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a b s t r a c t 

We consider a logistics service provider which arranges transportation services to customers with differ- 

ent service agreements. The most prominent feature of this service agreement is the time period in which 

these customers send their orders and want to retrieve delivery information. After customers place their 

orders, they require information about the driver and an early indication of the arrival times. At the mo- 

ment, this information needs to be provided. The order information of other customers with a different 

service agreement that needs to be serviced in the same period might still be unknown. Ultimately all 

customers have to be planned, constrained by the information provided to the customers in the earlier 

stage. In this paper, we investigate how the logistic service provider plans its routes and communicates 

the driver and arrival time information in the phase where not all customers are known (stage 1). Once 

all customer orders are known (stage 2), the final routes can be determined, which adhere to the al- 

ready communicated driver and arrival time information from stage 1, minimizing total routing cost. For 

this problem, an exact algorithm is presented. This problem is solved using a novel tractable branch-and- 

bound method and re-optimization in stage 2. Detailed results are presented, showing the improvements 

of using re-optimization. We show that integrating the planning of the customers with the different ser- 

vice agreements leads to significant cost savings compared to treating the customers separately (as is 

currently done by most logistics service providers). 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In the modern world, competition, public expectations, and 

egulating authorities put a lot of pressure on logistics service 

roviders. The challenge of efficiently organizing the physical dis- 

ribution process became harder and harder to solve. Over the past 

ears, substantial efforts have been dedicated to finding solutions 

o this challenge, especially focusing on one of the core elements 

f physical distribution, routing, and scheduling, leading to signifi- 

ant savings for logistics service providers. 

Goods transportation is a central activity within modern 

conomies. This activity poses important challenges for logistics 

ervice providers, who are tasked with efficiently planning and or- 

anizing the transportation operations required to fulfill customer 

equests (e.g., commercial shippers, citizens, governmental orga- 

izations, etc.). On the one hand, logistics service providers must 

lan and organize operations while minimizing the transportation 
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osts incurred. On the other hand, they must also meet their cus- 

omers’ desired service quality levels (e.g., shippers expecting de- 

iveries to be made within certain time frames). At the heart of 

any transportation planning processes, one thus finds routing 

nd scheduling problems that need to be solved. First, how goods 

re distributed to the customers via routes (i.e., sequences of vis- 

ts) performed by a fleet of vehicles directly impacts the costs 

ncurred. Secondly, the schedules that are fixed to perform such 

outes define the timing at which each visit occurs, simultaneously 

stablishing whether or not service quality levels are met. This be- 

ng said, Vehicle Routing Problems (VRPs) are notoriously hard to 

olve, even in their basic form, as shown by Toth & Vigo (2002) and

endreau et al. (2014) . 

Most of the literature is based on the assumption that all in- 

ormation is known in advance. As a result, the routing problem 

s deterministic in its input. However, during execution, logistics 

ervice providers face uncertainty in unexpected events (additional 

emand) and expected variations (stochastic travel times). When 

outes and schedules are planned, a part of the parameters defines 

he stochastic problem. This necessitates that additional (some- 

imes costly) decisions be made when these stochastic parameters 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ecome eventually known to ensure that the routing and schedul- 

ng plans can still be feasibly executed. 

Optimizing a route plan is usually a computationally difficult 

nd time-consuming task. Therefore, as more information becomes 

vailable, the logistics service provider usually does not have the 

ime to re-optimize. Instead, routes should be designed to absorb 

nexpected events. As a result, the question becomes how much of 

he routing operations should be planned versus how much should 

e decided as a reactive measure to the new information revealed 

i.e., stochastic parameters becoming known). 

This research investigates the effect of different service agree- 

ents between the customers and the logistics service provider. 

specially, service agreements stipulate when the customer pro- 

ides the order information and when the logistics service provider 

ndicates when he visits the customer. To be most efficient, lo- 

istics service providers prefer early order information and a late 

nnouncement of the visiting time. For the customer, the reverse 

olds: it prefers to announce the orders as late as possible before 

he delivery takes place and wants to know the visiting time as 

arly as possible such that the workforce can be organized. If spe- 

ific agreements are considered, some decisions need to be made 

 priori, e.g., the needed number of required vehicles/drivers and 

he quoted information to each customer (the specific driver that 

ill perform the visit and the timing of the visit), while still, some 

ncertainties exist. 

The problem investigated in this paper is inspired by real prob- 

ems faced by logistics service providers in the Business to Busi- 

ess (B2B) retail sector in a multichannel environment. Here con- 

racts differ between customers, where larger customers such as 

upermarkets or larger retailers order more in advance and need 

ore detailed information on the approximate arrival time for 

orkforce planning. Smaller retail shops with small inventory ca- 

acity reveal orders as late as possible (to be as accurate as pos- 

ible with their replenishment and to have the option to include 

nline pick-up-at-store orders). 

In our problem, we consider such a logistics service provider 

ith customers with one out of two different service agreements. 

nder the first agreement, customers order two days in advance 

nd return and receive information about their allocated driver 

nd time window that same day. Under the second agreement, the 

ame guarantee is offered, though one day in advance. An inter- 

ediate plan is formulated to provide customers under the first 

greement with the required information. During the formulation 

f this intermediate plan, customer orders under the second agree- 

ent are uncertain in both their presence and demand. However, 

ome information about this uncertainty is known by, for example, 

istorical information. When customers’ orders under the second 

greement are known, routes need to be constructed to serve all 

ustomer demands appearing on a given day, including customers 

rom both service agreements, while minimizing costs. Each oper- 

ting day of the logistics service provider, the problem is resolved 

gain. This happens continuously for the duration of operations. In 

ur paper, we assume that the demand between operating days is 

ndependent, and therefore we investigate the problem from the 

iewpoint of a single operational day. 

The vehicle routing problem with stochastic demands and cus- 

omers (VRPSCD), which shares similarities with our problem, has 

lready received some attention in the literature. The VRPSCD is a 

pecial combination of two uncertainties: stochastic demands and 

tochastic customers. Due to the special characteristics of our prob- 

em, we could not directly use the methodologies available for the 

RPSCD. Therefore, a completely new solution method is intro- 

uced. 

Specifically, we introduce an exact algorithm for this problem. 

xact algorithms are generally less tractable than heuristics but 

rovide the proven optimal solution. This can help to build a solid 
130 
oundation for further research into heuristics with more practical 

pplications. Similar to existing literature, we divide the problem, 

he Vehicle Routing Problem with Multiple Service Agreements, 

nto two stages. During the first stage, an intermediate plan is 

ormulated, which could subsequently be considered a constraint 

or the plan formulated during stage 2. The algorithm is a vari- 

tion of the branch-and-bound algorithm, where we branch on 

hich request is allocated to which route (the allocated driver) 

nd in which sequence they appear on the route (approximation 

f the time window). However, we allow for re-optimization dur- 

ng the second stage, whereas most of the literature considers a 

ecourse policy. Finally, vehicles requisitioned during the second 

tage (which is applied the evening in advance) are more expen- 

ive than those ordered in the first stage (applied two days in ad- 

ance). 

Our contributions to the body of stochastic vehicle routing re- 

earch are as follows: 

• We introduce the Vehicle Routing Problem with Multiple Ser- 

vice Agreements. This model cannot be solved with methods 

currently available in the literature. 
• For this problem, we present a novel exact algorithm based on 

branch-and-bound techniques. This methodology can solve in- 

stances of up to 15 customers, of which six are stochastic. 
• A comparison is made between our algorithm and several other 

solution methods for which numerical results and insights are 

presented. 

The structure of this paper is as follows: The literature related 

o our problem is investigated in Section 2 , and the differences be- 

ween our problem and similarities are explained. The problem is 

etailed in Section 3 , including discussions of why existing solution 

ethods are insufficient to solve the problem. The solution method 

s formulated in Section 4 , with each step presented in detail in the 

ollowing sections until Section 7. We present the performance of 

ur solution method on the problem in Section 8. 

. Literature review 

Our problem relates to vehicle routing problems with stochas- 

ic customers and demands. In this section, the current relevant 

ody of literature is presented. The first three sections present the 

eneral stochastic optimization methodologies developed for vari- 

nts of the VRP that are directly related to our own. In contrast, 

he last part presents the studies conducted on how service con- 

istency plays a role when planning distribution operations. 

.1. Vehicle routing problem with stochastic demands 

The Vehicle Routing Problem with Stochastic Demand (VRPSD) 

s the most researched stochastic variant of routing problems. The 

rst research on this topic was performed by Tillman (1969) . Dror 

t al. (1989) subsequently studied the properties of this model and 

rovided valuable insights into the structure of the optimal solu- 

ion to the VRPSD. Bertsimas (1988) introduced a priori optimiza- 

ion, which divides the problem in two stages. In the first stage, a 

lanned solution is designed, while in the second stage, uncertain- 

ies are revealed, and the solution is repaired based on a predeter- 

ined recourse policy. The classical policy is to return to the depot 

hen capacity is exceeded or when the vehicle is empty, depend- 

ng on whether it is a pickup (e.g., waste collection) and/or de- 

ivery problem. Several different recourse policies have been con- 

idered in the literature. The optimal policy for one vehicle was 

etermined by Florio et al. (2020) . The problem was subsequently 

olved under the optimal restocking policy by Salavati-Khoshghalb 

t al. (2019a) . An important milestone was reached with the pub- 

ication of Laporte et al. (2002) , where the integer-L-shaped algo- 
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ithm was applied to the problem. For an extensive overview of 

he literature on the VRPSD we refer to Vigo (2015) and Oyola 

t al. (2018) . A problem with additional stochastic service times 

nd time windows was investigated by Goel et al. (2019) . One im- 

ortant difference between the previously investigated problems 

nd our problem is associated with the fact that we know the 

omplete demand at the beginning of the second stage, such that 

e can apply a more advanced partial re-optimization recourse 

trategy, where in most works, the demands will be revealed dy- 

amically (e.g., when visiting a customer). 

Usually, a simple recourse policy is chosen to keep the model 

ractable. There has been prior research into allowing for re- 

ptimization, which was introduced by the work of Secomandi 

2001) . This author formulated the problem as a stochastic 

hortest-path problem, a finite-state Markovian Decision Problem. 

t should be noted that considering the number of stochastic pa- 

ameters and their associated random distributions, the number 

f states can become very large. This results in the problem for- 

ulation rapidly becoming intractable for many customers. Never- 

heless, this was one of the first methodologies that allowed for 

e-optimization. The author continued his work on this method, 

ublishing Secomandi & Margot (2009) and Bertazzi & Secomandi 

2018a) . Comparisons were made with restocking in Bertazzi & 

ecomandi (2018b) . 

To define the types of recourse actions that have been pro- 

osed for the VRPSD we follow the general classification that was 

roposed in Salavati-Khoshghalb et al. (2019b) . Two general types 

f recourse actions can be implemented: 1) reactive (e.g., classi- 

al) and 2) proactive (e.g., restocking). Our proposed partial re- 

ptimization strategy falls in the latter category (i.e., proactive ac- 

ions). Once all the information regarding the stochastic param- 

ters becomes known, our recourse strategy seeks to utilize the 

vailable capacity buffers included in the first-stage routes to ser- 

ice as many of the newly revealed customer requests to minimize 

he additional vehicles required. 

.2. Vehicle routing problem with stochastic customers 

The Traveling Salesman Problem with Stochastic Customers 

TSPSC) was introduced by Jaillet (1985) , who studied some of 

ts properties and proposed several solution methods. Each cus- 

omer was given a probability p of being present in the prob- 

em. The problem was formulating a tour for all customers, 

hich minimized costs in which customers who were not present 

ere skipped. This work was expanded upon by Jaillet & Odoni 

1988) and Bertsimas & Howell (1993) , who proposed a series 

f heuristic algorithms. Laporte et al. (1994) developed an exact 

ranch-and-cut algorithm for the problem. Jezequel (1985) and 

aillet (1985) investigated a version of the TSPSC where the de- 

ands were of unit size. It was further noted by Jaillet (1985) that 

arge vehicle capacities may yield higher solution costs and that 

he costs of the solutions depend on the travel orientations chosen 

or the routes, even for problems that involve symmetric distances. 

aters (1989) considers three strategies for the TSPSC, which are 

he following: 1) apply the original plan, 2) skip absent customers 

nd finally, 3) re-optimize the route. It was noted that, as the num- 

er of uncertain customers rises, rescheduling becomes preferable. 

hey use stochastic programming to solve the problem. In general, 

he literature concerning stochastic customers specifically remains 

elatively limited. 

.3. Vehicle routing problem with stochastic demands and customers 

The first variant of the Vehicle Routing Problem with Stochas- 

ic Demand and Customers (VRPSDC) was formalized by Bertsimas 

1992) . Gendreau et al. (1995) designed an exact algorithm for this 
131 
roblem. The problem is solved using the a priori optimization 

trategy, as introduced by Bertsimas (1988) . 

In the considered problem variant, an a priori routing plan (i.e., 

 set of vehicle routes that visit all customers) is sought that min- 

mizes overall a posteriori routing costs. Once the routes are per- 

ormed, and the stochastic parameters are observed, the applied 

ecourse actions are: 1) skip absent customers and 2) apply clas- 

ical recourse actions whenever a vehicle’s residual capacity is in- 

ufficient to service a customer’s observed demand. The problem is 

ormulated as a stochastic integer program and is solved via the in- 

eger L-shaped algorithm. Instances with up to 42 customers were 

olved using this method. 

Gendreau et al. (1996) proposed a new meta-heuristic for the 

RPSDC based on TABU search (the algorithm was coined TABUS- 

OCH). The use of this heuristic was observed to be computa- 

ionally very expensive. Instances with up to 46 customers and 

wo vehicles were solved. The computational challenges related 

o TABUSTOCH resulted in evaluating the quality associated with 

he current solution moves considered in the applied neighbor- 

ood at each iteration performed by the algorithm. This was the 

otivation behind the development of the empirical estimation 

pproach. Finally, additional meta-heuristics were introduced by 

alaprakash et al. (2015) . They use an empirical estimation ap- 

roach and show that it is more effective than the approach used 

n Gendreau et al. (1996) . They only investigated single-vehicle 

outing problems. More recently, Sörensen & Sevaux (2009) , Erera 

t al. (2009) , and Beraldi et al. (2010) have all investigated variants 

f this problem and developed algorithms based on tabu search, 

nsertion heuristic search, and neighborhood search, respectively. 

n all cases, these methods were used to test the flexibility of so- 

utions to deal with irregular customers. 

.4. Consistent vehicle routing 

This paper specifically addresses the challenge of solving a VRP 

n which two distinct types of customers must be serviced. The 

roblem setting includes explicit service agreements that structure 

he planning of the distribution operations. Although service agree- 

ents can offer different provisions for the customers, we consider 

he case where a certain level of consistency is imposed in the ve- 

icle routes. We thus briefly review here the literature dedicated 

o consistent vehicle routing problems. 

The consistent vehicle routing problem was first formulated 

n Groër et al. (2009) . In this variant, customer satisfaction was 

chieved by 1) fixing the assignment of customers to drivers and 

) imposing time consistency. Time consistency is when compa- 

ies want their drivers to develop relationships with customers 

n a route and have the same drivers visit the same customers 

oughly the same time each day they need service. The problem 

s formulated as a mixed integer program and solved optimally 

or small instances. A local search algorithm is also designed to 

olve larger instances. The generalized consistent vehicle routing 

roblem was formulated in Kovacs et al. (2015) . Here, multiple 

rivers can be assigned to customers, relaxing the driver consis- 

ency criteria and allowing for greater satisfaction. More recently, 

iesinger et al. (2018) investigated a genetic algorithm with a solu- 

ion archive for the problem. This algorithm proved to be effective 

hen compared to other metaheuristics. 

In Jabali et al. (2015) the vehicle routing problem with self- 

mposed time-windows is investigated. Here, a tabu search heuris- 

ic assigns customers to vehicles and establishes the order of visits 

f the customers per vehicle. The LP model subsequently gener- 

tes detailed timing decisions, whose output also guides the local 

earch in a feedback loop. Later, Spliet & Gabor (2015) , contributed 

o the research on self-imposing time windows. Their work can 

e considered a variant of the consistent vehicle routing problem 
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here time windows have to be assigned before demand is known, 

eferred to as the time window assignment vehicle routing prob- 

em. A similar problem was investigated in Neves-Moreira et al. 

2018) , where the stochastic demands are product dependent. For 

ore details on the different variants of emerging vehicle routing 

roblems, we refer the reader to Vidal et al. (2020) . 

Given the current body of scientific literature, in this paper, 

 new problem is presented. A novel feature of the problem is 

he introduction of different service agreements, which generally 

ave requirements on the timings orders have to be placed by cus- 

omers and information on the delivery has to be revealed. This in- 

ormation on the delivery generally includes a time indication and 

hich driver will service the request. If these timings are different 

or different customers, it causes uncertainty for the planning. A 

ovel solution method is thus additionally required. 

. Problem definition 

A logistics service provider performs distribution services for a 

et of customers. These customers are divided into two categories 

ased on their respective service agreements. The agreement spec- 

fies when they inform the logistics service provider of their re- 

uests, establishing the service quality provisions offered when 

erforming the distribution operations. Specifically, customers un- 

er the first agreement inform the logistics service provider about 

heir requests two days in advance. In return, on the same day, 

hese customers receive information about their estimated arrival 

ime and which driver is assigned to their request. Their estimated 

rrival time is approximated by order of the visits on the route to 

ustomers under this service agreement. The same information is 

ransferred to customers under the second agreement, with the ex- 

eption that these customers inform the logistics service provider 

ne day in advance. The second agreement offers the same service 

uality provisions to the customers. Ultimately, all customers need 

o be serviced. 

Let the set V 1 represent the requests under the first service 

greement and V 2 the set of requests under the second service 

greement. To provide customers from V 1 with the required in- 

ormation, one has to plan in two separate time periods, known 

s stages. In the first stage (i.e., two days in advance), an inter- 

ediate plan for the requests in V 1 is formulated. When formulat- 

ng the intermediate plan in stage 1, the request locations in cat- 

gory V 2 are stochastic. Neither their presence nor their demand 

s known exactly when formulating this plan. However, some in- 

ormation is known that can be used to formulate probability dis- 

ributions for either of these attributes. In the second stage (i.e., 

ne day in advance), all information regarding the requests in V 2 
ecomes known (i.e., both the presence and the demands of these 

equests are observed). The routing plan is then adjusted to service 

ll materialized requests. However, the intermediate plan’s basic 

tructure is preserved when the final vehicle routes are established 

o serve the request locations in both V 1 and V 2 . According to the

ervice agreement with the customers from V 1 , the following deci- 

ions from the intermediate plan need to be preserved: 

• Requests in V 1 remain on their allocated route of the interme- 

diate plan. ( Driver guarantee ) 

The driver guarantee offers value to the customer and the lo- 

gistics service provider. A customer that receives its service 

through a driver familiar with their logistics situation will ben- 

efit from an experienced delivery service. This should result in 

a fast service according to the customers preferences. A second 

benefit is that the logistic service provider can start preparatory 

work sooner. They can start the order picking processes and fill- 

ing the trucks of the customers of V even before the customers 
1 

132 
of V 2 announce their orders. This in turn decreases the pressure 

on the order pickers. 
• The order of the visits in the routes of the intermediate plan is 

preserved. ( Time-order guarantee ) 

The logistics service provider would, as a service to the cus- 

tomer, report a time estimate for when they expect to arrive 

with their delivery. The logistics service provider provides time- 

windows, for which they select both the start and end times. 

These windows are chosen such that the driving cost for the 

route is minimised. Modelling these time-windows is a com- 

plex problem in itself. We have elected to model this via pre- 

serving the sequencing of the requests. As such, large differ- 

ences between the self reported time-windows and the actual 

delivery times are avoided. 

If not all customer requests in the set V 2 can be accommodated 

n the routes established in the first stage, then additional vehicles 

re requisitioned and charged a premium. 

Drivers need to be informed of their shifts on time. In gen- 

ral, there is a monetary penalty, usually in the form of additional 

ages, when a driver is informed late that work is available. Also, 

rom the vehicle utilization perspective, timely knowledge about 

he usage is important. For example, vehicles require maintenance, 

hich needs to be effectively planned. Inefficiencies may occur 

hen a vehicle scheduled for maintenance is suddenly required to 

erform operational duties. As a result, we need to charge a pre- 

ium for using additional vehicles in the second stage. 

Summarized, the objective is to establish an intermediate plan 

o serve the requests in V 1 that minimizes the expected cost of the 

nal plan that serves all the requests in both V 1 and V 2 . A simple

xample visually represents the overall planning process in Fig. 1 . 

n this example, set V 1 includes the requests represented by the 

lack dots { 1 , . . . , 6 } . In the first stage, three vehicle routes (repre-

ented by the red-dotted lines) are established to service the re- 

uests in V 1 . In the second stage, four additional requests appear 

rom set V 2 , represented by the black dots { 7 , 9 , 10 , 11 } . The final

et of vehicle routes is established (represented by the blue lines). 

hus, requests { 9 , 10 , 11 } are accommodated via the routes of the

ntermediate plan, while an additional vehicle is requisitioned to 

ervice the request of request { 7 } . In the end, three vehicles were

lanned in the first stage (i.e., the black vehicles in Fig. 1 ), while

n additional vehicle was used in the second stage (i.e., the blue 

ehicle in Fig. 1 ). 

.1. First stage model 

A logistics service provider supplies a set of customer locations 

ith a homogeneous fleet of vehicles, each vehicle having a capac- 

ty Q and an associated cost γ1 if the decision to use it is made in

tage 1 and γ2 if the decision to use it is made in stage 2, where

2 > γ1 . In a graph G , these request locations are represented by 

ertices V = { 1 , 2 , 3 , 4 , . . . , n } , where it is assumed that each vertex

 ∈ V resides at a different location. Let X = [ x i j ] n ×n be the deci-

ion matrix to move from vertex i to j. Vertex 0 denotes the de- 

ot. The request locations are connected through a set of edges 

 = {〈 i, j〉 : i, j ∈ V, i � = j} where each edge has an associated driv-

ng cost defined in set C = { c i j : 〈 i, j〉 ∈ E} . It is assumed that the

riving costs are symmetric ( c i j = c ji ). In Stage 1, planning the ve-

icle routes considers the requests emanating from the two sub- 

ets of requests, V 1 ∪ V 2 = V . The requests in set V 1 are considered

o be deterministic. Thus their demands d i : i ∈ V 1 are known dis- 

rete values. 

The requests originating from requests in V 2 are stochastic. 

hus, each request has a probability of appearing on a given day. 

hen a request is present, there is a random distribution to for- 

ulate the demand of the request. A combination of specific re- 
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Fig. 1. Example of our single item limited reassignment auction. 
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uest presences and associated demands is a scenario denoted by 

 . From now on, we denote V s 
2 

to indicate the second-stage requests 

resent in scenario s . Thus, let P = { p i : i ∈ V 2 , 0 ≤ p i ≤ 1 } define

he set of probabilities of requests being present. The probability of 

bserving a demand value of d k 
i 

given that request i is present in 

he second stage is given by w 

d k 
i ∈ W . Here each k is an index for

hich demand realization. Any demand d is always smaller than 

he vehicle capacity Q . Let m 1 denote the number of vehicles se- 

ected in the first stage at a cost γ1 . 

The total amount of scenarios is linked to both the number of 

equests in V 2 and the size of the set of probabilities W . Each sce-

ario is unique and has a probability 

s = 

∏ 

i ∈ V s 
2 

w 

d k 
s 

i ·
∏ 

i ∈ V s 
2 

p i ·
∏ 

i / ∈ V s 
2 

(1 − p i ) (1) 

f occurring. To provide a detailed example, let us assume the case 

here there is one fixed request and two stochastic ones, each of 

hich has a probability of 1 
2 of being present. Furthermore, let us 

uppose that each stochastic request also has a stochastic demand. 

pecifically, each stochastic demand follows a discrete random dis- 

ribution with two possible realizations. In both cases, demand re- 

lization 1 occurs with probability 1 
3 and demand realization 2 oc- 

urs with probability 2 
3 . Then the scenario where both stochastic 

equests are present, each of which with demand realization 1 is 

qual to ( 
∏ 

i ∈ V s 
2 

w 

d 1 
i = 

1 
3 · 1 

3 ) · ( 
∏ 

i ∈ V s 
2 

p i = 

1 
2 · 1 

2 ) = 

1 
36 . 

This probability is equivalent to the product of the probabil- 

ties of presence p i , not presence (1 − p i ) and the probabilities

or the demand levels w 

d k 
i for all requests in V s 

2 
. S denotes the 

ull set of scenarios. F (m 1 , X, s ) is the resulting cost from a in-

ermediate plan solution X re-optimized in stage 2 for scenario s . 
 

s ∈ S πs · F (m 1 , X, s ) is effectively the expected cost of intermediate 

lan X over all scenarios. The mathematical model � is formulated 

s follows: 

in γ1 · m 1 + 

∑ 

s ∈ S 
πs · F (m 1 , X, s ) (2) 
133 
ubject to: 
∑ 

 0 , j> ∈ E 
x 0 j ≤ m 1 ∀ j ∈ V 1 (3) 

∑ 

i, j> ∈ E: i � = j 
x i j = 1 ∀ j ∈ V 1 (4) 

∑ 

i, j> ∈ E: i � = j 
x i j ≤ 1 ∀ i ∈ V 1 (5) 

 i + d j x i j − Q(1 − x i j ) ≤ y j ∀{ i, j} ∈ V 1 , i � = j (6)

 i j ∈ { 0 , 1 } ∀ i, j ∈ V 1 , i � = j (7)

 i ≤ y i ≤ Q ∀ i ∈ V 1 (8) 

 1 ∈ Z + (9) 

The minimization function � consists of the cost of a vehicle 

 γ1 ) multiplied by the number of vehicles requisitioned ( m 1 ) plus 

he expected second stage costs, which is derived from the first- 

tage route plan X and scenario index s . Constraint (3) ensures 

hat the amount of vehicles leaving the depot is smaller than the 

mount requisitioned. Constraint (4) ensures each request is visited 

nce. Constraint (5) assures that only one edge leaves each node. 

onstraint (6) makes sure that the vehicle is always under capacity 

 Q). Variable y i is introduced to indicate the vehicle’s cumulative 

olume up to request i . Constraint (6) implicitly captures the order 

f requests on a route via variable y i . The probability of its com- 

ination of demands multiplied with its probability of the combi- 

ation of requests multiplied by the second stage costs. F (m 1 , X, s )

s the expected cost for plan X for a specific scenario s , which can

e achieved by a specific vehicle routing problem, for which the 

athematical model is presented in Section 3.2 . 

For convenience, the used notation can be found in Table 1 . 



V.C.G. Karels, W. Rei, L.P. Veelenturf et al. European Journal of Operational Research 313 (2024) 129–145 

Table 1 

Legend of the used notation. 

� objective minimization function. 

i, j indices for a request in V . 

e i j edge in E

V set of all requests 

V 1 first-stage requests 

V 2 second stage requests. 

n size of set V . 

c i, j ∈ C cost for driving an edge e i j 

k index of demand realization. 

d k 
s 

i 
∈ D realization of demand for request i in scenario s . 

w 

d k 
s 

i ∈ W probability of demand value d k 
s 

i 
occurring for request i 

p i ∈ P probability of a request i being present. 

x i j decision variable to travel from i to j in the first-stage. 

X the agglomeration of all decision variables x i j , known as the first stage plan. 

πs probability of a scenario s occurring. 

F (m 1 , X, s ) expected cost for first-stage plan X for scenario s 

z i j decision variable to travel from i to j in the second stage. 

Z the agglomeration of all decision variables z i j , known as the second stage plan. 

m 1 stage 1 vehicles requisitioned. 

m 2 stage 2 vehicles requisitioned. 

Q vehicle capacity. 

y i vehicle load after request i 

�(Z) collection of routes resulting from a transformation of Z. 

R route: set of decision variables z i j which imply a sequence of requests i and j. 
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.2. Second stage model 

As previously stated, the intermediate plan produces a set of 

ehicle routes that visit all requests in set V 1 . To compute the ex- 

ected cost of this plan, as defined in (10) for each scenario, a sec-

nd stage model should be solved, which minimizes the final rout- 

ng cost given the constraints set by the intermediate plan, which 

s considered as input. In this section, we present the mathemat- 

cal model which, when solved, produces the optimal final plan 

onstrained by the provided intermediate plan X for a given sce- 

ario s . In essence, the mathematical model enables the usage of 

ny spare capacity present in the routes of the intermediate plan 

o accommodate the second-stage requests. 

When a specific scenario s occurs, the remaining problem to 

olve is a deterministic Capacitated Vehicle Routing Problem with 

dditional constraints to enforce the service agreements guaran- 

eed to the requests in V 1 by the intermediate plan. The variable 

 i j is a binary variable that indicates whether edge e i j is used in 

he final routes of scenario s . Z is the collection of decision vari- 

bles z i j , which dictates the second stage plan. This is equivalent 

o the final plan for scenario s . Let m 2 , a decision variable, be the

umber of additional vehicles requisitioned in the second stage. 

The mathematical model to compute F (m 1 , X, s ) can be de-

cribed as: 

in γ2 · m 2 + 

n ∑ 

i =1 

n ∑ 

j=1 ,i � = j 
c i j z i j (10) 

ubject to: 
∑ 

 0 , j> ∈ E 
z 0 j ≤ m 1 + m 2 j ∈ V 1 ∪ V 

s 
2 (11) 

∑ 

i, j> ∈ E: i � = j 
z i j = 1 j ∈ V 1 ∪ V 

s 
2 (12) 

∑ 

i, j> ∈ E: i � = j 
z i j ≤ 1 i ∈ V 1 ∪ V 

s 
2 (13) 

 i + d k 
s 

j z i j − Q(1 − z i j ) ≤ y j ∀{ i, j} ∈ V 1 ∪ V 

s 
2 , i � = j (14)

 

k s ≤ y i ≤ Q ∀ i ∈ V 1 ∪ V 

s 
2 (15) 
i 
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 i j ∈ { 0 , 1 } ∀{ i, j} ∈ V 1 ∪ V 

s 
2 , i � = j (16)

 2 ∈ Z + (17) 

F (m 1 , X, s ) returns the objective value to the minimization

roblem. The second stage model is constrained by the interme- 

iate plan, i.e., the solution to the first-stage model, by the service 

greements to the requests in V 1 . Thus, we include a set of addi-

ional constraints that will ensure that time-order guarantees are 

nforced on the final routes of scenario s . y i represents the load, 

hich implicitly has an order already known for each request i ∈ V 1 
ue to these constraints. k s indicates the index k of the demand re- 

lization inherent to scenario s . In more practical terms, if second- 

tage requests are to be included in routes from the first stage, the 

rdering of the loads should still be the over both the first and 

econd-stage models. In essence, for this model x ⇒ y . From this, 

e obtain constraint (18) . 

x i j ⇒ y i ≤ y j ∀ i, j ∈ V 1 (18) 

Similarly, routes of X also have to be preserved along the con- 

traints imposed by the service agreements. For this constraint, 

18) is insufficient as it preserves only the ordering of the load, 

quivalent to the time-order guarantees. Let us first define the 

oute, R , which is a set of decisions z i j between any sequential i

nd j. Let us define �(Z) as the collection of routes, which is de- 

ived by a transformation over Z. Distinct routes R 1 and R 2 are ob- 

erved as z i j = 0 between any i in the sequence of R 1 and j in the

equence of R 2 . This means the decision to travel ( z i j ) is not made

or any request i in route R 1 and any request j on route R 2 , in-

icating the routes are completely separate. Our solution method 

llows the dynamic addition of constraints to the model. Let us 

onsider requests a in the sequence of R 1 ∈ �(Z) and b in the se-

uence of R 2 ∈ �(Z) , on distinct routes in the constraints implied 

rom our first-stage model. Suppose our solution for the second 

tage model contains a route R with a, b in the sequence of R . In

hat case, we can eliminate this invalid route by adding additional 

onstraint (19) and resolving the model. 
∑ 

, j ∈ R, (i � = j ) 
z i j = | R | − 1 (19) 
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onstraint (19) is similar to the dynamic sub-tour elimination con- 

traint found in the routing literature. As an example consider 

oute R = { z 01 = 1 , z 12 = 1 , z 23 = 1 , z 34 = 1 } = { 0 → 2 → 3 → 4

 → 0) }, and suppose a = 3 , b = 4 and that a � b or 3 � 4 which

mplies that 3 and 4 are on distinct routes in the first stage model. 

e eliminate this route by adding the constraint z 01 + z 12 + z 23 +
 34 ≤ 3 to the model. This is equivalent to the currently four occu- 

ied edges | R | = 4 minus 1, which results in the 3 in the constraint.

bserve that as a result of constraint (19) , invalid route R cannot 

eturn in any future solution. Note that because of the inclusion of 

onstraints (18) and (19) , the costs of a solution constrained by an 

ntermediate plan will always be greater or equal than the costs of 

 solution obtained by solving the scenario as a single stage opti- 

ization problem with no restrictions on the requests of set v 1 . 
A solution of this second stage model is equivalent to the blue 

olution in Fig. 1 given the intermediate plan (the dotted line), as 

ig. 1 implies a scenario. 

. Solution approach 

This section presents the algorithm we propose to solve the 

onsidered stochastic model. The solution is subdivided into two 

arts. The first part constructs the sets of requests that must 

e performed by the same vehicle. This is performed through a 

ranch-and-bound algorithm. The second part then determines the 

rdering of the requests in a set to form routes. 

The first part of our algorithm is based on a branch-and-bound 

earch strategy. Our description of the proposed solution method 

ocuses on its main algorithmic components: 1) the bounds that 

re computed to guide the search process and 2) the strategy that 

s applied to perform the exhaustive search of the feasible region of 

he considered stochastic model. In the second part of our model, 

e determine a property of the orders on requests that we can 

ubsequently use for an algorithm to determine the best ordering 

or any route. This section is subdivided into the following subsec- 

ions: 

1. Creating sets (which will form the basis for routes). 

2. Preserving the ordering on sets (to form valid routes). 

.1. Creating sets 

We introduce several concepts we use to explain our branch- 

nd-bound methodology for the first part, forming sets that are the 

asis for our routes. In our branch-and-bound model, we branch on 

odes. Allow us to introduce the concept of a node in our branch- 

nd-bound tree. Each node K in our branch-and-bound tree always 

ontains the full collection of scenarios S and their respective so- 

utions given the constraints passed through the branching pro- 

ess. 

Each scenario is solved optimally in the initial node K 

′ in our 

ranch-and-bound tree. The costs associated with this initial node 

re the expected value of perfect information. The value of this 

ode is also the lower bound on costs for this node for our 

ranch-and-bound search. We end the search if the sets for all 

rst-stage requests are equivalent. 

Recall the service agreement that is provided to the customers 

rom V 1 : 

1. Driver guarantee : Requests on the same route in the interme- 

diate plan remain on the same route in the final plan. 

2. Time-order guarantee : The order of the requests on the routes 

in the stage 1 plan is preserved. 

When the sets for all first-stage requests are equivalent, we ful- 

lled the Driver guarantee part of the service agreement. When 

he sets over the first-stage requests are different, our branch-and- 

ound methodology ( Fig. 4 ) starts to branch on the initial node 
135
 

′ . During the branching, constraints are iteratively added to the 

ranching nodes. 

We introduce the applied disjunction to obtain the feasible sub- 

egions created each time branching in the search tree is per- 

ormed. This disjunction consists of constraints, which in turn con- 

ist of two first-stage requests (say a and b), which in the current 

ode are in the same set for the solutions to some scenarios while 

n different sets to others. When we branch on this node, we en- 

orce that a and b are in the same set a → b, versus that they are

ot a � b. As a result, if we branch on a node in the tree, it re-

ults in two other nodes, one where a → b in the solutions to all

cenarios, and one where a � b. Each constraint added maintains 

r increases the cost of the node, as some scenarios need to be re- 

olved with the added constraint. The sum of these costs is equiv- 

lent to the lower bound of the costs of the node. Constraints con- 

inue to be added until the sets over the first-stage requests are 

he same, equivalent to no more a and b available to branch on. 

hen this occurs, we have found a valid first-stage plan. This valid 

lan provides us with the first upper bound in costs. If we explore 

 node for which the computed costs are higher than this upper 

ound, we know that this node is not worth exploring further (ad- 

itional constraints only make subsequent branching nodes more 

xpensive). We continue the algorithm until all nodes have been 

xplored and the entire solution space has been investigated. The 

mount of branches is finite, as there is a limited amount of per- 

utations possible with the constraints a → b and a � b. In the 

orst-case scenario, however, the full set of all possible allocations 

f requests to routes is calculated. Branching on the initial node is 

resented in Fig. 2 . 

Over the scenarios, multiple first-stage requests exist in a node 

hat could potentially be selected as the a and b to branch on. As 

uch, we need to select the best a and b from the pool of poten- 

ial requests. This solution method uses the difference in the pro- 

ortion of scenarios for which a → b versus a � b need to be re- 

alculated. The combination of the first-stage requests (i, j) where 

he largest proportion is selected for a and b. Thus, for one of 

he branching nodes, only a small set of scenarios need to be 

e-calculated. The node with the smallest number of a solution 

hanges over the scenarios is then selected to branch on next. The 

enefit is that one expects this node to have lower costs since less 

change” is implemented in the node (the added constraint im- 

acts fewer scenarios). The algorithm to select the appropriate a 

nd b as branching nodes from first-stage request set (i, . . . , n ) is 

resented in Fig. 3 . 

As a more practical example, consider a node in which 80% of 

he plans has a → b, and 20% has a � b. In this situation, the op-

imal intermediate plan likely contains a → b since that already 

olds for most scenarios. This mechanic allows us to find the op- 

imal intermediate plan relatively quickly, while proving that this 

ntermediate plan is optimal is more time-consuming. 

.2. Preserving ordering on routes 

In the previous section, the notion of branching on a and b be- 

ng on the same route (i.e., a → b) versus a and b not being on

he same route (i.e., a � b), was introduced. It enables the solu- 

ion space to be explored through the enumeration of the possible 

artitions of the requests in V 1 and assignment to vehicle routes. 

nce this partitioning is complete, the sequencing in the partitions 

eeds to be investigated. 

Consider the following example, where an end-node in the tree 

ontains constraints a → b, b → c, and c → d. As a result, it is

nown that a , b, c, and d are on the same route in this node. How-

ver, the order in which they appear on that route is still undeter- 

ined. Ultimately, the routing plan over the first-stage requests in 
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Fig. 2. Example of branching on the initial node K ′ . 

Fig. 3. Algorithm for determining a and b. 
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 1 needs to be identical for all scenarios, including the assignment 

o routes and the sequencing on those routes. 

The number of sequences over a , b, c, and d is equivalent to the

umber of possibilities in a TSP over these requests, which is an 

P-hard problem. In this section, we show that we can limit the 

umber of sequences that need to be investigated. Initially, the se- 

uences resulting from the preferred plans in the solution node are 

onsidered, which are intuitively a good starting point. In addition 

o the preferred plans, the important question to consider is the 

ollowing: is there an alternative sequence that could be optimal 

or all scenarios? To help answer this question in the affirmative, 

e define a property of this sequence that, should it exist, can be 

erified with relative ease. It should be noted that when the sec- 

nd stage occurs, the demands from the requests in set V 2 become 

nown and, at this point, no longer affects the sequence of visits 

stablished for the requests in set V 1 . Here, demand does not affect 

he sequence since requests to routes have already been allocated. 

his allocation considers the capacity constraint, which interacts 

ith demand. However, demand has no such interaction in se- 

uencing the requests on the route once the allocation is complete. 

Consider K 

∗ a potential end-node in our branch-and-bound tree 

ontaining scenarios. For these scenarios, the partitioning of V 1 
136 
ver routes has already been completed. While the partitions be- 

ween the scenarios are now the same, the sequence over the first- 

tage requests on a route in each partition can differ. Collecting all 

ifferent individual sequences provides us with a list of potential 

equences for node K 

∗, one of which could be optimal. 

Let’s illustrate this with some examples. Consider a problem 

ith a single stochastic request, referred to as q , and a set of re-

uests V 1 . Since q is the single stochastic request, two scenarios 

xist. When comparing scenarios, the set V 1 could be considered 

eterministic, as the set remains unchanged in the comparison. A 

ingle stochastic request results in each scenario having a preferred 

lan and thus a preferred sequence σ over V 1 . These are referred 

o as σ−q (optimal when q not present) and σ+ q (optimal when q 

resent). 

Two cases now exist: σ−q is equivalent to σ+ q , or not. When 

oth sequences are equivalent, there exists no other sequence 

hat could be better (since the preferred sequence is the op- 

imal sequence for both scenarios). As a result, this particular 

ase requires no further investigation. When the sequences are 

nequal, a unique sequence can exist that minimizes the ex- 

ected cost over the two scenarios. Two visual representations 

f unequal sequences are presented in Fig. 5 . In Fig. 5 (a) σ−E is
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Fig. 4. Branch-and-bound algorithm. 

Fig. 5. Two examples of the preferred sequence changing as the result of the addition of a request. 
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quivalent to A → B → C → D , but in Fig. 5 (b) σ+ E is equivalent to

 → A → B → C. 

In these examples, the solution to the optimal sequence is one 

f the sequences resulting from the preferred plans. However, out- 

ide of these sequences, there could be an additional sequence that 

s cheaper concerning the weighted average (with the probabilities 

s being the weights) in cost over the scenarios, but not the cheap- 

st in cost for any scenario individually. 

.2.1. A property of the weighted-cheapest sequence. 

Considering Fig. 5 , aside from σ−q (the optimal sequence when 

 is not present) and σ+ q (optimal sequence when q is present), 

here could exist sequence ˜ σ which is optimal in costs with re- 

pect to the weighted average over the scenarios. An example can 

e found in the Appendix ( Fig. 11 ). In order to find the optimal se-

uence, we have to consider σ−q , σ+ q , and all potential sequences 

˜ . Sequence ˜ σ does not occur in our end-node in our branch and 

ound model. 

We have to obtain optimal sequence σ ∗. One way to approach 

hat is referenced in Fig. 6 , with i , j requests in route R , with q

eing a stochastic request, and TSP referencing the Traveling Sales- 

an Problem. sol(T 1 ) is the solution to the TSP related to T 1 , which

ontains sequence σsol(T 1 ) 
. Note that by using this algorithm se- 

uences σ−q and σ+ q are considered. 
137 
For any requests i and j in the route R we answer the follow- 

ng questions: What is the cost of the cheapest route if stochas- 

ic request q was inserted between i and j? For this we a Travel-

ng Salesman Problem has to be computed with an additional con- 

traint { i → q → j}. What is the cost if we traveled that same route

hen q is not present? Is the weighted average over those two 

cenarios the cheapest? If the answer is yes, update the optimal 

equence to the sequence contained within the current considered 

heapest route. In the end, by testing all i and j, we have effec-

ively tested all possible sequences for the route when considering 

tochastic request q . 

Suppose 15 requests have been added to the route. To complete 

his algorithm we have to compute about 105 TSP’s, which requires 

ignificant computation times. Note that the constraint that we add 

 i → q → j} is related to the insertion of q between i and j which

lso carries its own cost. Let us define ιv (σ−q ) as the cheapest in- 

ertion costs of q on sequence σ−q . We wish to limit the amount of 

SP’s that have to be computed. To this end, we determine bounds 

n the insertion costs. In other words, if the insertion costs for in- 

erting q between i and j is outside of the computed bounds, do 

ot compute the TSP as the sequence contained in the solution to 

hat TSP can never be the optimal sequence. 

Considering Fig. 5 , aside from σ−q and σ+ q , there could exist a 

equence ˜ σ which is optimal in costs with respect to the weighted 
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Fig. 6. Algorithm to determine the optimal sequence σ ∗ for q (brute force). 
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verage over the scenarios. An example of such a sequence can 

e found in the Appendix ( Fig. 11 ). We next state a property that

olds for ˜ σ , if such a sequence does indeed exist. Let us consider 

 specific stochastic request q , this property defines valid bounds 

n the insertion cost of q in ˜ σ when comparing the preferred se- 

uences of two scenarios that only differ with respect to q (i.e., 
+ q versus σ−q ). In turn, these bounds enable an algorithm that 

nds the optimal sequence in an end-node K 

∗ to be defined. Sub- 

equently, it is shown that if this property holds for a pair of sce- 

arios with a single stochastic request difference, then it holds for 

ll scenario pairs. Let ϒ define the set of overlapping requests be- 

ween any scenario pair. We further define function γ (σ, ϒ) as the 

ost of implementing a sequence σ on the set of requests ϒ and 

unction ιv (σ ) as the cheapest insertion costs of v on the sequence 

. The following result then holds: 

emma 4.1. 

q (σ
+ q ) ≤ ιq ( ̃  σ ) ≤ ιq (σ

−q ) (20) 

roof. Let us first consider the following inequality: 

(σ−q , ϒ) ≤ γ (σ+ q , ϒ) . (21) 

nequality (21) simply states that, when implemented on a give set 

f requests ϒ , the cost of sequence σ−q is at most as high as the

ost of sequence σ+ q (as directly implied by the definitions of both 

equences). Furthermore, the following result also holds: 

(σ−q , ϒ ∪ q ) ≥ γ (σ+ q , ϒ ∪ q ) . (22) 

nequality (22) simply states that, if one considers the set of re- 

uests ϒ ∪ q , then the implementation cost of sequence σ−q is 

ecessarily higher than that of σ+ q , considering that request q is 

lready part of the preferred sequence σ+ q . It should be noted that 

he implementation cost of sequence σ on the set ϒ ∪ q is equiv- 

lent to the cost of sequence σ on ϒ plus the cheapest insertion 

osts of q . We thus obtain the following equations: 

q (σ
−q ) = γ (σ−q , ϒ ∪ q ) − γ (σ−q , ϒ) , (23) 

v (σ
+ q ) = γ (σ+ q , ϒ ∪ q ) − γ (σ+ q , ϒ) . (24) 

Considering inequalities (21) and (22) , when combined with 

23) and (24) , results in the following inequality being observed: 

q (σ
−q ) ≥ ιq (σ

+ q ) , (25) 

hich simply states that the insertion cost of request q is more ex- 

ensive when considering the preferred sequence that did not ac- 

ount for it, i.e., σ−q , when compared to the preferred sequence 

hat did, i.e., σ+ q . Let request q be present with probability p q . 

y the original definition of sequence ˜ σ , it is considered optimal 

n terms of cost when considering the probability p q and for the 

iven scenarios. We can now bound the value of ιq ( ̃  σ ) . If a se-

uence ˜ σ exists, then the following inequalities must hold: 

(σ−q , ϒ) ≤ γ ( ̃  σ , ϒ) , (26) 
138 
( ̃  σ , ϒ ∪ q ) ≥ γ (σ+ q , ϒ ∪ q ) . (27) 

onsidering that q is a stochastic request (with probability p q ) and 

y the definition of ˜ σ as an optimal sequence in terms of the 

eighted average, then we obtain the following: 

(1 − p q ) · γ ( ̃  σ , ϒ) + p q · γ ( ̃  σ , ϒ ∪ q ) ≤ (1 − p q ) · γ (σ−q , ϒ) 

+ p q · γ (σ−q , ϒ ∪ q ) , (28) 

(1 − p q ) · γ ( ̃  σ , ϒ) + p q · γ ( ̃  σ , ϒ ∪ q ) ≤ (1 − p q ) · γ (σ+ q , ϒ) 

+ p q · γ (σ+ q , ϒ ∪ q ) . (29) 

sing the insertion cost function ι, inequalities (28) and (29) can 

e rewritten as: 

( ̃  σ , ϒ) + p q · ιq ( ̃  σ ) ≤ γ (σ−q , ϒ) + p q · ιq (σ
−q ) (30) 

( ̃  σ , ϒ ∪ q ) − (1 − p q ) · ιq ( ̃  σ ) ≥ γ (σ+ q , ϒ ∪ q ) − (1 − p q ) · ιq (σ
+ q ) . (31) 

iven (30) and (31) and applying the inequalities (26) and (27) , 

e can now show that the cheapest insertion cost of q on ˜ σ is 

ounded by: 

q (σ
+ q ) ≤ ιq ( ̃  σ ) ≤ ιq (σ

−q ) , 

hich gives us the stated result. In words, the cheapest insertion 

ost of q on ˜ σ , ιq ( ̃  σ ) , is cheaper (or equivalent) than ιq (σ−q ) but

ore expensive (or equivalent) when compared to ιq (σ+ q ) . �

For a given request q , let us consider a sequence ˜ σ for which 

he insertion cost associated with q is smallest. Then, to insert q 

n ˜ σ , a specific edge (i, j) from sequence ˜ σ needs to be removed 

nd two edges (i, q ) and (q, j) need to be added. This results in

he following additional cost: ιq ( ̃  σ ) = c(i, q ) + c(q, j) − c(i, j) . Con-

idering the bounds associated with ιq ( ̃  σ ) , which are defined by 

20) , there are a limited number of potential edges for which these 

ounds hold. 

Algorithm for optimal sequence . In Section 4.2.1 , we developed 

ounds on the insertion costs should a sequence ˜ σ exist between 

airs of scenarios. However, the full problem considers pairs in- 

tead of a full scenario set. In this section, we show it is sufficient 

o check all pairs of scenarios where one additional request differs. 

onsider the following small scenario tree, η: 

Consider a set of deterministic requests V 1 and two stochas- 

ic requests a and b. For notation, s (V 1 ∪ a ) indicates the scenario

here both V 1 and a are present. Assume that ˜ σ does not exist be- 

ween scenarios s (V 1 ) versus s (V 1 ∪ a ) . Similarly, ˜ σ does not exist

etween s (V 1 ∪ a ) and s (V 1 ∪ a ∪ b) . We can then claim that there

s also no sequence ˜ σ between s (V 1 ) and s (V 1 ∪ a ∪ b) . Should se-

uence ˜ σ exist, it would have been either found in the compar- 

sons s (V 1 ) versus s (V 1 ∪ a ) or s (V 1 ∪ a ) versus s (V 1 ∪ a ∪ b) . 

As the result holds for the base case and the inductive step 

or any additional stochastic request, we also easily observe that 



V.C.G. Karels, W. Rei, L.P. Veelenturf et al. European Journal of Operational Research 313 (2024) 129–145 

Fig. 7. Algorithm to determine the optimal sequence. 
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he property holds for the entire scenario set by induction. This 

roperty allows us to formulate an algorithm to determine the op- 

imal sequence. Let ζ (r, σ ) be the list that contains all potential 

equences σ for each route r. Let η(s ) be the list of scenarios as-

ociated with s with one additional request. 

By performing branch-and-bound to find optimal sets for routes 

nd applying Fig. 7 we find the optimal solution for the intermedi- 

te plan . 

. Computational results and analyses 

In this section, our experimental analysis is presented. Compu- 

ational experiments are performed on an AMD Ryzen 5 3600 with 

6 GB of DDR4 RAM. Gurobi 8.0.1 is used to compute the solu- 

ions to the sub-problems (of the classical vehicle routing problem 

lass). 

The numerical analyses aim to assess the impacts of the 

tochasticity of demand and the presence of requests on the results 

and solutions) obtained. A series of insights are derived from the 

umerical results obtained. The rest of the section is subdivided as 

ollows: 

• We introduce the benchmark approaches. 
• We introduce the instances that are used. 
• We introduce the results that are gained by running the ap- 

proaches on the insights. 
• Finally, valuable insights are presented. 

.1. Benchmark approaches 

As discussed in Section 3 , two categories of requests are served 

nder different service quality agreements. The service provided to 

ach request category is thus performed in two distinct stages (i.e., 

nvolving different periods). The proposed two-stage optimization 

odel, presented in Sections 3.1 and 3.2 , explicitly integrates the 

lanning decisions made within each stage. To properly assess the 

alue of solving such an integrated model, we implement two ad- 

itional benchmark approaches, i.e., where the planning for both 

ets of requests is done separately. 

In all approaches, all customer requests must be serviced (i.e., 

equests from V 1 and V 2 . The first benchmark approach completely 

eparates the planning of the routes for both request sets. Thus, 

here are dedicated routes for the V 1 requests and dedicated routes 

or the V 2 requests. As a result, these requests are planned in 

istinct periods via two independent capacitated vehicle routing 

roblems, minimizing transportation costs. We call this method 

he Seperate solution method. In the second benchmark approach, 
139 
he so-called Using Spare Capacity method, a capacitated vehi- 

le routing problem is solved for the v 1 requests, minimizing the 

ransportation cost for visiting all V 1 requests. Then, the spare ca- 

acity potentially present in the routes for the V 1 requests might 

e used to accommodate, as much as possible, the requests ob- 

erved in the second stage when the requests (and demands) of v 2 
re known. Therefore, the second stage involves determining which 

equests are added to the first-stage routes and which are planned 

n additional vehicle routes. The available capacity slack present in 

he first-stage routes is leveraged by proceeding this way to per- 

orm the overall service requests. For both additional solution ap- 

roaches, the second-stage decisions are not explicitly considered 

hen performing the first-stage planning. Using them as bench- 

arks for the proposed optimization method, we can assess the 

dded value of integrating the two decision stages involved in the 

roblem. 

.2. Instances 

For our experiments, we use adapted versions of the Solomon 

nstances. Of each instance, the first 90 requests are considered 

nd subdivided into batches of 15. Considering that each Solomon 

nstance contains 100 requests, we can obtain six distinct in- 

tances. The Solomon instances include coordinates, demand, and 

he ready, due date, and service times. For the problem investi- 

ated in this paper, the ready, due date, and service times are not 

onsidered and can be excluded. As a result, the instances are se- 

ected based on their uniqueness of coordinates and demand. As a 

esult, four full Solomon instances remain, which are R , C1 , C2 , and

C . 

In problem set R, the spacial data is randomly generated. Prob- 

em sets C1 and C2 are clustered, and a mix of random and 

lustered structures are used in the problem set RC. From these 

nstances, we generate four classes. Each class is based on the 

tochasticity of the demand and the presence of requests. Each in- 

tance’s last requests are considered stochastic (no random selec- 

ion). Specifically, if there are either four requests in set V 2 , then it

s classified as “Low” (L), or six requests, classified as “High” (H). 

urthermore, the amount of demand levels per request in V 2 is ei- 

her 2, classified as “Low” (L), or four, classified as “High” (H). The 

robability of a request being present in a scenario was always 

onsidered to be 1 
2 for each stochastic request. The last requests 

f each instance were always chosen to be stochastic. 

The probability for each demand level is equivalent. Let us clar- 

fy this with an example: consider a request of the set V 2 with de-

and 3.00 in the Solomon instance. In case we add two demand 

evels, the levels for this request will be the following: demand 
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Table 2 

Computational results on the Solomon instances. 

A B C 

Inst: Class: Result Add. C. Result Add. C. Result 

R LL 583.16 18.20% 525.48 6.51% 493.37 

LH 726.19 22.66% 636.86 7.57% 592.04 

HL 632.52 42.45% 517.43 16.53% 444.03 

HH 791.30 52.75% 619.98 19.68% 518.03 

C1 LL 207.70 19.31% 179.17 2.92% 174.08 

LH 257.87 23.44% 223.48 6.98% 208.90 

HL 203.69 30.01% 172.84 10.32% 156.67 

HH 252.54 38.16% 211.08 15.48% 182.79 

C2 LL 234.95 17.67% 209.39 4.87% 199.67 

LH 306.96 28.11% 259.56 8.33% 239.61 

HL 240.34 33.74% 205.46 14.33% 179.70 

HH 290.02 38.33% 242.42 15.63% 209.65 

RC LL 369.07 17.41% 331.19 5.36% 314.34 

LH 469.81 24.55% 416.48 10.41% 377.21 

HL 356.74 26.10% 327.83 15.88% 282.91 

HH 466.83 41.44% 390.82 18.41% 330.06 

Avg: 29.65% Avg: 11.20%. 

Table 3 

Computation times for the different methods. 

Legend identifier Solution type Computation time in hours 

A Separate 00:02:26 

B Using Spare Capacity 00:04:58 

C Integrated 10:24:13 
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Table 4 

Computation times (hours) for Gurobi TL. 

Instance R 

Class LL LH HL HH 

Comp. Time 1:05 1:20 1:47 2:24 

Instance C1 

Class LL LH HL HH 

Comp. Time 1:07 1:23 1:51 2:41 

Instance C2 

Class LL LH HL HH 

Comp. Time 1:02 1:21 1:46 2:32 

Instance RC 

Class LL LH HL HH 

Comp. Time 1:01 1:27 1:59 2:51 

Average: 1:47 . 
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.00 with probability 1 
2 and demand 6.00 with probability 1 

2 . (For 

hree demand levels, this would be: demand 3.00 (prob: 1 
3 , de- 

and 6.00 (prob: 1 
3 ), demand 9.00 (prob: 1 

3 )). 

As a result, we obtain classes “LL”, “LH”, “HL” and “HH”, with 

he first letter signifying the number of requests present and the 

econd letter signifying the number of demand levels present. All 

alues reported are based on the average results obtained over the 

ix instances for each of the three methods we utilize to solve the 

roblem. 

.3. Results 

In Table 2 , the results, which are the objective function values, 

btained when the three solution approaches are applied to solve 

he different instances are reported. As indicated in Table 3 , A, B, 

nd C refer to the three solution approaches that are implemented: 

he separate planning approach, the separate planning approach 

ith the use of spare capacity in the first-stage routes, and our 

roposed exact method for the integrated problem, respectively. 

n addition, Table 3 also reports the average computation times 

or the different solution approaches when applied to all consid- 

red instances. The columns in Table 2 refer to the instance type 

i.e., Inst) and the problem class (i.e., Class). In contrast, the col- 

mn Result represents the average total cost associated with the 

btained solutions, and Add. C. is the average relative cost differ- 

nce between the obtained solutions and the optimal ones of the 

ntegrated approach C. The average relative cost difference over all 

nstances is also reported at the bottom of the table (i.e., Avg). 

One first observation is the clear advantage of implementing an 

ntegrated planning approach when establishing the vehicle routes 

o service the requests from the two request types in the present 

ase. On average, the separated planning approach produces solu- 

ions whose costs are approximate 30% higher when compared to 

he costs of the optimal solutions of the integrated approach (i.e., 

btained by solving the proposed two-stage model). If the spare 

apacity of the routes for the v 1 requests can be used to accom- 

odate the requests of v 2 , then the average relative cost differ- 

nce is improved. Nonetheless, it remains quite high, i.e., approx- 
140 
mately 11%. As expected, these differences are more pronounced 

hen solving instances where the levels of uncertainty are higher 

i.e., the highest values for the average relative cost difference are 

bserved for the instances in the problem class HH). Furthermore, 

he number of stochastic requests seems to have a more signifi- 

ant impact on the obtained results than the random variability of 

he demands. For example, when considering instance type R and 

he results obtained using the solution approach A, the value of 

dd. C. goes from 18.20% to 42.45% for the instances in the prob- 

em classes LL and HL, respectively. Using the same example, the 

dd. C. value difference is even more noticeable when considering 

he results obtained for the instances in the problem classes LH 

nd HH (22.66% and 52.75%, respectively). The integrated approach 

ignificantly outperforms the other two solution approaches in all 

olved instances. 

.4. Effects of limiting the computation times 

As seen from Table 3 , directly solving the considered integrated 

tochastic model requires large computation times. In this section, 

e thus investigate the effects of limiting the computation times 

edicated to different calculations performed by the proposed so- 

ution method. Specifically, three limits on the calculations are 

onsidered: 

1. Limiting the overall computation time to one hour. (Overall TL) 

2. Limiting the computation time of Gurobi within a node in the 

search tree to 15 seconds. (Gurobi TL) . 

3. Using both the 15-second limit within a node in the search tree 

as well as using the overall one hour time-limit. (Both TL) 

The overall time limit of one hour for variants “Overall TL” and 

Both TL” was reached at all times. For variant “Gurobi TL”, we re- 

ort the computation times in Table 4 . In Table 5 , we present the

ptimality gap compared to the optimal solution found if no com- 

utation time limits are set. More precise, the optimality gap is 

omputed as: 

ap = 

Best solution f ound − Optimal Solution 

Opt imal Solut ion 

(32) 

ere we refer to the Best Solution as the cost of the best valid so-

ution found thus far while exploring the branch and bound tree, 

hile the Optimal Solution refers to the cheapest cost found dur- 

ng the full computation. 

From Table 5 , we observe that a time limit on the Gurobi cal- 

ulation is not the main contributor to the gap relative to the 

ctual solution. Gurobi generally finds a close-to-optimal solution 

arly, and by limiting its calculation time, time is saved by skip- 

ing the proof to optimality. Within generally two hours, a good 

olution was reached, within 1% of the optimum compared to the 

xact method. Our algorithm usually finds the optimal solution 

hen the first feasible solutions are obtained (we arrive at an end 
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Table 5 

Reported optimality gaps for the different limits on com- 

putation time. 

Overall TL Gurobi TL Both TL 

Inst: Class: Gap Gap Gap 

R LL 3.40% 0.71% 0.78% 

LH 3.66% 0.81% 0.87% 

HL 4.45% 0.83% 0.91 % 

HH 5.75% 0.98 % 1.12 % 

C1 LL 3.31% 0.42 % 0.47 % 

LH 3.44% 0.68% 0.69% 

HL 4.01% 0.75 % 0.76 % 

HH 4.16% 0.88% 0.89% 

C2 LL 3.0% 0.54% 0.54% 

LH 4.64% 0.70% 0.73% 

HL 4.11% 0.73% 0.74% 

HH 5.34% 0.84% 0.85% 

RC LL 3.41% 0.66% 0.78% 

LH 4.15% 0.73% 0.85% 

HL 5.10% 0.85% 0.91% 

HH 8.44% 1.31% 1.43% 

Avg: 4.85% Avg: 0.73% Avg: 0.81% . 

Fig. 8. Average progress of the algorithm in time. 
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ode). This results from the strategy employed, which is discussed 

n Section 4.1 . Here we branch on the combination of requests that 

inimizes the number of scenarios that need to be recalculated to 

ransition to a new node. This strategy reaches a solution node in 

he minimum amount of time. However, one needs to compute all 

nd nodes for proof of optimality. 

The optimum was found on average in 1h47m, while the av- 

rage total computation time equals 10h24m. Our algorithm starts 

rom a “preferred” solution, which is optimum for each scenario 

nd converges to a “feasible” solution for our problem. As we ex- 

lore requests through the search tree, the cost of nodes (the sum 

f costs for all intermediate plans for all scenarios) increases (the 

um of the probabilities of scenarios multiplied by the cost of the 

ssociated scenario). This results from the cost of individual sce- 

arios increasing as constraints are added. The increase in cost 

hrough time in the algorithm is displayed in Fig. 8 . Here, the re-

ults of the classes { LL, ..., HH }, which are equivalent to the lower

ounds on the cost of the problem, and the upper bounds, { U- 

L, ..., U-HH }, are visualized. We also display the upper bound for 

ach category, calculated by applying the most common preferred 

lan to all scenarios (if all are unique, the preferred plan of sce- 

ario where all second-stage requests are present is chosen.). 

Often the solution to the problem was the most common “pre- 

erred plan” in the original node. 

In such a case, the upper bound costs are thus equivalent to 

he final costs, which explains near horizontal lines for the upper 

ound. 
141 
.5. Larger instances 

Having more requests will lead to larger computation times for 

olving the Capacitated VRP but also to more scenarios that have 

o be analyzed. If one stochastic request is added to the HH prob- 

em referenced in Section 5.3 , the amount of scenarios increases by 

 factor of 7. To analyze the limits of our method, We tested larger 

nstances. We have generated the following instances of 20 and 25 

equests. First, we have subdivided the Solomon instances into five 

nstances of 20 requests. Of these, the last 6 requests are stochastic, 

eing present with probability 1 
2 . There are only two demand lev- 

ls, {3,6}, each with probability 1 
2 . Table 6 shows for each instance 

ategory the average gap (over the 5 instances) between the lower 

ound and upper bound after 24 hours of computation. Secondly, 

e have subdivided each Solomon instance into four instances of 

5 requests. Of these, the last 8 requests are stochastic, and present 

ith probability 1 
2 . There are again only two demand levels, {3,6}, 

ach with probability 1 
2 . Table 7 shows for each instance category 

he average gap (over the 4 instances) between the optimal so- 

ution (found in segment 5.3 ) and upper bound after 24 hours of 

omputation. 

ap = 

U pperbound − Lowerbound 

Lowerbound 
(33) 

Here the Upper bound is the best valid solution found thus far 

hile exploring the branch and bound tree. The lower bound is 

he lowest value for all unexplored nodes. Note that these might 

e nodes where not all constraints have been added yet (yielding 

heaper cost). 

From the results, it is implied that both the increase in the 

umber of scenarios, as well as the increase in the problem size 

f the Capacitated VRP has a significant impact on the computa- 

ion time of this exact methodology. We were able to solve each 

he instances of 15 customers within on average 10 hours, com- 

utation time rapidly increases by the problem size. None of the 

nstances with 20 and 25 customers was able to be solved within 

4 hours, for instances with 20 customers the gap after 24 hours 

s relatively small, but this gap seems to grow exponentially if the 

roblem size grows. While a potential solution is found within the 

4-hour time period, the process of proving that this is the opti- 

um is not nearly complete, as seen from the reported gaps. For 

arger problems, we propose heuristics are to be used. 

.6. Insights into the balancing act of buffers versus risk 

With regard to the stochastic nature of the considered problem, 

here are some interesting points to highlight. Specifically, finding 

he optimal first-stage plan over all the scenarios involves a bal- 

ncing act of introducing buffers in the first-stage routes, and as a 

esult, incurring additional costs, to accommodate the second-stage 

equests versus the risk of them not appearing and thus having 

aid these additional costs unnecessarily. In that sense, the sce- 

arios are similarly interesting. The preferred first-stage plan as- 

ociated with the scenario that includes the maximum number of 

equests and maximum demands is also the plan with the most 

uffer. On the other hand, the preferred first-stage plan associ- 

ted with the scenario that contains only the first-stage requests 

ith their fixed demands is the plan with the least buffer. More- 

ver, it should be noted that for all instances that we computed 

he optimal solution was included in the collection of initial pre- 

erred plans in the original node in the branch-and-bound tree. In 

ll generality, one can expect that the buffers included in the first- 

tage routes will depend on a subset of second-stage requests be- 

ng present while for the other requests the risk of them appearing 

ill simply be accepted. 
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Table 6 

Optimality gap after 24 hours of computation time for instances of 20 customers. 

Instance: Average gap: Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 

R 6.1% 5.2% 7.6% 6.3% 5.6% 5.7% 

C1 4.6% 4.7% 4.6% 4.1% 4.4% 4.8% 

C2 4.8% 4.3% 4.9% 4.7% 4.9% 5.0% 

RC 5.2% 4.7% 5.1% 4.9% 5.7% 5.6% 

Table 7 

Optimality after 24 hours of computation time for instances of 25 customers. 

Instance: Average gap: Instance 1 Instance 2 Instance 3 Instance 4 

R 156.1% 155,3% 157,1% 156,3% 155,6% 

C1 140.7% 140,9% 141,6% 140,0% 140,3% 

C2 141.3% 142,2% 140,6% 141,5% 140,9% 

RC 147.8% 147,1% 147,4% 148,0% 148,8% 

Fig. 9. Average expected costs of preferred plans for the categories of scenarios. 
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The balancing act of buffers versus risk also holds some inter- 

sting analysis. Let us categorize scenarios on the basis of the sum 

f their requests present. If we have five second-stage requests, 

here will as a result be six categories (none present to all present). 

ach scenario is associated with a preferred plan, and each of the 

referred plans is a potential solution, for which the total expected 

ost can be calculated. We can then compute the expected cost 

f each category (for all scenarios in a category we multiply the 

ost of that scenario by the probability of that scenario occurring). 

ig. 9 shows these average expected costs, defined as relative to 

he optimum in percentages, over the different categories of pre- 

erred plans, which has a convex shape. This trend was observed 
Fig. 10. The effects 

142 
or all tested instances. Furthermore, the trend similarly held true 

hen the scenarios were categorized based on the total demand 

evel. 

.7. Assessing the impacts of the stochastic parameters 

For the results in Section 2 , a fixed subset of requests is con- 

idered stochastic. In this section, we perform a sensitivity analysis 

f the demands and requests. Once again the Solomon instances 

ere adapted, similar to those in Section 5.2 . For each instance of 

5 requests, we select a random set of requests indicated by the 

lass, which we give a probability of being present (in this case, 

.5). The average normalized increase from the base cost is plot- 

ed. Here, the base cost is the cost of the scenario with all requests 

resent. We can motivate this as we are assessing the impact of 

onsidering an increasing number of stochastic requests and their 

ssociated demands. Our point of comparison is obtained by solv- 

ng the problem based on only considering the worst-case sce- 

ario (i.e., all the stochastic requests being present with their as- 

ociated maximum demand in the second stage). Of course, when 

here are no stochastic requests present, then this point of compar- 

son provides the optimal solution to the problem and there are 

o differences between the three solution methods that are pro- 

osed (i.e., A, B, and C). Otherwise, one can assess the value of 

sing the proposed solution methods compared to the more con- 

ervative approach, where the problem is solved using the worst- 

ase scenario. The increase in the size of this selection is plot- 

ed in Fig. 10 (a). Note that the cost is decreasing for the optimal

olution. 
of dynamism. 
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In Graph 10 (b) a selection of 3 requests was transformed to 

tochastic and presented with demand levels. 

Looking at these graphs, we can observe for the solution 

ethod “Separate” that there is an initial greater increase of ad- 

itional costs because of the increase in uncertainty of the prob- 

em. As the amount of uncertainty increases, this decreases, though 

osts remain monotonically increasing. Using spare capacity has 

he opposite effect. The spare capacity can initially absorb a few 

tochastic requests, but as the amount of uncertainty in demand 

nd requests increases, so does the additional cost. Finally, one 

an observe that the presence of requests, which is reflected in 

ig. 10 (a), has a stronger impact on the expected cost compared 

o the demand of the request, reflected in 10 (b). In the scientific 

iterature, the marginal costs of additional requests are generally 

igher than the marginal costs of additional demand. This is, for 

xample, reflected in Gendreau et al. (1992) and in Gendreau et al. 

2014) . 

. Conclusions 

This paper introduced a novel stochastic vehicle routing prob- 

em in which customers have different service agreements. These 

ervice contracts differ when customers make their requests 

nown, creating uncertainty in the problem. These uncertainties 

re in both the present requests and their demand. For this prob- 

em, we introduce a new exact branch-and-bound algorithm. While 

raditional branch-and-bound algorithms tend to branch on edges 

ithin the vehicle routing problem, as observed in Vigo (2015) , we 

ntroduce a branch-and-bound algorithm that branches on the full 

et of scenarios that are introduced by the uncertainties generated 

y the different service contracts. 

Our solution method shows effective results compared to plan- 

ing the requests with different services completely separate or 

sing spare capacity. Planning the requests completely separately 

ncurs an estimated 30% additional cost, while using the spare ca- 

acity of an earlier formulated plan leads to an additional 11% cost. 

The computation times of the full problem are significant. How- 

ver, by imposing a time limit on the node computation in the 

ranch-and-bound tree and/or a time limit over the full solution 

ime, we reach solution quality within 1% of the optimal solution. 

sing the novel branch-and-bound algorithm also yielded some in- 

eresting results regarding the balancing act of buffers versus risk. 

uffers included in the first-stage routes depend on a subset of 
143 
econd-stage requests being present, while for the other requests, 

he risk, and as a resulting penalty, of them appearing will be 

ccepted. Categorizing the scenarios into different categories and 

ubsequently computing the expected costs of these categories (the 

ost of each scenario in the category multiplied by the probabil- 

ty of the scenario occurring) yielded some interesting convex re- 

ationships. 

These convex relationships provide some interesting insights 

nto developing a heuristic to the problem, which is a potential 

ew research direction. In addition, further investigation of how 

ifferent service agreements with different characteristics (e.g., 

pecific constraints regarding how periodic visits are performed to 

equests or the introduction of pickup and delivery) may impact 

he planning of distribution operations is an interesting avenue for 

urther research. When working with real-life cases, it was noted 

hat the bounds towards the optimum are still significant. Future 

ork is needed on scenario-reduction techniques for this problem. 

inally, implementing self-imposed time windows is also an inter- 

sting future research avenue. 
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ppendix A 

In Fig. 11 we show an example with requests A–I and X. In 

his example X is the only stochastic request. In Fig. 11 (a) we ob-

erve the optimal route for the scenario if X is not present and 

n Fig. 11 (d) the optimal route for the scenario if X is present.

ig. 11 (b) and (d) show respectively, the adjusted versions of these 

outes if the other scenario then the one it was optimized for re- 

lizes. Finally, in Fig. 11 (e) and (f) the route is presented which is 

he solution being optimum over the weighted scenarios of X be- 

ng present and X not being present. As can be seen, the weighted 

ost (with weights 0.5 for each scenario) of routes 11 (a) and (b) 

equal to 51.21) as well as of routes 11 (d) and (c) (equal to 51.09)

re more expensive than the weighted cost of routes 11 (e) and 

f), which equal 50.78. As such, there is a route sequence differ- 

nt than the optimal route sequences of each individual scenario, 

hich has a lower weighted cost. 
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Fig. 11. An example of the existence of sequence ˜ σ . 
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