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Learning in Machines: From Data to Models,
Control Performance, and Monitoring

Tom Oomen1,2, Leontine Aarnoudse1, Lennart Blanken1, Koen Classens1,
Mathyn van Dael1, Nic Dirkx1, Rodrigo González1, Max van Haren1,

Johan Kon1, Max van Meer1, Maurice Poot1, Paul Tacx1, Koen Tiels1, Gert Witvoet1

I. RESEARCH OVERVIEW: COMPLEXITY IN FUTURE
DATA-INTENSIVE HIGH-TECH SYSTEMS

Future high-tech systems are subject to increasing per-
formance demands [1], including accuracy, throughput, and
versatility. Important examples of such systems in the manu-
facturing domain include wafer stages for integrated circuit
production, see Fig. 1(a), and the generic substrate carrier
for industrial production, see Fig. 1(b). Important examples
of scientific instruments include large scale telescopes with
deformable mirrors, see Fig. 1(c) and the gravitational wave
detector in Fig. 1(d).

Radically new (opto-)mechatronic system designs and con-
trol approaches are envisaged to meet increasing performance
requirements, including the following examples.

1) The use of additional actuators and sensors to increase
performance and enable innovative designs [2]. Spatially-
distributed actuators control flexible mechanics in new
lightweight designs, see Fig. 1(a). Individually controlled
segmented rollers are used in carriers for extreme positioning
accuracy, see Fig. 1(b). Deformable mirrors are controlled
using a large number of actuators, see Fig 1(c). Additional
actuators enhance accuracy in gravitational wave detectors, see
Fig 1(d).

2) Directly addressing overall system performance goals. In
traditional approaches, the control problem is subdivided into
manageable subproblems associated with system submodules,
leading to suboptimal performance. Directly addressing the
overall performance requirements leads to unparalleled perfor-
mance at the price of an extreme increase in complexity, e.g.,
the integrated control of the two motion stages in Fig. 1(a), see
[3]. Relevant aspects also include unmeasurable performance
variables [4], intermittent sampling [5], and sampled-data
aspects [6]. Furthermore, multi-physics control problems are
addressed, including the thermo-mechanical control system
in Fig 1(a), see [7], and the opto-mechatronic systems in
Fig. 1(c)-1(d), see [8] and [9], respectively.
The key step to enable the envisaged future data-intensive
equipment lies in control design, where the major challenge
lies in dealing with the extreme complexity.
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From Data to Models for Control
Models are essential to provide performance and robustness

guarantees in future data-intensive machines. To this end,
major developments have been made to identify complex
mechatronic systems from data, including

• nonparametric models for complex [10], multi-physics
[7], operating-condition-dependent [11], slowly-
sampled [12], missing-data [13], and Lebesgue-sampled
[14] systems; and

• parametric models for complex [2] and operating-
condition-dependent [15], [8] systems.

These models are essential for subsequent feedback control
design, see [2] for an overview.

From Data to Control Performance via Learning
The availability of ubiquitous data in future data-intensive

systems provides major opportunities for performance en-
hancement through learning. Essentially, all predictable behav-
ior can be fully compensated. First, disturbances are typically
present that are accurately modelled as a stochastic process.

• Feedback control, [2], is essential to suppress these
stochastic disturbances. These disturbances cannot be
predicted before the task starts, yet typically these have
a certain spectrum. Feedback can suppress these distur-
bances leading to an optimal error that is white noise.

Second, many motion systems have repeating signals that
disturb the system, often of a deterministic nature. A large
range of approaches are relevant.

• Iterative learning control and repetitive control [16], [17].
• Batch-to-batch feedforward [18], including recursive

[19], [20], data-driven [21], and hysteresis [22] variants.
• Gaussian process models for position-dependent and task-

flexible feedforward [23].
• Neural-networks [24] as add-on inverse model completion

of the explainable models in the previous subsection.

From Data and Models to Monitoring
Any physical system degrades due to wear, ageing, etc.

Feedback, feedforward, and learning algorithms provide a
large amount of data on the state of the system during opera-
tion. Besides these data, accurate models are readily available
from control design. These models can be re-purposed and
integrated with data, enabling fault identification, isolation,
and predictive maintenance, leading to drastic downtime min-
imization and increasing productivity [25], [26].



(a) Envisaged wafer stage.
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Fig. 1. Working principle of adaptive optics (AO) in a
ground-based telescope. The incoming sample wave-
front is distorted due to atmospheric turbulence.
These atmospheric distortions are corrected by an
adaptive optics system consisting of a deformable
mirror (DM) and a wavefront sensor (WFS) before
the imaging takes place.

This limitation in existing linear parameter varying mod-
eling techniques for motion systems underlines the impor-
tance of exploiting prior knowledge in the identification
of the spatio-temporal behavior of next-generation motion
systems.
Although identifying the spatio-temporal behavior of mo-
tion systems is essential for the control of next-generation
motion systems, and several results are present to identify
such models, at present, a method that allows for accurate
and practical identification of the spatio-temporal behav-
ior with a limited number of sensors is not available. The
aim of this paper is to introduce a unified approach for the
identification of the spatio-temporal system behavior for
the control of next-generation overactuated motion sys-
tems with a limited amount of sensors. This is achieved by
exploiting prior mechanical system knowledge, i.e. exploit-
ing the overactuated setting of next-generation motion
systems. Related work includes the field of experimental
modal analysis and the Maxwell–Betti reciprocal work
theorem, see e.g. (Maxwell, 1864; Betti, 1872; Gawronski,
2004; Ghali and Neville, 1972). In contrast to the field of
experimental modal analysis, this paper aims to identify
and reconstruct the spatio-temporal behavior for spatio-
temporal control of overactuated systems with a limited
number of sensors.
The main contribution of this paper is the development of
a unified approach for the identification and reconstruction
of spatio-temporal system dynamics in next-generation
motion systems with a limited number of sensors. In ad-
dition, an experimental case-study with an experimental
overactuated beam setup which is representative of next-
generation overactuated motion systems confirms the ef-
fectiveness of the proposed approach.
The paper is organized as follows. Section 2 describes the
industrial application motivation and the problem formu-
lation. In Section 3, the proposed modeling framework
is introduced. An experimental case study is presented
in Section 4 to illustrate the proposed approach. The
conclusions are provided in Section 5.

Fig. 2. Computer render of a deformable mirror designed
by TNO. The deformable mirror is designed for the
University of Hawai’i 88-inch telescope.

2. SYSTEM DESCRIPTION

In Figure 2, a next-generation deformable mirror is de-
picted. Compared to an earlier version of the deformable
mirror see e.g. Hamelinck et al. (2008), the deformable mir-
ror depicted in Figure 2 has an increased diameter which
leads to flexible dynamics being present within the control
bandwidth. Also, the number of actuators increased to
207. Furthermore, for a future observatory engineers are
planning to build a deformable mirror with approximately
2000 actuators.
The increasing complexity necessitates the need for mod-
eling the flexible dynamic behavior explicitly. If the de-
formable mirror is integrated into a telescope, the large
grid of the wavefront sensor can be used for system iden-
tification. However, to focus specifically on the flexible
dynamic behavior and to validate the deformable mirror
design, the deformable mirror is identified before integra-
tion in the telescope. As a consequence, a limited amount
of position sensors can be located in front of the mirror
face sheet during experimentation. In addition, global con-
trol performance is required on the mirror surface. As a
consequence, the performance variables and the measured
variables do not necessarily coincide. As a consequence,
a spatio-temporal control problem is encountered. This
motivates the identification of a spatio-temporal model
with a limited amount of sensors.
The aim of this paper is to identify the spatio-temporal
behavior of overactuated motion systems by exploiting
prior mechanical system knowledge. A frequency-domain-
based approach is pursued, and the structure of mechanical
systems is exploited to reconstruct the temporal behavior
at an increased set of spatial locations.

3. APPROACH

In this section, the method for identifying the spatio-
temporal behavior in next-generation motion systems is
introduced. First, the modeling of flexible structures is
discussed. Second, the modal form of mechanical systems is
introduced. Lastly, the approach for identifying the spatio-
temporal behavior of next-generation motion systems is
introduced, which constitutes contribution C.1.

(c) Deformable mirror with 207 actuators for a telescope.

(d) Gravitational wave detector.

Fig. 1. Selection of complex data-intensive (opto-) mechatronic systems.

II. SEMINAR TOPICS

A. Gaussian Processes for Advanced Motion Control

Manufacturing equipment and scientific instruments are
subject to increasing speed, accuracy, and flexibility require-
ments. Examples of such systems include wafer scanners,
printing systems, pick-and-place machines, and microscopes.
Learning from data provides huge opportunities in these
future data-intensive mechatronic systems to meet increasing
speed, accuracy, and functionality requirements. To this end,
learning techniques are presented, including Gaussian Pro-
cesses (GPs). Successful applications of GPs for feedforward
and learning control, including identification and learning for
noncausal feedforward, position-dependent snap feedforward,
motor force constants (Fig. 2), nonlinear feedforward, and
GP-based spatial repetitive control, are outlined. Experimental
results on various systems, including a desktop printer, wire-
bonder, and substrate carrier, confirm that data-based learning
can significantly improve the accuracy of mechatronic systems.

Fig. 2. Data-driven learning of Gaussian-Process based motor force compen-
sation.

B. Learning for Precision Motion Control

Iterative Learning Control (ILC) can achieve perfect track-
ing performance for mechatronic systems. The aim is to
present an ILC design tutorial for industrial mechatronic sys-
tems. First, a preliminary analysis reveals the potential perfor-
mance improvement of ILC prior to its actual implementation.
Second, a frequency domain approach is presented, where fast
learning is achieved through noncausal model inversion, and
safe and robust learning is achieved by employing a con-
traction mapping theorem in conjunction with nonparametric
frequency response functions. The approach is demonstrated
on a desktop printer, see Fig. 3. Finally, a detailed analysis of
industrial motion systems leads to several shortcomings that
obstruct the widespread implementation of ILC algorithms.
An overview of recently developed algorithms is given, in-



cluding extensions using machine learning algorithms. These
are aimed to facilitate broad industrial deployment.

Fig. 3. Performance enhancement on a desktop printer through iterative
learning control
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[26] M. Čech, A.-J. Beltman, and K. Ozols, “Digital twins and AI in smart
motion control applications,” in 27th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), Stuttgart,
Germany, 2022, pp. 1–7.

Tom Oomen is full professor with the Department of
Mechanical Engineering at the Eindhoven University
of Technology. He is also a part-time full professor
with the Delft University of Technology. He is a
recipient of the 7th Grand Nagamori Award, the
IFAC 2019 TC 4.2 Mechatronics Young Research
Award, the 2019 IEEJ Journal of Industry Applica-
tions Best Paper Award, and recipient of a Veni and
Vidi personal grant. He is currently a Senior Editor
of IEEE L-CSS.


