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Abstract
Group equivariant convolutional neural networks (G-CNNs) have been successfully applied in geometric deep learning.
Typically, G-CNNs have the advantage over CNNs that they do not waste network capacity on training symmetries that
should have been hard-coded in the network. The recently introduced framework of PDE-based G-CNNs (PDE-G-CNNs)
generalizes G-CNNs. PDE-G-CNNs have the core advantages that they simultaneously (1) reduce network complexity, (2)
increase classification performance, and (3) provide geometric interpretability. Their implementations primarily consist of
linear and morphological convolutions with kernels. In this paper, we show that the previously suggested approximative
morphological kernels do not always accurately approximate the exact kernels accurately. More specifically, depending on
the spatial anisotropy of the Riemannian metric, we argue that one must resort to sub-Riemannian approximations. We solve
this problem by providing a new approximative kernel that works regardless of the anisotropy. We provide new theorems with
better error estimates of the approximative kernels, and prove that they all carry the same reflectional symmetries as the exact
ones. We test the effectiveness of multiple approximative kernels within the PDE-G-CNN framework on two datasets, and
observe an improvement with the new approximative kernels. We report that the PDE-G-CNNs again allow for a considerable
reduction of network complexity while having comparable or better performance than G-CNNs and CNNs on the two datasets.
Moreover, PDE-G-CNNs have the advantage of better geometric interpretability over G-CNNs, as the morphological kernels
are related to association fields from neurogeometry.

Keywords Convolutional neural networks · Scale space theory · Geometric deep learning · Morphological convolutions ·
PDEs · Riemannian Geometry · Sub-Riemannian Geometry

1 Introduction

Manyclassification, segmentation, and tracking tasks in com-
puter vision and digital image processing require some form
of “symmetry.” Think, for example, of image classification.
If one rotates, reflects, or translates an image, the classifica-
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tion stays the same. We say that an ideal image classification
is invariant under these symmetries. A slightly different situ-
ation is image segmentation. In this case, if the input image is
in some way changed the output should change accordingly.
Therefore, an ideal image segmentation is equivariant with
respect to these symmetries.

Many computer vision and image processing problems
are currently being tackled with neural networks (NNs). It
is desirable to design neural networks in such a way that
they respect the symmetries of the problem, i.e., make them
invariant or equivariant. Think for example of a neural net-
work that detects cancer cells. It would be disastrous if, by
for example slightly translating an image, the neural network
would give totally different diagnosis, even though the input
is essentially the same.

One way to make the networks equivariant or invariant is
to simply train themonmore data.One could take the training
dataset and augment it with translated, rotated, and reflected
versions of the original images. This approach however is
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Fig. 1 The difference between a traditional CNN layer and a PDE-G-
CNN layer. In contrast to traditional CNNs, the layers in a PDE-G-CNN
do not depend on ad-hoc nonlinearities like ReLU’s, and are instead

implemented as solvers of (non)linear PDEs. What the PDE evolution
block consists of can be seen in Fig. 2

undesirable: invariance or equivariance is still not guaran-
teed and the training takes longer. It would be better if the
networks are inherently invariant or equivariant by design.
This avoids a waste of network-capacity, guarantees invari-
ance or equivariance, and increases performances, see for
example [1].

More specifically, many computer vision and image pro-
cessing problems are tackled with convolutional neural
networks (CNNs) [2–4]. Convolution neural networks have
the property that they inherently respect, to some degree,
translation symmetries. CNNs do not however take into
account rotational or reflection symmetries. Cohen and
Welling introduced group equivariant convolutional neu-
ral networks (G-CNNs) in [5] and designed a classification
network that is inherently invariant under 90 degree rota-
tions, integer translations, and vertical/horizontal reflections.
Much work is being done on invariant/equivariant networks
that exploit inherent symmetries, a non-exhaustive list is
[1, 6–26]. The idea of including geometric priors, such as
symmetries, into the designof neural networks is called ‘Geo-
metric Deep Learning’ in [27].

In [28], partial differential equation (PDE)-basedG-CNNs
are presented, aptly called PDE-G-CNNs. In fact, G-CNNs
are shown to be a special case of PDE-G-CNNs (if one
restricts the PDE-G-CNNs only to convection, using many
transport vectors [28, Sec. 6]).With PDE-G-CNNs, the usual
nonlinearities that are present in current networks, such as
the ReLU activation function and max-pooling, are replaced
by solvers for specifically chosen nonlinear evolution PDEs.
Figure1 illustrates the difference between a traditional CNN
layer and a PDE-G-CNN layer.

The PDEs that are used in PDE-G-CNNs are not chosen
arbitrarily: they come directly from the world of geomet-
ric image analysis, and thus their effects are geometrically
interpretable. This makes PDE-G-CNNs more geometri-
cally meaningful and interpretable than traditional CNNs.
Specifically, the PDEs considered are diffusion, convection,
dilation, and erosion. These 4 PDEs correspond to the com-
mon notions of smoothing, shifting, max pooling, and min
pooling. They are solvedby linear convolutions, resamplings,

Fig. 2 Overview of a PDE evolution block. Convection is solved by
resampling, diffusion is solved by a linear group convolution with a
certain kernel [28, Sec. 5.2], and dilation and erosion are solved by
morphological group convolutions (3) with a morphological kernel (1)

and so-called morphological convolutions. Figure2 illus-
trates the basic building block of a PDE-G-CNN.

One shared property of G-CNNs and PDE-G-CNNs is
that the input data usually needs to be lifted to a higher
dimensional space. Take, for example, the case of image
segmentation with a convolution neural network where we
model/idealize the images as real-valued function on R

2. If
we keep the data as functions on R

2 and want the convo-
lutions within the network to be equivariant, then the only
possible ones that are allowed are with isotropic kernels, [29,
p. 258]. This type of short-coming generalizes to other sym-
metry groups as well [12, Thm. 1]. One can imagine that this
is a constraint too restrictive to work with, and that is why
we lift the image data.

Within the PDE-G-CNN framework, the input images are
considered real-valued functions on R

d , the desired symme-
tries are represented by the Lie group of roto-translations
SE(d), and the data is lifted to the homogeneous space of
d dimensional positions and orientations Md . It is on this
higher dimensional space on which the evolution PDEs are
defined, and the effects of diffusion, dilation, and erosion are
completely determined by theRiemannianmetric tensor field
G that is chosen onMd . If this Riemannianmetric tensor field
G is left-invariant, the overall processing is equivariant, this
follows by combining techniques in [30, Thm. 21, Chpt. 4],
[31, Lem. 3, Thm. 4].

The Riemannian metric tensor field G we will use in this
article is left-invariant and determined by three nonnegative
parameters: w1, w2, and w3. The definition can be found
in the preliminaries, Sect. 2 Equation (4). It is exactly these
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Fig. 3 An example of an image together with its orientation score. We
can see that the image, a real-valued function on R

2, is lifted to an
orientation score, a real-valued function on M2. Notice that the lines
that are crossing in the left image are disentangled in the orientation
score

three parameters that during the training of a PDE-G-CNN
are optimized. Intuitively, the parameters correspondingly
regulate the cost of main spatial, lateral spatial, and angular
motion. An important quantity in the analysis of this paper
is the spatial anisotropy ζ := w1

w2
, as will become clear later.

In this article, we only consider the two-dimensional case,
i.e., d = 2. In this case, the elements of both M2 and SE(2)
can be represented by three real numbers: (x, y, θ) ∈ R

2 ×
[0, 2π). In the case of M2, the x and y represent a position
and θ represents an orientation. Throughout the article, we
takep0 := (0, 0, 0) ∈ M2 as our reference point inM2. In the
case of SE(2), we have that x and y represent a translation
and θ a rotation.

As already stated, within the PDE-G-CNN framework
images are lifted to the higher dimensional space of posi-
tions and orientations Md . There are a multitude of ways of
achieving this, but there is one very natural way to do it: the
orientation score transform [30, 32–34]. In this transform,
we pick a point (x, y) ∈ R

2 in an image and determine how
good a certain orientation θ ∈ [0, 2π) fits the chosen point.
In Fig. 3 an example of an orientation score is given.We refer
to [34, Sec. 2.1] for a summary of how an orientation score
transform works.

Inspiration for using orientation scores comes from biol-
ogy. The Nobel laureates Hubel and Wiesel found that many
cells in the visual cortex of cats have a preferred orientation
[35, 36]. Moreover, a neuron that fires for a specific orien-
tation excites neighboring neurons that have an “aligned”
orientation. Petitot and Citti-Sarti proposed a model [37, 38]
for the distribution of the orientation preference and this exci-
tation of neighbors based on sub-Riemannian geometry on
M2. They relate the phenomenon of preference of aligned
orientations to the concept of association fields [39], which
model how a specific local orientation places expectations on
surrounding orientations in human vision. Figure4 provides
an impression of such an association field.

As shown in [42, Fig. 17], association fields are closely
approximated by (projected) sub-Riemannian geodesics in
M2 for which optimal synthesis has been obtained by

Fig. 4 Association field lines from neurogeometry [37, Fig. 43], [39,
Fig. 16]. Such association field lines can be well approximated by spa-
tially projected sub-Riemannian geodesics in M2 [37, 38, 40, 41], [42,
Fig. 17]

Fig. 5 A visualization of the exact Riemannian distance d, and its rela-
tion with association fields. In Fig. 5a, we see isocontours of d(p0, ·)
in M2, and on the bottom we see the min-projection over θ of these
contours (thus we selected the minimal ending angle in contrast to
Fig. 4). The domain of the plot is [−3, 3]2 × [−π, π) ⊂ M2. The
chosen contours are d = 0.5, 1, 1.5, 2, and 2.5. The metric parameters
are (w1, w2, w3) = (1, 64, 1). Due to the very high spatial anisotropy,
we approach the sub-Riemannian setting. In Fig. 5b, we see the same
min-projection together with some corresponding spatially projected
geodesics

Fig. 6 One sample of the Lines dataset. In Fig. 6a, we see the input,
in Fig. 6b the perceived curve that we consider as ground-truth (as the
input is constructed by interrupting the ground-truth line and adding
random local orientations)

Sachkov and Moiseev [43, 44]. Furthermore, in [45] it
is shown that the Riemannian geodesics in M2 converge
to the sub-Riemannian geodesics by increasing the spatial
anisotropy ζ of the metric. This shows that in practice one
can approximate the sub-Riemannian model by Rieman-
nianmodels. Figure5 shows the relation between association
fields and sub-Riemannian geometry in M2.
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Fig. 7 Theoverall architecture for a PDE-G-CNNperforming line com-
pletion on the Lines data set. Note how the input image is lifted to an
orientation score that lives in the higher dimensional space M2, run
through PDE-G-CNN layers (Figs. 1 and 2), and afterwards projected

down back to R
2. Usually this projection is done by taking the maxi-

mum value of a feature map over the orientations θ , for every position
(x, y) ∈ R

2

Fig. 8 Visualization of how a PDE-G-CNN and CNN incrementally
complete a line throughout their layers. The first two rows are of a
PDE-G-CNN, the second two rows of a CNN. The first column is the
input, the last column the output. The intermediate columns are a rep-
resentative selection of feature maps from the output of the respective
CNN or PDE layer (Fig. 1). The feature maps of the PDE-G-CNN live

in M2, but for clarity we only show the max-projection over θ . Within
the feature maps of the PDE-G-CNN association fields from neuroge-
ometry [37, 39, 46] become visible as network depth increases. Such
merging of association fields is not visible in the feature maps of the
CNN. This observation is consistent throughout different inputs

The relation between association fields and Riemannian
geometry on M2 directly extends to a relation between
dilation/erosion and association fields. Namely, performing
dilation on an orientation score in M2 is similar to extend-
ing a line segment along its association field lines. Similarly,
performing erosion is similar to sharpening a line segment
perpendicular to its association field lines. This makes dila-
tion/erosion the perfect candidate for a task such as line
completion.

In the line completion problem, the input is an image con-
taining multiple line segments, and the desired output is an
image of the line that is “hidden” in the input image. Fig-
ure6 shows such an input and desired output. This is also

what David Field et al. studied in [39]. We anticipate that
PDE-G-CNNs outperform classical CNNs in the line com-
pletion problem due to PDE-G-CNNs being able to dilate
and erode. To investigate this, we made a synthetic dataset
called “Lines” consisting of grayscale 64× 64 pixel images,
together with their ground-truth line completion. In Fig. 7,
a complete abstract overview of the architecture of a PDE-
G-CNN performing line completion is visualized. Figure8
illustrates how a PDE-G-CNN and CNN incrementally com-
plete a line throughout their layers.

In Proposition 1, we show that solving the dilation and
erosion PDEs can be done by performing a morphological
convolution with a morphological kernel kα

t : M2 → R≥0,
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which is easily expressed in the Riemannian distance d = dG
on the manifold:

kα
t (p) = t

β

(
dG(p0,p)

t

)β

. (1)

Here p0 = (0, 0, 0) is our reference point in M2, and time
t > 0 controls the amount of erosion and dilation. Fur-
thermore, α > 1 controls the “softness” of the max and
min-pooling, with 1

α
+ 1

β
= 1. Erosion is done through a

direct morphological convolution (3) with this specific ker-
nel. Dilation is solved in a slightly different way but again
with the same kernel (Proposition 1 in Sect. 3 will explain
the details).

And this is where a problem arises: calculating the exact
distance d on M2 required in (1) is computationally expen-
sive [47]. To alleviate this issue, we resort to estimating the
true distance d with computationally efficient approximative
distances, denoted throughout the article by ρ. We then use
such a distance approximation within (1) to create a corre-
sponding approximative morphological kernel, and in turn
use this to efficiently calculate the effect of dilation and ero-
sion.

In [28], one such distance approximation is used: the log-
arithmic distance estimate ρc which uses the logarithmic
coordinates ci (8). In short, ρc(p) is equal to the Riemannian
length of the exponential curve that connects p0 to p. The for-
mal definition will follow in Sect. 4. In Fig. 9 an impression
of ρc is given.

Clearly, an error is made when the effect of erosion and
dilation is calculated with an approximative morphological
kernel. As a morphological kernel is completely determined
by its corresponding (approximative) distance, it follows that
one can analyze the error by analyzing the difference between
the exact distanced and approximative distanceρ that is used.

Despite showing in [28] that d ≤ ρc no concrete bounds
are given, apart from the asymptotic ρ2

c ≤ d2 +O(d4). This
motivates us to do a more in-depth analysis on the quality of
the distance approximations.

We introduce a variation on the logarithmic estimate ρc
called the half-angle distance estimate ρb, and analyze that.
The half-angle approximation uses not the logarithmic coor-
dinates but half-angle coordinates bi . The definition of these
is also given later (28). In practice, ρc and ρb do not differ
much, but analyzing ρb is much easier!

The main theorem of the paper, Proposition 1, collects
new theoretical results that describe the quality of using the
half-angle distance approximationρb for solving dilation and
erosion in practice. It relates the approximative morpholog-
ical kernel kb corresponding with ρb, to the exact kernel k
(1).

Both the logarithmic estimate ρc and half-angle estimate
ρb approximate the true Riemannian distance d quite well in

Fig. 9 Avisualization ofρc, similar to Fig. 5. In Fig. 9a, we seemultiple
contours of ρc, and on the bottom we see the min-projection over θ .
The metric parameters are (w1, w2, w3) = (1, 4, 1). In Fig. 9b, we see
the same min-projection together with some corresponding spatially
projected exponential curves. Note the similarity to Fig. 4

Fig. 10 In grey, the isocontour d = 2.5 is plotted. The metric
parameters are (w1, w2, w3) = (1, 8, 1). For θ = kπ/10 with k =
−10, . . . , 10, the isocontours are drawn and projected onto the bottom
of the figure. The same kind of visualizations is used in Tables 1 and 2

certain cases.Oneof these cases iswhen theRiemannianmet-
ric has a low spatial anisotropy ζ . We can show this visually
by comparing the isocontours of the exact and approxima-
tive distances. However, interpreting and comparing these
surfaces can be difficult. This is why we have decided to
additionally plot multiple θ -isocontours of these surfaces. In
Fig. 10 one such plot can be seen and illustrates how it must
be interpreted.

In Table 1, a spatially isotropic ζ = 1 and low-anisotropic
case ζ = 2 is visualized. Note that ρb approximates d well
in these cases. In fact, ρb is exactly equal to the true distance
d in the spatially isotropic case, which is not true for ρc.

Both the logarithm and half-angle approximation fail
specifically in the high spatial anisotropy regime. For exam-
ple when ζ = 8. The first two columns of Table 2 show
that, indeed, ρb is no longer a good approximation of the
exact distance d. For this reason, we introduce a novel
sub-Riemannian distance approximations ρb,sr , which is
visualized in the third column of Table 2.
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Table 1 The balls of the exact
distance d and approximative
distance ρb in the isotropic and
low anisotropic case. The radius
of the balls is set to r = 2.5. The
domain of the plots is
[−3, 3] × [−3, 3] × [−π, π).
We fix w1 = w3 = 1 throughout
the plots and vary w2. For
θ = kπ/10 with
k = −10, . . . , 10 the
isocontours are drawn, similar to
Fig. 10

Table 2 The same as Table 1
but in the high spatially
anisotropic case. Alongside the
approximation ρb the
sub-Riemannian distance
approximation ρb,sr is plotted
with ν = 1.6. We see that the
isocontours of ρb are too “thin”
compared to the isocontours of
d. The isocontours of ρb,sr are
better in this respect

Finally, we propose an approximative distance ρcom that
carefully combines the Riemannian and sub-Riemannian
approximations into one. This combined approximation
automatically switches to the estimate that is more appro-
priate depending on the spatial anisotropy, and hence covers
both the low and high anisotropy regimes. Using the corre-
sponding morphological kernel of ρcom to solve erosion and
dilation, we obtain more accurate (and still tangible) solu-
tions of the nonlinear parts in the PDE-G-CNNs.

For every distance approximation (listed in Sect. 4), we
perform an empirical analysis in Sect. 6 by seeing how the
estimate changes the performance of the PDE-G-CNNswhen

applied to two datasets: the Lines dataset and publicly avail-
able DCA1 dataset.

1.1 Contributions

In Proposition 1, we summarize how the nonlinear units
in PDE-G-CNNs (described by morphological PDEs) are
solved using morphological kernels and convolutions, which
provides sufficient and essential background for the discus-
sions and results in this paper.
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The key contributions of this article are:

• Proposition 1 summarizes our mathematical analysis of
the quality of the half-angle distance approximation ρb
and its corresponding morphological kernel kb in PDE-
G-CNNs. We do this by comparing kb to the exact
morphological kernel k. Globally, one can show that
they both carry the same symmetries, and that for low
spatial anisotropies ζ they are almost indistinguishable.
Furthermore, we show that locally both kernels are sim-
ilar through an upper bound on the relative error. This
improves upon results in [28, Lem. 20].

• Table 2 demonstrates qualitatively thatρb becomes a poor
approximation when the spatial anisotropy is high ζ �
1. In Corollary 4, we underpin this theoretically and in
Sect. 6.1 we validate this observation numerically. This
motivates the use of a sub-Riemannian approximation
when ζ is large.

• In Sect. 4, we introduce and derive a novel sub
-Riemannian distance approximation ρsr , that over-
comes difficulties in previous existing sub-Riemannian
kernel approximations [48]. Subsequently, we propose
our approximation ρcom that combines the Riemannian
and sub-Riemannian approximations into one that auto-
matically switches to the approximation that is more
appropriate depending on the metric parameters.

• Figures16 and 19 show that PDE-G-CNNs perform just
aswell as, and sometimes better than,G-CNNsandCNNs
on the DCA1 and Lines dataset, while having the least
amount of parameters. Figures20 and 17 depict an eval-
uation of the performance of PDE-G-CNNs when using
the different distance approximations, again on theDCA1
and Lines dataset. We observe that the new kernel ρb,com
provides best results.

Our theoretical contributions are also relevant outside the
context of geometric deep learning. Namely, it also applies
to general geometric image processing [48], neurogeometry
[37, 38], and robotics [49, Sec. 6.8.4].

In addition, Figs. 4, 5, 9 and 8 show a connection between
the PDE-G-CNN framework with the theory of association
fields from neurogeometry [37, 39]. Thereby, PDE-G-CNNs
reveal improved geometrical interpretability, in comparison
with existing convolution neural networks. In Appendix 1,
we further clarify the geometrical interpretability.

1.2 Outline

In Sect. 2, a short overview of the necessary mathemati-
cal preliminaries is given. Section3 collects some known
results on the exact solution of erosion and dilation on the
homogeneous space of two-dimensional positions and orien-
tations M2, and motivates the use of morphological kernels.

In Sect. 4, all approximative distances are listed. The approx-
imative distances give rise to corresponding approximative
morphological kernels. Themain theoremof this paper canbe
found in Sect. 5 and consist of three parts, of which the proofs
can be found in the relevant subsections. The main theorem
mostly concerns itself with the analysis of the approximative
morphological kernel kb. Experiments with various approxi-
mative kernels are done and the result can be found in Sect. 6.
Finally, we end the paper with a conclusion in Sect. 7.

2 Preliminaries

Coordinates on SE(2) and M2. Let G = SE(2) =
R
2

� SO(2) be the two-dimensional rigid body motion
group. We identify elements g ∈ G with g ≡ (x, y, θ) ∈
R
2 × R/(2πZ), via the isomorphism SO(2) ∼= R/(2πZ).

Furthermore, we always use the small-angle identification
R/(2πZ) = [−π, π).

For g1 = (x1, y1, θ1), g2 = (x2, y2, θ2) ∈ SE(2)we have
the group product

g1g2 := (x1 + x2 cos θ1 − y2 sin θ1,

y1 + x2 sin θ1 + y2 cos θ1,

θ1 + θ2 mod 2π),

and the identity is e = (0, 0, 0). The rigid bodymotion group
acts on the homogeneous space of two-dimensional positions
and orientationsM2 = R

2×S1 ⊆ R
2×R

2 by the left-action
�:

(x,R) � (y,n) = (x + Ry,Rn),

with (x,R) ∈ SE(2) and (y,n) ∈ M2. If context allows
it, we may omit writing � for conciseness. By choosing the
reference element p0 = (0, 0, (1, 0)) ∈ M2, we have:

(x, y, θ) � p0 = (x, y, (cos θ, sin θ)). (2)

This mapping is a diffeomorphism and allows us to identify
SE(2) and M2. Thereby we will also freely use the (x, y, θ)

coordinates on M2.
Morphological group convolution.Given functions f1, f2 :
M2 → R, we define their morphological convolution (or
‘infimal convolution’) [50, 51] by

( f1 � f2)(p) = inf
g∈G

{
f1(g

−1p) + f2(g p0)
}

(3)

Left-invariant (co-)vector fields on M2. Throughout this
paper, we shall rely on the following basis of left-invariant
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vector fields:

A1 = cos θ∂x + sin θ∂y,

A2 = − sin θ∂x + cos θ∂y, and

A3 = ∂θ .

The dual frame ωi is given by 〈ωi ,A j 〉 = δij , i.e.,

ω1 = cos θdx + sin θdy,

ω2 = − sin θdx + cos θdy, and

ω3 = dθ.

Metric tensor fields on M2. We consider the following left-
invariant metric tensor fields:

G =
3∑

i=1

w2
i ωi ⊗ ωi (4)

and write ‖ṗ‖ = √Gp(ṗ, ṗ). Here, wi > 0 are the metric

parameters. We also use the dual norm ‖p̂‖∗ = sup
ṗ∈TpM2

〈ṗ,p̂〉
‖ṗ‖ .

We will assume, without loss of generality, that w2 ≥ w1

and introduce the ratio

ζ := w2

w1
≥ 1 (5)

that is called the spatial anisotropy of the metric. Distances
onM2. The left-invariantmetric tensor fieldG onM2 induces
a left-invariant distance (‘Riemannian metric’) d : M2 ×
M2 → R≥0 by

dG(p,q) = inf
γ∈t (p,q)

(
LG(γ ) :=

∫ t

0
‖γ̇ (s)‖G ds

)
, (6)

where t (p,q) is the set piecewise C1-curves γ in M2 with
γ (0) = p and γ (t) = q. The right-hand side does not depend
on t > 0, and we may set t = 1.

If no confusion can arise, we omit the subscript G and
write d, L, ‖ · ‖ for short. The distance being left-invariant
means that for all g ∈ SE(2),p1,p2 ∈ M2 one has d(p,q) =
d(gp, gq). We will often use the shorthand notation d(p) :=
d(p,p0).

We often consider the sub-Riemannian case arising when
w2 → ∞. Then we have “infinite cost” for sideways motion
and the only “permissible” curves γ are the ones for which
γ̇ (t) ∈ H where H := span{A1,A3} ⊂ TM2. This gives
rise to a new notion of distance, namely the sub-Riemannian
distance dsr :

dsr (p,q) = inf
γ∈t (p,q),

γ̇∈H
LG(γ ). (7)

One can show rigorously that when w2 → ∞ the Rieman-
nian distance d tends to the sub-Riemannian distance dsr , see
for example [45, Thm. 2].
Exponential and Logarithm on SE(2). The exponential
map exp(c1∂x |e + c2∂y |e + c3∂θ |e) = (x, y, θ) ∈ SE(2) is
given by:

x =
(
c1 cos c3

2 − c2 sin c3
2

)
sinc c3

2 ,

y =
(
c1 sin c3

2 + c2 cos c3
2

)
sinc c3

2 ,

θ = c3 mod 2π.

And the logarithm: log(x, y, θ) = c1∂x |e+c2∂y |e+c3∂θ |e ∈
TeSE(2):

c1 = x cos θ
2 + y sin θ

2

sinc θ
2

,

c2 = −x sin θ
2 + y cos θ

2

sinc θ
2

,

c3 = θ.

(8)

By virtue of equation (2), we will freely use the logarithm
coordinates on M2.

3 Erosion and Dilation

Wewill be considering the following Hamilton–Jacobi equa-
tion on M2:

{
∂Wα

∂t = ± 1
α

‖∇Wα‖α = ±Hα(dWα)

Wα|t=0 = U ,
(9)

with the Hamiltonian Hα : T ∗
M2 → R≥0:

Hα(p̂) = H1D
α (‖p̂‖) = 1

α
‖p̂‖α∗ ,

and whereWα the viscosity solutions [52] obtained from the
initial condition U ∈ C(M2, R). Here the +sign is a dila-
tion scale space and the −sign is an erosion scale space [50,
51]. If confusion cannot arise, we omit the superscript 1D.
Erosion and dilation correspond to min- and max-pooling,
respectively. The Lagrangian Lα : TM2 → R≥0 corre-
sponding with this Hamiltonian is obtained by taking the
Fenchel transform of the Hamiltonian:

Lα(ṗ) = L1D
α (‖ṗ‖) = 1

β
‖ṗ‖β

with β such that 1
α

+ 1
β

= 1. Again, if confusion cannot
arise, we omit the subscript α and/or superscript 1D. We
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deviate from our previous work by including the factor 1
α

and working with a power of α instead of 2α. We do this
because it simplifies the relation between the Hamiltonian
and Lagrangian.

The following proposition collects standard results in
terms of the solutions of Hamilton–Jacobi equations onman-
ifolds [53–55], thereby generalizing results on R

2 to M2.

Proposition 1 (Solution erosion & dilation) Let α > 1. The
viscosity solution Wα of the erosion PDE (9) is given by

Wα(p, t) = inf
q∈M2,

γ∈t (p,q)

U (q) +
t∫

0

Lα(γ̇ (s)) ds (10)

= inf
q∈M2

U (q) + tL1D
α (d(p,q)/t) (11)

= (kα
t �U )(p) (12)

where the morphological kernel kα
t : M2 → R≥0 is defined

as:

kα
t = tL1D

α (d/t) = t

β

(
d(p0, ·)

t

)β

. (13)

Furthermore, the Riemannian distance d := d(p0, ·) is the
viscosity solution of the eikonal PDE

‖∇d‖2 =
3∑

i=1

(Ai d/wi )
2 = 1 (14)

with boundary condition d(p0) = 0. Likewise the viscosity
solution of the dilation PDE is

Wα(p, t) = −(kα
t � −U )(p) (15)

Proof It is shown by Fathi in [54, Prop. 5.3] that (10) is a
viscosity solution of the Hamilton–Jacobi equation (9) on a
complete connectedRiemannianmanifoldwithout boundary,
under some (weak) conditions on the Hamiltonian and with
the initial condition U being Lipschitz. In [53, Thm. 2], a
similar statement is given but only for compact connected
Riemannian manifolds, again under some weak conditions
on the Hamiltonian but without any on the initial condition.
Next, we employ these existing results and provide a self-
contained proof of (11) and (12).

Because we are looking at a specific class of Lagrangians,
the solutions can be equivalently written as (11). In [53, Prop.
2], this form can also be found. Namely, the LagrangianL1D

α

is convex for α > 1, so for any curve γ ∈ t := t (p,q) we
have by direct application of Jensen’s inequality (omitting
the superscript 1D):

Lα

(
1

t

∫ t

0
‖γ̇ (s)‖ds

)
≤ 1

t

∫ t

0
Lα(‖γ̇ (s)‖) ds,

with equality if ‖γ̇ ‖ is constant. This means that:

inf
γ∈t

tLα

(
L(γ )

t

)
≤ inf

γ∈t

∫ t

0
Lα(‖γ̇ (s)‖) ds, (16)

where L(γ ) := LG(γ ), recall (6), is the length of the curve
γ . Consider the subset of curves with constant speed ̃t =
{γ ∈ t | ‖γ̇ ‖ = L(γ )/t} ⊂ t . Optimizing over a subset
can never decrease the infimum so we have:

inf
γ∈t

∫ t

0
Lα(‖γ̇ (s)‖)ds ≤ inf

γ∈̃t

∫ t

0
Lα

(
L(γ )

t

)
ds

The r.h.s of this equation is equal to the l.h.s of equation (16)
as the length of a curve is independent of its parameterization.
Thereby we have equality in (16). By monotonicity of Lα on
R>0, we may then concluded that:

inf
γ∈t

tLα (L(γ )/t) = tLα

(
inf

γ∈t
L(γ )/t

)

= tLα(d(p,q)/t).

That we can write the solution as (12) is a consequence of
the left-invariant metric on themanifold. A similar derivation
can be found in [28, Thm. 30]:

Wα(p, t) = inf
q∈M2

U (q) + tLα(d(p,q)/t)

= inf
g∈G U (gp0) + tLα(d(p, gp0)/t)

= inf
g∈G U (gp0) + tLα(d(g−1p,p0)/t)

= inf
g∈G U (gp0) + kα

t (g−1p)

= (kα
t �U )(p)

It is shown in [55, Thm. 6.24] for complete connected Rie-
mannian manifolds that the distance map d(p) is a viscosity
solution of the Eikonal equation (14).

Finally, solutions of erosion and dilation PDEs correspond
to each other. If Wα is the viscosity solution of the erosion
PDEwith initial conditionU , then−Wα is the viscosity solu-
tion of the dilation PDE, with initial condition −U . This
means that the viscosity solution of the dilation PDE is given
by (15). ��

4 Distance Approximations

To calculate the morphological kernel kα
t (13), we need

the exact Riemannian distance d (6), but calculating this is
computationally demanding. To alleviate this problem, we
approximate the exact distance d(p0, ·) with approximative
distances, denoted with ρ : M

2 → R≥0, which are com-
putationally cheap. To this end, we define the logarithmic
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distance approximation ρc, as explained in [28, Def.19] and
[56, Def.6.1.2], by

ρc :=
√

(w1c1)2 + (w2c2)2 + (w3c3)2. (17)

Note that all approximative distances ρ can be extended
to something that looks like a metric on M2. For example,
we can define:

ρ(g1p0, g2p0) := ρ(g−1
1 g2p0).

But this is almost always not a true metric in the sense that
it does not satisfy the triangle inequality. So in this sense
an approximative distance is not necessarily a true distance.
However, we will keep referring to them as approximative
distances as we only require them to look like the exact Rie-
mannian distance d(p0, ·).

As already stated in the introduction, Riemannian dis-
tance approximations such as ρc begin to fail in the high
spatial anisotropy cases ζ � 1. For these situations, we
need sub-Riemannian distance approximations. In previous
literature, two such sub-Riemannian approximations are sug-
gested. The first one is standard [57, Sec. 6], the second one
is a modified smooth version [29, p. 284], also seen in [48,
eq. 14]:

√√
νw2

1w
2
3

∣∣c2∣∣ + (w1c1)2 + (w3c3)2 (18)

4
√

νw2
1w

2
3

∣∣c2∣∣2 + ((w1c1)2 + (w3c3)2)2 (19)

In [48], ν ≈ 44 is empirically suggested. Note that the
sub-Riemannian approximations rely on the assumption that
w2 ≥ w1.

However, they both suffer from amajor shortcoming in the
interaction between w3 and c2. When we let w3 → 0 both
approximations suggest that it becomes arbitrarily cheap to
move in the c2 direction which is undesirable as this deviates
from the exact distance d: moving spatially will always have
a cost associated with it determined by at least w1.

To make a proper sub-Riemannian distance estimate, we
will use the Zassenhaus formula, which is related to the
Baker–Campbell–Hausdorff formula:

et(X+Y ) = et X etY e− t2
2 [X ,Y ]eO(t3) . . . , (20)

where we have used the shorthand ex := exp(x). Filling in
X = A1 and Y = A3 and neglecting the higher-order terms
gives:

et(A1+A3) ≈ et A1et A3e
t2
2 A2 , (21)

or equivalently:

e
t2
2 A2 ≈ e−t A3e−t A1et(A1+A3). (22)

This formula says that one can successively follow exponen-
tial curves in the “legal” directionsA1 andA3 to effectively
move in the “illegal” direction of A2. Taking the lengths
of these curves and adding them up gives an approximative
upper bound on the sub-Riemannian distance:

dsr (e
t2
2 A2) �

(
w1 + w3 +

√
w2
1 + w2

3

)
|t |

≤ 2 (w1 + w3) |t | .
(23)

Substituting t → √
2 |t | gives:

dsr (e
t A2) � 2

√
2 (w1 + w3)

√|t |. (24)

This inequality, together with the smoothing trick to go from
(18) to (19), inspires then the following sub-Riemannian dis-
tance approximation:

ρc,sr := 4
√

(ν(w1 + w3))
4
∣∣c2∣∣2 + ((w1c1)2 + (w3c3)2)2,

(25)

for some 0 < ν < 2
√
2 s.t. the approximation is tight. We

empirically suggest ν ≈ 1.6, based on a numerical analysis
that is tangential to [48, Fig. 3]. Notice that this approxima-
tion does not break down when we let w3 → 0.

Furthermore, in view of contraction of SE(2) to the
Heisenberg group H3 [29, Sec. 5.2], and the exact funda-
mental solution [32, eq. 27] of the Laplacian on H3 (where
the norm ρc,sr appears squared in the numerator with 1 =
w1 = w3 = ν) we expect ν ≥ 1.

Table 3 shows that both the old sub-Riemannian approx-
imation (19) and new approximation (25) are appropriate in
cases such as w3 = 1. Table 4 shows that the old approxima-
tion breaks down when we take w3 = 0.5, and that the new
approximation behaves more appropriate.

TheRiemannian and sub-Riemannian approximations can
be combined into the following newly proposed practical
approximation:

ρc,com := max(l, min(ρc,sr ρc)), (26)

where l : M2 → R is given by:

l :=
√

(w1x)2 + (w1y)2 + (w3θ)2, (27)

for which will we show that it is a lower bound of the exact
distance d in Lemma 4.

The most important property of the combined approxima-
tion is that is automatically switches between theRiemannian
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Table 3 Same situation and
metric parameters as Table 2,
i.e., w1 = w3 = 1 and w2 = 8.
We see the exact distance d
alongside the old
sub-Riemannian approximation
ρb,sr ,old (19) and new
approximation ρb,sr (25). For
the old approximation, we chose
ν = 44, as suggested in [48],
and for the new one ν = 1.6. We
see that in this case both
approximations are appropriate

Table 4 Same as Table 3 but
then with
w1 = 1, w2 = 8, w3 = 0.5. We
see that in this case that the old
sub-Riemannian approximation
ρb,sr ,old (19) underestimates the
true distance and becomes less
appropriate. The new
approximation (25) is also not
perfect but qualitatively better.
Decreasing w3 would
exaggerate this effect even
further

and sub-Riemannian approximations depending on the met-
ric parameters. Namely, the Riemannian approximation is
appropriate very close to the reference point p0, but tends to
overestimate the true distance at a moderate distance from it.
The sub-Riemannian approximation is appropriate at moder-
ate distances from p0, but tends to overestimate very close to
it, and underestimate far away. The combined approximation

is such that we get rid of the weaknesses that the approxima-
tions have on their own.

On top of these approximative distances, we also define
ρb,ρb,sr , andρb,com by replacing the logarithmic coordinates
ci by their corresponding half-angle coordinates bi defined
by:
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b1 = x cos θ
2 + y sin θ

2 ,

b2 = −x sin θ
2 + y cos θ

2 ,

b3 = θ. (28)

So, for example, we define ρb as:

ρb :=
√

(w1b1)2 + (w2b2)2 + (w3b3)2. (29)

Why we use these coordinates will be explained in Sect. 5.1.
We can define approximative morphological kernels by

replacing the exact distance in (13) by any of the approxi-
mative distances in this section. To this end we, for example,
define kb by replacing the exact distance in themorphological
kernel k by ρb:

kα
b,t := t

β

(ρb

t

)β

, (30)

where we recall that 1
α

+ 1
β

= 1 and α > 1.

5 Main Theorem and Analysis

When the effect of erosion and dilation is calculated with
an approximative morphological kernel an error is made. We
are therefor interested in analyzing the behavior of this error.
We do this by comparing the approximative morphological
kernels with the exact kernel kα

t (13). The result of our anal-
ysis is summarized in the following theorem. Because there
is no time t dependency in all the inequalities of our main
result we use short notation kα := kα

t , k
α
b := kα

b,t .

Theorem 1 (Quality of approximative morphological ker-
nels) Let ζ := w2

w1
denote the spatial anisotropy, and let β be

such that 1
α

+ 1
β

= 1, for some α > 1 fixed. We assess the
quality of our approximative kernels in three ways:

• The exact and all approximative kernels have the same
symmetries, see Table 5.

• Globally it holds that:

ζ−βkα ≤ kα
b ≤ ζ βkα, (31)

from which we see that in the case ζ = 1 we have that
kα
b is exactly equal to kα .

• Locally around1 p0 we have:

kα
b ≤ (1 + ε)β/2kα. (32)

1 For a precise statement see Lemma 7 and Remark 3.

Table 5 Overviewof the fundamental symmetries εi in half-angle coor-
dinates bi and logarithmic coordinates ci . For example ε3(c1, c2, c3) =
(−c1,−c2, c3)

ε0 ε1 ε2 ε3 ε4 ε5 ε6 ε7

b1, c1 + + − − − − + +
b2, c2 + − + − + − + −
b3, c3 + + + + − − − −

where

ε := ζ 2 − 1

2w2
3

ζ 4ρ2
b + O(|θ |3). (33)

Proof The proof of the parts of the theoremwill be discussed
throughout the upcoming subsections.

• The symmetries are shown in Corollary 1.
• The global bound (31) is shown in Corollary 3.
• The local bound (32) is shown in Corollary 5.

��
Clearly, as all approximative kernels are solely functions

of the corresponding approximative distances, the analysis of
the quality of an approximative kernel reduces to analyzing
the quality of the approximative distance that is used, and
this is exactly what we will do.

In previous work on PDE-G-CNN’s the bound d =
d(p0, ·) ≤ ρc is proven [28, Lem. 20]. Furthermore, it is
shown that around p0 one has:

ρ2
c ≤ d2 + O(d4), (34)

which has the corollary that there exist a constant C ≥ 1
such that

ρc ≤ Cd (35)

for any compact neighborhood around p0. We improve on
these results by:

• Showing that the approximative distances have the same
symmetries as the exact Riemannian distance; Lemma 3.

• Finding simple global bounds on the exact distance d
which can then be used to find global estimates of ρb
by d; Lemma 4. This improves upon (35) by finding an
expression for the constant C .

• Estimating the leading term of the asymptotic expansion,
and observing that our upper bound of the relative error
between ρb and d explodes in the cases ζ → ∞ and
w3 → 0; Lemma 7. This improves upon equation (34).
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Note, however, that we are not analyzing ρc: we will be ana-
lyzing ρb. This is mainly because the half-angle coordinates
are easier to work with: they do not have the sinc θ

2 factor the
logarithmic coordinates have. Using that

b1 = c1 sinc θ
2 , b2 = c2 sinc θ

2 , b3 = c3, (36)

recall (28) and (8), we see that

sinc θ
2 ρc ≤ ρb ≤ ρc,

and thus locally ρc and ρb do not differ much, and results on
ρb can be easily transferred to (slightly weaker) results on
ρc.

5.1 Symmetry Preservation

Symmetries play a major role in the analysis of (sub-
)Riemannian geodesics/distance in SE(2). They help to
analyze symmetries in Hamiltonian flows [44] and corre-
sponding symmetries in association field models [42, Fig.
11]. There are together 8 of them and their relation with log-
arithmic coordinates ci (Lemma 1) shows they correspond to
inversion of the Lie-algebra basis Ai �→ −Ai . The symme-
tries for the sub-Riemannian setting are explicitly listed in
[44, Prop. 4.3]. They can be algebraically generated by the
(using the same labeling as [44]) following three symmetries:

ε2(x, y, θ) = (−x cos θ − y sin θ,−x sin θ + y cos θ, θ),

ε1(x, y, θ) = (x cos θ + y sin θ, x sin θ − y cos θ, θ), and
ε6(x, y, θ) = (x cos θ + y sin θ,−x sin θ + y cos θ,−θ).

(37)

They generate the other four symmetries as follows:

ε3 = ε2 ◦ ε1, ε4 = ε2 ◦ ε6, ε7 = ε1 ◦ ε6,

and ε5 = ε2 ◦ ε1 ◦ ε6.
(38)

andwith ε0 = id.All symmetries are involutions: εi◦εi = id.
Henceforth all eight symmetries will be called ‘fundamen-
tal symmetries.’ How all fundamental symmetries relate to
each other becomes clearer if we write them down in either
logarithm or half-angle coordinates.

Lemma 1 (8 fundamental symmetries) The 8 fundamental
symmetries εi , in either half-angle coordinates bi or loga-
rithmic coordinates ci , correspond to sign flips as laid out in
Table 5.

Proof We will only show that ε2 flips b1. All other calcula-
tions are done analogously. Pick a point p = (x, y, θ) and

let q = ε2(p). We now calculate b1(q):

b1(q) = x(q) cos θ(q)
2 + y(q) sin θ(q)

2

= − (x cos θ + y sin θ) cos θ
2

+ (−x sin θ + y cos θ) sin θ
2

= − x(cos θ cos θ
2 + sin θ sin θ

2 )

− y(sin cos θ
2 − cos θ sin θ

2 )

= − x cos θ
2 − y sin θ

2

= − b1(p),

where we have used the trigonometric difference identities
of cosine and sine in the second-to-last equality. From the
relation between logarithmic andhalf-angle coordinates (36),
we have that the logarithmic coordinates ci flip in the same
manner under the symmetries. ��

The fixed points of the symmetries ε2, ε1, and ε6 have
an interesting geometric interpretation. The logarithmic and
half-angle coordinates, being so closely related to the fun-
damental symmetries, also carry the same interpretation.
Definition 1 introduces this geometric idea and Lemma 2
makes its relation to the fixed points of the symmetries pre-
cise. In Fig. 11, the fixed points are visualized, and in Fig. 12
a visualization of these geometric ideas can be seen.

Definition 1 Two points p1 = (x1,n1), p2 = (x2,n1) of
M2 are called cocircular if there exist a circle, of possibly
infinite radius, passing through x1 and x2 such that the ori-
entations n1 ∈ S1 and n2 ∈ S1 are tangents to the circle, at,
respectively, x1 and x2, in either both the clockwise or anti-
clockwise direction. Similarly, the points are called coradial
if the orientations are normal to the circle in either both the
outward or inward direction. Finally, two points are called
parallel if their orientations coincide.

Co-circularity has a well-known characterization that is
often used for line enhancement in image processing, such
as tensor voting [58].

Remark 1 Point p = (r cosφ, r sin φ, θ) ∈ M2 is cocircular
to the reference point p0 = (0, 0, 0) if and only if the double
angle equality θ ≡ 2φ mod 2π holds.

In fact all fixed points of the fundamental symmetries can
be intuitively characterized:

Lemma 2 (Fixed Points of Symmetries) Fix reference point
p0 = (0, 0, 0) ∈ M2.

The point gp0 ∈ M2 with g ∈ SE(2) is, respectively,

– coradial to p0 when

c1(g) = 0 ⇔ ε2(g) = g ⇔ g ∈ exp(〈A2, A3〉), (39)
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Fig. 11 a ε2, b ε1, c ε6. The
fixed points of the ε2, ε1, and
ε6. For ε2 and ε1, only the
points within the region
x2 + y2 ≤ 22 are plotted. For
ε6, only the points in the region
max(|x | , |y|) ≤ 2. The fixed
points of ε2, ε1, and ε6

correspond, respectively, to the
points in M2 that are coradial,
cocircular, and parallel to the
reference point p0

x

y

θ
(a) ε2

x

y

θ

(b) ε1

x

y

θ

(c) ε6

Fig. 12 a Coradial, b
Cocircular, c Parallel. An
example of points in M2 that are
coradial, cocircular, and parallel

(a) Coradial (b) Cocircular (c) Parallel

– cocircular to p0 when

c2(g) = 0 ⇔ ε1(g) = g ⇔ g ∈ exp(〈A1, A3〉), (40)

– parallel to p0 when

c3(g) = 0 ⇔ ε6(g) = g ⇔ g ∈ exp(〈A1, A2〉). (41)

Proof We will only show (40), the others are done analo-
gously. We start by writing g = (r cosφ, r sin φ, θ) and
calculating that g � p0 = (r cosφ, r sin φ, (cos θ, sin θ)).
Then by Remark 1 we known that gp0 is cocircular to p0 if
and only if 2φ = θ mod 2π . We can show this is equivalent
to c2(g) = 0:

c2(g) = 0 ⇔ b2(g) = 0

⇔ −x sin θ
2 + y cos θ

2 = 0

⇔ − cosφ sin θ
2 + sin φ cos θ

2 = 0

⇔ sin(φ − θ
2 ) = 0 ⇔ 2φ = θ mod 2π.

In logarithmic coordinates, ε1 is equivalent to:

ε1(c
1, c2, c3) = (c1,−c2, c3)

from which we may deduce that ε1(g) = g is equivalent to
c2(g) = 0. If c2(g) = 0 then log g ∈ 〈A1, A3〉 and thus
g ∈ exp(〈A1, A3〉). As for the other way around, it holds by

simple computation that:

c2(exp(c1A1 + c3A3)) = 0

which shows that g ∈ exp(〈A1, A3〉) ⇒ c2(g) = 0. ��
In the important work [44] on sub-Riemannian geome-

try on SE(2) by Sachkov and Moiseev, it is shown that the
exact sub-Riemannian distance dsr is invariant under the fun-
damental symmetries εi . However, these same symmetries
hold true for the Riemannian distance d. Moreover, because
the approximative distances use the logarithmic coordinates
ci and half-angle coordinates bi they also carry the same
symmetries. The following lemma makes this precise.

Lemma 3 (Symmetries of the exact distance and all pro-
posed approximations) All exact and approximative (sub)-
Riemannian distances (w.r.t. the reference point p0) are
invariant under all the fundamental symmetries εi .

Proof By Table 5, one sees that ε3, ε4, and ε5 also gen-
erate all symmetries. Therefore, if we just show that all
distances are invariant under these select three symmetries
we also have shown that they are invariant under all sym-
metries. We will first show the exact distance, in either the
Riemannian or sub-Riemannian case, is invariant w.r.t. these
three symmetries, i.e., d(p) = d(εi (p)) for i ∈ {3, 4, 5}.
By (38) and (37), one has ε3(x, y, θ) = (−x,−y, θ) and
ε4(x, y, θ) = (−x, y,−θ). Now consider the push forward
ε3∗. By direct computation (in (x, y, θ) coordinates), we have
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Fig. 13 In grey the isocontour ρb = 2.5, together with the symmetry
“planes” of ε2, ε1 and ε6, as also plotted in Fig. 11. The metric param-
eters are (w1, w2, w3) = (1, 2, 1)

ε3∗ Ai |p = ± Ai |ε3(p). Because the metric tensor field G
(4) is diagonal w.r.t. to the Ai basis this means that ε3 is
a isometry. Similarly, ε4 is an isometry. Being an isome-
try of the metric G, we may directly deduce that ε3 and
ε4 preserve distance. The ε5 symmetry flips all the signs
of the ci coordinates which amounts to Lie algebra inver-
sion: − log g = log(ε5(g)). Taking the exponential on both
sides shows that g−1 = ε5(g). By left-invariance of the met-
ric, we have d(gp0,p0) = d(p0, g−1p0), which holds in
both the Riemannian and sub-Riemannian case, and thus
d(gp0) = d(ε5(gp0)). That all approximative distances
(both in the Riemannian and sub-Riemannian case) are also
invariant under all the symmetries is not hard to see: every bi

and ci term is either squared or the absolute value is taken.
Flipping signs of these coordinates, recall Lemma 1, has no
effect on the approximative distance. ��
Corollary 1 (All kernels preserve symmetries) The exact ker-
nel and all approximative kernels have the same fundamental
symmetries.

Proof The kernels are direct functions of the exact and
approximative distances, recall for example (13), so from
Lemma 3 we can immediately conclude that they also carry
the 8 fundamental symmetries. ��

In Fig. 10, the previous lemma can be seen. The two fun-
damental symmetries ε2 and ε1 correspond, respectively, to
reflecting the isocontours (depicted in colors) along their
short edge and long axis. The ε6 symmetry corresponds to
mapping the positive θ isocontours to their negative θ coun-
terparts. In Fig. 13, one can see an isocontour of ρb together
with the symmetry “planes” of ε2, ε1 and ε6.

5.2 Simple Global Bounds

Next we provide some basic global lower and upper bounds
for the exact Riemannian distance d (6). Recall that the lower

bound l plays an important role in the combined approxima-
tion ρc,com (26) when far from the reference point p0.

Lemma 4 (Global bounds on distance) The exact Rieman-
nian distance d = d(p0, ·) is greater than or equal to the
following lower bound l : M2 → R:

l :=
√

(w1x)2 + (w1y)2 + (w3θ)2 ≤ d

and less than or equal to the following upper bounds u1, u2 :
M2 → R:

d ≤ u1 :=
√

(w2x)2 + (w2y)2 + (w3θ)2

d ≤ u2 :=
√

(w1x)2 + (w1y)2 + w3π

Proof We will first show l ≤ d. Consider the following spa-
tially isotropic metric:

G̃ = w2
1 ω1 ⊗ ω1 + w2

1 ω2 ⊗ ω2 + w2
3 ω3 ⊗ ω3.

We assumed w.l.o.g. that w1 ≤ w2 so we have for any vector
v ∈ TM2 that ‖v‖G̃ ≤ ‖v‖G . From this, we can directly
deduce that for any curve γ on M2 we have that L G̃(γ ) ≤
LG(γ ). Now consider a length-minimizing curve γ w.r.t. G
between the reference point p0 and some end point p. We
then have the chain of (in)equalities:

dG̃(p) ≤ L G̃(γ ) ≤ LG(γ ) = dG(p)

Furthermore, because themetric G̃ is spatially isotropic it can
be equivalently be written as:

G̃ = w2
1 dx ⊗ dx + w2

1 dy ⊗ dy + w2
3 dθ ⊗ dθ,

which is a constant metric on the coordinate covector fields,
and thus:

dG̃(p) =
√

(w1x)2 + (w1y)2 + (w3θ)2 = l.

Putting everything together gives the desired result of l ≤ d.
To show that d ≤ u1 can be done analogously.

As for showing d ≤ u2 we will construct a curve γ of
which the length L(γ ) w.r.t. G can be bounded from above
with u2. This in turn shows that d ≤ u2 by definition of
the distance. Pick a destination position and orientation p =
(x,n). The constructed curve γ will be as follows. We start
by aligning our starting orientation n0 = (1, 0) ∈ S1 toward
the destination position x. This desired orientation toward x
is x̂ := x

r where r = ‖x‖ = √
x2 + y2. This action will

cost w3a for some a ≥ 0. Once we are aligned with x̂, we
move toward x. Because we are aligned this action will cost
w1r . Now that we are at x we align our orientation with
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the destination orientation n, which will cost w3b for some
b ≥ 0. Altogether we have L(γ ) = w1r + w3(a + b). In its
current form, the constructed curve actually doesn’t have that
a + b ≤ π as desired. To fix this, we realize that we did not
necessarily had to align with x̂. We could have aligned with
−x̂ and move backwards toward x, which will also costw1r .
One can show that one of the two methods (either moving
forwards or backwards toward x) indeed has that a + b ≤ π

and thus d ≤ u2. ��
These bounds are simple but effective: they help us prove

a multitude of insightful corollaries.

Corollary 2 (Global error distance) Simple manipulations,
together with the fact that x2 + y2 = (b1)2 + (b2)2, give
the following inequalities between l, u1 and ρb:

l ≤ ρb ≤ u1,
1

ζ
u1 ≤ ρb ≤ ζ l.

The second equation can be extended to inequalities between
ρb and d:

1

ζ
d ≤ ρb ≤ ζd (42)

Remark 2 If w1 = w2 ⇔ ζ = 1, i.e., the spatially isotropic
case, then the lower andupper boundcoincide, thus becoming
exact. Because ρb is within the lower and upper bound it also
becomes exact.

Corollary 3 (Global error kernel) Globally the error is inde-
pendent of time t > 0 and is estimated by the spatial
anisotropy ζ ≥ 1 (5) as follows:

ζ−βkα ≤ kα
b ≤ ζ βkα.

For ζ = 1, there is no error.

Proof We will only prove the second inequality, the first is
done analogously.

kα
b := 1

β
(ρb/t)

β ≤ 1

β
(ζd/t)β

= ζ β

(
1

β
(d/t)β

)
= ζ βkα

��
The previous result indicates that problems can arise if

ζ → ∞, which indeed turns out to be the case:

Corollary 4 (Observing the problem) If we restrict ourselves
to x = θ = 0, we have that u1 = ρb = ρc = w2 |y|. From
this, we can deduce that one can be certain that both ρb
and ρc become bad approximations away from p0. Namely,
when ζ > 1 ⇔ w2 > w1 both approximations go above

u2 if one looks far enough away from p0. How “fast” it
goes bad is determined by all metric parameters. Namely,
the intersection of the approximations ρb and ρc, and u2 is at
|y| = w3π

w2−w1
, or equivalently atρ = w3π

1−ζ−1 . This intersection
is visible in Fig.14 in the higher anisotropy cases. From this
expression of the intersection, we see that in the cases w3 →
0 and ζ → ∞ the Riemannian distance approximations ρb
and ρc quickly go bad. We will see exactly the same behavior
in Lemma 7 and Remark 3.

Lemma 4 is visualized in Figs. 14 and 15. In Fig. 14, we
consider the behavior of the exact distance and bounds along
the y-axis, that is at x = θ = 0. We have chosen to inspect
the y-axis because it consists of points that are hard to reach
from the reference point p0 when the spatial anisotropy is
large, which makes it interesting. In contrast, along the x-
axis l, d, ρb, ρc, u1 and w1 |x | all coincide, and is therefore
uninteresting. To provide more insight we also depict the
bounds along the y = x axis, see Fig. 15. Observe that in
both figures, the exact distance d is indeed always above the
lower bound l and below the upper bounds u1 and u2.

5.3 Asymptotic Error Expansion

In this section, we provide an asymptotic expansion of the
error between the exact distance d and the half-angle distance
approximation ρb (Lemma 7). This error is then leveraged to
an error between the exact morphological kernel k and the
half-angle kernel kb (Corollary 5). We also give a formula
that determines a region for which the half-angle approxi-
mation ρb is appropriate given an a priori tolerance bound
(Remark 3).

Lemma 5 Let γ : [0, 1] → M2 be a minimizing geodesic
from p0 to p. We have that:

ρb(p) ≤ d(p) max
t∈[0,1] ‖dρb|γ (t)‖.

Proof The fundamental theorem of calculus tells us that:

∫ 1

0
(ρb ◦ γ )′(t) dt = ρb(γ (1)) − ρb(γ (0)) = ρb(p),

but one can also bound this expression as follows:

∫ 1

0
(ρb ◦ γ )′(t) dt =

∫ 1

0

〈
dρb|γ (t), γ̇ (t)

〉
dt

≤
∫ 1

0

∥∥dρb|γ (t)
∥∥ ‖γ̇ (t)‖ dt

≤
(
max
t∈[0,1] ‖dρb|γ (t)‖

) ∫ 1

0
‖γ̇ (t)‖ dt

= d(p) max
t∈[0,1] ‖dρb|γ (t)‖.
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Fig. 14 a w2 = 1, b w2 = 2, c w2 = 3, d w2 = 4. Exact distance and
its lower and upper bounds (given in Lemma 4) along the y-axis, i.e.,
at x = θ = 0, for increasing spatial anisotropy. We keep w1 = w3 = 1
and vary w2. The horizontal axis is y and the vertical axis the value
of the distance/bound. Note how the exact distance d starts of linearly
with a slope of w2, and ends linearly with a slope of w1
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Fig. 15 a w2 = 1, b w2 = 2, c w2 = 3, d w2 = 4. Same setting as
Fig. 14 but at x = y, θ = 0. The horizontal axis moves along the line
x = y

Putting the two together gives the desired result. ��
Lemma 6 One can bound ‖dρb‖ around p0 by:

‖dρb‖2 ≤ 1 + ζ 2 − 1

2w2
3

ρ2
b + O(θ3).

Proof The proof is deferred to Appendix 1 ��
By combining the simple Lemmas 5 and 6, one can find

an expression for the asymptotic error between the exact dis-
tance d and the half-angle approximation ρb.

Lemma 7 Around any compact neighborhood of p0, we have
that

ρ2
b ≤ (1 + ε)d2, where ε := ζ 2 − 1

2w2
3

ζ 4ρ2
b + C |θ |3 . (43)

for some C ≥ 0.

Proof Let p ∈ U be given, and let γ : [0, 1] → M2 be the
geodesic from p0 to p. For the distance, we know that

d(γ (s)) ≤ d(γ (t)), for s ≤ t .

Making use of (42), we know that 1
ζ
ρb ≤ d ≤ ζρb so we can

combine this with the previous equation to find:

ρb(γ (s)) ≤ ζ 2ρb(γ (t)), for s ≤ t .

from which we get that

max
t∈[0,1] ρb(γ (t)) ≤ ζ 2ρb(p).

Combining this fact with the above two lemmas allows us to
conclude (43). ��
Remark 3 (Region for approximation ρb ≈ d) Putting an a
priori tolerance bound εtol on the error ε (and neglecting the
O(θ3) term) gives rise to a region �0 on which the local
approximation ρb is appropriate:

�0 = {p ∈ M2 | ρb(p) <
2w2

3

(ζ 2 − 1)ζ 4 εtol}.

Thereby we cannot guarantee a large region of acceptable
relative error when w3 → 0 or ζ → ∞. We solve this
problem

by using ρb,com given (26) instead of ρb.

Corollary 5 (Local errormorphological kernel)Locally around
p0, we have:

kα
b < (1 + ε)β/2kα.
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Proof By Lemma 7, one has

kα
b := 1

β
(ρb/t)

β ≤ 1

β
((1 + ε)d2/t2)β/2 = (1 + ε)β/2kα.

��

6 Experiments

6.1 Error of Half Angle Approximation

We can quantitatively analyze the error between any distance
approximation ρ and the exact Riemannian distance d as
follows. We do this by first choosing a region � ⊆ M2 in
which we will analyze the approximation. Just as in Tables 1
and 2, we decided to inspect � := [−3, 3] × [−3, 3] ×
[−π, π) ⊆ M2. As for our exact measure of error ε, we have
decided on the mean relative error defined as:

ε := 1

μ(�)

∫
�

|ρb(p) − d(p)|
d(p)

dμ(p) (44)

where μ is the induced Riemannian measure determined by
the Riemannian metric G. We then discretized our domain
� into a grid of 101 × 101 × 101 equally spaced points
pi ∈ � indexed by some index set i ∈ I and numerically
solved for the exact distance d on this grid. This numerical
scheme is of course not exact andwewill refer to these values
as d̃i ≈ d(pi ). We also calculate the value of the distance
approximation ρ on the grid points ρi := ρ(pi ). Once we
have these values, we can approximate the true mean relative
error ε by calculating the numerical error ε̃ defined by:

ε ≈ ε̃ := 1

|I |
∑
i∈I

∣∣∣ρi − d̃i
∣∣∣

d̃i
(45)

In Table 6, the numericalmean relative error ε̃ between the
half-angle approximation ρb and the numerical Riemannian
distance d̃ can be seen for different spatial anisotropies ζ .
We keep w1 = w3 = 1 constant and vary w2. We see that,
as shown visually in Tables 1 and 2, that ρb gets worse and
worse when we increase the spatial anisotropy ζ .

There is an discrepancy in the table worth mentioning.We
know from Remark 2 that when ζ = 1 then ρb = d and thus
ε = 0. But surprisingly we do not have ε̃ = 0 in the ζ = 1
case in Table 6. This can be simply explained by the fact
that the numerical solution d̃ is not exactly equal to the true
distance d. We expect that ε̃ will go to 0 in the ζ = 1 case if
we discretize our region � more and more finely.

Table 6 Numerical mean relative error ε̃ between ρb and d for multiple
spatial anisotropies ζ

ζ 1 1.5 2 3 4 6 8

ε̃ 0.027 0.051 0.14 0.41 0.71 1.4 2.1

We can compare these numerical results to our theoretical
results. Namely, we can deduce from Equation (42) that:

|ρb − d|
d

≤ ζ − 1, (46)

which means

ε ≤ ζ − 1. (47)

And so we expect this to also approximately hold for the
numerical mean relative error ε̃. Indeed, in Table 6 we can
see that ε̃ � ζ − 1.

Interestingly, we see that ε̃ is relatively small compared to
our theoretical bound (47) even in the high anisotropy cases.
However, this is only a consequence of relative smallness of
�. If we make � bigger and bigger we can be certain that ε
converges to ζ − 1. This follows from an argument similar
to the reasoning in Corollary 4.

6.2 DCA1

The DCA1 dataset is a publicly available database “consist-
ing of 130X-ray coronary angiograms, and their correspond-
ing ground-truth image outlined by an expert cardiologist”
[59]. One such angiogram and ground-truth can be seen in
Fig. 18a and d.

We have split the DCA1 dataset [59] into a training and
test set consisting of 125 and 10 images, respectively.

To establish a baseline, we ran a 3, 6, and 12 layer CNN,
G-CNN and PDE-G-CNN onDCA1. The exact architectures
are identical/analogous to the ones used in [28, Fig. 15]. For
the baseline, the logarithmic distance approximation ρc was
used within the PDE-G-CNNs. This is the same approxima-
tion thatwas used in [28]. Every networkwas trained 10 times
for 80 epochs.After every epoch, the averageDice coefficient
on the test set is stored. After every full training, the maxi-
mum of the average Dice coefficients over all 80 epochs is
calculated. The result is 10 maximum average Dice coeffi-
cients for every architecture. The result of this baseline can
be seen in Fig. 16. The amount of parameters of the networks
can be found in Table 7. We see that PDE-G-CNNs consis-
tently perform equally well as, and sometimes outperform,
G-CNNs and CNNs, all the while having the least amount of
parameters of all architectures.

To compare the effect of using different approximative
distances, we decided to train the 6 layer PDE-G-CNN (with
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Fig. 16 A scatterplot showing how a 3, 6, and 12 layer CNN, G-CNN,
and PDE-G-CNN compare on the DCA1 dataset. The crosses indicate
themean.We see the PDE-G-CNNs provide equal or better results with,
respectively, 2, 10 and 35 times less parameters, see Table 7

Table 7 The total amount of parameters in the networks that are used
in Fig. 16

Parameters 3 layers 6 layers 12 layers

CNN 2814 25,662 73,614

G-CNN 2058 24,632 72,728

PDE-G-CNN 1264 2560 2698
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Fig. 17 Ascatterplot showing how the use of different distance approxi-
mations affect the performance of the 6 layer PDE-G-CNNon theDCA1
dataset. The crosses indicate the mean

2560 parameters) 10 times for 80 epochs using each distance
approximation. The results can be found in Figs. 17 and 18.
We see that on DCA1 all distance approximations have a
comparable performance. We notice a small dent in effec-
tiveness when using ρb,sr , and a small increase when using
ρb,com .

(a) Input (b) ρc (c) ρb

(d) Truth (e) ρb,sr (f) ρb,com

Fig. 18 a Input,bρc , cρb,dTruth, eρb,sr , fρb,com . InFig. 18a andd,we
see one sample from the DCA1 dataset: a coronary angiogram together
with the ground-truth segmentation. The other four pictures show the
output of the 6 layer PDE-G-CNN, one for each distance approximation.
The networks that were used in this figure have an accuracy approxi-
mately equal to the mean accuracy in Fig. 17

6.3 Lines

For the line completion problem, we created a dataset of 512
training images and 128 test images.2 Fig. 21a and d shows
one sample of the Lines dataset.

To establish a baseline, we ran a 6 layer CNN, G-CNN
and PDE-G-CNN. For this baseline we again used ρc within
the PDE-G-CNN, but changed the amount of channels to 30,
and the kernel sizes to [9, 9, 9], making the total amount of
parameters 6018. By increasing the kernel size, we antici-
pate that the difference in effectiveness of using the different
distance approximations, if there is any, becomes more pro-
nounced. Every network was trained 15 times for 60 epochs.
The result of this baseline can be seen in Fig. 19. The amount
of parameters of the networks can be found in Table 8. We
again see that the PDE-G-CNN outperforms the G-CNN,
which in turn outperforms the CNN, while having the least
amount of parameters.

We again test the effect of using different approximative
distances by training the 6 layer PDE-G-CNN15 times for 60
epochs for every approximation. The results can be found in
Fig. 20. We see that on the Lines dataset, all distance approx-
imations again have a comparable performance. We again
notice an increase in effectiveness when using ρb,com , just as
on theDCA1 dataset. Interestingly, using ρb,sr does not seem
to hurt the performance on the Lines dataset, which is in con-
trastwithDCA1.This is in linewithwhat onewould expect in
view of the existing sub-Riemannian line-perception models

2 The lines dataset is available from the authors on request.
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Fig. 19 Ascatterplot showing howa6 layerCNN,G-CNN(bothwith≈
25k parameters), and aPDE-G-CNN(with only 6kparameters) compare
on the Lines dataset. The crosses indicate the mean. For the precise
amount of parameters, see Table 8

Table 8 The total amount of parameters in the networks that are used
in Fig. 19

CNN G-CNN PDE-G-CNN

Parameters 25,662 24,632 6018
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Fig. 20 A scatterplot showing how the use of different distance approx-
imations affect the performance of the 6 layer PDE-G-CNNon the Lines
dataset. The crosses indicate the mean

in neurogeometry. Furthermore, in Fig. 21b,c,e and f some
feature maps of a trained PDE-G-CNN are visualized.

7 Conclusion

In this article, we have carefully analyzed how well the non-
linear erosion and dilation parts of PDE-G-CNNs are actually
solved on the homogeneous space of 2D positions and orien-
tationsM2. According to Proposition 1, theHamilton–Jacobi
equations are solved by morphological kernels that are func-
tions of only the exact (sub)-Riemannian distance function.
As a result, every approximation of the exact distance yields
a corresponding approximative morphological kernel.

In Theorem 1, we use this to improve upon local and
global approximations of the relative errors of the erosion and

(a) Input (b) (c)

(d) Truth (e) (f)

Fig. 21 a Input b–dTruth e–f. In 21a and d, we see one sample from the
Lines dataset. The other four pictures are visualizations of feature maps
of the 6 layer PDE-G-CNN. In Fig. 21b and e, we see a feature map
of the lifting layer together with its max-projection over θ . In Fig. 21c
and f, we see a feature map of the last PDE layer, just before the final
projection layer

dilations kernels used in the papers [28, 60] where PDE-G-
CNN are first proposed (and shown to outperform G-CNNs).
Our new sharper estimates for distance on M2 have bounds
that explicitly depend on the metric tensor field coefficients.
This allowed us to theoretically underpin the earlier worries
expressed in [28, Fig. 10] that if spatial anisotropy becomes
high the previous morphological kernel approximations [28]
become less and less accurate.

Indeed, as we show qualitatively in Table 2 and quantita-
tively in Sect. 6.1, if the spatial anisotropy ζ is high one must
resort to sub-Riemannian approximations. Furthermore, we
propose a single distance approximation ρb,com that works
both for low and high spatial anisotropy.

Apart from how well the kernels approximate the PDEs,
there is the issue of how well each of the distance approxi-
mations perform in applications within the PDE-G-CNNs.
In practice, the analytic approximative kernels using ρb,
ρc, ρb,com perform similarly. This is not surprising as our
theoretical result Lemma 3 and Corollary 1 reveals that all
morphological kernel approximations carry the correct 8 fun-
damental symmetries of the PDE. Nevertheless, Figs. 17 and
20 do reveal advantages of using the new kernel approxi-
mations (in particular ρb,com) over the previous kernel ρc in
[28].

The experiments also show that the strictly sub-
Riemannian distance approximation ρb,sr only performs
well on applications where sub-Riemannian geometry really
applies. For instance, as can be seen in Figs. 17 and 20, on
the DCA1 dataset ρb,sr performs relatively poor, whereas
on the Lines dataset, ρb,sr performs well. This is what one
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would expect in view of sub-Riemannian models and find-
ings in cortical line-perception [37, 38, 40, 41, 46, 61] in
neurogeometry.

Besides better accuracy and better performance of the
approximative kernels, there is the issue of geometric inter-
pretability. In G-CNNs and CNNs, geometric interpretability
is absent, as they include ad-hoc nonlinearities like ReLUs.
PDE-G-CNNs instead employ morphological convolutions
with kernels that reflect association fields, as visualized in
Fig. 5b. In Fig. 8, we see that as network depth increases
association fields visually merge in the feature maps of
PDE-G-CNNs toward adaptive line detectors, whereas such
merging/grouping of association fields is not visible in nor-
mal CNNs.

In all cases, the PDE-G-CNNs still outperform G-CNNs
andCNNson theDCA1dataset andLines dataset: they have a
higher (or equal) performance,while having a huge reduction
in network complexity, evenwhen using 3 layers. Regardless,
the choice of kernel ρc, ρb, ρb,sr , ρb,com the advantage of
PDE-G-CNNs toward G-CNNs and CNNs is significant, as
can be clearly observed in Figs. 16 and 19 and Table 7 and 8.
This is in line with previous observations on other datasets
[28].

Altogether, PDE-G-CNNs have better geometric reduc-
tion, performance, and geometric interpretation, than basic
classical feed-forward (G)-CNN networks on various seg-
mentation problems.

Extensive investigations on training data reduction, mem-
ory reduction (via U-Net versions of PDE-G-CNNs), and a
topological description of the merging of association fields
are beyond the scope of this article, and are left for future
work.
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Proof of Lemma 6

Proof We start by writing out the explicit form of ‖dρb‖2 in
the left-invariant frame:

‖dρb‖2 = w−2
1 (A1ρb)

2 + w−2
2 (A2ρb)

2 + w−2
3 (A3ρb)

2.

By replacing the left-invariant derivatives with half-angle
coordinates derivatives, we can equivalently write this as:

w−2
2

(∣∣∣∣ ∂ρ

∂b1

∣∣∣∣
2

+
∣∣∣∣ ∂ρ

∂b2

∣∣∣∣
2
)

+ (w−2
1 − w−2

2 )

∣∣∣∣cos
(
b3

2

)
∂ρ

∂b1
+ sin

(
b3

2

)
∂ρ

∂b2

∣∣∣∣
2

+ w−2
3

∣∣∣∣12
∂ρ

∂ψ
+ ∂ρ

∂b3

∣∣∣∣
2

,

where ψ = arctan2(b2, b1), ∂ψ = b2∂b1 − b1∂b2 , and we
omitted the subscript b from ρ for conciseness. We are going
to Taylor expand the sin and cosine in the second term up to
the second-order term. This becomes

∣∣∣∣cos
(
b3

2

)
∂ρ

∂b1
+ sin

(
b3

2

)
∂ρ

∂b2

∣∣∣∣
2

=
∣∣∣∣ ∂ρ

∂b1

∣∣∣∣
2
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+θ

(
∂ρ

∂b1
∂ρ

∂b2

)
+ θ2

4

(∣∣∣∣ ∂ρ

∂b2

∣∣∣∣
2

−
∣∣∣∣ ∂ρ

∂b1
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2
)

+ O(θ3).

This allows us to write ‖dρb‖2 as

w−2
1

∣∣∣∣ ∂ρ

∂b1

∣∣∣∣
2

+ w−2
2

∣∣∣∣ ∂ρ

∂b2

∣∣∣∣
2

+ w−2
3

∣∣∣∣ ∂ρ

∂b3

∣∣∣∣
2

+ ε.

Making use of the fact that the first part in this expression
equals 1, we can thus write ‖dρb‖2 = 1+ ε. The exact form
of ε is as follows

ε = w2
1 − w2

2

4w2
1 w2

2 w2
3 ρ2

b

(
w4
1w

2
3(b

1b3)2 − w4
2w

2
3(b

2b3)2

+w2
1w

2
2(w

2
1 − w2

2)(b
1b2)2

)
+ O(θ3).

Using that wi |bi | ≤ ρb we can bound the expression from
above by

ε ≤ ρ2
b

∣∣w2
1 − w2

2

∣∣
4w2

1 w2
2 w2

3

(
w2
1 + w2

2 +
∣∣∣w2

1 − w2
2

∣∣∣) + O(θ3).

Finally the lemma follows by algebraic manipulations and
the fact that w1 ≤ w2. ��

Geometric Interpretation of PDE-G-CNN lay-
ers

In a PDE-G-CNN layer [28, 60], one first performs convec-
tion and then amorphological convolution (dilation/erosion).
This has the interesting effect that we can interpret this equiv-
alently as performing a morphological convolution with a
shifted morphological kernel. To make this precise, we first
define what convection exactly is:

Definition 2 (Convection) Let v ∈ Tp0(M2) be a tangent
vector at the reference point p0, and let c : M2 → T (M2)

be the corresponding left-invariant vector field obtained by
pushing v forward with the left-action Lg(p) := gp, i.e.,
c(gp0) = (Lg)∗v. Convection is defined as:

{
∂W
∂t = −cW

W |t=0 = U ,

where both W and U are scalar differentiable functions on
M2.

The solution of this left-invariant transport (‘convection’)
is quite simple and we state it in the following proposition
without proof:

Fig. 22 A PDE-G-CNN module trains left-invariant convection vector
field c, a Riemannian ball over which we apply max-pooling (dila-
tion for line excitation), and a Riemannian ball over which we apply
min-pooling (erosion for inhibition/sharpening). Top: by Proposition 3
a PDE-G-CNN module trains: (1) a center point (blue), (2) an asso-
ciation field for excitation (green), and (3) an association field for
inhibition (red). Bottom: As network-depth increases, these association
fields group together as visible in the feature maps

Proposition 2 The solution to the convection equation is

W (gp0, t) = U (g exp(−vt)p0).

where we identified v as a tangent vector in TeSE(2).

For the proof, and more details on how convection is imple-
mented in practice within the PDE-G-CNN framework, we
refer to [28, Sec. 5.1]. The general idea is that the character-
istics of left-invariant flow are Lie group exponential curves
acting on the reference point p0 ∈ M2 in the homogeneous
space.

We can now show that first performing convection and
then a morphological convolution is the same as doing a
morphological convolution with a shifted kernel:

Proposition 3 Let k : M2 → R be any morphological ker-
nel. We have:

(k � W )(p) = inf
g∈G

{
k(g−1p) + W (gp0, t)

}

= (k̂ �U )(p),

with shifted kernel k̂(p, t) := k(exp(−tv)p). In particular
for time-dependent erosion PDE kernels

k̂t (p) = t

β

(
dG(p, etvp0)

t

)β

(B.1)
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Proof Indeed, by direct computations one has:

(k � W )(p) = inf
g∈G

{
k(g−1p) + W (gp0, t)

}

= inf
g∈G

{
k(g−1p) +U (g exp(−vt)p0)

}

= inf
g∈G

{
k(exp(−vt)g−1p) +U (gp0)

}

= inf
g∈G

{
k̂(g−1p, t) +U (gp0)

}

= (k̂ �U )(p).

When applying this to the erosion kernels (1), the result
(B.1) follows by left-invariance of the Riemannian metric:
dG(e−tvp,p0) = dG(p, etvp0) and the identity (etv)−1 =
e−tv . ��

Recall the relation between (approximative) Riemannian
balls and association fields, as visualized in Figs. 4, 5 and 9.

The top left corner in Fig. 22 shows how a single PDE-
G-CNN module (i.e., operator between two nodes in the
network). The top-right shows the geometric rationale behind
a PDE-G-CNNs that essentially performs perceptual group-
ing of association fields via training, and indeed the bottom
two rows of Fig. 22 reveal how the grouping of association
fields becomes visible in the feature maps of two input test
images. In comparison with this (for PDE-G-CNNs), typi-
cal geometric behavior is absent in feature maps of CNNs
applied to the same images, recall Fig. 8.
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