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Abstract 
During the last four decades floor systems used in housing and office-buildings in the Netherlands were 

mostly made of stone-like materials, and can be characterized as heavy. In recent years, in light of 

sustainable building methods, the trend is to reduce the use of materials and thus build lighter. Lightweight 

floor structures are however often found to be more susceptible to vibrations than heavier floor structures. 

The vibrations are caused by dynamic actions such as walking persons or vibrating machines such as a 

washing machine.  

This paper focuses on a beam as a representation for a floor system, supported by hinges with variable 

rotational and translational springs. The influences of the parameters involved are described. An analytical 

approach is used which results in an new approximation formula that can be used in practice. The 

analytical results are compared to the results found in literature and from numerical calculations. Finally 

design recommendations are given for the design of lightweight floor systems. 

 

 

1 Introduction  
 

Traditionally floor systems used in housing and office-buildings in the Netherlands were made of stone-

like materials. These floor systems, which can be characterized as heavy, normally posed little problems 

concerning vibrations. In recent years, in light of sustainable building methods, the trend is to reduce the 

use of materials and thus build lighter. Lightweight structures are however often found to be susceptible to 

vibrations. The vibrations are caused by dynamic actions such as walking persons or vibrating machines 

such as a washing machine. When one of the natural frequencies of the floor system, usually the first, is 

close to the frequency of excitation, problems can occur. Usually it is found that the higher the first natural 

frequency, the better the performance.  

 

The vibration behavior of beams for several boundary conditions is well described in literature [2]. The 

cases discussed are mostly those with free or completely fixed end conditions. Hibbeler [1] discussed the 

case of a prismatic beam with rotational spring supports and presented a formula that could numerically be 

solved.  

 

This paper discusses the case of a prismatic beam with rotational spring end supports and presents an 

approximation formula to find the first natural frequency. This allows for greater possibilities for analysis 

of the discussed case. Also a parametric study will be presented that will show the influence of relevant 

parameters on the natural frequency and recommendations for the design of lightweight floor systems will 

be given.  
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2 Analytical model  
 

Medium and light weight floorsystems that have been developed in the past mostly have a principle 

direction for the loadbearing. This allows for a lightweight floor system to be regarded as a single span 

beam supported at both ends. In the engineering practice it is often assumed the supports are free hinges. 

However in most cases this is not true because the support is partly fixed as schematized in Figure 1.  
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Figure 1, Scheme of structure 

Where: 

L  [m]  : Length of the beam between the supports 

EI  [Nm2]   : Bending stiffness of the beam 

ρA  [kg/m’]  : Mass per unit length, acting as a distributed load 

C1, C2  [Nm/rad] : Rotational stiffness of left and right support respectively 

 

2.1 Exact solution for the natural frequency 
 

The exact solution for the natural frequency of the beam with rotational spring supports can be found by 

solving the differential equation (1) and application of the boundary conditions. 

The differential equation [2] governing this structure is: 

 

4 2

4 2
0

y y
EI A

x t
ρ

∂ ∂
+ =

∂ ∂
 (1) 

with y = deflection of the beam, t = time 

The deflection of a beam in the first natural mode can be written as: 

 

 ( , ) ( )( cos sin )y x t Y x E t F tω ω= +  (2) 

 

with Y(x) decribes the deflection of the beam as a function of x, ω = angular velocity in rad/s and E and F 

are constants. Introducing the parameter β as a measure for the frequency given by, 

 

 
4 2 ( / )     β ω ρ= A EI  (3) 

β   [rad1/2/m] measure for the natural frequency  

ω   [rad/s]  angular velocity     

ρ  [kg/m3]  mass       

A  [m2]  area of section     

E  [N/m2]  Young’s modulus of elasticity   

I  [m4]  moment of inertia.    
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equation (1) combined with equation (2) and (3) results in: 

 

4
4

4
0

d Y
Y

dx
β− =  (4) 

 

Equation (4) can be solved for β, by letting Y taking the form 

 

 ( ) sin cos sinh coshY x A x B x C x D xβ β β β= + + +  (5) 

 

The constants A, B, C and D can be determined by using the boundary conditions for the case under 

consideration. Hibbeler [Hibbeler, 1975] introduced two parameters, u1 and u2, to group the parameters 

that influence the boundary conditions. 

 

 
-1 -11 2

1 2rad , rad
C L C L

u u
EI EI

= =  (6) 

 

Using these, the boundary conditions can be written as follows. 

 

At x = 0    

   (7) 

 

At x = L 

  (8) 

 

Combining (5), (7) and (8) and substituting R=βL, an equation depending on only 3 variables is found 

with R [rad1/2] as a measure for the natural frequency 

 

   

2

1 1

1 2 2 1 2 2

-u sinh( )cos( )+2 sinh( )sin( )+u cosh(R)sin( )

- u u cosh( )cos( )+u cosh( )sin( )+u u -u cos( )sinh( )=0

R R R R R R R R

R R R R R R R R
 (9) 

 

Equation (9) has only one unknown variable, R, which has to be solved for. However this unknown is not 

explicit so it cannot be solved analytically. More than one value of R can be found for a combination of 

parameters, represented by u1 and u2, representing the different modes of vibration. Using numerical 

methods values for R can be found.  

It should also be noted that Equation (9) is of a different form than found by Hibbeler, but it should result 

in the same values of R. 

 

Equation (9) is graphically shown in Figure 2. It can be seen that for the same combination of values of u1 

and u2 more values of R are valid. This of course is correct as these values describe different harmonics or 

higher natural frequencies. 
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Figure 2, Graphical representation of equation (9) 

 

 

2.2 Approximation function 
 

In this paper the focus is primarily on the first natural frequency. In practice the first natural frequency is 

the most important for analyzing floor systems, as this will generally be in the range of the excitation 

frequency that is below 7 Hz. Higher order frequencies are of less importance. Though the exact solution 

of (9) will result in accurate values for the first natural frequency, it is not adequate for practical use as one 

has to use numerical techniques to find a solution. A solution that results in a formula that gives the first 

natural frequency explicitly is desired. As stated above this cannot be achieved analytically, but it proves 

possible to find a very accurate approximation function where R is indeed explicit. The approximation 

function for R, called R� will be taken in the form of  

 
1 2

1 1 2 2 1 2 5
( , )

3 1 2 4 1 2

( ) ( )

( ) ( ) 1
u u

S u u S u u S
R

S u u S u u

+ + +
=

+ + +
�  (10) 

 

This function results in generally the same type of graph as with the exact formula. This function has an 

adequate ability to fit the curve of Figure 2 by choosing adequate values for the five constants, S1 to S5. 

These constants can be found by examining the limit cases as will be shown below. In this approximation 

function five constants have to be determined. As switching the left and the right side of the structure, 

resulting in swapping u1 and u2, should yield the same value for R� the constants for u1 and u2 of the same 

order have to be equal and thus are grouped together. 

 

The first constant to be solved is S5 and can be solved by examining the limit case where u1=u2=0. This 

reduces (10) to 
1 2(u =u =0)R� = S5. Numerically solving (9) for u1=u2=0, results in the value S5=π, which is 

obvious as this represents the case of an unrestrained beam. The quotient S1 / S3 can be found by 
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examining the limit state where u1 =0 and u2 → ∞, which represent a beam fixed at one end and freely 

supported at the other end. Solving (9) numerically for this case, (10) reduces to 

 

 
1 2

1
( 0; )

3

3.92660u u

S
R

S
= →∞ = =�  (11) 

 

Expressing S1 as a function of S3 and assign u1=0 we can rewrite (10) as follows: 

 

 
1 2

3 2
( 0, )

3 2
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S u
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π
=

+
=

+
�  (12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3, R and R�  for different values of S3 

 

Equation (12) will be correct for the extreme values of u2 =0 and u2→ ∞, combined with u1 =0 regardless 

of the value chosen for S3, but has also to be optimal for all values of u2 in between. This can be done by 

choosing strategically a value for u2 where equations (9) and (12) have to be equal. The graphs of these to 

equations, using different values for S3 are shown in Figure 3. The value chosen for u2 to calculate S3 is a 

value where the difference, ∆R, between (9) and (12) is the largest. The range for suitable values of u2 is 
shown in Figure 3 by the dashed vertical lines. The value for u2 of 7 proves to result in the best 

approximation. After numerically solving (9) for u2 = 7 we obtain, 

 

 
1 2

3
( 0; 7) 3 1

3

3.92660 (7)
3.59933           0.19981,   0.78457

(7) 1
u u

S
R S S

S

π
= =

+
= = ⇒ = =

+
�  (13) 

 

It can be shown that S2 and S4 can be found by examining the limit case were u1 = u2 → ∞. The resulting 

approximation function is: 

 

 1 2 1 2

1 2 1 2

0.78457( ) 0.15976( )

0.19981( ) 0.03377( ) 1

u u u u
R

u u u u

π+ + +
=

+ + +
�  (14) 
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2.3 Validation of approximation function 
 

The derived approximation function (14) has a deviation compared to the exact solution, given implicitly 

by equation (9). In this section we will show the distribution of this deviation, ∆R, and express it in 

percent. ∆R at given values of u1 and u2 is defined by: 

 

 

2 2

1 2 1 2

2

1 2

( , ) ( , )
100%

( , )

R u u R u u
R

R u u

−
∆ =

�

i
�

 (15) 

 

We can now use the solution found by (9) for R and R� given by the approximation function (14) with 

equation (15). This results in an equation depending on only three variables, being ∆R, u1 and u2. This 

equation is plotted in Figure 4. It can be seen from this figure that the maximum error is about 0.07% and 

this occurs only for small values of u1 and u2 between 0 and 10. For larger values the error reduces to 0%, 

which of course should be the case as we determined the constants S1 through S5 by using the limit cases. 

It can also be seen from the error distribution that the values chosen to determine constants S1 and S3 were 

correct as the maximum positive error equals the maximum negative one. 

 

 

Figure 4, Distribution of deviation according to (15) for approximation formula (14)  

 

 

3 Results 
 

The first eigen frequency can be found combining equations (3), (14) and fe = ω/(2π): 
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�R depends on 4 parameters that can be described by u1 and u2. For the purpose of comparison of the result 

with the available results in literature the material and geometrical properties are chosen in such a way as 

to obtain the same values for u1 and u2 as used by Hibbeler.  

For further validation a simple numeric model has been made in the finite element program Ansys. 

 

Table 1, Validation of approximation formula (Extreme combinations, C1=0…∞, C2 = 0 or ∞). 

       Zegers Hibbeler Ansys 

ρA EI L C1 C2  u1 u2 fe fe fe 

400 7,00E+06 8 0 0  0 0 3,247 3,248 3,247 

400 7,00E+06 8 875000  0  1 0 3,523 3,524 3,525 

400 7,00E+06 8 8750000 0 10 0 4,418 4,419 4,418 

400 7,00E+06 8 87500000 0 100 0 4,976 4,975 4,976 

400 7,00E+06 8 ∞ 0 ∞ 0 5,072 5,076 5,071 

400 7,00E+06 8 ∞ ∞ ∞ ∞ 7,363 7,360 7,358 

 

Table 2, Validation of approximation formula(Intermediate combination of C1 and C2 values). 

       Zegers Hibbeler Ansys 

ρA EI L C1 C2  u1 u2 fe fe fe 

400 7,00E+06 8 875000 875000 1 1 3,798 3,129 3,8 

400 7,00E+06 8 875000 8750000 1 10 4,704 7,463 4,702 

400 7,00E+06 8 875000 87500000 1 100 5,277 5,484 5,275 

400 7,00E+06 8 8750000 8750000 10 10 5,685 8,967 5,681 

400 7,00E+06 8 87500000 87500000 100 100 7,088 6,588 7,087 

400 7,00E+06 8 8750000 ∞ 10 ∞ 6,461 6,456 6,457 

400 7,00E+06 8 87500000 ∞ 100 ∞ 7,223 7,221 7,222 

 

As can be seen from table 1 and 2 the results obtained from the approximation formula, (9), and the results 

from Ansys correspond very well. The maximum difference that can be found is 0,004 Hz. Also for most 

values equation (9) corresponds very well with the results found by Hibbeler. Only in the case of u1 and u2 

being small, i.e. less then 100, and both being greater than zero, a significant difference can be found. 

Further analysis of the results shows that Hibbeler’s function has an asymptote at certain values. This 

influences the results significantly. The approximation formula presented in this paper doesn’t show this 

behaviour and can be considered valid for the whole frequency range. 

 

3.1 Practical results 
 

A range of values of practical relevance for the parameters involved has been determined. Graphs can be 

made showing the influence on the first natural frequency of two parameters while choosing a constant 

value for the other parameters. A total of five parameters define the system. 
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Table 3, Validation of approximation formula. 

Parameter unit description 

L  [m] Length of the beam between the supports 

EI  [Nm2]  Bending stiffness of the beam 

ρA  [kg/m’] Mass per unit length 

C1, C2  [Nm/rad] Rotational stiffness of left and right support 

respectively 

 

For this parameter study for each parameter a range of values is determined that are of interest in building 

practice. The focus of this research is on office and housing buildings. The range of the parameters is 

characteristic for these types of buildings. Each of these ranges is discussed below. 

 

3.2 Parameter L 
The parameter L describes the length of the single span of the floor system. Typical spans in buildings are 

ranging from a minimal of 5 meters to a maximum of 14 meters.  

 

3.3 Parameter ρA 
This parameter describes the mass per unit length. Traditionally wooden floors are the lightest (ca 50 

kg/m2) in normal practice while concrete slab floors are the heaviest, traditionally up to a thickness of 300 

mm which corresponds with 750 kg/m2. Depending on the use of additional materials this can be increased 

by roughly 250 kg/m2. Considering a beam with a width of one meter this results in a minimum value of 

ρA of 50 kg/m’ up to 1000 kg/m’. 

 

3.4 Parameter EI 
This parameter describes the stiffness of the floor system. The required stiffness depends on the 

requirements for maximal deflection allowed for the floor. The weight of the floor system combined with 

the live load determines the loading of the system, defined as q. The live load can vary between 175 kg/m2 

up to 400 kg/m2 for the regarded buildings. The criterium for the maximum deflection umax = 0.004 * L. 

 

The deflection under a distributed load is given by: 

 

4

max

5
0.004*

384
= <

qL
u L

EI
 (17) 

Solving for EI results in: 

 

3
35

3.255
384*0.004

> =
qL

EI qL  (18) 

 

The distributed load, q, which is a combination of the weight and the live load ranges from 225 kg/m2 up 

to 1400 kg/m2, or 2.25 – 14 kN/m2. Combined with the already defined range for parameter L, this results 

in the range for the stiffness of 0.9 kNm2 to 12500 kNm2 

 

3.5 Parameter C1 and C2 
These parameters describe the amount of rotation stiffness of the supports. The extremes for these 

parameters are unconstrained or fixed. The unconstrained condition corresponds to a value of 0 while the 

fixed condition corresponds with a value of ∞. The completely fixed condition will not be practical to 

achieve, and further examination of the influence of this parameter learns that a maximum value for C = 

108 Nm/rad gives nearly the same results as a completely fixed support. 
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3.6 Graphical results and discussion 
 

In Figure 5 the effect every combination of two parameters has on the first natural frequency is shown. For 

each graph the other parameters are taken constant and the value is the average of the range chosen in the 

previous paragraphs for that parameter. This results in the center of the graph being at the same level for 

each graph, so the relative effect of the parameters can be examined.  

 

Figure 5, Natural frequency, fe, depending on two parameters with the others constant 
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In the Figure 5 some interesting points can be found. The first point to be discussed is graph (f). In this 

graph the effect of the spring stiffness of the supports on the natural frequency is shown. This graphs 

shows that already for relatively small values for the spring stiffnesses the natural frequency becomes 

constant. You only have to design a support with a small stiffness to reduce the first natural frequency 

considerably. This effect is even stronger on lightweight floor systems. The second point to be mentioned 

is related to the first point and is shown in graph (g). For smaller spans the absolute effect on the natural 

frequency of the spring stiffness is greater than for larger spans. Thirdly it is mentioned that the beam 

stiffness has a larger effect on a beam on lower masses than on higher masses as can be seen in graph (b). 

Lastly it should be mentioned that the length of the span has the biggest influence on the natural 

frequency. But if you keep this parameter constant, the mass has the second greatest impact. 

 

4 Conclusions 
 

- An accurate approximation function for the first natural frequency of a beam with rotational 

spring supports has been derived 

- Lightweight floor systems benefit more from rotational spring stiffness at the supports than 

heavier floors.  

- The majority of the possible increase of the natural frequency, due to rotational springs, can be 

obtained already by designing supports with relatively small rotational spring stiffness. 

- Lightweight floors benefit more from higher stiffness than heavier floors. 
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