

Linked Data for Smart Neigbhorhood

Citation for published version (APA):
de Meij, S. R. (2023). Linked Data for Smart Neigbhorhood: making urban energy use more meaningful using
semantic digital twins. Technische Universiteit Eindhoven.

Document status and date:
Published: 26/09/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/2dd5eb15-38b5-436d-9c61-3e7f7b15ac3b

2023

2023/053

University of Technology Eindhoven
Smart Buildings and Cities
Royal KPN N.V.

S.R. (Sander) de Meij s.r.d.meij@tue.nl

Dr. D. (Dujuan) Yang Ir. A.J.A. (Alex) Donkers
Drs. Ing. M. (Matthijs) Klepper Dr. F. (Frank) Mertz

MAKING URBAN ENERGY USE
MORE MEANINGFUL USING
SEMANTIC DIGITAL TWINS

LINKED DATA
FOR

SMART NEIGHBORHOOD

2

Thesis Evaluation Committee

Scientific
Supervisor

Dr. D. (Dujuan) Yang

Scientific
Supervisor

Ir. A.J.A. (Alex) Donkers

Company
Representative

Dr. F. (Frank) Mertz

First Independent
Member

Rik Budel

Second Independent
Member

Dr. G.Z. (Gamze) Dane

Other Member Prof. Dr. Ir. B. (Bauke) de
Vries

Chair of the
Committee

Dr. Ir. A.D.A.M. (Astrid)
Kemperman

The design described in this thesis has been
carried out in accordance with the TU/e Code of
Scientific Conduct

3

This thesis marks the end of my eight-year
period at the University of Technology
Eindhoven. What started as an ambition
to become an architect has ended in me
entering the niche of Linked Data in the
Built Environment. The last two years
have been an amazing opportunity to
pivot toward a topic I find truly interesting
and captivating. Developing the skills
to handle, process, and make data
more meaningful has been a wonderful
experience. I genuinely believe I’ve
learned more about being an engineer
in the last two years, than in the entire 6
years before that. This is not least due to
the incredible supervision I’ve received
from Dujuan and Alex, who I would like
to thank for their insights, feedback,
and lengthy discussion about varying
topics. Your honesty and expertise have
always motivated me to put in a little
bit more effort. I would like to thank you
for the part you’ve had in me becoming
the engineer and person I am today.
Moreover, discussions with Matthijs were
always insightful and enjoyable, being
able to see the problem from a different
perspective, while showing enormous
enthusiasm, forced me to think in
different ways. Which, in my opinion,
has elevated the project to another level.
Lastly, I would like to thank Frank for
getting to know the project so quickly and
being able to provide guidance during
the closing phases of the project. Thank
you all. Furthermore, I would like to thank
all my colleagues on the 9th floor, who I
hope will remember to go for lunch at 12
o’clock sharp. While some people might

Foreword

consider lunchtime a time for relaxation
from work, our lunch sessions were
deeply philosophical discussions about
life, culture, and existence in general
(most of the time anyway). However, they
were also some of the most enjoyable
moments during the last two years.
Finally, I think I owe some thanks to my
family, who were able to suffer through
my eternal ramblings about graphs, data,
and dashboards. I think they might be
qualified as engineers by now as they
must have sat through my speeches for
hundreds of hours. Of course, no one
deserves more appreciation than Amy
who has motivated me through the last
two years, listened to all my ramblings
and complaints but was always able to be
interested. Most importantly, she taught
me the most important lesson of the last
two years which is to not only do what
you love but to do with a smile.

Sander de Meij

4

Summary

measured or assessed through multiple
executions with different procedures.
These executions may yield multiple
results, each with a designated time
interval that reflects its temporal
relevance. This ontological structure is
used to create the previously mentioned
semantic digital twin; Neo Dash. The goal
of this dashboard is to allow the user
to meaningfully explore the available
data, and assess relevant challenges.
The dashboard consists of four main
functions: the map, query, table, and
graph. The map visualizes the results of
queries and analyses where possible.
Initially, the map shows all neighborhoods
of the city of Eindhoven, which can be
explored manually by the user. The main
interactive part of the dashboard is the
query functionality which allows the
user to build (compound) queries based
on the properties that are available in
the database. The dashboard uses the
defined metadata to provide the user
with the most suitable query options as
numerical properties require different
query functionalities than categorical or
nominal values. While the map
represents the queried results visually,
the table represents the results more
classically. In contrast, the graph shows
the relationships of the found results with
other aspects of the data. For instance, if
the queried property shares measurement
methods with other available properties.
Combined, these functionalities aim to
provide more meaningful data exploration
and discovery than currently available
methods. Lastly, to show the added value

Cities increasingly contribute to overall
energy consumption, which leads to a
large set of challenges. However, there is
only limited integration of energyrelated
data on an urban level. This limits
possibilities for cross-domain monitoring,
simulation, and intervention. This project
aims to adapt semantic web technologies
to integrate cross-domain data and
information on multiple scales, while also
striving to develop a visualization to allow
stakeholders to interpret and work with
the data more intuitively. This would be a
first step towards a semantic digital twin
of the city under investigation (Eindhoven,
the Netherlands). This semantic
digital twin is based on Semantic Web
Technologies and Linked Data, which is a
method to transform data into structured
graphs that allows for the integration of
data on multiple levels. While this project
is not the first of its kind to address
urban challenges using Semantic Web
Technologies, it tries to improve on
existing ontologies that lack critical
features that are deemed necessary for
this project. Therefore, a new ontology
is created, named the Neighborhood
Energy Ontology (NEO). NEO described
urban areas as neighborhoods that can
have certain properties. These properties
are related to the way they are measured
and the time frame over which they
are relevant. Moreover, neighborhoods
can contain other neighborhoods, and
can therefore inherit properties from
other neighborhoods. To summarize,
neighborhoods of varying scales may
possess multiple properties that can be

5

of this semantic data structure and the
created digital twin several use cases are
explored. Firstly, several definitions of
energy poverty are explored. As no one
definition of energy poverty is available,
the three most common definitions are
represented using a combination of the
map and a new graph representation
visualizing the household income relative
to the estimated cost of energy for that
neighborhood. Moreover, the most
recent definition includes the energetic
quality of the household dwelling (energy
label). Therefore, the analysis includes
this building-level data as well. This use
case shows how data from disparate
sources can be combined using this
method, and meaningfully represented
using the created digital twin. The user
is able to explore this issue from multiple
perspectives and interact with the data
in a novel way. Secondly, it is assessed
how more temporally accurate data can
be incorporated into the ontological
structure previously discussed. Randomly
generated energy use data is generated
for the University of Technology campus’
buildings, which shows how this type
of data can also be explored using the
proposed digital twin. Moreover, it is
assessed how such data could practically
be collected and monitored using existing
technologies. This use case shows how
individual or property managers can also
benefit from this type of development.
Thirdly, while the available data is rather
extensive, some missing parts do create
challenges in the first use case. Therefore,
it is explored how Linked Data can be

used as a basis for predictive analytics
by estimating energy label categories
for buildings that have no energy label
available. Using a statistical model, it is
estimated whether a building’s energy
label is above or below C (labels range
from A++++ to G). This model is able to
perform this task with 89% accuracy
(92% precision and 92% recall), which
is deemed sufficiently accurate for the
purposes of this project. This model is
used to supplement the missing data
when the user investigates individual
data. Moreover, the energy poverty
analysis which has been described
previously is enriched using these
categories, resulting in a more complete
estimation of the overall scope of the
issue for the city under investigation. The
goal of this project was to provide more
meaningful urban data using Semantic
Web Technologies and Linked Data and
create a digital twin on top of this data
structure. The created semantic digital
twin and underlying ontological data
structure is a good first step towards
this goal. The use cases show that
more meaningful data can indeed be
provided and that more a more holistic
and insightful analysis can be performed
using the proposed solution.

Content Acronyms
API Application Programming Interface

BIM Building Information Model

BOP Building Performance Ontology

BOT Building Topology Ontology

CWA Closed World Assumption

EM-KPI Energy Management Key Performance Indicator
Ontology

GUID Globally Unique Identifier

IoT Internet of Things

KPI Key Performance Indicator

LiDAR Light Detection and Ranging

LIHE Laag Inkomen, Hoge Energierekening

LILEK Laag Inkomen, Lage Energetische Kwaliteit

MQTT MQ Telemetry Transport

NEO Neighborhood Energy Ontology

OWA Open World Assumption

RDF Resource Description Network

RDFS RDF Schema

RF Random Forest

SAREF Smart Applications REFerence Ontology

SPARQL SPARQL Protocol and RDF Query Language

URI Unique Resource Identifier

1 Introduction 8

1.1 State of the Art 8

1.2 Problem Statement 11

2. Integration 12

3. Visualization 16

3.1 Map 17

3.2 Query 18

3.3 Table 20

3.4 Graph 21

4. Use Cases 22

4.1 Energy Poverty 22

4.2 Time Series Data 28

4.3 Predictive Analytics 32

5. Discussion 37

References 39

A. Dashboard 42

B. Code 60

C. Queries 103

Figures
1 Basis of RDF graphs 10

2 Overview of data integration method 13

3 Class structure of Neighborhood Energy
Ontology (NEO)

14

4 Overview of a sample of the integrated data
in visual and codeform

14

5 Sample of integrated data in Turtle format 15

6 Overview of dashboard 17

7 Detailed view of postal code area data 18

8 Data of neighborhood from different spatial
levels

19

9 Example of LoD 2 building from 3D BAG
dataset

19

10 Process of constructing a query using the
dashboard

20

11 Interaction with graph representation of
data

21

12 Conceptual representation of energy poverty
visualization

23

13 Conceptual representation of ‘10% of Income’
definition of energy poverty

23

14 Conceptual representation of LIHE definition
of energy poverty

24

15 Conceptual representation of LILEK
definition of energy poverty

24

16 Visualization of ‘10 percent’ definition of
energy poverty

24

17 Visualization of adjustment to the first
definition of energy poverty

25

18 Visualization of LIHE definition of energy
poverty

25

19 Visualization of adjustment to the LIHE
definition of energy poverty

26

20 Visualization of LILEK definition of energy
poverty

26

21 Distribution of energy labels in neighborhood 27

22 Conceptual explenation of the connection
between Graph- end Time Series databases

28

23 Overview of the integration of Graph- and
Time Series data

28

24 Visualization of time series energy use data
on a building level

29

25 Visualization of time series energy use data
on a neighborhood level

30

26 Visualization of time series and graph energy
use data on a neighborhood level

30

27 System of streaming and storing real-time
energy use data

30

28 Visualization of real-time energy use data on
a building level

31

29 SPARQL query to collect data for predictive
analysis

33

30 Process for incorporating Random Forest
Model into dashboard

34

31 Results of API call made to Random Forest
model

34

32 LILEK analysis including estimated energy
label categories

36

33 Energy label distribution of neighborhood
shows the inclusion of estimate energy label
categories

36

34 Ontological structure for storing energy
labels

36

8

1.1 State of the Art

1. INTRODUCTION

Growing urban populations (United
Nations Department of Economics and
Social Affairs, 2019) cause increased
energy consumption in cities. As a result,
cities currently consume ‘two-thirds
of primary energy resources and are
responsible for more than 70% of
Green House Gas emissions worldwide’
(Abbasabadi et al., 2019). Buildings in
these cities account for 40% of global
energy consumption (Corry et al., 2015). To
address this issue, there is great potential
in urban energy modeling which can
result in increased energy use efficiency
on an urban and building level (Ali et
al., 2021). However, according to Curry
et al. (2013), there is limited integration
of traditional building information and
other data, such as energy consumption.
This limits possibilities for cross-domain
monitoring, simulation, and interventions.
More readily available information could
indeed facilitate the identification of
problems and solutions concerning
urban energy consumption (Ali et al.,
2020). Moreover, while many studies
focus on integrating data on the building
scale (Ali et al., 2019; Corry et al., 2015; Curry
et al., 2013; Degha et al., 2019), most goals
for reducing energy use and Green
House Gasses are set on a national level,
and most action is taken at the city scale
(Li et al., 2017). This project aims to adapt
semantic web technologies to integrate
crossdomain data and information
on multiple scales, while also striving
to visualize this integration to allow
stakeholders to interpret and work with
the data more intuitively. Placing this effort

in the current digital twin paradigm, the
definition provided by VanDerHorn and
Mahadevan (2021) should provide some
insight, as they describe a digital twin
as ’a virtual representation of a physical
system (and its associated environment
and processes) that is updated through
the exchange of information between
the physical and virtual systems.’ This
project aims to take the initial steps
toward such a digital twin. To achieve this
goal semantic web technologies (section
1.1) will be implemented to take the first
steps toward an interactive, semantic
Digital Twin of the city of Eindhoven (the
Netherlands).

Regarding traditional urban energy
use modeling, Abbasabadi and Mehdi
Ashayeri (2019) provide an overview of the
currently available categories of modeling.
First of all, the authors separate urban
energy use models between top-down
and bottom-up, where ’top-down models
examine cities at a macro scale. They are
not concerned with individual end-uses;
rather, they treat the built environment
as an energy user and utilize historical
aggregated energy data to understand
how energy is used in cities’. Conversely,
bottom-up models ’localize energy use
studies and considers urban attributes
at the microscale of individual units, i.e.
individual buildings or a collective set of
buildings’. Furthermore, the distinction

9

is made between data-driven (statistical)
and simulation models, within the
bottom-up approach. The authors
conclude that to date, only a limited
number of tools exists to estimate energy
use in urban or neighborhood contexts in
an integrated manner and that existing
tools such as CitySim, EnergyPlan, E-GIS,
Urban Building Energy Models (UBEMs),
Urban Modeling Interface (UMI), and
City Building Energy Saver (cityBES), rely
on the estimation of the energy use at
city scale through a GIS-based platform,
2D GIS and/or 3D GIS using CityGML
(Abbasabadi and Mehdi Ashayeri, 2019).
Current urban modeling tools, therefore,
are generally not capable of assessing
energy use in an integrated manner,
where data from multiple scales (top-
down and bottom-up) and domains can
be integrated. As an alternative to more
traditional urban (energy use) modeling,
Semantic Web Technologies and Linked
Data are explored as a possible solution.
However, the concepts of ‘Semantic Web’
and ‘Linked Data’ need some explanation
as well as some definitions. Moreover,
already existing research within this
field needs to be addressed. In short,
‘semantic web technologies [...] allow
to represent information in structured
graphs and efficiently integrate (building)
information of an entirely different nature.
As a result, the development of software
applications that rely on multiple
information sources is in reach’ (Pauwels
et al., 2017). The important element in this
definition is the ’structured graphs’, at
the core of these graphs ‘stands a flexible
and generic language that allows to easily
represent and combine information from
diverse knowledge domains, namely
RDF. The semantic web thus becomes a
semantic network in which information
is represented as directed labeled graphs
(RDF graphs)’ (Pauwels et al., 2017). Here,
it becomes clear that the structured
graphs at the core of the semantic web
are defined by the Resource Description

Network (RDF), moreover, these RDF
graphs are both labeled and directed.
The idea of such a graph is represented
in Figure 1, where ‘each node in such a
graph represents a concept or object
in the world, identified with a Unique
Resource Identifier (URI)’ (Pauwels et
al., 2017). As can be seen in the example
of Figure 1, each trio (triple) is given by a
‘subject’, ‘object’, and ‘predicate’, where
each element is represented by an URI
describing something in the world. This
example states that the subject ‘building’
is connected to the object ‘roof’ by the
predicate ‘has’, i.e. this building has a
roof. What exact building this is or what
specific roof it has can be defined by
the URI linking to a unique resource
defining the instance. Moreover, in the
next linkage, the ‘roof’ can become
the subject and be linked to a third
object, and so forth. ‘By describing all
information as such interlinked directed
labeled graphs, a uniform representation
of information is achieved, making
information reusable by both humans
and computer applications’ (Pauwels
et al., 2017). Moreover, translating the
RDF principle to its most basic form:
‘The most basic elements describing
such ontologies are contained in the
RDF Schema (RDFS) vocabulary, which
consists of the specifications of classes,
subclasses, comments, and data types.
An RDFS interpreter is able to infer
extra RDF statements that are implicitly
available via the RDFS constructs’
(Pauwels et al., 2017). In the example
below, a ‘building element’ class could
be defined and attributed to the ‘roof’
object, indicating that a ‘roof’ is (at least)
a building element. These structures of
classes and relationships are combined
into ontologies, which can be considered
predetermined semantic structures.
Within the semantic web, an important
aspect is the Open World Assumption
(OWA). This assumption states that if
the model does not specify something,

10

1. Introduction - State of the Art

it is neither necessarily false nor true.
The example below does not specify
that the building has a door. In a Closed
World Assumption (CWA), this would
mean that this building does not have a
door (this is the case in traditional data
and information technologies regarding
buildings, e.g. Building Information Model
(BIM)). In the OWA, however, this is not
the case and the building might, or might
not, have a door. The term ‘semantic web’
was coined by Tim Berners-Lee in 2001
and was quite visionary as it included all
features in the semantic web stack. The
term ‘linked data’, on the other hand, was
coined in 2006, also by Tim Berners-Lee,
in response to the finding that quite
some data was being published on the
web, seemingly following the semantic
web idea but actually never linking to
outside data, and thus in fact not realizing
the initial core idea behind the semantic
web, which is linking data. Therefore,
Berners-Lee laid out four rules that need
to be followed to obtain linked data truly.
These have by now evolved into the five
stars of linked data (Pauwels et al., 2017).
These five stars are defined as follows
(Hausenblas and Kim, 2012): 1) Make your
stuff available on the web (whatever
format) under an open license. 2) Make
it available as structured data (e.g. Excel
instead of an image scan of a table). 3)
Make it available in a non-proprietary
open format (e.g. CSV instead of Excel). 4)
Use URIs to denote things so that people
can point at your stuff. 5) Link your data
to other data to provide context. This five-
star system can be used as a measure
of how well your data adheres to the
principles of linked data as proposed by
Tim Berners-Lee, where it is suggested to
strive for as many stars as possible. This
research will aim to achieve five stars,
and link data to its appropriate context.
This project is not the first to address the
challenges described earlier, therefore, it

is necessary to review a sample of already
existing research. Regarding already
existing ontological structures relevant to
this project, the study by De Nicola and
Villani (2021) gives a preliminary overview
of available ontologies related to several
urban topics. Regarding energy use,
they identify several ontologies, however,
they are considered unsuitable for this
research. They can not describe urban
data on differing urban levels, as they
mostly relate to other urban units like
microgrids (Chun et al., 2020), houses
(Reinisch et al., 2011) or appliances
(Daniele, 2020). Moreover, the authors
give an overview of available ontologies
describing urban systems, which are
not aligned with the specific goal of
this project as they mostly describe
specific urban infrastructure or three-
dimensional geospatial objects. Besides
these ontologies, SAREF4CITY (Poveda-
Villalon et al., 2020) can be considered.
This ontology focuses on extending
Smart Applications REFerence Ontology
(SAREF) (Daniele et al., 2015) to create a
common core of general concepts for
smart cities and data-oriented to the
Internet of Things (IoT) field (Poveda-
Villalon et al., 2020) and describes a data
structure that allows for the description
of several city objects, their geographical
definition and corresponding
measurements. While this ontology does

Basis of RDF graphsF.1

11

1.2 Problem Statement

reflect the core idea of this project, it is
deemed unsuitable, as it is more aimed
at structuring Internet of Things (IoT)
data and Key Performance Indicator (KPI)
measurements. Moreover, this project
tries to capture urban data, without
relying on a geographical definition as
they are considered hard to work with
and impractical for the implementation
suggested in this project. Secondly, the
Energy Management Key Performance
Indicator Ontology (EM-KPI) can be
considered. This ontology is created
to describe the relationship between
the master data sources for identifying
energy performance problems and key
areas for improvement and to help energy
managers make informed decisions
regarding energy efficiency measures
(Li et al., 2019). Again, this ontology has
similar goals as this project, however, is
deemed unsuitable for the purposes of
this project as it has an extensive focus
on KPI measurement, energy systems,
and building aspects, while this project is
focused on purely urban data. Moreover,
as will be explained below, the central
concepts of the ontological structure
created in this project is based on the
Building Performance Ontology (BOP)
(Donkers et al., 2021) and Building
Topology Ontology (BOT) (Rasmussen
et al., 2020). These ontological structures
are considered to be able to describe
building-level information and data in
high detail and are therefore extended in
this project. As the previously described
ontologies are not connected to either
BOT or BOP, they are not reused in this
project. As mentioned, this project is
not the first to address energy-related
challenges on an urban (or building)
scale. As will become clear in section 4,
energy poverty (section 4.1) is a long-
standing issue with several analyses
done in multiple countries (Mulder et
al., 2023; Department for Business, 2020;
Department for Energy Security & Net

It has been described how cities and
the built environment contribute
significantly to the energy demand of
the world, which causes a multitude
of challenges. Where traditional urban
energy use models can be categorized as
topdown or bottom-up, these challenges
need a more holistic approach where
a range of spatial and temporal scales
can be analyzed structurally. A lack
of connected and meaningful data is
seemingly a barrier to this approach.
Therefore, Semantic Web Technologies
seem an appropriate solution, however,
no suitable development has been
found. This project will, therefore, aim
to create a semantic structure that is
capable of describing urban (energy)
data on multiple spatial and temporal
scales (section 2), in order to gain
insight into these challenges. Moreover,
this structure will be designed to be
highly practical in use (section 3) and
applicable in multiple settings (section
4). The practicality of the data structure
will be explored through an interactive
dashboard (semantic digital twin) which
will show the implementation of several
use cases.

Zero, 2023). Similarly, the prediction of
energy consumption (and energy labels,
section 4.3) is a rich field with large
amounts of research being done (Zhao
and Magoul`es, 2012; Kim and Cho, 2019;
Wang et al., 2021; Kolter and Ferreira,
2011; Amber et al., 2015). However, what
these studies do not investigate is the
potential of implementing Semantic
Web Technologies in this context, in
connection to a digital twin. Making
this type of data more interactive, easily
accessible, and meaningful to the user of
this data.

12

2. INTEGRATION

Taking into account the ontologies
described in section 1.1, a new ontological
structure has been created named
Neighborhood Energy Ontology (NEO),
which reuses and extends multiple
existing data structures. NEO tries to
achieve the previously described goals
by defining ‘neighborhoods’ as urban
areas, which can contain other urban
areas of a different (smaller) scale. These
neighborhoods are linked to certain
properties that are attributable to these
areas, following a similar structure as
defined in the Building Performance
Ontology. In this project, neighborhoods
are considered a ‘bop:FeatureOfInterest’
and therefore can be associated with
a ‘bop:Property’. This structure is given
in Figure 2 (namespaces are defined
in Table 1). In this overview, it is shown
how neighborhoods can contain other
neighborhoods, of a different scale.
NEO can therefore describe data on
multiple levels, where a contained
neighborhood might be assumed to
inherit the properties described by the
containing neighborhood. Moreover,
multiple properties can be attributed to a
neighborhood, which might come from
different domains. Therefore, a more
holistic description of urban data can be
given. To create a high-level structure of
these properties, the property structure
in Figure 3 is adopted. This figure shows
that a ‘neo:Neighborhood’ is a sub-
class of a ‘bot:Zone’, which allows for the
previously described relationship where
neighborhoods (zones) can contain
other neighborhoods (zones). Moreover,

neighborhoods can thus contain
buildings (bot:Building) as shown in
Figure 2. An anchor point for building
information in NEO is the existing data
structure of the Cadastre, Land Registry
and Mapping Agency of the Netherlands
(Dutch: Kadaster). Their Key Register for
Addresses and Buildings (Dutch acronym
BAG) is published as linked data and
knowledge related to buildings, public
spaces, cities are captured in the BAG2
ontology (Kadaster, 2021). The building
registration is reused in this project
(Figure 2). Properties of the neighborhood
are linked to a ‘bop:Execution’ and
‘bop:Procedure’. As a single property can
be measured (and therefore defined)
through multiple methods, this structure
allows for these differences to occur
in the data. For example, an area’s
population can be measured by multiple
methods, and will likely deviate across
different datasets. These measurements
(of type bop:Execution) are linked to the
same property but describe different
values measured by different procedures.
Conversely, different properties (e.g. the
populations of multiple areas) might
apply similar measurement procedures.
Lastly, each execution of a property can
have one or multiple results which provide
a value (Figure 2, ‘Property Results’). Each
result is assigned a specific time interval
that denotes its temporal relevance. Thus
it can be said that the result is only relevant
within the time interval attributed to it.
To summarize, neighborhoods of varying
scales may possess multiple properties
which can be measured or assessed

13

Prefix Namespace Color

bag2 https://bag2.basisregistraties.overhe-
id.nl/bag/def/

Orange

bot https://w3id.org/bot# Green

bop https://w3id.org/bop# Pink

time http://www.w3.org/2006/time# Brown

neo https://sanderdemeij.github.io/neo/ Blue

skos http://www.w3.org/2004/02/skos/
core#

-

rdfs http://www.w3.org/2000/01/rdf-sche-
ma#

-

xsd http://www.w3.org/2001/XMLSche-
ma#

-

seas https://w3id.org/seas/EvaluationOn-
tology#

-

through multiple executions with
different procedures. These executions
may yield multiple results, each with a
designated time interval that reflects its
temporal relevance. In this project,
data from multiple domains is being
collected to provide a more intelligible
overview for end-users. However, these
datasets which describe data about the
same urban areas (neighborhoods) are
often stored in separate data silos with
different data owners, leading to a lack of
cooperation and connection. To connect
these datasets, a concrete sample of
the integrated data mentioned above is
shown in Figure 4. This figure illustrates
how data from multiple domains could
be connected on multiple scale levels.
Similarly, a sample of this data in Turtle
format is shown in Figure 5. While Figure
4 is a visual representation, Figure 5 is a

F.2 Overview of data integration method

T.1 Prefixes and corresponding namespaces used in
Neighborhood Energy Ontology (NEO)

14

2. Integration

machine-readable example of the data.
By adopting this method, the data is
made accessible for further analysis and
interpretation by different stakeholders.
Moreover, in future development,
different scales and domains can be
added easily (which will be compatible
with the designed dashboard).

F.3 Class structure of Neighborhood Energy Ontology (NEO)

Overview of a sample of the integrated data in a visual formF.4

15

Sample of integrated date in Turtle (.ttl) formatF.5

16

3. VISUALIZATION

To achieve the goal of more meaningful
urban energy use data, a web-based
viewer is created that visualizes
the integrated data from multiple
stakeholders. The back end of the viewer
consists of two databases. First, a graph
database (Ontotext GraphDB (Ontotext,
2023)) is used to store the linked data. This
project incorporates data from four main
sources: (1) energy use data obtained
from a Dutch energy provider (Enexis
Netbeheer, 2023); (2) socio-economic
data collected from several sources of the
Dutch Central Bureau of Statistics (CBS)
(CBS, 2019); (3) energy label data procured
from the Dutch Enterprise Agency
(Dutch acronym: RVO) (Rijksdienst
voor Ondernemend Nederland (RVO),
2022), and (4) building-related data
gathered from the BAG data (Kadaster,
2021). A Python converter has been
developed to convert tabular data into
RDF data. The converter can integrate
data from multiple datasets as long as
the tabular data has a neighborhood
identifier. It is a helpful addition to the
dashboard described above, which can
accommodate any data adhering to
the data structure outlined in section 2.
The aforementioned data is used as an
example in this project, but the converter
allows for the easy extension of new
datasets in the future. Second, geometric
city information is typically unsuitable
for graph databases, which is why the
Cesium Ion database (Cesium, 2023) is
used to store and stream the geometric
data. This data consists of both 2D and
3D geometries. The dashboard, a web

application in JavaScript, visualizes
the geometric information. This data
is linked with the linked data using a
Globally Unique Identifier (GUID). The
web application lowers the entry barrier
for endusers and can be easily built
upon. The dashboard serves two main
functions, visualization, and interaction
(through querying). End-users can build
visual queries, just like the common
web shop filter bars (see Figure 6). These
queries are transformed into SPARQL
Protocol and RDF Query Language
(SPARQL). Expert users can choose to
type SPARQL queries manually. The
results of these queries will be visualized
in the 3D map, in a table, and a graph.
The 3D map is created using the Cesium
package (Cesium, 2022), and the graph
is constructed using vis.js (vis.js, 2023).
All these items are interactive so that if
a user clicks on a certain neighborhood
in the map, on a row in the table, or an
element in the graph, the SPARQL query
will be automatically updated and new
results will pop up. Users are therefore
not limited to querying functionalities
but can explore the available data
via different intuitive methods. These
functionalities are shown in Figure 6,
where the map is shown in the top left,
while the query is shown in the top
right. The table and graph are shown in
the bottom left and right respectively.
The remainder of this section will show
these elements in more detail and show
the different forms they can take (which
correspond to different functionalities).
A full overview of all functions and the

17

3.1 Map

As has been mentioned, the map is
created using the Cesium package
(Cesium, 2022), which allows for a
multitude of geospatial representations.
Cesium was chosen specifically to
be able to visualize 3D shapes on the
map. The main map displays the city
under investigation (Eindhoven, the

Netherlands) to the end-user, including
all 6-digit postal code areas in this city.
Postal codes in the Netherlands are
formatted with four numbers and two
letters: 0000AA. Importantly, these
postal code areas can be grouped
according to five- and four-digit postal
codes, meaning that 0000A contains all
postal codes starting with these digits.
The user can zoom, pan, and rotate the
view to investigate all aspects of the city.
Moreover, within the map, the user can
click on the postal code areas, which
gives more information on the selected
neighborhood. Firstly, an automatic
query is generated which queries all

related logic and queries can be found in
Appendix A, which will refer to additional
appendices.

F.6 Overview of dashboard

18

3.2 Query

3. Visualization - Map

variables associated with this postal code
area. This allows the user to investigate
the extent of the data available for this
area, and get an initial sense of the area.
The results of such a query are shown in
Figure 7. For an overview of all functions,
see Appendix A.1. As this Figure shows,
all available data on all available spatial
and temporal levels are shown. Moreover,
the user can switch between different
spatial measurement levels, as is shown
at the top of Figure 7. In section 2 it has
been explained how neighborhoods
can contain other neighborhoods, and
therefore neighborhoods can inherit the
properties of other neighborhoods. This
can result in a neighborhood inheriting
properties which were measured on
different spatial levels, as can be seen
in Figure 8. Secondly, a combined 3D
visualization of the buildings within the
area is shown. This visualization consists
of a Light Detection and Ranging (LiDAR)
scan, combined with the 3D BAG dataset
(Peters et al., 2021) and has Level of Detail
(LoD) 2. As has been shown in previous
figures (6, 7, 8), the dashboard shows
the buildings in 3D using the LiDAR
scan made available by the University
of Technology Eindhoven Digital Twin
Lab. This scan is available for the entire
city and is visualized with differing levels
of detail based on the zoom level of the

map. When the user selects a specific
neighborhood, the 3D volumes of the 3D
BAG dataset (Figure 9) are loaded below
the LiDAR layer which allows the user
to click on the buildings and make the
link to the BAG dataset as mentioned in
section 2.

While the map can be considered the
core element of the dashboard, the query
functionality adds the first layer of
interactive capabilities. As is shown in
Figure 6, the user has the option to select
energy use variables, as well as other
variables, to construct a query. These
variables are automatically generated
based on the available instances of
bop:Property in the graphs. Moreover,
the user can select multiple variables
to construct more complex queries and
visualize the results of the query on
the map. The overview of all functions
is listed in Appendix A.2. The structure
for constructing a query is provided
in Figure 10. Firstly, the user can select
one of the available properties (with
different execution methods). This list of
properties is created dynamically based
on the available data. Secondly, the user

Detailed view of postal code area dataF.7

19

selects a property to query, after which
the property is represented correctly. The
representation method is based on the
level of measurement indicated for the
execution method (Figure 2, ‘Property’)
and a high-level check of the found values.

Based on whether the data is numerical,
categorical, or nominal, a different user
interface is generated to build the visual
query method. In the example provided
in Figure 10, the data is numerical, and
therefore the user is presented with

Example of LoD 2 building from 3D BAG datasetF.9

Data of neighborhood from different spatial levelsF.8

20

Step 3

Step 2

Step 1

3.3 Table

3. Visualization - Query

While the main purpose of this project
is to make urban (energy) data more
meaningful by visual means, a more
traditional data representation is also
included. As Figure 6 shows, a table of
the results found by the query is created
where each row represents a postal code
that is returned by the query, while each
column represents the corresponding
value of the variables included in the
query. The user can sort the table by any
of the variables from low to high or the
reverse. Moreover, the user can select a
postal code to investigate in more detail
by clicking on it in the table. The map
will update to show more details of this
neighborhood as has been explained in
the previous section. An overview of all
functions is shown in Appendix A.3.

means to query this data accordingly.
Moreover, the user can select multiple
properties to run a complex query.
Meaning that individual SPARQL queries
are constructed and executed, which
all return the correct postal codes and
their values. When multiple variables
are queried the overlap between the
found postal codes is established, and
these postal codes are shown on the
map. When the user chooses to visualize
the results, the found values for that
variable are converted to five bins, each
represented by a color (as shown in
Figure 6). This allows a more intuitive
way to explore the spread of the found
values over the city. The user can switch
between the visualization of all the found
variables, however, the visualization of
multiple variables at once is not available
as the interpretation of this visualization
would be too complex.

Process of constructing a query using the dashboardF.10

21

3.4 Graph

Lastly, the graph visualizes the structure
of the data to the user. Here, the user can
investigate the data on a higher level and
discover what data is available and create
new queries. Based on the available data,
the graph shows the connections of the
properties, firstly based on their super-
property class (as shown in Figure 3).
When the user selects a property, the level
of measurement, unit, and measurement
procedure are shown (Figure 11, top).
Moreover, when any of these aspects
are selected their relationship to other
properties is also visualized (Figure
11, middle), allowing the end-user to
investigate the nature of the data in
more detail. Using these functionalities
and their interactions, the user can query
data that crosses multiple domains using
one method. The user can discover new
aspects of the data which were previously
impractical to discover and therefore
gain new insights about their individual
questions. This dashboard could be used
this way to answer existing questions or
formulate new questions which the user
was unable to form before. All functions
of the graph are listed in Appendix A.4.

zInteraction with graph representation of dataF.11

22

4. USE CASES

4.1 Energy Poverty

The previous sections have shown how
NEO can be implemented in the Neo
Dash semantic digital twin. While this
digital twin is a first step towards more
meaningful urban data, it does not
necessarily solve the challenges described
in section 1. Therefore, this section will
go into detail on several, related, use
cases which will show how this digital
twin and the proposed semantic data
structure can make urban data more
meaningful. Firstly, section 4.1 will show
an analysis of the concept of energy
poverty. This analysis will show how data
from disparate data sources, temporal
resolution, and spatial scales can be
combined to gain more insight into a
relevant societal issue. Secondly, section
4.2 will be explored how the proposed
digital twin can also be implemented
on a very high spatial and temporal
resolution by exploring the possibilities
of real-time data implementation. Lastly,
section 4.3 will explore the possibilities to
use the data structure and dashboard to
perform predictive analytics and enrich
the analysis done in section 4.1.

The first use case aims to investigate
the societal issue of energy poverty (or,
fuel poverty). However, before going
into detail on the added value of the
created dashboard and data structure,
it is necessary to provide a definition
(or several definitions) of the concept

of ‘energy poverty’. ‘The definition of
fuel poverty is important for policy
formulation; for determining the scale
and nature of the problem; targeting a
strategy and monitoring progress’ (Moore,
2012). According to Moore (2012), an early
definition of energy poverty was an
expenditure on energy service exceeding
10% of a household’s income. However, this
definition was provided in 1991 and since
then several alterations have been made,
moreover, this definition was given in
the UK context. A more recent definition
is ‘Low Income, High Cost’ (Dutch: Laag
Inkomen, Hoge Energierekening (LIHE))
(Department for Business, 2020; Mulder
et al., 2023). Following the definition
provided by Mulder et al. (2023), this
definition considers households with low
income and a high energy bill, where low
income is considered to be within 130%
of the poverty line and a high energy
bill is an energy bill above the median
(for the year 2019). An even more recent
and expansive definition is ‘Low Income,
Low Energy Efficiency’ (Dutch: Laag
Inkomen, Lage Energetische Kwaliteit
(LILEK)) (Department for Energy Security
& Net Zero, 2023; Mulder et al., 2023). This
definition has the same definition for low
income as the LIHE definition, however, a
dwelling is considered to have low energy
efficiency when the expected energy use
is lower than an average C-label dwelling.
As can be seen from these three definitions,
several concepts are combined to
evaluate energy poverty. These concepts
range from socio-demographic
variables (income) to building variables

23

(energy label), which indicates that data
from several data sources need to be
combined to easily assess energy poverty
on an urban scale. Therefore, the goal of
this use case is to evaluate these three
definitions of energy poverty, and thus
show the potential of semantic web
technologies and associated tools. To
achieve this goal, a visual approach is
taken in the dashboard design where the
income and energy costs are shown per
neighborhood (Figure 12). In this figure,
each dot represents a neighborhood,
which has a corresponding income
(average per neighborhood from 2021)
and cost of energy (average energy use
per connection from 2022, combined
with an average energy cost of 2022).
Considering the first definition discussed
above, this would mean that a line can
be drawn where the cost of energy
exceeds 10% of the annual income in
the neighborhood (Figure 13). In this
figure, the neighborhoods which fall
below this line can be considered to not
be at risk of energy poverty, conversely,
neighborhoods above this line can be
considered to be at risk of energy poverty
according to this definition. Similarly,
according to the LIHE definition, two lines
can be drawn: 130% of the poverty line and
the median energy cost (Figure 14). In this
figure, the neighborhoods in the upper left
quadrant can be considered to be at risk

of energy poverty. Considering that the
vertical line represents the demarcation
of 130% of the poverty line, and thus
neighborhoods falling to the left of this
line are below this benchmark. Similarly,
the horizontal line represents the median
energy cost, and thus neighborhoods
that are above this line have higher
energy costs than this benchmark.
Considering the final definition, a slightly
different conceptual approach is taken.
The previous definitions have considered
energy poverty on a neighborhood scale,
however, as the final definition includes
building-level data (energy labels) such
a spatial scale becomes problematic.
Therefore, only the neighborhoods
which are considered at risk according
to the LIHE definition are considered
in the final analysis. Within this set of
neighborhoods, if a building is present
within that neighborhood that has an
energy label below C, this neighborhood
is shown in the visualization (Figure
15). As will be explained in more detail
below, the radius of the dot represents
the relative amount of dwellings at
risk of energy poverty. Implementing
this conceptual visualization gives the
following dashboard features. The data
used in this use case is summarized
in Table 2. In this table, the variable is
named, together with its spatial level.
’PC6’ indicates a postal code level with

Conceptual representation of energy poverty
visualizationF.12 Conceptual representation of ‘10% of Income’

definition of energy povertyF.13

24

3. Use Cases - Energy Poverty

6 digits (0000AA), which is the highest
level of urban detail in the Netherlands.
’Buurt’ indicates a spatial level created by
the Central Bureau of Statistics and is a
collection of ’PC6’ neighborhoods. First of
all, the concept of Figure 13 is actualized,
as is shown in Figure 16. This figure shows
several aspects of this functionality of
the dashboard. Firstly, the top part of
the ‘Energy Poverty Analysis’ box shows
that the user can switch between
the three definitions. Moreover, the
definition and data sources are shown
in order to inform the user. Secondly,
the actual graph is visualized where the
pink dots represent neighborhoods at

risk of energy poverty, while the grey
dots represent neighborhoods that are
not at risk (according to this definition).
These colors correspond to the map
visualization (section 3.1), which is
updated dynamically based on the graph.
Moreover, it might occur that income
(Table 2 - 4) is unknown for a certain
neighborhood, in this case, the income is
imputed using the mean of the available
data. These neighborhoods are visualized
separately to avoid confusion in further
analysis by the user. Lastly, the number of
neighborhoods at risk is summed to give
the user an overview of the magnitude of
the problem at hand (which can also

Conceptual representation of LIHE definition of
energy povertyF.14 Conceptual representation of LILEK definition of

energy povertyF.15

Visualization of ‘10 percent’ definition of energy povertyF.16

25

be compared between definitions). As
the total amount of households per
neighborhood is known (Table 2 - 5), the
amount of households at risk is also
shown. As this graph shows, there are
several neighborhoods that are close to
the border, which might be of interest
to the user. By slightly altering the given
definition, the user might investigate
how sensitive certain neighborhoods
are to small deviations in income spent
on energy services or costs of energy
services. This analysis is made possible
by the slider shown in Figure 16, which
adjusts the border as is shown in Figure
17. As this figure shows, by adjusting the
border to 12% of income, more than 600
neighborhoods are now no longer at risk
of energy poverty according to the data.
This difference is shown in the graph by
the gray dots (which are also represented
in the map visualization). Similarly, if the
border would be adjusted in the other
direction, additional neighborhoods
would be considered at risk of energy
poverty. Considering the second
definition of energy poverty, a similar
visualization is implemented, as shown in

Figure 18. The concept of this visualization
has been explained according to Figure
14, however, the actual implementation
is more complex considering that
different levels of poverty are defined
by the Dutch government based on
household composition (Centraal Bureau
voor de Statistiek, 2022). As the data on

Visualization of adjustment to the first definition of
energy povertyF.17

Visualization of LIHE definition of energy povertyF.18

26

4. Use Cases - Energy Poverty

household composition (Table 2 - 6, 7, 8 &
9) is available, it is calculated how many
households are considered energypoor
given the different levels of poverty,
and the available energy cost data. If
no households are considered energy
poor according to the LIHE definition,
the neighborhood is visualized as not
at risk. The borders shown in Figure
18 are the least stringent (highest
poverty line) definitions, which might
result in neighborhoods falling within
the borders of the graph representing
energy poverty, however, being marked
as not at risk of energy poverty. For the
previous definition, it has been described
how the definition of energy poverty can
be adjusted to explore the sensitivity to
change. A similar functionality is available
for the LIHE definition, however, in this
graph, two dimensions need to be altered
as this definition is dependent on two
factors (income and median energy cost).
This results in a graph similar to the graph
shown in Figure 19, where the orange
dots represent neighborhoods that are
newly marked as at risk of energy poverty
according to the adjusted definition of

LIHE. Regarding the last definition, the
concept of Figure 15 is translated into the
visualization shown in Figure 20.
As has been mentioned before, the
neighborhoods represented in this graph
are considered at risk of energy poverty
according to the LIHE definition, while
also containing a dwelling with an energy
label worse than C. The radius of the dots

Visualization of adjustment to the LIHE definition of
energy povertyF.19

Visualization of LILEK definition of energy povertyF.20

27

Variable Name Spatial Level Unit

1. Electricity Use pc6 kWh/
connection

2. Gas Use pc6 m3/connection

3. Dwelling Value pc6 x1000 EU

4. Income Buurt x1000 EU

5. Households pc6 -

6. Multi person
household (no children)

pc6 -

7. One Parent Household pc6 -

8. One Person
Household

pc6 -

9. Two Parent Household pc6 -

10. Energy Label Building A++++ - G

11. Built Year Building year

12. Area Building m2

T.2 Overview of data used in Energy Poverty use case

is determined by the relative amount of
such dwellings in the area, which means
that larger dots represent neighborhoods
with relatively more dwellings at risk of
energy poverty. To provide more insight
into individual neighborhoods, the user
can select a neighborhood which is
shown in Figure 21. This graph shows
the actual distribution of energy labels
in the neighborhood. Moreover, if the
user selects a label in the graph, the
corresponding dwellings are shown on
the map (see Figure 21, energy label D is
selected). From a user perspective, this
analysis shows how different definitions
give different insights into the societal
issue of energy poverty. This dashboard
enables the user to switch between
definitions and argue for certain policy
measures based on these different
definitions. Moreover, this use-case
shows how semantic web technologies
provide benefits for complex questions
which require information from different
sources. The LILEK analysis combines
energy use, income, household
composition, number of households,
and energy label data. Without using
Linked Data such analysis would be
hard to conduct (repeatedly). Using the
proposed ontological structure, and

the designed dashboard, the user can
explore the data quickly and repeatedly.
In addition, the analysis is made more
meaningful through the ability to explore
the problem visually. The results of the
analysis are visualized geographically as
well as in a graph, allowing the end-user
to localize interesting areas of the city.
It is suggested that this adds additional
meaning to the analysis, as the user is not
only able to explore the results in a graph,
but also geographically.

Example of distribution of energy labels in neighborhoodF.21

28

4.2 Time Series Data

4. Use Cases - Time Series Data

Therefore, time-series data is stored in
databases that are created specifically
for those purposes. The previous use case
has shown how mostly aggregated data
is used (aggregated on a spatial as well
as a temporal level). This type of data is
suitable for certain purposes, however,
also introduces uncertainties. The energy
use variable discussed in the previous
use case shows these uncertainties quite
clearly. This data is the yearly average
energy use of all the connections to
the energy grid in that neighborhood.
Aggregating data over a year eliminates
the fluctuations over seasons and days.
Moreover, energy use might fluctuate
greatly between buildings within a
neighborhood. Therefore, this use case
will explore the challenge of integrating
the proposed data structure with time
series data. While this type of integration
might not be required in larger urban
analysis, it can provide additional insight
on an individual building level. This will
make urban data more meaningful to
individuals or small scale urban end-
users, such as real-estate managers.
Moreover, this will show the transitive
nature of NEO, where data can be defined
on multiple scales (and queried on those
differing scales). Here, the main method
used is to use the graph as a ’map’ which
can guide to the right database to query
for the time series data. This concept is
explained in Figure 22. This figure shows
an example of a graph consisting of

Generally, graph databases (as used in
this project) can be considered unsuitable
for time series storage. A high-level
explanation for this characteristic of
graph databases is the fact that for
every time-series data point, a new
set of triples (see Figure 1) needs to be
created, resulting in a quickly exploding
graph structure when time-series data
is recorded with a high frequency.

Conceptual explanation of the connection between
Graph- and Time Series databasesF.22

F.23 Overview of the integration of Graph- and Time Series data

29

edges and nodes (triples in this project).
Some of the black nodes have a related
data element which is stored in an
external times series database. Such a
structure would allow for a query where
the graph can be explored (like a map)
to search for nodes that have a related
time series data point. As has been
discussed, in order to overcome some of
the uncertainties of the previously used
data, higher resolution energy use data
will be explored. This data will consist of
time series data on a building level, as
formally shown in Figure 23. This Figure
shows how the available structure of BOP
(https: //w3id.org/bop#) is implemented
in this project. A building can therefore
have a certain property (in this use case
electricity use) which has a property
state pointing to a data point. This data
point is part of a particular (time series)
database and has an associated ID. This
ID will be used to query the correct data
for the associated database. In order to
show the potential of this structure, a
day of energy use is generated randomly
for a set of buildings on the University
of Technology Eindhoven campus.
Randomly generated data is used as
such type of data is not available due
to privacy reasons, however, the goal

of this use case is to explore the added
value of making such data available (and
exploring the challenges). An example
of such data and its implementation
into the dashboard is shown in Figure
24. Here, the dashboard queries the
Graph database with the URI of the
selected building and its corresponding
data point(s) if available. If such a data
point is available, the corresponding ID
and database identification are used to
retrieve the available time series data.
Using this data on an urban scale results
in the dashboard as shown in Figure
25. Here, a similar query is constructed
as described before, however, for all
buildings which have time series data
available. An average of the available data
on a neighborhood level is then used
for visualization, as shown in Figure 25.
However, as can be seen, only data is
available for the campus, therefore, it
might be desirable to combine both time
series and yearly average data, using time
series where possible and the yearly
average otherwise. This implementation
is shown in Figure 26. At first glance,
no difference is visible between this
implementation and the use case
discussed in Section 4.1. However,
investigating the time frames shown

Visualization of time series energy use data on a building levelF.24

30

4. Use Cases - Time Series Data

F.27 System of streaming and storing real-time energy use data

Visualization of time series energy use data on a neighborhood levelF.25

Visualization of time series and graph energy use data on a neighborhood levelF.26

31

in Figure 26, some of the challenges of
this use case become clear. The yearly
average energy use data spans an entire
year, while the time series average only
spans one day, which might limit the
usefulness of such an implementation.
However, this use case shows how
this data can be useful to the building
man agers of this particular urban area
(university campus). They can investigate
energy use for all sections of the campus,
while also having access to individual
buildings’ energy use. Therefore, they
can move through different spatial
levels, to gain more insight. Moreover,
they could link urban data of the
campus (demographics, greenery, etc.)
to gain even more insight. However,
high-resolution energy use data is not
currently available, therefore, a second
implementation is explored where
energy use of a dwelling is used in real-
time. This implementation is created
in order to show the future potential
of the dashboard and the value of the
incorporation of graph and time series
databases. In order to store and stream

this data, a P1 meter (HomeWizard
BV, 2023) is connected to a dwelling
in Eindhoven. This meter is accessible
through a local API, which is used in a
continually run program to store the data
every 5 minutes while streaming the data
every 10 seconds (see Figure 27). In order
to continually stream the data, the MQ
Telemetry Transport (MQTT) protocol is
used. This protocol uses a central broker,
where data can be published on certain
topics. Once subscribed to these topics,
the streamed data can be retrieved. The
central broker and publishing topic are
encoded in the graph structure shown in
Figure 23, where the database indicates
the correct broker, while the ID provides
the correct topic. The topic is dependent
on the type of data that is streamed (in
this case electricity use), the city, and the
building in that city, resulting in topics
of the following format: ‘CITY/VARIABLE/
BUILDING URI’. The implementation of
this system is shown in Figure 28. The
dashboard queries for the correct broker
and topic for the building and shows
to most recently published data. While

Visualization of real-time energy use data on a building levelF.28

32

4.3 Predictive Analytics

4. Use Cases - Predictive Analytics

The previous two use cases have
focussed on the analysis of existing data
and visualizing that data in order to gain
better insights. However, users might also
require some predictive analytics as part
of the dashboard. Therefore, this section
will delve into a possible implementation
of such an analysis. Section 4.1 discussed
how the energy labels of individual
dwellings are used, however, not all
buildings in the city under investigation
have known energy labels. The data
includes 136122 buildings labeled as a

dwelling (Dutch: ’woonfunctie’) or with
an unknown function. Of these buildings,
51099 (37.5%) have an unknown energy
label. Therefore, the goal of this use case
is to categorize these buildings according
to the Dutch energy label system based
on the available data. The data used for
this analysis is a combination of data from
the Cadastre, Land Registry and Mapping
Agency of the Netherlands (Dutch:
Kadaster), Central Bureau of Statistics,
and Energy Provider. More concretely,
on a building level the construction year
and footprint (m2) are used, while on a
neighborhood level average building
value (Dutch: ’WOZ waarde’), electricity,
and gas use are used. In this analysis
building and neighborhood-level data
are combined, where it is assumed that
the average data from the neighborhood
is applicable to the buildings in that
neighborhood. As an example, if a building
is built in 1970 and is 100 m2, while being
situated in a neighborhood where the
average building value is €200.000, it is
assumed that that building is worth the
same amount (the value of all buildings
in that neighborhood is assumed to
be that amount). The SPARQL query
to gather the previously mentioned
data is shown in Figure 29 . In order to
eliminate neighborhoods where energy
use is exceptionally high due to industrial
activity, only neighborhoods are included
where the percentage of dwellings (and
buildings with a non-defined purpose of
use) is above 95%. Moreover, data is
gathered from 2020, which is the most
recent year all previously mentioned
variables are available. Considering the
buildings with an unknown energy
label, it might be most advantageous
to label them with a new energy label
ranging from A++++ to G. However,
initial exploration of prediction models
showed that this yields very low accuracy.
Therefore, another solution has been

also querying a time series database as
described before, to show all the available
data. This implementation shows how it
is possible to stream and store energy use
data for buildings and use that data on
an urban level. Moreover, as Figure 28
shows, this type of data can be matched
to external data to gain new insights as
also the temperature of the recorded
time is shown using an external API. As an
example, Figure 28 shows certain peaks
in energy consumption which can be
related to the relatively high temperature
on the recorded day. The building
owner, or real-estate manager, can now
investigate these trends and relate them
to additional building and urban
characteristics. Concluding, this use case
has shown how the proposed ontological
structure can be used and extended to
incorporate time series data and gain
more insight into urban energy use.
While the use case described in section
4.1 explored energy use on a larger urban
scale, this use case has shown how the
semantic digital twin can be implemented
on a smaller urban scale to make energy
use more meaningful on an individual
building or small neighborhood level.

33

found. Regarding the LILEK definition of
energy poverty discussed in Section 4.1, it
is sufficient to know if a building has an
energy label better or worse than C. This
simplifies the categorization task as only
two categories remain. The process for
training and using the model is shown
in Figure 30. For the categorization
model, a Random Forest (RF) model
is used. Comparing several models
(logistic regression, Tree algorithm,
Random Forest, Neural Network) the RF
showed to best performance relative to
processing time. Moreover, while this use
case is aimed at showing the potential of
predictive analytics within the proposed
dashboard and data structure, the process
of incorporating such an analysis is the
main goal, not the actual performance of
the model. The model is trained using
a 75/25 train-test split, where the data is
normalized (between 0 and 1) in order to
eliminate outsized effects of the larger

orders of magnitude of some variables.
In order to train the model, the scikit-
learn package (Pedregosa et al., 2011) is
used. To assess the performance of the
model a confusion matrix is created as
shown in Table 3. This matrix indicates
a precision of 92%, recall of 92%, and
overall accuracy of 89%. For the purposes
of this use case, this performance is
deemed acceptable and therefore the
model will be used in the remainder
of this project. As Figure 30 shows, the
prediction model is used in two different
ways. Firstly, the dashboard can access
the model directly via a custom API. Here,

SPARQL query to collect data for predictive analysisF.29

T.3 Confusion matrix of Random Forest model

<C >=C

<C 7373 677

>=C 626 3146A
ct

u
al

Predicted

34

F.31 Results of API call made to Random Forest model

4. Use Cases - Predictive Analytics

the API call includes the relevant data
on an individual building and the return
message indicates whether that building
is more likely to have an energy label
above or below C according the to model.
An implementation of this is shown in
Figure 31. This image shows how for each
dwelling in the building the energy label
is checked, which is shown if it is available.
Otherwise, the API call is made and the
results are shown. Considering that the
known energy labels in this building are
D, the result of ’Worse than C’ seems
reasonable. While this method works for
a relatively small amount of dwellings,
processing times become intractable if
all 51099 dwellings need to be estimated

in real-time every time an analysis is
done. Therefore, the results of the RF
model are also stored in the graph
database directly, so they can be queried
for the energy poverty analysis directly.
The ontological structure for storing the
energy labels is shown in Figure 34. Here
it can be seen that the same structure for
defining properties on a neighborhood
level is used. This structure allows the
user to differentiate between actual and
predicted energy labels by querying the
appropriate procedure (in Figure 34 a
predicted energy label is shown). Section
4.1 has shown the LILEK analysis, however,
this analysis was conducted using only
the available, known energy labels. Using

Process for incorporating Random Forest Model into dashboardF.30

35

the estimated energy label categories,
this analysis can be performed differently,
yielding the results shown in Figure 32.
While these results do not seem different
from the results shown in Figure 20, Figure
33 shows that the newly estimated energy
label categories are indeed included in
the analysis. Further analysis shows that
roughly 335 (5%) additional households
are considered to be at risk according to
the analysis including estimated energy
label categories. This final use case has
shown how the proposed data structure
can be leveraged to gather data to train
predictive models, while also retrieving
data to make predictions. Moreover,
these models can be integrated into
the created dashboard which allows for
more comprehensive analyses. While
this use case serves as an example of
classical machine learning, it might
serve as a first step towards more robust
artificial intelligence according to the
definition provided by Marcus (2020).
’Business as usual has focused primarily
on steadily improving tools for function
approximation and composition within
the deep learning toolbox, and on
gathering larger training sets [...] one can
imagine improving systems by gathering
larger data sets, augmenting those data
sets in various ways, and incorporating
various kinds of improvements in the
underlying architecture.’ (Marcus, 2020).
The author argues for an approach more
similar to the cognitive cycle where
humans take in perceptual information
from the outside, build internal cognitive
models based on their perception of that
information, and then make decisions
with respect to those cognitive models.
Here, the proposed ontological structure
might serve as a ’cognitive model’ for
decision-making in the urban setting,
which would allow for more robust,
contextual urban modeling by artificial
intelligence in the future. Or, to build

systems that an ’routinely acquire,
represent, and manipulate abstract
knowledge, using that knowledge in
the service of building, updating, and
reasoning over complex, internal models
of the external world’ (Marcus, 2020).

36

Energy label distribution of neighborhood shows the inclusion of estimate energy label categoriesF.33

LILEK analysis including estimated energy label categoriesF.32

Ontological structure for storing energy labelsF.34

4. Use Cases - Predictive Analytics

37

5. DISCUSSION &
CONCLUSION

The goal of this project was to make urban
(energy use) data more meaningful. The
seaming lack of meaning in the current
situation is suggested to be threefold
First of all, a general lack of building
information and other data limits the
possibilities for cross-domain monitoring,
simulation, and interventions (Curry et
al., 2013). Secondly, current methods
for urban energy modeling are mostly
either top-down or bottom-up models,
which limit the possibilities for analysis
on multiple scale levels (Abbasabadi
and Mehdi Ashayeri, 2019). Therefore,
semantic web technologies and Linked
Data are suggested as possible solutions
to create more meaning in the data.
However, this leads to the third and
last impediment to more meaningful
urban data, which is the lack of available
ontological structures that are deemed
suitable for the purposes of this project.
In order to solve these challenges a new
ontological structure has been proposed,
Neighborhood Energy Ontology (NEO).
This allows for the description of urban
data properties on multiple spatial
and temporal levels, where properties
can be transitive between urban areas
(’neighborhoods’) that contain each
other. Built upon this data structure is
the semantic digital twin NeoDash. This
digital twin allows the user to explore
the available data in a more intuitive
way. Moreover, several use cases have
shown how the digital twin can be
implemented to solve societal issues. The
newly proposed ontological structure
(Neighborhood Energy Ontology (NEO))

holds some advantages over previously
mentioned ontologies. Ontologies like
those mentioned by Chun et al. (2020);
Reinisch et al. (2011); Daniele (2020),
are mostly concerned with energy use
on a single scale (microgrids, houses,
and appliances). While this is suitable
for those use cases, this methodology
does not solve the issues mentioned
by (Abbasabadi and Mehdi Ashayeri,
2019) of lack of analysis on multiple scale
levels. Similarly, existing ontologies like
SAREF4CITY and EM-KPI, are mostly
concerned with larger-scale urban data.
NEO aims to bridge the gap between
these two approaches and allows for
large-scale urban data (section 4.1 to
smaller-scale building level (section 4.2
data. Moreover, as NEO is built upon the
structure of both BOT and BOP, even
smaller spatial levels could be achieved.
This shows how this challenge of top-
down and bottom-up integration is also
addressed by NEO. As data is integrated
on all scale levels, it can be aggregated
from the top-down or the bottom-up,
depending on the desired analysis.
Different implementations of this were
given in section 4.2. Furthermore, as
the developed semantic digital twin
is based upon NEO, it is suggested to
hold an advantage over more traditional
GIS platforms (based on, for example,
cityGML). The conducted use cases show
how the integrated data can be used for
multiple types of analysis and models,
where the user is no longer limited by
a lack of integration. This allows to user
to ask new, different, and more complex

38

questions that were harder or infeasible
to ask in a more traditional urban model.
In order to explore the possibilities
of semantic digital twins further, the
possibilities of ontology alignment
should be further explored. As has been
mentioned, existing ontologies have
great potential to describe specific
energyrelated topics, which could be
beneficial for larger-scale urban data
analysis. Therefore, alignment between
NEO and ontologies like SAREF4CITY and
EMKPI could prove beneficial. Moreover,
while this project has focussed on the
feasibility of developing a semantic
digital twin, the implications of such
a tool should be further investigated.
Potential risks, such as privacy should be
further explored. Section 4.2 has shown
how more accurate energy use data
can be used, however, it did not discuss
the privacy implications of making such
data available. Moreover, this might well
depend on the end-user of such a tool,
which has not been made explicit in this
project. Depending on the end-user and
their specific incentives, the societal,
economic, and environmental impact of
such a semantic digital twin should be
further investigated. It is suggested that,
while the data structure will not change,
different digital twins can be built upon
that data structure in order to serve
different end-users with specific end
goals. This assumption should be explored
further in future work. Concluding,
this project has aimed to add to the
current state of urban energy modeling
through the addition of semantic web
technologies and Linked Data. The newly
proposed ontology adds to the existing
body of ontological structures by allowing
for urban data description on multiple
spatial and temporal levels. Moreover, the
created semantic digital twin leverages
this data structure to allow for more
intuitive data exploration through visual

means. The benefit of such a digital twin
is shown through the use cases described
in section 4. These use cases show how
Linked Data in combination with digital
twins can, indeed, provide additional and
more meaningful insight into urban data.

39

REFERENCES

Abbasabadi, N., Ashayeri, M., Azari, R.,
Stephens, B., and Heidarinejad, M. (2019).
An integrated data-driven framework
for urban energy use modeling (UEUM).
Applied Energy, 253.

Abbasabadi, N. and Mehdi Ashayeri, J.
K. (2019). Urban energy use modeling
methods and tools: A review and an
outlook.

Ali, U., Shamsi, M. H., Alshehri, F., Mangina,
E., and O’Donnell, J. (2019). Application
of intelligent algorithms for residential
building energy performance rating
prediction. In Building Simulation
Conference Proceedings, volume 5,
pages 3177–3184. International Building
Performance Simulation Association.

Ali, U., Shamsi, M. H., Bohacek, M., Purcell,
K., Hoare, C., Mangina, E., and O’Donnell,
J. (2020). A data-driven approach for
multi-scale GIS-based building energy
modeling for analysis, planning and
support decision making. Applied
Energy, 279.

Ali, U., Shamsi, M. H., Hoare, C., Mangina,
E., and O’Donnell, J. (2021). Review of
urban building energy modeling (UBEM)
approaches, methods and tools using
qualitative and quantitative analysis.

Amber, K. P., Aslam, M. W., and Hussain,
S. K. (2015). Electricity consumption
forecasting models for administration
buildings of the UK higher education
sector. Energy and Buildings, 90:127–136.

CBS (2019). Kerncijfers per postcode.

Centraal Bureau voor de Statistiek (2022).
1 op de 4 mensen met armoederisico is
een kind.

Cesium (2022). Cesium - The Platform for
3D Geospatial.

Cesium (2023). Cesium Ion.

Chun, S., Jung, J., Jin, X., Seo, S., and Lee,
K. H. (2020). Designing an integrated
knowledge graph for smart energy
services. Journal of Supercomputing,
76(10):8058–8085.

Corry, E., Pauwels, P., Hu, S., Keane, M.,
and O’Donnell, J. (2015). A performance
assessment ontology for the
environmental and energy management
of buildings. Automation in Construction,
57:249–259.

Curry, E., O’Donnell, J., Corry, E., Hasan, S.,
Keane, M., and O’Riain, S. (2013). Linking
building data in the cloud: Integrating
cross-domain building data using linked
data. Advanced Engineering Informatics,
27(2):206–219.

Daniele, L. (2020). SAREF4ENER: an
extension of SAREF for the energy
domain created in collaboration with
Energy@Home and EEBus associations.

Daniele, L., den Hartog, F., and Roes, J.
(2015). Created in Close Interaction with
the Industry: The Smart Appliances

40

REFerence (SAREF) Ontology. In
Lecture Notes in Business Information
Processing, volume 225, pages 100–112.
Springer Verlag.

De Nicola, A. and Villani, M. L. (2021). Smart
city ontologies and their applications: A
systematic literature review.

Degha, H. E., Laallam, F. Z., and Said, B.
(2019). Intelligent context-awareness
system for energy efficiency in smart
building based on ontology. Sustainable
Computing: Informatics and Systems,
21:212–233.

Department for Business, E. . I. S. (2020).
Fuel Poverty Methodology Handbook
(Low Income High Costs). Technical
report.

Department for Energy Security & Net
Zero (2023). Fuel Poverty Methodology
Handbook (Low Income Low Energy
Efficiency). Technical report.

Donkers, A., Yang, D., De Vries, B., and
Baken, N. (2021). Building Performance
Ontology. Revision: 1.6

Enexis Netbeheer (2023). Open Data.

Hausenblas, M. and Kim, J. (2012). 5-Star
Open Data.

HomeWizard BV (2023). Wi-Fi P1 Meter.

Kadaster (2021). Basisregistratie Adressen
en Gebouwen.

Kim, T. Y. and Cho, S. B. (2019). Predicting
residential energy consumption using
CNN-LSTM neural networks. Energy,
182:72–81.

Kolter, J. Z. and Ferreira, J. (2011). A
Large-Scale Study on Predicting and

Contextualizing Building Energy Usage.
Technical report.

Li, W., Zhou, Y., Cetin, K., Eom, J., Wang, Y.,
Chen, G., and Zhang, X. (2017). Modeling
urban building energy use: A review of
modeling approaches and procedures.

Li, Y., Garcıa-Castro, R., Mihindukulasooriya,
N., O’Donnell, J., and Vega-Sanchez, S.
(2019). Enhancing energy management
at district and building levels via an EM-
KPI ontology. Automation in Construction,
99:152–167.

Marcus, G. (2020). The Next Decade in
AI: Four Steps Towards Robust Artificial
Intelligence

Moore, R. (2012). Definitions of fuel
poverty: Implications for policy. Energy
Policy, 49:19–26.

Mulder, P., Batenburg, A., and Dalla Longa,
F. (2023). Energiearmoede in Nederland
2022. Technical report.

Ontotext (2023). GraphDB by Ontotext.

Pauwels, P., Zhang, S., and Lee, Y. C. (2017).
Semantic web technologies in AEC
industry: A literature overview.

Pedregosa, F., Michel, V., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Vanderplas,
J., Cournapeau, D., Pedregosa, F.,
Varoquaux, G., Gramfort, A., Thirion, B.,
Grisel, O., Dubourg, V., Passos, A., Brucher,
M., Perrot, M., Duchesnay, ˜A., and
Duchesnay, F. (2011). Scikit-learn: Machine
Learning in Python. Technical report.

Peters, R., Dukai, B., Vitalis, S., Van Liempt,
J., and Stoter, J. (2021). Automated
3D reconstruction of LoD2 and LoD1
models for all 10 million buildings of
the Netherlands. Technical report, Delft

41

Images

Cover & page 41
Marien, R. (2021) https://unsplash.com/photos/xRcd-
dI_a7tw

Page 2-3
Ziajowska, A. (2022) https://unsplash.com/photos/
tWRKNpWPVaw

Page 4-5
Quinten, J. (2021) https://unsplash.com/photos/YsVh-
cvoJp0k

Page 6-7
Fernándex, F. (2019) https://unsplash.com/photos/ibsX-
mc68psk
Page 8
Ijsendoorn, P., PhotosPublic (n.d.)

Page 12
ruddy.media (2019) https://unsplash.com/photos/sN8L-
GWF7A0I

Page 16
Cotimani, A. (2020) https://unsplash.com/photos/
pGLeXbxeBCc

Page 22
rawPixel, (n.d.) https://www.rawpixel.com/im-
age/3370024/free-photo-image-glowing-amuse-
ment-park-architecture

Page 36
Kohler, T. (2022) https://unsplash.com/photos/Xjqxrxn-
Hjbw

Page 38
Ram, O. (2020) https://unsplash.com/photos/RsTgMxS-
FppI

Page 42
Kunnen, Bram (2017) https://unsplash.com/photos/
PFeFOCB6S18

Page 60
Heijmerikx, R. (2020) https://unsplash.com/photos/
nSCx6_pQdlU

Page 103
BNW (2020) https://unsplash.com/photos/8dmuy_
M7t9g

Design based on: https://visme.co/blog/business-re-
port-templates/

University of Technology.

Rasmussen, M. H., Lefraņcois, M.,
Schneider, G. F., Pauwels, P., and Janowicz,
K. (2020). BOT: the Building Topology
Ontology of the W3C Linked Building
Data Group. Technical report.

Poveda-Villalon, M., Garcia-Castro, R.,
and Espinoza-Arias, P. (2020). SAREF
extension for Smart City.

Reinisch, C., Kofler, M. J., Iglesias, F., and
Kastner, W. (2011). Thinkhome energy
efficiency in future smart homes. Eurasip
Journal on Embedded Systems, 2011.

Rijksdienst voor Ondernemend
Nederland (RVO) (2022). Openbare data
energielabels.

United Nations Department of Economics
and Social Affairs (2019). World Population
Prospects 2019.

VanDerHorn, E. and Mahadevan, S.
(2021). Digital Twin: Generalization,
characterization and implementation.
Decision Support Systems, 145.

vis.js (2023). Vis.js community edition.

Wang, W., Lin, Q., Chen, J., Li, X., Sun, Y.,
and Xu, X. (2021). Urban building energy
prediction at neighborhood scale. Energy
and Buildings, 251.

Zhao, H. X. and Magoules, F. (2012). A
review on the prediction of building
energy consumption.

42

Name Use Functions Code
1 Map As explained in Section 3.1,

the main functionality of the
dashboard is the map. The
map visualizes the city under
investigation and the results of
the queries and analysis when
relevant. All functions will be
detailed in A.1 below.

loadCesium()
toggleGeometry()
toggleNeighborhoods()
toggleAll(false)

B.1
B.2
B.3
B.4

2 Query Button Toggles the Query Box, which is
elaborated in Section 3.2 and in
A.2 below.

toggleAll(‘sideColumn’) B.4

3 Table Shows the relevant results of
the query and has interactive
functions with the map (Section
3.3, A.3).

updateTable(postalCode)
orderTable(variable, ordering)

B.5
B.6

4 Graph Shows the relationship
of the queried variable or
neighborhood in graph format
(Section 3.4, A.4).

getMetaData()
getInstanceData()

B.7
B.8

5 Time Series Button Toggles the Time Series Analysis
Box (Section 4.2, A.5).

toggleAll(‘timeSeriesBox’) B.4

Appendix A
Dashboard

This appendix describes all functionalities
of the dashboard in more detail. Below
every aspect of the dashboard will be
discussed, including their assigned
names, uses and which functions they
include. These functions are part of the
code which builds up the dashboard,
which are further explained in Appendix
B (page 60). Firstly, the major parts
of the dashboard will be explained as
in Section 3 of the main report. After
which, each part of the dashboard will
be explained in more detail. While the
main report gives an overview of the

most important functions, this Appendix
will explain all functionalities build in to the
dashboard and why they might be relevant
for the overall function.

43

Name Use Functions Code
6 Energy Poverty

Button
Toggles the Energy Poverty
Analysis Box (Section 4.1, A.6).

toggleAll(‘energyPoverty-
Box’)

B.4

2

1

6

5

3 4

Overview of Dashboard including function markingsF.A1

44

Name Use Functions Code
1.1 Disable

Neighborhoods
Button

The user is able disable (and enable)
the visualization of the neighborhoods.
As the neighborhoods present a strong
visual component of the map, the user
might choose to not visualize them. This
also disables the interactivity on building
level.

toggleNeighborhoods() B.3

1.2 Disable
Geometry
Button

Similar to function 1.1, this button dis-
ables (or enables) the LiDAR geometry,
visualizing the BAG volumes seperatly
(Figure A2-B). This might assist the user
in selecting the appropriate building.

toggleGeometry() B.2

1.3 Reset View But-
ton

Some queries and interactions might
lead to upredictable results or an error in
the dashboard. Therefore, the user is able
to reset the view (and current queries) as
to start their analysis over.

resetView()

1.4 Cesium Map The main functionalities have been
explained in Section 3.1. The user is able
to perform traditional 3D manipulations
like panning and zooming. Moreover,
the standard Cesium geo-encoder
(geospatial search bar) is functional.
Dashboards specific functions are
interaction with the neighborhoods and
corresponding buildings. Interacting
with the neighborhood results in a
view as shown in Figure A2-A where
the neighborhood is highlighted and
the corresponding neighborhood data
is shown. Moreover, this interaction
enables interaction on a building level.

loadCesium()
loadInfo(postalCode)
togglePC(postalCode,
building)

B.1
B.12
B.9

A.1 Map

45

1
2

34 5

6
F.A2 - A

F.A2 - B
Overview of all Map functionalitiesF.A2

46

9

Name Use Functions Code
1.5 Spatial Level

Slider
As has been explained in Section 3.1, the
user is able to visualize neighborhood
specific data on different spatial levels.
This slider shows the available spatial
levels and the user can select any of them
by moving the slider, which updates the
table below to only show data which is
measured with that spatial resolution.

showArea(postalCode) B.5

1.7 Building URI When a building is selected, the user is
able to link directly to the Cadastre data
using the buildings URI. These numbers
are hidden in Figure A3 for privacy
reasons.

1.8 Building Func-
tion

When a building is selected, the user
is able to directly link to the Cadastre
definition of the purpose of that building.

1.9 Energy Data
Button

The user is able to query whether
time-series energy use is available for
the selected building. If such data is
available, the visualization shown in Fig-
ure 24 is created for the selected build-
ing.

loadBuildingEnergy-
Use()

B.16

87

Overview of individual building information and functionalitiesF.A3

47

Name Use Functions Code
2.1 Select Energy

Variable
Dropdown

The user is able to select any
variable to query energy use in
the dashboard. However, the tool
suggest appropriate variables based
on the neo:EnergyUse class defined
in Figure 3. These variables are
directly queried from the database
(see Figure 10).

getQueryVariables(energy) B.17

2.2 Select Variable
Dropdown

Same function as described in 2.1,
however, the tool gives no recom-
mendations for energy use specific
variables

getQueryVariables(energy) B.17

2.3 Time Frame
Slider

The slider lets the user select the
appropriate time frame related to
that specific variable. By default, the
most recent time frame is selected.
Moreover, the user is able to evaluate
different variables on different time
frames.

updateRatioSlider(variable,
minMax, inputType,
procedureName)
updateDateSlider(variable)

B.18

B.19

2.4 Variable Range
Sliders

The user is able to select the range of
values they want to query. The range
of these values is defined by the found
values. Moreover, the opposing slider
is automatically adjusted when the
slider exceeds that opposing slider.

updateRatioSlider(variable,
minMax, inputType,
procedureName)
updateRatioValue(variable,
inputType)

B.18

B.20

2.5 Variable Range
Input

Similar to function 2.4, the user is
able to manually input the range of
the queried variable.

updateRatioSlider(variable,
minMax, inputType,
procedureName)
updateRatioValue(variable,
inputType)

B.18

B.20

2.6 Visualization
Button

For the appropriate variables, the
user is able to visualize the range of
results found by the set query. Here,
the found values are ‘binned’ into five
categories (from low to high) and an
appropriate color is connected to
each category. These cateogories are
then visualized on the map (as shown
in Figure 6).

visualizeScore(variable,
showArea)

B.13

A.2 Query

48

Name Use Functions Code
2.7 Remove

Variable Button
If the user no longer wants to include
a variable in their query or analysis
they can remove it via this button. The
query is automatically updated and
possible visualizations are removed.

removeVariable(variable) B.21

2.8 Category
selection
buttons

Similar to function 2.4, the user is able
to select one of the found categories
describing this variable. Differing
variable representations are chosen
as described in Section 3.2,

onButtonSelect(variable,
category, procedureName)

B.22

49

53
4

7

6

1

2

5

8

Overview of query functionsF.A4

50

Name Use Functions Code
3.1 Neighborhood

Button
The user is able to select
a specific neighborhood
from the results. This
neighborhood is then
automatically visualized in
the map.

showSinglePostalCode(postalcode) B.23

3.2 Order Table The user can order to table
from high to low or low to
high when the corresponding
variable is clicked in the
results table.

orderTable(variable, ordering) B.6

3.3 Maximize View
Button

As can be seen in Figure 6, the
results table only fills halve of
the width of the screen by
default. However, the user
can choose to display the
table on the full width of
the screen by pressing this
button.

fullScreen() B.24

3.4 Hide/Show
Results Button

The default state of the results
table is ‘hidden’, meaning
that the results are not shown
in order not to clutter the
dashboard. When the user
wants to see the results table,
they can press this button to
show it, after which they can
use this button again to hide
the results table again.

showResults() B.25

3.5 Export Button If the user wants to use the
results of the query in another
application or tool, they can
export the results table in
`.csv’ format by pressing this
button.

exportData() B.26

A.3 Table

51

5432

1

Overview of table functionsF.A5

52

Name Use Functions Code
4.1 Graph

Interaction
By default, the ‘metadata’ of the
available data is represented in
the graph. However, in order to
avoid unnecessary cluttering,
not all information is shown.
Therefore, the user is able
to interacht with the graph
to show more information,
specific to the user’s interest.

getMetaData() B.7

4.2 Maximize View
Button

Similar to function 3.3, the
graph visualization only covers
half of the width of the screen
by default. If the users wants
to visualize the graph on the
full width, they can do so by
pressing this button.

fullScreen() B.24

4.3 Hide/show
Graph Button

Similar to function 3.4, the
user can hide (minimize) the
graph by pressing this button.
When the graph is already
minimized, the user can show
it by pressing this button as
well.

showGraph(graphType) B.27

4.4 Neighborhood
Graph Button

When a specific neighborhood
is selected (see functions 1.4
and/or 4.1), the specific data
for that neighborhood is
visualized in this graph. The
user can manually switch
between the metadata and
neighborhood specific graphs
using this buton

showGraph(graphType) B.27

A.4 Graph

53

2 3 4

1

Overview of graph functionsF.A6

54

Name Use Functions Code
5.1 Time Series

Electricity Use
Button

Within the time series analysis three
main functions exists (functions 5.1,
5.2 and 5.3) The first of which is to
evaluate which buildings have time
series data attatched to them and
use that as the source for the energy
use visualization in the map (see
Section 4.2, Figure 25).

getTimeSeries(level) B.28

5.2 Postal Code
Electricity Use

The second function within this
analysis uses electricity use as it has
been described previously, which
is no different from the selection of
electricity use in function 2.1.

getTimesSeries(level) B.28

5.3 Combination
Button

The third function combines the
previous two functions and visualizes
a combination of of the two different
sources of electricity use. The
advantages and disadvantages have
been discussed in detail in Section
4.2.

getTimeSeries(level) B.28

5.4 Select Building
Dropdown

The final functionality within this
analysis is to query a specific building
which has either time series or real-
time data associated with it in the
graph database. This dropdown
shows all those buildings. When a
building is selected the visualization
shown in Figure 28 is created.

getRTBuildings()
queryDBrealTime(id,
params)

B.29
B.33

A.5 Time Series

55

1 2 34

Overview of time series analysis functionsF.A7

56

Name Use Functions Code
6.1 10% of Income

Button
As described in Section 4.1,
this project considers three
definitions of energy povert.
The user is able to select to
analyze the first of these
definitions through this button.
This will query the correct data
and create a graph showing the
estimated income and energy
cost of all neighborhoods in the
city. The neighborhoods which
are considered energy poor
according to this definition
are visualized in the map
(corresponding to the graph).
Where income data was lacking,
the median value of the city is
imputed.

createEPGraph(toggle, epType,
prediction)

B.30

6.2 LIHE Button This button will show the
second energy poverty
defintion as defined in Section
4.1. The functionality is similar
to function 6.1, however as the
definition of energy poverty
is different a slightly different
graph is created (see Figure A8).

createEPGraph(toggle, epType,
prediction)

B.30

A.6 Energy Poverty

57

14 2 3

6

5

Overview of functionalities energy poverty analysis (10% of income and LIHE definitions)F.A8

58

Name Use Functions Code
6.3 LILEK

Dropdown
As the last definition of energy
poverty is dependent on
building level data (energy
labels) this graph is created
slightly differently (Figure A9). In
this graph only neighborhoods
where dwellings are considered
at risk of energy poverty are
shown, where the radius of
the dot represent the relative
amount of such dwellings. As
is discussed in Section 4.3, the
user can select whether to use
only known energy labels, or
also predicted energy labels for
this analysis.

createEPGraph(toggle, epType,
prediction)

B.30

6.4 Adjust Income
Slider

As some neighborhoods are
close to the border of energy
poverty, the user is able to slightly
adjust the definition using this
slider. This will add or remove
neighborhoods from the set of
labelled neighborhoods, both
in the graph as well as the
map. This allows the user to
investigate the sensitivity of the
defintion.

updateAPLText(‘energy’)
createEPGraph(toggle, epType,
prediction)

B.31

6.5 Graph
Interaction

When a user interacts with
one of the dots representing
a neighborhood, the map will
zoom in to that neighborhood.
Moreover, the user is able to use
generic functions in the graph
such as: panning, zooming,
resetting the axis and toggling
datasets.

6.6 Adjust Energy
Cost Slider

As the second defintion of
energy poverty relies on two
borders (see Section 4.1), this
additional slider allows the user
to adjust the full definition of
energy poverty in this scenario
similar to function 6.4.

updateAPLText(‘energy’)
createEPGraph(toggle, epType,
prediction)

B.31

59

Name Use Functions Code
6.7 LILEK Graph

Interaction
While function 6.5 describes
interaction with the graph for
the first two defintions of energy
poverty, this function is specific
to the graph of the last definition
(LILEK). While it includes
the functionality described
in 6.5, it also generates a pie
chart visualizing the different
energy labels occuring in that
neighborhood (see Figure
33). If the user clicks on one of
the labels in this pie chart, the
corresponding buildings in the
neighborhood which have such
a label will be highlighted.

7
Overview of functionalities energy poverty analysis (LILEK definition)F.A9

60

Appendix B
Code

This appendix will give a psuedo code
overview of the most important pieces
of code of the dashboard described in
this report. For each element of code
the name of the function will be given,
while the input variables will be defined.
Lastly, the code will be explained through
psuedo-code and textual explanation
where necessary.

Moreover, within the code there are three
important dictionaries which will be used
throughout this appendix:
1. postalCodeDict - This dictionary is

formatted as follows:
{
 variable 1 : [postalCode 1, ..., postalCode N]
 ...
 variable M: [postalCode 1, ..., postalCode N]
}

{
 variable 1 :
 {
 postalCode 1 : value,
 ...,
 postalCode N: value
 },
 ...,
 variable M:
 {
 postalCode 1: value,
 ,
 postalCode N: value
 }
}

In this dictionary all queried variables
and their found postal codes will be
stored. As will be explained later, this
allows for the final visualization of all
overlapping postal codes in the map
function.

2. nanDict - This dictionary is formatted
the same as the postal code dictionary
(point 1), however, this dictionary stores
all postal codes which have return
an unknown value for that specific
variable.

3. valuesDict- This dictionary is formatted
as follows:

This dictionary describes each specific
value for each found postal code for
that variable.

61

B.1 loadCesium()

Dependencies
togglePC(postalCode, building) B.9, , p. 69
predictEnergyLabel(buildingNumber, postalCode, buildYear, area) B.10, p. 70

Query
• C.1, p. 104

Code

This function loads the cesium software and the required data which is fundamental
to the map visualization. Each data element is loaded as a layer, while interactivity
with those layers is enabled. When the users clicks on the map it is checked whether
this click has occured on the neighbhorhood geometry, if so, the neighborhood is
toggled. Otherwise (assuming a layer is clicked), it assumed that the click has occured
on a building. Therefore, that buildings data is queried directly from the Cadastre
and the energy label of that building is retrieved.

62

B.2 toggleGeometry()

Code

The goal of this function is to show the BAG geometry. Therefore, the LiDAR scan
needs to be disabled and the BAG geometry enabled (or reversed when the function
is toggled again). Therefore, the function finds the LiDAR scan layer and toggles
is depending on the state of the pressed button. Afterwards, the same action is
performed on the BAG building geometry, however, when a specific neighborhood
is selected, only the building geometry within that neighborhood is shown.

63

B.3 toggleNeighborhoods()

Dependencies
updatePostalCodes(emptyResult) B.11 (p. 71)

Code

64

B.4 toggleAll(show)

Input Variables
• show - expected to be a string value indicating the box that is toggled and

therefore needs to be shown or hidden.

Code

65

B.5 updateTable(postalCode)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a

6-digit postal code as defined on page 17. This variable represents the fact that a
single postal code is selected.

Code

66

B.6 orderTable(variable, ordering)

Input Variables
• variable - expected to be a string representing the relevant variable
• ordering - expected to be a string variable, either ‘highToLow’, ‘lowTohigh’ or

‘none’. Reflects the way the column needs to be ordered.

Auxilliary Variables
• createTableDict - dictionary created in function B.6 which is required for the

creation of the data table. Is in the format:
 {
 postal code :
 {
 variable : value
 }
 }

Dependencies
• updateTable(postalCode) B.5 (p. 65)

Code

This function hides all other available ‘boxes’ which could show on the right side of the dashboard,
while showing the one currently toggled (or the reverse). Moreover, it halfs the display size of the
map in order to make room for the information. The toggle direction (show or hide) is based on
the status of the pressed button.

67

B.7 getMetaData()

Query
• C.2 (p. 105)

Code

This function defines the creation of the default network graph (Section 3.4). First,
relevant data is queried from the graph database, after which, for each line in the
result a node and edge are created. Only the ‘base’ of the graph is visualized (see
Figure 11). In the creation of the graph, also the interactive behavior is defined. Where
the graph is expanded when the user clicks on a node. When an already expanded
node is clicked again, the connected edges and nodes are again hidden, if they are
not also connected to another visible node or edge.

68

This function is comparable to function B.8, however, as the query is based on a
selected postal code for this function. Moreover, as properties of a postal code can
be inherited from containing neighborhoods (see Section 2.1), those neighborhoods
and connected properties are added to the graph. These nodes are connected to the
selected postal code in the graph.

B.8 getInstanceData(postalCode)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a

6-digit postal code as defined on page 17. This variable represents the fact that a
single postal code is selected.

Query
• C.3 (p. 106)

Code

69

This function determines what action to perform when a geometry is clicked in the
map. If it is a postal code, it might be the first time that that postal code is clicked, in
which case the postal code will be highlighted. If the postal code has already been
clicked, the highlight will be removed. When the clicked element is a building, function
B.12 is called.

B.9 togglePC(postalCode, building)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a

6-digit postal code as defined on page 17. This variable represents the fact that a
single postal code is selected.

• building - expected to be a string or boolean indicating the relevant building
URI, alternatively the variable can also be declared False.

Dependencies
• visualizeScore(variableName, showArea) B.13 (p. 73)
• loadInfo(postalCode) B.12 (p. 71)
• updateTable(postalCode) B.5 (p. 65)
• toggleAll(show) B.4 (p. 64)

Auxilliary Variables
• scoredVariable - global variable indicating which variable is currently being

visualized on the map (function B.13). Is False by default, and when no variable is
being visualized.

Code

70

B.10 predictEnergyLabel(buildingNumber, postalCode, buildYear, area)

Input Variables
• buildingNumber - expected to be a string indicating the BAG URI for the specific

building.
• postalCode - expected to be a string in the format ‘0000AA’ representing a 6-digit

postal code as defined on page 17. This variable represents the fact that a single
postal code is selected.

• buildYear - expected to be an integer reflecting the year the building was build, in
the format 2023.

• area - expected to be an integer reflecting the area of the building in square
meters, in the format 50.

Query
• C.4 (p. 107)

Code

71

B.11 updatePostalCodes(emptyResult)

Input Variables
• emptyResult - boolean indicating if another function has found that no results

where determined using the existing query, or if the map needs to be reset to
the original visualization. Note: code below will be run to check if this boolean is
set correctly.

Dependencies
• updateTable(postalCode) B.5 (p. 65)

Code

72

B.12 loadInfo(postalCode)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a

6-digit postal code as defined on page 17. This variable represents the fact that a
single postal code is selected.

Query
• C.5 (p. 108)

Code

73

B.13 visualizeScore(variable, showArea)

Input Variables
• variable - expected to be a string representing the relevant variable
• showArea - expected to be a boolean which indicates whether a specific

neighborhood is selected, which needs to be visualized.

Dependencies
• updatePostalCodes(emptyResult) B.11 (p. 71)

Code

74

B.14 resetView()

Dependencies
• removeVariable(variable) B.21 (p. 81)
• createEPGraph(toggle, epType, prediction) B.30 (p. 90)
• updatePostalCodes(emptyResult) B.11 (p. 71)

Code

75

B.15 showArea(postalCode)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a

6-digit postal code as defined on page 17. This variable represents the fact that a
single postal code is selected.

Dependencies
• visualizeScore(variable, showArea) B.13 (p. 73)

Query
C.6 (p. 109)
C.7 (p. 110)
C.8 (p. 111)
C.9 (p. 112)

Code

76

B.16 loadBuildingEnergyUse(building)

Input Variables
• building - expected to be a string or boolean indicating the relevant building

URI, alternatively the variable can also be declared False.

Query
• C.10 (p. 113)

Code

77

B.17 getQueryVariables(energy)

Input Variables
• energy - boolean indicating whether the selected dropdown menu is related to

energy (true) or regular (false) query variables.

Query
• C.11 (p. 114)
• C.12 (p. 115)

Code

78

B.18 updateRatioSlider(variable, minMax, inputType, procedureName)

Input Variables
• variable - expected to be a string representing the relevant variable minMax -

expected to be a string indicating whether the input type relates to the minimal or
maximal value (expected to be either ‘min’ or ‘max’)

• inputType - expected to be a string indicating whether the input type is ‘slider’ or
‘text’, allowing the function to be used by both the sliders and the text input.

• procedureName - expected to be a string indicting the procedure of the variable.

Dependencies
• updateRatioValue(variable, inputType) B.20 (p. 78)
• updatePostalCodes(emptyResult) B.11 (p. 71)
• visualizeScore(variable, showArea) B.13 (p. 73)
• createEPGraph(toggle, epType, prediction) B.30 (p. 90)

Query
C.13 (p. 116)

Code

79

B.19 updateDateSlider(variable)

Input Variables
• variable - expected to be a string representing the relevant variable

Code

80

B.20 updateRatioValue(variable, inputType)

Input Variables
• variable - expected to be a string representing the relevant variable
• inputType - expected to be a string indicating whether the input type is ‘slider’ or

‘text’, allowing the function to be used by both the sliders and the text input.

Code

81

B.21 removeVariable(variable)

Input Variables
• variable - expected to be a string representing the relevant variable

Dependencies
• updatePostalCodes(emptyResult) B.11 (p. 71)

Code

82

B.22 onButtonSelect(variable, category, procedureName)

Input Variables
• variable - expected to be a string representing the relevant variable
• category - expected to be a string representing the selected category
• procedureName - expected to be a string indicting the procedure of the variable.

Dependencies
• updatePostalCodes(emptyResult) B.11 (p. 71)

Query
• C.14 (p. 117)

Code

83

B.23 showSinglePostalCode(postalCode)

Input Variables
• postalCode - expected to be a string in the format ‘0000AA’ representing a

6-digit postal code as defined on page 17. This variable represents the fact that a
single postal code is selected.

Dependencies
• updatePostalCodes(emptyResult) B.11 (p. 71)

Code

84

B.24 fullScreen()

Code

85

B.25 showResults()

Code

86

B.26 exportData()

Code

87

B.27 showGraph(graphType)

Input Variables
• graphType - expected to be a string indicating if the meta data (‘data‘) or

neighborhood specific (‘instance) graph needs to be shown

Dependencies
• getMetaData() B.7 (p. 67)
• getInstanceData(postalCode) B.8 (p. 68)

Code

88

B.28 getTimeSeries(level)

Input Variables
• level - expected to be a string which indicates which level of analysis is requested,

can be either ‘pc’ for neighborhoods, ‘building’ for building level or ‘both’ for a
combination

Dependencies
• updatePostalCodes(emptyResult) B.11 (p. 71)
• visualizeScore(variable, showArea) B.13 (p. 73)
• createTimeSeriesDict() B.32 (p. 94)

Query
C.15 (p. 118)

Code

89

B.29 getRTBuildings()

Dependencies
• queryDBrealTime(id, params) B.33 (p. 95)

Query
• C.16, (p. 119)

Code

90

B.30 createEPGraph(toggle, epType, prediction)

Input Variables
• toggle - boolean indicating whether the energy poverty space needs to be

toggled.
• epType - expected to be a string indicating the which definition of energy

poverty needs to be visualized (‘10percent, ‘lihe’ or ‘lilek’).
• prediction - boolean indicating whether predicted energy labels are to be

included in the analysis

Dependencies
• toggleAll(‘energyPovertyBox’) B.4 (p. 64)
• updateTable(postalCode) B.5 (p. 65)
• updatePostalCodes(emptyResults) B.11 (p. 71)
• createEPData() B.34 (p. 96)
• createLILEKdata() B.35 (p. 97)
• createBuildingDict(data, prediction) B.36 (p. 98)

Code

91

92

93

B.31 updateAPLText(energy)

Input Variables
• energy - expected to be a string which reflects if an energy variable is selected.

Code

94

B.32 createTimeSeriesDict()

Dependencies
• queryDB(buildingData) B.37 (p. 99)

Query
• C.17 (p. 120)
• C.18 (p. 121)

Code

95

B.33 queryDBrealTime(id, params)

Input Variables
• id - expected to be a string which can be used to make the API call, pointing

towards to correct database.
• params - expected to be a dictionary with keys indicating a parameter and a

corresponding value of that parameter.

Dependencies
• toggleRt() B.38 (p. 100)
• createRTGraph() B.39 (p. 101)

Code

96

B.34 createEPdata()

Query
• C.19 (p. 122)
• C.20 (p. 123)
• C.21 (p. 124)

Code

97

B.35 createLILEKdata()

Query
• C.22 (p. 125)

Code

98

B.36 createBuildingDict(data, prediction)

Input Variables
• data - expected to be a dictionary with data created in function B.38
• prediction - expected to be a boolean indicating whether predicted energy

labels should be included.

Code

99

B.37 queryDB(buildingData)

Input Variables
• buildingData - expected to be data including a database ID which can be called

in an API call, created from function B.35.

Code

100

B.38 toggleRt()

Code

101

B.39 createRTGraph()

Dependencies
• getWeatherData(uniqueDates) B.40 (p. 102)

Code

102

B.43 getWeatherData(uniqueDates)

Input Variables
• uniqueDates - expected to be a list of dates created in function B.39.

Code

103

Appendix C
Queries

This appendix provides an overview
of all the SPARQL queries used in the
digital twin as described in this report.
Appendix B denotes which query is used
in which aspect of the code, it is therefore
recommended to assess these queries in
the context of the code they are a part of.

Moreover, most of the queries are posted
to the locally run graph database, the
endpoint of which is denoted in this
appendix as: ‘http://localhost:7200/
repositories/[REPOSITORY]’. The
repository name is left empty as the
repository can name is arbitrary. If the
query is posted to any other (external)
endpoint, this will be noted in above the
query description.

104

C.1

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bag#>
PREFIX bag_shp: <http://bag.basisregistraties.overheid.nl/bag/id/shape/>
SELECT ?pand ?adres ?postcode ?huisnummer ?toevoeging ?oppervlakte
 ?bouwjaar ?gebruiksdoel WHERE {
 ?verblijfsobject a bag:Verblijfsobject.
 ?verblijfsobject bag:maaktDeelUitVan ?pand.
 FILTER(?pand = pandURI)
 ?verblijfsobject bag:hoofdadres ?adres.
 ?verblijfsobject bag:gebruiksdoel ?gebruiksdoel.
 ?adres bag:postcode ?postcode.
 ?adres bag:huisnummer ?huisnummer.
 OPTIONAL {
 ?adres bag:huisnummertoevoeging ?toevoeging
 }
 ?verblijfsobject bag:oppervlakte ?oppervlakte.
 ?pand bag:oorspronkelijkBouwjaar ?bouwjaar.
}

Endpoint: https://api.labs.kadaster.nl/datasets/dst/kkg/services/default/sparql

105

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

C.2

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
select distinct ?propertyName ?LOM ?pcLevel ?class ?procedureName where {
 ?property a bop:Property.
 ?property skos:prefLabel ?propertyName.
 ?property a ?class.
 FILTER (STRSTARTS(str(?class), ‘http://www.semanticweb.org/neighborhood-
 energy-ontology#’) && str(?class) != ‘http://www.semanticweb.org/
 neighborhood-energy-ontology#Gasuse’ && str(?class) != ‘http://www.
 semanticweb.org/neighborhood-energy-ontology#Electricityuse’)
 ?property bop:hasExecution ?execution.
 ?execution neo:levelOfMeasurement ?LOM.
 ?execution bop:usesProcedure ?procedure.
 ?procedure skos:prefLabel ?procedureName.

 ?neighborhood bop:hasProperty ?property.
 ?neighborhood bag2:postcode ?postcode.
 BIND (strlen(str(?postcode)) AS ?pcLevel).
} limit 100

106

C.3

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
select distinct ?postcode ?propertyName ?procedureName ?pcLevel ?lom ?unit
?definition where {
 ?neighborhood a neo:Neighborhood.
 ?neighborhood bag2:postcode ?postcode.
 FILTER((STRSTARTS(STR(?postcode), ‘postalCode’)) || ?postcode =
 ‘postalCode’ || ?postcode = ‘postalCode.substring(0, 5)’ || ?postcode =
 ‘postalCode.substring(0, 4)’)

 BIND(strlen(STR(?postcode)) AS ?pcLevel)
 ?neighborhood bop:hasProperty ?property.
 ?property skos:prefLabel ?propertyName.

 ?property bop:hasExecution ?execution.
 ?execution neo:levelOfMeasurement ?lom.
 ?execution skos:definition ?definition.
 ?execution bop:hasResult/bop:hasSimpleUnit ?unit.

 ?execution bop:usesProcedure ?procedure.
 ?procedure skos:prefLabel ?procedureName.
} limit 100

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

107

C.4

PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select distinct ?pc ?building ?energyLabel ?propertyName ?value where {
 ?pc a neo:Neighborhood.
 ?pc bag2:postcode ?postcode.
 FILTER(?postcode = ‘postalCode‘)
 ?pc ^bot:containsZone+ ?neighborhood.
 {
 ?neighborhood bop:hasProperty ?property.
 } UNION {
 ?pc bop:hasProperty ?property.
 }
 ?pc bot:containsZone ?building.
 FILTER(strStarts(str(?building), ‘https://bag2.basisregistraties.overheid.nl/bag/
 id/registratie/NL.IMBAG.Nummeraanduiding.nummeraanduiding’))
 OPTIONAL {
 ?building bop:hasProperty ?elProperty.
 ?elProperty bop:hasValue ?energyLabel.
 }
 FILTER(?propertyName in (‘incomePerRecipient’, ‘electricityUse’, ‘gasUse’,
 ‘WOZValue’, ‘powerGeneration’))
 ?property skos:prefLabel ?propertyName.
 ?property bop:hasExecution ?execution.
 ?execution bop:hasResult ?result.
 ?result seas:hasTemporalContext ?context.
 ?context time:hasBeginning/time:inXSDDateTimeStamp ?begin.
 FILTER (?begin = ‘2020-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?result bop:hasValue ?value.
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

108

C.5

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bag#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select ?Pand where {
 ?nummeraanduiding a bag:Nummeraanduiding.
 ?nummeraanduiding bag:postcode ‘postalCode’.
 ?verblijfsobject bag:hoofdadres ?nummeraanduiding.
 ?verblijfsobject bag:maaktDeelUitVan ?Pand.
}

Endpoint: https://api.labs.kadaster.nl/datasets/dst/kkg/services/default/sparql

109

C.6

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
select ?property ?postcode ?otherPostcode where {
 ?neighborhood bag2:postcode ?postcode
 FILTER(?postcode = ‘postalCode)
 ?neighborhood bop:hasProperty ?property.
 ?property a neo:ElectricityuseProperty.
 ?otherNeighborhood bop:hasProperty ?property.
 ?otherNeighborhood bag2:postcode ?otherPostcode.
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

110

C.7

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
select ?property ?postcode ?otherPostcode where {
 ?neighborhood bag2:postcode ?postcode
 FILTER(?postcode = ‘postalCode’)
 ?neighborhood bop:hasProperty ?property.
 ?property a neo:GasuseProperty.
 ?otherNeighborhood bop:hasProperty ?property.
 ?otherNeighborhood bag2:postcode ?otherPostcode.
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

111

C.8

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
select distinct ?postcode where {
 ?neighborhood a neo:Neighborhood.
 ?neighborhood bag2:postcode ?postcode.
 FILTER(strstarts(str(?postcode), ‘postalCode’))
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

112

C.9

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
select distinct ?neighborhoodName ?postcode where {
 ?postalCodeArea a neo:Neighborhood.
 ?postalCodeArea bag2:postcode ?selectedPostalCode.
 FILTER(?selectedPostalCode = ‘postalCode’)
 ?neighborhood bot:containsZone ?postalCodeArea.
 ?neighborhood skos:prefLabel ?neighborhoodName.
 ?neighborhood bot:containsZone ?otherPostalCodeAreas.
 ?otherPostalCodeAreas bag2:postcode ?postcode
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

113

C.10

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
select ?building ?id where {
 ?building bop:hasProperty ?electricityUseProperty.
 FILTER(?building = <buildingURI>)
 ?electricityUseProperty bop:hasPropertyState ?dataPoint.
 ?dataPoint bop:hasID ?id.
} limit 100

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

114

C.11

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
select distinct ?propertyName ?definition ?unit ?procedureName where {
 ?property a neo:EnergyUse.
 ?property skos:prefLabel ?propertyName.
 ?property bop:hasExecution ?execution.
 ?execution skos:definition ?definition.
 ?execution bop:usesProcedure ?procedure.
 ?procedure skos:prefLabel ?procedureName.

 ?execution bop:hasResult/bop:hasSimpleUnit ?unit.
} limit 100

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

115

C.12

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
select distinct ?propertyName ?definition ?unit ?procedureName where {
 ?property a bop:Property.
 FILTER NOT EXISTS {?property a neo:EnergyUse}
 ?property skos:prefLabel ?propertyName.
 ?property bop:hasExecution ?execution.
 ?execution skos:definition ?definition.
 ?execution bop:usesProcedure ?procedure.
 ?procedure skos:prefLabel ?procedureName.

 ?execution bop:hasResult/bop:hasSimpleUnit ?unit.
 } limit 100

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

116

C.13

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select distinct ?postcode ?value where {
 {
 ?neighborhood a neo:Neighborhood.
 ?neighborhood bag2:postcode ?postcode.
 ?neighborhood bop:hasProperty ?property.
 } UNION {
 ?neighborhood a neo:Neighborhood.
 ?neighborhood skos:prefLabel ?postalCode.
 FILTER(strstarts(str(?postalCode), ‘BU’))
 ?neighborhood bot:containsZone ?zone.
 ?zone bag2:postcode ?postcode .
 ?neighborhood bop:hasProperty ?property.
 }
 ?property skos:prefLabel ?propertyName.
 FILTER(?propertyName = ‘variable‘)
 ?property bop:hasExecution ?execution.
 ?execution bop:usesProcedure ?procedure.
 ?procedure skos:prefLabel ?procedureName.
 FILTER(?procedureName = ‘procedure’)
 ?execution bop:hasResult ?result.
 ?result seas:hasTemporalContext ?interval.
 ?interval time:hasBeginning/time:inXSDDateTimeStamp ?begin.
 ?interval time:hasEnd/time:inXSDDateTimeStamp ?end.
 FILTER(?begin >= “beginDate”^^xsd:dateTimeStamp && ?end <=
 “endDate”^^xsd:dateTimeStamp)
 ?result bop:hasValue ?value
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

117

C.14

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
select ?postcode ?value ?begin ?end where {
 ?neighborhood a neo:Neighborhood.
 ?neighborhood bag2:postcode ?postcode.

 ?neighborhood bop:hasProperty ?property.
 ?property skos:prefLabel ?propertyName.
 FILTER(?propertyName = ‘variable’)
 ?property bop:hasExecution ?execution.
 ?execution bop:usesProcedure ?procedure.
 ?procedure skos:prefLabel ?procedureName.
 FILTER(?procedureName = ‘procedure’)
 ?execution bop:hasResult/bop:hasValue ?value.
 FILTER(?value = category || ?value = ‘category‘)

 ?execution bop:hasResult ?result.
 ?result seas:hasTemporalContext ?interval.
 ?interval time:hasBeginning/time:inXSDDateTimeStamp ?begin.
 ?interval time:hasEnd/time:inXSDDateTimeStamp ?end.
 FILTER(?begin >= “beginDate”^^xsd:dateTimeStamp && ?end <=
 “endDate”^^xsd:dateTimeStamp)
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

118

C.15

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select distinct ?postcode ?electricityValue where {
 ?neighborhood bot:containsZone ?pcZone.
 ?pcZone bag2:postcode ?postcode.
 ?pcZone bop:hasProperty ?electricityUseProperty.
 ?electricityUseProperty skos:prefLabel ?electricityUseName.
 FILTER(?electricityUseName = ‘electricityUse’)
 ?electricityUseProperty bop:hasExecution ?electricityExecution.
 ?electricityExecution bop:hasResult ?electricityResult.
 ?electricityResult seas:hasTemporalContext ?electricityTemporalContext.
 ?electricityTemporalContext time:hasBeginning/time:inXSDDateTimeStamp
 ?elecBegin.
 FILTER(?elecBegin = ‘2022-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?electricityResult bop:hasValue ?electricityValue.
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

119

C.16

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
select distinct ?building ?postcode ?nr ?toevoeging ?dbID ?db ?unit where {
 ?building a bag2:NummeraanduidingRegistratie.
 ?building bag2:postcode ?postcode.”
 ?building bag2:huisnummer ?nr.
 OPTIONAL {
 ?building bag2:huisnummertoevoeging ?toevoeging
 }
 ?building bop:hasProperty ?electricityUse.
 ?electricityUse bop:hasPropertyState ?electricityUseDP.
 ?electricityUseDP bop:isDataPointOf ?db.
 ?electricityUseDP bop:hasID ?dbID.
 ?electricityUseDP bop:hasSimpleUnit ?unit.
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

120

C.17

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX : <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX neo2: <https://sanderdemeij.github.io/neo/#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select ?postcode ?electricityValue where {
 ?pcZone bag2:postcode ?postcode.
 ?pcZone bop:hasProperty ?electricityUseProperty.
 ?electricityUseProperty skos:prefLabel ?electricityUseName.
 FILTER(?electricityUseName = ‘electricityUse’)
 ?electricityUseProperty bop:hasExecution ?electricityExecution.
 ?electricityExecution bop:hasResult ?electricityResult.
 ?electricityResult seas:hasTemporalContext ?electricityTemporalContext.
 ?electricityTemporalContext time:hasBeginning/time:inXSDDateTimeStamp
 ?elecBegin.
 FILTER(?elecBegin = ‘2022-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?electricityResult bop:hasValue ?electricityValue.
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

121

C.18

PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
select ?postcode ?building ?id where {
 ?building bop:hasProperty ?electricityUseProperty.
 ?electricityUseProperty bop:hasPropertyState ?dataPoint.
 ?dataPoint bop:hasID ?id.
 ?neighborhood bot:containsZone ?building.
 ?neighborhood bag2:postcode ?postcode.
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

122

C.19

PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
select distinct ?postcode (sum(if((?gebruiksdoel = ‘woonfunctie’ || ?gebruiksdoel =
‘nan’), 1, 0)) as ?woonBuildings) (count(?building) as ?buildings) where {
 ?building bag2:gebruiksdoel ?gebruiksdoel.
 ?building bag2:postcode ?postcode.
} GROUP BY ?postcode

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

123

C.20

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select distinct ?neighborhood ?postcode ?value ?electricityValue ?gasValue ?WOZValue where {
 ?neighborhood a neo:Neighborhood.
 ?neighborhood skos:prefLabel ?postalCode.
 FILTER(strstarts(str(?postalCode), ‘BU’))

 ?neighborhood bop:hasProperty ?property.
 ?property skos:prefLabel ?propertyName.
 FILTER(?propertyName = ‘householdIncome’)
 ?property bop:hasExecution ?execution.
 ?execution bop:hasResult ?result.
 ?result bop:hasValue ?value.
 ?result seas:hasTemporalContext ?temporalContext.
 ?temporalContext time:hasBeginning/time:inXSDDateTimeStamp ?begin.
 ?temporalContext time:hasEnd/time:inXSDDateTimeStamp ?end.
 FILTER(?end = ‘2022-01-01T00:00:00’^^xsd:dateTimeStamp)

 ?neighborhood bot:containsZone ?pcZone.
 ?pcZone bag2:postcode ?postcode.
 ?pcZone bop:hasProperty ?electricityUseProperty.
 ?electricityUseProperty skos:prefLabel ?electricityUseName.
 FILTER(?electricityUseName = ‘electricityUse’)
 ?electricityUseProperty bop:hasExecution ?electricityExecution.
 ?electricityExecution bop:hasResult ?electricityResult.
 ?electricityResult seas:hasTemporalContext ?electricityTemporalContext.
 ?electricityTemporalContext time:hasBeginning/time:inXSDDateTimeStamp ?elecBegin
 FILTER(?elecBegin = ‘2022-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?electricityResult bop:hasValue ?electricityValue.

 ?pcZone bop:hasProperty ?gasUseProperty.
 ?gasUseProperty skos:prefLabel ?gasUseName.
 FILTER(?gasUseName = ‘gasUse’)
 ?gasUseProperty bop:hasExecution ?gasExecution.
 ?gasExecution bop:hasResult ?gasResult.
 ?gasResult seas:hasTemporalContext ?gasTemporalContext.
 ?gasTemporalContext time:hasBeginning/time:inXSDDateTimeStamp ?gasBegin.
 FILTER(?gasBegin = ‘2022-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?gasResult bop:hasValue ?gasValue.

 ?pcZone bop:hasProperty ?wozProperty.
 ?wozProperty skos:prefLabel ?wozPropertyName.
 FILTER(?wozPropertyName = ‘WOZValue’)
 ?wozProperty bop:hasExecution ?wozExecution.
 ?wozExecution bop:hasResult ?wozResult.
 ?wozResult seas:hasTemporalContext ?wozTemporalContext.
 ?wozTemporalContext time:hasBeginning/time:inXSDDateTimeStamp ?wozBegin.
 FILTER(?wozBegin = ‘2020-01-01T00:00:00’^^xsd:dateTimeStamp)
 ?wozResult bop:hasValue ?WOZValue.
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

124

C.21

PREFIX neo: <https://sanderdemeij.github.io/neo/#>
PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
select distinct ?postcode ?propertyName ?value where {
 ?pc a neo:Neighborhood.
 ?pc bag2:postcode ?postcode.
 OPTIONAL {
 ?pc bop:hasProperty ?property.
 ?property skos:prefLabel ?propertyName
 FILTER (?propertyName = ‘households’ || ?propertyName =
 ‘multPersonHHnoKids’ || ?propertyName = ‘oneParent’ ||
 ?propertyName = ‘onePersonHH’ || ?propertyName = ‘twoParent’)

 ?property bop:hasExecution ?execution.
 ?execution bop:hasResult/seas:hasTemporalContext ?temporalContext.
 ?execution bop:hasResult/bop:hasValue ?value.
 ?temporalContext time:hasBeginning/time:inXSDDateTimeStamp
 ?begin.
 ?temporalContext time:hasEnd/time:inXSDDateTimeStamp ?end.
 FILTER (?begin = ‘2020-01-01T00:00:00’^^xsd:dateTimeStamp)
 }
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

125

C.22

PREFIX bag2: <https://bag2.basisregistraties.overheid.nl/bag/def/>
PREFIX bot: <https://w3c-lbd-cg.github.io/bot/#>
PREFIX bop: <https://alexdonkers.github.io/bop/index.html#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX seas: <https://w3id.org/seas/EvaluationOntology#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX neo: <https://sanderdemeij.github.io/neo/#>
select distinct ?building ?postcode ?energyLabel ?procedureName ?bouwjaar
?oppervlakte where {
 ?building bag2:gebruiksdoel ?gebruiksdoel.
 FILTER(?gebruiksdoel = ‘woonfunctie’ || ?gebruiksdoel = ‘nan’)
 ?building bag2:postcode ?postcode.
 ?building bag2:bouwjaar ?bouwjaar.
 ?building bag2:oppervlakte ?oppervlakte.
 OPTIONAL {
 ?building bop:hasProperty ?energyLabelProperty.
 ?energyLabelProperty bop:hasValue ?energyLabel.
 BIND(‘Actual’ as ?procedureName).
 }
 OPTIONAL {
 ?building bop:hasProperty ?predEL.
 ?predEL bop:hasExecution ?execution.
 ?execution bop:usesProcedure ?procedure.
 ?procedure skos:prefLabel ?procedureName.
 ?execution bop:hasResult ?result.
 ?result bop:hasValue ?energyLabel.
 }
}

Endpoint: http://localhost:7200/repositories/[REPOSITORY]

	Foreword
	Content
	1. Introduction
	1.2 State of the Art
	1.2 Problem Statement

	2. Method
	3. Results
	3.1 Map
	3.3 Table
	3.4 Graph

	4. Use Cases
	4.1 Energy Poverty
	4.2 Time Series Data
	4.3 Predictive Analytics

	5. Discussion
	References
	A. Dashboard
	A.1 Map
	A.2 Query
	A.3 Table
	A.4 Graph
	A.5 Time Series
	A.6 Energy Poverty

	B. Code
	C. Queries
	Introduction
	Blank Page

