specific time interval 
that denotes its temporal relevance. Thus 
it can be said that the result is only relevant 
within the time interval attributed to it. 
To summarize, neighborhoods of varying 
scales may possess multiple properties 
which can be measured or assessed 
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Prefix Namespace Color 

bag2 https://bag2.basisregistraties.overhe-
id.nl/bag/def/

Orange

bot https://w3id.org/bot# Green

bop https://w3id.org/bop# Pink

time http://www.w3.org/2006/time# Brown

neo https://sanderdemeij.github.io/neo/ Blue

skos http://www.w3.org/2004/02/skos/
core#

-

rdfs http://www.w3.org/2000/01/rdf-sche-
ma#

-

xsd http://www.w3.org/2001/XMLSche-
ma#

-

seas https://w3id.org/seas/EvaluationOn-
tology#

-

through multiple executions with 
different procedures. These executions 
may yield multiple results, each with a 
designated time interval that reflects its
temporal relevance. In this project, 
data from multiple domains is being 
collected to provide a more intelligible 
overview for end-users. However, these 
datasets which describe data about the 
same urban areas (neighborhoods) are 
often stored in separate data silos with 
different data owners, leading to a lack of 
cooperation and connection. To connect 
these datasets, a concrete sample of 
the integrated data mentioned above is 
shown in Figure 4. This figure illustrates 
how data from multiple domains could 
be connected on multiple scale levels. 
Similarly, a sample of this data in Turtle 
format is shown in Figure 5. While Figure 
4 is a visual representation, Figure 5 is a 

F.2 Overview of data integration method

T.1 Prefixes and corresponding namespaces used in 
Neighborhood Energy Ontology (NEO)
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2. Integration

machine-readable example of the data.
By adopting this method, the data is 
made accessible for further analysis and
interpretation by different stakeholders. 
Moreover, in future development, 
different scales and domains can be 
added easily (which will be compatible 
with the designed dashboard).

F.3 Class structure of Neighborhood Energy Ontology (NEO)

Overview of a sample of the integrated data in a visual formF.4



15

Sample of integrated date in Turtle (.ttl) formatF.5
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3. VISUALIZATION

To achieve the goal of more meaningful 
urban energy use data, a web-based 
viewer is created that visualizes 
the integrated data from multiple 
stakeholders. The back end of the viewer 
consists of two databases. First, a graph 
database (Ontotext GraphDB (Ontotext, 
2023)) is used to store the linked data. This
project incorporates data from four main 
sources: (1) energy use data obtained 
from a Dutch energy provider (Enexis 
Netbeheer, 2023); (2) socio-economic 
data collected from several sources of the 
Dutch Central Bureau of Statistics (CBS) 
(CBS, 2019); (3) energy label data procured 
from the Dutch Enterprise Agency 
(Dutch acronym: RVO) (Rijksdienst 
voor Ondernemend Nederland (RVO), 
2022), and (4) building-related data 
gathered from the BAG data (Kadaster, 
2021). A Python converter has been 
developed to convert tabular data into 
RDF data. The converter can integrate 
data from multiple datasets as long as 
the tabular data has a neighborhood 
identifier. It is a helpful addition to the 
dashboard described above, which can 
accommodate any data adhering to 
the data structure outlined in section 2. 
The aforementioned data is used as an 
example in this project, but the converter 
allows for the easy extension of new 
datasets in the future. Second, geometric 
city information is typically unsuitable 
for graph databases, which is why the 
Cesium Ion database (Cesium, 2023) is 
used to store and stream the geometric 
data. This data consists of both 2D and 
3D geometries. The dashboard, a web 

application in JavaScript, visualizes 
the geometric information. This data 
is linked with the linked data using a 
Globally Unique Identifier (GUID). The 
web application lowers the entry barrier 
for endusers and can be easily built 
upon. The dashboard serves two main 
functions, visualization, and interaction 
(through querying). End-users can build 
visual queries, just like the common 
web shop filter bars (see Figure 6). These 
queries are transformed into SPARQL 
Protocol and RDF Query Language 
(SPARQL). Expert users can choose to 
type SPARQL queries manually. The 
results of these queries will be visualized 
in the 3D map, in a table, and a graph. 
The 3D map is created using the Cesium 
package (Cesium, 2022), and the graph 
is constructed using vis.js (vis.js, 2023). 
All these items are interactive so that if 
a user clicks on a certain neighborhood 
in the map, on a row in the table, or an 
element in the graph, the SPARQL query 
will be automatically updated and new 
results will pop up. Users are therefore 
not limited to querying functionalities 
but can explore the available data 
via different intuitive methods. These 
functionalities are shown in Figure 6, 
where the map is shown in the top left, 
while the query is shown in the top 
right. The table and graph are shown in 
the bottom left and right respectively. 
The remainder of this section will show 
these elements in more detail and show 
the different forms they can take (which 
correspond to different functionalities). 
A full overview of all functions and the 
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3.1 Map

As has been mentioned, the map is 
created using the Cesium package 
(Cesium, 2022), which allows for a 
multitude of geospatial representations. 
Cesium was chosen specifically to 
be able to visualize 3D shapes on the 
map. The main map displays the city 
under investigation (Eindhoven, the 

Netherlands) to the end-user, including 
all 6-digit postal code areas in this city. 
Postal codes in the Netherlands are 
formatted with four numbers and two 
letters: 0000AA. Importantly, these 
postal code areas can be grouped 
according to five- and four-digit postal 
codes, meaning that 0000A contains all 
postal codes starting with these digits. 
The user can zoom, pan, and rotate the 
view to investigate all aspects of the city. 
Moreover, within the map, the user can 
click on the postal code areas, which 
gives more information on the selected 
neighborhood. Firstly, an automatic 
query is generated which queries all 

related logic and queries can be found in 
Appendix A, which will refer to additional 
appendices.

F.6 Overview of dashboard
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3.2 Query

3. Visualization - Map

variables associated with this postal code 
area. This allows the user to investigate 
the extent of the data available for this 
area, and get an initial sense of the area. 
The results of such a query are shown in 
Figure 7. For an overview of all functions, 
see Appendix A.1. As this Figure shows, 
all available data on all available spatial 
and temporal levels are shown. Moreover, 
the user can switch between different 
spatial measurement levels, as is shown 
at the top of Figure 7. In section 2 it has 
been explained how neighborhoods 
can contain other neighborhoods, and 
therefore neighborhoods can inherit the 
properties of other neighborhoods. This 
can result in a neighborhood inheriting 
properties which were measured on 
different spatial levels, as can be seen 
in Figure 8. Secondly, a combined 3D 
visualization of the buildings within the 
area is shown. This visualization consists 
of a Light Detection and Ranging (LiDAR)
scan, combined with the 3D BAG dataset 
(Peters et al., 2021) and has Level of Detail 
(LoD) 2. As has been shown in previous 
figures (6, 7, 8), the dashboard shows 
the buildings in 3D using the LiDAR 
scan made available by the University 
of Technology Eindhoven Digital Twin 
Lab. This scan is available for the entire 
city and is visualized with differing levels 
of detail based on the zoom level of the 

map. When the user selects a specific 
neighborhood, the 3D volumes of the 3D 
BAG dataset (Figure 9) are loaded below 
the LiDAR layer which allows the user 
to click on the buildings and make the 
link to the BAG dataset as mentioned in 
section 2.

While the map can be considered the 
core element of the dashboard, the query
functionality adds the first layer of 
interactive capabilities. As is shown in 
Figure 6, the user has the option to select 
energy use variables, as well as other 
variables, to construct a query. These 
variables are automatically generated 
based on the available instances of 
bop:Property in the graphs. Moreover, 
the user can select multiple variables 
to construct more complex queries and 
visualize the results of the query on 
the map. The overview of all functions 
is listed in Appendix A.2. The structure 
for constructing a query is provided 
in Figure 10. Firstly, the user can select 
one of the available properties (with 
different execution methods). This list of 
properties is created dynamically based 
on the available data. Secondly, the user 

Detailed view of postal code area dataF.7
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selects a property to query, after which 
the property is represented correctly. The 
representation method is based on the 
level of measurement indicated for the 
execution method (Figure 2, ‘Property’) 
and a high-level check of the found values. 

Based on whether the data is numerical, 
categorical, or nominal, a different user 
interface is generated to build the visual
query method. In the example provided 
in Figure 10, the data is numerical, and 
therefore the user is presented with 

Example of LoD 2 building from 3D BAG datasetF.9

Data of neighborhood from different spatial levelsF.8
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Step 3

Step 2

Step 1

3.3 Table

3. Visualization - Query

While the main purpose of this project 
is to make urban (energy) data more 
meaningful by visual means, a more 
traditional data representation is also 
included. As Figure 6 shows, a table of 
the results found by the query is created 
where each row represents a postal code 
that is returned by the query, while each 
column represents the corresponding 
value of the variables included in the 
query. The user can sort the table by any 
of the variables from low to high or the 
reverse. Moreover, the user can select a 
postal code to investigate in more detail 
by clicking on it in the table. The map 
will update to show more details of this 
neighborhood as has been explained in 
the previous section. An overview of all 
functions is shown in Appendix A.3.

means to query this data accordingly. 
Moreover, the user can select multiple 
properties to run a complex query. 
Meaning that individual SPARQL queries 
are constructed and executed, which 
all return the correct postal codes and 
their values. When multiple variables 
are queried the overlap between the 
found postal codes is established, and 
these postal codes are shown on the 
map. When the user chooses to visualize 
the results, the found values for that 
variable are converted to five bins, each 
represented by a color (as shown in 
Figure 6). This allows a more intuitive 
way to explore the spread of the found 
values over the city. The user can switch 
between the visualization of all the found 
variables, however, the visualization of 
multiple variables at once is not available 
as the interpretation of this visualization 
would be too complex.

Process of constructing a query using the dashboardF.10
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3.4 Graph

Lastly, the graph visualizes the structure 
of the data to the user. Here, the user can 
investigate the data on a higher level and 
discover what data is available and create 
new queries. Based on the available data, 
the graph shows the connections of the 
properties, firstly based on their super-
property class (as shown in Figure 3). 
When the user selects a property, the level 
of measurement, unit, and measurement 
procedure are shown (Figure 11, top). 
Moreover, when any of these aspects 
are selected their relationship to other 
properties is also visualized (Figure 
11, middle), allowing the end-user to 
investigate the nature of the data in 
more detail. Using these functionalities 
and their interactions, the user can query 
data that crosses multiple domains using 
one method. The user can discover new 
aspects of the data which were previously 
impractical to discover and therefore 
gain new insights about their individual 
questions. This dashboard could be used 
this way to answer existing questions or 
formulate new questions which the user 
was unable to form before. All functions 
of the graph are listed in Appendix A.4.

zInteraction with graph representation of dataF.11
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4. USE CASES

4.1 Energy Poverty

The previous sections have shown how 
NEO can be implemented in the Neo 
Dash semantic digital twin. While this 
digital twin is a first step towards more 
meaningful urban data, it does not 
necessarily solve the challenges described 
in section 1. Therefore, this section will 
go into detail on several, related, use 
cases which will show how this digital 
twin and the proposed semantic data 
structure can make urban data more 
meaningful. Firstly, section 4.1 will show 
an analysis of the concept of energy 
poverty. This analysis will show how data 
from disparate data sources, temporal 
resolution, and spatial scales can be 
combined to gain more insight into a 
relevant societal issue. Secondly, section 
4.2 will be explored how the proposed 
digital twin can also be implemented 
on a very high spatial and temporal 
resolution by exploring the possibilities 
of real-time data implementation. Lastly, 
section 4.3 will explore the possibilities to 
use the data structure and dashboard to 
perform predictive analytics and enrich 
the analysis done in section 4.1. 

The first use case aims to investigate 
the societal issue of energy poverty (or, 
fuel poverty). However, before going 
into detail on the added value of the 
created dashboard and data structure, 
it is necessary to provide a definition 
(or several definitions) of the concept 

of ‘energy poverty’. ‘The definition of 
fuel poverty is important for policy 
formulation; for determining the scale 
and nature of the problem; targeting a 
strategy and monitoring progress’ (Moore, 
2012). According to Moore (2012), an early 
definition of energy poverty was an 
expenditure on energy service exceeding 
10% of a household’s income. However, this 
definition was provided in 1991 and since 
then several alterations have been made, 
moreover, this definition was given in 
the UK context. A more recent definition 
is ‘Low Income, High Cost’ (Dutch: Laag 
Inkomen, Hoge Energierekening (LIHE)) 
(Department for Business, 2020; Mulder 
et al., 2023). Following the definition 
provided by Mulder et al. (2023), this 
definition considers households with low 
income and a high energy bill, where low 
income is considered to be within 130% 
of the poverty line and a high energy 
bill is an energy bill above the median 
(for the year 2019). An even more recent 
and expansive definition is ‘Low Income, 
Low Energy Efficiency’ (Dutch: Laag 
Inkomen, Lage Energetische Kwaliteit 
(LILEK)) (Department for Energy Security 
& Net Zero, 2023; Mulder et al., 2023). This 
definition has the same definition for low 
income as the LIHE definition, however, a 
dwelling is considered to have low energy 
efficiency when the expected energy use 
is lower than an average C-label dwelling.
As can be seen from these three definitions, 
several concepts are combined to 
evaluate energy poverty. These concepts 
range from socio-demographic 
variables (income) to building variables 
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(energy label), which indicates that data 
from several data sources need to be 
combined to easily assess energy poverty 
on an urban scale. Therefore, the goal of 
this use case is to evaluate these three 
definitions of energy poverty, and thus 
show the potential of semantic web 
technologies and associated tools. To 
achieve this goal, a visual approach is 
taken in the dashboard design where the 
income and energy costs are shown per 
neighborhood (Figure 12). In this figure, 
each dot represents a neighborhood, 
which has a corresponding income 
(average per neighborhood from 2021) 
and cost of energy (average energy use 
per connection from 2022, combined 
with an average energy cost of 2022). 
Considering the first definition discussed 
above, this would mean that a line can 
be drawn where the cost of energy 
exceeds 10% of the annual income in 
the neighborhood (Figure 13). In this 
figure, the neighborhoods which fall 
below this line can be considered to not 
be at risk of energy poverty, conversely, 
neighborhoods above this line can be 
considered to be at risk of energy poverty
according to this definition. Similarly, 
according to the LIHE definition, two lines 
can be drawn: 130% of the poverty line and 
the median energy cost (Figure 14). In this 
figure, the neighborhoods in the upper left 
quadrant can be considered to be at risk 

of energy poverty. Considering that the 
vertical line represents the demarcation 
of 130% of the poverty line, and thus 
neighborhoods falling to the left of this 
line are below this benchmark. Similarly, 
the horizontal line represents the median 
energy cost, and thus neighborhoods 
that are above this line have higher 
energy costs than this benchmark. 
Considering the final definition, a slightly 
different conceptual approach is taken. 
The previous definitions have considered 
energy poverty on a neighborhood scale, 
however, as the final definition includes 
building-level data (energy labels) such 
a spatial scale becomes problematic. 
Therefore, only the neighborhoods 
which are considered at risk according 
to the LIHE definition are considered 
in the final analysis. Within this set of 
neighborhoods, if a building is present 
within that neighborhood that has an 
energy label below C, this neighborhood 
is shown in the visualization (Figure 
15). As will be explained in more detail 
below, the radius of the dot represents 
the relative amount of dwellings at 
risk of energy poverty. Implementing 
this conceptual visualization gives the 
following dashboard features. The data 
used in this use case is summarized 
in Table 2. In this table, the variable is 
named, together with its spatial level. 
’PC6’ indicates a postal code level with 

Conceptual representation of energy poverty 
visualizationF.12 Conceptual representation of ‘10% of Income’ 

definition of energy povertyF.13
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3. Use Cases - Energy Poverty

6 digits (0000AA), which is the highest 
level of urban detail in the Netherlands. 
’Buurt’ indicates a spatial level created by 
the Central Bureau of Statistics and is a 
collection of ’PC6’ neighborhoods. First of 
all, the concept of Figure 13 is actualized, 
as is shown in Figure 16. This figure shows 
several aspects of this functionality of 
the dashboard. Firstly, the top part of 
the ‘Energy Poverty Analysis’ box shows 
that the user can switch between 
the three definitions. Moreover, the 
definition and data sources are shown 
in order to inform the user. Secondly, 
the actual graph is visualized where the 
pink dots represent neighborhoods at 

risk of energy poverty, while the grey 
dots represent neighborhoods that are 
not at risk (according to this definition). 
These colors correspond to the map 
visualization (section 3.1), which is 
updated dynamically based on the graph. 
Moreover, it might occur that income 
(Table 2 - 4) is unknown for a certain 
neighborhood, in this case, the income is 
imputed using the mean of the available 
data. These neighborhoods are visualized 
separately to avoid confusion in further 
analysis by the user. Lastly, the number of 
neighborhoods at risk is summed to give 
the user an overview of the magnitude of
the problem at hand (which can also 

Conceptual representation of LIHE definition of 
energy povertyF.14 Conceptual representation of LILEK definition of 

energy povertyF.15

Visualization of ‘10 percent’ definition of energy povertyF.16
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be compared between definitions). As 
the total amount of households per 
neighborhood is known (Table 2 - 5), the
amount of households at risk is also 
shown. As this graph shows, there are 
several neighborhoods that are close to 
the border, which might be of interest 
to the user. By slightly altering the given 
definition, the user might investigate 
how sensitive certain neighborhoods 
are to small deviations in income spent 
on energy services or costs of energy 
services. This analysis is made possible 
by the slider shown in Figure 16, which 
adjusts the border as is shown in Figure 
17. As this figure shows, by adjusting the 
border to 12% of income, more than 600 
neighborhoods are now no longer at risk 
of energy poverty according to the data. 
This difference is shown in the graph by 
the gray dots (which are also represented 
in the map visualization). Similarly, if the 
border would be adjusted in the other 
direction, additional neighborhoods 
would be considered at risk of energy 
poverty. Considering the second 
definition of energy poverty, a similar 
visualization is implemented, as shown in 

Figure 18. The concept of this visualization 
has been explained according to Figure 
14, however, the actual implementation 
is more complex considering that 
different levels of poverty are defined 
by the Dutch government based on 
household composition (Centraal Bureau 
voor de Statistiek, 2022). As the data on 

Visualization of adjustment to the first definition of 
energy povertyF.17

Visualization of LIHE definition of energy povertyF.18
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4. Use Cases - Energy Poverty

household composition (Table 2 - 6, 7, 8 & 
9) is available, it is calculated how many 
households are considered energypoor 
given the different levels of poverty, 
and the available energy cost data. If 
no households are considered energy 
poor according to the LIHE definition, 
the neighborhood is visualized as not 
at risk. The borders shown in Figure 
18 are the least stringent (highest 
poverty line) definitions, which might 
result in neighborhoods falling within 
the borders of the graph representing 
energy poverty, however, being marked 
as not at risk of energy poverty. For the 
previous definition, it has been described 
how the definition of energy poverty can 
be adjusted to explore the sensitivity to 
change. A similar functionality is available 
for the LIHE definition, however, in this 
graph, two dimensions need to be altered 
as this definition is dependent on two 
factors (income and median energy cost). 
This results in a graph similar to the graph 
shown in Figure 19, where the orange 
dots represent neighborhoods that are 
newly marked as at risk of energy poverty 
according to the adjusted definition of 

LIHE. Regarding the last definition, the 
concept of Figure 15 is translated into the
visualization shown in Figure 20. 
As has been mentioned before, the 
neighborhoods represented in this graph 
are considered at risk of energy poverty 
according to the LIHE definition, while 
also containing a dwelling with an energy 
label worse than C. The radius of the dots 

Visualization of adjustment to the LIHE definition of 
energy povertyF.19

Visualization of LILEK definition of energy povertyF.20
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Variable Name Spatial Level Unit

1. Electricity Use pc6 kWh/
connection

2. Gas Use pc6 m3/connection

3. Dwelling Value pc6 x1000 EU

4. Income Buurt x1000 EU

5. Households pc6 -

6. Multi person 
household (no children)

pc6 -

7. One Parent Household pc6 -

8. One Person 
Household

pc6 -

9. Two Parent Household pc6 -

10. Energy Label Building A++++ - G

11. Built Year Building year

12. Area Building m2

T.2 Overview of data used in Energy Poverty use case

is determined by the relative amount of 
such dwellings in the area, which means 
that larger dots represent neighborhoods
with relatively more dwellings at risk of 
energy poverty. To provide more insight 
into individual neighborhoods, the user 
can select a neighborhood which is 
shown in Figure 21. This graph shows 
the actual distribution of energy labels 
in the neighborhood. Moreover, if the 
user selects a label in the graph, the 
corresponding dwellings are shown on 
the map (see Figure 21, energy label D is 
selected). From a user perspective, this 
analysis shows how different definitions 
give different insights into the societal 
issue of energy poverty. This dashboard 
enables the user to switch between 
definitions and argue for certain policy 
measures based on these different 
definitions. Moreover, this use-case 
shows how semantic web technologies 
provide benefits for complex questions 
which require information from different 
sources. The LILEK analysis combines 
energy use, income, household 
composition, number of households, 
and energy label data. Without using 
Linked Data such analysis would be 
hard to conduct (repeatedly). Using the 
proposed ontological structure, and 

the designed dashboard, the user can 
explore the data quickly and repeatedly. 
In addition, the analysis is made more 
meaningful through the ability to explore 
the problem visually. The results of the 
analysis are visualized geographically as 
well as in a graph, allowing the end-user 
to localize interesting areas of the city. 
It is suggested that this adds additional 
meaning to the analysis, as the user is not 
only able to explore the results in a graph, 
but also geographically.

Example of distribution of energy labels in neighborhoodF.21
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4.2 Time Series Data

4. Use Cases - Time Series Data

Therefore, time-series data is stored in 
databases that are created specifically 
for those purposes. The previous use case 
has shown how mostly aggregated data 
is used (aggregated on a spatial as well 
as a temporal level). This type of data is 
suitable for certain purposes, however, 
also introduces uncertainties. The energy
use variable discussed in the previous 
use case shows these uncertainties quite
clearly. This data is the yearly average 
energy use of all the connections to 
the energy grid in that neighborhood. 
Aggregating data over a year eliminates
the fluctuations over seasons and days. 
Moreover, energy use might fluctuate 
greatly between buildings within a 
neighborhood. Therefore, this use case 
will explore the challenge of integrating 
the proposed data structure with time 
series data. While this type of integration 
might not be required in larger urban 
analysis, it can provide additional insight 
on an individual building level. This will 
make urban data more meaningful to 
individuals or small scale urban end-
users, such as real-estate managers. 
Moreover, this will show the transitive 
nature of NEO, where data can be defined 
on multiple scales (and queried on those 
differing scales). Here, the main method 
used is to use the graph as a ’map’ which 
can guide to the right database to query 
for the time series data. This concept is 
explained in Figure 22. This figure shows 
an example of a graph consisting of 

Generally, graph databases (as used in 
this project) can be considered unsuitable
for time series storage. A high-level 
explanation for this characteristic of 
graph databases is the fact that for 
every time-series data point, a new 
set of triples (see Figure 1) needs to be 
created, resulting in a quickly exploding 
graph structure when time-series data 
is recorded with a high frequency. 

Conceptual explanation of the connection between 
Graph- and Time Series databasesF.22

F.23 Overview of the integration of Graph- and Time Series data



29

edges and nodes (triples in this project). 
Some of the black nodes have a related 
data element which is stored in an 
external times series database. Such a 
structure would allow for a query where 
the graph can be explored (like a map) 
to search for nodes that have a related 
time series data point. As has been 
discussed, in order to overcome some of 
the uncertainties of the previously used 
data, higher resolution energy use data 
will be explored. This data will consist of 
time series data on a building level, as 
formally shown in Figure 23. This Figure 
shows how the available structure of BOP 
(https: //w3id.org/bop#) is implemented 
in this project. A building can therefore 
have a certain property (in this use case 
electricity use) which has a property 
state pointing to a data point. This data 
point is part of a particular (time series) 
database and has an associated ID. This 
ID will be used to query the correct data 
for the associated database. In order to 
show the potential of this structure, a 
day of energy use is generated randomly 
for a set of buildings on the University 
of Technology Eindhoven campus. 
Randomly generated data is used as 
such type of data is not available due 
to privacy reasons, however, the goal 

of this use case is to explore the added 
value of making such data available (and 
exploring the challenges). An example 
of such data and its implementation 
into the dashboard is shown in Figure 
24. Here, the dashboard queries the 
Graph database with the URI of the 
selected building and its corresponding 
data point(s) if available. If such a data 
point is available, the corresponding ID 
and database identification are used to 
retrieve the available time series data. 
Using this data on an urban scale results 
in the dashboard as shown in Figure 
25. Here, a similar query is constructed 
as described before, however, for all 
buildings which have time series data 
available. An average of the available data
on a neighborhood level is then used 
for visualization, as shown in Figure 25. 
However, as can be seen, only data is 
available for the campus, therefore, it 
might be desirable to combine both time 
series and yearly average data, using time
series where possible and the yearly 
average otherwise. This implementation 
is shown in Figure 26. At first glance, 
no difference is visible between this 
implementation and the use case 
discussed in Section 4.1. However, 
investigating the time frames shown 

Visualization of time series energy use data on a building levelF.24
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4. Use Cases - Time Series Data

F.27 System of streaming and storing real-time energy use data

Visualization of time series energy use data on a neighborhood levelF.25

Visualization of time series and graph energy use data on a neighborhood levelF.26
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in Figure 26, some of the challenges of 
this use case become clear. The yearly 
average energy use data spans an entire 
year, while the time series average only 
spans one day, which might limit the 
usefulness of such an implementation. 
However, this use case shows how 
this data can be useful to the building 
man agers of this particular urban area 
(university campus). They can investigate
energy use for all sections of the campus, 
while also having access to individual 
buildings’ energy use. Therefore, they 
can move through different spatial 
levels, to gain more insight. Moreover, 
they could link urban data of the 
campus (demographics, greenery, etc.) 
to gain even more insight. However, 
high-resolution energy use data is not 
currently available, therefore, a second 
implementation is explored where 
energy use of a dwelling is used in real-
time. This implementation is created 
in order to show the future potential 
of the dashboard and the value of the 
incorporation of graph and time series 
databases. In order to store and stream 

this data, a P1 meter (HomeWizard 
BV, 2023) is connected to a dwelling 
in Eindhoven. This meter is accessible 
through a local API, which is used in a 
continually run program to store the data 
every 5 minutes while streaming the data 
every 10 seconds (see Figure 27). In order 
to continually stream the data, the MQ 
Telemetry Transport (MQTT) protocol is 
used. This protocol uses a central broker, 
where data can be published on certain 
topics. Once subscribed to these topics, 
the streamed data can be retrieved. The 
central broker and publishing topic are 
encoded in the graph structure shown in
Figure 23, where the database indicates 
the correct broker, while the ID provides 
the correct topic. The topic is dependent 
on the type of data that is streamed (in 
this case electricity use), the city, and the 
building in that city, resulting in topics 
of the following format: ‘CITY/VARIABLE/
BUILDING URI’. The implementation of 
this system is shown in Figure 28. The 
dashboard queries for the correct broker 
and topic for the building and shows 
to most recently published data. While 

Visualization of real-time energy use data on a building levelF.28
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4.3 Predictive Analytics

4. Use Cases - Predictive Analytics

The previous two use cases have 
focussed on the analysis of existing data 
and visualizing that data in order to gain 
better insights. However, users might also 
require some predictive analytics as part 
of the dashboard. Therefore, this section 
will delve into a possible implementation 
of such an analysis. Section 4.1 discussed 
how the energy labels of individual 
dwellings are used, however, not all 
buildings in the city under investigation 
have known energy labels. The data 
includes 136122 buildings labeled as a 

dwelling (Dutch: ’woonfunctie’) or with 
an unknown function. Of these buildings, 
51099 (37.5%) have an unknown energy 
label. Therefore, the goal of this use case 
is to categorize these buildings according 
to the Dutch energy label system based 
on the available data. The data used for 
this analysis is a combination of data from 
the Cadastre, Land Registry and Mapping 
Agency of the Netherlands (Dutch: 
Kadaster), Central Bureau of Statistics, 
and Energy Provider. More concretely, 
on a building level the construction year 
and footprint (m2) are used, while on a 
neighborhood level average building 
value (Dutch: ’WOZ waarde’), electricity, 
and gas use are used. In this analysis 
building and neighborhood-level data 
are combined, where it is assumed that 
the average data from the neighborhood 
is applicable to the buildings in that 
neighborhood. As an example, if a building 
is built in 1970 and is 100 m2, while being 
situated in a neighborhood where the 
average building value is €200.000, it is 
assumed that that building is worth the 
same amount (the value of all buildings 
in that neighborhood is assumed to 
be that amount). The SPARQL query 
to gather the previously mentioned 
data is shown in Figure 29 . In order to 
eliminate neighborhoods where energy 
use is exceptionally high due to industrial 
activity, only neighborhoods are included
where the percentage of dwellings (and 
buildings with a non-defined purpose of
use) is above 95%. Moreover, data is 
gathered from 2020, which is the most
recent year all previously mentioned 
variables are available. Considering the 
buildings with an unknown energy 
label, it might be most advantageous 
to label them with a new energy label 
ranging from A++++ to G. However, 
initial exploration of prediction models 
showed that this yields very low accuracy. 
Therefore, another solution has been 

also querying a time series database as 
described before, to show all the available 
data. This implementation shows how it 
is possible to stream and store energy use
data for buildings and use that data on 
an urban level. Moreover, as Figure 28 
shows, this type of data can be matched 
to external data to gain new insights as 
also the temperature of the recorded 
time is shown using an external API. As an 
example, Figure 28 shows certain peaks 
in energy consumption which can be 
related to the relatively high temperature 
on the recorded day. The building 
owner, or real-estate manager, can now 
investigate these trends and relate them
to additional building and urban 
characteristics. Concluding, this use case 
has shown how the proposed ontological 
structure can be used and extended to 
incorporate time series data and gain 
more insight into urban energy use. 
While the use case described in section 
4.1 explored energy use on a larger urban 
scale, this use case has shown how the 
semantic digital twin can be implemented 
on a smaller urban scale to make energy 
use more meaningful on an individual 
building or small neighborhood level.
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found. Regarding the LILEK definition of 
energy poverty discussed in Section 4.1, it 
is sufficient to know if a building has an 
energy label better or worse than C. This 
simplifies the categorization task as only 
two categories remain. The process for 
training and using the model is shown 
in Figure 30. For the categorization 
model, a Random Forest (RF) model 
is used. Comparing several models 
(logistic regression, Tree algorithm, 
Random Forest, Neural Network) the RF 
showed to best performance relative to 
processing time. Moreover, while this use 
case is aimed at showing the potential of 
predictive analytics within the proposed 
dashboard and data structure, the process 
of incorporating such an analysis is the 
main goal, not the actual performance of
the model. The model is trained using 
a 75/25 train-test split, where the data is 
normalized (between 0 and 1) in order to 
eliminate outsized effects of the larger 

orders of magnitude of some variables. 
In order to train the model, the scikit-
learn package (Pedregosa et al., 2011) is 
used. To assess the performance of the 
model a confusion matrix is created as 
shown in Table 3. This matrix indicates 
a precision of 92%, recall of 92%, and 
overall accuracy of 89%. For the purposes 
of this use case, this performance is 
deemed acceptable and therefore the 
model will be used in the remainder 
of this project. As Figure 30 shows, the 
prediction model is used in two different 
ways. Firstly, the dashboard can access 
the model directly via a custom API. Here, 

SPARQL query to collect data for predictive analysisF.29

T.3 Confusion matrix of Random Forest model

<C >=C

<C 7373 677

>=C 626 3146A
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u
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F.31 Results of API call made to Random Forest model

4. Use Cases - Predictive Analytics

the API call includes the relevant data 
on an individual building and the return 
message indicates whether that building 
is more likely to have an energy label 
above or below C according the to model. 
An implementation of this is shown in 
Figure 31. This image shows how for each 
dwelling in the building the energy label 
is checked, which is shown if it is available. 
Otherwise, the API call is made and the 
results are shown. Considering that the 
known energy labels in this building are 
D, the result of ’Worse than C’ seems 
reasonable. While this method works for 
a relatively small amount of dwellings, 
processing times become intractable if 
all 51099 dwellings need to be estimated

in real-time every time an analysis is 
done. Therefore, the results of the RF 
model are also stored in the graph 
database directly, so they can be queried 
for the energy poverty analysis directly. 
The ontological structure for storing the 
energy labels is shown in Figure 34. Here 
it can be seen that the same structure for 
defining properties on a neighborhood 
level is used. This structure allows the 
user to differentiate between actual and 
predicted energy labels by querying the 
appropriate procedure (in Figure 34 a 
predicted energy label is shown). Section 
4.1 has shown the LILEK analysis, however, 
this analysis was conducted using only 
the available, known energy labels. Using 

Process for incorporating Random Forest Model into dashboardF.30
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the estimated energy label categories, 
this analysis can be performed differently, 
yielding the results shown in Figure 32. 
While these results do not seem different 
from the results shown in Figure 20, Figure 
33 shows that the newly estimated energy 
label categories are indeed included in 
the analysis. Further analysis shows that 
roughly 335 (5%) additional households 
are considered to be at risk according to 
the analysis including estimated energy 
label categories. This final use case has 
shown how the proposed data structure 
can be leveraged to gather data to train 
predictive models, while also retrieving 
data to make predictions. Moreover, 
these models can be integrated into 
the created dashboard which allows for 
more comprehensive analyses. While 
this use case serves as an example of 
classical machine learning, it might 
serve as a first step towards more robust 
artificial intelligence according to the 
definition provided by Marcus (2020). 
’Business as usual has focused primarily 
on steadily improving tools for function 
approximation and composition within 
the deep learning toolbox, and on 
gathering larger training sets [...] one can 
imagine improving systems by gathering 
larger data sets, augmenting those data 
sets in various ways, and incorporating 
various kinds of improvements in the 
underlying architecture.’ (Marcus, 2020). 
The author argues for an approach more 
similar to the cognitive cycle where 
humans take in perceptual information 
from the outside, build internal cognitive 
models based on their perception of that 
information, and then make decisions 
with respect to those cognitive models. 
Here, the proposed ontological structure 
might serve as a ’cognitive model’ for 
decision-making in the urban setting, 
which would allow for more robust, 
contextual urban modeling by artificial 
intelligence in the future. Or, to build 

systems that an ’routinely acquire, 
represent, and manipulate abstract 
knowledge, using that knowledge in 
the service of building, updating, and 
reasoning over complex, internal models 
of the external world’ (Marcus, 2020).
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Energy label distribution of neighborhood shows the inclusion of estimate energy label categoriesF.33

LILEK analysis including estimated energy label categoriesF.32

Ontological structure for storing energy labelsF.34

4. Use Cases - Predictive Analytics
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5. DISCUSSION & 
CONCLUSION

The goal of this project was to make urban 
(energy use) data more meaningful. The 
seaming lack of meaning in the current 
situation is suggested to be threefold 
First of all, a general lack of building 
information and other data limits the 
possibilities for cross-domain monitoring, 
simulation, and interventions (Curry et 
al., 2013). Secondly, current methods 
for urban energy modeling are mostly 
either top-down or bottom-up models, 
which limit the possibilities for analysis 
on multiple scale levels (Abbasabadi 
and Mehdi Ashayeri, 2019). Therefore, 
semantic web technologies and Linked 
Data are suggested as possible solutions
to create more meaning in the data. 
However, this leads to the third and 
last impediment to more meaningful 
urban data, which is the lack of available 
ontological structures that are deemed 
suitable for the purposes of this project. 
In order to solve these challenges a new 
ontological structure has been proposed,
Neighborhood Energy Ontology (NEO). 
This allows for the description of urban 
data properties on multiple spatial 
and temporal levels, where properties 
can be transitive between urban areas 
(’neighborhoods’) that contain each 
other. Built upon this data structure is 
the semantic digital twin NeoDash. This 
digital twin allows the user to explore 
the available data in a more intuitive 
way. Moreover, several use cases have 
shown how the digital twin can be 
implemented to solve societal issues. The 
newly proposed ontological structure 
(Neighborhood Energy Ontology (NEO)) 

holds some advantages over previously 
mentioned ontologies. Ontologies like 
those mentioned by Chun et al. (2020); 
Reinisch et al. (2011); Daniele (2020), 
are mostly concerned with energy use 
on a single scale (microgrids, houses, 
and appliances). While this is suitable 
for those use cases, this methodology 
does not solve the issues mentioned 
by (Abbasabadi and Mehdi Ashayeri, 
2019) of lack of analysis on multiple scale 
levels. Similarly, existing ontologies like 
SAREF4CITY and EM-KPI, are mostly 
concerned with larger-scale urban data. 
NEO aims to bridge the gap between 
these two approaches and allows for 
large-scale urban data (section 4.1 to 
smaller-scale building level (section 4.2 
data. Moreover, as NEO is built upon the 
structure of both BOT and BOP, even 
smaller spatial levels could be achieved. 
This shows how this challenge of top-
down and bottom-up integration is also 
addressed by NEO. As data is integrated 
on all scale levels, it can be aggregated 
from the top-down or the bottom-up, 
depending on the desired analysis. 
Different implementations of this were 
given in section 4.2. Furthermore, as 
the developed semantic digital twin 
is based upon NEO, it is suggested to 
hold an advantage over more traditional 
GIS platforms (based on, for example, 
cityGML). The conducted use cases show 
how the integrated data can be used for 
multiple types of analysis and models, 
where the user is no longer limited by 
a lack of integration. This allows to user 
to ask new, different, and more complex 
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questions that were harder or infeasible 
to ask in a more traditional urban model.
In order to explore the possibilities 
of semantic digital twins further, the 
possibilities of ontology alignment 
should be further explored. As has been 
mentioned, existing ontologies have 
great potential to describe specific 
energyrelated topics, which could be 
beneficial for larger-scale urban data 
analysis. Therefore, alignment between 
NEO and ontologies like SAREF4CITY and 
EMKPI could prove beneficial. Moreover, 
while this project has focussed on the 
feasibility of developing a semantic 
digital twin, the implications of such 
a tool should be further investigated. 
Potential risks, such as privacy should be 
further explored. Section 4.2 has shown 
how more accurate energy use data 
can be used, however, it did not discuss 
the privacy implications of making such 
data available. Moreover, this might well 
depend on the end-user of such a tool, 
which has not been made explicit in this 
project. Depending on the end-user and 
their specific incentives, the societal, 
economic, and environmental impact of 
such a semantic digital twin should be 
further investigated. It is suggested that, 
while the data structure will not change, 
different digital twins can be built upon 
that data structure in order to serve 
different end-users with specific end 
goals. This assumption should be explored 
further in future work. Concluding, 
this project has aimed to add to the 
current state of urban energy modeling 
through the addition of semantic web 
technologies and Linked Data. The newly 
proposed ontology adds to the existing 
body of ontological structures by allowing 
for urban data description on multiple 
spatial and temporal levels. Moreover, the 
created semantic digital twin leverages 
this data structure to allow for more 
intuitive data exploration through visual 

means. The benefit of such a digital twin 
is shown through the use cases described 
in section 4. These use cases show how 
Linked Data in combination with digital 
twins can, indeed, provide additional and 
more meaningful insight into urban data. 
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# Name Use Functions Code
1 Map As  explained in Section 3.1, 

the main functionality of the 
dashboard is the map. The 
map visualizes the city under 
investigation and the results of 
the queries and analysis when 
relevant. All functions will be 
detailed in A.1 below.

loadCesium() 
toggleGeometry()
toggleNeighborhoods() 
toggleAll(false)

B.1
B.2 
B.3
B.4

2 Query Button Toggles the Query Box, which is 
elaborated in Section 3.2 and in 
A.2 below. 

toggleAll(‘sideColumn’) B.4

3 Table Shows the relevant results of 
the query and has interactive 
functions with the map (Section 
3.3, A.3).

updateTable(postalCode) 
orderTable(variable, ordering) 

B.5
B.6

4 Graph Shows the relationship 
of the queried variable or 
neighborhood in graph format 
(Section  3.4, A.4). 

getMetaData() 
getInstanceData() 

B.7
B.8

5 Time Series Button Toggles the Time Series Analysis 
Box (Section 4.2, A.5).

toggleAll(‘timeSeriesBox’) B.4

Appendix A
Dashboard

This appendix describes all functionalities 
of the dashboard in more detail. Below 
every aspect of the dashboard will be 
discussed, including their assigned 
names, uses and which functions they 
include. These functions are part of the 
code which builds up the dashboard, 
which are further explained in Appendix 
B (page 60). Firstly, the major parts 
of the dashboard will be explained as 
in Section 3 of the main report. After 
which, each part of the dashboard will 
be explained in more detail. While the 
main report gives an overview of the 

most important functions, this Appendix 
will explain all functionalities build in to the 
dashboard and why they might be relevant 
for the overall function. 
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# Name Use Functions Code
6 Energy Poverty 

Button
Toggles the Energy Poverty 
Analysis Box (Section 4.1, A.6).

toggleAll(‘energyPoverty-
Box’)

B.4

2

1

6

5

3 4

Overview of Dashboard including function markingsF.A1
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# Name Use Functions Code
1.1 Disable 

Neighborhoods 
Button

The user is able disable (and enable) 
the visualization of the neighborhoods. 
As the neighborhoods present a strong 
visual component of the map, the user 
might choose to not visualize them. This 
also disables the interactivity on building 
level.

toggleNeighborhoods() B.3

1.2 Disable 
Geometry 
Button

Similar to function 1.1, this button dis-
ables (or enables) the LiDAR geometry, 
visualizing the BAG volumes seperatly 
(Figure A2-B). This might assist the user 
in selecting the appropriate building. 

toggleGeometry() B.2

1.3 Reset View But-
ton

Some queries and interactions might 
lead to upredictable results or an error in 
the dashboard. Therefore, the user is able 
to reset the view (and current queries) as 
to start their analysis over. 

resetView()

1.4 Cesium Map The main functionalities have been 
explained in Section 3.1. The user is able 
to perform traditional 3D manipulations 
like panning and zooming. Moreover, 
the standard Cesium geo-encoder 
(geospatial search bar) is functional. 
Dashboards specific functions are 
interaction with the neighborhoods and 
corresponding buildings. Interacting 
with the neighborhood results in a 
view as shown in Figure A2-A where 
the neighborhood is highlighted and 
the corresponding neighborhood data 
is shown. Moreover, this interaction 
enables interaction on a building level. 

loadCesium()
loadInfo(postalCode) 
togglePC(postalCode, 
building)

B.1
B.12
B.9

A.1 Map
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1
2

34 5

6
F.A2 - A

F.A2 - B
Overview of all Map functionalitiesF.A2
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9

# Name Use Functions Code
1.5 Spatial Level 

Slider
As has been explained in Section 3.1, the 
user is able to visualize neighborhood 
specific data on different spatial levels. 
This slider shows the available spatial 
levels and the user can select any of them 
by moving the slider, which updates the 
table below to only show data which is 
measured with that spatial resolution. 

showArea(postalCode) B.5

1.7 Building URI When a building is selected, the user is 
able to link directly to the Cadastre data 
using the buildings URI. These numbers 
are hidden in Figure A3 for privacy 
reasons. 

1.8 Building Func-
tion

When a building is selected, the user 
is able to directly link to the Cadastre 
definition of the purpose of that building. 

1.9 Energy Data 
Button

The user is able to query whether 
time-series energy use is available for 
the selected building. If such data is 
available, the visualization shown in Fig-
ure 24 is created for the selected build-
ing. 

loadBuildingEnergy-
Use() 

B.16

87

Overview of individual building information and functionalitiesF.A3
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# Name Use Functions Code
2.1 Select Energy 

Variable 
Dropdown

The user is able to select any 
variable to query energy use in 
the dashboard. However, the tool 
suggest appropriate variables based 
on the neo:EnergyUse class defined 
in Figure 3. These variables are 
directly queried from the database 
(see Figure 10). 

getQueryVariables(energy) B.17

2.2 Select Variable 
Dropdown

Same function as described in 2.1, 
however, the tool gives no recom-
mendations for energy use specific 
variables

getQueryVariables(energy) B.17

2.3 Time Frame 
Slider

The slider lets the user select the 
appropriate time frame related to 
that specific variable. By default, the 
most recent time frame is selected. 
Moreover, the user is able to evaluate 
different variables on different time 
frames. 

updateRatioSlider(variable, 
minMax, inputType, 
procedureName)
updateDateSlider(variable)

B.18

B.19

2.4 Variable Range 
Sliders

The user is able to select the range of 
values they want to query. The range 
of these values is defined by the found 
values. Moreover, the opposing slider 
is automatically adjusted when the 
slider exceeds that opposing slider. 

updateRatioSlider(variable, 
minMax, inputType, 
procedureName)
updateRatioValue(variable, 
inputType)

B.18

B.20

2.5 Variable Range 
Input

Similar to function 2.4, the user is 
able to manually input the range of 
the queried variable. 

updateRatioSlider(variable, 
minMax, inputType, 
procedureName)
updateRatioValue(variable, 
inputType)

B.18

B.20

2.6 Visualization 
Button

For the appropriate variables, the 
user is able to visualize the range of 
results found by the set query. Here, 
the found values are ‘binned’ into five 
categories (from low to high) and an 
appropriate color is connected to 
each category. These cateogories are 
then visualized on the map (as shown 
in Figure 6). 

visualizeScore(variable, 
showArea)

B.13

A.2 Query
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# Name Use Functions Code
2.7 Remove 

Variable Button
If the user no longer wants to include 
a variable in their query or analysis 
they can remove it via this button. The 
query is automatically updated and 
possible visualizations are removed. 

removeVariable(variable) B.21

2.8 Category 
selection 
buttons

Similar to function 2.4, the user is able 
to select one of the found categories 
describing this variable. Differing 
variable representations are chosen 
as described in Section 3.2,

onButtonSelect(variable, 
category, procedureName)

B.22
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Overview of query functionsF.A4
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# Name Use Functions Code
3.1 Neighborhood 

Button
The user is able to select 
a specific neighborhood 
from the results. This 
neighborhood is then 
automatically visualized in 
the map. 

showSinglePostalCode(postalcode) B.23

3.2 Order Table The user can order to table 
from high to low or low to 
high when the corresponding 
variable is clicked in the 
results table. 

orderTable(variable, ordering) B.6

3.3 Maximize View 
Button

As can be seen in Figure 6, the 
results table only fills halve of 
the width of the screen by 
default. However, the user 
can choose to display the 
table on the full width of 
the screen by pressing this 
button. 

fullScreen() B.24

3.4 Hide/Show 
Results Button

The default state of the results 
table is ‘hidden’, meaning 
that the results are not shown 
in order not to clutter the 
dashboard. When the user 
wants to see the results table, 
they can press this button to 
show it, after which they can 
use this button again to hide 
the results table again. 

showResults() B.25

3.5 Export Button If the user wants to use the 
results of the query in another 
application or tool, they can 
export the results table in 
`.csv’ format by pressing this 
button. 

exportData() B.26

A.3 Table
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Overview of table functionsF.A5
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# Name Use Functions Code
4.1 Graph 

Interaction
By default, the ‘metadata’ of the 
available data is represented in 
the graph. However, in order to 
avoid unnecessary cluttering, 
not all information is shown. 
Therefore, the user is able 
to interacht with the graph 
to show more information, 
specific to the user’s interest. 

getMetaData() B.7

4.2 Maximize View 
Button

Similar to function 3.3, the 
graph visualization only covers 
half of the width of the screen 
by default. If the users wants 
to visualize the graph on the 
full width, they can do so by 
pressing this button. 

fullScreen() B.24

4.3 Hide/show 
Graph Button

Similar to function 3.4, the 
user can hide (minimize) the 
graph by pressing this button. 
When the graph is already 
minimized, the user can show 
it by pressing this button as 
well. 

showGraph(graphType) B.27

4.4 Neighborhood 
Graph Button

When a specific neighborhood 
is selected (see functions  1.4 
and/or 4.1), the specific data 
for that neighborhood is 
visualized in this graph. The 
user can manually switch 
between the metadata and 
neighborhood specific graphs 
using this buton  

showGraph(graphType) B.27

A.4 Graph
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Overview of graph functionsF.A6
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# Name Use Functions Code
5.1 Time Series 

Electricity Use 
Button

Within the time series analysis three 
main functions exists (functions 5.1, 
5.2 and 5.3) The first of which is to 
evaluate which buildings have time 
series data attatched to them and 
use that as the source for the energy 
use visualization in the map (see 
Section 4.2, Figure 25).

getTimeSeries(level) B.28

5.2 Postal Code 
Electricity Use

The second function within this 
analysis uses electricity use as it has 
been described previously, which 
is no different from the selection of 
electricity use in function 2.1.

getTimesSeries(level) B.28

5.3 Combination 
Button

The third function combines the 
previous two functions and visualizes 
a combination of of the two different 
sources of electricity use. The 
advantages and disadvantages have 
been discussed in detail in Section 
4.2. 

getTimeSeries(level) B.28

5.4 Select Building 
Dropdown

The final functionality within this 
analysis is to query a specific building 
which has either time series or real-
time data associated with it in the 
graph database. This dropdown 
shows all those buildings. When a 
building is selected the visualization 
shown in Figure 28 is created. 

getRTBuildings()
queryDBrealTime(id, 
params)

B.29
B.33

A.5 Time Series
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Overview of time series analysis functionsF.A7
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# Name Use Functions Code
6.1 10% of Income 

Button
As described in Section 4.1, 
this project considers three 
definitions of energy povert. 
The user is able to select to 
analyze the first of these 
definitions through this button. 
This will query the correct data 
and create a graph showing the 
estimated income and energy 
cost of all neighborhoods in the 
city. The neighborhoods which 
are considered energy poor 
according to this definition 
are visualized in the map 
(corresponding to the graph). 
Where income data was lacking, 
the median value of the city is 
imputed. 

createEPGraph(toggle, epType, 
prediction) 

B.30

6.2 LIHE Button This button will show the 
second energy poverty 
defintion as defined in Section 
4.1. The functionality is similar 
to function 6.1, however as the 
definition of energy poverty 
is different a slightly different 
graph is created (see Figure A8).

createEPGraph(toggle, epType, 
prediction)

B.30

A.6 Energy Poverty
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Overview of functionalities energy poverty analysis (10% of income and LIHE definitions)F.A8
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# Name Use Functions Code
6.3 LILEK 

Dropdown
As the last definition of energy 
poverty is dependent on 
building level data (energy 
labels) this graph is created 
slightly differently (Figure A9). In 
this graph only neighborhoods 
where dwellings are considered 
at risk of energy poverty are 
shown, where the radius of 
the dot represent the relative 
amount of such dwellings. As 
is discussed in Section 4.3, the 
user can select whether to use 
only known energy labels, or 
also predicted energy labels for 
this analysis. 

createEPGraph(toggle, epType, 
prediction)

B.30

6.4 Adjust Income 
Slider

As some neighborhoods are 
close to the border of energy 
poverty, the user is able to slightly 
adjust the definition using this 
slider. This will add or remove 
neighborhoods from the set of 
labelled neighborhoods, both 
in the graph as well as the 
map. This allows the user to 
investigate the sensitivity of the 
defintion. 

updateAPLText(‘energy’)
createEPGraph(toggle, epType, 
prediction)

B.31

6.5 Graph 
Interaction 

When a user interacts with 
one of the dots representing 
a neighborhood, the map will 
zoom in to that neighborhood. 
Moreover, the user is able to use 
generic functions in the graph 
such as: panning, zooming, 
resetting the axis and toggling 
datasets. 

6.6 Adjust Energy 
Cost Slider

As the second defintion of 
energy poverty relies on two 
borders (see Section 4.1), this 
additional slider allows the user 
to adjust the full definition of 
energy poverty in this scenario 
similar to function 6.4. 

updateAPLText(‘energy’)
createEPGraph(toggle, epType, 
prediction)

B.31
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# Name Use Functions Code
6.7 LILEK Graph 

Interaction
While function 6.5 describes 
interaction with the graph for 
the first two defintions of energy 
poverty, this function is specific 
to the graph of the last definition 
(LILEK). While it includes 
the functionality described 
in 6.5, it also generates a pie 
chart visualizing the different 
energy labels occuring in that 
neighborhood (see Figure 
33).  If the user clicks on one of 
the labels in this pie chart, the 
corresponding buildings in the 
neighborhood which have such 
a label will be highlighted.

7
Overview of functionalities energy poverty analysis (LILEK definition)F.A9
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Appendix B
Code

This appendix will give a psuedo code 
overview of the most important pieces 
of code of the dashboard described in 
this report. For each element of code 
the name of the function will be given, 
while the input variables will be defined. 
Lastly, the code will be explained through 
psuedo-code and textual explanation 
where necessary. 

Moreover, within the code there are three 
important dictionaries which will be used 
throughout this appendix: 
1.  postalCodeDict - This dictionary is 

formatted as follows:     
{
 variable 1 : [postalCode 1, ..., postalCode N]
 ...
 variable M: [postalCode 1, ..., postalCode N]
}

{
 variable 1 : 
  {
   postalCode 1 : value,
   ...,
   postalCode N: value
  },
 ...,
 variable M: 
  {
   postalCode 1: value, 
   ....,
   postalCode N: value
  }
}

In this dictionary all queried variables 
and their found postal codes will be 
stored. As will be explained later, this 
allows for the final visualization of all 
overlapping postal codes in the map 
function. 

2. nanDict - This dictionary is formatted 
the same as the postal code dictionary 
(point 1), however, this dictionary stores 
all postal codes which have return 
an unknown value for that specific 
variable. 

3. valuesDict- This dictionary is formatted 
as follows:      

This dictionary describes each specific 
value for each found postal code for 
that variable. 
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B.1 loadCesium()

Dependencies
togglePC(postalCode, building)       B.9, ,  p. 69
predictEnergyLabel(buildingNumber, postalCode, buildYear, area) B.10,  p. 70 
      
Query 
• C.1, p. 104

Code

This function loads the cesium software and the required data which is fundamental 
to the map visualization. Each data element is loaded as a layer, while interactivity 
with those layers is enabled. When the users clicks on the map it is checked whether 
this click has occured on the neighbhorhood geometry, if so, the neighborhood is 
toggled. Otherwise (assuming a layer is clicked), it assumed that the click has occured 
on a building. Therefore, that buildings data is queried directly from the Cadastre 
and the energy label of that building is retrieved.  
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B.2 toggleGeometry()

Code

The goal of this function is to show the BAG geometry. Therefore, the LiDAR scan 
needs to be disabled and the BAG geometry enabled (or reversed when the function 
is toggled again). Therefore, the function finds the LiDAR scan layer and toggles 
is depending on the state of the pressed button. Afterwards, the same action is 
performed on the BAG building geometry, however, when a specific neighborhood 
is selected, only the building geometry within that neighborhood is shown. 
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B.3 toggleNeighborhoods()

Dependencies
updatePostalCodes(emptyResult)      B.11 (p. 71)

Code
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B.4 toggleAll(show)

Input Variables
• show - expected to be a string value indicating the box that is toggled and 

therefore needs to be shown or hidden. 

Code
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B.5 updateTable(postalCode)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a 

6-digit postal code as defined on page 17. This variable represents the fact that a 
single postal code is selected.

Code
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B.6 orderTable(variable, ordering)

Input Variables
• variable - expected to be a string representing the relevant variable 
• ordering - expected to be a string variable, either ‘highToLow’, ‘lowTohigh’ or 

‘none’. Reflects the way the column needs to be ordered. 

Auxilliary Variables
• createTableDict - dictionary created in function B.6 which is required for the 

creation of the data table. Is in the format: 
 {
  postal code : 
   {
    variable : value
   }
 }

Dependencies
• updateTable(postalCode)       B.5 (p. 65)

Code

This function hides all other available ‘boxes’ which could show on the right side of the dashboard, 
while showing the one currently toggled (or the reverse). Moreover, it halfs the display size of the 
map in order to make room for the information. The toggle direction (show or hide) is based on 
the status of the pressed button. 
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B.7 getMetaData()

Query 
• C.2 (p. 105)

Code

This function defines the creation of the default network graph (Section 3.4). First, 
relevant data is queried from the graph database, after which, for each line in the 
result a node and edge are created. Only the ‘base’ of the graph is visualized (see 
Figure 11). In the creation of the graph, also the interactive behavior is defined. Where 
the graph is expanded when the user clicks on a node. When an already expanded 
node is clicked again, the connected edges and nodes are again hidden, if they are 
not also connected to another visible node or edge. 
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This function is comparable to function B.8, however, as the query is based on a 
selected postal code for this function. Moreover, as properties of a postal code can 
be inherited from containing neighborhoods (see Section 2.1), those neighborhoods 
and connected properties are added to the graph. These nodes are connected to the 
selected postal code in the graph. 

B.8 getInstanceData(postalCode) 

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a 

6-digit postal code as defined on page 17. This variable represents the fact that a 
single postal code is selected.

Query 
• C.3 (p. 106)

Code
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This function determines what action to perform when a geometry is clicked in the 
map. If it is a postal code, it might be the first time that that postal code is clicked, in 
which case the postal code will be highlighted. If the postal code has already been 
clicked, the highlight will be removed. When the clicked element is a building, function 
B.12 is called. 

B.9 togglePC(postalCode, building)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a 

6-digit postal code as defined on page 17. This variable represents the fact that a 
single postal code is selected.

• building - expected to be a string or boolean indicating the relevant building 
URI,  alternatively the variable can also be declared False. 

Dependencies
• visualizeScore(variableName, showArea)    B.13  (p. 73)
• loadInfo(postalCode)        B.12  (p. 71)
• updateTable(postalCode)       B.5  (p. 65)
• toggleAll(show)        B.4  (p. 64)

Auxilliary Variables
• scoredVariable - global variable indicating which variable is currently being 

visualized on the map (function B.13). Is False by default, and when no variable is 
being visualized.

Code
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B.10 predictEnergyLabel(buildingNumber, postalCode, buildYear, area)

Input Variables
• buildingNumber - expected to be a string indicating the BAG URI for the specific 

building.
• postalCode - expected to be a string in the format ‘0000AA’ representing a 6-digit 

postal code as defined on page 17. This variable represents the fact that a single 
postal code is selected.

• buildYear - expected to be an integer reflecting the year the building was build, in 
the format 2023.  

• area - expected to be an integer reflecting the area of the building in square 
meters, in the format 50.

Query 
• C.4 (p. 107)

Code
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B.11 updatePostalCodes(emptyResult)

Input Variables
• emptyResult - boolean indicating if another function has found that no results 

where determined using the existing query, or if the map needs to be reset to 
the original visualization. Note: code below will be run to check if this boolean is 
set correctly. 

Dependencies
• updateTable(postalCode)       B.5 (p. 65)

Code



72

B.12 loadInfo(postalCode)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a 

6-digit postal code as defined on page 17. This variable represents the fact that a 
single postal code is selected.

Query 
• C.5 (p. 108)

Code



73

B.13 visualizeScore(variable, showArea)

Input Variables
• variable - expected to be a string representing the relevant variable 
• showArea - expected to be a boolean which indicates whether a specific 

neighborhood is selected, which needs to be visualized. 

Dependencies
• updatePostalCodes(emptyResult)      B.11 (p. 71)

Code
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B.14 resetView()

Dependencies
• removeVariable(variable)         B.21  (p. 81)
• createEPGraph(toggle, epType, prediction)     B.30  (p. 90)
• updatePostalCodes(emptyResult)      B.11  (p. 71)

Code
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B.15 showArea(postalCode)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a 

6-digit postal code as defined on page 17. This variable represents the fact that a 
single postal code is selected.

Dependencies
• visualizeScore(variable, showArea)      B.13 (p. 73)

Query 
C.6 (p. 109)
C.7 (p. 110)
C.8 (p. 111)
C.9 (p. 112)

Code
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B.16 loadBuildingEnergyUse(building)

Input Variables
• building - expected to be a string or boolean indicating the relevant building 

URI,  alternatively the variable can also be declared False. 

Query 
• C.10 (p. 113)

Code
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B.17 getQueryVariables(energy)

Input Variables
• energy - boolean indicating whether the selected dropdown menu is related to 

energy (true) or regular (false) query variables.

Query 
• C.11 (p. 114)
• C.12 (p. 115)

Code
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B.18 updateRatioSlider(variable, minMax, inputType, procedureName)

Input Variables
• variable - expected to be a string representing the relevant variable minMax - 

expected to be a string indicating whether the input type relates to the minimal or 
maximal value (expected to be either ‘min’ or ‘max’) 

• inputType - expected to be a string indicating whether the input type is ‘slider’ or 
‘text’, allowing the function to be used by both the sliders and the text input. 

• procedureName - expected to be a string indicting the procedure of the variable.

Dependencies
• updateRatioValue(variable, inputType)      B.20  (p. 78)
• updatePostalCodes(emptyResult)     B.11  (p. 71)
• visualizeScore(variable, showArea)     B.13  (p. 73)
• createEPGraph(toggle, epType, prediction)    B.30  (p. 90)

Query 
C.13 (p. 116)

Code
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B.19 updateDateSlider(variable)

Input Variables
• variable - expected to be a string representing the relevant variable 

Code
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B.20 updateRatioValue(variable, inputType)

Input Variables
• variable - expected to be a string representing the relevant variable 
• inputType - expected to be a string indicating whether the input type is ‘slider’ or 

‘text’, allowing the function to be used by both the sliders and the text input. 

Code
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B.21 removeVariable(variable)

Input Variables
• variable - expected to be a string representing the relevant variable 

Dependencies
• updatePostalCodes(emptyResult)     B.11 (p. 71)

Code
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B.22 onButtonSelect(variable, category, procedureName)

Input Variables
• variable - expected to be a string representing the relevant variable 
• category - expected to be a string representing the selected category
• procedureName - expected to be a string indicting the procedure of the variable.

Dependencies
• updatePostalCodes(emptyResult)      B.11 (p. 71)

Query 
• C.14 (p. 117)

Code
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B.23 showSinglePostalCode(postalCode)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a 

6-digit postal code as defined on page 17. This variable represents the fact that a 
single postal code is selected.

Dependencies
• updatePostalCodes(emptyResult)      B.11 (p. 71)

Code
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B.24 fullScreen()

Code
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B.25 showResults()

Code
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B.26 exportData()

Code
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B.27 showGraph(graphType)

Input Variables
• graphType - expected to be a string indicating if the meta data (‘data‘) or 

neighborhood specific (‘instance) graph needs to be shown 

Dependencies
• getMetaData()         B.7  (p. 67)
• getInstanceData(postalCode)      B.8  (p. 68)

Code



88

B.28 getTimeSeries(level)

Input Variables
• level - expected to be a string which indicates which level of analysis is requested, 

can be either ‘pc’ for neighborhoods, ‘building’ for building level or ‘both’ for a 
combination

Dependencies
• updatePostalCodes(emptyResult)      B.11  (p. 71)
• visualizeScore(variable, showArea)     B.13  (p. 73)
• createTimeSeriesDict()       B.32  (p. 94)

Query 
C.15 (p. 118)

Code
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B.29 getRTBuildings()

Dependencies
• queryDBrealTime(id, params)      B.33 (p. 95)

Query 
• C.16, (p. 119)

Code
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B.30 createEPGraph(toggle, epType, prediction)

Input Variables
• toggle - boolean indicating whether the energy poverty space needs to be 

toggled.
• epType - expected to be a string indicating the which definition of energy 

poverty needs to be visualized (‘10percent, ‘lihe’ or ‘lilek’). 
• prediction - boolean indicating whether predicted energy labels are to be 

included in the analysis

Dependencies
• toggleAll(‘energyPovertyBox’)      B.4  (p. 64)
• updateTable(postalCode)        B.5  (p. 65)
• updatePostalCodes(emptyResults)      B.11  (p. 71)
• createEPData()         B.34  (p. 96)
• createLILEKdata()        B.35  (p. 97)
• createBuildingDict(data, prediction)      B.36  (p. 98)

Code
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92
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B.31 updateAPLText(energy)

Input Variables
• energy - expected to be a string which reflects if an energy variable is selected.

Code
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B.32 createTimeSeriesDict()

Dependencies
• queryDB(buildingData)       B.37 (p. 99)

Query 
• C.17 (p. 120)
• C.18 (p. 121)

Code
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B.33 queryDBrealTime(id, params)

Input Variables
• id - expected to be a string which can be used to make the API call, pointing 

towards to correct database. 
• params - expected to be a dictionary with keys indicating a parameter and a 

corresponding value of that parameter.

Dependencies
• toggleRt()          B.38 (p. 100)
• createRTGraph()        B.39 (p. 101)

Code
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B.34 createEPdata()

Query 
• C.19 (p. 122)
• C.20 (p. 123)
• C.21 (p. 124)

Code
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B.35 createLILEKdata()

Query 
• C.22 (p. 125)

Code
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B.36 createBuildingDict(data, prediction)

Input Variables
• data - expected to be a dictionary with data created in function B.38
• prediction - expected to be a boolean indicating whether predicted energy 

labels should be included.

Code
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B.37 queryDB(buildingData)

Input Variables
• buildingData - expected to be data including a database ID which can be called 

in an API call, created from function B.35. 

Code
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B.38 toggleRt()

Code
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B.39 createRTGraph()

Dependencies
• getWeatherData(uniqueDates)      B.40 (p. 102)

Code
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B.43 getWeatherData(uniqueDates)

Input Variables
• uniqueDates - expected to be a list of dates created in function B.39.

Code
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Appendix C
Queries

This appendix provides an overview 
of all the SPARQL queries used in the 
digital twin as described in this report. 
Appendix B denotes which query is used 
in which aspect of the code, it is therefore 
recommended to assess these queries in 
the context of the code they are a part of. 

Moreover, most of the queries are posted 
to the locally run graph database, the 
endpoint of which is denoted in this 
appendix as: ‘http://localhost:7200/
repositories/[REPOSITORY]’. The 
repository name is left empty as the 
repository can name is arbitrary. If the 
query is posted to any other (external) 
endpoint, this will be noted in above the 
query description. 
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C.1

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bag#>
PREFIX bag_shp: <http://bag.basisregistraties.overheid.nl/bag/id/shape/>
SELECT ?pand ?adres ?postcode ?huisnummer ?toevoeging ?oppervlakte   
 ?bouwjaar ?gebruiksdoel WHERE {
 ?verblijfsobject a bag:Verblijfsobject.
 ?verblijfsobject bag:maaktDeelUitVan ?pand.
 FILTER(?pand = pandURI)
 ?verblijfsobject bag:hoofdadres ?adres.
 ?verblijfsobject bag:gebruiksdoel ?gebruiksdoel.
 ?adres bag:postcode ?postcode. 
 ?adres bag:huisnummer ?huisnummer. 
 OPTIONAL {
  ?adres bag:huisnummertoevoeging ?toevoeging
 }
 ?verblijfsobject bag:oppervlakte ?oppervlakte. 
 ?pand bag:oorspronkelijkBouwjaar ?bouwjaar.
}

Endpoint:  https://api.labs.kadaster.nl/datasets/dst/kkg/services/default/sparql
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Endpoint:  http://localhost:7200/repositories/[REPOSITORY]

C.2

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
select distinct ?propertyName ?LOM ?pcLevel ?class ?procedureName where { 
 ?property a bop:Property. 
 ?property skos:prefLabel ?propertyName.
 ?property a ?class.
 FILTER (STRSTARTS(str(?class), ‘http://www.semanticweb.org/neighborhood- 
 energy-ontology#’) && str(?class) != ‘http://www.semanticweb.org/   
 neighborhood-energy-ontology#Gasuse’ && str(?class) != ‘http://www.  
 semanticweb.org/neighborhood-energy-ontology#Electricityuse’)
 ?property bop:hasExecution ?execution.
 ?execution neo:levelOfMeasurement ?LOM.
 ?execution bop:usesProcedure ?procedure.
 ?procedure skos:prefLabel ?procedureName.
           
 ?neighborhood bop:hasProperty ?property. 
 ?neighborhood bag2:postcode ?postcode. 
 BIND (strlen(str(?postcode)) AS ?pcLevel).
} limit 100



106

C.3

PREFIX neo: <https://sanderdemeij.github.io/neo/#> 
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
select distinct ?postcode ?propertyName ?procedureName ?pcLevel ?lom ?unit 
?definition where { 
 ?neighborhood a neo:Neighborhood.
 ?neighborhood bag2:postcode ?postcode. 
 FILTER((STRSTARTS(STR(?postcode), ‘postalCode’)) || ?postcode =    
 ‘postalCode’ || ?postcode = ‘postalCode.substring(0, 5)’ || ?postcode =   
 ‘postalCode.substring(0, 4)’)
            
 BIND(strlen(STR(?postcode)) AS ?pcLevel)
 ?neighborhood bop:hasProperty ?property. 
 ?property skos:prefLabel ?propertyName.
           
 ?property bop:hasExecution ?execution.
 ?execution neo:levelOfMeasurement ?lom.
 ?execution skos:definition ?definition. 
 ?execution bop:hasResult/bop:hasSimpleUnit ?unit. 
           
 ?execution bop:usesProcedure ?procedure. 
 ?procedure skos:prefLabel ?procedureName.
} limit 100

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.4

PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select distinct ?pc ?building ?energyLabel ?propertyName ?value where { 
 ?pc a neo:Neighborhood.
 ?pc bag2:postcode ?postcode.
 FILTER(?postcode = ‘postalCode‘)
 ?pc ^bot:containsZone+ ?neighborhood.
 {
  ?neighborhood bop:hasProperty ?property.
 } UNION {
  ?pc bop:hasProperty ?property.
 } 
 ?pc bot:containsZone ?building.
 FILTER(strStarts(str(?building), ‘https://bag2.basisregistraties.overheid.nl/bag/ 
 id/registratie/NL.IMBAG.Nummeraanduiding.nummeraanduiding’))
 OPTIONAL {
  ?building bop:hasProperty ?elProperty. 
  ?elProperty bop:hasValue ?energyLabel. 
 }
 FILTER(?propertyName in (‘incomePerRecipient’, ‘electricityUse’, ‘gasUse’,  
 ‘WOZValue’, ‘powerGeneration’))
 ?property skos:prefLabel ?propertyName.
 ?property bop:hasExecution ?execution.
 ?execution bop:hasResult ?result. 
 ?result seas:hasTemporalContext ?context. 
 ?context time:hasBeginning/time:inXSDDateTimeStamp ?begin. 
 FILTER (?begin = ‘2020-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?result bop:hasValue ?value.
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.5

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bag#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select ?Pand where {
 ?nummeraanduiding a bag:Nummeraanduiding.
 ?nummeraanduiding bag:postcode ‘postalCode’.
 ?verblijfsobject bag:hoofdadres ?nummeraanduiding.
 ?verblijfsobject bag:maaktDeelUitVan ?Pand.
}

Endpoint:  https://api.labs.kadaster.nl/datasets/dst/kkg/services/default/sparql
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C.6

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
select ?property ?postcode ?otherPostcode where { 
 ?neighborhood bag2:postcode ?postcode 
 FILTER(?postcode = ‘postalCode)
 ?neighborhood bop:hasProperty ?property. 
 ?property a neo:ElectricityuseProperty. 
 ?otherNeighborhood bop:hasProperty ?property.
 ?otherNeighborhood bag2:postcode ?otherPostcode. 
} 

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.7

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
select ?property ?postcode ?otherPostcode where { 
 ?neighborhood bag2:postcode ?postcode 
 FILTER(?postcode = ‘postalCode’)
 ?neighborhood bop:hasProperty ?property. 
 ?property a neo:GasuseProperty. 
 ?otherNeighborhood bop:hasProperty ?property.
 ?otherNeighborhood bag2:postcode ?otherPostcode. 
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.8

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
select distinct ?postcode where { 
 ?neighborhood a neo:Neighborhood. 
 ?neighborhood bag2:postcode ?postcode. 
 FILTER(strstarts(str(?postcode), ‘postalCode’))
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.9

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
select distinct ?neighborhoodName ?postcode where { 
 ?postalCodeArea a neo:Neighborhood.
 ?postalCodeArea bag2:postcode ?selectedPostalCode. 
 FILTER(?selectedPostalCode = ‘postalCode’)
 ?neighborhood bot:containsZone ?postalCodeArea.
 ?neighborhood skos:prefLabel ?neighborhoodName.
 ?neighborhood bot:containsZone ?otherPostalCodeAreas.
 ?otherPostalCodeAreas bag2:postcode ?postcode
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.10

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
select ?building ?id where { 
 ?building bop:hasProperty ?electricityUseProperty. 
 FILTER(?building = <buildingURI>)
 ?electricityUseProperty bop:hasPropertyState ?dataPoint. 
 ?dataPoint bop:hasID ?id.
} limit 100 

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.11

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
select distinct ?propertyName ?definition ?unit ?procedureName where { 
 ?property a neo:EnergyUse. 
 ?property skos:prefLabel ?propertyName. 
 ?property bop:hasExecution ?execution. 
 ?execution skos:definition ?definition.
 ?execution bop:usesProcedure ?procedure. 
 ?procedure skos:prefLabel ?procedureName.
              
 ?execution bop:hasResult/bop:hasSimpleUnit ?unit.
} limit 100 

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.12

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
select distinct ?propertyName ?definition ?unit ?procedureName where { 
 ?property a bop:Property. 
 FILTER NOT EXISTS {?property a neo:EnergyUse}
 ?property skos:prefLabel ?propertyName.
 ?property bop:hasExecution ?execution. 
 ?execution skos:definition ?definition.
 ?execution bop:usesProcedure ?procedure. 
 ?procedure skos:prefLabel ?procedureName.
                       
 ?execution bop:hasResult/bop:hasSimpleUnit ?unit.
 } limit 100 

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.13

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select distinct ?postcode ?value where { 
 {
  ?neighborhood a neo:Neighborhood.
  ?neighborhood bag2:postcode ?postcode.
  ?neighborhood bop:hasProperty ?property. 
 } UNION {
  ?neighborhood a neo:Neighborhood. 
  ?neighborhood skos:prefLabel ?postalCode.
  FILTER(strstarts(str(?postalCode), ‘BU’))
  ?neighborhood bot:containsZone ?zone. 
  ?zone bag2:postcode ?postcode . 
  ?neighborhood bop:hasProperty ?property.
 }
 ?property skos:prefLabel ?propertyName. 
 FILTER(?propertyName = ‘variable‘)
 ?property bop:hasExecution ?execution. 
 ?execution bop:usesProcedure ?procedure. 
 ?procedure skos:prefLabel ?procedureName. 
 FILTER(?procedureName = ‘procedure’)
 ?execution bop:hasResult ?result.
 ?result seas:hasTemporalContext ?interval.
 ?interval time:hasBeginning/time:inXSDDateTimeStamp ?begin.
 ?interval time:hasEnd/time:inXSDDateTimeStamp ?end.
 FILTER(?begin >= “beginDate”^^xsd:dateTimeStamp && ?end <=    
 “endDate”^^xsd:dateTimeStamp)
 ?result bop:hasValue ?value
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.14

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
select ?postcode ?value ?begin ?end where { 
 ?neighborhood a neo:Neighborhood. 
 ?neighborhood bag2:postcode ?postcode.
                    
 ?neighborhood bop:hasProperty ?property. 
 ?property skos:prefLabel ?propertyName. 
 FILTER(?propertyName = ‘variable’)
 ?property bop:hasExecution ?execution. 
 ?execution bop:usesProcedure ?procedure. 
 ?procedure skos:prefLabel ?procedureName. 
 FILTER(?procedureName = ‘procedure’) 
 ?execution bop:hasResult/bop:hasValue ?value.
 FILTER(?value = category || ?value = ‘category‘)
                    
 ?execution bop:hasResult ?result.
 ?result seas:hasTemporalContext ?interval.
 ?interval time:hasBeginning/time:inXSDDateTimeStamp ?begin.
 ?interval time:hasEnd/time:inXSDDateTimeStamp ?end.
 FILTER(?begin >= “beginDate”^^xsd:dateTimeStamp && ?end <=    
 “endDate”^^xsd:dateTimeStamp)
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.15

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select distinct ?postcode ?electricityValue where {
 ?neighborhood bot:containsZone ?pcZone. 
 ?pcZone bag2:postcode ?postcode. 
 ?pcZone bop:hasProperty ?electricityUseProperty. 
 ?electricityUseProperty skos:prefLabel ?electricityUseName. 
 FILTER(?electricityUseName = ‘electricityUse’)
 ?electricityUseProperty bop:hasExecution ?electricityExecution. 
 ?electricityExecution bop:hasResult ?electricityResult. 
 ?electricityResult seas:hasTemporalContext ?electricityTemporalContext. 
 ?electricityTemporalContext time:hasBeginning/time:inXSDDateTimeStamp  
 ?elecBegin.
 FILTER(?elecBegin = ‘2022-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?electricityResult bop:hasValue ?electricityValue.
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.16

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
select distinct ?building ?postcode ?nr ?toevoeging ?dbID ?db ?unit where {    
 ?building a bag2:NummeraanduidingRegistratie.
 ?building bag2:postcode ?postcode.”
 ?building bag2:huisnummer ?nr.
 OPTIONAL {
  ?building bag2:huisnummertoevoeging ?toevoeging
 }
 ?building bop:hasProperty ?electricityUse. 
 ?electricityUse bop:hasPropertyState ?electricityUseDP.
 ?electricityUseDP bop:isDataPointOf ?db.
 ?electricityUseDP bop:hasID ?dbID.
 ?electricityUseDP bop:hasSimpleUnit ?unit.
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.17

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX : <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX neo2: <https://sanderdemeij.github.io/neo/#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select ?postcode ?electricityValue where { 
 ?pcZone bag2:postcode ?postcode. 
 ?pcZone bop:hasProperty ?electricityUseProperty. 
 ?electricityUseProperty skos:prefLabel ?electricityUseName.
  FILTER(?electricityUseName = ‘electricityUse’)
 ?electricityUseProperty bop:hasExecution ?electricityExecution. 
 ?electricityExecution bop:hasResult ?electricityResult. 
 ?electricityResult seas:hasTemporalContext ?electricityTemporalContext. 
 ?electricityTemporalContext time:hasBeginning/time:inXSDDateTimeStamp  
 ?elecBegin.
 FILTER(?elecBegin = ‘2022-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?electricityResult bop:hasValue ?electricityValue.
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.18

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
select ?postcode ?building ?id where { 
 ?building bop:hasProperty ?electricityUseProperty. 
 ?electricityUseProperty bop:hasPropertyState ?dataPoint. 
 ?dataPoint bop:hasID ?id.
 ?neighborhood bot:containsZone ?building. 
 ?neighborhood bag2:postcode ?postcode. 
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.19

PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
select distinct ?postcode (sum(if((?gebruiksdoel = ‘woonfunctie’ || ?gebruiksdoel = 
‘nan’), 1, 0)) as ?woonBuildings) (count(?building) as ?buildings) where { 
 ?building bag2:gebruiksdoel ?gebruiksdoel.
 ?building bag2:postcode ?postcode. 
} GROUP BY ?postcode

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.20

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select distinct ?neighborhood ?postcode ?value ?electricityValue ?gasValue ?WOZValue where {
 ?neighborhood a neo:Neighborhood. 
 ?neighborhood skos:prefLabel ?postalCode.
 FILTER(strstarts(str(?postalCode), ‘BU’)) 
                    
 ?neighborhood bop:hasProperty ?property. 
 ?property skos:prefLabel ?propertyName. 
 FILTER(?propertyName = ‘householdIncome’)
 ?property bop:hasExecution ?execution.
 ?execution bop:hasResult ?result. 
 ?result bop:hasValue ?value. 
 ?result seas:hasTemporalContext ?temporalContext. 
 ?temporalContext time:hasBeginning/time:inXSDDateTimeStamp ?begin.
 ?temporalContext time:hasEnd/time:inXSDDateTimeStamp ?end.
 FILTER(?end = ‘2022-01-01T00:00:00’^^xsd:dateTimeStamp)
                    
 ?neighborhood bot:containsZone ?pcZone. 
 ?pcZone bag2:postcode ?postcode. 
 ?pcZone bop:hasProperty ?electricityUseProperty. 
 ?electricityUseProperty skos:prefLabel ?electricityUseName.
 FILTER(?electricityUseName = ‘electricityUse’)
 ?electricityUseProperty bop:hasExecution ?electricityExecution. 
 ?electricityExecution bop:hasResult ?electricityResult. 
 ?electricityResult seas:hasTemporalContext ?electricityTemporalContext. 
 ?electricityTemporalContext time:hasBeginning/time:inXSDDateTimeStamp ?elecBegin
 FILTER(?elecBegin = ‘2022-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?electricityResult bop:hasValue ?electricityValue.
                    
 ?pcZone bop:hasProperty ?gasUseProperty. 
 ?gasUseProperty skos:prefLabel ?gasUseName.
 FILTER(?gasUseName = ‘gasUse’)
 ?gasUseProperty bop:hasExecution ?gasExecution. 
 ?gasExecution bop:hasResult ?gasResult. 
 ?gasResult seas:hasTemporalContext ?gasTemporalContext. 
 ?gasTemporalContext time:hasBeginning/time:inXSDDateTimeStamp ?gasBegin.
 FILTER(?gasBegin = ‘2022-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?gasResult bop:hasValue ?gasValue.
                        
 ?pcZone bop:hasProperty ?wozProperty.
 ?wozProperty skos:prefLabel ?wozPropertyName. 
 FILTER(?wozPropertyName = ‘WOZValue’)
 ?wozProperty bop:hasExecution ?wozExecution.
 ?wozExecution bop:hasResult ?wozResult. 
 ?wozResult seas:hasTemporalContext ?wozTemporalContext. 
 ?wozTemporalContext time:hasBeginning/time:inXSDDateTimeStamp ?wozBegin.
 FILTER(?wozBegin = ‘2020-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?wozResult bop:hasValue ?WOZValue.
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.21

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select distinct ?postcode ?propertyName ?value where {    
 ?pc a neo:Neighborhood. 
 ?pc bag2:postcode ?postcode. 
 OPTIONAL {
  ?pc bop:hasProperty ?property.
  ?property skos:prefLabel ?propertyName
  FILTER (?propertyName = ‘households’ || ?propertyName =    
  ‘multPersonHHnoKids’ || ?propertyName = ‘oneParent’ ||    
  ?propertyName = ‘onePersonHH’ || ?propertyName = ‘twoParent’)
                                
  ?property bop:hasExecution ?execution. 
  ?execution bop:hasResult/seas:hasTemporalContext ?temporalContext. 
  ?execution bop:hasResult/bop:hasValue ?value.
  ?temporalContext time:hasBeginning/time:inXSDDateTimeStamp   
  ?begin. 
  ?temporalContext time:hasEnd/time:inXSDDateTimeStamp ?end.
  FILTER (?begin = ‘2020-01-01T00:00:00’^^xsd:dateTimeStamp)
 }
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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C.22

PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
select distinct ?building ?postcode ?energyLabel ?procedureName ?bouwjaar 
?oppervlakte where { 
 ?building bag2:gebruiksdoel ?gebruiksdoel.
 FILTER(?gebruiksdoel = ‘woonfunctie’ || ?gebruiksdoel = ‘nan’)
 ?building bag2:postcode ?postcode. 
 ?building bag2:bouwjaar ?bouwjaar.
 ?building bag2:oppervlakte ?oppervlakte.
 OPTIONAL {
  ?building bop:hasProperty ?energyLabelProperty. 
  ?energyLabelProperty bop:hasValue ?energyLabel.
  BIND(‘Actual’ as ?procedureName).
 }
 OPTIONAL {
  ?building bop:hasProperty ?predEL. 
  ?predEL bop:hasExecution ?execution. 
  ?execution bop:usesProcedure ?procedure. 
  ?procedure skos:prefLabel ?procedureName. 
  ?execution bop:hasResult ?result. 
  ?result bop:hasValue ?energyLabel. 
 }
}

Endpoint:  http://localhost:7200/repositories/[REPOSITORY]
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