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Abstract

In this paper the concept of the Higher Order Sinusoidal Quilescribing Functions (HOSODF) is pre-
sented. HOSODF can be defined for the class of causal, staéeinvariant non-linear systems which give
a sinusoidal response to a specific harmonic excitation.HDBODF relate the magnitude and phase of the
individual harmonics, which together compose that spetifict signal, to the sinusoidal output signal of
such a system. HOSODF are the dual of the Higher Order Sigaisimiput Describing Functions (HOSIDF).
Like the HOSIDF, the HOSODF are the results of an extensidimeér techniques towards non-linear sys-
tems analysis. Using the HOSODF, the non-linear systemertindestigation can be modeled as a cascade
of the HOSODF and a Virtual Harmonics Compressor (VHC). Th#\s defined as a non-linear compo-
nent which transforms a harmonic input sigét) into a sinusoidal output signal(¢) with frequencyw,
amplitudea and phasep. This input signalj(¢) consists of an infinite amount of harmonics of the output
signaly(t) with frequencynw, amplitudea and phaseww with n = 0,1, ...co. Special attention is paid to
the non-parametric identification of the HOSODF. The idaation requires control of the frequency and
amplitude of the sinusoidal output of the system within @ign@in of possible sinusoidal output signals. This
specific state of these non-linear systems can be reacheddrporating the system under test in a feedback
loop. In this loop the desired sinusoidal output is definethascontrol objective of a dedicated repetitive
controller consisting of a memory loop with positive feecka The design of the learning filter required
for stability is also addressed. As a spinoff of the iderdifizn technique, the authors see opportunities for
advanced non-linear control of shaker systems aimed ataithal excitation of non-linear systems.

1 Introduction

In the analysis and synthesis of dynamic systems, frequeoimain based techniques are well established.
These techniques are based on the concept of the Frequesiggri®e Function (FRF). A limitation of using
FRFs is the imperative assumption of linearity of the sysbeavior. Due to the increasing demands on
system performance in for example mechanical positionjstess, non-linear behavior has to be addressed
both in the mechanical and the control design. The frequéiboyain based techniques for the analysis of
non-linear systems mentioned in literature can roughlylégsidfied in three groups:

¢ |dentification of the linear system
In weakly non-linear systems the true linear system can éwtiiied by minimizing the influence of
the non-linear distortion using odd multisine excitatiagngals with minimized crest factor and with
an amplitude kept as small as possible [1, 2, 3]. For norafisgstems which can be approximated
by Volterra series the Related Linear Dynamic System cardéetified using multi-sine based sig-
nals [2, 4, 5, 6, 7]. Apart from leakage free measuremengsetimulti-sine based signals also provide
gualitative and quantitative information about the naredir distortions.
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¢ Identification of the Generalized Frequency Response kumct
For the class of causal, stable, time-invariant, non-lisgatems with fading memotythe convolution
integral description of the linear system can be geneidlizan infinite series called the Volterra series
[9, 10, 11]. Then-dimensional Fourier transform of theth order Volterra kernel yields theth-order
FRF, the Generalized Frequency Response Function (GFRF)LBl. GFRFs can be estimated with
non-parametric methods if the system can be described by arlter (truncated) Volterra kernel. The
high numerical cost however limits these methods to thetifileastion of GFRFs up to a maximum
order of three [14, 15]. Parametric identification techegj@ase the numerical requirements and allow
analytical expressions for GFRFs up to any order [16]. ThREshave their limitations: systems with
non-fading memory, like non-local memory hysteresis as $edriction, can not be described with
GFRFs and GFRFs are difficult to interpret due to their mitehsional nature [17, 18].

e Describing Functions

The Describing Function concept extends the FRF in the watyidentification of amplitude depen-

dency becomes possible [19, 20]. Its recently formulatewgsization, the Higher Order Sinusoidal
Input Describing Functions (HOSIDF) also describes theegation of harmonics as function of exci-

tation frequency and amplitude [21, 22, 23]. The HOSIDFesae magnitude and phase of individual
harmonics in the output signal to the sinusoidal input digaasing this harmonic response. All non-
linear systems with a harmonic response to a sinusoidatagici can be described with HOSIDF.

The HOSIDF are easy to interpret but do not describe noripeenomena like desensitization and
intermodulation [18, 24, 25].

In this paper the Higher Order Sinusoidal Output Descrilbingctions (HOSODF) will be introduced. These
higher order describing functions are dual to the HOSIDFhm gense that they are based on a sinusoidal
output state. The paper starts with the definition of thesctdsystems under consideration. Subsequently
the Virtual Harmonics Compressor is introduced as the dutild Virtual Harmonics Expander. The mathe-
matical framework of the HOSODF is presented, as well as &ipek non-parametric measurement method
for HOSODF. For the identification of the HOSODF it is necegda control the state of the system under
test to generate a sinusoidal output as a response to a haraxmitation. A feedback loop is presented
incorporating a repetitive controller able to force a soidal output from that system.

2 Definition of the class of systems under consideration

The systems under consideration belong to the dass causal, stable, time invariant non-linear systems
which have a sinusoidal response to a harmonic excitatidns dlass is a subset of the clasef causal,
stable, time invariant non-linear systems which have a bartrresponse to a sinusoidal excitation and can
be described with HOSIDF. As an example of a system whichrigsldo clasd and not to clas®© one
can think of a system with output saturation. Unless stathdrwise, non-linear systems mentioned in the
sequel of this paper are assumed to belon@ to

3 Virtual Harmonics Compressor

Consider a stable, non-linear time invariant system bétangp classO as defined in Section. 2. Let
y(t) = acos(w + ¢) be the output signal. The system excitatig(t) is considered to consist exclusively
of harmonics of the fundamental frequencyof the output signal(¢), i.e. it is assumed that the transient
behavior has vanished. The input signél) can be written as a summation of harmonics of the output kigna
y(t), each with an amplitudd,, and phasep,,, which are a function of the amplitudeand frequency of

the output signal (Fig. 1). This system can be modeled as@dasf a (nhon)linear system and a Virtual

A system has fading memory if two input signals which areeliosthe recent past, but not necessarily close in the renaste p
yield present outputs which are close( [8], p.1152)



NON-LINEARITIES: IDENTIFICATION AND MODELLING 2363

u(t) =Y A4,(a,0)cos(not +¢,(d,0)) Nonlinear () = dcos(wt +¢)

n=0 —> —>
system

Figure 1: General sinusoidal output-input relation.

Harmonics Compressor (Fig. 2). The Virtual Harmonics Cagspor is defined as a non-linear component
which transforms a harmonic input signgk) into a sinusoidal output signgl¢) with frequencyw, ampli-
tudea and phase, (Eq. 1). This input signaj(¢) consists of an infinite amount of harmonics of the output
signaly(t) with frequencynw, amplitudea and phasevy with n € N:

y(t) = acos(wt + @) 1)
§(t) =) acos(n(wt +¢)) )
n=0

By defining a separate block for the compression of harmadniosodeling this class of non-linear systems,

the complexity of the preceding (non)linear block will bgrsficantly less and linear approaches may be-
come feasible depending upon the remaining non-linearvi@hd he resulting model structure has strong
similarities with a Wiener model. This structure howevendd a Wiener model since the first block is not

necessarily linear [26].

u(t) = Z A4, (a,®)cos(not +¢,(a,m)) y(t) = acos(wt +@)
n=0 Non-linear

system I

u(?) (Non)linear y(®) Virtual (1)
" —t b system —~ harmonics
z 4,(a,®)cos(not +¢,(a,»)) chos(n((ot +¢)) | compressor acos(®t+¢)

n=0 n=0

Figure 2: Virtual Harmonics Compressor as separate blo¢ckdrmodel of a nhon-linear system with sinu-
soidal response.

4 Higher Order Sinusoidal Output Describing Functions

Consider a non-linear system belonging to cl@sss defined in Section 2 with(¢) the input signal and
y(t) the system response after the transient behavior has ean(Big. 1). The sinusoidal output describing
function R(a, w) of the system is defined as the complex ratio of the outpussidy(¢) and the fundamental
component of the system excitatiofit) (Fig. 3).
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u(t)=A/(a,o)cos(®t+¢ +¢,(a,m)) y(t)=acos(wt+¢)
— »  RGo) ——>

Figure 3: Sinusoidal output describing function represtion.

The sinusoidal output describing functidt{a, w) can be calculated as:

R(a,w) = ac - a 3)
’ N Al (&,w)ej(w”@J“‘Pl(d"")) B bl (&,W) +ja1 (daw)

The Fourier coefficienta; andb; are calculated as in Eq.4, 5 with= 27 /w:

2 to+T

a) = — a(t) cos(wt)dt 4)
T Ji,
9 to+T

by = = a(t) sin(wt)dt (5)
T to

In Fig. 4 the block representation of the non-linear systath sinusoidal response is redrawn by separating
the Virtual Harmonics Compressor from the system. The reimgisystem can be represented as a parallel
connection of (non)linear subsystems in series with afillark. Each subsystem relates a specific input har-
monic component, which is separated from the input signahbyilter bank, to the corresponding harmonic
component at the input of the Virtual Harmonics CompresSdre subsystenR;(a,w) is the sinusoidal

u(t) = iA,,(&,w)cos(n(wtﬂp)+(pn(&,u))) Nonlinear 3(t) = dcos(ot +¢)

n=0 —P —»
system

l

iA,, (a,®)cos(n(ot +¢)+0,(a,0)) =

u(t) —— 0 » Ry(d,0) = =
i1,(1) = 4,(4,0) y(t)=a
| [r— R (4,0) = Virtual acos(wt+¢)=
Fiter  [th (1) = n)= Harmonics

n ~ t
bank | 4 (d,) cos(t + +¢,(,0)) dcos@r+9) | Compressor [ >

n > Ri(4.0)

u,(t)=A4,(a,m)cos(nwt+ne +¢,(a,m)) ¥, () =acos(not +ne)

Figure 4: Higher order sinusoidal output describing fumttiepresentation.

output describing function of the system. This describimgction can be interpreted as the second element
of a set of higher order sinusoidal output describing furgir,,(a,w). These functions can be defined as
the complex ratio between the virtual” harmonic signaf, (t) derived from the response signglt) and
then'" harmonic component,, (¢) in the input signak(t). This virtual harmonigy,, (t) has equal amplitude

as the fundamental sinusoid of the output signal but itgistaphase is n times the starting phase of the
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response signal. Like the first order sinusoidal outputrilag function (Eg. 3), the higher order sinusoidal
output describing functions are calculated from the cpoading Fourier coefficients (Eg. 6).

aen(t+e)
Ay (@, w)ed (Mwite)teon(@.w)

R,(a,w) =

A~ ~

B a B a ©)
 Ap(a,w)eien@w)) b (a,w) + jan(a,w)

R, (a,w) can be interpreted as a descriptor of the individual harmdistortion components at the input of
a time invariant non-linear system required for the systemenerate a sinusoidal response, as function of
the amplitude and frequency of that sinusoidal response. flifictionsR,, (a, w) will be referred to as the
Higher Order Sinusoidal Output Describing Functions (HOQ&D

5 Non-parametric identification of HOSODF

5.1 Repetitive control of the output state

Identification of HOSODF requires a sinusoidal output ofriba-linear system within its domain of possible
sinusoidal output signals. This specific state can be fanped the system by incorporating the system under
test in a feedback loop and defining the desired sinusoidg@ubas the control objective of a dedicated
controller. Since the dominant signals in the control loopall harmonically related, repetitive control can
be applied. Consider the ideal repetitive control systeowshin Fig.5. The repetitive controllet/ is an

u(t) = iRn cos(nwyt+9,) p(t) =acos(®,t+¢,)
T ) i ()
+
H )
+
M
i
A 1(0)=0

Figure 5: Layout of the feedback system for the identificattd HOSODF.

add-on device which generates infinite amplification at thertonics of the excitation frequenay [27].
The function relating the input signa(t) of the memory loop to the excitation signal) is given by:

CH

T=—1rcm+a (7)

If the excitation signap(t) is chosen a sinusoid with a frequency equal to the operataguéncy of the
memory loop, the output signa(t) of the summing node will be zero for this frequency and ath@#smonics
since the loop gain will be infinite at these frequencies. Assalt of this, the outpug(t) of the non-linear
system must be equal to the excitation signa).
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5.1.1 Repetitive controller

In its basic layout, the repetitive controll@d consists of a delay of lengthy = 27 /wy and positive feed-
back. The positive feedback in the memory loop generatesitefgain at the harmonics of the operating
frequency. The time period of this operating frequency isa¢do the total internal delay in the memory
loop. In Fig. 6 a block diagram of the applied repetitive coler is shown. The controller consists of two
delays, a robustness filt€}(z), constant gain blocks,y~!, DC reconstruction filte?DC(z) and learning
filter L(z). The delays are implemented as discrete time FIFO shifstegi. Their total length 87 — ¢ — [
and! respectively withNV = T; - fs, fs being the sampling frequency of the memory loop. The cotstan
and! are the delays caused by the linear phase lowpassdilter and the learning filtel(z) required for
stability. The DC reconstruction filter is required for calieg the gain a0 H z in the memory loop. Without
this filter, the DC amplification in the memory loop will be iniie so there will be no feedback @k z in a
repetitive control system. This is undesirable in appiiet where DC feedback is required for the system
to function like for example positioning systems subjediedravity. The output of the DC reconstruction
filter, which equals the DC level of the memory loop, is suttied from the memory loop signal (Fig. 6).
The transfer function of the DC reconstruction filter is givey the following comb-filter:
N—-1_, _N—2 0
DC(z):%Z + z N+...+z (8)
z
The upper trace of Fig. 7 shows the magnitude of the Frequeaspons Function (FRF) of the ideal memory
loop without DC reconstruction. The FRF of the memory loogmDC reconstruction filter is shown in the
lower trace of Fig. 7.

+

20 Q@)

7! 4|>~ DC(z) |1

Figure 6: Memory loop with positive feedback and DC recargtion filter.

L(z) +»

400

2001

Mag [dB]

-200 ; ; ;
0 2 4 6 8 10
Harmonic number

400

2001

Mag [dB]

-200 : : :
0 2 4 6 8 10
Harmonic number
Figure 7: Magnitude of the FRF of the memory loop, withoutdeiptrace) and with DC reconstruction filter
(lower trace).
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5.1.2 Stability

In order to successfully apply the memory loop as an add-sitel@nder measurement conditions, overall
system stability must be preserved [28, 29, 30]. The trarigfection of the memory loop M is given by:

Qz~WN-a-1)
M(z) = W(l —DC)L )
Assuming linearity of H, Eq. 7 can be rewritten as:
B CH CH M. (10)

"1+CH+M 14+CH

M, is the modifying complementary sensitivity function andctbes the modification of the complemen-
tary sensitivity function of the original system withoupegitive control. Substituting Eq. 9 in Eq. 10 yields:

1 — nyz_(N—q)

Ms(2) = =5 =00y = SLA(1 = DO) (1)
where S is the sensitivity: .
5= 1+CH (12)
From Eq. 11 a sufficient condition for stability based uporabigain assumptions can be derived:
Q2 N=9{y - SLZ(1 - DC)}| < 1 (13)
for all z with |z| = 1. Since|@| < 1, the stability criterion (Eg. 13) can be reduced to
|y — SLZ'(1 - DO)| <1 (14)

At 0Hz |1 — DC| = 1, for all other frequenciesl — DC| < 1. So stability is guaranteed fif/| = 1 — ¢
andL = S~!. The learning filter, can be designed with the ZPETC algorithm [31] and the resyjhase
delay ofl samples is absorbed in the two delay blocks. Depending Ungochiaracteristics &, an additional
notch-filter may be required to reduce the DC gain of ith&lter in order to maintain DC feedback in the
main system. The notch should not be positioned inside thraaneloop since it does not exhibit a linear
phase characteristic like the robustness filferAs a result its delay can not be compensated resulting in a
significant reduction of the gain at the harmonics of thetakicin frequency. Since the gain blogkdoes

not exhibit phase shift, its influence on the memory loop g@significantly less.

5.2 Signal processing

The Fast Fourier Transform (FFT) will be applied for the sfanmation of the time-domain data into
frequency-domain information. This transformation guéeas infinite selectivity for harmonically related
signals if the record lengtl;, is chosen correctly with respect to the signals to be andlyBeth the input
signalu(t) and output signaj(t¢), (Fig. 1) are Fourier transformed with a transform sizéf The resulting
single sided spectra contain + 1 frequency lines each withH z in frequency line zero. The frequency
spacing isAf = 1/T;, with T, the length of the data blockT} is chosen a multiple times the period
T = 27 /w of the output signal(t). This assures that all the power of the output signal is aunated in
frequency-linep. The power of the excitation signal(t) is fully concentrated in the frequency lineg with

n € N, so leakage is absent. In Fig. 8 the filter bank, the Virtuainktmics Compressor and ti&" order
HOSODF are highlighted. Let us consider the calculatiomeft” order HOSODF. According to Eq. 6 this
HOSODF is calculated from thé” harmonic componerit, (¢) of the VHC of the system divided by thié"
harmonic component(¢) of the input signak(t). The signaljx(¢) however cannot be measured but has to
be derived from the measurable output sign@). Using Eq.1, 2 the frequeneyw, amplitudea and phase
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iAn (a,m)cos(m(wt +¢)+¢,(a,0)) =

n=0

u(t) ———»
Filter Virtual
bank 1rtua A
Harmonics y(t) =acos(wt+¢)
Ki———» Ri(4,0) Compressor

u, (1) =A4,(a,)cos(k(ot+¢))

= 4,(4,0) cos(kot +¢, )
N 3, (8) = acos(k(ot +¢)) oo
5 5 e . =acos(kot+¢, ) 5 p’z ’ .
\/akp +bkp :Ak(aa(’)) " aP+bP —da
-b -b
tan(p, )=—" tan(p) = —
akp p

Figure 8: Determination of the!” order HOSODF.

ne of every component at the input of the VHC can be calculated. In the spectrum(of, the frequency
line with numberp and complex value,, + jb, represents the output signal. The square root of the power in

this frequency line is the amplitude
a= /a2 + b2 (15)
The phase angle of this frequency line equals:

Y= arctan(_a—b") if a, >0 (16)

cp:arctan(_a—p")—i—ﬂ if a, <0
In the frequency spectrum ef(t) the frequency ling: - p with complex valueay,, + jby, represents the
harmonic component under consideration of the input sighifa square root of the power in this frequency
line is the amplituded (a, w) and the phase angle of this frequency line equals ppase

Ag(a,w) = \/ai, + b2, 17)

—by, ‘
= arctan £ 1 agp > 0
Yk, = arctan(—=2) + 7 if agp <0
Akp
with
P = ke + (@, w) (19)
From Eq. 15, 17 the magnitude of th& order HOSODF can be calculated as:
a? + b2
~ p p
Ry (a, w)| = ——= (20)
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The phasepy (a,w) of the k' order HOSODF can be calculated from Eq. 16, 18, 19:

or(a,w)= [k arctan(_a—zp)]m(,dQ7T — arctan(%’;p) if  ap>0,a,>0
-b —b .
= [k{arctan(a—:) + 7} modor — arctan( ak’;?) if  ap<0,ap,>0 (21)
=k arctan(_a—l;p)]modg,r — arctan(;l:;p) -7 if  ap>0,a5, <0
= )

k{arctan(;—l:’ + 7 }Hmod2r — arctan(;i’;p) -7 if  a,<0,ar, <0

6 Conclusion and future work

A new description of the dynamic behavior of a specific cldssom-linear systems was presented. It was
shown that causal, stable, time-invariant systems withassidal response to a harmonic excitation can be
modeled as a parallel connection of non-linear subsystarssries with a Virtual Harmonics Compressor.
The dynamic behavior of these non-linear subsystems wasibled with the Higher Order Sinusoidal Out-
put Describing Functions (HOSODF), a generalization ottie®ry of the Describing Functions. A repetitive
control loop consisting of a digital memory loop with positifeedback was proposed in order to force the
output of the non-linear system to be sinusoidal. A stabélitalysis of the learning filter based on small gain
assumptions resulted in a sufficient condition for stahilit practical methode for the non-parametric iden-
tification of Higher Order Sinusoidal Output Describing Etions was presented. This method was based
on the Fast Fourier Transform and allows leakage free meamnts.

The proposed method of using repetitive control for the moametric identification of HOSODF possibly
has an interesting mechanical application. In particulacmanical testing situations, like normal mode test-
ing [32], a sinusoidal excitation force is required. Coni@mal sine testing instrumentation employs linear
feedback techniques to compensate for the influence ofribarlidynamics of the system under test on the
shaker system. The actual shaker force signal is fed backdnteoller which is implemented as a linearized,
inverse model of the system under test. This allows the nhadgmiof the required excitation frequency com-
ponent to be controlled. However, the true system underigagsbn-linear, and its non-linear mechanical
impedance will force the sinusoidal excitation signal todomae harmonic. By employing the HOSODF ap-
proach, a data-based inverse representation of the nearlgystent is incorporated in the control loop. If
the shaker force is considered the outp(#t) of a non-linear systeni/ (Fig. 5), implementing the repetitive
control loop M will result in a sinusoidal output of the shaker if the namelar systentd belongs to class
O. Future work will concentrate on designing a calibratiopexment from which the learning filter can be
determined automatically. An additional research quastdhe investigation of the properties a non-linear
system must have in order to belong to the cl@ss
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