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Abstract
In this paper the concept of the Higher Order Sinusoidal Output Describing Functions (HOSODF) is pre-
sented. HOSODF can be defined for the class of causal, stable,time invariant non-linear systems which give
a sinusoidal response to a specific harmonic excitation. TheHOSODF relate the magnitude and phase of the
individual harmonics, which together compose that specificinput signal, to the sinusoidal output signal of
such a system. HOSODF are the dual of the Higher Order Sinusoidal Input Describing Functions (HOSIDF).
Like the HOSIDF, the HOSODF are the results of an extension oflinear techniques towards non-linear sys-
tems analysis. Using the HOSODF, the non-linear systems under investigation can be modeled as a cascade
of the HOSODF and a Virtual Harmonics Compressor (VHC). The VHC is defined as a non-linear compo-
nent which transforms a harmonic input signaly̆(t) into a sinusoidal output signaly(t) with frequencyω,
amplitudeâ and phaseϕ. This input signal̆y(t) consists of an infinite amount of harmonics of the output
signaly(t) with frequencynω, amplitudeâ and phasenω with n = 0, 1, ...∞. Special attention is paid to
the non-parametric identification of the HOSODF. The identification requires control of the frequency and
amplitude of the sinusoidal output of the system within its domain of possible sinusoidal output signals. This
specific state of these non-linear systems can be reached by incorporating the system under test in a feedback
loop. In this loop the desired sinusoidal output is defined asthe control objective of a dedicated repetitive
controller consisting of a memory loop with positive feedback. The design of the learning filter required
for stability is also addressed. As a spinoff of the identification technique, the authors see opportunities for
advanced non-linear control of shaker systems aimed at sinusoidal excitation of non-linear systems.

1 Introduction

In the analysis and synthesis of dynamic systems, frequencydomain based techniques are well established.
These techniques are based on the concept of the Frequency Response Function (FRF). A limitation of using
FRFs is the imperative assumption of linearity of the systembehavior. Due to the increasing demands on
system performance in for example mechanical positioning systems, non-linear behavior has to be addressed
both in the mechanical and the control design. The frequencydomain based techniques for the analysis of
non-linear systems mentioned in literature can roughly be classified in three groups:

• Identification of the linear system
In weakly non-linear systems the true linear system can be identified by minimizing the influence of
the non-linear distortion using odd multisine excitation signals with minimized crest factor and with
an amplitude kept as small as possible [1, 2, 3]. For non-linear systems which can be approximated
by Volterra series the Related Linear Dynamic System can be identified using multi-sine based sig-
nals [2, 4, 5, 6, 7]. Apart from leakage free measurements, these multi-sine based signals also provide
qualitative and quantitative information about the non-linear distortions.
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• Identification of the Generalized Frequency Response Function
For the class of causal, stable, time-invariant, non-linear systems with fading memory1, the convolution
integral description of the linear system can be generalized to an infinite series called the Volterra series
[9, 10, 11]. Then-dimensional Fourier transform of then-th order Volterra kernel yields then-th-order
FRF, the Generalized Frequency Response Function (GFRF) [12, 13]. GFRFs can be estimated with
non-parametric methods if the system can be described by a low order (truncated) Volterra kernel. The
high numerical cost however limits these methods to the identification of GFRFs up to a maximum
order of three [14, 15]. Parametric identification techniques ease the numerical requirements and allow
analytical expressions for GFRFs up to any order [16]. The GFRFs have their limitations: systems with
non-fading memory, like non-local memory hysteresis as seen in friction, can not be described with
GFRFs and GFRFs are difficult to interpret due to their multidimensional nature [17, 18].

• Describing Functions
The Describing Function concept extends the FRF in the way that identification of amplitude depen-
dency becomes possible [19, 20]. Its recently formulated generalization, the Higher Order Sinusoidal
Input Describing Functions (HOSIDF) also describes the generation of harmonics as function of exci-
tation frequency and amplitude [21, 22, 23]. The HOSIDF relate the magnitude and phase of individual
harmonics in the output signal to the sinusoidal input signal causing this harmonic response. All non-
linear systems with a harmonic response to a sinusoidal excitation can be described with HOSIDF.
The HOSIDF are easy to interpret but do not describe non-linear phenomena like desensitization and
intermodulation [18, 24, 25].

In this paper the Higher Order Sinusoidal Output DescribingFunctions (HOSODF) will be introduced. These
higher order describing functions are dual to the HOSIDF in the sense that they are based on a sinusoidal
output state. The paper starts with the definition of the class of systems under consideration. Subsequently
the Virtual Harmonics Compressor is introduced as the dual to the Virtual Harmonics Expander. The mathe-
matical framework of the HOSODF is presented, as well as a practical non-parametric measurement method
for HOSODF. For the identification of the HOSODF it is necessary to control the state of the system under
test to generate a sinusoidal output as a response to a harmonic excitation. A feedback loop is presented
incorporating a repetitive controller able to force a sinusoidal output from that system.

2 Definition of the class of systems under consideration

The systems under consideration belong to the classO of causal, stable, time invariant non-linear systems
which have a sinusoidal response to a harmonic excitation. This class is a subset of the classI of causal,
stable, time invariant non-linear systems which have a harmonic response to a sinusoidal excitation and can
be described with HOSIDF. As an example of a system which belongs to classI and not to classO one
can think of a system with output saturation. Unless stated otherwise, non-linear systems mentioned in the
sequel of this paper are assumed to belong toO .

3 Virtual Harmonics Compressor

Consider a stable, non-linear time invariant system belonging to classO as defined in Section. 2. Let
y(t) = âcos(ω + ϕ) be the output signal. The system excitationu(t) is considered to consist exclusively
of harmonics of the fundamental frequencyω of the output signaly(t), i.e. it is assumed that the transient
behavior has vanished. The input signalu(t) can be written as a summation of harmonics of the output signal
y(t), each with an amplitudeAn and phaseϕn, which are a function of the amplitudêa and frequencyω of
the output signal (Fig. 1). This system can be modeled as a cascade of a (non)linear system and a Virtual

1A system has fading memory if two input signals which are close in the recent past, but not necessarily close in the remote past
yield present outputs which are close( [8], p.1152)
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Figure 1: General sinusoidal output-input relation.

Harmonics Compressor (Fig. 2). The Virtual Harmonics Compressor is defined as a non-linear component
which transforms a harmonic input signaly̆(t) into a sinusoidal output signaly(t) with frequencyω, ampli-
tudeâ and phaseϕ, (Eq. 1). This input signal̆y(t) consists of an infinite amount of harmonics of the output
signaly(t) with frequencynω, amplitudeâ and phasenϕ with n ∈ N:

y(t) = â cos(ωt + ϕ) (1)

y̆(t) =
∞∑

n=0

â cos(n(ωt + ϕ)) (2)

By defining a separate block for the compression of harmonicsin modeling this class of non-linear systems,
the complexity of the preceding (non)linear block will be significantly less and linear approaches may be-
come feasible depending upon the remaining non-linear behavior. The resulting model structure has strong
similarities with a Wiener model. This structure however isnot a Wiener model since the first block is not
necessarily linear [26].
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Figure 2: Virtual Harmonics Compressor as separate block inthe model of a non-linear system with sinu-
soidal response.

4 Higher Order Sinusoidal Output Describing Functions

Consider a non-linear system belonging to classO as defined in Section 2 withu(t) the input signal and
y(t) the system response after the transient behavior has vanished (Fig. 1). The sinusoidal output describing
functionR(â, ω) of the system is defined as the complex ratio of the output sinusoidy(t) and the fundamental
component of the system excitationũ(t) (Fig. 3).
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The sinusoidal output describing functionR(â, ω) can be calculated as:

R(â, ω) =
âejωt+ϕ

A1(â, ω)ej(ωt+ϕ+ϕ1(â,ω))
=

â

b1(â, ω) + ja1(â, ω)
(3)

The Fourier coefficientsa1 andb1 are calculated as in Eq.4, 5 withT = 2π/ω:

a1 =
2
T

∫ t0+T

t0

ũ(t) cos(ωt)dt (4)

b1 =
2
T

∫ t0+T

t0

ũ(t) sin(ωt)dt (5)

In Fig. 4 the block representation of the non-linear system with sinusoidal response is redrawn by separating
the Virtual Harmonics Compressor from the system. The remaining system can be represented as a parallel
connection of (non)linear subsystems in series with a filter-bank. Each subsystem relates a specific input har-
monic component, which is separated from the input signal bythe filter bank, to the corresponding harmonic
component at the input of the Virtual Harmonics Compressor.The subsystemR1(â, ω) is the sinusoidal
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Figure 4: Higher order sinusoidal output describing function representation.

output describing function of the system. This describing function can be interpreted as the second element
of a set of higher order sinusoidal output describing functionsRn(â, ω). These functions can be defined as
the complex ratio between the virtualnth harmonic signal̆yn(t) derived from the response signaly(t) and
thenth harmonic component̆un(t) in the input signalu(t). This virtual harmonic̆yn(t) has equal amplitude
as the fundamental sinusoid of the output signal but its starting-phase is n times the starting phase of the
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response signal. Like the first order sinusoidal output describing function (Eq. 3), the higher order sinusoidal
output describing functions are calculated from the corresponding Fourier coefficients (Eq. 6).

Rn(â, ω) =
âejn(ωt+ϕ)

An(â, ω)ej(n(ωt+ϕ)+ϕn(â,ω))

=
â

An(â, ω)ej(ϕn(â,ω))
=

â

bn(â, ω) + jan(â, ω)
(6)

Rn(â, ω) can be interpreted as a descriptor of the individual harmonic distortion components at the input of
a time invariant non-linear system required for the system to generate a sinusoidal response, as function of
the amplitude and frequency of that sinusoidal response. The functionsRn(â, ω) will be referred to as the
Higher Order Sinusoidal Output Describing Functions (HOSODF).

5 Non-parametric identification of HOSODF

5.1 Repetitive control of the output state

Identification of HOSODF requires a sinusoidal output of thenon-linear system within its domain of possible
sinusoidal output signals. This specific state can be forcedupon the system by incorporating the system under
test in a feedback loop and defining the desired sinusoidal output as the control objective of a dedicated
controller. Since the dominant signals in the control loop are all harmonically related, repetitive control can
be applied. Consider the ideal repetitive control system shown in Fig.5. The repetitive controllerM is an
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Figure 5: Layout of the feedback system for the identification of HOSODF.

add-on device which generates infinite amplification at the harmonics of the excitation frequencyω0 [27].
The function relating the input signale(t) of the memory loop to the excitation signalp(t) is given by:

T = − CH

1 + CH + M
(7)

If the excitation signalp(t) is chosen a sinusoid with a frequency equal to the operating frequency of the
memory loop, the output signale(t) of the summing node will be zero for this frequency and all itsharmonics
since the loop gain will be infinite at these frequencies. As aresult of this, the outputy(t) of the non-linear
system must be equal to the excitation signalp(t).
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5.1.1 Repetitive controller

In its basic layout, the repetitive controllerM consists of a delay of lengthT0 = 2π/ω0 and positive feed-
back. The positive feedback in the memory loop generates infinite gain at the harmonics of the operating
frequency. The time period of this operating frequency is equal to the total internal delay in the memory
loop. In Fig. 6 a block diagram of the applied repetitive controller is shown. The controller consists of two
delays, a robustness filterQ(z), constant gain blocksγ, γ−1, DC reconstruction filterDC(z) and learning
filter L(z). The delays are implemented as discrete time FIFO shift registers. Their total length isN − q − l
andl respectively withN = T0 · fs, fs being the sampling frequency of the memory loop. The constants q
andl are the delays caused by the linear phase lowpass filterQ(z) and the learning filterL(z) required for
stability. The DC reconstruction filter is required for canceling the gain at0Hz in the memory loop. Without
this filter, the DC amplification in the memory loop will be infinite so there will be no feedback at0Hz in a
repetitive control system. This is undesirable in applications where DC feedback is required for the system
to function like for example positioning systems subjectedto gravity. The output of the DC reconstruction
filter, which equals the DC level of the memory loop, is subtracted from the memory loop signal (Fig. 6).
The transfer function of the DC reconstruction filter is given by the following comb-filter:

DC(z) =
1
N

zN−1 + zN−2 + ... + z0

z
N (8)

The upper trace of Fig. 7 shows the magnitude of the FrequencyRespons Function (FRF) of the ideal memory
loop without DC reconstruction. The FRF of the memory loop with DC reconstruction filter is shown in the
lower trace of Fig. 7.

ã
-1z

-l

L(z)ã
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Q(z)z
-(N-q-l)

+
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Ó
+

-

Ó

Figure 6: Memory loop with positive feedback and DC reconstruction filter.
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Figure 7: Magnitude of the FRF of the memory loop, without (upper trace) and with DC reconstruction filter
(lower trace).
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5.1.2 Stability

In order to successfully apply the memory loop as an add-on device under measurement conditions, overall
system stability must be preserved [28, 29, 30]. The transfer function of the memory loop M is given by:

M(z) =
Qz−(N−q−l)

1−Qγz−(N−q)
(1−DC)L (9)

Assuming linearity of H, Eq. 7 can be rewritten as:

T = − CH

1 + CH + M
= − CH

1 + CH
Ms (10)

Ms is the modifying complementary sensitivity function and describes the modification of the complemen-
tary sensitivity function of the original system without repetitive control. Substituting Eq. 9 in Eq. 10 yields:

Ms(z) =
1−Qγz−(N−q)

1−Qz−(N−q){γ − SLzl(1−DC)} (11)

where S is the sensitivity:

S =
1

1 + CH
(12)

From Eq. 11 a sufficient condition for stability based upon small gain assumptions can be derived:

|Qz−(N−q){γ − SLzl(1−DC)}| < 1 (13)

for all z with |z| = 1. Since|Q| ≤ 1, the stability criterion (Eq. 13) can be reduced to

|γ − SLzl(1−DC)| < 1 (14)

At 0Hz |1 − DC| = 1, for all other frequencies|1 − DC| < 1. So stability is guaranteed if|γ| = 1 − ǫ
andL = S−1. The learning filterL can be designed with the ZPETC algorithm [31] and the resulting phase
delay ofl samples is absorbed in the two delay blocks. Depending upon the characteristics ofS, an additional
notch-filter may be required to reduce the DC gain of theL filter in order to maintain DC feedback in the
main system. The notch should not be positioned inside the memory loop since it does not exhibit a linear
phase characteristic like the robustness filterQ. As a result its delay can not be compensated resulting in a
significant reduction of the gain at the harmonics of the excitation frequency. Since the gain blockγ does
not exhibit phase shift, its influence on the memory loop gainis significantly less.

5.2 Signal processing

The Fast Fourier Transform (FFT) will be applied for the transformation of the time-domain data into
frequency-domain information. This transformation guarantees infinite selectivity for harmonically related
signals if the record lengthTb is chosen correctly with respect to the signals to be analyzed. Both the input
signalu(t) and output signaly(t), (Fig. 1) are Fourier transformed with a transform size of2m. The resulting
single sided spectra containm + 1 frequency lines each with0Hz in frequency line zero. The frequency
spacing is∆f = 1/Tb with Tb the length of the data block.Tb is chosen a multiplep times the period
T = 2π/ω of the output signaly(t). This assures that all the power of the output signal is concentrated in
frequency-linep. The power of the excitation signalu(t) is fully concentrated in the frequency linesn.p with
n ∈ N, so leakage is absent. In Fig. 8 the filter bank, the Virtual Harmonics Compressor and thekth order
HOSODF are highlighted. Let us consider the calculation of thekth order HOSODF. According to Eq. 6 this
HOSODF is calculated from thekth harmonic component̆yk(t) of the VHC of the system divided by thekth

harmonic component̆uk(t) of the input signalu(t). The signal̆yk(t) however cannot be measured but has to
be derived from the measurable output signaly(t). Using Eq.1, 2 the frequencynω, amplitudeâ and phase
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Figure 8: Determination of thekth order HOSODF.

nϕ of every componentn at the input of the VHC can be calculated. In the spectrum ofy(t), the frequency
line with numberp and complex valueap + jbp represents the output signal. The square root of the power in
this frequency line is the amplitudêa:

â =
√

a2
p + b2

p (15)

The phase angle of this frequency line equals:

ϕ = arctan(−bp

ap
) if ap ≥ 0

ϕ = arctan(−bp

ap
) + π if ap < 0

(16)

In the frequency spectrum ofu(t) the frequency linek · p with complex valueakp + jbkp represents the
harmonic component under consideration of the input signal. The square root of the power in this frequency
line is the amplitudeAk(â, ω) and the phase angle of this frequency line equals phaseϕkin

:

Ak(â, ω) =
√

a2
kp + b2

kp (17)

ϕkin
= arctan(−bkp

akp
) if akp ≥ 0

ϕkin
= arctan(−bkp

akp
) + π if akp < 0

(18)

with
ϕkin

= kϕ + ϕk(â, ω) (19)

From Eq. 15, 17 the magnitude of thekth order HOSODF can be calculated as:

|Rk(â, ω)| =
√

a2
p + b2

p√
a2

kp + b2
kp

(20)
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The phaseϕk(â, ω) of thekth order HOSODF can be calculated from Eq. 16, 18, 19:

ϕk(â, ω)= [k arctan(−bp

ap
)]mod2π − arctan(−bkp

akp
) if ap ≥ 0, akp ≥ 0

= [k{arctan(−bp

ap
) + π}]mod2π − arctan(−bkp

akp
) if ap < 0, akp ≥ 0

= [k arctan(−bp

ap
)]mod2π − arctan(−bkp

akp
)− π if ap ≥ 0, akp < 0

= [k{arctan(−bp

ap
) + π}]mod2π − arctan(−bkp

akp
)− π if ap < 0, akp < 0

(21)

6 Conclusion and future work

A new description of the dynamic behavior of a specific class of non-linear systems was presented. It was
shown that causal, stable, time-invariant systems with a sinusoidal response to a harmonic excitation can be
modeled as a parallel connection of non-linear subsystems in series with a Virtual Harmonics Compressor.
The dynamic behavior of these non-linear subsystems was described with the Higher Order Sinusoidal Out-
put Describing Functions (HOSODF), a generalization of thetheory of the Describing Functions. A repetitive
control loop consisting of a digital memory loop with positive feedback was proposed in order to force the
output of the non-linear system to be sinusoidal. A stability analysis of the learning filter based on small gain
assumptions resulted in a sufficient condition for stability. A practical methode for the non-parametric iden-
tification of Higher Order Sinusoidal Output Describing Functions was presented. This method was based
on the Fast Fourier Transform and allows leakage free measurements.
The proposed method of using repetitive control for the nonparametric identification of HOSODF possibly
has an interesting mechanical application. In particular mechanical testing situations, like normal mode test-
ing [32], a sinusoidal excitation force is required. Conventional sine testing instrumentation employs linear
feedback techniques to compensate for the influence of the linear dynamics of the system under test on the
shaker system. The actual shaker force signal is fed back to acontroller which is implemented as a linearized,
inverse model of the system under test. This allows the magnitude of the required excitation frequency com-
ponent to be controlled. However, the true system under testis non-linear, and its non-linear mechanical
impedance will force the sinusoidal excitation signal to become harmonic. By employing the HOSODF ap-
proach, a data-based inverse representation of the non-linear systemH is incorporated in the control loop. If
the shaker force is considered the outputy(t) of a non-linear systemH (Fig. 5), implementing the repetitive
control loopM will result in a sinusoidal output of the shaker if the non-linear systemH belongs to class
O . Future work will concentrate on designing a calibration experiment from which the learning filter can be
determined automatically. An additional research question is the investigation of the properties a non-linear
system must have in order to belong to the classO .
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