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ABSTRACT

We consider a logistics service provider which arranges transportation services to customers with differ-
ent service agreements. The most prominent feature of this service agreement is the time period in which
these customers send their orders and want to retrieve delivery information. After customers place their
orders, they require information about the driver and an early indication of the arrival times. At the mo-
ment, this information needs to be provided. The order information of other customers with a different
service agreement that needs to be serviced in the same period might still be unknown. Ultimately all
customers have to be planned, constrained by the information provided to the customers in the earlier
stage. In this paper, we investigate how the logistic service provider plans its routes and communicates
the driver and arrival time information in the phase where not all customers are known (stage 1). Once
all customer orders are known (stage 2), the final routes can be determined, which adhere to the al-
ready communicated driver and arrival time information from stage 1, minimizing total routing cost. For
this problem, an exact algorithm is presented. This problem is solved using a novel tractable branch-and-
bound method and re-optimization in stage 2. Detailed results are presented, showing the improvements
of using re-optimization. We show that integrating the planning of the customers with the different ser-
vice agreements leads to significant cost savings compared to treating the customers separately (as is

currently done by most logistics service providers).

© 2023 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

In the modern world, competition, public expectations, and
regulating authorities put a lot of pressure on logistics service
providers. The challenge of efficiently organizing the physical dis-
tribution process became harder and harder to solve. Over the past
years, substantial efforts have been dedicated to finding solutions
to this challenge, especially focusing on one of the core elements
of physical distribution, routing, and scheduling, leading to signifi-
cant savings for logistics service providers.

Goods transportation is a central activity within modern
economies. This activity poses important challenges for logistics
service providers, who are tasked with efficiently planning and or-
ganizing the transportation operations required to fulfill customer
requests (e.g., commercial shippers, citizens, governmental orga-
nizations, etc.). On the one hand, logistics service providers must
plan and organize operations while minimizing the transportation

* Corresponding author.
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costs incurred. On the other hand, they must also meet their cus-
tomers’ desired service quality levels (e.g., shippers expecting de-
liveries to be made within certain time frames). At the heart of
many transportation planning processes, one thus finds routing
and scheduling problems that need to be solved. First, how goods
are distributed to the customers via routes (i.e., sequences of vis-
its) performed by a fleet of vehicles directly impacts the costs
incurred. Secondly, the schedules that are fixed to perform such
routes define the timing at which each visit occurs, simultaneously
establishing whether or not service quality levels are met. This be-
ing said, Vehicle Routing Problems (VRPs) are notoriously hard to
solve, even in their basic form, as shown by Toth & Vigo (2002) and
Gendreau et al. (2014).

Most of the literature is based on the assumption that all in-
formation is known in advance. As a result, the routing problem
is deterministic in its input. However, during execution, logistics
service providers face uncertainty in unexpected events (additional
demand) and expected variations (stochastic travel times). When
routes and schedules are planned, a part of the parameters defines
the stochastic problem. This necessitates that additional (some-
times costly) decisions be made when these stochastic parameters

0377-2217/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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become eventually known to ensure that the routing and schedul-
ing plans can still be feasibly executed.

Optimizing a route plan is usually a computationally difficult
and time-consuming task. Therefore, as more information becomes
available, the logistics service provider usually does not have the
time to re-optimize. Instead, routes should be designed to absorb
unexpected events. As a result, the question becomes how much of
the routing operations should be planned versus how much should
be decided as a reactive measure to the new information revealed
(i.e., stochastic parameters becoming known).

This research investigates the effect of different service agree-
ments between the customers and the logistics service provider.
Especially, service agreements stipulate when the customer pro-
vides the order information and when the logistics service provider
indicates when he visits the customer. To be most efficient, lo-
gistics service providers prefer early order information and a late
announcement of the visiting time. For the customer, the reverse
holds: it prefers to announce the orders as late as possible before
the delivery takes place and wants to know the visiting time as
early as possible such that the workforce can be organized. If spe-
cific agreements are considered, some decisions need to be made
a priori, e.g., the needed number of required vehicles/drivers and
the quoted information to each customer (the specific driver that
will perform the visit and the timing of the visit), while still, some
uncertainties exist.

The problem investigated in this paper is inspired by real prob-
lems faced by logistics service providers in the Business to Busi-
ness (B2B) retail sector in a multichannel environment. Here con-
tracts differ between customers, where larger customers such as
supermarkets or larger retailers order more in advance and need
more detailed information on the approximate arrival time for
workforce planning. Smaller retail shops with small inventory ca-
pacity reveal orders as late as possible (to be as accurate as pos-
sible with their replenishment and to have the option to include
online pick-up-at-store orders).

In our problem, we consider such a logistics service provider
with customers with one out of two different service agreements.
Under the first agreement, customers order two days in advance
and return and receive information about their allocated driver
and time window that same day. Under the second agreement, the
same guarantee is offered, though one day in advance. An inter-
mediate plan is formulated to provide customers under the first
agreement with the required information. During the formulation
of this intermediate plan, customer orders under the second agree-
ment are uncertain in both their presence and demand. However,
some information about this uncertainty is known by, for example,
historical information. When customers’ orders under the second
agreement are known, routes need to be constructed to serve all
customer demands appearing on a given day, including customers
from both service agreements, while minimizing costs. Each oper-
ating day of the logistics service provider, the problem is resolved
again. This happens continuously for the duration of operations. In
our paper, we assume that the demand between operating days is
independent, and therefore we investigate the problem from the
viewpoint of a single operational day.

The vehicle routing problem with stochastic demands and cus-
tomers (VRPSCD), which shares similarities with our problem, has
already received some attention in the literature. The VRPSCD is a
special combination of two uncertainties: stochastic demands and
stochastic customers. Due to the special characteristics of our prob-
lem, we could not directly use the methodologies available for the
VRPSCD. Therefore, a completely new solution method is intro-
duced.

Specifically, we introduce an exact algorithm for this problem.
Exact algorithms are generally less tractable than heuristics but
provide the proven optimal solution. This can help to build a solid
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foundation for further research into heuristics with more practical
applications. Similar to existing literature, we divide the problem,
the Vehicle Routing Problem with Multiple Service Agreements,
into two stages. During the first stage, an intermediate plan is
formulated, which could subsequently be considered a constraint
for the plan formulated during stage 2. The algorithm is a vari-
ation of the branch-and-bound algorithm, where we branch on
which request is allocated to which route (the allocated driver)
and in which sequence they appear on the route (approximation
of the time window). However, we allow for re-optimization dur-
ing the second stage, whereas most of the literature considers a
recourse policy. Finally, vehicles requisitioned during the second
stage (which is applied the evening in advance) are more expen-
sive than those ordered in the first stage (applied two days in ad-
vance).

Our contributions to the body of stochastic vehicle routing re-
search are as follows:

e We introduce the Vehicle Routing Problem with Multiple Ser-
vice Agreements. This model cannot be solved with methods
currently available in the literature.

 For this problem, we present a novel exact algorithm based on
branch-and-bound techniques. This methodology can solve in-
stances of up to 15 customers, of which six are stochastic.

¢ A comparison is made between our algorithm and several other
solution methods for which numerical results and insights are
presented.

The structure of this paper is as follows: The literature related
to our problem is investigated in Section 2, and the differences be-
tween our problem and similarities are explained. The problem is
detailed in Section 3, including discussions of why existing solution
methods are insufficient to solve the problem. The solution method
is formulated in Section 4, with each step presented in detail in the
following sections until Section 7. We present the performance of
our solution method on the problem in Section 8.

2. Literature review

Our problem relates to vehicle routing problems with stochas-
tic customers and demands. In this section, the current relevant
body of literature is presented. The first three sections present the
general stochastic optimization methodologies developed for vari-
ants of the VRP that are directly related to our own. In contrast,
the last part presents the studies conducted on how service con-
sistency plays a role when planning distribution operations.

2.1. Vehicle routing problem with stochastic demands

The Vehicle Routing Problem with Stochastic Demand (VRPSD)
is the most researched stochastic variant of routing problems. The
first research on this topic was performed by Tillman (1969). Dror
et al. (1989) subsequently studied the properties of this model and
provided valuable insights into the structure of the optimal solu-
tion to the VRPSD. Bertsimas (1988) introduced a priori optimiza-
tion, which divides the problem in two stages. In the first stage, a
planned solution is designed, while in the second stage, uncertain-
ties are revealed, and the solution is repaired based on a predeter-
mined recourse policy. The classical policy is to return to the depot
when capacity is exceeded or when the vehicle is empty, depend-
ing on whether it is a pickup (e.g., waste collection) and/or de-
livery problem. Several different recourse policies have been con-
sidered in the literature. The optimal policy for one vehicle was
determined by Florio et al. (2020). The problem was subsequently
solved under the optimal restocking policy by Salavati-Khoshghalb
et al. (2019a). An important milestone was reached with the pub-
lication of Laporte et al. (2002), where the integer-L-shaped algo-
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rithm was applied to the problem. For an extensive overview of
the literature on the VRPSD we refer to Vigo (2015) and Oyola
et al. (2018). A problem with additional stochastic service times
and time windows was investigated by Goel et al. (2019). One im-
portant difference between the previously investigated problems
and our problem is associated with the fact that we know the
complete demand at the beginning of the second stage, such that
we can apply a more advanced partial re-optimization recourse
strategy, where in most works, the demands will be revealed dy-
namically (e.g., when visiting a customer).

Usually, a simple recourse policy is chosen to keep the model
tractable. There has been prior research into allowing for re-
optimization, which was introduced by the work of Secomandi
(2001). This author formulated the problem as a stochastic
shortest-path problem, a finite-state Markovian Decision Problem.
It should be noted that considering the number of stochastic pa-
rameters and their associated random distributions, the number
of states can become very large. This results in the problem for-
mulation rapidly becoming intractable for many customers. Never-
theless, this was one of the first methodologies that allowed for
re-optimization. The author continued his work on this method,
publishing Secomandi & Margot (2009) and Bertazzi & Secomandi
(2018a). Comparisons were made with restocking in Bertazzi &
Secomandi (2018b).

To define the types of recourse actions that have been pro-
posed for the VRPSD we follow the general classification that was
proposed in Salavati-Khoshghalb et al. (2019b). Two general types
of recourse actions can be implemented: 1) reactive (e.g., classi-
cal) and 2) proactive (e.g., restocking). Our proposed partial re-
optimization strategy falls in the latter category (i.e., proactive ac-
tions). Once all the information regarding the stochastic param-
eters becomes known, our recourse strategy seeks to utilize the
available capacity buffers included in the first-stage routes to ser-
vice as many of the newly revealed customer requests to minimize
the additional vehicles required.

2.2. Vehicle routing problem with stochastic customers

The Traveling Salesman Problem with Stochastic Customers
(TSPSC) was introduced by Jaillet (1985), who studied some of
its properties and proposed several solution methods. Each cus-
tomer was given a probability p of being present in the prob-
lem. The problem was formulating a tour for all customers,
which minimized costs in which customers who were not present
were skipped. This work was expanded upon by Jaillet & Odoni
(1988) and Bertsimas & Howell (1993), who proposed a series
of heuristic algorithms. Laporte et al. (1994) developed an exact
branch-and-cut algorithm for the problem. Jezequel (1985) and
Jaillet (1985) investigated a version of the TSPSC where the de-
mands were of unit size. It was further noted by Jaillet (1985) that
large vehicle capacities may yield higher solution costs and that
the costs of the solutions depend on the travel orientations chosen
for the routes, even for problems that involve symmetric distances.
Waters (1989) considers three strategies for the TSPSC, which are
the following: 1) apply the original plan, 2) skip absent customers
and finally, 3) re-optimize the route. It was noted that, as the num-
ber of uncertain customers rises, rescheduling becomes preferable.
They use stochastic programming to solve the problem. In general,
the literature concerning stochastic customers specifically remains
relatively limited.

2.3. Vehicle routing problem with stochastic demands and customers
The first variant of the Vehicle Routing Problem with Stochas-

tic Demand and Customers (VRPSDC) was formalized by Bertsimas
(1992). Gendreau et al. (1995) designed an exact algorithm for this
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problem. The problem is solved using the a priori optimization
strategy, as introduced by Bertsimas (1988).

In the considered problem variant, an a priori routing plan (i.e.,
a set of vehicle routes that visit all customers) is sought that min-
imizes overall a posteriori routing costs. Once the routes are per-
formed, and the stochastic parameters are observed, the applied
recourse actions are: 1) skip absent customers and 2) apply clas-
sical recourse actions whenever a vehicle’s residual capacity is in-
sufficient to service a customer’s observed demand. The problem is
formulated as a stochastic integer program and is solved via the in-
teger L-shaped algorithm. Instances with up to 42 customers were
solved using this method.

Gendreau et al. (1996) proposed a new meta-heuristic for the
VRPSDC based on TABU search (the algorithm was coined TABUS-
TOCH). The use of this heuristic was observed to be computa-
tionally very expensive. Instances with up to 46 customers and
two vehicles were solved. The computational challenges related
to TABUSTOCH resulted in evaluating the quality associated with
the current solution moves considered in the applied neighbor-
hood at each iteration performed by the algorithm. This was the
motivation behind the development of the empirical estimation
approach. Finally, additional meta-heuristics were introduced by
Balaprakash et al. (2015). They use an empirical estimation ap-
proach and show that it is more effective than the approach used
in Gendreau et al. (1996). They only investigated single-vehicle
routing problems. More recently, Sorensen & Sevaux (2009), Erera
et al. (2009), and Beraldi et al. (2010) have all investigated variants
of this problem and developed algorithms based on tabu search,
insertion heuristic search, and neighborhood search, respectively.
In all cases, these methods were used to test the flexibility of so-
lutions to deal with irregular customers.

2.4. Consistent vehicle routing

This paper specifically addresses the challenge of solving a VRP
in which two distinct types of customers must be serviced. The
problem setting includes explicit service agreements that structure
the planning of the distribution operations. Although service agree-
ments can offer different provisions for the customers, we consider
the case where a certain level of consistency is imposed in the ve-
hicle routes. We thus briefly review here the literature dedicated
to consistent vehicle routing problems.

The consistent vehicle routing problem was first formulated
in Groér et al. (2009). In this variant, customer satisfaction was
achieved by 1) fixing the assignment of customers to drivers and
2) imposing time consistency. Time consistency is when compa-
nies want their drivers to develop relationships with customers
on a route and have the same drivers visit the same customers
roughly the same time each day they need service. The problem
is formulated as a mixed integer program and solved optimally
for small instances. A local search algorithm is also designed to
solve larger instances. The generalized consistent vehicle routing
problem was formulated in Kovacs et al. (2015). Here, multiple
drivers can be assigned to customers, relaxing the driver consis-
tency criteria and allowing for greater satisfaction. More recently,
Biesinger et al. (2018) investigated a genetic algorithm with a solu-
tion archive for the problem. This algorithm proved to be effective
when compared to other metaheuristics.

In Jabali et al. (2015) the vehicle routing problem with self-
imposed time-windows is investigated. Here, a tabu search heuris-
tic assigns customers to vehicles and establishes the order of visits
of the customers per vehicle. The LP model subsequently gener-
ates detailed timing decisions, whose output also guides the local
search in a feedback loop. Later, Spliet & Gabor (2015), contributed
to the research on self-imposing time windows. Their work can
be considered a variant of the consistent vehicle routing problem
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where time windows have to be assigned before demand is known,
referred to as the time window assignment vehicle routing prob-
lem. A similar problem was investigated in Neves-Moreira et al.
(2018), where the stochastic demands are product dependent. For
more details on the different variants of emerging vehicle routing
problems, we refer the reader to Vidal et al. (2020).

Given the current body of scientific literature, in this paper,
a new problem is presented. A novel feature of the problem is
the introduction of different service agreements, which generally
have requirements on the timings orders have to be placed by cus-
tomers and information on the delivery has to be revealed. This in-
formation on the delivery generally includes a time indication and
which driver will service the request. If these timings are different
for different customers, it causes uncertainty for the planning. A
novel solution method is thus additionally required.

3. Problem definition

A logistics service provider performs distribution services for a
set of customers. These customers are divided into two categories
based on their respective service agreements. The agreement spec-
ifies when they inform the logistics service provider of their re-
quests, establishing the service quality provisions offered when
performing the distribution operations. Specifically, customers un-
der the first agreement inform the logistics service provider about
their requests two days in advance. In return, on the same day,
these customers receive information about their estimated arrival
time and which driver is assigned to their request. Their estimated
arrival time is approximated by order of the visits on the route to
customers under this service agreement. The same information is
transferred to customers under the second agreement, with the ex-
ception that these customers inform the logistics service provider
one day in advance. The second agreement offers the same service
quality provisions to the customers. Ultimately, all customers need
to be serviced.

Let the set V; represent the requests under the first service
agreement and V5 the set of requests under the second service
agreement. To provide customers from V; with the required in-
formation, one has to plan in two separate time periods, known
as stages. In the first stage (i.e., two days in advance), an inter-
mediate plan for the requests in V; is formulated. When formulat-
ing the intermediate plan in stage 1, the request locations in cat-
egory V, are stochastic. Neither their presence nor their demand
is known exactly when formulating this plan. However, some in-
formation is known that can be used to formulate probability dis-
tributions for either of these attributes. In the second stage (i.e.,
one day in advance), all information regarding the requests in V;
becomes known (i.e., both the presence and the demands of these
requests are observed). The routing plan is then adjusted to service
all materialized requests. However, the intermediate plan’s basic
structure is preserved when the final vehicle routes are established
to serve the request locations in both V; and V;. According to the
service agreement with the customers from Vj, the following deci-
sions from the intermediate plan need to be preserved:

e Requests in V; remain on their allocated route of the interme-
diate plan. (Driver guarantee)
The driver guarantee offers value to the customer and the lo-
gistics service provider. A customer that receives its service
through a driver familiar with their logistics situation will ben-
efit from an experienced delivery service. This should result in
a fast service according to the customers preferences. A second
benefit is that the logistic service provider can start preparatory
work sooner. They can start the order picking processes and fill-
ing the trucks of the customers of V; even before the customers
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of V5, announce their orders. This in turn decreases the pressure
on the order pickers.

The order of the visits in the routes of the intermediate plan is
preserved. (Time-order guarantee)

The logistics service provider would, as a service to the cus-
tomer, report a time estimate for when they expect to arrive
with their delivery. The logistics service provider provides time-
windows, for which they select both the start and end times.
These windows are chosen such that the driving cost for the
route is minimised. Modelling these time-windows is a com-
plex problem in itself. We have elected to model this via pre-
serving the sequencing of the requests. As such, large differ-
ences between the self reported time-windows and the actual
delivery times are avoided.

If not all customer requests in the set V, can be accommodated
on the routes established in the first stage, then additional vehicles
are requisitioned and charged a premium.

Drivers need to be informed of their shifts on time. In gen-
eral, there is a monetary penalty, usually in the form of additional
wages, when a driver is informed late that work is available. Also,
from the vehicle utilization perspective, timely knowledge about
the usage is important. For example, vehicles require maintenance,
which needs to be effectively planned. Inefficiencies may occur
when a vehicle scheduled for maintenance is suddenly required to
perform operational duties. As a result, we need to charge a pre-
mium for using additional vehicles in the second stage.

Summarized, the objective is to establish an intermediate plan
to serve the requests in V; that minimizes the expected cost of the
final plan that serves all the requests in both V; and V,. A simple
example visually represents the overall planning process in Fig. 1.
In this example, set V; includes the requests represented by the
black dots {1,..., 6}. In the first stage, three vehicle routes (repre-
sented by the red-dotted lines) are established to service the re-
quests in V;. In the second stage, four additional requests appear
from set V,, represented by the black dots {7, 9, 10, 11}. The final
set of vehicle routes is established (represented by the blue lines).
Thus, requests {9, 10, 11} are accommodated via the routes of the
intermediate plan, while an additional vehicle is requisitioned to
service the request of request {7}. In the end, three vehicles were
planned in the first stage (i.e., the black vehicles in Fig. 1), while
an additional vehicle was used in the second stage (i.e., the blue
vehicle in Fig. 1).

3.1. First stage model

A logistics service provider supplies a set of customer locations
with a homogeneous fleet of vehicles, each vehicle having a capac-
ity Q and an associated cost y; if the decision to use it is made in
stage 1 and y; if the decision to use it is made in stage 2, where
¥2 > y1. In a graph G, these request locations are represented by
vertices V = {1, 2, 3,4, ..., n}, where it is assumed that each vertex
i eV resides at a different location. Let X = [xij]nxn be the deci-
sion matrix to move from vertex i to j. Vertex 0 denotes the de-
pot. The request locations are connected through a set of edges
E={(i.j):i,jeV.,i+# j} where each edge has an associated driv-
ing cost defined in set C = {c;; : (i. j) € E}. It is assumed that the
driving costs are symmetric (¢;; = ¢;;). In Stage 1, planning the ve-
hicle routes considers the requests emanating from the two sub-
sets of requests, V; UV, = V. The requests in set V; are considered
to be deterministic. Thus their demands d; : i € V; are known dis-
crete values.

The requests originating from requests in V, are stochastic.
Thus, each request has a probability of appearing on a given day.
When a request is present, there is a random distribution to for-
mulate the demand of the request. A combination of specific re-
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Fig. 1. Example of our single item limited reassignment auction.

quest presences and associated demands is a scenario denoted by
s. From now on, we denote VJ to indicate the second-stage requests
present in scenario s. Thus, let P={p; :ieV,,0 < p; <1} define
the set of probabilities of requests being present. The probability of
observing a demand value of df‘ given that request i is present in

the second stage is given by wi € W. Here each k is an index for
which demand realization. Any demand d is always smaller than
the vehicle capacity Q. Let m; denote the number of vehicles se-
lected in the first stage at a cost .

The total amount of scenarios is linked to both the number of
requests in V, and the size of the set of probabilities W. Each sce-
nario is unique and has a probability

ﬂs=HWdF'l_[Pi'n(1—Pi)

ieVs Vs igvs

(1)

of occurring. To provide a detailed example, let us assume the case
where there is one fixed request and two stochastic ones, each of
which has a probability of % of being present. Furthermore, let us
suppose that each stochastic request also has a stochastic demand.
Specifically, each stochastic demand follows a discrete random dis-
tribution with two possible realizations. In both cases, demand re-
alization 1 occurs with probability % and demand realization 2 oc-
curs with probability % Then the scenario where both stochastic
requests are present, each of which with demand realization 1 is
equal to ([Tieys wil = b (Tievs Pi = 1.h=41

This probability is equivalent to the product of the probabil-
ities of presence p;, not presence (1— p;) and the probabilities
for the demand levels w¥ for all requests in V3. S denotes the
full set of scenarios. F(mq,X,s) is the resulting cost from a in-
termediate plan solution X re-optimized in stage 2 for scenario s.
Y ses s - F(my, X, s) is effectively the expected cost of intermediate
plan X over all scenarios. The mathematical model ® is formulated
as follows:

miny; -my + Y 75 - F(my, X, s) (2)

seS
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Subject to:
Z Xoj < My VjieW (3)

<0,j>€E

Z xij=1 VjeV; (4)
<i,j>€eE:i#j

Yoox=1 Viev (5)
<i,j>€eE:i#]j
Yi+dixij — Q(1 —xj) <y; Vi, jleVi,i#j (6)
XIJE{O,l} Vl,]GV],l#] (7)
di<yi<Q VieV (8)
my e VA (9)

The minimization function & consists of the cost of a vehicle
(y1) multiplied by the number of vehicles requisitioned (m;) plus
the expected second stage costs, which is derived from the first-
stage route plan X and scenario index s. Constraint (3) ensures
that the amount of vehicles leaving the depot is smaller than the
amount requisitioned. Constraint (4) ensures each request is visited
once. Constraint (5) assures that only one edge leaves each node.
Constraint (6) makes sure that the vehicle is always under capacity
(Q). Variable y; is introduced to indicate the vehicle’s cumulative
volume up to request i. Constraint (6) implicitly captures the order
of requests on a route via variable y;. The probability of its com-
bination of demands multiplied with its probability of the combi-
nation of requests multiplied by the second stage costs. F(mq, X, s)
is the expected cost for plan X for a specific scenario s, which can
be achieved by a specific vehicle routing problem, for which the
mathematical model is presented in Section 3.2.

For convenience, the used notation can be found in Table 1.
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Table 1
Legend of the used notation.

European Journal of Operational Research 313 (2024) 129-145

0] objective minimization function.
i, j indices for a request in V.

e;j edge in E

1% set of all requests

Vi first-stage requests

Va second stage requests.

n size of set V.

¢jeC cost for driving an edge e;;
index of demand realization.
d¥ eD realization of demand for request i in scenario s.
wh ew probability of demand value d}‘S occurring for request i
pieP probability of a request i being present.
Xij decision variable to travel from i to j in the first-stage.
X the agglomeration of all decision variables x;;, known as the first stage plan.
TTs probability of a scenario s occurring.
F(my,X,s)  expected cost for first-stage plan X for scenario s
zZ;j decision variable to travel from i to j in the second stage.
Z the agglomeration of all decision variables z;, known as the second stage plan.
my stage 1 vehicles requisitioned.
my stage 2 vehicles requisitioned.
Q vehicle capacity.
Vi vehicle load after request i
Q2) collection of routes resulting from a transformation of Z.
R

route: set of decision variables z;; which imply a sequence of requests i and j.

3.2. Second stage model

As previously stated, the intermediate plan produces a set of
vehicle routes that visit all requests in set V;. To compute the ex-
pected cost of this plan, as defined in (10) for each scenario, a sec-
ond stage model should be solved, which minimizes the final rout-
ing cost given the constraints set by the intermediate plan, which
is considered as input. In this section, we present the mathemat-
ical model which, when solved, produces the optimal final plan
constrained by the provided intermediate plan X for a given sce-
nario s. In essence, the mathematical model enables the usage of
any spare capacity present in the routes of the intermediate plan
to accommodate the second-stage requests.

When a specific scenario s occurs, the remaining problem to
solve is a deterministic Capacitated Vehicle Routing Problem with
additional constraints to enforce the service agreements guaran-
teed to the requests in V; by the intermediate plan. The variable
z;; is a binary variable that indicates whether edge e;; is used in
the final routes of scenario s. Z is the collection of decision vari-
ables z;;, which dictates the second stage plan. This is equivalent
to the final plan for scenario s. Let m,, a decision variable, be the
number of additional vehicles requisitioned in the second stage.

The mathematical model to compute F(mq,X,s) can be de-
scribed as:

n n
miny2~mz+z Z CijZij

(10)
i=1 j=1,i]

Subject to:

> oz =my+my jeviuvs (11)
<0,j>€E

> zi=1 jeviuvs (12)
<i,j>€E:i#j

> oz=1 ieViuvs (13)
<i,j>eEtij
}’i+dfszi1—Q(1—Z,‘j)§J’j Vi{ii,jleViuVs, i j (14)
df‘s <y;<Q VieViuVj (15)
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Z,JE{O,l} V{l,]}eVlLJst,l;é] (16)

myeZ* (17)

F(m1,X,s) returns the objective value to the minimization
problem. The second stage model is constrained by the interme-
diate plan, i.e., the solution to the first-stage model, by the service
agreements to the requests in V;. Thus, we include a set of addi-
tional constraints that will ensure that time-order guarantees are
enforced on the final routes of scenario s. y; represents the load,
which implicitly has an order already known for each request i € V;
due to these constraints. ks indicates the index k of the demand re-
alization inherent to scenario s. In more practical terms, if second-
stage requests are to be included in routes from the first stage, the
ordering of the loads should still be the over both the first and
second-stage models. In essence, for this model x = y. From this,
we obtain constraint (18).

Xij = Yi <Yj Vi,jeW (18)

Similarly, routes of X also have to be preserved along the con-
straints imposed by the service agreements. For this constraint,
(18) is insufficient as it preserves only the ordering of the load,
equivalent to the time-order guarantees. Let us first define the
route, R, which is a set of decisions z;; between any sequential i
and j. Let us define €2(Z) as the collection of routes, which is de-
rived by a transformation over Z. Distinct routes R; and R, are ob-
served as z;; = 0 between any i in the sequence of R; and j in the
sequence of R,. This means the decision to travel (z;;) is not made
for any request i in route R; and any request j on route R,, in-
dicating the routes are completely separate. Our solution method
allows the dynamic addition of constraints to the model. Let us
consider requests a in the sequence of Ry € 2(Z) and b in the se-
quence of R, € (Z), on distinct routes in the constraints implied
from our first-stage model. Suppose our solution for the second
stage model contains a route R with a, b in the sequence of R. In
that case, we can eliminate this invalid route by adding additional
constraint (19) and resolving the model.

Z Zij=|R|—1

i.jeR. (i#])

(19)
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Constraint (19) is similar to the dynamic sub-tour elimination con-
straint found in the routing literature. As an example consider
route R = {Zo] =1,zp=1,23 = 1,234:1} = { 0->2—->3->4
(— 0) }, and suppose a =3, b=4 and that a » b or 3 » 4 which
implies that 3 and 4 are on distinct routes in the first stage model.
We eliminate this route by adding the constraint zy; + 213 + z23 +
734 < 3 to the model. This is equivalent to the currently four occu-
pied edges |R| =4 minus 1, which results in the 3 in the constraint.
Observe that as a result of constraint (19), invalid route R cannot
return in any future solution. Note that because of the inclusion of
constraints (18) and (19), the costs of a solution constrained by an
intermediate plan will always be greater or equal than the costs of
a solution obtained by solving the scenario as a single stage opti-
mization problem with no restrictions on the requests of set vy.

A solution of this second stage model is equivalent to the blue
solution in Fig. 1 given the intermediate plan (the dotted line), as
Fig. 1 implies a scenario.

4. Solution approach

This section presents the algorithm we propose to solve the
considered stochastic model. The solution is subdivided into two
parts. The first part constructs the sets of requests that must
be performed by the same vehicle. This is performed through a
branch-and-bound algorithm. The second part then determines the
ordering of the requests in a set to form routes.

The first part of our algorithm is based on a branch-and-bound
search strategy. Our description of the proposed solution method
focuses on its main algorithmic components: 1) the bounds that
are computed to guide the search process and 2) the strategy that
is applied to perform the exhaustive search of the feasible region of
the considered stochastic model. In the second part of our model,
we determine a property of the orders on requests that we can
subsequently use for an algorithm to determine the best ordering
for any route. This section is subdivided into the following subsec-
tions:

1. Creating sets (which will form the basis for routes).
2. Preserving the ordering on sets (to form valid routes).

4.1. Creating sets

We introduce several concepts we use to explain our branch-
and-bound methodology for the first part, forming sets that are the
basis for our routes. In our branch-and-bound model, we branch on
nodes. Allow us to introduce the concept of a node in our branch-
and-bound tree. Each node K in our branch-and-bound tree always
contains the full collection of scenarios S and their respective so-
lutions given the constraints passed through the branching pro-
cess.

Each scenario is solved optimally in the initial node K’ in our
branch-and-bound tree. The costs associated with this initial node
are the expected value of perfect information. The value of this
node is also the lower bound on costs for this node for our
branch-and-bound search. We end the search if the sets for all
first-stage requests are equivalent.

Recall the service agreement that is provided to the customers
from Vy:

1. Driver guarantee: Requests on the same route in the interme-
diate plan remain on the same route in the final plan.

2. Time-order guarantee: The order of the requests on the routes
in the stage 1 plan is preserved.

When the sets for all first-stage requests are equivalent, we ful-
filled the Driver guarantee part of the service agreement. When
the sets over the first-stage requests are different, our branch-and-
bound methodology (Fig. 4) starts to branch on the initial node
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K’. During the branching, constraints are iteratively added to the
branching nodes.

We introduce the applied disjunction to obtain the feasible sub-
regions created each time branching in the search tree is per-
formed. This disjunction consists of constraints, which in turn con-
sist of two first-stage requests (say a and b), which in the current
node are in the same set for the solutions to some scenarios while
in different sets to others. When we branch on this node, we en-
force that a and b are in the same set a — b, versus that they are
not a » b. As a result, if we branch on a node in the tree, it re-
sults in two other nodes, one where a — b in the solutions to all
scenarios, and one where a » b. Each constraint added maintains
or increases the cost of the node, as some scenarios need to be re-
solved with the added constraint. The sum of these costs is equiv-
alent to the lower bound of the costs of the node. Constraints con-
tinue to be added until the sets over the first-stage requests are
the same, equivalent to no more a and b available to branch on.
When this occurs, we have found a valid first-stage plan. This valid
plan provides us with the first upper bound in costs. If we explore
a node for which the computed costs are higher than this upper
bound, we know that this node is not worth exploring further (ad-
ditional constraints only make subsequent branching nodes more
expensive). We continue the algorithm until all nodes have been
explored and the entire solution space has been investigated. The
amount of branches is finite, as there is a limited amount of per-
mutations possible with the constraints a — b and a - b. In the
worst-case scenario, however, the full set of all possible allocations
of requests to routes is calculated. Branching on the initial node is
presented in Fig. 2.

Over the scenarios, multiple first-stage requests exist in a node
that could potentially be selected as the a and b to branch on. As
such, we need to select the best a and b from the pool of poten-
tial requests. This solution method uses the difference in the pro-
portion of scenarios for which a — b versus a - b need to be re-
calculated. The combination of the first-stage requests (i, j) where
the largest proportion is selected for a and b. Thus, for one of
the branching nodes, only a small set of scenarios need to be
re-calculated. The node with the smallest number of a solution
changes over the scenarios is then selected to branch on next. The
benefit is that one expects this node to have lower costs since less
“change” is implemented in the node (the added constraint im-
pacts fewer scenarios). The algorithm to select the appropriate a
and b as branching nodes from first-stage request set (i,...,n) is
presented in Fig. 3.

As a more practical example, consider a node in which 80% of
the plans has a — b, and 20% has a » b. In this situation, the op-
timal intermediate plan likely contains a — b since that already
holds for most scenarios. This mechanic allows us to find the op-
timal intermediate plan relatively quickly, while proving that this
intermediate plan is optimal is more time-consuming,.

4.2. Preserving ordering on routes

In the previous section, the notion of branching on a and b be-
ing on the same route (i.e.,, a — b) versus a and b not being on
the same route (i.e.,, a » b), was introduced. It enables the solu-
tion space to be explored through the enumeration of the possible
partitions of the requests in V; and assignment to vehicle routes.
Once this partitioning is complete, the sequencing in the partitions
needs to be investigated.

Consider the following example, where an end-node in the tree
contains constraints a — b, b— ¢, and ¢ — d. As a result, it is
known that a, b, ¢, and d are on the same route in this node. How-
ever, the order in which they appear on that route is still undeter-
mined. Ultimately, the routing plan over the first-stage requests in
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New nodes in the branch and bound tree.

Original node in the branch and bound tree.

5 B B
S2) 52)
S(1) a A b S(3) s(3)
S2) S(4) @)
S(3 .
a—b @ .
S(4) * .
L]
. / .
| _—
.
/S(n-3)
. a 5 b S(n-3),
S(n-2),
S(n-2)
S(n-3), S(n-1) e
n-
a7>b S(n-2) S(n) Sto)
n,
S(n-1),
S(n)

Fig. 2.
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Example of branching on the initial node K’.

1 f7(i,j) =0and f7(i,5) =0 for all 7 and j
2: for all 7 € V] do

3: for all j € V7 do

4: if i — j then

6: end if

7 if i -» j then

s FoGd) = £ 6,0 +1

9: end if

10: end for

11: end for

12: a,b = argmax; jev, |7 (i,5) — f7 (4, ])]

if f7(i,7) # 0 and f7(4,5) # 0, otherwise empty.

Fig. 3. Algorithm for determining a and b.

V1 needs to be identical for all scenarios, including the assignment
to routes and the sequencing on those routes.

The number of sequences over q, b, ¢, and d is equivalent to the
number of possibilities in a TSP over these requests, which is an
NP-hard problem. In this section, we show that we can limit the
number of sequences that need to be investigated. Initially, the se-
quences resulting from the preferred plans in the solution node are
considered, which are intuitively a good starting point. In addition
to the preferred plans, the important question to consider is the
following: is there an alternative sequence that could be optimal
for all scenarios? To help answer this question in the affirmative,
we define a property of this sequence that, should it exist, can be
verified with relative ease. It should be noted that when the sec-
ond stage occurs, the demands from the requests in set V, become
known and, at this point, no longer affects the sequence of visits
established for the requests in set V;. Here, demand does not affect
the sequence since requests to routes have already been allocated.
This allocation considers the capacity constraint, which interacts
with demand. However, demand has no such interaction in se-
quencing the requests on the route once the allocation is complete.

Consider K* a potential end-node in our branch-and-bound tree
containing scenarios. For these scenarios, the partitioning of V;
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over routes has already been completed. While the partitions be-
tween the scenarios are now the same, the sequence over the first-
stage requests on a route in each partition can differ. Collecting all
different individual sequences provides us with a list of potential
sequences for node K*, one of which could be optimal.

Let’s illustrate this with some examples. Consider a problem
with a single stochastic request, referred to as g, and a set of re-
quests Vj. Since q is the single stochastic request, two scenarios
exist. When comparing scenarios, the set V; could be considered
deterministic, as the set remains unchanged in the comparison. A
single stochastic request results in each scenario having a preferred
plan and thus a preferred sequence o over V;. These are referred
to as 09 (optimal when q not present) and o ™4 (optimal when ¢
present).

Two cases now exist: o9 is equivalent to o9, or not. When
both sequences are equivalent, there exists no other sequence
that could be better (since the preferred sequence is the op-
timal sequence for both scenarios). As a result, this particular
case requires no further investigation. When the sequences are
unequal, a unique sequence can exist that minimizes the ex-
pected cost over the two scenarios. Two visual representations
of unequal sequences are presented in Fig. 5. In Fig. 5(a) o~ is
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1: UB (upper bound on cost) = oo

2: ) + K', the initial node is the collection of initial intermediate plans.
3: while Q # () do

4: k := argmingeq V(K), select the node with the lowest cost.

5: Select a and b using Algorithm from Figure 3.

6: if (a and b do not exist) then > We have found an end node.
T Calculate optimal sequence on k.

8: Update UB.

9: Update Z*, the optimal solution.

10: else > Here we branch.
11: Create K, ... from K, add constraint a — b.

12: Calculate W(Kq_yp,...).

13: if U(K,—p,..) <UB then

14: 0« Ko s,...

15: end if

16: Create K, ... from K, add constraint a - b.

17: Calculate W(Kqnp,..).

18: if U(K4np,...) <UB then

19: QO+ Kaﬁ_)b,m
20: end if
21: end if
22: end while

Fig. 4. Branch-and-bound algorithm.
B
ok A
Depgt

(a) Request E not included

(b) Request E included.

Fig. 5. Two examples of the preferred sequence changing as the result of the addition of a request.

equivalent to A — B — C — D, but in Fig. 5(b) o+£ is equivalent to
D—-A—-B-—C.

In these examples, the solution to the optimal sequence is one
of the sequences resulting from the preferred plans. However, out-
side of these sequences, there could be an additional sequence that
is cheaper concerning the weighted average (with the probabilities
75 being the weights) in cost over the scenarios, but not the cheap-
est in cost for any scenario individually.

4.2.1. A property of the weighted-cheapest sequence.

Considering Fig. 5, aside from o ~9 (the optimal sequence when
q is not present) and o*9 (optimal sequence when q is present),
there could exist sequence & which is optimal in costs with re-
spect to the weighted average over the scenarios. An example can
be found in the Appendix (Fig. 11). In order to find the optimal se-
quence, we have to consider o9, o4, and all potential sequences
6. Sequence & does not occur in our end-node in our branch and
bound model.

We have to obtain optimal sequence o*. One way to approach
that is referenced in Fig. 6, with i, j requests in route R, with q
being a stochastic request, and TSP referencing the Traveling Sales-
man Problem. sol(T;) is the solution to the TSP related to T;, which
contains sequence oy, (r;). Note that by using this algorithm se-
quences o ~9 and o %9 are considered.
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For any requests i and j in the route R we answer the follow-
ing questions: What is the cost of the cheapest route if stochas-
tic request g was inserted between i and j? For this we a Travel-
ing Salesman Problem has to be computed with an additional con-
straint {i — q — j}. What is the cost if we traveled that same route
when g is not present? Is the weighted average over those two
scenarios the cheapest? If the answer is yes, update the optimal
sequence to the sequence contained within the current considered
cheapest route. In the end, by testing all i and j, we have effec-
tively tested all possible sequences for the route when considering
stochastic request q.

Suppose 15 requests have been added to the route. To complete
this algorithm we have to compute about 105 TSP’s, which requires
significant computation times. Note that the constraint that we add
{i - q — j} is related to the insertion of q between i and j which
also carries its own cost. Let us define ,(0~9) as the cheapest in-
sertion costs of g on sequence o ~9. We wish to limit the amount of
TSP’s that have to be computed. To this end, we determine bounds
on the insertion costs. In other words, if the insertion costs for in-
serting q between i and j is outside of the computed bounds, do
not compute the TSP as the sequence contained in the solution to
that TSP can never be the optimal sequence.

Considering Fig. 5, aside from o =9 and o9, there could exist a
sequence & which is optimal in costs with respect to the weighted
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for all i€ R do
for all j € R do

if pg*T1 + (1 —pg) *To < T then
o = Osol(T1)
end if
end for
end for

1:
2
3
4
5:
6:
7
8
9:

Ty = Cost of TSP over R U ¢ with the constraint that i — ¢ — j.
T5 = Cost over R of the previous solution to the TSP. (without ¢)

Fig. 6. Algorithm to determine the optimal sequence ¢* for q (brute force).

average over the scenarios. An example of such a sequence can
be found in the Appendix (Fig. 11). We next state a property that
holds for &, if such a sequence does indeed exist. Let us consider
a specific stochastic request g, this property defines valid bounds
on the insertion cost of q in 6 when comparing the preferred se-
quences of two scenarios that only differ with respect to q (i.e.,
o+l versus o~9). In turn, these bounds enable an algorithm that
finds the optimal sequence in an end-node K* to be defined. Sub-
sequently, it is shown that if this property holds for a pair of sce-
narios with a single stochastic request difference, then it holds for
all scenario pairs. Let Y define the set of overlapping requests be-
tween any scenario pair. We further define function y (o, T) as the
cost of implementing a sequence o on the set of requests Y and
function ¢, (o) as the cheapest insertion costs of v on the sequence
o. The following result then holds:

Lemma 4.1.

Lg(01) <1q(6) < tg(0™9) (20)
Proof. Let us first consider the following inequality:

Yy 9, 7) <yt ). (21)

Inequality (21) simply states that, when implemented on a give set
of requests Y, the cost of sequence o~9 is at most as high as the
cost of sequence o1 (as directly implied by the definitions of both
sequences). Furthermore, the following result also holds:

y(@ 4 Yug) >y Tug). (22)

Inequality (22) simply states that, if one considers the set of re-
quests YT uUq, then the implementation cost of sequence o9 is
necessarily higher than that of o9, considering that request q is
already part of the preferred sequence o 9. It should be noted that
the implementation cost of sequence o on the set Y Uq is equiv-
alent to the cost of sequence o on Y plus the cheapest insertion
costs of q. We thus obtain the following equations:

o™ )=y Tug -y ), (23)

wE*) =y(@™M.Tuq) -y(@™.T). (24)

Considering inequalities (21) and (22), when combined with
(23) and (24), results in the following inequality being observed:

tg(07) > 14(c ™), (25)

which simply states that the insertion cost of request g is more ex-
pensive when considering the preferred sequence that did not ac-
count for it, i.e.,, 079, when compared to the preferred sequence
that did, i.e,, o9. Let request q be present with probability pq.
By the original definition of sequence &, it is considered optimal
in terms of cost when considering the probability pgy and for the
given scenarios. We can now bound the value of (4(6). If a se-
quence & exists, then the following inequalities must hold:

y(© 9, 7) <y (5, Y), (26)
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y(G.TUgq) =yt Tug). (27)

Considering that q is a stochastic request (with probability pq) and
by the definition of & as an optimal sequence in terms of the
weighted average, then we obtain the following:

(I=pg)-y(G . V) +pg-y(@.YUq =(1—-pg)-y(©797T)
+pq-y (0™ TUQ), (28)

(I1-pg)-y(@G.T)+pg-y(G.TUq) <(1-pg)-y(©*,T)
+pg-y (@™, TUQ). (29)

Using the insertion cost function ¢, inequalities (28) and (29) can
be rewritten as:

Y(6.T)+pq-1q(6) =y (079.7T) + pg-tq(c™?) (30)

Y6, YU —(1-pg)-q(6) =y (@™, TUQ) - (1-pqg)-tg(a*). (31)

Given (30) and (31) and applying the inequalities (26) and (27),
we can now show that the cheapest insertion cost of g on & is
bounded by:

tg(0 1) < 14(6) < tg(c7),

which gives us the stated result. In words, the cheapest insertion
cost of g on &, 14(6), is cheaper (or equivalent) than ¢q(c~9) but
more expensive (or equivalent) when compared to tq(c*9). O

For a given request g, let us consider a sequence 6 for which
the insertion cost associated with g is smallest. Then, to insert g
in &, a specific edge (i, j) from sequence & needs to be removed
and two edges (i,q) and (g, j) need to be added. This results in
the following additional cost: (4(6) = c(i, q) + c(q. j) — c(i, j). Con-
sidering the bounds associated with (&), which are defined by
(20), there are a limited number of potential edges for which these
bounds hold.

Algorithm for optimal sequence. In Section 4.2.1, we developed
bounds on the insertion costs should a sequence & exist between
pairs of scenarios. However, the full problem considers pairs in-
stead of a full scenario set. In this section, we show it is sufficient
to check all pairs of scenarios where one additional request differs.
Consider the following small scenario tree, 7:

Consider a set of deterministic requests V; and two stochas-
tic requests a and b. For notation, s(V; Ua) indicates the scenario
where both V; and a are present. Assume that & does not exist be-
tween scenarios s(V;) versus s(Vq Ua). Similarly, & does not exist
between s(V; Ua) and s(V; uaub). We can then claim that there
is also no sequence 6 between s(V;) and s(V; Ua U b). Should se-
quence & exist, it would have been either found in the compar-
isons s(V;) versus s(V; Ua) or s(V; Ua) versus s(V; Uaub).

As the result holds for the base case and the inductive step
for any additional stochastic request, we also easily observe that



V.C.G. Karels, W. Rei, L.P. Veelenturf et al.

European Journal of Operational Research 313 (2024) 129-145

: for all s € S do
for all » € s do

1q(6) < 1q(079) holds.
5 end for
6: end for
7. for all o0 € {(r,0) do
8 for all r € {(r,0) do
9

Update if lowest cost found.
end for
: end for

: Apply best o and r

Add sequence o associated with route r to {(r, o).
Check for additional sequence & in 7(s) by checking all relevant edges for which ¢,(c79) <

Calculate cost of combination on all scenarios s € S.

Fig. 7. Algorithm to determine the optimal sequence.

the property holds for the entire scenario set by induction. This
property allows us to formulate an algorithm to determine the op-
timal sequence. Let ¢ (r,0) be the list that contains all potential
sequences o for each route r. Let n(s) be the list of scenarios as-
sociated with s with one additional request.

By performing branch-and-bound to find optimal sets for routes
and applying Fig. 7 we find the optimal solution for the intermedi-
ate plan.

5. Computational results and analyses

In this section, our experimental analysis is presented. Compu-
tational experiments are performed on an AMD Ryzen 5 3600 with
16 GB of DDR4 RAM. Gurobi 8.0.1 is used to compute the solu-
tions to the sub-problems (of the classical vehicle routing problem
class).

The numerical analyses aim to assess the impacts of the
stochasticity of demand and the presence of requests on the results
(and solutions) obtained. A series of insights are derived from the
numerical results obtained. The rest of the section is subdivided as
follows:

o We introduce the benchmark approaches.

* We introduce the instances that are used.

e We introduce the results that are gained by running the ap-
proaches on the insights.

o Finally, valuable insights are presented.

5.1. Benchmark approaches

As discussed in Section 3, two categories of requests are served
under different service quality agreements. The service provided to
each request category is thus performed in two distinct stages (i.e.,
involving different periods). The proposed two-stage optimization
model, presented in Sections 3.1 and 3.2, explicitly integrates the
planning decisions made within each stage. To properly assess the
value of solving such an integrated model, we implement two ad-
ditional benchmark approaches, i.e., where the planning for both
sets of requests is done separately.

In all approaches, all customer requests must be serviced (i.e.,
requests from V; and V5. The first benchmark approach completely
separates the planning of the routes for both request sets. Thus,
there are dedicated routes for the V; requests and dedicated routes
for the V, requests. As a result, these requests are planned in
distinct periods via two independent capacitated vehicle routing
problems, minimizing transportation costs. We call this method
the Seperate solution method. In the second benchmark approach,
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the so-called Using Spare Capacity method, a capacitated vehi-
cle routing problem is solved for the v; requests, minimizing the
transportation cost for visiting all V4 requests. Then, the spare ca-
pacity potentially present in the routes for the V; requests might
be used to accommodate, as much as possible, the requests ob-
served in the second stage when the requests (and demands) of v,
are known. Therefore, the second stage involves determining which
requests are added to the first-stage routes and which are planned
on additional vehicle routes. The available capacity slack present in
the first-stage routes is leveraged by proceeding this way to per-
form the overall service requests. For both additional solution ap-
proaches, the second-stage decisions are not explicitly considered
when performing the first-stage planning. Using them as bench-
marks for the proposed optimization method, we can assess the
added value of integrating the two decision stages involved in the
problem.

5.2. Instances

For our experiments, we use adapted versions of the Solomon
instances. Of each instance, the first 90 requests are considered
and subdivided into batches of 15. Considering that each Solomon
instance contains 100 requests, we can obtain six distinct in-
stances. The Solomon instances include coordinates, demand, and
the ready, due date, and service times. For the problem investi-
gated in this paper, the ready, due date, and service times are not
considered and can be excluded. As a result, the instances are se-
lected based on their uniqueness of coordinates and demand. As a
result, four full Solomon instances remain, which are R, C1, C2, and
RC.

In problem set R, the spacial data is randomly generated. Prob-
lem sets C1 and C2 are clustered, and a mix of random and
clustered structures are used in the problem set RC. From these
instances, we generate four classes. Each class is based on the
stochasticity of the demand and the presence of requests. Each in-
stance’s last requests are considered stochastic (no random selec-
tion). Specifically, if there are either four requests in set V5, then it
is classified as “Low” (L), or six requests, classified as “High” (H).
Furthermore, the amount of demand levels per request in V; is ei-
ther 2, classified as “Low” (L), or four, classified as “High” (H). The
probability of a request being present in a scenario was always
considered to be % for each stochastic request. The last requests
of each instance were always chosen to be stochastic.

The probability for each demand level is equivalent. Let us clar-
ify this with an example: consider a request of the set V, with de-
mand 3.00 in the Solomon instance. In case we add two demand
levels, the levels for this request will be the following: demand
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Table 2
Computational results on the Solomon instances.
A B C
Inst: Class: Result Add. C.  Result Add. C.  Result
R LL 583.16  18.20% 52548  6.51% 493.37
LH 726.19  22.66% 636.86  7.57% 592.04
HL 632.52  42.45% 51743  16.53%  444.03
HH 79130  52.75% 61998 19.68%  518.03
C1 LL 207.70 19.31% 179.17 2.92% 174.08
LH 257.87  23.44% 22348 6.98% 208.90
HL 203.69 30.01%  172.84 10.32% 156.67
HH 25254 38.16%  211.08 15.48% 182.79
c2 LL 23495  17.67% 20939  4.87% 199.67
LH 30696 28.11%  259.56  8.33% 239.61
HL 24034  33.74% 20546  14.33% 179.70
HH 290.02  38.33% 24242 15.63%  209.65
RC LL 369.07 17.41%  331.19 536% 314.34
LH 469.81  24.55% 41648 1041%  377.21
HL 356.74 26.10%  327.83  15.88% 28291
HH 466.83  41.44%  390.82 18.41%  330.06

Avg: 29.65% Avg: 11.20%.

Table 3
Computation times for the different methods.

Legend identifier  Solution type Computation time in hours

A Separate 00:02:26
B Using Spare Capacity ~ 00:04:58
C Integrated 10:24:13

3.00 with probability % and demand 6.00 with probability
three demand levels, this would be: demand 3.00 (prob:
mand 6.00 (prob: %), demand 9.00 (prob: %)).

As a result, we obtain classes “LL”, “LH”, “HL” and “HH”, with
the first letter signifying the number of requests present and the
second letter signifying the number of demand levels present. All
values reported are based on the average results obtained over the
six instances for each of the three methods we utilize to solve the
problem.

5. (For
de-

—_

3

5.3. Results

In Table 2, the results, which are the objective function values,
obtained when the three solution approaches are applied to solve
the different instances are reported. As indicated in Table 3, A, B,
and C refer to the three solution approaches that are implemented:
the separate planning approach, the separate planning approach
with the use of spare capacity in the first-stage routes, and our
proposed exact method for the integrated problem, respectively.
In addition, Table 3 also reports the average computation times
for the different solution approaches when applied to all consid-
ered instances. The columns in Table 2 refer to the instance type
(i.e., Inst) and the problem class (i.e., Class). In contrast, the col-
umn Result represents the average total cost associated with the
obtained solutions, and Add. C. is the average relative cost differ-
ence between the obtained solutions and the optimal ones of the
integrated approach C. The average relative cost difference over all
instances is also reported at the bottom of the table (i.e., Avg).

One first observation is the clear advantage of implementing an
integrated planning approach when establishing the vehicle routes
to service the requests from the two request types in the present
case. On average, the separated planning approach produces solu-
tions whose costs are approximate 30% higher when compared to
the costs of the optimal solutions of the integrated approach (i.e.,
obtained by solving the proposed two-stage model). If the spare
capacity of the routes for the v; requests can be used to accom-
modate the requests of v,, then the average relative cost differ-
ence is improved. Nonetheless, it remains quite high, i.e., approx-
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Table 4

Computation times (hours) for Gurobi TL.
Instance R
Class LL LH HL HH
Comp. Time 1:05 1:20 1:47 2:24
Instance c1
Class LL LH HL HH
Comp. Time 1:07 1:23 1:51 2:41
Instance C2
Class LL LH HL HH
Comp. Time 1:02 1:21 1:46 2:32
Instance RC
Class LL LH HL HH
Comp. Time 1:01 1:27 1:59 2:51

Average: 1:47 .

imately 11%. As expected, these differences are more pronounced
when solving instances where the levels of uncertainty are higher
(i.e., the highest values for the average relative cost difference are
observed for the instances in the problem class HH). Furthermore,
the number of stochastic requests seems to have a more signifi-
cant impact on the obtained results than the random variability of
the demands. For example, when considering instance type R and
the results obtained using the solution approach A, the value of
Add. C. goes from 18.20% to 42.45% for the instances in the prob-
lem classes LL and HL, respectively. Using the same example, the
Add. C. value difference is even more noticeable when considering
the results obtained for the instances in the problem classes LH
and HH (22.66% and 52.75%, respectively). The integrated approach
significantly outperforms the other two solution approaches in all
solved instances.

5.4. Effects of limiting the computation times

As seen from Table 3, directly solving the considered integrated
stochastic model requires large computation times. In this section,
we thus investigate the effects of limiting the computation times
dedicated to different calculations performed by the proposed so-
lution method. Specifically, three limits on the calculations are
considered:

1. Limiting the overall computation time to one hour. (Overall TL)

2. Limiting the computation time of Gurobi within a node in the
search tree to 15 seconds. (Gurobi TL).

3. Using both the 15-second limit within a node in the search tree
as well as using the overall one hour time-limit. (Both TL)

The overall time limit of one hour for variants “Overall TL” and
“Both TL” was reached at all times. For variant “Gurobi TL”, we re-
port the computation times in Table 4. In Table 5, we present the
optimality gap compared to the optimal solution found if no com-
putation time limits are set. More precise, the optimality gap is
computed as:

__ Best solution found — Optimal Solution

Gap Optimal Solution

(32)

Here we refer to the Best Solution as the cost of the best valid so-
lution found thus far while exploring the branch and bound tree,
while the Optimal Solution refers to the cheapest cost found dur-
ing the full computation.

From Table 5, we observe that a time limit on the Gurobi cal-
culation is not the main contributor to the gap relative to the
actual solution. Gurobi generally finds a close-to-optimal solution
early, and by limiting its calculation time, time is saved by skip-
ping the proof to optimality. Within generally two hours, a good
solution was reached, within 1% of the optimum compared to the
exact method. Our algorithm usually finds the optimal solution
when the first feasible solutions are obtained (we arrive at an end
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Table 5
Reported optimality gaps for the different limits on com-
putation time.

Overall TL  Gurobi TL  Both TL
Inst: Class: Gap Gap Gap
R LL 3.40% 0.71% 0.78%
LH 3.66% 0.81% 0.87%
HL 4.45% 0.83% 091 %
HH 5.75% 0.98 % 112 %
C1 LL 3.31% 0.42 % 047 %
LH 3.44% 0.68% 0.69%
HL 4.01% 0.75 % 0.76 %
HH 4.16% 0.88% 0.89%
c2 LL 3.0% 0.54% 0.54%
LH 4.64% 0.70% 0.73%
HL 4.11% 0.73% 0.74%
HH 5.34% 0.84% 0.85%
RC LL 3.41% 0.66% 0.78%
LH 4.15% 0.73% 0.85%
HL 5.10% 0.85% 0.91%
HH 8.44% 1.31% 1.43%

Avg: 4.85% Avg: 0.73% Avg: 0.81% .

102% — 1
= —— U-LL
% 100% [ - LH
= — U-LH
w
o 98%| 1|— HL
= — U-HL
S 96% | :UIjIII-;IL
E
08 94% [, .

92%

| | | | |
0 1,000 2,000 3,000 4,000 5,000
Seconds since start.

Fig. 8. Average progress of the algorithm in time.

node). This results from the strategy employed, which is discussed
in Section 4.1. Here we branch on the combination of requests that
minimizes the number of scenarios that need to be recalculated to
transition to a new node. This strategy reaches a solution node in
the minimum amount of time. However, one needs to compute all
end nodes for proof of optimality.

The optimum was found on average in 1h47m, while the av-
erage total computation time equals 10h24m. Our algorithm starts
from a “preferred” solution, which is optimum for each scenario
and converges to a “feasible” solution for our problem. As we ex-
plore requests through the search tree, the cost of nodes (the sum
of costs for all intermediate plans for all scenarios) increases (the
sum of the probabilities of scenarios multiplied by the cost of the
associated scenario). This results from the cost of individual sce-
narios increasing as constraints are added. The increase in cost
through time in the algorithm is displayed in Fig. 8. Here, the re-
sults of the classes { LL, .., HH }, which are equivalent to the lower
bounds on the cost of the problem, and the upper bounds, { U-
LL, ..., U-HH }, are visualized. We also display the upper bound for
each category, calculated by applying the most common preferred
plan to all scenarios (if all are unique, the preferred plan of sce-
nario where all second-stage requests are present is chosen.).

Often the solution to the problem was the most common “pre-
ferred plan” in the original node.

In such a case, the upper bound costs are thus equivalent to
the final costs, which explains near horizontal lines for the upper
bound.
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5.5. Larger instances

Having more requests will lead to larger computation times for
solving the Capacitated VRP but also to more scenarios that have
to be analyzed. If one stochastic request is added to the HH prob-
lem referenced in Section 5.3, the amount of scenarios increases by
a factor of 7. To analyze the limits of our method, We tested larger
instances. We have generated the following instances of 20 and 25
requests. First, we have subdivided the Solomon instances into five
instances of 20 requests. Of these, the last 6 requests are stochastic,
being present with probability % There are only two demand lev-
els, {3,6}, each with probability % Table 6 shows for each instance
category the average gap (over the 5 instances) between the lower
bound and upper bound after 24 hours of computation. Secondly,
we have subdivided each Solomon instance into four instances of
25 requests. Of these, the last 8 requests are stochastic, and present
with probability % There are again only two demand levels, {3,6},
each with probability % Table 7 shows for each instance category
the average gap (over the 4 instances) between the optimal so-
lution (found in segment 5.3) and upper bound after 24 hours of
computation.

_ Upperbound — Lowerbound
B Lowerbound

Gap (33)

Here the Upper bound is the best valid solution found thus far
while exploring the branch and bound tree. The lower bound is
the lowest value for all unexplored nodes. Note that these might
be nodes where not all constraints have been added yet (yielding
cheaper cost).

From the results, it is implied that both the increase in the
number of scenarios, as well as the increase in the problem size
of the Capacitated VRP has a significant impact on the computa-
tion time of this exact methodology. We were able to solve each
the instances of 15 customers within on average 10hours, com-
putation time rapidly increases by the problem size. None of the
instances with 20 and 25 customers was able to be solved within
24 hours, for instances with 20 customers the gap after 24 hours
is relatively small, but this gap seems to grow exponentially if the
problem size grows. While a potential solution is found within the
24-hour time period, the process of proving that this is the opti-
mum is not nearly complete, as seen from the reported gaps. For
larger problems, we propose heuristics are to be used.

5.6. Insights into the balancing act of buffers versus risk

With regard to the stochastic nature of the considered problem,
there are some interesting points to highlight. Specifically, finding
the optimal first-stage plan over all the scenarios involves a bal-
ancing act of introducing buffers in the first-stage routes, and as a
result, incurring additional costs, to accommodate the second-stage
requests versus the risk of them not appearing and thus having
paid these additional costs unnecessarily. In that sense, the sce-
narios are similarly interesting. The preferred first-stage plan as-
sociated with the scenario that includes the maximum number of
requests and maximum demands is also the plan with the most
buffer. On the other hand, the preferred first-stage plan associ-
ated with the scenario that contains only the first-stage requests
with their fixed demands is the plan with the least buffer. More-
over, it should be noted that for all instances that we computed
the optimal solution was included in the collection of initial pre-
ferred plans in the original node in the branch-and-bound tree. In
all generality, one can expect that the buffers included in the first-
stage routes will depend on a subset of second-stage requests be-
ing present while for the other requests the risk of them appearing
will simply be accepted.
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Table 6
Optimality gap after 24 hours of computation time for instances of 20 customers.
Instance: Average gap: Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
R 6.1% 5.2% 7.6% 6.3% 5.6% 5.7%
c1 4.6% 4.7% 4.6% 4.1% 4.4% 4.8%
Cc2 4.8% 4.3% 4.9% 4.7% 4.9% 5.0%
RC 5.2% 4.7% 5.1% 4.9% 5.7% 5.6%
Table 7
Optimality after 24 hours of computation time for instances of 25 customers.
Instance: Average gap: Instance 1 Instance 2 Instance 3 Instance 4
R 156.1% 155,3% 157,1% 156,3% 155,6%
c1 140.7% 140,9% 141,6% 140,0% 140,3%
c2 141.3% 142,2% 140,6% 141,5% 140,9%
RC 147.8% 147,1% 147,4% 148,0% 148,8%

40%

30%

20%

10%

0%

0 1 2 3 4 5
Amount of requests present in category of scenarios.

Average cost of the preferred plans
in percentages relative to optimal solution

Fig. 9. Average expected costs of preferred plans for the categories of scenarios.

The balancing act of buffers versus risk also holds some inter-
esting analysis. Let us categorize scenarios on the basis of the sum
of their requests present. If we have five second-stage requests,
there will as a result be six categories (none present to all present).
Each scenario is associated with a preferred plan, and each of the
preferred plans is a potential solution, for which the total expected
cost can be calculated. We can then compute the expected cost
of each category (for all scenarios in a category we multiply the
cost of that scenario by the probability of that scenario occurring).
Fig. 9 shows these average expected costs, defined as relative to
the optimum in percentages, over the different categories of pre-
ferred plans, which has a convex shape. This trend was observed

(a) Effects of presence on the cost.

for all tested instances. Furthermore, the trend similarly held true
when the scenarios were categorized based on the total demand
level.

5.7. Assessing the impacts of the stochastic parameters

For the results in Section 2, a fixed subset of requests is con-
sidered stochastic. In this section, we perform a sensitivity analysis
of the demands and requests. Once again the Solomon instances
were adapted, similar to those in Section 5.2. For each instance of
15 requests, we select a random set of requests indicated by the
class, which we give a probability of being present (in this case,
0.5). The average normalized increase from the base cost is plot-
ted. Here, the base cost is the cost of the scenario with all requests
present. We can motivate this as we are assessing the impact of
considering an increasing number of stochastic requests and their
associated demands. Our point of comparison is obtained by solv-
ing the problem based on only considering the worst-case sce-
nario (i.e., all the stochastic requests being present with their as-
sociated maximum demand in the second stage). Of course, when
there are no stochastic requests present, then this point of compar-
ison provides the optimal solution to the problem and there are
no differences between the three solution methods that are pro-
posed (i.e., A, B, and C). Otherwise, one can assess the value of
using the proposed solution methods compared to the more con-
servative approach, where the problem is solved using the worst-
case scenario. The increase in the size of this selection is plot-
ted in Fig. 10(a). Note that the cost is decreasing for the optimal
solution.

(b) Effects of demand on the cost.
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110% |- —o— Exact method
% 140% |- :
% o | “ 3
S 100% &
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Fig. 10. The effects of dynamism.
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In Graph 10(b) a selection of 3 requests was transformed to
stochastic and presented with demand levels.

Looking at these graphs, we can observe for the solution
method “Separate” that there is an initial greater increase of ad-
ditional costs because of the increase in uncertainty of the prob-
lem. As the amount of uncertainty increases, this decreases, though
costs remain monotonically increasing. Using spare capacity has
the opposite effect. The spare capacity can initially absorb a few
stochastic requests, but as the amount of uncertainty in demand
and requests increases, so does the additional cost. Finally, one
can observe that the presence of requests, which is reflected in
Fig. 10(a), has a stronger impact on the expected cost compared
to the demand of the request, reflected in 10(b). In the scientific
literature, the marginal costs of additional requests are generally
higher than the marginal costs of additional demand. This is, for
example, reflected in Gendreau et al. (1992) and in Gendreau et al.
(2014).

6. Conclusions

This paper introduced a novel stochastic vehicle routing prob-
lem in which customers have different service agreements. These
service contracts differ when customers make their requests
known, creating uncertainty in the problem. These uncertainties
are in both the present requests and their demand. For this prob-
lem, we introduce a new exact branch-and-bound algorithm. While
traditional branch-and-bound algorithms tend to branch on edges
within the vehicle routing problem, as observed in Vigo (2015), we
introduce a branch-and-bound algorithm that branches on the full
set of scenarios that are introduced by the uncertainties generated
by the different service contracts.

Our solution method shows effective results compared to plan-
ning the requests with different services completely separate or
using spare capacity. Planning the requests completely separately
incurs an estimated 30% additional cost, while using the spare ca-
pacity of an earlier formulated plan leads to an additional 11% cost.

The computation times of the full problem are significant. How-
ever, by imposing a time limit on the node computation in the
branch-and-bound tree and/or a time limit over the full solution
time, we reach solution quality within 1% of the optimal solution.
Using the novel branch-and-bound algorithm also yielded some in-
teresting results regarding the balancing act of buffers versus risk.
Buffers included in the first-stage routes depend on a subset of
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second-stage requests being present, while for the other requests,
the risk, and as a resulting penalty, of them appearing will be
accepted. Categorizing the scenarios into different categories and
subsequently computing the expected costs of these categories (the
cost of each scenario in the category multiplied by the probabil-
ity of the scenario occurring) yielded some interesting convex re-
lationships.

These convex relationships provide some interesting insights
into developing a heuristic to the problem, which is a potential
new research direction. In addition, further investigation of how
different service agreements with different characteristics (e.g.,
specific constraints regarding how periodic visits are performed to
requests or the introduction of pickup and delivery) may impact
the planning of distribution operations is an interesting avenue for
further research. When working with real-life cases, it was noted
that the bounds towards the optimum are still significant. Future
work is needed on scenario-reduction techniques for this problem.
Finally, implementing self-imposed time windows is also an inter-
esting future research avenue.
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Appendix A

In Fig. 11 we show an example with requests A-I and X. In
this example X is the only stochastic request. In Fig. 11(a) we ob-
serve the optimal route for the scenario if X is not present and
in Fig. 11(d) the optimal route for the scenario if X is present.
Fig. 11(b) and (d) show respectively, the adjusted versions of these
routes if the other scenario then the one it was optimized for re-
alizes. Finally, in Fig. 11(e) and (f) the route is presented which is
the solution being optimum over the weighted scenarios of X be-
ing present and X not being present. As can be seen, the weighted
cost (with weights 0.5 for each scenario) of routes 11(a) and (b)
(equal to 51.21) as well as of routes 11(d) and (c) (equal to 51.09)
are more expensive than the weighted cost of routes 11(e) and
(f), which equal 50.78. As such, there is a route sequence differ-
ent than the optimal route sequences of each individual scenario,
which has a lower weighted cost.
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(a) Optimal route determined for the scenario with X not
being present (thus the optimal route over request A-I). Total
Length: 47.92

E .

tF

(c) Optimal route for the scenario of X being present (thus
the optimal route over request A-I,X). Length: 53.39

Es ' F
D G

C4HB J

A

epot

(e) If the optimal route is determined over the weighted sce-
narios, this is the route if X is not present. Length: 47.95

tF

E
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(b) Cheapest insertion of X onto the route of (a), thus rep-
resenting the route in (a) adjusted when the scenario of X
being present realizes. Length: 54.50

Eq tF

(d) The route in (c) adjusted if the scenario of X not being

present realizes. Length: 48.79

E o

F

(f) If the optimal route is determined over the weighted sce-

narios, this is the route if X is present. Length: 53.61

Eq 1 F

Fig. 11. An example of the existence of sequence &.
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