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We study inventory and repair scheduling decisions of a maintenance service provider for repairable capital

goods. Due to high downtime costs, the service provider keeps spare parts on stock to replace broken parts

quickly. The service provider should determine the inventory level of spare parts for each component and the

repair scheduling policy. Furthermore, in case of a stock-out, the service provider should decide whether to

backorder the demand or execute an emergency repair, which is an urgent but expensive repair operation for a

broken part followed by a fast form of installation. The objective is to minimize the long-run average inventory

holding, backorder, and emergency repair costs. We formulate the repairable network as a closed queueing

system and consider an asymptotic regime in which the repair facility is in the conventional heavy-traffic

regime. Then, we formulate and solve a Brownian control problem (BCP). From the optimal BCP solution,

we derive a simple and intuitive decision rule stating if the emergency repairs are necessary to achieve a close-

to-optimal system performance. Moreover, we propose a simple, intuitive, and easy-to-implement heuristic

control policy and demonstrate its close-to-optimal performance via numerical experiments.

Key words : Spare parts, inventory control, scheduling, asymptotic analysis

1. Introduction

Capital goods are machines or products that are used in the production of goods or service deliv-

eries. Some examples are lithography machines (used by semiconductor manufacturers), medical

systems, trains, and baggage handling systems in airports. Capital goods can be very expensive.

For example, the price of an EUV lithography system is 100+ million Euros, the price of an MRI

scanner is 1-2 million Euros, and a baggage handling system at a major airport can cost up to

300-400 million Euros. Due to high maintenance and downtime costs, acquisition costs of some

capital goods constitute only a fraction (e.g., one third) of the total life cycle costs (see Öner

et al. (2007) and Kim et al. (2015)). Therefore, maintenance of capital goods is important and
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many capital-good users (customers) outsource the maintenance activities to either the suppliers

or third-party service providers. For example, there are cases in which customers pay a fixed service

cost per year and the service providers manage everything related to maintenance. There are even

cases in which customers buy the function of the system rather than the capital good implying a

function-oriented market instead of a product-oriented one (see Kim et al. (2015) and chapter 1 of

van Houtum and Kranenburg (2015) for details).

Due to the high downtime costs, maintenance service providers keep spare parts on stock. If a

critical component of a capital good breaks down, the broken part is replaced with a spare part to

prevent long and costly downtime. If the broken part is repairable, it is sent to a repair facility for

future usage. Because spare parts of capital goods are generally expensive, there is an interest in

efficient control of spare parts inventory systems.

We study inventory and repair scheduling decisions of a maintenance service provider for capital

goods with repairable components, which we denote as stock keeping units (SKUs) when we refer

to them as article numbers and as parts when we refer to physical units. There is a fixed number of

customers using multiple SKUs. The service provider keeps spare parts on stock so that whenever

a part used by a customer breaks down, a demand for a ready-for-use part occurs and the broken

part joins the repair queue. If there is on-hand inventory (consisting of ready-for-use parts), the

service provider fulfills the demand from the on-hand inventory immediately. Otherwise, if there

is no on-hand inventory, the service provider either backorders the demand or uses an emergency

repair to fulfill the demand. An emergency repair is an urgent repair operation for a broken part

followed by a fast form of installation. Although emergency repairs are expensive in general, they

can be useful due to the high downtime costs. The parts of each SKU circulate in the system

as ready-for-use, broken, or installed parts. We assume that broken parts are always repairable.

Therefore, the total number of parts of each SKU in the network is fixed and thus the repairable

network can be formulated as a closed queueing system as depicted in Figure 1.

The objective of the service provider is to minimize the long-run average inventory holding,

backorder, and emergency repair costs by determining:
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Figure 1 A schematic representation of the repairable network.

i. The initial inventory level for each SKU.

ii. The repair scheduling policy in the repair facility, that is, the service provider should decide

which broken part should receive repair priority at any given time. We assume that only the

work-conserving and non-preemptive repair scheduling policies are allowed in the repair facility.

iii. Demand fulfillment policy. If there is no on-hand inventory upon a part breakdown, the service

provider should decide whether to backorder the demand or execute an emergency repair to

fulfill the demand.

Deriving an optimal control policy for the aforementioned problem is challenging due to the curse

of dimensionality. Therefore we use asymptotic analysis. Specifically, we construct an asymptotic

control problem and solve it optimally. Based on that solution, we formulate a heuristic control

policy for the original (non-asymptotic) system, to which we refer to as the pre-limit system. In the

asymptotic regime that we consider, both the number of capital goods and the emergency repair

costs tend to infinity and the breakdown rate per part of each SKU tends to zero such that the

total breakdown rate of each SKU, which is the product of the number of capital goods using

that SKU and the breakdown rate per part of that SKU, converges to a non-degenerate limit.

Furthermore, the repair facility is in the conventional heavy-traffic regime, implying a fully utilized

repair facility in the limit. The aforementioned asymptotic regime is consistent with the following

observations: (i) The reliability of the capital goods has increased significantly over time due to

technological advancements such that the breakdown rate of a part can be very small (see chapter
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1.2 of van Houtum and Kranenburg (2015)). (ii) Emergency repairs are expensive in general. (iii)

It is economically undesirable to have idle resources.

Under the aforementioned asymptotic regime, we formulate a Brownian control problem (BCP)

(see Harrison (1988)). Because the BCP is multi-dimensional, we formulate an equivalent workload

formulation (EWF) of the BCP (see Harrison and Van Mieghem (1997)). The EWF is single

dimensional and solvable. By utilizing the optimal EWF solution, we make the following main

contributions.

1. The EWF leads to a simple and intuitive decision rule stating if the emergency repairs are

necessary. This rule achieves a close-to-optimal system performance for the pre-limit system.

To the best of our knowledge, such a rule is not available in the literature. That rule can be

very helpful for repair centers to decide on if the emergency repairs are needed.

2. The optimal EWF solution backorders demands of a single SKU at all times and the index of

that SKU can change with the workload level. Therefore, the optimal EWF solution implies

a workload-dependent repair prioritization policy for the pre-limit system. The parts of SKUs

that are not backordered are repaired and those repaired parts will breakdown again and

increase the future workload due to the closed-network structure. Therefore, while making

the backordering decisions, the optimal solution takes into account not only the instantaneous

backorder costs but also the breakdown rates of the SKUs. As the workload level increases, the

optimal solution becomes more forward-looking. Specifically, as the workload level increases,

the instantaneous backorder costs become less important and the breakdown rates, that is,

the effect of the repaired parts on the future workload levels, become more important for the

backordering decisions. Finally, the optimal EWF solution allows emergency repairs for at

most one particular SKU (see Theorems 1 and 2).

3. From the optimal EWF solution, we derive a simple, intuitive, and easy-to-implement heuris-

tic control policy for the pre-limit system. This heuristic policy follows the optimal EWF

solution for the repair scheduling decisions and the demand fulfillment policy. For the initial
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inventory levels of the SKUs, we formulate a simple local search algorithm (LS). By numeri-

cal experiments, we show that the heuristic control policy has a reasonably small optimality

gap for systems with 80% or more utilization rate, 2 SKUs, and 20 or more capital goods.

Furthermore, in the numerical experiments, the LS performs almost as good as the inventory

enumeration does and has a reasonable computation time (see Section 6.2).

4. Under a mild assumption on the first-order system parameters (see Assumption 2), we simplify

the EWF such that its solution becomes greedy in the sense that only the demands of one

particular SKU are allowed to be backordered and a non-zero inventory is kept only for one

particular SKU (see Theorems 3 and 4). Consequently, the heuristic control policy for the pre-

limit system simplifies as well. For example, under that policy, the repair scheduling decisions

become less workload-dependent than before and low initial inventory levels are kept for all

SKUs except the one with the “lowest” inventory holding cost.

The main contributions are explained in more detail below.

There are I different SKUs in the system and we let I := {1,2, . . . , I} denote the set of SKUs. For

all i∈ I, bi denotes the backorder cost per unit time per backordered demand of SKU i, c̃i denotes

the cost of an emergency repair for a broken part of SKU i, and 1/λ̃i denotes the average time an

installed part of SKU i spends until its breakdown. If minj∈I bjµj/λ̃j ≤mink∈I c̃kµk, the optimal

EWF solution does not make any emergency repairs. Otherwise, if minj∈I bjµj/λ̃j >mink∈I c̃kµk,

the optimal EWF solution makes emergency repairs to keep the workload in the repair facility

below a threshold. The aforementioned decision rule can be interpreted as follows. For all i ∈ I,

c̃iµi = c̃i/(1/µi) and thus it represents the cost per unit repair time that is saved by having an

emergency repair elsewhere for one part of SKU i. If a broken part of SKU i is repaired and installed,

it will take on average 1/λ̃i amount of time for that part to break down again and return back to the

repair facility. Therefore, if that part is repaired and it is very likely that there will be backordered

parts of SKU i when the part breaks down again, then the associated saved backorder cost is

bi/λ̃i, and the saved backorder cost per unit repair time that is spent is (bi/λ̃i)/(1/µi) = biµi/λ̃i.
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The optimal EWF solution determines if the emergency repairs are necessary by comparing the

minimum saved backorder cost per unit of spent repair time with the minimum cost per unit of

saved repair time via an emergency repair.

We derive a simple, intuitive, and easy-to-implement heuristic control policy from the optimal

EWF solution. If minj∈I bjµj/λ̃j ≤mink∈I c̃kµk, we propose the no-emergency-repair (NER) policy

under which emergency repairs are never used. Otherwise, if minj∈I bjµj/λ̃j > mink∈I c̃kµk, we

propose the barrier policy, under which emergency repairs are used to keep the workload in the

repair facility below a barrier level (or threshold). Emergency repairs are used only when the

workload reaches the barrier level and only for the broken parts of a single SKU whose index is

in the set arg mink∈I c̃kµk. Under both the NER and the barrier policies, the SKU whose broken

parts receive the least amount of repair priority can change with the workload level due to the

non-greedy nature of the optimal EWF solution. Finally, the optimal inventory levels are computed

by a simple LS, which is a commonly used technique in the inventory control of spare parts (see

van Houtum and Kranenburg (2015)).

Under a mild assumption on the first-order system parameters, the optimal EWF solution and

thus our proposed policy simplifies. Under that assumption, we propose two different algorithms

to determine the initial inventory levels. The first algorithm is similar to the algorithms in the

literature (e.g., Wein (1992) and Ata and Barjesteh (2022)). It keeps a small and equal inventory of

spare parts (that is, a small and equal safety stock) for all SKUs except the one with the “lowest”

inventory holding cost. The inventory level for the latter SKU is expressed in closed-form under

the NER policy and can be computed efficiently by simulation under the barrier policy. The second

algorithm is a simple LS. By numerical experiments, we show that the performances of the two

algorithms are reasonably well and close to each other (see Section 6.3).

The rest of the paper is organized as follows. We present a literature review in Section 2. We

present the model, the BCP, and the EWF in Section 3. We solve the EWF in Section 4. In Section

5, we simplify the EWF and its solution under a mild assumption. Then, we present numerical

experiments in Section 6. Finally, we present some future research directions in Section 7. All the

proofs are presented in the online appendix (OA).
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2. Literature Review

Our paper is closely related to the literature on spare parts inventory control. For recent literature

reviews, see Basten and van Houtum (2014) and Driessen et al. (2015). An important feature of

spare parts inventory control is the use of lateral (trans)shipments and emergency shipments. If a

local warehouse is out-of-stock upon a demand arrival, the demand can be satisfied from a nearby

local warehouse by a so-called lateral transshipment (see Axsäter (1990), Alfredsson and Verrijdt

(1999), Kranenburg and van Houtum (2009), Paterson et al. (2011)) or from an upstream warehouse

or supplier by a so-called emergency shipment (see Muckstadt and Thomas (1980), Alfredsson

and Verrijdt (1999), Özkan et al. (2015)). In this way, long downtimes are avoided for the capital

goods that are supported. The use of lateral and emergency shipments complicates the analysis and

therefore authors often make simplifying assumptions for other aspects. For example, it is often

assumed that the repair facility (or the supplier) has infinite capacity, which can lead to significant

errors in performance evaluation especially when the capacity of the repair facility is tight in reality

(see Sleptchenko et al. (2002)). Therefore, there are papers considering finite repair capacity (see

Pyke (1990), Sleptchenko et al. (2002, 2005), Caggiano et al. (2006), Tiemessen and van Houtum

(2013)) and expedited repairs (see Arts et al. (2016) and Drent and Arts (2021)). Because capacity

allocation decisions are important under finite repair capacity, there are papers studying repair

scheduling decisions (see Hausman and Scudder (1982), Pyke (1990), Sleptchenko et al. (2005),

Caggiano et al. (2006), Adan et al. (2009), Tiemessen and van Houtum (2013)). There are also

papers studying selective emergency repair decisions. For example, Verrijdt et al. (1998) study the

effect of executing emergency repairs depending on the system state rather than with respect to

a simple rule. van der Heijden et al. (2013) study selecting different repair leadtime options for

different SKUs. Bitton et al. (2019) study joint inventory and emergency repair control in aircraft

maintenance. They study a system with multiple SKUs and consider simple and SKU-dependent

emergency repair policies.

Our paper has major differences from the existing literature on spare parts inventory control.

First, we jointly consider finite repair capacity and selective emergency repairs. Second, the existing
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literature considers an open network with exogenous demand, whereas we consider a closed network

with endogenous demand. Third, we are the first who apply an asymptotic analysis and succeed

in deriving intuitive structural results.

Our paper is also related to the literature on the control of multi-class make-to-stock manufac-

turing systems. Early examples of papers in that stream of literature are Zheng and Zipkin (1990)

and Wein (1992). Zheng and Zipkin (1990) consider a system with two symmetric products and

prove that giving manufacturing priority to the longest queue outperforms the FCFS policy. Wein

(1992) studies a multi-class system with the objective of minimizing the long-run average holding

and backorder costs. Wein (1992) assumes that the system operates in the heavy-traffic regime and

then formulates a BCP and its EWF. The optimal EWF solution implies a barrier type control

policy under which the on-hand inventory level is never allowed to exceed a threshold. A recent

study in that literature is Ata and Barjesteh (2022), which extends Wein (1992) by considering

outsourcing and dynamic pricing. Similar to Wein (1992), Ata and Barjesteh (2022) formulate a

BCP and its EWF. The optimal EWF solution implies a barrier type policy under which both the

on-hand inventory and the backorder levels are never allowed to exceed threshold values, imply-

ing a two-sided barrier. A comprehensive literature review of control of multi-class make-to-stock

manufacturing systems can be found in Ata and Barjesteh (2022). A study that is closely related

to our work is by Rubino and Ata (2009). They consider control of a multi-class make-to-order

manufacturing system with parallel servers, order cancellations, and outsourcing. They formulate

a BCP and its EWF. Similar to the case in our paper, their optimal EWF solution is non-greedy

in the sense that the resource allocation decisions depend on the workload level.

There are major differences between our study and the papers about control of make-to-stock or

make-to-order manufacturing systems. Because the manufactured products are consumable, papers

in the aforementioned literatures consider an open system with exogenous demand (unless there is

pricing control). Because we consider repairable SKUs, the total number of parts per SKU in the

network is fixed, where the state of each part is broken, ready-for-use, or installed. The number of
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broken parts affects the number of installed parts which, in turn, affects the demand rate for the

repair facility. This feature naturally leads to a closed queueing network formulation and affects

the structure of the optimal EWF solution. For example, if the backorder costs are sufficiently

smaller than the emergency repair costs, there is no need to keep the number of broken parts below

a barrier level unlike the cases in Rubino and Ata (2009) and Ata and Barjesteh (2022).

3. Model Description

We formulate the repair facility as a single server queue and assume that emergency repairs are done

instantaneously by outsourcing. We present the stochastic primitives, introduce the asymptotic

regime, and present the model in Section 3.1. We present the fluid and diffusion scaled processes

in Section 3.2. Finally, we present the BCP and the associated EWF in Sections 3.3 and 3.4,

respectively.

3.1. Stochastic Primitives and the Asymptotic Regime

We let R, R+, R++, N, N+ denote the set of real numbers, nonnegative real numbers, strictly

positive real numbers, nonnegative integers, and strictly positive integers, respectively. There are

I different SKUs in the system and we let I := {1,2, . . . , I} denote the set of SKUs. We consider a

sequence of systems indexed by n ∈N+ and we let n→∞. In the nth system, there are n capital

goods in total, a single part can be installed at each capital good, and nαni capital goods use parts

of SKU i such that αni ∈R+ and
∑

i∈I α
n
i = 1 for all i∈ I and n∈N+.

An inter-breakdown time denotes the time between the installation of a ready-for-use part and

its breakdown. In the nth system, the inter-breakdown times for the parts of SKU i are independent

and identically distributed (i.i.d.) and have an exponential distribution with mean 1/λni ∈R++ for

all i∈ I and n∈N+.

For all i∈ I, let {vik, k ∈N+} be a strictly positive and i.i.d. sequence of random variables with

mean 1/µi and coefficient of variation σi ∈R+. We let vik denote the repair time of the kth broken

part of SKU i for all i∈ I and k ∈N+. For all i∈ I, k ∈N+, and t∈R+, let Vi(0) := 0 and

Vi(k) :=
k∑
l=1

vil, Ri(t) := sup{k ∈N : Vi(k)≤ t} .
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Then, Ri is a renewal process such that Ri(t) denotes the number of parts of SKU i repaired up to

time t if the repair facility spends 100% of its time for the repair of broken parts of SKU i during

the time interval [0, t].

We assume that the sequences of random variables associated with the inter-breakdown times

and repair times are mutually independent of each other and all other stochastic primitives. Let

ρn :=
∑
i∈I

nαni λ
n
i

µi

denote the load on the repair facility in the nth system. The following assumption sets up the

asymptotic regime.

Assumption 1. 1. αni → αi ∈ (0,1) and nλni → λi ∈R++ for all i∈ I as n→∞.

2.
√
n (ρn− 1)→ θ ∈ (−∞,0] as n→∞.

Assumption 1 implies that ρn → 1 as n→∞. Therefore, the repair facility is fully utilized in

the limit. Assumption 1 Part 1 implies that the average inter-breakdown times increase in the

order of n as n→∞. Assumption 1 Part 2 implies that the repair facility operates under the

conventional heavy-traffic regime, that is, the capacity of the repair facility is barely enough to

repair all incoming broken parts.

One can also consider the Halfin & Whitt (HW) asymptotic regime for the repair facility (see

Halfin and Whitt (1981)). In that case, the system resembles the classical “machine repair model”

in the HW regime (see Momčilović and Motaei (2018) and the references therein). The two main

differences between the conventional and the HW asymptotic regimes are that i.) the number of

servers is fixed in the conventional heavy-traffic regime whereas it tends to infinity in the HW

regime; ii.) the delay in the repair facility, that is, the amount of time a broken part spends until

its repair starts, is in the order of
√
n in the conventional heavy-traffic regime whereas it is in

the order of 1/
√
n in the HW regime (see theorem 4 of de Véricourt and Jennings (2008)). The

reason for our choice is that for many repair facilities in practice, the conventional heavy traffic

regime is a better fit than the HW regime. Chapter 5 of Driessen (2018) presents a case study
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about three maintenance service providers for capital goods, namely GVA (the municipal public

transport operator for Amsterdam), KLM Engineering & Maintenance, and Royal Netherlands

Army. According to the chapter 5 of Driessen (2018), the repair facilities are highly utilized, the

numbers of repair men in the repair facilities are not very large (see table 5.1 therein), the repair

men are certified professionals that have to complete a long training program and thus they are

difficult to recruit, and the repair operations may require expensive, dedicated, and highly utilized

equipments whose unavailability can cause long delays.

We have the following notation: For all i∈ I and t∈R+,

• Sni is the initial inventory level for SKU i. Specifically, αni n+Sni is the total number of parts

of SKU i in the system at all times.

• Un
i (t) is the number of parts of SKU i installed at the capital goods at time t.

• Qn
i (t) is the number of broken parts of SKU i at time t.

• OHn
i (t) is the number of on-hand parts of SKU i at time t, that is, it is the number of

ready-for-use parts of SKU i at time t.

• BOn
i (t) is the number of backordered demands of SKU i at time t.

• T ni (t) is the cumulative time that repair facility spends to repair parts of SKU i up to time t.

• In(t) is the cumulative time in which the repair facility idles up to time t.

• En
i (t) is the cumulative number of emergency repairs done for parts of SKU i up to time t.

Let Ai(·) be a unit rate Poisson process which is independent of all other stochastic primitives

for all i∈ I. Let (x)+ := max{0, x} for all x∈R. For all i∈ I, t∈R+, and n∈N+, we have

Qn
i (t) =Ai

(
λni

∫ t

0

Un
i (s)ds

)
−Ri(T ni (t))−En

i (t), (1a)

BOn
i (t) = αni n−Un

i (t) = (Qn
i (t)−Sni )

+
, (1b)

OHn
i (t) = (Sni −Qn

i (t))
+
, (1c)

In(t) +
∑
i∈I

T ni (t) = t, (1d)

In(0) =En
i (0) = 0 and both In and En

i are nondecreasing, (1e)
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Un
i (0) = αni n, 0≤Un

i (t)≤ αni n, (1f)∑
i∈I

∫ ∞
0

Qn
i (t)dIn(t) = 0, (1g)

a repair of a broken part cannot be interrupted until completion, (1h)

Sni , U
n
i (t), Qn

i (t)∈N. (1i)

Constraint (1g) implies that the repair facility operates in a work-conserving fashion, that is, the

repair facility never idles as long as there is a broken part in the repair facility. Constraint (1h)

implies that the repair facility uses non-preemptive repair policies. We consider work-conserving

and non-preemptive control policies because they have practical appeal and are commonly used in

practice. Next, we define the set of admissible control policies for the pre-limit system.

Definition 1. (Admissible policy) Fix an arbitrary n∈N+. A control policy is admissible if it is

non-anticipative and under that policy, the process
(
Sni , I

n, T ni ,E
n
i ,U

n
i ,Q

n
i , i∈ I

)
satisfies (1).

The set of admissible control processes includes randomized and history-dependent policies but

does not include the policies that can use future information.

For all i∈ I, t∈R+, and n∈N+, (1b) and (1c) imply

αni n+Sni =OHn
i (t) +Qn

i (t) +Un
i (t),

which states that the parts circulate in the system as ready-for-use, broken, or installed parts.

We let hi denote the holding cost per part of SKU i per unit time, bi denote the backorder cost

per unit time per backordered demand of SKU i, and cni denote the emergency repair cost for a

part of SKU i for all i ∈ I and n ∈ N+. On the one hand, both the inventory holding and the

backorder costs are independent on n. On the other hand, we assume that

cni
n
→ ci ∈R+ as n→∞ for all i∈ I, (2)

that is, the emergency repair costs increase in the order of n as n→∞. By the assumption in

(2), inventory holding, backorder, and emergency repair costs will be non-zero in the asymptotic

regime defined in Assumption 1 under an appropriate scaling.
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We assume that min{hi, bi, ci}> 0 for all i∈ I. Let

Jn(t) :=
∑
i∈I

E

[
hiS

n
i +

bi
t

∫ t

0

(Qn
i (s)−Sni )

+
ds+

cni
t
En
i (t)

]
, ∀t∈R+, n∈N+,

denote the average cost rate on the interval [0, t] in the nth system. The first term in the definition

of Jn(t) is the inventory holding cost per unit time. By (1b), the second term denotes the backorder

cost per unit time on the interval [0, t]. The last term denotes the emergency repair cost per unit

time on the interval [0, t]. The objective is to minimize the long-run average cost, that is, the

objective is to minimize

limsup
t→∞

Jn(t). (3)

3.2. Fluid and Diffusion Scaled Processes

Solving the optimization problem (1) & (3) is very challenging due to the curse of dimensionality.

Therefore, we will derive and solve an optimization problem in the asymptotic regime defined in

Assumption 1 by considering the diffusion scaled processes. The reason is that the diffusion limits of

stochastic processes are more analytically tractable than the processes themselves. The intuition is

as follows. Consider a sequence of M/M/1 queues indexed by n∈N+ such that ρnM/M/1 denotes the

load in the nth system. Similar to Assumption 1 Part 2, suppose that
√
n
(

1− ρnM/M/1

)
→ θ̃ ∈R++

as n→∞ and thus we consider the conventional heavy-traffic regime. The long-run average number

of jobs in the nth M/M/1 queue is equal to ρnM/M/1/(1− ρnM/M/1)≈
√
n/θ̃ and thus we must scale

that value with 1/
√
n to obtain a simple and finite limiting value as n→∞. Under the diffusion

scaling, the time is scaled with n and the space is scaled with 1/
√
n. Therefore, as n→∞, due to

the time scaling, the stochastic processes of interest reach the steady state quickly, and due to the

space scaling, those processes converge to relatively tractable processes.

Let us first define the workload process associated with the broken parts and the weighted

cumulative number of emergency repairs as

W n(t) :=
∑
i∈I

Qn
i (t)

µi
, En(t) :=

∑
i∈I

En
i (t)

µi
, ∀t∈R+, n∈N+, (4)
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respectively. The workload process W n(t) can be interpreted as the weighted total number of

broken parts in the repair facility at time t. Let D denote the càdlàg space. For a process Xn ∈D,

we denote the fluid scaled version of it by X̄n such that X̄n(t) := Xn(nt)/n for all n ∈ N+ and

t∈R+. For all i∈ I, n∈N+, and t∈R+, we let S̄ni := Sni /n and

F n
i (t) := λni

∫ t

0

Un
i (s)ds.

After some algebra, we have the following equation for all i∈ I, t∈R+, and n∈N+:

Q̄n
i (t) = Āni ◦ F̄ n

i (t)− R̄n
i ◦ T̄ ni (t)− Ēn

i (t),

where “◦” denotes the composition operator.

Let e,0, ι∈D be such that e(t) := t, 0(t) = 0, and ι(t) = 1 for all t∈R+. We consider the control

policies under which the following convergence result holds:

(
S̄ni , Q̄

n
i , Ē

n
i , Ū

n
i , T̄

n
i , F̄

n
i

) a.s.−−→
(

0,0,0, αiι,
αiλi
µi

e,αiλie

)
u.o.c. as n→∞ for all i∈ I, (5)

where “u.o.c.” is the abbreviation of uniformly on compact intervals. The convergence in (5) implies

that Īn
a.s.−−→ 0 u.o.c., that is, the repair facility is fully utilized in the fluid limit. Furthermore,

because

J̄n(t) =
∑
i∈I

E

[
hiS̄

n
i +

1

t

(
bi

∫ t

0

(
Q̄n
i (s)− S̄ni

)+
ds+

cni
n
Ēn
i (t)

)]
, ∀t∈R+, n∈N+,

the fluid-scaled cost is zero under the limiting processes in (5).

Next, for all i∈ I, t∈R+, and n∈N+, let us define the following diffusion scaled processes:

Ŝni := Sni /
√
n, Âni (t) := (Ai(nt)−nt)/

√
n, R̂n

i (t) := (Ri(nt)−nµit)/
√
n.

For any other process Zn ∈D, we denote the diffusion scaled version of it by Ẑn such that Ẑn(t) :=

Zn(nt)/
√
n for all n∈N+ and t∈R+.

For all i∈ I, t∈R+, and n∈N+, let

X̂n
i (t) := Âni ◦ F̄ n

i (t)− R̂n
i ◦ T̄ ni (t),

X̂n(t) :=
∑
i∈I

X̂n
i (t)

µi
.
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For all t∈R+ and n∈N+, the diffusion scaled equations are as follows.

Q̂n
i (t) = X̂n

i (t)−nλni
∫ t

0

(
Q̂n
i (s)− Ŝni

)+

ds+
√
n
(
nαni λ

n
i t−µiT̄ ni (t)

)
− Ên

i (t), ∀i∈ I, (6a)

Ŵ n(t) = X̂n(t) +
√
n (ρn− 1) t−

∑
i∈I

nλni
µi

∫ t

0

(
Q̂n
i (s)− Ŝni

)+

ds+ În(t)− Ên(t). (6b)

By (3), in the nth system, our objective is to minimize the diffusion-scaled long-run average cost

henceforth, that is, our objective is to minimize

limsup
t→∞

Ĵn(t). (7)

3.3. The Brownian Control Problem

By considering the limits of the diffusion scaled processes, we formulate the BCP which is a singular

stochastic control problem (see Harrison (2013)). By (5), the functional central limit theorem (see

theorems 4.3.5 and 7.3.2 of Whitt (2002)), joint convergence when one limit is deterministic (see

theorem 11.4.5 of Whitt (2002)), the random time-change theorem (see theorem 13.2.2 of Whitt

(2002)), and the continuous mapping theorem (see theorem 3.4.4 of Whitt (2002)), we have

(
X̂n
i , i∈ I

)
⇒
(
Xi, i∈ I

)
as n→∞,

where ⇒ denotes weak convergence and Xi is a Brownian motion starting from origin with drift

0 and variance αiλi (1 +σ2
i ) for all i∈ I, that is, Xi is a BM (0, αiλi (1 +σ2

i )). Furthermore, Xi is

independent of Xj for all j 6= i. Let

X :=
∑
i∈I

Xi

µi
. (8)

Then, X is a BM (0,Σ) such that

Σ :=
∑
i∈I

αiλi (1 +σ2
i )

µ2
i

.

By the continuous mapping theorem, we have X̂n⇒X as n→∞.

Let us assume that as n→∞,(
În,
√
n

(
nαni λ

n
i

µi
e− T̄ ni

)
, Ŝni , Ê

n
i , i∈ I

)
⇒ (I,Yi, Si,Ei, i∈ I) ,
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which implies ∑
i∈I

Yi(t) = θt+ I(t), ∀t∈R+.

The limiting stochastic process Yi denotes the deviation of the actual time spent for the repair of

the broken parts of SKU i from the average time that should be spent for the repair of the broken

parts of SKU i. We will control those deviations in the BCP that we will propose.

Let us consider the filtered probability space (Ω,F ,F,P) satisfying the usual conditions (see

appendix A.1 of Harrison (2013) for details) such that F is the filtration generated by
(
Xi, i∈ I

)
.

The following BCP is the limiting version of the optimization problem (1) & (3) under the diffusion

scaling.

min limsup
t→∞

∑
i∈I

E

[
hiSi +

1

t

(
bi

∫ t

0

(Qi(s)−Si)+
ds+ ciEi(t)

)]
(9a)

s.t.Qi(t) =Xi(t)−λi
∫ t

0

(Qi(s)−Si)+
ds+µiYi(t)−Ei(t), ∀i∈ I, t∈R+, (9b)

∑
i∈I

Yi(t) = θt+ I(t), ∀t∈R+, (9c)

I(0) =Ei(0) = 0, I and Ei are in D, nondecreasing, and F-adapted for all i∈ I, (9d)

Qi is an F-adapted stochastic process for all i∈ I, (9e)

Si,Qi(t)≥ 0, ∀i∈ I, t∈R+, (9f)

where the decision variables are the process
(
Qi, Si, Yi, I,Ei, i ∈ I

)
, the objective function (9a)

follows from (2), (3), and (7), and (9b) follows from (6a). The F-adapted process requirements in

(9d) and (9e) enforce a non-anticipative control. Observe that we do not enforce work-conserving

control policies in the BCP (9) (recall (1g)) but we will later prove that the optimal BCP (9)

solution is indeed a work-conserving policy. Furthermore, we do not enforce any constraints related

to non-preemptive control policies (recall (1h)). The reason is that the performance gap between

the preemptive and non-preemptive policies generally disappears in the heavy-traffic regime (see

for example Atar et al. (2004)).
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3.4. The Equivalent Workload Formulation

Because the BCP (9) is multi-dimensional, we will formulate an equivalent, single-dimensional,

and analytically tractable stochastic control problem. Specifically, we will consider the limit of

the single-dimensional workload evolution constraint (6b) instead of the multi-dimensional queue

length evolution constraint (6a). In the EWF, our goal is to dynamically allocate the workload

to the individual queue lengths to minimize the long-run average cost. To do this, for any given

workload level, we introduce the set of feasible workload allocations in the following way. By

considering (4), for all w ∈R+, let

A(w) :=

{
q ∈RI+ :

∑
i∈I

qi
µi

=w

}
.

Similar to Rubino and Ata (2009), we define the workload allocation process a= (ai, i ∈ I) such

that a :R2
+ ×Ω→RI+ and a(t,W (t,ω), ω) denotes an allocation of the workload W to the queue

lengths at time t under the sample path ω. For notational convenience, we will suppress ω from

the notation as much as possible.

By recalling (4), let W (t) :=
∑

i∈IQi(t)/µi and E(t) :=
∑

i∈I Ei(t)/µi. Then, W is the limiting

workload process and E(t) is the limiting cumulative weighted total number of emergency repairs

done up to time t. Let k ∈ arg mini∈I ciµi. By recalling (8), the EWF of the BCP (9) is as follows.

min limsup
t→∞

E

[∑
i∈I

hiSi +
1

t

(∑
i∈I

bi

∫ t

0

(ai(s,W (s))−Si)+
ds+ ckµkE(t)

)]
, (10a)

s.t.W (t) =X(t) + θt−
∑
i∈I

λi
µi

∫ t

0

(ai(s,W (s))−Si)+
ds+ I(t)−E(t), ∀t∈R+, (10b)

I(0) =E(0) = 0, I and E are in D, nondecreasing, and F-adapted, (10c)

a(t,W (t,ω), ω)∈A(W (t,ω)), ∀t∈R+, ω ∈Ω, (10d)

Si,W (t)≥ 0, ∀i∈ I, t∈R+, (10e)

a(·,W (·)) is an F-adapted stochastic process, (10f)
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where the decision variables are the process
(
W,I,E,a,S

)
such that S := (Si, i ∈ I). As seen in

the objective function (10a), emergency repairs are used only for SKU k, which is an SKU with

the smallest emergency repair cost per unit repair time.

The EWF (10) is much easier to solve than the BCP (9) because the EWF constraint (10b) is

one-dimensional whereas the BCP constraint (9b) is multi-dimensional. The following proposition

states that the EWF (10) is equivalent to the BCP (9).

Proposition 1. (i) For any feasible solution to the EWF (10), there exists a feasible solution

to the BCP (9) with the same objective function value.

(ii) For any feasible solution to the BCP (9), there exists a feasible solution to the EWF (10)

with a less than or equal objective function value.

Therefore, the optimal objective function values of the BCP (9) and the EWF (10) are the same.

The proof of Proposition 1 is presented in the OA A.1.

4. An Optimal EWF (10) Solution

We will derive an optimal EWF (10) solution. First, we present the associated Bellman equations

in Section 4.1. Then, we discuss the structure of the optimal workload allocation policy in Section

4.2. Finally, we present the optimal EWF (10) solution in Sections 4.3 and 4.4.

4.1. The Bellman Equations

Let j, l ∈ I be such that

j ∈ arg min
i∈I

biµi
λi

, l ∈ arg min
i∈I

hiµi. (11)

The structure of the optimal EWF (10) solution depends on whether bjµj/λj ≤ ckµk or bjµj/λj >

ckµk, and so does the structure of the Bellman equation. For all m∈N+, let Cm denote the set of

differentiable functions with domain R+ and range R and whose mth derivatives are continuous.

For a given f ∈C2, let f ′ and f ′′ denote the first and the second derivatives of f , respectively.

Suppose that bjµj/λj ≤ ckµk. Fix an arbitrary S ∈ RI+. The associated Bellman equation is as

follows. Find a pair (f, γ) such that f ∈C2, γ ∈R+,

1

2
Σf ′′(w) + θf ′(w) + min

q∈A(w)

{∑
i∈I

(
bi−

λi
µi
f ′(w)

)
(qi−Si)+

}
= γ, ∀w ∈R+, (12a)
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0≤ f ′(w)≤ bjµj
λj

, ∀w ∈R+, (12b)

f ′(0) = 0. (12c)

Under a given initial inventory level S, the function f ∈C2 and the constant γ ∈R+ satisfying the

condition (12) are the relative cost function and the long-run average backorder and emergency

repair cost under an optimal policy, respectively. The intuitive explanation of the constraint (12b)

is as follows. Consider an extreme scenario in which the workload is very high, parts of all SKUs are

backordered, and the workload will remain high for a long time. If the repair facility repairs a part

of SKU i, it will spend 1/µi amount of repair time (resource) for that task on average, the repaired

part of SKU i will stay installed for 1/λi amount of time on average, and thus the repair facility will

save bi/λi total backorder cost on average. Therefore, the average saving per unit resource (repair

time) spent is equal to (bi/λi)/(1/µi) = biµi/λi. Consequently, the repair facility will give the least

amount of repair priority to the SKU j where j ∈ arg mini∈I(biµi/λi) and thus parts of SKU j

will be backordered and the cost will increase with the rate bjµj/λj. Because, the aforementioned

scenario is a worst-case scenario, the relative cost function increases in the workload with a rate

less than or equal to bjµj/λj, which is what (12b) states.

Suppose that bjµj/λj > ckµk. Fix an arbitrary S ∈ RI+. The associated Bellman equation is as

follows. Find a triple (f,B,γ) such that f ∈C2, B ∈R++, γ ∈R+,

1

2
Σf ′′(w) + θf ′(w) + min

q∈A(w)

{∑
i∈I

(
bi−

λi
µi
f ′(w)

)
(qi−Si)+

}
= γ, ∀w ∈ [0,B], (13a)

1

2
Σf ′′(w) + θf ′(w) + min

q∈A(w)

{∑
i∈I

(
bi−

λi
µi
f ′(w)

)
(qi−Si)+

}
≥ γ, ∀w>B, (13b)

0≤ f ′(w)≤ ckµk, ∀w ∈R+, (13c)

f ′(0) = 0 and f ′(B) = ckµk. (13d)

The constant B is the barrier level such that the optimal solution does not allow the workload level

to exceed the barrier level B. Whenever the workload level hits the barrier level B, the optimal

solution uses emergency repairs to keep the workload below the barrier level as seen in (13d). The
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intuitive explanation of the constraints (13c) and (13d) is as follows. Recall the extreme scenario

discussed after (12). When a part of SKU i breaks down, if an emergency repair is executed, then

the associated cost is ci and that emergency repair prevents the workload to increase by 1/µi

on average. That increase in the workload would increase the cost by f ′(w)/µi approximately.

Therefore, applying the emergency repair is attractive for workloads w ∈R+ for which ci ≤ f ′(w)/µi,

that is, ciµi ≤ f ′(w). Recall that k ∈ arg mini∈I ciµi. We will prove in Lemma 2 that f ′(w) is strictly

increasing, which implies that as the workload increases, the relative cost function increases faster.

Therefore, on the one hand, if ckµk ≥ bjµj/λj, emergency repairs never become attractive because

the cost never increases with a rate greater than bjµj/λj (recall (12b)). On the other hand, if

ckµk < bjµj/λj, there exists a workload level B ∈R++ at which f ′(B) = ckµk. Then, whenever the

workload reaches B, the repair facility will execute emergency repairs for the parts of SKU k and

thus the workload will never exceed the barrier level B. Consequently, it will never happen that

emergency repairs are executed for SKUs other than SKU k.

We will simplify the Bellman equations (12) and (13) by finding a closed-form solution to the

minimization problem in (12a), (13a), and (13b). For given w ∈ R+ and f ∈ C2, consider the

optimization problem

min
q∈A(w)

{∑
i∈I

(
bi−

λi
µi
f ′(w)

)
(qi−Si)+

}
. (14)

For any given workload level w ∈ R+, the optimization problem (14) allocates the workload to

the individual queues to minimize the cost. For all w ∈R+, let z(w) denote the optimal objective

function value and q∗(w) = (q∗i (w), i∈ I) denote an optimal solution to (14). The following lemma

presents closed-form expressions for z(w) and q∗(w).

Lemma 1. Fix an arbitrary w ∈R+ and f ∈C2 such that 0≤ f ′(w)≤ bjµj/λj. An optimal solution

to (14) is as follows.

i. If w ≤
∑

i∈I Si/µi, then z(w) = 0. Furthermore, any feasible solution under which qi(w)≤ Si

for all i∈ I is optimal and at least one such feasible solution exists.
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ii. Suppose that w>
∑

i∈I Si/µi. Let κ(w)∈ arg mini∈I {biµi−λif ′(w)}. Then,

q∗i (w) = Si, ∀i∈ I \ {κ(w)},

q∗κ(w)(w) = µκ(w)

w− ∑
i∈I\{κ(w)}

Si
µi

 ,

z(w) = min
i∈I
{biµi−λif ′(w)}

(
w−

∑
i∈I

Si
µi

)
.

The proof of Lemma 1 is presented in the OA A.2. Therein, we also present a specific optimal

solution under the case w≤
∑

i∈I Si/µi. Next, the following lemma states that both of the Bellman

equations (12) and (13) have solutions.

Lemma 2. Fix an arbitrary S ∈RI+.

i. There exists a pair (f, γ) such that f ∈C2, γ ∈R+, and (f, γ) satisfies (12). Furthermore, f is

unique up to a constant, γ > 0 and is unique, and f ′ is strictly increasing.

ii. Suppose that bjµj/λj > ckµk. There exists a triple (f,B,γ) such that f ∈C2, B ∈R++, γ ∈R+,

and (f,B,γ) satisfies (13). Furthermore, f is unique up to a constant on [0,B], (B,γ) is

unique, B >
∑

i∈I Si/µi, γ > 0, and f ′ is strictly increasing on [0,B].

The proof of Lemma 2 is presented in the OA A.3.

Definition 2. If bjµj/λj ≤ ckµk, let f ∈C2 be the function defined in Lemma 2 Part i. Otherwise,

if bjµj/λj > ckµk, let f ∈C2 be the function defined in Lemma 2 Part ii. We let q∗(w) = (q∗i (w), i∈

I) denote an optimal solution to (14) as defined in Lemma 1 with the function f for all w ∈R+.

4.2. Structure of the Optimal Workload Allocation

Lemma 1 provides important insights about the optimal workload allocation. On the one hand, if

the workload level is sufficiently small, that is, if w≤
∑

i∈I Si/µi, no SKU is backordered. On the

other hand, if the workload level is sufficiently high, that is, if w >
∑

i∈I Si/µi, then the optimal

workload allocation is such that demands of a single SKU in the set arg mini∈I {biµi−λif ′(w)} are

backordered. Observe that the index of the SKU with backordered demands, κ(w), depends on the
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workload level, that is, different SKUs may be backordered at different workload levels (see also

Example 1 below).

Because f ′ is strictly increasing (recall Lemma 2) and bounded (see (12b) and (13c)), as the

workload level w increases on R+, there are at most I − 1 thresholds at which the index κ(w) ∈

arg mini∈I {biµi−λif ′(w)} changes. Therefore, only demands of some of the SKUs are backordered

under the optimal workload allocation policy q∗. The following example illustrates how the optimal

backordering decisions are made.

6!-!

0,0 6!-!
.!

6"-"

6"-"
."

;+(7)
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min*∈ !," 6*-* − .*;+(7)

Figure 2 (Color online) Parameters associated with Example 1.

Example 1. Suppose that there are two SKUs, that is, I = {1,2}. Suppose that b1µ1 < b2µ2,

λ1 < λ2, and b1µ1/λ1 > b2µ2/λ2 such that there exists a threshold below (above) which demands

of SKU 1 (2) are backordered (see Figure 2 and recall Lemma 1). Under the optimal workload

allocation policy q∗, as the workload level exceeds the “total” inventory level, first demands of

SKU 1 are backordered. The reason is that the backorder cost per unit repair time for SKU 1 is

less than the one for SKU 2 (recall that b1µ1 < b2µ2). As the demands of SKU 1 are backordered,

broken parts of SKU 2 are given repair priority. However, SKU 2 has a higher breakdown rate

than SKU 1 has (recall that λ1 <λ2) and thus repaired parts of SKU 2 will breakdown relatively

quickly and increase the workload in the near future. Therefore, the initial backordering decision

is myopic.
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If the workload level exceeds the threshold, then the optimal workload allocation policy takes a

drastic measure and backorders demands of SKU 2 and gives repair priority to the broken parts

of SKU 1, even though SKU 2 has a higher backorder cost per unit repair time than SKU 1 has.

The reason is that SKU 1 has a smaller breakdown rate than SKU 2 has and thus it will take

relatively more time on average for the repaired parts of SKU 1 to breakdown and increase the

workload in the future. Therefore, as the workload level increases, the optimal policy makes more

forward-looking decisions. Finally, if b2µ2/λ2 is larger than min{c1µ1, c2µ2} and the workload level

increases even more, then the optimal workload allocation policy takes the most drastic measure

and implements emergency repairs to keep the workload below a threshold. In summary, as the

workload level increases, the backordering decisions become more and more forward looking. �

Next, we will prove the existence of an optimal EWF (10) solution with the following structure:

• The idle time process can increase only if there is no workload, that is, for all t∈R+, I(t) can

increase only if W (t) = 0. Therefore, the repair facility operates in a work-conserving fashion.

• When the workload process exceeds the “total” inventory level, demands of a particular SKU

are backordered. The index of the SKU whose demands are backordered depends on the workload

level (recall Lemma 1).

• If bjµj/λj ≤ ckµk, the optimal solution does not make any emergency repairs, that is, E = 0

under the optimal solution. We call that optimal solution the NER policy.

• If bjµj/λj > ckµk, then a barrier policy, under which the workload process is not allowed to

exceed an upper barrier level (or threshold), is optimal. The emergency repair process increases

only when the workload hits the upper barrier and only broken parts of SKU k are sent into

emergency repair.

Next, we will define the NER and the barrier policies rigorously and present the associated

optimality results.

4.3. The NER Policy

The following one-sided regulator mapping will help us to define the NER policy rigorously.
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Definition 3. (A one-sided regulator mapping) Let λ := (λi, i ∈ I) ∈ RI+, µ := (µi, i ∈ I) ∈ RI++,

s := (si, i∈ I)∈RI+, and x∈D be such that x(0)≥ 0. The one-sided regulator mapping
(
φ(1),ψ(1)

)
:

R2I
+ ×RI++×D→D2 is defined by

(
φ(1),ψ(1)

)
(λ,µ,s, x) = (w, `) where

C1. w(t) = x(t)−
∑

i∈I
λi
µi

∫ t
0

(q∗i (w(y))− si)+
dy+ `(t)≥ 0 for all t∈R+,

C2. `(0) = 0, ` is nondecreasing, and
∫∞

0
w(t)d`(t) = 0.

Condition C2 states that the pushing process ` increases only if w becomes 0. If λi = 0 for all i∈ I

in Definition 3, then the regulator mapping becomes the conventional one-sided regulator mapping

(see chapter 13.5 of Whitt (2002)). The following lemma proves the existence of the one-sided

regulator mapping in Definition 3 .

Lemma 3. For any given λ ∈ RI+, µ ∈ RI++, s ∈ RI+, and x ∈ D such that x(0)≥ 0, there exists a

unique pair
(
φ(1),ψ(1)

)
(λ,µ,s, x) satisfying the conditions C1 and C2 in Definition 3. Furthermore,

if (λ,µ,s) is given,
(
φ(1),ψ(1)

)
(λ,µ,s, x) is non-anticipative with respect to x.

The proof of Lemma 3 is presented in the OA A.4.2.

The rigorous definition of the NER policy is as follows.

Definition 4. (NER policy) For given S ∈RI+, the NER policy is the process
(
W,I,E,q∗,S

)
such

that E = 0, q∗ is defined in Definition 2, and (W,I) =
(
φ(1),ψ(1)

)
(λ,µ,S,X + θe).

Observe that the NER policy is a feasible solution to the EWF (10) for all S ∈ RI+ by Lemma

3. Under the NER policy, the repair facility never makes an emergency repair by definition and

operates in a work-conserving fashion by condition C2 in Definition 3.

The following theorem states the optimality of the NER policy.

Theorem 1. Suppose that bjµj/λj ≤ ckµk. Fix an arbitrary S ∈RI+ in the EWF (10). Then, the

NER policy defined in Definition 4 is an optimal EWF (10) solution. Furthermore, the long-run

average backorder and emergency repair cost under an optimal solution is equal to γ defined in

Lemma 2 Part i.

The proof of Theorem 1 is presented in the OA A.5.
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4.4. The Barrier Policy

Barrier type policies are well known in the context of optimal control of a Brownian motion (see for

example chapter 7 of Harrison (2013)). We will define the barrier policy rigorously by the following

two-sided regulator mapping.

Definition 5. (A two-sided regulator mapping) Let λ∈RI+, µ∈RI++, s∈RI+, b∈R++, and x∈D

be such that x(0)∈ [0, b]. The two-sided regulator mapping
(
φ(2),ψ

(2)
1 ,ψ

(2)
2

)
:R2I

+ ×RI+1
++ ×D→D3

is such that
(
φ(2),ψ

(2)
1 ,ψ

(2)
2

)
(λ,µ,s, b, x) = (w, `,u) where

C1. w(t) = x(t)−
∑

i∈I
λi
µi

∫ t
0

(q∗i (w(y))− si)+
dy+ `(t)−u(t)∈ [0, b] for all t∈R+,

C2. `(0) = u(0) = 0 and both ` and u are nondecreasing,

C3.
∫∞

0
w(t)d`(t) =

∫∞
0

(b−w(t))du(t) = 0.

The two-sided regulator mapping in Definition 5 has the lower barrier 0 and the upper barrier b

and thus w(t)∈ [0, b] for all t∈R+. Condition C3 states that the lower and upper pushing processes

(that is, ` and u) increase only if w hits the corresponding barrier. If λi = 0 or si ≥ b for all i∈ I in

Definition 5, then the regulator mapping becomes the conventional two-sided regulator mapping

(see chapter 14.8 of Whitt (2002)). The following lemma proves the existence of the two-sided

regulator mapping in Definition 5.

Lemma 4. For any given λ∈RI+, µ∈RI++, s∈RI+, b∈R++, and x∈D such that x(0)∈ [0, b], there

exists a unique set of processes
(
φ(2),ψ

(2)
1 ,ψ

(2)
2

)
(λ,µ,s, b, x) ∈ D3 which satisfies the conditions

C1-C3 in Definition 5. Furthermore, if (λ,µ,s, b) is given,
(
φ(2),ψ

(2)
1 ,ψ

(2)
2

)
(λ,µ,s, b, x) is non-

anticipative with respect to x.

The proof of Lemma 4 is presented in the OA A.4.3.

The rigorous definition of the barrier policy is as follows.

Definition 6. (Barrier policy) For given B ∈ R++ and S ∈ RI+, the barrier policy with lower

barrier 0 and upper barrier B is the process
(
W,I,E,q∗,S

)
such that q∗ is defined in Definition 2

and (W,I,E) =
(
φ(2),ψ

(2)
1 ,ψ

(2)
2

)
(λ,µ,S,B,X + θe).
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Observe that the barrier policy is a feasible solution to the EWF (10) for all B ∈R++ and S ∈RI+

by Lemma 4. Under the barrier policy, the workload process always stays between the lower and

upper barrier levels, that is, W (t)∈ [0,B] for all t∈R+. Furthermore, by condition C3 in Definition

5, the repair facility operates in a work-conserving fashion and the emergency repairs are used only

when the workload level hits the upper barrier level.

The following theorem states the optimality of the barrier policy.

Theorem 2. Suppose that bjµj/λj > ckµk. Fix an arbitrary S ∈RI+ in the EWF (10). The barrier

policy defined in Definition 6 with the upper barrier level B defined in Lemma 2 Part ii is an

optimal EWF (10) solution. Furthermore, the long-run average backorder and emergency repair

cost under an optimal solution is equal to γ defined in Lemma 2 Part ii.

The proof of Theorem 2 is presented in the OA A.6.

5. Further Simplification of the EWF (10)

In Theorems 1 and 2, we show that if the inventory vector S ∈ RI+ is given, the NER and the

barrier policies are optimal EWF (10) solutions depending on the comparison bjµj/λj vs. ckµk.

Furthermore, for a given inventory vector S ∈RI+, we can numerically compute the optimal long-run

average backorder and emergency repair cost, denoted by γ(S), by solving the Bellman equation

(12) or (13). Therefore, the following optimization problem gives us the optimal inventory levels.

min
S∈RI+

{
γ(S) +

∑
i∈I

hiSi

}
. (15)

Solving (15) is not trivial because we can compute γ(S) only numerically. If there are many SKUs in

the system, that is, if I is large, the optimization problem (15) becomes challenging. Nevertheless,

we can simplify the EWF (10) together with its optimal solution under the following assumption.

Assumption 2. Let the SKU j in (11) be such that j ∈ arg mini∈I biµi and j ∈ arg maxi∈I λi, that

is, SKU j has the smallest backorder cost per unit repair time and the highest breakdown rate.

Under Assumption 2, the optimal workload allocation policy q∗ (see Definition 2) simplifies

such that the SKU j ∈ arg mini∈I {biµi−λif ′(w)} for all w ∈ R+. In other words, it is enough to
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backorder only demands of SKU j at all workload levels such that w>
∑

i∈I Si/µi. Therefore, the

structure of both the NER and the barrier policies simplify. Furthermore, under Assumption 2, the

state-dependent drift term in (10b) simplifies under q∗. Specifically, under Assumption 2,∑
i∈I

λi
µi

∫ t

0

(q∗i (W (s))−Si)+
ds= λj

∫ t

0

(
W (s)−

∑
i∈I

Si
µi

)+

ds, ∀t∈R+.

Finally, under Assumption 2, it is enough to consider the inventory vectors S ∈ RI+ such that

Si = 0 for all i∈ I \{l}, that is, by recalling (11), a nonzero initial inventory is allowed only for the

SKU with the cheapest inventory holding cost per unit repair time. Therefore, the I-dimensional

inventory optimization problem in (15) simplifies into a single-dimensional one. Let S :=
∑

i∈I Si/µi

so that S is the weighted total initial inventory level. Then, under Assumption 2, the EWF (10)

simplifies into the following one:

min limsup
t→∞

E

[
hlµlS+

1

t

(
bjµj

∫ t

0

(W (s)−S)
+

ds+ ckµkE(t)

)]
, (16a)

s.t.W (t) =X(t) + θt−λj
∫ t

0

(W (s)−S)
+

ds+ I(t)−E(t), ∀t∈R+, (16b)

I(0) =E(0) = 0, I and E are in D, nondecreasing, and F-adapted, (16c)

S,W (t)∈R+, ∀t∈R+, (16d)

where the decision variables are the process
(
W,I,E,S

)
. By recalling (11), in the EWF (16), a

nonzero initial inventory is allowed only for SKU l, backordering is allowed only for SKU j, and

emergency repairs are allowed only for SKU k. The following proposition shows that the EWF (16)

is equivalent to the BCP (9) and thus it is also equivalent to the EWF (10) by Proposition 1.

Proposition 2. (i) For any feasible solution to the EWF (16), there exists a feasible solution to

the BCP (9) with the same objective function value. Therefore, the optimal objective function

value of the BCP (9) is less than or equal to the one of the EWF (16).

(ii) Suppose that Assumption 2 holds. For any feasible solution to the BCP (9), there exists a

feasible solution to the EWF (16) with less than or equal objective function value.

Consequently, under Assumption 2, the optimal objective function values of the BCP (9) and

the EWF (16) are the same.

The proof of Proposition 2 is presented in the OA A.7.
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5.1. An Optimal EWF (16) Solution

Let z∗ denote the optimal EWF (16) objective function value. The following theorem states the

optimality of the NER policy.

Theorem 3. Suppose that bjµj/λj ≤ ckµk and Assumption 2 holds. Let S∗ := (S∗i , i ∈ I) ∈ RI+

be such that S∗i := 0 for all i ∈ I \ {l} and S∗l := µlS
∗ where S∗ ∈ R+ is defined below. Consider

the NER policy
(
W ∗, I∗,0,q∗,S∗

)
in Definition 4. Then, (W ∗, I∗,0, S∗) is an optimal EWF (16)

solution.

• If θ= 0,

S∗ =

√
Σ

2λj

(√
bjµj
hlµl

−
√
π

2

)+

, (17)

z∗ = hlµlS
∗+

bjµj
λj

2
Σ
S∗+

√
π
λjΣ

.

• If θ < 0,

S∗ =
Σ

−θ

[
ln

(
−θ

√
2bjµj
hlµlλjΣ

(1 + θC) +

√(
4 +

2bjµjθ2

hlµlλjΣ

)
(1 + θC)

)
− ln(2)

]+

, (18)

z∗ = hlµlS
∗+

bjµj
λj

(1 + θC)

1
θ

(
1− e−

2θ
Σ S∗

)
+C

,

where

C :=

√
π

λjΣ
e
θ2

λjΣ

(
1 + Erf

[
θ√
λjΣ

])

and Erf[·] is the Gauss error function.

The proof of Theorem 3 is presented in the OA A.8.

Next, we will introduce some notation. If θ= 0, let for all w,S ∈R+

G(w,S) :=
bjµj
λj

+ e
λj
Σ (w−S)2

(
2

Σ
S (bjµj −λjckµk) (w−S)− bjµj

λj
(19)

+ (bjµj −λjckµk) (w−S)

√
π

λjΣ
Erf

[√
λj
Σ

(w−S)

])
.
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If θ < 0, let for all w,S ∈R+

G(w,S) :=
bjµj
λj

+ e
1
Σ(λj(w−S)2−2θ(w−S))

[
(θckµk + (bjµj −λjckµk) (w−S)) (20)

×

(
1

θ

(
1− e−

2θ
Σ S
)

+

√
π

λjΣ
e
θ2

λjΣ

(
Erf

[
θ√
λjΣ

]
+ Erf

[
−θ+λj(w−S)√

λjΣ

]))

− bjµj
λj

(
1 +

θ√
λjΣ

√
πe

θ2

λjΣ

(
Erf

[
θ√
λjΣ

]
+ Erf

[
−θ+λj(w−S)√

λjΣ

]))]
.

The following theorem states the optimality of the barrier policy.

Theorem 4. Suppose that bjµj/λj > ckµk and Assumption 2 holds. Let S∗ ∈RI+ be such that S∗i :=

0 for all i ∈ I \ {l} and S∗l := µlS
∗. Consider the barrier policy

(
W ∗, I∗,E∗,q∗,S∗

)
in Definition

6 with the barrier level B∗ ∈ (S∗,∞) such that (S∗,B∗) is an optimal solution to the optimization

problem (21) presented below. Then, (W ∗, I∗,E∗, S∗) is an optimal EWF (16) solution.

min
S,B

hlµlS+ θckµk + (bjµj −λjckµk) (B−S), (21a)

B = inf {w>S :G(w,S) = ckµk} , (21b)

S ≥ 0. (21c)

Finally, there exists an optimal solution to (21) and the optimal objective function value of (21)

is equal to the one of EWF (16).

The proof of Theorem 4 is presented in the OA A.9. In that proof, we show that for any given S ∈

R+, there exists a unique B ∈ (S,∞) satisfying the constraint (21b). Furthermore, the constraint

(21b) implies that the derivative of the relative value function is continuous at the barrier level and

thus that constraint is an application of the “principle of smooth fit” (see chapter 5 of Harrison

(2013)).

6. Numerical Experiments

We present control policies for the pre-limit system in Section 6.1. Then, we present numerical

results for problem instances for which Assumption 2 does not hold in Section 6.2. Finally, we

present numerical results for problem instances for which Assumption 2 holds in Section 6.3.
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6.1. Policies for the pre-limit system

Let us consider a pre-limit system, that is, let us fix an arbitrary n∈N+. For notational convenience,

we let ni := nαni denote the number of capital goods using SKU i for all i ∈ I in this section and

thus
∑

i∈I ni = n. Let Sn := (Sni , i ∈ I) denote an initial inventory vector in the pre-limit system.

Let ei denote the I-dimensional vector whose elements are all equal to 0 except the ith element

which is equal to 1. For all x∈R, we let [x] and
⌈
x
⌉

denote the closest integer to x and the smallest

integer greater than or equal to x, respectively. We let o(·) denote the little-o notation. We assume

that the repair times are exponentially distributed in the numerical experiments.

First, we present an optimal policy and a policy that does not use emergency repairs.

An optimal policy. For a given inventory vector Sn, we use a Markov decision process (MDP)

to compute the optimal long-run average cost. We compute the optimal inventory vector by enu-

meration. The details about the MDP formulation are presented in the OA A.10.1. In the MDP

model, the set of admissible control policies are the ones defined in Definition 1.

The NER* policy. This policy is the best performing policy among the ones that do not use

emergency repairs. For a given inventory vector, the NER* policy is derived with the same technique

used to derive the optimal policy except that emergency repairs are deleted from the action space

of the MDP model. Finally, we compute the optimal inventory vector by enumeration.

Next, we describe the pre-limit interpretations of the NER and the barrier policies. We use the

following approximations for the parameters that appear in the limit:

λi ≈ nλni , ci ≈ cni /n, Si ≈ Sni /
√
n, ∀i∈ I, (22a)

θ≈
√
n (ρn− 1) , Σ≈

∑
i∈I

niλ
n
i (1 +σ2

i )

µ2
i

. (22b)

By recalling (11), let j ∈ arg mini∈I biµi/λ
n
i , k ∈ arg mini∈I c

n
i µi, and l ∈ arg mini∈I hiµi. By recalling

Lemma 2, for any given inventory vector Sn, if bjµj/λ
n
j ≤ cnkµk, then let f be the function defined

in Lemma 2 Part i that solves the Bellman equation (12) with the limiting parameters defined in
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(22). Similarly, for any given Sn, if bjµj/λ
n
j > cnkµk, then let (f,B) be the pair defined in Lemma

2 Part ii that solves the Bellman equation (13) with the limiting parameters defined in (22).

If bjµj/λ
n
j ≤ cnkµk, our proposed policy is the NER policy; and if bjµj/λ

n
j > cnkµk, our proposed

policy is the barrier policy. The formal definitions of the NER and the barrier policies are as follows.

The NER and the barrier policies for the general case. Suppose that the inventory vector Sn

is given. By recalling Lemma 1, for all t ∈ R+ and i ∈ I, let us define the index χi(t) := biµi −

nλni f
′(W n(t)/

√
n). The repair facility operates in a work-conserving fashion and never preempts

the repair of a broken part.

• At any given time t ∈ R+, if the set Q<(t) := {i ∈ I : Qn
i (t) < Sni } is empty, then the repair

facility gives the repair priority to the broken parts of SKUs with respect to the index χi(t) such

that the higher the index of an SKU, the higher the repair priority that the broken parts of that

SKU receive (ties can be broken arbitrarily).

• If Q<(t) 6= ∅, then the repair facility gives higher repair priority to the broken parts of SKUs

in the set I \Q<(t) over the ones in the set Q<(t). The prioritization within the sets Q<(t) and

I \Q<(t) is again done with respect to the index χi(t).

• Under the barrier policy, emergency repairs are used only for SKU k and only if a part of SKU

k breaks down when W n(t)/
√
n≥B.

Because both the NER and the barrier policies are stationary Markov policies, they are admissi-

ble, and we compute the long-run average cost associated with those policies by policy evaluation

for given inventory and barrier levels. In order to determine the inventory vector Sn, we use the

following local-search algorithm (LS):

1. (Initialization) Set Sni = 0 for all i∈ I and compute the long-run average cost. Go to Step 2.

2. Compute the long-run average cost under the inventory vectors Sn+ei for all i∈ I and Sn−ei

with Sni −1≥ 0 for all i∈ I (so that Sn− ei is nonnegative componentwise). If the cost under

one of those inventory vectors is less than the one under Sn, update Sn with the inventory

vector with the minimum cost and repeat step 2. Otherwise, end the algorithm.
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The NER and the barrier policies under Assumption 2. The repair facility operates in a work-

conserving fashion and never preempts the repair of a broken part. The NER and the barrier

policies simplify in the following way.

• By the EWF (16) and the proof of Proposition 2, if Qn
l (t)< Snl , the repair facility gives the

least amount of repair priority to the parts of SKU l at time t∈R+.

• Otherwise, if Qn
l (t) ≥ Snl , the repair facility gives the least amount of repair priority to the

parts of SKU j at time t∈R+.

• For the remaining SKUs, the repair facility gives higher repair priority to the broken parts of

SKUs with Qn
i (t) ≥ Sni over the ones with Qn

i (t) < Sni . Within the aforementioned two sets, the

repair facility prioritizes the broken parts of the remaining SKUs in the descending order of the

index biµi (ties can be broken arbitrarily).

We present two different algorithms to determine the inventory vector Sn. The first algorithm

is similar to the ones in the literature. Specifically, recall from Theorems 3 and 4 that, under an

optimal EWF (16) solution, Si = 0 for all i ∈ I \ {l} which implies Sni = o(
√
n) for all i ∈ I \ {l}.

Therefore, we keep a small inventory of spare parts for the SKUs in the set I \{l} in the pre-limit.

Specifically, we assume that Sni = sn for all i ∈ I \ {l}. This is exactly what Wein (1992) and Ata

and Barjesteh (2022) do. Because sn = o(
√
n), we enumerate sn values in the set {0,1, . . . ,

⌈√
n
⌉
}.

Under the NER policy, we let Snl =
[
µlS

∗√n
]

where S∗ is computed by (17) and (18). Under the

barrier policy, by considering (21b), for a given Snl ∈N, the associated barrier level B is computed

by the following formula.

B :=
1√
n
× arg min

w∈
{
Sn
l
µl
,...,

Sn
l
µl

+
nj+I{j 6=l}Sn

j
µj

}
∣∣∣∣G( w√

n
,
Snl
µl
√
n

)
− c

n
kµk
n

∣∣∣∣ ,
where G is defined in (19) and (20) and I{·} denotes the indicator function. Finally, we enumerate

Snl . We denote the proposed policy with the inventory computation algorithm described above by

PP1.

Under the barrier policy, the second inventory computation algorithm is exactly the LS described

above. Under the NER policy, the second algorithm is the LS with the following modification for
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the initialization step: Set Sni = 0 for all i ∈ I \ {l} and Snl =
[
µlS

∗√n
]

where S∗ is computed by

(17) and (18). Under Assumption 2, we denote the proposed policy with LS by PP2.

6.2. Numerical Results

We assume that there are two SKUs, n1 = n2 (recall that n1 + n2 = n), µ1 = 1, h1 = 0.1, cn1 =

2n, λn1 ∈ {0.8,0.9,0.95,1}/n, b1 ∈ {0.1,0.7,1.3, . . . ,9.7}. For SKU 2, we choose µ2 ∈ {3,4,5,6},

h2 = 0.2/µ2, cn2 = 4n/µ2, λn2 = λn1µ2, and b2 = 2b1/µ2. Therefore, h2µ2 = 2h1µ1, b2µ2 = 2b1µ1, and

cn2µ2 = 2cn1µ1 implying that SKU 2 is more “expensive” than SKU 1. Furthermore, ρn = n1λ
n
1/µ1 +

n2λ
n
2/µ2 = nλn1 ∈ {0.8,0.9,0.95,1}. Because λn1/λ

n
2 ∈ {1/3,1/4,1/5,1/6} and (b1µ1/λ

n
1 )/(b2µ2/λ

n
2 )∈

{1.5,2,2.5,3}, Assumption 2 does not hold. By recalling Lemma 1 and Figure 2, under the pro-

posed policy, as the workload level increases, demands of SKU 1 are backordered first, and then if

the workload level exceeds a threshold, demands of SKU 2 are backordered.
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Figure 3 (Color online) Performances of the optimal, the proposed, and the NER* policies when n1 = n2 ∈

{10,50}, ρn = 0.95, µ2 = 4, and b1 ∈ {0.1,0.7,0.13, . . . ,9.7}.

Recall the comparison b2µ2/λ
n
2 vs. cn1µ1. Because b2µ2 = 2b1µ1, λn2 = λn1µ2, ρn = nλn1 , and cn1 = 2n,

the aforementioned comparison is equivalent to b1 vs. ρnµ2. We call the number ρnµ2 as the switch

point such that if b1 is less than or equal to the switch point, our proposed policy is the NER policy,

otherwise, it is the barrier policy. Figure 3 presents numerical experiments in which ρn = 0.95, µ2 =
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4, and the switch point is 3.8. According to the results, the proposed policy performs reasonably

well even when n1 = n2 = 10. An interesting observation is that the performance of the NER*

policy significantly deteriorates as b1 exceeds the switch point. This is because as the backorder

cost increases, the optimal policy backorders less and uses emergency repairs more. However, as the

backorder cost increases, the NER* policy keeps more and more inventory to prevent backordering

which increases the cost. Consequently, if b2µ2/λ
n
2 > c

n
1µ1, emergency repairs must be used to obtain

a reasonable performance. Otherwise, there is no need for emergency repairs.

Table 1 presents the results of the experiments in which n1 = n2 ∈ {10,25,50}, µ2 ∈ {3,4,5,6},

ρn ∈ {0.8,0.9,0.95,1}, and b1 ∈ {0.1,0.7,1.3, . . . ,9.7}, that is, Table 1 presents the results of 3×4×

4×17 = 816 parameter instances. According to the results, the proposed policy performs reasonably

well and its performance improves as the number of capital goods increases.

Table 1 Average and maximum % deviations of the costs under the proposed policy from the optimal costs

when n1 = n2 ∈ {10,25,50}, ρn ∈ {0.8,0.9,0.95,1}, µ2 ∈ {3,4,5,6}, and b1 ∈ {0.1,0.7,1.3, . . . ,9.7}.
n1 = n2 = 10 n1 = n2 = 25 n1 = n2 = 50

ρn Avg. Max. Avg. Max. Avg. Max.

µ2 = 3

0.8 1.82 3.48 1.00 1.68 0.86 2.19
0.9 2.77 6.52 1.18 2.62 0.65 1.26
0.95 3.73 8.93 1.64 3.60 0.84 1.53

1 5.49 14.19 2.57 6.70 1.35 3.78

µ2 = 4

0.8 1.93 3.27 1.00 1.49 0.79 1.51
0.9 2.85 4.84 1.58 2.22 0.76 1.07
0.95 3.24 7.29 1.72 2.91 1.18 1.76

1 4.40 11.36 2.20 6.03 1.20 2.97

µ2 = 5

0.8 2.70 4.98 1.15 1.67 0.80 1.10
0.9 2.76 4.91 1.98 3.86 1.19 1.73
0.95 3.03 5.97 1.67 3.53 1.29 2.53

1 4.05 10.22 2.36 7.12 1.46 5.12

µ2 = 6

0.8 3.13 6.19 1.50 2.31 0.87 1.67
0.9 2.82 5.06 2.19 4.13 1.68 2.69
0.95 2.97 7.27 1.78 4.05 1.38 2.85

1 3.75 12.09 2.52 8.57 1.74 6.26

We also consider a modified version of the proposed policy which computes the inventory levels

by enumeration instead of the LS. Among the 816 parameter instances, only for 3 instances, enu-

meration performs different (better) than the LS does. The average and the maximum deviations

of the cost under the LS compared to the cost under enumeration are 0.0022% and 1.56%, respec-

tively. We present a detailed analysis of the instance with the maximum deviation (1.56%) in the
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OA A.10.3. The success of the LS is not surprising because local search algorithms are commonly

used in the inventory control of spare parts due to their effective performance and computational

efficiency (see for example van Houtum and Kranenburg (2015)).

6.3. Numerical Results under Assumption 2

We assume that there are two SKUs, n1 = n2, λn1 = λn2 , µ1 = µ2 = 1, and thus ρn = nλn1 . We

assume that the costs associated with SKU 2 are twice the costs associated with SKU 1 and

thus Assumption 2 holds. Specifically, we assume that h2 = 2h1 = 0.2, cn2 = 2cn1 = 4n, b2 = 2b1,

and b1 ∈ {0.1,0.7,1.3, . . . ,9.7}. In these experiments, the switch point is λn1 c
n
1 . Figure 4 presents

numerical experiments in which ρn = 0.95 and the switch point is 1.9.
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(b) n1 = n2 = 50

Figure 4 (Color online) Performances of the optimal and the NER* policies and the PP1 when n1 = n2 ∈ {10,50},

ρn = 0.95, and b1 ∈ {0.1,0.7,0.13, . . . ,9.7}.

Table 2 presents the results of the experiments in which n1 = n2 ∈ {10,25,50} and ρn ∈

{0.8,0.9,0.95,1}, that is, Table 2 presents the results of 3× 4× 17 = 204 parameter instances. Our

observations from Table 2 are similar to the ones from Table 1.

Because the performance of the PP1 is very close to the one of PP2, we present the numerical

results associated with the PP2 in the OA A.10.4. On the one hand, the PP2 performs slightly

(0.25% on average) better than the PP1 does. On the other hand, because the PP1 keeps the same
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Table 2 Average and maximum % deviations of the costs under the PP1 from the optimal costs when

n1 = n2 ∈ {10,25,50}, ρn ∈ {0.8,0.9,0.95,1}, and b1 ∈ {0.1,0.7,0.13, . . . ,9.7}.
n1 = n2 = 10 n1 = n2 = 25 n1 = n2 = 50

ρn Avg. Max. Avg. Max. Avg. Max.
0.8 5.61 8.17 5.86 7.97 6.07 7.89
0.9 5.20 9.98 4.62 7.13 4.78 6.67
0.95 4.19 9.01 3.56 5.57 3.45 5.24

1 3.28 7.3 2.36 5.3 1.98 3.5

small initial inventory levels for all SKUs in the set I \ {l}, we expect it to be computationally

more efficient than the PP2 if there are many SKUs.

We repeat the numerical experiments depicted in Figure 4b by changing the scaling degree of

the emergency repair cost from n (recall the assumption in (2)) to
√
n and n1.5 in the OA A.10.5.

According to the results, PP1 performs reasonably well. Finally, in the OA A.10.6, we repeat the

numerical experiments of Table 1 with the PP1 even though Assumption 2 does not hold in those

experiments. According to the results, the PP1 performs poorly. Therefore, if Assumption 2 does

not hold, it is crucial to implement the general version of the proposed policy.

7. Future Research Directions

We assume that the repair facility is in the conventional heavy-traffic regime. Yet another valuable

topic for future research is considering the HW regime for the repair facility. There are studies

considering performance evaluation in the HW regime (e.g., de Véricourt and Jennings (2008),

Momčilović and Motaei (2018)). Studying control in that regime is an interesting future research

topic. Finally, relaxing the exponential inter-breakdown times assumption is a relevant area for

future research (see for example Momčilović and Motaei (2018)).
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ONLINE APPENDIX

This online appendix is associated with the manuscript titled “Joint Inventory and Scheduling

Control in a Repair Facility”. We present the proof of Proposition 1 in Section A.1. We present the

proofs of Lemmas 1 and 2 in Sections A.2 and A.3, respectively. Section A.4 presents the proofs

and results related to the regulator mappings defined in Definitions 3 and 5. We present the proofs

of Theorems 1 and 2 in Sections A.5 and A.6, respectively. We present the proof of Proposition 2

in Section A.7. We present the proofs of Theorems 3 and 4 in Sections A.8 and A.9, respectively.

Finally, we present some additional numerical experiments in Section A.10.

A.1. Proof of Proposition 1

(i) Let
(
W,I,E,a,S

)
be a feasible solution to the EWF (10). Let

Qi(t,ω) := ai(t,W (t,ω), ω), ∀i∈ I, t∈R+, ω ∈Ω,

Ek := µkE, Ei := 0, ∀i∈ I\{k},

Yi(t) :=
1

µi

(
Qi(t) +λi

∫ t

0

(Qi(s)−Si)+
ds+Ei(t)−Xi(t)

)
, ∀i∈ I, t∈R+.

One can see that
(
Qi, Si, Yi, I,Ei, i ∈ I

)
defined above is a feasible solution to the BCP (9) with

the objective function value equal to the one of
(
W,I,E,a,S

)
.

(ii) Let
(
Qi, Si, Yi, I,Ei, i ∈ I

)
be a feasible solution to the BCP (9). Let W :=

∑
i∈IQi/µi, E :=∑

i∈I Ei/µi, and

ai (t,W (t,ω), ω) :=Qi(t,ω), ∀i∈ I, t∈R+, ω ∈Ω.

Then, one can see that
(
W,I,E,a,S

)
defined above is a feasible solution to the EWF (10) with

the objective function value less than or equal to the one of
(
Qi, Si, Yi, I,Ei, i∈ I

)
.

A.2. Proof of Lemma 1

Because f ′(w)≤ bjµj/λj and by (11), the objective function of the optimization problem (14) is

nonnegative and thus z(w)≥ 0.

Case i. Suppose that
∑

i∈I Si/µi ≥ w. If there exist a feasible solution to (14) under which

qi(w)≤ Si, then the associated objective function value is equal to 0 and thus that feasible solution
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is optimal. Next, we will prove that such a feasible solution always exists. There exists m∈ I such

that ∑
i<m

Si
µi
≤w,

∑
i≤m

Si
µi
≥w,

where
∑

i<1Si/µi := 0 for completeness. Then, the following feasible solution is optimal.

qi(w) = Si, ∀i <m,

qm(w) = µm

(
w−

∑
i<m

Si
µi

)
,

qi(w) = 0, ∀i >m.

Observe that there can be multiple optimal solutions to (14) in this case.

Case ii. Suppose that
∑

i∈I Si/µi < w. Because f ′(w) ≤ bjµj/λj and by (11), we have

mini∈I {biµi−λif ′(w)} ≥ 0. Let q be an arbitrary feasible solution to (14). Consider the objective

function value of q.

∑
i∈I

(
bi−

λi
µi
f ′(w)

)
(qi−Si)+

=
∑
i∈I

(biµi−λif ′(w))

(
qi
µi
− Si
µi

)+

≥min
i∈I
{biµi−λif ′(w)}

∑
i∈I

(
qi
µi
− Si
µi

)+

≥min
i∈I
{biµi−λif ′(w)}

(∑
i∈I

qi
µi
−
∑
i∈I

Si
µi

)+

= min
i∈I
{biµi−λif ′(w)}

(
w−

∑
i∈I

Si
µi

)+

, (A.1)

where the last equality is by the fact that q ∈A(w). Therefore, (A.1) provides a lower bound on

the objective function value of all feasible solutions. Recall the feasible solution q∗(w) defined in

the statement of Lemma 1. Because the objective function value of q∗(w) achieves the lower bound

in (A.1), q∗(w) is optimal.

A.3. Proof of Lemma 2

Because the Bellman equations (12) and (13) contain f ′ and f ′′ but do not contain the function f

itself, they are first-order ODEs. Therefore, we start by solving and studying a related initial value

problem (IVP) in Section A.3.1. Then, we present the proof of Lemma 2 in Section A.3.2.
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A.3.1. An initial value problem

By (12b), (13c), and Lemma 1, we can replace the minimization problems in (12a), (13a), and

(13b) with the optimal objective function value of (14). Consequently, we consider the following

IVP for all γ ∈R:

g′γ(w) =
2

Σ

γ− θgγ(w)−min
i∈I
{biµi−λigγ(w)}

(
w−

∑
i∈I

Si
µi

)+
 , ∀w ∈R+, (A.2a)

gγ(0) = 0. (A.2b)

Let F0 :R→R and F :R3→R be such that

F0(g) := min
i∈I
{biµi−λig} , ∀g ∈R, (A.3)

F (w,g, γ) :=
2

Σ

γ− θg−F0(g)

(
w−

∑
i∈I

Si
µi

)+
 , ∀w,g, γ ∈R.

Observe that the IVP (A.2) is equivalent to the following IVP:

g′γ(w) = F (w,gγ(w), γ) , ∀w ∈R+, gγ(0) = 0.

Observe also that F0 is continuous, piecewise linear with finitely many break points, concave,

and strictly decreasing. Without loss of generality, let us assume that F0 has m− 1 break points

on R+ where m ∈ {1,2, . . . , I} so that F0 is piecewise combination of m different lines on R+. Let

the index of those m lines be denoted by the set {i1, i2, . . . , im} ⊂ I. Without loss of generality, we

assume that

bi1µi1 < bi2µi2 < . . . < bimµim , (A.4a)

λi1 <λi2 < . . . < λim , (A.4b)

bi1µi1
λi1

>
bi2µi2
λi2

> . . . >
bimµim
λim

. (A.4c)

By (11), we must have im = j. Figure A.3.1 illustrates the function F0 when m= 3.

Let

λ̄ := max
i∈I

λi, bµ := max
i∈I
{biµi}.
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Figure A.3.1 (Color online) An illustration of the function F0 with two break points.

Fix arbitrary (w1,w2, g1, g2, γ1, γ2)∈R6. Then,

|F (w1, g1, γ1)−F (w2, g2, γ2)|

=
2

Σ

∣∣∣∣∣∣(γ1− γ2)− θ(g1− g2)−F0(g1)

(
w1−

∑
i∈I

Si
µi

)+

+F0(g2)

(
w2−

∑
i∈I

Si
µi

)+
∣∣∣∣∣∣

≤ 2

Σ

|γ1− γ2|+ |θ| |g1− g2|+ |F0(g1)| |w1−w2|+

(
w2−

∑
i∈I

Si
µi

)+

|F0(g1)−F0(g2)|


≤ 2

Σ

|γ1− γ2|+
(
bµ+ λ̄ |g1|

)
|w1−w2|+

|θ|+ λ̄

(
w2−

∑
i∈I

Si
µi

)+
 |g1− g2|

 . (A.5)

The following observations are straightforward.

• F is continuous in (w,g, γ)∈R3.

• If two variables among (w,g, γ) ∈ R3 are fixed, F is Lipschitz continuous in the remaining

variable.

• Fix an arbitrary w ∈R. By (A.5), for all (g1, g2, γ1, γ2)∈R4,

|F (w,g1, γ1)−F (w,g2, γ2)| ≤ 2

Σ
|γ1− γ2|+L(w) |g1− g2| , (A.6)
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where L :R→R+ is a nonnegative and continuous function such that

L(w) :=
2

Σ

|θ|+ λ̄

(
w−

∑
i∈I

Si
µi

)+
 , ∀w ∈R.

We have the following existence and uniqueness results for the IVP (A.2).

Lemma A.3.1. For all γ ∈R, there exists a unique solution to the IVP (A.2), which is in C1.

Proof: Fix an arbitrary γ ∈R. Because F (·, ·, γ) is continuous in (w,g)∈R2, by Peano existence

theorem (see for example page 4 of Polyanin and Zaitsev (2018)), there exists an open interval

around w= 0 on which the IVP (A.2) has a solution.

Let F1 :R→R+ and F2 :R→R+ be such that

F1(w) := 1 +
√
|γ|+

(
w−

∑
i∈I

Si
µi

)+

,

F2(g) :=
2

Σ

(√
|γ|+ bµ+

(
|θ|+ λ̄

)
|g|
)
.

Both F1 and F2 are strictly positive, continuous, and nondecreasing. Furthermore,

|F (w,g, γ)| ≤ F1(w)F2(g), ∀(w,g)∈R2,∫ ∞
0

dg

F2(g)
=∞.

By theorem 9.3 of Bainov and Simeonov (1992), all solutions to the IVP (A.2) on the open interval

around w= 0 can be extended to R+. Therefore, there exists a solution to the IVP (A.2).

Next, we will prove the uniqueness of the solution. Let g(1)
γ and g(2)

γ be two different solutions to

the IVP (A.2). For all w ∈R+,

∣∣g(1)
γ (w)− g(2)

γ (w)
∣∣≤ ∣∣g(1)

γ (0)− g(2)
γ (0)

∣∣+∫ w

0

∣∣F (u, g(1)
γ (u), γ

)
−F

(
u, g(2)

γ (u), γ
)∣∣du

≤
∣∣g(1)
γ (0)− g(2)

γ (0)
∣∣+∫ w

0

L(u)
∣∣g(1)
γ (u)− g(2)

γ (u)
∣∣du

≤
∣∣g(1)
γ (0)− g(2)

γ (0)
∣∣ exp

{∫ w

0

L(u)du

}
= 0,
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where the second inequality follows from (A.6), the last inequality is by the Grönwall’s inequality

(see theorem 1.1 of Bainov and Simeonov (1992)), and the equality follows from the fact that

g(1)
γ (0) = g(2)

γ (0) = 0. Therefore, g(1)
γ (w) = g(2)

γ (w) for all w ∈R+ implying the uniqueness of the IVP

(A.2) solution.

By (A.2) and because F0 is continuous, g′γ is also continuous implying that gγ ∈C1. �

By algebra, one can see that

gγ(w) =


2γ
Σ
w, if θ= 0 andw ∈

[
0,
∑

i∈I
Si
µi

]
,

γ
θ

(
1− e−

2θ
Σ w
)
, if θ < 0 andw ∈

[
0,
∑

i∈I
Si
µi

]
,

(A.7)

that is, (A.7) presents the unique solution to the IVP (A.2) on the interval
[
0,
∑

i∈I Si/µi
]
. Fur-

thermore,

g′γ(w) =


2γ
Σ
, if θ= 0 andw ∈

[
0,
∑

i∈I
Si
µi

]
,

2γ
Σ

e−
2θ
Σ w, if θ < 0 andw ∈

[
0,
∑

i∈I
Si
µi

]
.

(A.8)

Next, we will derive some properties of the unique solution to the IVP (A.2).

Lemma A.3.2. 1. For all fixed w ∈R+, gγ(w) is continuous in γ ∈R.

2. For all fixed w ∈R++, gγ(w) is strictly increasing in γ ∈R.

Proof: We start with proving the first part of the lemma. Fix arbitrary w ∈R+ and (γ1, γ2)∈R.

|gγ1
(w)− gγ2

(w)| ≤ |gγ1
(0)− gγ2

(0)|+
∫ w

0

|F (u, gγ1
(u), γ1)−F (u, gγ2

(u), γ2)|du

≤ 2

Σ
|γ1− γ2|w+

∫ w

0

L(u) |gγ1
(u)− gγ2

(u)|du

≤ 2

Σ
w exp

{∫ w

0

L(u)du

}
|γ1− γ2| , (A.9)

where the second inequality follows from (A.2b) and (A.6) and the last inequality follows from a

Grönwall type inequality (see for example corollary 1.2 of Bainov and Simeonov (1992)). Conse-

quently, for all fixed w ∈R+, gγ(w) is Lipschitz continuous in γ.

Next, we will prove the second part of the lemma by the proof by contradiction technique. Let us

fix γ1, γ2 ∈R such that γ1 >γ2. Suppose that there exists a w ∈R++ at which gγ1
(w)≤ gγ2

(w). By
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(A.2), g′γ1
(0) = 2γ1/Σ> 2γ2/Σ = g′γ2

(0). Therefore, there must exist w∗ ∈R++ such that gγ1
(w)>

gγ2
(w) for all w ∈ (0,w∗) and gγ1

(w∗) = gγ2
(w∗) due to the continuity of gγ1

and gγ2
. By (A.2),

0 = gγ1
(w∗)− gγ2

(w∗) =
2

Σ

[
(γ1− γ2)w∗− θ

∫ w∗

0

(gγ1
(w)− gγ2

(w))dw

−
∫ w∗

0

(F0(gγ1
(w))−F0(gγ2

(w)))

(
w−

∑
i∈I

Si
µi

)+

dw

]

> 0, (A.10)

where the strict inequality follows from the fact that γ1 > γ2, θ ≤ 0, gγ1
(w) > gγ2

(w) for all w ∈

(0,w∗), and F0 is a strictly decreasing function (see for example Figure A.3.1). The strict inequality

in (A.10) is a contradiction, implying that w∗ does not exist. �

Lemma A.3.3. We have maxw∈R+
g0(w) = 0 and infw∈R+

g0(w)< 0.

Proof: We will use the proof by contradiction technique. Suppose that there exists a w ∈R++

at which g0(w)> 0. Then there must exist w∗ ∈R+ such that

w∗ = inf {w ∈R+ : g0(w)> 0} .

Because g0 is continuous, we must have g0(w∗) = 0. By (A.7), g0(w) = 0 for all w ∈
[
0,
∑

i∈I
Si
µi

]
.

Therefore, it must be the case that w∗ ≥
∑

i∈I
Si
µi

. There are two cases to consider.

First, suppose that w∗ >
∑

i∈I
Si
µi

. Because g0(w∗) = 0 and by (A.2),

g′0(w∗) =− 2

Σ
bi1µi1

(
w∗−

∑
i∈I

Si
µi

)
< 0,

which creates a contradiction because we cannot have g0(w∗+)> 0 if g′0(w∗)< 0.

Second, suppose that w∗ =
∑

i∈I Si/µi. By (A.2), we have g′0(w∗) = 0. Therefore, it must be the

case that g0(w∗+)> 0 and g′0(w∗+)> 0. There are two sub-cases to consider. In the first sub-case,

suppose that θ= 0. Because g0 is continuous, there exists an ε > 0 such that

0≤ g0(u)≤ bimµim
λim

, ∀u∈ [w∗,w∗+ ε],
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which implies that F0(g0(u))≥ 0 for all u ∈ [w∗,w∗+ ε] (recall (A.4) and Figure A.3.1). Then, by

(A.2),

g′0(u) =− 2

Σ
F0 (g0(u))

(
u−

∑
i∈I

Si
µi

)
≤ 0, ∀u∈ [w∗,w∗+ ε],

which is a contradiction because g′0(w∗+)> 0 by assumption.

In the second sub-case, suppose that θ < 0. Because both F0 and g′0 are continuous, g′0(w∗) = 0,

and F0(g0(w∗)) = F0(0) = bi1µi1 , there exists an ε > 0 such that

0≤ g′0(w∗+ v)≤ bi1µi1
2|θ|

, ∀v ∈ [0, ε], (A.11)

bi1µi1
2

<F0(x)≤ bi1µi1 , ∀x∈
[
0,
bi1µi1
2|θ|

ε

]
. (A.12)

Because g0(w∗) = 0, (A.11) implies that

0≤ g0(w∗+ v)≤ bi1µi1
2|θ|

v, ∀v ∈ [0, ε]. (A.13)

For all v ∈ [0, ε], we have

g′0(w∗+ v) =
2

Σ
[−θg0(w∗+ v)−F0 (g0(w∗+ v))v]

≤ 2

Σ

[
|θ|bi1µi1

2|θ|
v−F0

(
bi1µi1
2|θ|

v

)
v

]
=

2v

Σ

[
bi1µi1

2
−F0

(
bi1µi1
2|θ|

v

)]
< 0, (A.14)

where the first equality follows from (A.2) and the fact that w∗ =
∑

i∈I Si/µi, the first inequality

follows from (A.13) and the fact that F0 is a strictly decreasing function, and the strict inequality

follows from (A.12). However, (A.14) is a contradiction because g′0(w∗+)> 0 by assumption.

Consequently, g0(w)≤ 0 for all w ∈R+. Because g0(0) = 0 by (A.2b), we have maxw∈R+
g0(w) = 0.

Finally, one can easily see that g0(w) = 0 for all w ∈R+ is not a solution to the IVP (A.2). Therefore,

there must exist a w ∈R+ at which g0(w)< 0 implying that infw∈R+
g0(w)< 0. �
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Lemma A.3.4. Fix an arbitrary γ ∈ R++. If gγ(w
∗) = bjµj/λj for some w∗ ∈ R+, then g′γ(w) >

0 for all w ∈ [w∗,∞) and thus gγ(w) is strictly increasing in w on the interval [w∗,∞) and

limw→∞ gγ(w) =∞. In other words, if gγ hits the point bjµj/λj, henceforth, it strictly increases to

infinity.

Proof: If gγ(w)≥ bjµj/λj for some w ∈R+, then by (A.2a)

g′γ(w) =
2

Σ

γ− θgγ(w)−F0 (gγ(w))

(
w−

∑
i∈I

Si
µi

)+
≥ 2

Σ

[
γ− θ bjµj

λj

]
≥ 2

Σ
γ,

where the first inequality follows from the fact that F0(x) ≤ 0 for all x ≥ bjµj/λj by (A.4) and

the fact that j = im (see also Figure A.3.1). Therefore, if gγ(w
∗) = bjµj/λj for some w∗ ∈R+, then

g′γ(w)> 0 for all w ∈ [w∗,∞) and gγ(w) is strictly increasing in w on the interval [w∗,∞). Finally,

gγ(w
∗+w) = gγ(w

∗) +

∫ w∗+w

w∗
g′γ(u)du≥ bjµj

λj
+

2

Σ
γw, ∀w ∈R+,

implying that limw→∞ gγ(w) =∞. �

Lemma A.3.5. There exists a γ ∈R++ at which supw∈R+
gγ(w) =∞.

Proof: We will make the proof case by case. First, suppose that
∑

i∈I Si/µi > 0. Let

γ :=


bjµjΣ

2λj

(∑
i∈I

Si
µi

)−1

, if θ= 0,

−θ bjµj
λj

(
e
− 2θ

Σ

(∑
i∈I

Si
µi

)
− 1

)−1

, if θ < 0.

Observe that γ > 0. Furthermore, by (A.7), we have gγ
(∑

i∈I Si/µi
)

= bjµj/λj. By Lemma A.3.4,

limw→∞ gγ(w) =∞.

Next, suppose that
∑

i∈I Si/µi = 0. By (A.2), we have

g′γ(w) =
2

Σ
[γ− θgγ(w)−F0 (gγ(w))w] , ∀w ∈R+,

gγ(0) = 0.

By recalling (A.4), let

γ :=

√
2bi1µi1Σ

bjµj
λj

, w∗ :=
γ

2bi1µi1
.
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We will prove that gγ(w)≥ 0 for all w ∈ [0,w∗] by the proof by contradiction technique. Suppose

that there exists a w ∈ [0,w∗] such that gγ(w)< 0. Let

ŵ := inf {w ∈ [0,w∗] : gγ(w)< 0} .

Because both gγ and g′γ are continuous in w and gγ(ŵ+)< 0, we must have gγ(ŵ) = 0 and g′γ(ŵ)≤ 0.

However, we have the following contradiction:

g′γ(ŵ) =
2

Σ
[γ− θgγ(ŵ)−F0 (gγ(ŵ)) ŵ] =

2

Σ
[γ− bi1µi1ŵ]≥ 2

Σ
[γ− bi1µi1w

∗] =
γ

Σ
> 0,

where the second equality follows from the fact that gγ(ŵ) = 0 and F0(0) = bi1µi1 (recall Figure

A.3.1). Therefore, we prove that gγ(w)≥ 0 for all w ∈ [0,w∗]. By utilizing this fact, we have

g′γ(w) =
2

Σ
[γ− θgγ(w)−F0 (gγ(w))w]≥ 2

Σ
[γ− bi1µi1w]≥ 2

Σ
[γ− bi1µi1w

∗] =
γ

Σ
, ∀w ∈ [0,w∗].

Therefore,

gγ(w
∗) =

∫ w∗

0

g′γ(w)dw≥ γ

Σ
w∗ =

bjµj
λj

.

By Lemma A.3.4, limw→∞ gγ(w) =∞. �

Lemma A.3.6. 1. If supw∈R+
gγ(w)≥ bjµj/λj, then g′γ(w)> 0 for all w ∈R+ and thus gγ(w) is

strictly increasing in w and minw∈R+
gγ(w) = 0.

2. Suppose that supw∈R+
gγ(w)< bjµj/λj.

i. limw→∞ gγ(w) = −∞ and gγ attains its maximum, that is, maxw∈R+
gγ(w) =

supw∈R+
gγ(w).

ii. If γ > 0, the maximum points are strictly greater than
∑

i∈I Si/µi and the derivative of

gγ(·) at a maximum point is equal to 0.

iii. If γ > 0, gγ(w) is strictly increasing in w until the first time the maximum is attained.

iv. If γ > 0, there exists a unique maximum point. After the maximum point, g′γ(·) is strictly

negative and thus gγ(·) is strictly decreasing in w.

v. If γ > 0, the unique maximum point is strictly increasing in γ.
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Proof of Part 1. Because supw∈R+
gγ(w) ≥ bjµj/λj and by Lemma A.3.2 Part 2 and Lemma

A.3.3, we must have γ > 0. By (A.8) and because γ > 0, g′γ(w)> 0 for all w ∈
[
0,
∑

i∈I Si/µi
]
, that

is, gγ(w) is strictly increasing on the interval
[
0,
∑

i∈I Si/µi
]
.

Suppose that gγ(w) is not strictly increasing in w. Because gγ(·)∈C1 and by Lemma A.3.4, there

must exist (w1,w2)∈R2
+ such that

∑
i∈I

Si
µi
<w1 <w2, 0 = g′γ(w1)≤ g′γ(w2), gγ(w1) = gγ(w2)<

bjµj
λj

.

By (A.2a), we obtain the following contradiction.

g′γ(w1) =
2

Σ

[
γ− θgγ(w1)−F0 (gγ(w1))

(
w1−

∑
i∈I

Si
µi

)]

>
2

Σ

[
γ− θgγ(w2)−F0 (gγ(w2))

(
w2−

∑
i∈I

Si
µi

)]

= g′γ(w2),

where the strict inequality follows from the fact that w1 < w2 and F0(x)> 0 for all x < bjµj/λj.

Therefore, gγ(w) is strictly increasing in w and thus minw∈R+
gγ(w) = gγ(0) = 0 by (A.2b).

Finally, we will prove that g′γ(w)> 0 for all w ∈R+. Observe that the fact that gγ(w) is strictly

increasing in w does not necessarily imply that g′γ(w)> 0 for all w ∈R+. We will use the proof by

contradiction technique. Suppose that g′γ(w)≤ 0 for some w ∈R+. Because g′γ is continuous, there

must exist w∗ ∈ R+ at which g′γ(w
∗) = 0. Furthermore, by (A.8), we must have w∗ >

∑
i∈I Si/µi,

and by Lemma A.3.4, gγ(w
∗) < bjµj/λj and thus F0 (gγ(w

∗)) > 0 (recall Figure A.3.1). Because

gγ ∈C1 and F0 is continuous (see (A.3)), there exist δ > 0 and ε > 0 such that

g′γ(w
∗+x)< ε and

(
|θ|+ λ̄

(
w∗−

∑
i∈I

Si
µi

))
ε+ λ̄εx < F0 (gγ(w

∗)) , ∀x∈ (0, δ). (A.15)

Recall that gγ is strictly increasing and F0 is strictly decreasing. Then,

gγ(w
∗+x)− gγ(w∗)≤ εx, ∀x∈ (0, δ), (A.16a)

F0 (gγ(w
∗))−F0 (gγ(w

∗+x))≤ λ̄ (gγ(w
∗+x)− gγ(w∗))≤ λ̄εx, ∀x∈ (0, δ), (A.16b)
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where (A.16a) follows from (A.15) and (A.16b) follows from (A.3) (recall Figure A.3.1) and (A.15).

Fix an arbitrary x∈ (0, δ).

g′γ(w
∗+x) = g′γ(w

∗+x)− g′γ(w∗)

=
2

Σ

[
|θ| (gγ(w∗+x)− gγ(w∗)) + (F0 (gγ(w

∗))−F0 (gγ(w
∗+x)))

(
w∗−

∑
i∈I

Si
µi

)

−F0 (gγ(w
∗+x))x

]

≤ 2

Σ

[
|θ|εx+ λ̄

(
w∗−

∑
i∈I

Si
µi

)
εx−F0 (gγ(w

∗+x))x

]

≤ 2

Σ

[
|θ|εx+ λ̄

(
w∗−

∑
i∈I

Si
µi

)
εx+ λ̄εx2−F0 (gγ(w

∗))x

]

=
2

Σ
x

[(
|θ|+ λ̄

(
w∗−

∑
i∈I

Si
µi

))
ε+ λ̄εx−F0 (gγ(w

∗))

]

< 0, (A.17)

where the first equality follows from the fact that g′γ(w
∗) = 0, the second equality follows from (A.2a)

and (A.3), the first inequality follows from (A.16), the second inequality follows from (A.16b), and

the strict inequality follows from (A.15).

Because gγ(w) is strictly increasing in w and gγ ∈C1, (A.17) creates a contradiction. Therefore,

w∗ cannot exist and thus g′γ(w)> 0 for all w ∈R+. �

Proof of Part 2. i.) By (A.2a),

g′γ(w) =
2

Σ

γ− θgγ(w)−F0 (gγ(w))

(
w−

∑
i∈I

Si
µi

)+


≤ 2

Σ

γ− θ bjµj
λj
−F0

(
sup
w̃∈R+

gγ(w̃)

)(
w−

∑
i∈I

Si
µi

)+


→−∞ as w→∞,

where the inequality follows from the fact that θ≤ 0, gγ(w)< bjµj/λj for all w ∈R+, F0 is strictly

decreasing, and F0

(
supw̃∈R+

gγ(w̃)
)
> F0

(
bjµj/λj

)
= 0 (see (A.4) and Figure A.3.1). Therefore,

limw→∞ g
′
γ(w) =−∞. There exist w1 ∈R+ and K1 > 0 such that if w≥w1, g′γ(w)≤−K1. Then,

gγ(w1 +w) = gγ(w1) +

∫ w1+w

w1

g′γ(u)du≤ bjµj
λj
−K1w→−∞, as w→∞,
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implying that limw→∞ gγ(w) =−∞. Therefore, there exist w2 ∈R+ and K2 > 0 such that if w≥w2,

gγ(w) ≤ −K2 and thus supw∈R+
gγ(w) = supw∈[0,w2] gγ(w) by (A.2b). Because gγ is continuous, it

attains its maximum in compact intervals and thus

sup
w∈R+

gγ(w) = sup
w∈[0,w2]

gγ(w) = max
w∈[0,w2]

gγ(w) = max
w∈R+

gγ(w).

ii.) By (A.8), if γ > 0, then g′γ(w) > 0 for all w ∈
[
0,
∑

i∈I Si/µi
]
. This and the continuity of

g′γ(·) in w imply that the maximum points of gγ(·) must be strictly greater than
∑

i∈I Si/µi. Let

w∗ ∈ R+ be a maximum point of gγ , that is, gγ(w
∗) = maxw∈R+

gγ(w). Suppose that, g′γ(w
∗)< 0.

Because w∗ > 0 and g′γ(w) is continuous in w, there exists an ε > 0 such that g′γ(w
∗−u)< 0 for all

u∈ [0, ε]. Then,

gγ(w
∗− ε) = gγ(w

∗)−
∫ w∗

w∗−ε
g′γ(u)du> gγ(w

∗),

which is a contradiction because w∗ is a maximum point. Therefore, g′γ(w
∗)≮ 0. Similarly, we can

show that g′γ(w
∗)≯ 0 implying that g′γ(w

∗) = 0.

iii.) The fact that gγ(w) is strictly increasing in w until the first time the maximum is attained

follows from exactly the same argument that we use in the proof of Part 1 of this lemma.

iv.) Suppose that w1,w2 ∈ R+ be two different maximum points such that w2 > w1. By Part

2.ii of this lemma, w2 >w1 >
∑

i∈I Si/µi. Because g′γ is equal to zero at the maximum points, by

(A.2a), we obtain the following contradiction.

0 = γ− θgγ(w1)−F0 (gγ(w1))

(
w1−

∑
i∈I

Si
µi

)
>γ− θgγ(w2)−F0 (gγ(w2))

(
w2−

∑
i∈I

Si
µi

)
= 0,

where the strict inequality is by the fact that w1 <w2, gγ(w1) = gγ(w2)< bjµj/λj, and F0 is strictly

decreasing such that F0 (bjµj/λj) = 0. Therefore, there exists a unique maximum point if γ > 0.

Let w∗ denote the unique maximum point. Consider an arbitrary w>w∗. By (A.2a),

0 = γ− θgγ(w∗)−F0 (gγ(w
∗))

(
w∗−

∑
i∈I

Si
µi

)
>γ− θgγ(w)−F0 (gγ(w))

(
w−

∑
i∈I

Si
µi

)
= g′γ(w),

where the strict inequality follows from the fact that w >w∗, θ≤ 0, gγ(w)< gγ(w
∗)< bjµj/λj, F0

is strictly decreasing, and F0 (bjµj/λj) = 0. Because g′γ(w)< 0 for all w ∈ [w∗,∞), gγ(·) is strictly

decreasing on [w∗,∞).
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v.) Let w(γ) denote the unique maximum point for all γ > 0 such that supw∈R+
gγ(w)< bjµj/λj.

Let (γ1, γ2)∈R2
+ be such that 0<γ1 <γ2 and w(γ1)≥w(γ2). By Part 2.ii of this lemma and (A.2a),

0 = g′γ2
(w(γ2)) =

2

Σ

[
γ2− θgγ2

(w(γ2))−F0 (gγ2
(w(γ2)))

(
w(γ2)−

∑
i∈I

Si
µi

)]

>
2

Σ

[
γ1− θgγ1

(w(γ2))−F0 (gγ1
(w(γ2)))

(
w(γ2)−

∑
i∈I

Si
µi

)]

= g′γ1
(w(γ2)),

where the strict inequality follows from the fact that γ1 <γ2, θ≤ 0, gγ2
(w(γ2))> gγ1

(w(γ2)) (recall

Lemma A.3.2 Part 2), and F0 is strictly decreasing. The fact that g′γ1
(w(γ2))< 0 is a contradiction

because w(γ1)≥w(γ2) and g′γ1
(w)≥ 0 for all w ∈ [0,w(γ1)] by Part 2.iii of this lemma. �

Lemma A.3.7. There exists a γ ∈R++ such that 0≤ gγ(w)< bjµj/λj for all w ∈R+.

Proof: First, we will prove that there exists a γ̄ ∈R+ such that if γ ≤ γ̄, then gγ(w)< bjµj/λj

for all w ∈R+; otherwise, if γ > γ̄, then supw∈R+
gγ(w) =∞. By Lemma A.3.2 Part 2 and Lemmas

A.3.3, A.3.4, and A.3.5, there exists a γ̄ ∈ R+ such that if γ < γ̄, then gγ(w) < bjµj/λj for all

w ∈R+; and if γ > γ̄, then supw∈R+
gγ(w) =∞. Let {γn, n∈N} be a convergent sequence in R+ such

that γn→ γ̄ as n→∞ and gγn(w)< bjµj/λj for all w ∈ R+ and n ∈ N. Fix an arbitrary w ∈ R+.

By Lemma A.3.2 Part 1, gγn(w)→ gγ̄(w) as n→∞. Because gγn(w) < bjµj/λj for all n ∈ N, we

must have gγ̄(w)≤ bjµj/λj. Because w ∈R+ is arbitrarily chosen, we have gγ̄(w)≤ bjµj/λj for all

w ∈ R+. By Lemma A.3.4, gγ̄(w)< bjµj/λj for all w ∈ R+ (otherwise if gγ̄(w) = bjµj/λj for some

w ∈R+, then gγ̄(·) tends to infinity).

Next, we will prove that there exists a γ ∈ R++ such that if γ ≥ γ, then minw∈R+
gγ(w) = 0;

otherwise, if γ < γ, then infw∈R+
gγ(w) < 0. By Lemma A.3.2 Part 2, Lemmas A.3.3 and A.3.5,

and Lemma A.3.6 Part 1, there exists a γ ∈ R+ such that if γ > γ, then minw∈R+
gγ(w) = 0;

otherwise, if γ < γ, then infw∈R+
gγ(w)< 0. Let {γn, n ∈ N} be a convergent sequence in R+ such

that γn→ γ as n→∞ and minw∈R+
gγn(w) = 0 for all n∈N. Fix an arbitrary w ∈R+. By Lemma

A.3.2 Part 1, gγn(w)→ gγ(w) as n→∞. Because gγn(w)≥ 0 for all n∈N, we must have gγ(w)≥ 0.
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Because w ∈ R+ is arbitrarily chosen, we have infw∈R+
gγ(w) ≥ 0. By (A.2b), gγ(0) = 0 and thus

minw∈R+
gγ(w) = 0. By Lemma A.3.3, we have γ > 0.

Suppose that γ > γ̄. For all γ ∈ (γ̄, γ), we have supw∈R+
gγ(w) =∞ and infw∈R+

gγ(w)< 0. How-

ever, by Lemma A.3.6 Part 1, we have minw∈R+
gγ(w) = 0, which is a contradiction. Therefore,

γ ≯ γ̄ implying that γ ≤ γ̄. Consequently, for all γ ∈ [γ, γ̄], 0≤ gγ(w)< bjµj/λj for all w ∈R+. �

Lemma A.3.8. There exists a unique γ ∈ R++ such that 0 ≤ gγ(w) < bjµj/λj for all w ∈ R+.

Furthermore, g′γ(w)> 0 for all w ∈R+ and thus gγ(w) is strictly increasing in w, limw→∞ gγ(w) =

bjµj/λj, and supw∈R+
gγ(w) = bjµj/λj

Proof: Let γ ∈R++ be such that 0≤ gγ(w)< bjµj/λj for all w ∈R+. Such a γ exists by Lemma

A.3.7. Because gγ(w)≥ 0 for all w ∈R+, we must have supw∈R+
gγ(w) = bjµj/λj by Lemma A.3.6

Parts 1 and 2.i. Furthermore, g′γ(w)> 0 for all w ∈ R+ and thus gγ(w) is strictly increasing in w

by Lemma A.3.6 Part 1. Because supw∈R+
gγ(w) = bjµj/λj and gγ(w) is strictly increasing in w, we

must have 0≤ gγ(w)< bjµj/λj for all w ∈R+ and limw→∞ gγ(w) = bjµj/λj.

Finally, we will prove uniqueness. Suppose that 0 ≤ gγ(w) < bjµj/λj for all w ∈ R+ and γ ∈

{γ1, γ2} such that γ1 < γ2. By Lemma A.3.2 Part 2, we have gγ1
(w)< gγ2

(w) for all w ∈R++. By

(A.2a), for all w ∈R+,

g′γ1
(w) =

2

Σ

γ1− θgγ1
(w)−F0 (gγ1

(w))

(
w−

∑
i∈I

Si
µi

)+


<
2

Σ

γ2− θgγ2
(w)−F0 (gγ2

(w))

(
w−

∑
i∈I

Si
µi

)+


= g′γ2
(w),

where the strict inequality follows from the fact that γ1 <γ2, θ≤ 0, gγ1
(w)≤ gγ2

(w) for all w ∈R+,

and F0 is strictly decreasing. Recall that limw→∞ gγ(w) = bjµj/λj for all γ ∈ {γ1, γ2}. Then, we

have the following contradiction

0 = lim
w→∞

(gγ2
(w)− gγ1

(w)) = lim
w→∞

∫ w

0

(
g′γ2

(u)− g′γ1
(u)
)

du> 0,

where the strict inequality follows from the fact that g′γ1
(w)< g′γ2

(w) for all w ∈R+ and both g′γ1

and g′γ2
are continuous in w. �
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Let γNER be the unique γ described in Lemma A.3.8.

Lemma A.3.9. 1. On the interval [0, γNER), maxw∈R+
gγ(w) exists and is continuous and strictly

increasing in γ.

2. The function maxw∈R+
g(·)(w) is a bijection from [0, γNER)→ [0, bjµj/λj).

Proof of Part 1: By Lemma A.3.2 Part 2 and Lemma A.3.8, we have gγ(w) < bjµj/λj for all

w ∈ R+ and supw∈R+
gγ(w) ≤ bjµj/λj for all γ ∈ [0, γNER]. We will show that if γ < γNER, then

supw∈R+
gγ(w) < bjµj/λj. To see this, suppose that γ < γNER but supw∈R+

gγ(w) = bjµj/λj. By

Lemma A.3.6 Part 1, gγ(w) is strictly increasing in w and minw∈R+
gγ(w) = 0. Then, by the unique-

ness of γNER (see Lemma A.3.8), we must have γ = γNER, which is a contradiction. Therefore, if

γ < γNER, then supw∈R+
gγ(w)< bjµj/λj. Furthermore, by Lemma A.3.6 Part 2.i, maxw∈R+

gγ(w)

exists for all γ ∈ [0, γNER). However, the aforementioned maximum does not exist when γ = γNER

by Lemma A.3.8.

By recalling Lemma A.3.6 Part 2.iv, for given γ ∈ (0, γNER), let w(γ) denote the unique maximum

of gγ(·), that is, w(γ) := arg maxw∈R+
gγ(w). By Lemma A.3.6 Part 2.ii, w(γ) > 0. Let γ1, γ2 ∈

(0, γNER) such that γ1 <γ2. Then,

max
w∈R+

gγ1
(w) = gγ1

(w(γ1))< gγ2
(w(γ1))≤ max

w∈R+

gγ2
(w),

where the strict inequality follows from Lemma A.3.2 Part 2 and the fact that w(γ1)> 0. Therefore,

maxw∈R+
gγ(w) is strictly increasing in γ on the interval (0, γNER). By (A.8), g′γ(0)> 0 for all γ > 0.

Because g′γ(·) is continuous in w, if γ > 0, then gγ(w)> 0 for some w ∈R+. Hence, maxw∈R+
gγ(w)>

0 for all γ ∈ (0, γNER). By Lemma A.3.3, we have maxw∈R+
g0(w) = 0. Consequently, maxw∈R+

gγ(w)

is strictly increasing in γ on the interval [0, γNER).

Finally, we will prove that maxw∈R+
gγ(w) is continuous in γ on the interval [0, γNER). Consider

an arbitrary γ ∈ [0, γNER). We will consider two cases. First, let {γn, n ∈N} be a sequence in R+

such that γn ↑ γ as n→∞. If γn = 0 for some n∈N, we let w(γn) := 0 for completeness. By Lemma

A.3.6 Part 2.v, we have w(γn)<w(γ) for all n∈N. Then,∣∣∣∣max
w∈R+

gγ(w)− max
w∈R+

gγn(w)

∣∣∣∣= gγ(w(γ))− gγn(w(γn))
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≤ gγ(w(γ))− gγn(w(γ))

≤ sup
w∈[0,w(γ)]

|gγ(w)− gγn(w)|

≤ 2

Σ
w(γ) exp

{∫ w(γ)

0

L(u)du

}
|γ− γn|

→ 0 as n→∞,

where the last inequality follows from (A.9). Therefore, maxw∈R+
gγ(w) is left continuous in γ on

the interval [0, γNER).

Second, let {γn, n∈N} be a sequence in R+ such that γn ↓ γ as n→∞. Let ε > 0 be an arbitrary

constant such that γ + ε < γNER. There exists an n0 ∈N such that if n≥ n0, then γn− γ < ε and

thus γn <γ
NER. By Lemma A.3.6 Part 2.v, if n≥ n0, w(γ)<w(γn)<w(γ+ ε)<∞. If n≥ n0,∣∣∣∣max

w∈R+

gγn(w)− max
w∈R+

gγ(w)

∣∣∣∣= gγn(w(γn))− gγ(w(γ))

≤ gγn(w(γn))− gγ(w(γn))

≤ sup
w∈[0,w(γ+ε)]

|gγn(w)− gγ(w)|

≤ 2

Σ
w(γ+ ε) exp

{∫ w(γ+ε)

0

L(u)du

}
|γn− γ|

→ 0 as n→∞,

where the last inequality follows from (A.9). Therefore, maxw∈R+
gγ(w) is right continuous in γ on

the interval [0, γNER).

Consequently, maxw∈R+
gγ(w) is continuous in γ on the interval [0, γNER). �

Proof of Part 2: Recall that maxw∈R+
g0(w) = 0 by Lemma A.3.3. By Part 1 of this lemma

maxw∈R+
gγ(w) is continuous and strictly increasing in γ on the interval [0, γNER). Furthermore,

we prove that maxw∈R+
gγ(w) = supw∈R+

gγ(w)< bjµj/λj for all γ < γNER in Part 1 of this lemma.

Therefore, maxw∈R+
gγ(w) converges to a finite number as γ ↑ γNER and thus the following conver-

gence result is enough to prove the second part of this lemma:

max
w∈R+

gγ(w)→ bjµj
λj

as γ ↑ γNER. (A.18)
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First, we will prove that the unique maximum w(γ) ↑∞ as γ ↑ γNER. Recall from Lemma A.3.6

Part 2.v, w(γ) is strictly increasing in γ on (0, γNER). Therefore, limγ↑γNER w(γ) exists. Suppose

that limγ↑γNER w(γ) = w̄ <∞. Then, w(γ) < w̄ for all γ ∈ [0, γNER). By Lemma A.3.6 Part 2.ii,

w̄ >
∑

i∈I Si/µi. By (A.2a) and Lemma A.3.6 Part 2.iv,

g′γ (w̄) =
2

Σ

[
γ− θgγ (w̄)−F0 (gγ (w̄))

(
w̄−

∑
i∈I

Si
µi

)]
< 0, ∀γ ∈

(
0, γNER

)
. (A.19)

Recall that F0 is continuous and recall from Lemma A.3.2 Part 1 that gγ(w̄) is continuous in γ.

Hence, let us take the limit γ ↑ γNER in the left-hand-side (LHS) of the strict inequality in (A.19).

Then, we obtain the following contradiction:

0≥ lim
γ↑γNER

g′γ (w̄) =
2

Σ

[
γNER− θgγNER (w̄)−F0

(
gγNER (w̄)

)(
w̄−

∑
i∈I

Si
µi

)]

= g′γNER (w̄)

> 0,

where the first inequality and the first equality follow from (A.19), the second equality follows from

(A.2a), and the strict inequality follows from Lemma A.3.8. Therefore, we must have w(γ) ↑∞ as

γ ↑ γNER.

By (A.2a) and Lemma A.3.6 Part 2.iv,

0 = g′γ (w(γ)) =
2

Σ

[
γ− θgγ (w(γ))−F0 (gγ (w(γ)))

(
w(γ)−

∑
i∈I

Si
µi

)]
, ∀γ ∈

(
0, γNER

)
,

=⇒ γ− θgγ (w(γ)) = F0 (gγ (w(γ)))

(
w(γ)−

∑
i∈I

Si
µi

)
, ∀γ ∈

(
0, γNER

)
. (A.20)

Recall that gγ (w(γ)) = maxw∈R+
gγ(w) converges to some finite number as γ ↑ γNER. Hence, let us

take the limit γ ↑ γNER in both sides of the equality in (A.20). Because the LHS of (A.20) converges

to a finite number, the RHS of (A.20) must also converge to a finite number as γ ↑ γNER. Because

w(γ) ↑∞ as γ ↑ γNER, the only way for the RHS of (A.20) to converge to a finite number is that

F0 (gγ (w(γ))) ↓ 0 as γ ↑ γNER. Because F0(x)> F0(bjµj/λj) = 0 for all x < bjµj/λj, F0 is strictly

decreasing, and gγ (w(γ)) is strictly increasing in γ, F0 (gγ (w(γ))) ↓ 0 as γ ↑ γNER if only if (A.18)

holds. �
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A.3.2. The main proof of Lemma 2

Part i. By Lemma 1 and (12b), the Bellman equation (12) is equivalent to the IVP (A.2) with

the additional constraint 0≤ gγ(w)≤ bjµj/λj for all w ∈R+. By Lemma A.3.4, the aforementioned

additional constraint is equivalent to 0 ≤ gγ(w) < bjµj/λj for all w ∈ R+. By Lemmas A.3.1 and

A.3.8, there exists a unique pair (f ′, γ) such that f ′ ∈C1, γ ∈R+, and (f, γ) satisfies (12). Therefore,

f ∈C2 and is unique up to a constant. Finally, by Lemmas A.3.3 and A.3.8, f ′ is strictly increasing

and γ > 0.

Part ii. Suppose that bjµj/λj > ckµk. By Lemmas A.3.3 and A.3.9 and because ckµk > 0, there

exists a unique γ ∈ (0, γNER) such that maxw∈R+
gγ(w) = ckµk. Let γbar denote the aforementioned

unique γ. By Lemma A.3.6 Parts 2.iii and 2.iv, gγbar has a unique maximum, which is strictly

greater than
∑

i∈I Si/µi. We let

B := arg max
w∈R+

gγbar(w).

By construction, gγbar(B) = ckµk. By Lemma A.3.6 Part 2.ii, B >
∑

i∈I Si/µi. Let

f(w) :=


C +

∫ w
0
gγbar(x)dx, if w ∈ [0,B],

C +
∫ B

0
gγbar(x)dx+ ckµk(w−B), if w>B,

where C ∈R+ is an arbitrary constant. Observe that

lim
w↑B

f ′(w) = lim
w↑B

gγbar(w) = ckµk = lim
w↓B

f ′(w).

Therefore, f ′ is continuous. Furthermore,

lim
w↑B

f ′′(w) = lim
w↑B

g′γbar(w) = 0 = lim
w↓B

f ′′(w),

where the second equality follows from Lemma A.3.6 Part 2.ii. Therefore, f ′′ is continuous and

thus f ∈ C2. By construction and Lemma 1, (f,B,γbar) satisfies (13a) and (13d). By (A.2b) and

Lemma A.3.6 Part 2.iii, (f,B,γbar) satisfies (13c). We have

γbar =
1

2
Σg′γbar(B) + θgγbar(B) + min

i∈I

{
biµi−λigγbar(B)

}(
B−

∑
i∈I

Si
µi

)

= θckµk + min
i∈I
{biµi−λickµk}

(
B−

∑
i∈I

Si
µi

)
, (A.21)
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where the first equality is by (A.2a) and the second equality follows from the fact that gγbar(B) =

ckµk and g′
γbar

(B) = 0. Next, for all w>B,

1

2
Σf ′′(w) + θf ′(w) + min

q∈A(w)

{∑
i∈I

(
bi−

λi
µi
f ′(w)

)
(qi−Si)+

}

=
1

2
Σf ′′(w) + θf ′(w) + min

i∈I
{biµi−λif ′(w)}

(
w−

∑
i∈I

Si
µi

)+

= θckµk + min
i∈I
{biµi−λickµk}

(
w−

∑
i∈I

Si
µi

)

> θckµk + min
i∈I
{biµi−λickµk}

(
B−

∑
i∈I

Si
µi

)

= γbar,

where the first equality follows from Lemma 1 and the fact that f satisfies (13c), the strict inequality

follows from the fact that bjµj/λj > ckµk and w > B, and the last equality follows from (A.21).

Therefore, (f,B,γbar) satisfies (13b).

By Lemmas A.3.1 and A.3.9 and because f ∈C2, (B,γbar) is unique and f ′ is unique on [0,B].

Hence, f is unique up to a constant on [0,B]. Finally, by Lemma A.3.6 Part 2.iii, f ′ is strictly

increasing on [0,B].

A.4. Regulator Mapping Proofs

We introduce a new one-sided regulator mapping that has a simpler structure than the one in

Definition 3 and a new two-sided regulator mapping that has a simpler structure than the one in

Definition 5 in Section A.4.1. By using the aforementioned relatively simple regulator mappings,

we prove Lemmas 3 and 4 in Sections A.4.2 and A.4.3, respectively. We also present an auxiliary

limiting result associated with the one-sided regulator mapping in Definition 3 in Section A.4.4,

which will help us in the later proofs.

A.4.1. Two new regulator mappings

We introduce two new regulator mappings that will help us to prove Lemmas 3 and 4.
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A.4.1.1. A new one-sided regulator mapping We introduce the following one-sided reg-

ulator mapping that has a simpler structure than the one in Definition 3.

Definition A.4.1. Let (λ, s) ∈ R2
+ and x ∈ D be such that x(0) ≥ 0. The one-sided regulator

mapping (φM,ψM) :R2
+×D→D2 is defined by (φM,ψM) (λ, s,x) = (w, `) where

C1. w(t) = x(t)−λ
∫ t

0
(w(y)− s)+

dy+ `(t)≥ 0 for all t∈R+,

C2. `(0) = 0, ` is nondecreasing, and
∫∞

0
w(t)d`(t) = 0.

The following lemma proves the existence of the regulator mapping in Definition A.4.1.

Lemma A.4.1. For any given (λ, s)∈R2
+ and x∈D such that x(0)≥ 0, there exists a unique pair of

functions (φM,ψM) (λ, s,x) satisfying the conditions C1 and C2 in Definition A.4.1. Furthermore,

if (λ, s) is given, (φM,ψM) (λ, s,x) is non-anticipative with respect to x.

Before presenting the proof of Lemma A.4.1, we will present an auxiliary result. Let φ,ψ :D→D

be such that for all x∈D and t∈R+,

ψ(x)(t) := sup
0≤s≤t

(−x(s))+, φ(x)(t) := x(t) +ψ(x)(t). (A.22)

Then, (φ,ψ) is the conventional one-sided regulator mapping (see chapter 13.5 of Whitt (2002)).

The following auxiliary lemma will help us to connect the one-sided regulator mapping in Definition

A.4.1 with the conventional one-sided regulator mapping in (A.22).

Lemma A.4.2. Let (λ, s)∈R2
+ and x∈D. There exists a unique ν ∈D which solves the equation

ν(t) = x(t)−λ
∫ t

0

(φ(ν)(y)− s)+
dy, ∀t∈R+. (A.23)

We let M : R2
+ ×D→ D denote the unique solution to (A.23), that is, ν =M(λ, s,x). If (λ, s) is

given, M(λ, s,x) is non-anticipative with respect to x.

Proof: Let us fix arbitrary (λ, s) ∈ R2
+ and x ∈ D. Let ηλ,s : D→ D be such that for all ν ∈ D

and t ∈ R+, ηλ,s(ν)(t) := λ (φ(ν)(t)− s)+
. Let us define the uniform norm such that for all z ∈ D

and t∈R+, ‖z‖t := sup0≤y≤t |z(y)|. Then for all ν1, ν2 ∈D and t∈R+,

∥∥ηλ,s(ν1)− ηλ,s(ν2)
∥∥
t
≤ λ‖φ(ν1)−φ(ν2)‖t ≤ 2λ‖ν1− ν2‖t ,
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where the last inequality is by the fact that the mapping φ is Lipschitz continuous with respect

to the uniform norm with Lipschitz constant 2 (see lemma 13.5.1 of Whitt (2002)). Thus, ηλ,s is

Lipschitz continuous with respect to the uniform norm. Because (A.23) is equivalent to

ν(t) = x(t)−
∫ t

0

ηλ,s(ν)(y)dy, ∀t∈R+,

there exists a unique ν ∈ D which solves (A.23) by lemma 1 of Reed and Ward (2004). Finally,

we see in (A.23) that when (λ, s) is given, ν(t) is determined by {x(y),0≤ y ≤ t} for all t ∈ R+,

implying that ν is non-anticipative with respect to x when (λ, s) is given. �

Proof of Lemma A.4.1. Let us fix arbitrary (λ, s) ∈ R2
+ and x ∈ D such that x(0) ≥ 0. Let

(w, `) := (φ,ψ)(ν) where ν =M(λ, s,x). By (A.22) and the fact that ν(0) = x(0) ≥ 0, we have

w(t)≥ 0 for all t∈R+. Furthermore, by (A.23),

w(t) = ν(t) + `(t) = x(t)−λ
∫ t

0

(φ(ν)(y)− s)+
dy+ `(t)

= x(t)−λ
∫ t

0

(w(y)− s)+
dy+ `(t), ∀t∈R+.

Therefore, condition C1 in Definition A.4.1 is satisfied by (w, `). Because ν(0) = x(0)≥ 0, `(0) =

ψ(ν)(0) = 0 and ` is nondecreasing and in D by the definition of the mapping ψ (see (A.22)).

Finally, ∫ ∞
0

w(t)d`(t) =

∫ ∞
0

φ(ν)(t)dψ(ν)(t) = 0

by the complementarity property of the conventional regulator mapping (see theorem 14.2.3 of

Whitt (2002)). Therefore, (w, `) = (φ,ψ)(ν) satisfies the conditions C1 and C2 in Definition A.4.1.

Next, we will prove the uniqueness of (w, `). Let (w1, `1) be another pair satisfying the conditions

C1 and C2 and g ∈D be such that

g(t) := x(t)−λ
∫ t

0

(w1(y)− s)+
dy, ∀t∈R+.

Then, w1 = g+`1 by condition C1. By condition C2 and the uniqueness of the conventional regulator

mapping (see theorem 14.2.2 of Whitt (2002)), (w1, `1) = (φ,ψ)(g), and thus

g(t) = x(t)−λ
∫ t

0

(φ(g)(y)− s)+
dy, ∀t∈R+,
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that is, g =M(λ, s,x). Because the mapping M is unique (see Lemma A.4.2), we have g =

ν. Therefore, (w1, `1) = (φ,ψ)(g) = (φ,ψ)(ν) = (w, `), which proves uniqueness. Furthermore,

(φM,ψM)(λ, s,x) = (w, `) = (φ,ψ)(ν) = (φ,ψ)(M(λ, s,x)).

Finally, we will prove that (φM,ψM) (λ, s,x) is non-anticipative with respect to x when (λ, s) is

given. Observe that (φM,ψM) (λ, s,x) = (φ,ψ) (M(λ, s,x)) andM(λ, s,x) is non-anticipative with

respect to x when (λ, s) is given by Lemma A.4.2. Because the conventional one-sided regulator

mapping is non-anticipative by definition (see (A.22)), the desired result follows. �

A.4.1.2. A new two-sided regulator mapping We introduce the following two-sided reg-

ulator mapping that has a simpler structure than the one in Definition 5.

Definition A.4.2. (A two-sided regulator mapping) Let b∈R++, (λ, s)∈R2
+, and x∈D be such

that x(0)∈ [0, b]. The two-sided regulator mapping (φN ,ψN1 ,ψ
N
2 ) :R++×R2

+×D→D3 is such that

(φN ,ψN1 ,ψ
N
2 ) (b,λ, s, x) = (w, `,u) where

C1. w(t) = x(t)−λ
∫ t

0
(w(y)− s)+

dy+ `(t)−u(t)∈ [0, b] for all t∈R+,

C2. `(0) = u(0) = 0 and both ` and u are nondecreasing,

C3.
∫∞

0
w(t)d`(t) =

∫∞
0

(b−w(t))du(t) = 0.

The following lemma proves the existence of the two-sided regulator mapping in Definition A.4.2.

Lemma A.4.3. For any given b∈R++, (λ, s)∈R2
+, and x∈D such that x(0)∈ [0, b], there exists a

unique triple (φN ,ψN1 ,ψ
N
2 ) (b,λ, s, x)∈D3 which satisfies the conditions C1-C3 in Definition A.4.2.

Furthermore, if (b,λ, s) is given, (φN ,ψN1 ,ψ
N
2 ) (b,λ, s, x) is non-anticipative with respect to x.

Before presenting the proof of Lemma A.4.3, we will present an auxiliary result. Let(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
:R++×D→D3 be such that for given b∈R++ and x∈D,

(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
(b,x) =

(w, `,u) where

l=ψ(x−u), u=ψ(b−x− l), w= x+ l−u, (A.24)

where the mapping ψ is defined in (A.22). Then,
(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
is the conventional two-sided

regulator mapping (see chapter 2.4 of Harrison (2013) and chapter 14.8 of Whitt (2002)). The
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following lemma will help us to connect the two-sided regulator mapping in Definition A.4.2 with

the conventional two-sided regulator mapping.

Lemma A.4.4. Let b ∈R++, (λ, s) ∈R2
+, and x ∈D. There exists a unique ν ∈D which solves the

equation

ν(t) = x(t)−λ
∫ t

0

(
φ(3)(ν)(y)− s

)+
dy, ∀t∈R+. (A.25)

We let N : R++ ×R2
+ ×D→ D denote the unique solution to (A.25), that is, ν =N (b,λ, s, x). If

(b,λ, s) is given, N (b,λ, s, x) is non-anticipative with respect to x.

Proof: Because the mapping φ(3) is Lipschitz continuous with respect to the uniform norm with

Lipschitz constant 2 (see theorem 14.8.1 of Whitt (2002)), the proof of Lemma A.4.4 is very similar

to the one of Lemma A.4.2 and thus we skip the details. �

Proof of Lemma A.4.3. Let us fix arbitrary b ∈ R++, (λ, s) ∈ R2
+, and x ∈ D such that x(0) ∈

[0, b]. Let (w, `,u) :=
(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
(ν) where ν =N (b,λ, s, x). By (A.24) and the fact that ν(0) =

x(0)∈ [0, b], we have w(t)∈ [0, b] for all t∈R+. Furthermore, by (A.24) and (A.25),

w(t) = ν(t) + `(t)−u(t) = x(t)−λ
∫ t

0

(
φ(3)(ν)(y)− s

)+
dy+ `(t)−u(t)

= x(t)−λ
∫ t

0

(w(y)− s)+
dy+ `(t)−u(t), ∀t∈R+.

Therefore, condition C1 in Definition A.4.2 is satisfied by (w, `,u). Because ν(0) = x(0) ∈ [0, b],

`(0) = u(0) = 0, both ` and u are nondecreasing and in D by (A.24). Finally,

∫ ∞
0

w(t)d`(t) =

∫ ∞
0

φ(3)(ν)(t)dψ
(3)
1 (ν)(t) = 0,∫ ∞

0

(b−w(t))du(t) =

∫ ∞
0

(
b−φ(3)(ν)(t)

)
dψ

(3)
2 (ν)(t) = 0,

by the complementarity property of the conventional two-sided regulator mapping (see section

14.8.1 of Whitt (2002)). Therefore, (w, `,u) =
(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
(ν) satisfies the conditions C1-C3 in

Definition A.4.2.
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Next, we will prove the uniqueness of (w, `,u). Let (w1, `1, u1) be another triple satisfying the

conditions C1-C3 and g ∈D be such that

g(t) := x(t)−λ
∫ t

0

(w1(y)− s)+
dy, ∀t∈R+.

Then, w1 = g + `1 − u1 by condition C1. By conditions C2-C3 and the uniqueness of the

conventional two-sided regulator mapping (see theorem 14.8.1 of Whitt (2002)), (w1, `1, u1) =(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
(g), and thus

g(t) = x(t)−λ
∫ t

0

(
φ(3)(g)(y)− s

)+
dy, ∀t∈R+,

that is, g = N (b,λ, s, x). Because the mapping N is unique (see Lemma A.4.4), we have g = ν.

Therefore, (w1, `1, u1) =
(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
(g) =

(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
(ν) = (w, `,u), which proves unique-

ness. Furthermore,

(φN ,ψN1 ,ψ
N
2 )(b,λ, s, x) = (w, `,u) =

(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
(ν) =

(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
(N (b,λ, s, x)).

Finally, we will prove that (φN ,ψN1 ,ψ
N
2 ) (b,λ, s, x) is non-anticipative with respect to x when

(b,λ, s) is given. Observe that

(
φN ,ψN1 ,ψ

N
2

)
(b,λ, s, x) =

(
φ(3),ψ

(3)
1 ,ψ

(3)
2

)
(N (b,λ, s, x))

and N (b,λ, s, x) is non-anticipative with respect to x when (b,λ, s) is given by Lemma A.4.4.

Because the conventional two-sided regulator mapping is non-anticipative by definition (see (A.24)),

the desired result follows. �

A.4.2. Proof of Lemma 3

For given λ∈RI+, µ∈RI++, and s∈RI+, let β(λ,µ,s) :R+→R+ be such that

β(λ,µ,s)(w) :=
∑
i∈I

λi
µi

(q∗i (w)− si)+
, ∀w ∈R+.

By recalling Lemma 1, for all w ∈ R+, let κ(w) ∈ arg mini∈I {biµi−λif ′(w)}. By Lemma 1 and

Definition 2,

β(λ,µ,s)(w) = λκ(w)

(
w−

∑
i∈I

si
µi

)+

, ∀w ∈R+. (A.26)
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Recall that the function f ′ is nonnegative and strictly increasing (see (12), (13), and Lemma 2).

By (A.3) and (A.4) (and recall Figure A.3.1), the function β(λ,µ,s) is nondecreasing and piecewise

linear with finitely many break points. Furthermore, we can choose κ(w) such that β(λ,µ,s) becomes

right continuous. Let η(λ,µ,s) :D→D be such that

η(λ,µ,s)(w)(t) := β(λ,µ,s)(w(t)), ∀w ∈D, t∈R+,

that is, η(λ,µ,s) is the process version of β(λ,µ,s). In order to satisfy condition C1 in Definition 3,

we need

w(t) = x(t)−
∫ t

0

η(λ,µ,s)(w)(y)dy+ `(t), ∀t∈R+.

Due to the potential discontinuity of β(λ,µ,s), the mapping η(λ,µ,s) is not necessarily Lipschitz

continuous with respect to the uniform norm and thus the proof of Lemma A.4.1 cannot be used to

prove Lemma 3. Specifically, we cannot extend Lemma A.4.2 with the mapping η(λ,µ,s). Therefore,

we will use a different proof technique to prove Lemma 3.

Recall that β(λ,µ,s) is nondecreasing and piecewise linear with finitely many break points. There-

fore, R+ can be partitioned into finite number of intervals such that whenever the workload level

w(t) enters an interval, β(λ,µ,s) is a linear function in that interval. Specifically, let R+ be parti-

tioned into ξ ∈ {1,2, . . . , I, I + 1} workload intervals with break points (w∗i1 ,w
∗
i2
, . . . ,w∗iξ−1

) ∈ Rξ−1
+

such that

0 =:w∗i0 ≤
∑
i∈I

si
µi

=:w∗i1 <w
∗
i2
< . . . < w∗iξ−1

<∞=:w∗iξ ,

0 =: λi0 <λi1 <λi2 < . . . < λiξ−1
,

where λim = λκ(w) in the (m+ 1)th interval for all m∈ {0,1, . . . , ξ− 1}. Figure A.4.1 illustrates the

function β(λ,µ,s) with three break points.

By (A.26), on each workload interval [w∗im ,w
∗
im+1

] where m ∈ {0,1,2, . . . , ξ − 1}, the one-sided

regulator mapping defined in Definition 3 behaves like the one-sided regulator mapping defined in

Definition A.4.1 with the initial condition x(0)∈ [w∗im ,w
∗
im+1

] and the parameters
(
λim ,

∑
i∈I si/µi

)
.
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Figure A.4.1 (Color online) An illustration of the function β(λ,µ,s) with three break points.

By Lemma A.4.1, there exists a unique pair in D2 satisfying the conditions C1 and C2 in Definition

A.4.1 on the workload interval [w∗im ,w
∗
im+1

] for all m ∈ {0,1, . . . , ξ − 1}. Therefore, there exists a

unique pair in D2 satisfying the conditions C1 and C2 in Definition 3. Finally, by Lemma A.4.1,

if
(
λim ,

∑
i∈I si/µi

)
is given, the unique pair defined in Definition A.4.1 is non-anticipative with

respect to x on the workload interval [w∗im ,w
∗
im+1

] for all m ∈ {0,1, . . . , ξ − 1}. Consequently, if

(λ,µ,s) is given, the unique pair defined in Definition 3 is non-anticipative with respect to x.

A.4.3. Proof of Lemma 4

Because the proof of Lemma 4 is very similar to the one of Lemma 3, we skip it. The only difference

is that we refer to Lemma A.4.3 instead of Lemma A.4.1 to show the existence of the two-sided

regulator mapping with the desired properties at each workload interval.

A.4.4. An auxiliary result associated with the one-sided regulator mapping in Definition 3

We will derive a limiting result for the workload process under the one-sided regulator mapping

in Definition 3. In order to accomplish that result, first, we will derive an upper bound on that

workload process.

Lemma A.4.5. Let us fix arbitrary λ ∈ RI+, µ ∈ RI++, s ∈ RI+, and x ∈ D such that x(0)≥ 0. Let

(w, `) be the one-sided regulator mapping in Definition 3 and (w∗, `∗) := (φ,ψ)(x) be the conven-

tional one-sided regulator mapping defined in (A.22). Then, w(t)≤w∗(t) for all t∈R+.
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Proof: For notational convenience, let us define

β(t) :=
∑
i∈I

λi
µi

(q∗i (w(t))− si)+
, ∀t∈R+.

Then, by condition C1 in Definition 3, we have

w(t) = x(t)−
∫ t

0

β(u)du+ `(t), ∀t∈R+. (A.27)

Suppose that the statement of Lemma A.4.5 is not correct. Let

τ := inf {t∈R+ :w(t)>w∗(t)} .

Then, it must be the case that τ exists and τ <∞. There are four cases to consider.

Case 1 Suppose that both w and w∗ are continuous at τ . Then, it must be the case that

w(τ) =w∗(τ) and w(τ+)>w∗(τ+), which implies that there exists ε > 0 such that

w(τ + t)>w∗(τ + t), ∀t∈ (0, ε). (A.28)

By (A.28) and condition C2 in Definition 3 , we have

`(τ + t) = `(τ), ∀t∈ (0, ε). (A.29)

Let us fix an arbitrary t∈ (0, ε). Then,

w(τ + t)−w∗(τ + t) = x(τ + t)−
∫ τ+t

0

β(u)du+ `(τ + t)−x(τ + t)− `∗(τ + t)

=−
∫ τ

0

β(u)du+ `(τ)−
∫ τ+t

τ

β(u)du+ `(τ + t)− `(τ)− `∗(τ + t)

=w(τ)−x(τ)−
∫ τ+t

τ

β(u)du− `∗(τ + t)

=w∗(τ)−x(τ)−
∫ τ+t

τ

β(u)du− `∗(τ + t)

= `∗(τ)− `∗(τ + t)−
∫ τ+t

τ

β(u)du

≤ 0, (A.30)

where the first equality follows from (A.22) and (A.27), the third equality follows from (A.27) and

(A.29), the fourth equality follows from the fact that w(τ) =w∗(τ), the fifth equality follows from
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(A.22), and the inequality follows from the fact that `∗ is nondecreasing and β is a nonnegative

function. Observe that the inequality in (A.30) is a contradiction because of (A.28).

Case 2 Suppose that w has a jump at τ and w∗ is continuous at τ . Then, it must be the case

that

w(τ−)≤w∗(τ−), w(τ)>w∗(τ), ∆w(τ)> 0, (A.31)

where ∆a(t) := a(t)− a(t−) for all a ∈D and t ∈R+. By condition C2 in Definition 3 , ∆`(τ) = 0,

and because `∗ is nondecresing, ∆`∗(τ)≥ 0. By condition C1 in Definition 3

∆w(τ) = ∆x(τ), (A.32)

∆w∗(τ) = ∆x(τ) + ∆`∗(τ),

=⇒ ∆w(τ)≤∆w∗(τ),

=⇒ w(τ)−w∗(τ)≤w(τ−)−w∗(τ−). (A.33)

Because w(τ−) ≤ w∗(τ−) by (A.31), (A.33) implies w(τ) ≤ w∗(τ), which is a contradiction by

(A.31).

Case 3 Suppose that w is continuous at τ and w∗ has a jump at τ . Then, it must be the case

that

w(τ−)≤w∗(τ−), w(τ)>w∗(τ), ∆w∗(τ)< 0. (A.34)

By (A.34), w(τ)> 0 and thus ∆`(τ) = 0 by condition C2 in Definition 3 and the continuity of w

at τ . The rest of the proof is exactly the same as the one of Case 2 starting from (A.32).

Case 4 Suppose that both w and w∗ have a jump at τ . Then, it must be the case that

w(τ−)≤w∗(τ−), w(τ)>w∗(τ),

which implies ∆`(τ) = 0 by condition C2 in Definition 3 . The rest of the proof is exactly the same

as the one of Case 2 starting from (A.32). �

The following limiting result associated with the one-sided regulator mapping in Definition 3

will be useful in the optimality proofs of the NER policy.
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Lemma A.4.6. Let us fix arbitrary λ ∈ RI+, µ ∈ RI++, S ∈ RI+, and θ ∈ (−∞,0]. Let W :=

φ(1) (λ,µ,S,X + θe), where X is a BM (0,Σ). By Definition 4, W is the workload process under

the one-sided regulator mapping in Definition 3. Then,

lim
t→∞

E [W (t)]

t
= 0.

Proof. By condition C1 in Definition 3 and Lemma A.4.5, we have 0≤W ≤W ∗ where W ∗ :=

φ(X + θe) is the conventional one-sided regulator mapping defined in (A.22). We have

P (W ∗(t)≤w) = Φ

(
w− θt√

Σt

)
− e

2θ
Σ wΦ

(
−w− θt√

Σt

)
, ∀t,w ∈R+, (A.35)

where Φ denotes the cumulative distribution function of a standard normal random variable (see

section 1.10 of Harrison (2013) for details). By (A.35), if θ= 0,

E [W ∗(t)] =

∫ ∞
0

P (W ∗(t)>w)dw=

∫ ∞
0

(
1−Erf

[
w√
2Σt

])
dw=

√
2Σt

π
, (A.36)

where the last equality follows from Korotkov and Korotkov (2020) (see page 138 therein). By

(A.35), if θ 6= 0,

E [W ∗(t)] =

∫ ∞
0

P (W ∗(t)>w)dw

=
1

2

∫ ∞
0

(
1−Erf

[
w− θt√

2Σt

])
dw+

1

2

∫ ∞
0

e
2θ
Σ w

(
1−Erf

[
w+ θt√

2Σt

])
dw

=

√
Σt

2π
e−

θ2

2Σ t +
θt

2

(
1−Erf

[
−θ
√

t

2Σ

])
+

Σ

2θ
Erf

[
θ

√
t

2Σ

]
, (A.37)

where the last equality follows from Korotkov and Korotkov (2020) (see pages 138 and 154 therein).

Therefore, if θ≤ 0, by (A.36) and (A.37), we have

lim
t→∞

E [W ∗(t)]

t
= 0,

which gives the desired result. �
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A.5. Proof of Theorem 1

Let us fix an arbitrary S ∈RI+ and consider the function f defined in Lemma 2 Part i. Because f

is unique up to a constant, let us choose f(0) = 0. By (12a),

1

2
Σf ′′(w) + θf ′(w) +

∑
i∈I

(
bi−

λi
µi
f ′(w)

)
(qi−Si)+ ≥ γ, ∀w ∈R+, q ∈A(w). (A.38)

By (10b) and Ito’s lemma, we have

E [f(W (t))]−E [f(W (0))]

=
1

2
ΣE

[∫ t

0

f ′′(W (s))ds

]
+E

[∫ t

0

(
θ−

∑
i∈I

λi
µi

(ai(s,W (s))−Si)+

)
f ′(W (s))ds

]

+E

[∫ t

0

f ′(W (s)) (dI(s)−dE(s))

]
≥ γt−E

[∑
i∈I

bi

∫ t

0

(ai(s,W (s))−Si)+
ds

]
+E

[∫ t

0

f ′(W (s)) (dI(s)−dE(s))

]
, (A.39)

where the inequality in (A.39) is by (A.38). Observe that the inequality in (A.39) becomes an

equality under the NER policy by (12a) and Definitions 2 and 4.

The NER policy. We will prove that γ defined in Lemma 2 Part i is the long-run average

backorder cost under the NER policy. Because E = 0 under the NER policy,

E

[∫ t

0

f ′
(
W (s)

)
dE(s)

]
= 0. (A.40)

By (12c) and because the repair facility works in a work-conserving fashion under the NER policy

(see condition C2 in Definition 3), we have

E

[∫ t

0

f ′
(
W (s)

)
dI(s)

]
=E

[∫ t

0

f ′
(
0
)
dI(s)

]
= 0. (A.41)

Next, recall that W (0) = 0, W (t)≥ 0 for all t∈R+ (see (10e)), and f(0) = 0. Furthermore, by (12b)

and because f(0) = 0, f(w)≥ 0 for all w ∈R+. Therefore,

0≤ 1

t
(E [f(W (t))]−E [f(W (0))]) =

1

t
E [f(W (t))]≤ bjµj

λjt
E [W (t)]→ 0 as t→∞, (A.42)
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where the last inequality follows from (12b) and the convergence result follows from Lemma A.4.6.

Therefore, by (A.42),

lim
t→∞

1

t
(E [f(W (t))]−E [f(W (0))]) = 0. (A.43)

By (A.40), (A.41), and (A.43), and because (A.39) holds with equality and E = 0 under the

NER policy, we have

lim
t→∞

1

t
E

[∑
i∈I

bi

∫ t

0

(ai(s,W (s))−Si)+
ds+ ckµkE(t)

]
= γ. (A.44)

An arbitrary feasible solution to the EWF (10). We will prove that γ defined in Lemma 2 Part

i is a lower-bound on the long-run average backorder and emergency repair cost under any feasible

solution to the EWF (10). Let
(
W,I,E,a,S

)
be an arbitrary feasible solution to the EWF (10).

We will consider two cases. First, suppose that

lim inf
t→∞

E
[
W (t)

]
t

= ε (A.45)

for some arbitrary ε > 0. Let bµ := mini∈I biµi. Then,

lim inf
t→∞

1

t
E

[∑
i∈I

bi (ai(t,W (t))−Si)+

]
≥ lim inf

t→∞

1

t
E

[
bµ
∑
i∈I

(
ai(t,W (t))

µi
− Si
µi

)+
]

≥ lim inf
t→∞

1

t
E

bµ(∑
i∈I

ai(t,W (t))

µi
−
∑
i∈I

Si
µi

)+


= lim inf
t→∞

1

t
E

bµ(W (t)−
∑
i∈I

Si
µi

)+


≥ bµ lim inf
t→∞

1

t
E

[
W (t)−

∑
i∈I

Si
µi

]

= bµ lim inf
t→∞

1

t
E [W (t)]− bµ lim

t→∞

1

t

∑
i∈I

Si
µi

= bµε,

where the first equality follows from (10d) and the last equality follows from (A.45). Therefore,

there exists a t0 ∈R+ such that

1

t
E

[∑
i∈I

bi (ai(t,W (t))−Si)+

]
> 0.5bµε, ∀t≥ t0. (A.46)
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Next, let us consider the long-run average backorder cost.

lim inf
t→∞

1

t
E

[∑
i∈I

bi

∫ t

0

(ai(s,W (s))−Si)+
ds

]
= lim inf

t→∞

1

t

∫ t

0

E

[∑
i∈I

bi (ai(s,W (s))−Si)+

]
ds

≥ lim inf
t→∞

1

t

∫ t

t0

E

[∑
i∈I

bi (ai(s,W (s))−Si)+

]
ds

≥ lim inf
t→∞

1

t

∫ t

t0

(
0.5bµεs

)
ds

= lim inf
t→∞

0.5bµε

t

(
t2− t20

2

)
=∞, (A.47)

where the first equality follows from Tonelli’s theorem and the second inequality is by (A.46).

Therefore, if (A.45) holds under a feasible solution to the EWF (10), the associated objective

function value is infinity.

Second, suppose that

lim inf
t→∞

E
[
W (t)

]
t

= 0. (A.48)

Similar to how we derive (A.43), by (A.48), we can prove that

lim inf
t→∞

1

t

(
E
[
f
(
W (t)

)]
−E

[
f
(
W (0)

)])
= 0. (A.49)

Let ∆E(t) :=E(t)−E(t−) denote the jump of E at time t for all t∈R+. By (10c), we let

Ec(t) :=E(t)−
∑

0<s≤t

∆E(s), ∀t∈R+,

where the sum is over the countable set s∈ (0, t] at which ∆E(s)> 0 and Ec denotes the continuous

part of E (see section 4.9 of Harrison (2013) for details). Then,

E

[∫ t

0

f ′
(
W (s)

)
d(−E(s))

]
=−E

[∫ t

0

f ′
(
W (s)

)
dEc(s)

]
+E

[ ∑
0<s≤t

(
f
(
W (s)

)
− f
(
W (s−)

))]

≥−ckµkE [Ec(t)]−E

[
ckµk

∑
0<s≤t

∆E(s)

]

=−ckµkE [E(t)] , (A.50)
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where the inequality follows from (10c), (12b), and the fact that bjµj/λj ≤ ckµk. Similarly, by (10c)

and (12b), we can show that

E

[∫ t

0

f ′
(
W (s)

)
dI(s)

]
≥ 0. (A.51)

By (A.39), (A.50), and (A.51) we have

E [f(W (t))]−E [f(W (0))]≥ γt−E

[∑
i∈I

bi

∫ t

0

(ai(s,W (s))−Si)+
ds

]
− ckµkE [E(t)] . (A.52)

By (A.49) and (A.52), we have

limsup
t→∞

1

t
E

[∑
i∈I

bi

∫ t

0

(ai(s,W (s))−Si)+
ds+ ckµkE(t)

]
≥ γ. (A.53)

Consequently, for all fixed S ∈RI+ in the EWF (10), the NER policy is optimal by (A.44) and

(A.53).

A.6. Proof of Theorem 2

Let us fix an arbitrary S ∈ RI+ and consider the function f defined in Lemma 2 Part ii. Because

f is unique up to a constant, let us choose f(0) = 0. By (13a) and (13b), the inequality in (A.38)

holds under the function f defined in Lemma 2 Part ii. By (10b) and Ito’s lemma, we have

E [f(W (t))]−E [f(W (0))]

=
1

2
ΣE

[∫ t

0

f ′′(W (s))ds

]
+E

[∫ t

0

(
θ−

∑
i∈I

λi
µi

(ai(s,W (s))−Si)+

)
f ′(W (s))ds

]

+E

[∫ t

0

f ′(W (s)) (dI(s)−dE(s))

]
≥ γt−E

[∑
i∈I

bi

∫ t

0

(ai(s,W (s))−Si)+
ds

]
+E

[∫ t

0

f ′(W (s)) (dI(s)−dE(s))

]
, (A.54)

where the inequality in (A.54) is by (A.38). Observe that the inequality in (A.54) becomes an

equality under the barrier policy by (13a) and Definitions 2 and 6.

The barrier policy. We will prove that γ defined in Lemma 2 Part ii is the long-run average

backorder and emergency repair cost under the barrier policy. By (13d) and because the barrier
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policy uses emergency repairs only when the workload level hits the upper barrier level B (see

condition C3 in Definition 5), we have

E

[∫ t

0

f ′
(
W (s)

)
dE(s)

]
=E

[∫ t

0

f ′(B)dE(s)

]
= ckµkE [E(t)] . (A.55)

By (13d) and because the repair facility works in a work-conserving fashion under the barrier policy

(see condition C3 in Definition 5), we have

E

[∫ t

0

f ′
(
W (s)

)
dI(s)

]
=E

[∫ t

0

f ′
(
0
)
dI(s)

]
= 0. (A.56)

Next,

1

t
(E [f(W (t))]−E [f(W (0))]) =

1

t
E [f(W (t))]→ 0 as t→∞, (A.57)

where the equality follows from the fact that W (0) = 0 and f(0) = 0 and the convergence result

follows from the fact that W (t)∈ [0,B] for all t∈R+ under the barrier policy and sup0≤w≤B |f(w)|<

∞ because f is continuous as stated in Lemma 2 Part ii.

Therefore, by (A.55), (A.56), (A.57), and because (A.54) holds with equality under the barrier

policy, we have

lim
t→∞

1

t
E

[∑
i∈I

bi

∫ t

0

(ai(s,W (s))−Si)+
ds+ ckµkE(t)

]
= γ. (A.58)

An arbitrary feasible solution to the EWF (10). We will prove that γ defined in Lemma 2 Part

ii is a lower-bound on the long-run average backorder and emergency repair cost under any feasible

solution to the EWF (10). Let
(
W,I,E,a,S

)
be an arbitrary feasible solution to the EWF (10).

We will consider two cases. First, if

lim inf
t→∞

E
[
W (t)

]
t

= ε

for some arbitrary ε > 0, then the associated objective function value is infinity by the same

argument leading to (A.47). Second, suppose that

lim inf
t→∞

E
[
W (t)

]
t

= 0. (A.59)
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Recall that W (0) = 0, W (t)≥ 0 for all t∈R+ (see (10e)), and f(0) = 0. Furthermore, by (13c) and

because f(0) = 0, f(w)≥ 0 for all w ∈R+. Therefore,

0≤ lim inf
t→∞

1

t

(
E
[
f
(
W (t)

)]
−E

[
f
(
W (0)

)])
= lim inf

t→∞

1

t
E
[
f
(
W (t)

)]
≤ lim inf

t→∞

ckµk
t

E
[
W (t)

]
= 0,

where the last inequality follows from (13c) and the last equality follows from (A.59). Therefore,

lim inf
t→∞

1

t

(
E
[
f
(
W (t)

)]
−E

[
f
(
W (0)

)])
= 0. (A.60)

Similar to how we derive (A.50) and (A.51), by (13c), we can derive that

E

[∫ t

0

f ′
(
W (s)

)
dE(s)

]
≤ ckµkE [E(t)] , E

[∫ t

0

f ′
(
W (s)

)
dI(s)

]
≥ 0. (A.61)

By (A.54) and (A.61), we have

E [f(W (t))]−E [f(W (0))]≥ γt−E

[∑
i∈I

bi

∫ t

0

(ai(s,W (s))−Si)+
ds

]
− ckµkE [E(t)] . (A.62)

By (A.60) and (A.62), we have

limsup
t→∞

1

t
E

[∑
i∈I

bi

∫ t

0

(ai(s,W (s))−Si)+
ds+ ckµkE(t)

]
≥ γ. (A.63)

Consequently, for any fixed S ∈RI+ in the EWF (10), the barrier policy is optimal by (A.58) and

(A.63).

A.7. Proof of Proposition 2

(i) Let
(
W,I,E,S

)
be a feasible solution to the EWF (16). Recall (11) and that k ∈ arg mini∈I ciµi.

For (x, y)∈D2, let (x∧ y)(t) := min{x(t), y(t)} for all t∈R+. There are five cases to consider.

Case i.1. Suppose that j 6= k 6= l. Let

Ql := µl (W ∧S) , Qj := µj (W −S)
+
, Qi := 0 ∀i∈ I\{j, l},

Sl := µlS, Si := 0 ∀i∈ I\{l},

Ek := µkE, Ei := 0 ∀i∈ I\{k},

Yk :=E− Xk

µk
, Yl :=W ∧S− Xl

µl
, Yi :=−Xi

µi
∀i∈ I\{j, k, l},
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Yj(t) := (W (t)−S)
+− Xj(t)

µj
+λj

∫ t

0

(W (s)−S)
+

ds, ∀t∈R+.

Case i.2. Suppose that j = k 6= l. Let

Ql := µl (W ∧S) , Qj := µj (W −S)
+
, Qi := 0 ∀i∈ I\{j, l},

Sl := µlS, Si := 0 ∀i∈ I\{l},

Ej := µjE, Ei := 0 ∀i∈ I\{j},

Yl :=W ∧S− Xl

µl
, Yi :=−Xi

µi
∀i∈ I\{j, l},

Yj(t) := (W (t)−S)
+− Xj(t)

µj
+λj

∫ t

0

(W (s)−S)
+

ds+E(t), ∀t∈R+.

Case i.3. Suppose that j 6= k= l. Let

Qk := µk (W ∧S) , Qj := µj (W −S)
+
, Qi := 0 ∀i∈ I\{j, k},

Sk := µkS, Si := 0 ∀i∈ I\{k},

Ek := µkE, Ei := 0 ∀i∈ I\{k},

Yk :=W ∧S− Xk

µk
+E, Yi :=−Xi

µi
∀i∈ I\{j, k},

Yj(t) := (W (t)−S)
+− Xj(t)

µj
+λj

∫ t

0

(W (s)−S)
+

ds, ∀t∈R+.

Case i.4. Suppose that j = l 6= k. Let

Qj := µjW, Qi := 0 ∀i∈ I\{j},

Sj := µjS, Si := 0 ∀i∈ I\{j},

Ek := µkE, Ei := 0 ∀i∈ I\{k},

Yk :=E− Xk

µk
, Yi :=−Xi

µi
∀i∈ I\{j, k},

Yj(t) :=W (t)− Xj(t)

µj
+λj

∫ t

0

(W (s)−S)
+

ds, ∀t∈R+.
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Case i.5. Suppose that j = k= l. Let

Qj := µjW, Qi := 0 ∀i∈ I\{j},

Sj := µjS, Si := 0 ∀i∈ I\{j},

Ej := µjE, Ei := 0 ∀i∈ I\{j},

Yi :=−Xi

µi
∀i∈ I\{j}, Yj(t) :=W (t)− Xj(t)

µj
+λj

∫ t

0

(W (s)−S)
+

ds+E(t), ∀t∈R+.

Observe that
(
Qi, Si, Yi, I,Ei, i∈ I

)
defined above is a feasible solution to the BCP (9) with the

objective function value equal to the one of
(
W,I,E,S

)
.

(ii) Let
(
Qi, Si, Yi, I,Ei, i∈ I

)
be a feasible solution to the BCP (9) and let

S :=
∑
i∈I

Si
µi
, E :=

∑
i∈I

Ei
µi
, X̃ :=X + θe−E.

By scaling and then summing (9b) over i, we obtain

∑
i∈I

Qi(t)

µi
= X̃(t)−

∑
i∈I

λi

∫ t

0

(
Qi(s)

µi
− Si
µi

)+

ds+ I(t), ∀t∈R+. (A.64)

Let (W λj , Iλj ) ∈ D2 denote the unique process pair that satisfies the conditions C1 and C2 in

Definition A.4.1 under (λj, S, X̃). Then,

W λj (t) = X̃(t)−λj
∫ t

0

(
W λj (s)−S

)+
ds+ Iλj (t), ∀t∈R+. (A.65)

By Definition A.4.1,
(
W λj , S, Iλj ,E

)
is a feasible solution to the EWF (16). We will show that the

objective function value of
(
W λj , S, Iλj ,E

)
is less than or equal to the one of

(
Qi, Si, Yi, I,Ei, i∈ I

)
by the following result.

Lemma A.7.1. Fix an arbitrary sample path. Under Assumption 2, for all t∈R+,∫ t

0

(
W λj (s)−S

)+
ds≤

∑
i∈I

∫ t

0

(
Qi(s)

µi
− Si
µi

)+

ds.

Proof: We will use the proof by contradiction technique. Let

τ3 := inf

{
t∈R+ :

∫ t

0

(
W λj (s)−S

)+
ds >

∑
i∈I

∫ t

0

(
Qi(s)

µi
− Si
µi

)+

ds

}
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and suppose that τ3 <∞. Then∫ t

0

(
W λj (s)−S

)+
ds≤

∑
i∈I

∫ t

0

(
Qi(s)

µi
− Si
µi

)+

ds, ∀t∈ [0, τ3), (A.66a)∫ τ3

0

(
W λj (s)−S

)+
ds=

∑
i∈I

∫ τ3

0

(
Qi(s)

µi
− Si
µi

)+

ds, (A.66b)∫ τ3+

0

(
W λj (s)−S

)+
ds >

∑
i∈I

∫ τ3+

0

(
Qi(s)

µi
− Si
µi

)+

ds. (A.66c)

By (A.66b) and (A.66c), we have

(
W λj (τ3)−S

)+
>
∑
i∈I

(
Qi(τ3)

µi
− Si
µi

)+

≥

(∑
i∈I

Qi(τ3)

µi
−S

)+

,

=⇒ W λj (τ3)>
∑
i∈I

Qi(τ3)

µi
. (A.67)

By (A.64), (A.65), (A.66b), (A.67), Assumption 2, and the definition of τ3, we have

Iλj (τ3)> I(τ3). (A.68)

Let

τ1 := sup
{
t∈ [0, τ3] : dIλj (t)> 0

}
,

that is, τ1 is the last time Iλj increases before τ3. Observe that τ1 is well defined (that is, τ1 exists)

by (A.68). By definition of τ1, we have Iλj (τ1) = Iλj (τ3). By condition C2 in Definition A.4.1 and

because X̃ does not have any upward jumps, we have W λj (τ1) = 0. By (A.66a) and (A.66b) and

because τ1 ≤ τ3, we have∫ τ1

0

(
W λj (s)−S

)+
ds≤

∑
i∈I

∫ τ1

0

(
Qi(s)

µi
− Si
µi

)+

ds. (A.69)

Let

τ2 := inf

{
t∈ [τ1, τ3] :

∫ t

τ1

(
W λj (s)−S

)+
ds >

∑
i∈I

∫ t

τ1

(
Qi(s)

µi
− Si
µi

)+

ds

}
.

Observe that τ2 is well defined by (A.66c) and (A.69). Furthermore,∫ t

τ1

(
W λj (s)−S

)+
ds≤

∑
i∈I

∫ t

τ1

(
Qi(s)

µi
− Si
µi

)+

ds, ∀t∈ [τ1, τ2),∫ τ2

τ1

(
W λj (s)−S

)+
ds=

∑
i∈I

∫ τ2

τ1

(
Qi(s)

µi
− Si
µi

)+

ds, (A.70)∫ τ2+

τ1

(
W λj (s)−S

)+
ds >

∑
i∈I

∫ τ2+

τ1

(
Qi(s)

µi
− Si
µi

)+

ds,
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which implies

(
W λj (τ2)−S

)+
>
∑
i∈I

(
Qi(τ2)

µi
− Si
µi

)+

≥

(∑
i∈I

Qi(τ2)

µi
−S

)+

,

=⇒ W λj (τ2)>
∑
i∈I

Qi(τ2)

µi
. (A.71)

Because W λj (τ1) = 0 and Iλj (τ1) = Iλj (τ2) = Iλj (τ3)> I(τ3)≥ I(τ2)≥ I(τ1) (recall (A.68)), and

by (A.64) and (A.65), we have

∑
i∈I

Qi(τ2)

µi
−
∑
i∈I

Qi(τ1)

µi
= X̃(τ2)− X̃(τ1)−

∑
i∈I

λi

∫ τ2

τ1

(
Qi(s)

µi
− Si
µi

)+

ds+ I(τ2)− I(τ1), (A.72)

W λj (τ2) = X̃(τ2)− X̃(τ1)−λj
∫ τ2

τ1

(
W λj (s)−S

)+
ds. (A.73)

By (A.70), (A.72), (A.73), and Assumption 2, we have

W λj (τ2)≤
∑
i∈I

Qi(τ2)

µi
,

which is a contradiction by (A.71). �

Next we will prove that the objective function value of
(
W λj , S, Iλj ,E

)
is less than or equal to

the one of
(
Qi, Si, Yi, I,Ei, i ∈ I

)
under all sample paths. Let us compare the objective functions

(9a) and (16a) at a fixed time point t and under an arbitrary sample path:

∑
i∈I

(
hiSi +

1

t

(
bi

∫ t

0

(Qi(s)−Si)+
ds+ ciEi(t)

))

=
∑
i∈I

(
hiµi

Si
µi

+
1

t

(
biµi

∫ t

0

(
Qi(s)

µi
− Si
µi

)+

ds+ ciµi
Ei(t)

µi

))

≥
∑
i∈I

(
hlµl

Si
µi

+
1

t

(
bjµj

∫ t

0

(
Qi(s)

µi
− Si
µi

)+

ds+ ckµk
Ei(t)

µi

))

= hlµlS+
1

t

(
bjµj

∑
i∈I

∫ t

0

(
Qi(s)

µi
− Si
µi

)+

ds+ ckµkE(t)

)

≥ hlµlS+
1

t

(
bjµj

∫ t

0

(
W λj (s)−S

)+
ds+ ckµkE(t)

)
,

where the first inequality follows from (11), Assumption 2, and the fact that k ∈ arg mini∈I ciµi, and

the second the inequality follows from Lemma A.7.1. Therefore, the objective function value associ-

ated with
(
Qi, Si, Yi, I,Ei, i∈ I

)
is greater than or equal to the one associated with

(
W λj , S, Iλj ,E

)
under all sample paths.
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A.8. Proof of Theorem 3

For given S ∈ RI+, let S :=
∑

i∈I Si/µi. Under Assumption 2, by Lemma 1, the equality in (12a)

becomes equivalent to

1

2
Σf ′′(w) +

(
θ−λj (w−S)

+
)
f ′(w) + bjµj(w−S)+ = γ, ∀w ∈R+. (A.74)

By (A.74) and (12c), let us consider the following IVP with the initial condition g(0) = 0 and

1

2
Σg′(w) +

(
θ−λj (w−S)

+
)
g(w) + bjµj(w−S)+ = γ, ∀w ∈R+. (A.75)

Observe that (A.75) is a first-order linear ODE and its unique solution is as follows.

g(w) = e−
∫w
0 g1(x)dx

∫ w

0

e
∫ x
0 g1(s)dsg0(x)dx, ∀w ∈R+,

g0(w) :=
2

Σ

(
γ− bjµj(w−S)+

)
, ∀w ∈R+,

g1(w) :=
2

Σ

(
θ−λj (w−S)

+
)
, ∀w ∈R+.

By algebra, if θ= 0,

g(w) =


2γ
Σ
w, if w ∈ [0, S],

bjµj
λj

+ e
λj
Σ (w−S)2

(
2γ
Σ
S− bjµj

λj
+ γ
√

π
λjΣ

Erf

[√
λj
Σ

(w−S)

])
, if w>S,

(A.76)

where Erf[·] is the Gauss error function, that is,

Erf[x] =
2√
π

∫ x

0

e−s
2

ds, ∀x∈R.

If θ 6= 0,

g(w) =



γ
θ

(
1− e−

2θ
Σ w
)
, if w ∈ [0, S],

bjµj
λj

+ e
1
Σ(λj(w−S)2−2θ(w−S))

×

(
γ

(
1
θ

(
1− e−

2θ
Σ S
)

+
√

π
λjΣ

e
θ2

λjΣ

(
Erf

[
θ√
λjΣ

]
+ Erf

[
−θ+λj(w−S)√

λjΣ

]))
− bjµj

λj

(
1 + θ√

λjΣ

√
πe

θ2

λjΣ

(
Erf

[
θ√
λjΣ

]
+ Erf

[
−θ+λj(w−S)√

λjΣ

])))
, if w>S.

(A.77)



42 Özkan and van Houtum: Repair Facility Control

Next, we will derive the closed-form expression for the pair (f, γ) defined in Lemma 2 Part i

in Section A.8.1. Then, we will optimize the inventory level S in Section A.8.2 and complete the

proof of Theorem 3.

The following auxiliary result will be helpful in the upcoming proofs. Let

Υ(x) :=
√
πex

2

(1 + Erf[x]) , ∀x∈R. (A.78)

Lemma A.8.1. We have Υ(x)> 0 and 1 +xΥ(x)> 0 for all x∈R.

Proof. Because Erf[x]∈ (−1,1) for all x∈R, we have Υ(x)> 0 for all x∈R. Clearly xΥ(x)≥ 0

for all x∈R+. Let

Υ̃(x) :=
√
πex

2

(1−Erf[x]) , ∀x∈R.

Because Erf[x] = −Erf[−x] for all x ∈ R, we have Υ(x) = Υ̃(−x) for all x ∈ R. Therefore, if we

prove 1−xΥ̃(x)> 0 for all x∈R+, then it will imply 1 +xΥ(x)> 0 for all x∈ (−∞,0), which will

complete the proof.

By L’Hôpital’s rule, limx→∞ xΥ̃(x) = 1. Because Υ̃(x) > 0 for all x ∈ R+, if 1− xΥ̃(x) ≤ 0 for

some x∈R+, then

d(1−xΥ̃(x))

dx
= 2x

(
1−xΥ̃(x)

)
− Υ̃(x)< 0,

which in turn implies 1−xΥ̃(x) will be strictly negative and will keep decreasing forever. Because

limx→∞

(
1−xΥ̃(x)

)
= 0, it must be the case that 1−xΥ̃(x)> 0 for all x∈R+. �

A.8.1. Solution to the Bellman equation (12)

Let

f(w) :=

∫ w

0

g(x)dx, ∀w ∈R+, (A.79)

where g is defined in (A.76) and (A.77) depending on θ. We will derive γ ∈ R+ such that (f, γ)

solves the Bellman equation (12). Observe that f satisfies (A.74) (and thus (12a)) and (12c) by

definition and the fact that g is the solution to the ODE (A.75) with the initial condition g(0) = 0.

There are two cases to consider.
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Case 1: θ= 0. Let

γ :=

bjµj
λj

2
Σ
S+

√
π
λjΣ

. (A.80)

Observe that γ defined in (A.80) is strictly positive and nonincreasing and convex in S.

We have f ′(w) = g(w) for all w ∈R+ by (A.79). By (A.76) and (A.80), for all w ∈ [0, S],

f ′(w) = g(w) =
2

Σ
γw≤ 2

Σ
γS =

2

Σ
S

bjµj
λj

2
Σ
S+

√
π
λjΣ

<
bjµj
λj

. (A.81)

By (A.76), (A.80), and the fact that Erf[w]< 1 for all w ∈R+, for all w>S,

f ′(w) = g(w)<
bjµj
λj

+ e
λj
Σ (w−S)2

((
2

Σ
S+

√
π

λjΣ

)
γ− bjµj

λj

)
=
bjµj
λj

. (A.82)

By (A.76), (A.79), (A.80), and some algebra,

f ′′(w) =
2λj
Σ

(w−S)e
λj
Σ (w−S)2γ

√
π

λjΣ

(
Erf

[√
λj
Σ

(w−S)

]
− 1

)
+

2γ

Σ
, ∀w>S.

By L’Hôpital’s rule, limw→∞ f
′′(w) = 0. Furthermore,

f ′′′(w) =
2λj
Σ

(w− s)f ′′(w) +

[
2λj
Σ

e
λj
Σ (w−S)2γ

√
π

λjΣ

(
Erf

[√
λj
Σ

(w−S)

]
− 1

)]
. (A.83)

Because Erf[w] < 1 for all w ∈ R+, the term in the square brackets in (A.83) is strictly nega-

tive. Hence, if f ′′(w) < 0 for some w > S, then f ′′′(w) < 0 for that w. Therefore, if f ′′ becomes

strictly negative at some point on the interval (S,∞), it keeps decreasing henceforth. Because

limw→∞ f
′′(w) = 0, it must be the case that f ′′(w)≥ 0 for all w>S, which in turn implies f ′′(w)≥ 0

for all w ∈R+ because f ′′(w) = 2γ/Σ for all w ∈ [0, S] by (A.76). Finally, by (12c), (A.81), (A.82),

and the fact that f ′′(w)≥ 0 for all w ∈ R+, the pair (f, γ) defined in (A.79) and (A.80) satisfies

(12b).

Case 2: θ < 0. Let

γ :=

bjµj
λj

(
1 + θ√

λjΣ
Υ

[
θ√
λjΣ

])
1
θ

(
1− e−

2θ
Σ S
)

+ 1√
λjΣ

Υ

[
θ√
λjΣ

] , (A.84)

where Υ is defined in (A.78). By Lemma A.8.1, γ defined in (A.84) is strictly positive for all θ < 0.

By Lemma A.8.1 and algebra, one can see that γ is nonincreasing and convex in S.
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We have f ′(w) = g(w) for all w ∈R+ by (A.79). Observe that g(0) = 0 and g(w) is nondecreasing

in w for all w ∈ [0, S] by (A.77). Therefore, for all w ∈ [0, S],

0≤ f ′(w) = g(w) =
γ

θ

(
1− e−

2θ
Σ w
)
≤ γ

θ

(
1− e−

2θ
Σ S
)

=
1

θ

(
1− e−

2θ
Σ S
) bjµj

λj

(
1 + θ√

λjΣ
Υ

[
θ√
λjΣ

])
1
θ

(
1− e−

2θ
Σ S
)

+ 1√
λjΣ

Υ

[
θ√
λjΣ

]

=
bjµj
λj

1− e−
2θ
Σ S

1√
λjΣ

Υ

[
θ√
λjΣ

]
1
θ

(
1− e−

2θ
Σ S
)

+ 1√
λjΣ

Υ

[
θ√
λjΣ

]


<
bjµj
λj

, (A.85)

where the last inequality follows from Lemma A.8.1.

Second, for all w>S,

f ′(w) = g(w)

<
bjµj
λj

+ e
λj(w−S)2−2θ(w−S)

Σ

(
γ

(
1

θ

(
1− e−

2θ
Σ S
)

+

√
π

λjΣ
e
θ2

λjΣ

(
1 + Erf

[
θ√
λjΣ

]))

− bjµj
λj

(
1 +

θ√
λjΣ

√
πe

θ2

λjΣ

(
1 + Erf

[
θ√
λjΣ

])))

=
bjµj
λj

+ e
λj(w−S)2−2θ(w−S)

Σ

(
γ

(
1

θ

(
1− e−

2θ
Σ S
)

+
1√
λjΣ

Υ

[
θ√
λjΣ

])

− bjµj
λj

(
1 +

θ√
λjΣ

Υ

[
θ√
λjΣ

]))

=
bjµj
λj

, (A.86)

where the first equality follows from (A.79), the first inequality follows from (A.77) and the fact

that θ < 0 and Erf[x]∈ (−1,1) for all x∈R, the second equality follows from (A.78), and the third

equality follows from (A.84).

Finally, if w>S, by (A.77), (A.79), and (A.84),

f ′′(w) =
2

Σ
((λj(w−S)− θ)f ′(w) + γ− bjµj(w−S)) ,

f ′′′(w) =

(
1

w−S− θ
λj

+
2

Σ
(λj(w−S)− θ)

)
f ′′(w)− 2

Σ

 γ− θ bjµj
λj

w−S− θ
λj

 . (A.87)
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By algebra, one can see that limw→∞ f
′′(w) = 0. Because w >S and θ < 0, the coefficient of f ′′ in

(A.87) is strictly positive and the second term in the right-hand-side (RHS) of (A.87) is strictly

negative. Therefore, if f ′′(w) < 0 for some w > S, then f ′′′(w) < 0 for that w. Therefore, if f ′′

becomes strictly negative at some point on the interval (S,∞), it will keep decreasing henceforth.

Because limw→∞ f
′′(w) = 0, it must be the case that f ′′(w)≥ 0 for all w>S, which in turn implies

f ′(w) ≥ 0 for all w > S. This result together with (A.85) and (A.86) imply that the pair (f, γ)

defined in (A.79) and (A.84) satisfies (12b).

A.8.2. Inventory optimization

For given S ∈R+, the optimal long-run average backorder and emergency repair cost, γ(S), is given

by (A.80) and (A.84). Therefore, the following optimization problem gives us the optimal inventory

level for the EWF (16):

min
S∈R+

{hlµlS+ γ(S)} . (A.88)

Because γ(S) is convex in S, by the first order conditions, one can see that the S∗ and z∗ defined

in Theorem 3 are the optimal solution and the optimal objective function value of the optimization

problem (A.88), respectively.

A.9. Proof of Theorem 4

For given S ∈ RI+, recall that S =
∑

i∈I Si/µi. Under Assumption 2 and by Lemma 1, (13a) and

(13b) are equivalent to

1

2
Σf ′′(w) +

(
θ−λj (w−S)

+
)
f ′(w) + bjµj(w−S)+ = γ, ∀w ∈ [0,B], (A.89a)

1

2
Σf ′′(w) +

(
θ−λj (w−S)

+
)
f ′(w) + bjµj(w−S)+ ≥ γ, ∀w>B. (A.89b)

Next, we will derive some properties of the triple (f,B,γ) defined in Lemma 2 Part ii in Section

A.9.1. Then, we will optimize the inventory level S in Section A.9.2 and complete the proof of

Theorem 4.
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A.9.1. Solution to the Bellman equation (13)

For given B ∈R++, let

f(w) :=


∫ w

0
g(x)dx, if w ∈ [0,B],

∫ B
0
g(x)dx+ ckµk(w−B), if w>B,

(A.90)

where g is defined in (A.76) and (A.77) depending on θ. We will derive B ∈R++ and γ ∈R+ such

that (f,B,γ) satisfies the condition (A.89). Observe that f satisfies (A.89a) by definition and the

fact that g is the solution to the ODE (A.75) with the initial condition g(0) = 0.

Observe that limw↓B f
′(w) = ckµk and limw↓B f

′′(w) = 0. Therefore, we need limw↑B f
′(w) = ckµk

and limw↑B f
′′(w) = 0 for f to be in C2. There are two cases to consider.

Case 1: θ= 0. By (A.89a) and because we need (13d) and f ′′(B) = 0,

1

2
Σf ′′(B)−λj (B−S)

+
f ′(B) + bjµj(B−S)+ = γ,

=⇒ −λj (B−S)
+
ckµk + bjµj(B−S)+ = γ,

=⇒ γ = (bjµj −λjckµk) (B−S)+. (A.91)

Henceforth, we let γ defined as in (A.91).

If B ≤ S, then γ = 0 by (A.91) and f(w) = 0 for all w ∈ [0,B] by (A.76) and (A.90), which implies

that (13d) is not satisfied. Therefore, we must have B > S. In order for (13d) to hold, we need

g(B) = ckµk for some B > S by (A.90). Let us consider the function G defined in (19). Observe

that G(S,S) = 0 and limw→∞G(w,S) =∞. Because G is continuous in w, there exists a w ∈ (S,∞)

such that G(w,S) = ckµk. Hence, we let

B := inf {w>S :G(w,S) = ckµk} . (A.92)

Therefore, limw↑B f
′(w) = g(B) =G(B,S) = ckµk by (19), (A.76), (A.90), and (A.92). Furthermore,

because f ′(0) = g(0) = 0 by (A.76), (13d) is satisfied by the triple (f,B,γ) defined in (A.90), (A.91),

and (A.92). By (A.89a), (13d), (A.91), and (A.92),

lim
w↑B

(
1

2
Σf ′′(w)−λj (w−S)

+
f ′(w) + bjµj(w−S)+

)
= (bjµj −λjckµk) (B−S)
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=⇒ 1

2
Σ lim
w↑B

f ′′(w)−λj (B−S) ckµk + bjµj(B−S) = (bjµj −λjckµk) (B−S)

=⇒ lim
w↑B

f ′′(B) = 0,

which implies f ′′(B) = 0 as desired.

Next, we will consider (13c). By (A.76) and (A.90),

f ′′(w) =



2γ
Σ
, if w ∈ [0, S],

2λj
Σ

(w−S)z(w) + 2γ
Σ
, if w ∈ (S,B],

0, if w>B,

where

z(w) := e
λj
Σ (w−S)2

(
2γ

Σ
S− bjµj

λj
+ γ

√
π

λjΣ
Erf

[√
λj
Σ

(w−S)

])
, ∀w>S.

Because z is nondecreasing and f ′′(B) = 0, z(w)< 0 for all w ∈ (S,B]. By algebra,

f ′′′(w) =



0, if w ∈ [0, S],

2λj
Σ

((w−S)f ′′(w) + z(w)) , if w ∈ (S,B],

0, if w>B,

Because z(w) < 0 for all w ∈ (S,B], if f ′′(w) < 0 for some w ∈ (S,B), then f ′′′(w) < 0 for that

w ∈ (S,B). Therefore, if f ′′ becomes strictly negative at some point on the interval w ∈ (S,B), it

never becomes nonnegative again. Because f ′′(B) = 0, it must be the case that f ′′(w)≥ 0 for all

w ∈ (S,B), which in turn implies f ′′(w) ≥ 0 for all w ∈ R+. Therefore, f ′(w) ≥ 0 for all w ∈ R+

by (A.76) and (A.90). By (A.90), f ′(w)≤ f ′(B) = ckµk for all w ∈ [0,B] and f ′(w) = ckµk for all

w>B. Consequently, the triple (f,B,γ) defined in (A.90), (A.91), and (A.92) satisfies (13c).

Finally, we will consider (A.89b). Recall that f ′′(w) = 0 and f ′(w) = ckµk for all w>B. Therefore,

for all w>B,

1

2
Σf ′′(w)−λj (w−S)f ′(w) + bjµj(w−S) = (bjµj −λjckµk) (w−S)≥ (bjµj −λjckµk) (B−S) = γ,

which proves that the triple (f,B,γ) defined in (A.90), (A.91), and (A.92) satisfies (A.89b).
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Case 2: θ < 0. By (A.89a) and because we need f ′′(B) = 0 and (13d),

1

2
Σf ′′(B) +

(
θ−λj (B−S)

+
)
f ′(B) + bjµj(B−S)+ = γ,

=⇒
(
θ−λj (B−S)

+
)
ckµk + bjµj(B−S)+ = γ,

=⇒ γ = θckµk + (bjµj −λjckµk) (B−S)+. (A.93)

Henceforth, we let γ defined as in (A.93).

If B ≤ S, then γ = θckµk by (A.93) and by (A.77) and (A.90) and because we need (13d), we

have

f ′(B) = ckµk

(
1− e−

2θ
Σ B
)
< ckµk, ∀B ∈R+.

Therefore, (13d) is not satisfied and thus we must have B >S. In order for (13d) to hold, we need

g(B) = ckµk for some B > S by (A.90). Let us consider the function G defined in (20). Observe

that G(S,S) = ckµk

(
1 − e−

2θ
Σ S
)
< ckµk for all S ∈ R+ and limw→∞G(w,S) =∞. Because G is

continuous in w, there exists a w ∈ (S,∞) such that G(w,S) = ckµk. Hence, we let

B := inf {w>S :G(w,S) = ckµk} . (A.94)

Therefore, limw↑B f
′(w) = g(B) = G(B,S) = ckµk by (20), (A.77), (A.90), and (A.94) and thus

(13d) is satisfied by the triple (f,B,γ) defined in (A.90), (A.93), and (A.94). By (A.89a), (13d),

(A.93), and (A.94),

lim
w↑B

(
1

2
Σf ′′(w) +

(
θ−λj (w−S)

+
)
f ′(w) + bjµj(w−S)+

)
= θckµk + (bjµj −λjckµk) (B−S)

=⇒ 1

2
Σ lim
w↑B

f ′′(w) + (θ−λj (B−S)) ckµk + bjµj(B−S) = θckµk + (bjµj −λjckµk) (B−S)

=⇒ lim
w↑B

f ′′(w) = 0,

which implies f ′′(B) = 0 as desired.

Observe that the ODE (A.75) with the initial condition g(0) = 0 is a special case of the IVP

(A.2). Under the γ defined in (A.93), we have g(B) = G(B,S) = ckµk > 0, that is, the unique
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solution to the IVP (A.2) is strictly positive at B ∈ R+. Therefore, by Lemma A.3.2 Part ii and

Lemma A.3.3, we have γ > 0.

Next, we will consider (13c). By (A.77) and (A.90),

f ′′(w) =



2γ
Σ

e−
2θ
Σ w, if w ∈ [0, S],

2
Σ

((λj(w−S)− θ)f ′(w) + γ− bjµj(w−S)) , if w ∈ (S,B],

0, if w>B.

(A.95)

Observe that f ′′(w) ≥ 0 for all w ∈ [0, S] and f ′′(B) = 0. Furthermore, by (A.93), (A.95), and

algebra, for all w ∈ (S,B)

f ′′′(w) =

(
1

w−S− θ
λj

+
2

Σ
(λj(w−S)− θ)

)
f ′′(w)− 2

Σ
(bjµj −λjckµk)

B−S− θ
λj

w−S− θ
λj

. (A.96)

Observe that the coefficient of f ′′ in (A.96) is strictly positive and the second term in the RHS

of (A.96) is strictly negative. Therefore, if f ′′(w) < 0 for some w > S, then f ′′′(w) < 0 for that

w. Therefore, if f ′′ becomes strictly negative at some point on the interval (S,B), it will keep

decreasing henceforth. Because f ′′(B) = 0, it must be the case that f ′′(B)≥ 0 for all w ∈ (S,B).

Therefore, f ′′(w) ≥ 0 for all w ∈ [0,B], which in turn implies 0 ≤ f ′(w) ≤ f ′(B) = ckµk for all

w ∈ [0,B]. Furthermore, f ′(w) = ckµk for all w > B. Consequently, the triple (f,B,γ) defined in

(A.90), (A.94), and (A.93) satisfies (13c).

Finally, we will consider (A.89b). Recall that f ′′(w) = 0 and f ′(w) = ckµk for all w>B. Therefore,

for all w>B,

1

2
Σf ′′(w) + (θ−λj (w−S))f ′(w) + bjµj(w−S)

= θckµk + (bjµj −λjckµk) (w−S)≥ θckµk + (bjµj −λjckµk) (B−S) = γ,

which proves that the triple (f,B,γ) defined in (A.90), (A.93), and (A.94) satisfies (A.89b).

A.9.2. Inventory optimization

For given S ∈R+, the optimal long-run average backorder and emergency repair cost, γ(S), is given

by (A.91) and (A.93) and the associated unique barrier level B is defined in (A.92) and (A.94).
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Therefore, the optimization problem (21) finds the optimal inventory level and its associated barrier

level to the EWF (16).

Next, we will show that there exists an optimal solution to the optimization problem (21). First,

we will prove an auxiliary result about the function G(w,S) defined in (19) and (20). By (19) and

algebra, if θ= 0,

G′(w,S) :=
∂G(w,S)

∂w
=

2λj
Σ

(w−S) (G(w,S)− ckµk) (A.97)

+ e
λj
Σ (w−S)2 (bjµj −λjckµk)

(
2

Σ
S+

√
π

λjΣ
Erf

[√
λj
Σ

(w−S)

])
.

By (20) and algebra, if θ < 0,

G′(w,S) =
2(λj(w−S)− θ)

Σ
(G(w,S)− ckµk) + e

1
Σ(λj(w−S)2−2θ(w−S)) (bjµj −λjckµk) (A.98)

×

(
1

θ

(
1− e−

2θ
Σ S
)

+

√
π

λjΣ
e
θ2

λjΣ

(
Erf

[
θ√
λjΣ

]
+ Erf

[
−θ+λj(w−S)√

λjΣ

]))
.

Because B > S and G(B,S) = ckµk by (A.92) and (A.94), we have G′(B,S)> 0 by (A.97) and

(A.98). Furthermore, observe that G′(w,S) > 0 for all w > B by (A.97) and (A.98). Therefore,

after w exceeds the barrier level B, G(w,S) keeps increasing. Consequently, there exists a unique

w>S such that G(w,S) = ckµk, that is, the infimum in (21b) is actually redundant.

For notational convenience, let us define B :R+→R+ such that B(S) denotes the unique barrier

level satisfying (21b) for all S ∈ R+. We will prove that B(S) is continuous in S by the proof

by contradiction technique. Suppose that B(S) is not continuous in S. Then, there must exist a

sequence {Sn, n ∈ N} such that Sn ∈ R+ for all n ∈ N, Sn→ S as n→∞, but B(Sn)9 B(S) as

n→∞. There are two cases to consider.

First, suppose that B(Sn)→X as n→∞ where X 6=B(S). Because B(Sn)> Sn for all n ∈ N,

we have X ≥ S. Furthermore, because G(w,S) is continuous in (w,S) and G(B(Sn), Sn) = ckµk for

all n ∈ N, we have G(X,S) = ckµk. Because B(S) is the unique solution of G(w,S) = ckµk when

w≥ S, we must have X =B(S), which is a contradiction.

Second, suppose that B(Sn) does not converge as n → ∞, that is, lim supn→∞B(Sn) >

lim infn→∞B(Sn). Because B(Sn)>Sn for all n∈N, we have lim infn→∞B(Sn)≥ S. Furthermore,
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there exists a subsequence {nm,m∈N} which achieves the limsup. Specifically, limm→∞B(Snm) =

limsupn→∞B(Sn). Because G(w,S) is continuous in (w,S) and G(B(Snm), Snm) = ckµk for all

m ∈ N, we have G(limsupn→∞B(Sn), S) = ckµk. Due to the uniqueness of B(S), we must have

B(S) = limsupn→∞B(Sn). Similarly, we can prove that B(S) = lim infn→∞B(Sn) implying that

B(Sn)→B(S), which is a contradiction.

Consequently, B(S) is continuous in S implying that the objective function (21a) is also con-

tinuous in S. Because B(S)> S for all S ∈R+, the objective function (21a) is bounded below by

θckµk and tends to infinity as S→∞. Therefore, it attains its minimum and thus there exists an

optimal solution to (21).

A.10. Additional Numerical Experiments

We present the MDP model formulation in Section A.10.1 and present the inventory enumeration

algorithm in Section A.10.2. In Section A.10.3, we present additional information about the instance

from Table 1 in which the performance gap between the LS and the enumeration is the highest

under the proposed policy. Next, in Section A.10.4, we repeat the numerical experiments of Table 2

under the proposed policy with the LS. Then, we present numerical experiments in which emergency

repair costs are scaled with an order different from n (recall the assumption in (2)) in Section

A.10.5. Recall that our proposed policy simplifies significantly under Assumption 2. In Section

A.10.6, we repeat the numerical experiments of Table 1 with the simplified version of the proposed

policy (specifically, with the PP1) even though Assumption 2 does not hold in those experiments.

A.10.1. MDP formulation

We present the MDP model formulation for a system with two SKUs. Let us fix an arbitrary

(n1, n2)∈N2
+ such that n1 +n2 = n. Let us also fix an arbitrary inventory vector Sn = (Sn1 , S

n
2 )∈N2.

State space. The state of the system at time t∈R+ is

(
(Un

1 (t),Qn
1 (t),OHn

1 (t)) , (Un
2 (t),Qn

2 (t),OHn
2 (t)) , Y n(t)

)
, (A.99)

where for all i∈ {1,2} and t∈R+,
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• Un
i (t) denotes the number of parts of SKU i installed at the capital goods at time t.

• Qn
i (t) denotes the number of broken parts of SKU i at time t.

• OHn
i (t) is the number of (on-hand) ready-for-use parts of SKU i at time t. We let

(Un
i (t),Qn

i (t),OHn
i (t))∈



(0, ni +Sni ,0) ,

(1, ni +Sni − 1,0) ,

(2, ni +Sni − 2,0) ,

...

(ni− 1, Sni + 1,0) ,

(ni, S
n
i ,0) ,

(ni, S
n
i − 1,1) ,

(ni, S
n
i − 2,2) ,

...

(ni,1, S
n
i − 1) ,

(ni,0, S
n
i ) .



(A.100)

• Y n(t) denotes the server state at time t. We let Y n(t)∈ {0,1,2} where Y n(t) = 0 implies that

the server is idle, Y n(t) = 1 implies that the server repairs a broken part of SKU 1, and Y n(t) = 2

implies that the server repairs a broken part of SKU 2 at time t.

Recall that only the work-conserving and non-preemptive repair policies are allowed in the repair

facility. Because the repair facility operates in a work-conserving fashion,

Y n(t) 6= i if Qn
i (t) = 0 for all i∈ {1,2}, (A.101a)

Y n(t) = 0 if and only if Qn
1 (t) =Qn

2 (t) = 0. (A.101b)

By (A.99), (A.100), and (A.101), the number of states in the MDP model is

2(n1 +Sn1 )(n2 +Sn2 ) +n1 +Sn1 +n2 +Sn2 + 1,
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where the multiplier 2 in the first term captures the type of the part that is under repair. We let S

denote the state space of the MDP model. Moreover, we let x0 := ((n1,0, S
n
1 ), (n2,0, S

n
2 ),0) denote

the only state in which there are no broken parts and thus the server is idle.

In the MDP model for a system with three SKUs, the number of states is equal to

3
3∏
i=1

(ni+Sni )+2(n1 +Sn1 )(n2 +Sn2 )+2(n1 +Sn1 )(n3 +Sn3 )+2(n2 +Sn2 )(n3 +Sn3 )+
3∑
i=1

(ni+Sni )+1.

For example, if there are three SKUs and ni+Sni = 33 for all i∈ {1,2,3}, then the number of states

is equal to 114,445 and thus the optimal cost computation is computationally challenging. Because

we enumerate the inventory vector Sn to find the optimal inventory levels, we need to solve the

MDP multiple times. Therefore, we consider two SKUs in the numerical experiments. For example,

for many instances with n1 = n2 = 50 in Table 1, we enumerate hundreds of inventory vectors per

instance.

Action space. Actions are taken at breakdown and repair epochs but no action is taken between

consecutive event epochs. The system controller makes two types of decisions. First, when the

server becomes available for repair, if there are broken parts of both SKU 1 and SKU 2, then

the system controller should choose which part to repair. We let r ∈ {0,1,2} denote the action

of choosing the type of the broken part for repair in the repair facility. Specifically, r = 1 (r = 2)

denotes the action of repairing a broken part of SKU 1 (2) and r = 0 denotes the action of idling

the repair facility, which happens only when there is no broken part in the repair facility.

Second, if a part breaks down when there is no on-hand inventory, then the system controller

should decide whether to backorder the demand or use an emergency repair to fulfill the demand.

For all i ∈ {1,2}, We let ξi ∈ {0,1,2} denote the associated action for SKU i such that ξi = 0

denotes the action of fulfilling the demand of SKU i from the on-hand inventory, ξi = 1 denotes

the action of backordering the demand for SKU i, and ξi = 2 denotes the action of using an
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emergency repair to satisfy the demand for SKU i. Let A(x) denote the set of feasible actions in

state x= ((U1,Q1,OH1), (U2,Q2,OH2), Y ) for all x∈ S. Then, for all x∈ S \ {x0}, we have

A(x) =

{
r ∈



{0}, if Q1− I{Y = 1}=Q2− I{Y = 2}= 0

{1}, if Q1− I{Y = 1}> 0 and Q2− I{Y = 2}= 0

{2}, if Q1− I{Y = 1}= 0 and Q2− I{Y = 2}> 0

{1,2}, if Q1− I{Y = 1}> 0 and Q2− I{Y = 2}> 0


,

ξ1 ∈
{
I{OH1 = 0} ,2I{OH1 = 0}

}
, ξ2 ∈

{
I{OH2 = 0} ,2I{OH2 = 0}

}}
,

and

A(x0) =

{
r ∈


{1}, if the next event is a breakdown of a part of SKU 1

{2}, if the next event is a breakdown of a part of SKU 2

 ,

ξ1 ∈
{
I{OH1 = 0} ,2I{OH1 = 0}

}
, ξ2 ∈

{
I{OH2 = 0} ,2I{OH2 = 0}

}}
.

Uniformization. We uniformize the continuous time MDP model to obtain an equivalent discrete

time MDP model. Let β := n1λ
n
1 + µ1 + n2λ

n
2 + µ2 so that β is an upper bound on the transition

rate at all states. In the uniformized MDP model, in state x= ((U1,Q1,OH1), (U2,Q2,OH2), Y ),

the next event is a breakdown of a part of SKU i with probability Uiλ
n
i /β and the repair of a

broken part of SKU i with probability µiI{Y = i}/β for all i∈ {1,2}. The next event is a fictitious

epoch in which the system state does not change with probability

Pf (x) := 1− U1λ
n
1 +µ1I{Y = 1}+U2λ

n
2 +µ2I{Y = 2}

β
.

Transition probabilities. Let ej ∈R7 denote the vector whose jth component is equal to 1 and all

the other components are equal to 0 for all j ∈ {1,2, . . . ,7}. In the uniformized MDP, the transition
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probabilities from state x= ((U1,Q1,OH1), (U2,Q2,OH2), Y )∈ S to x′ ∈ S at the next event under

action a∈A(x) is

Pxx′(a) =



U1λ
n
1/β, if (OH1 > 0 and x′ = x+ e2− e3)

or (OH1 = 0, ξ1 = 1, and x′ = x− e1 + e2),

U2λ
n
2/β, if (OH2 > 0 and x′ = x+ e5− e6)

or (OH2 = 0, ξ2 = 1, and x′ = x− e4 + e5),

µ1I{Y = 1}/β, if (U1 = n1 and x′ = x− e2 + e3 + (r− 1)e7)

or (U1 <n1 and x′ = x+ e1− e2 + (r− 1)e7),

µ2I{Y = 2}/β, if (U2 = n2 and x′ = x− e5 + e6 + (r− 2)e7)

or (U2 <n2 and x′ = x+ e4− e5 + (r− 2)e7),

Pf (x) +
∑2

i=1

Uiλ
n
i

β
I{OHi = 0, ξi = 2}, if x′ = x.

Costs. Under state x= ((U1,Q1,OH1), (U2,Q2,OH2), Y ) ∈ S and action a ∈A(x), the expected

one-stage cost until the next event is given by

C(x,a) =
2∑
i=1

(
bi(ni−Ui) + cni Uiλ

n
i I{OHi = 0, ξi = 2}

)
/β. (A.102)

Recall that the inventory vector (Sn1 , S
n
2 ) is a fixed parameter. Because the inventory holding cost

per unit time, which is equal to h1S
n
1 +h2S

n
2 , is a fixed cost, we do not include it in (A.102).

Bellman equation. The optimality equations are as follows.

γ+J(x) = min
a∈A(x)

{
C(x,a) +

∑
x′∈S

Pxx′(a)J(x′)

}
, ∀x∈ S, (A.103a)

J(x0) := 0, (A.103b)

where γ denotes the optimal long-run average backorder and emergency repair cost and J : S →R

denotes the relative value function. We make the definition in (A.103b) without loss of generality.

The uniformized MDP model has the following properties.
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• Both the number of states and the number of actions at each state are finite.

• The transition probabilities and the expected one-stage costs are stationary.

• The expected one-stage costs are bounded.

For all x ∈ S, let a(1), a(2) ∈ A(x). Consider the randomized action a(ϕ) := ϕa(1) + (1− ϕ)a(2)

for all ϕ ∈ [0,1], that is, the action a(ϕ) is equal to a(1) with probability ϕ and equal to a(2) with

probability 1−ϕ. One can see that both Pxx′(a(ϕ)) and C(x,a(ϕ)) are continuous in ϕ for all x,x′ ∈

S and a(1), a(2) ∈A(x). Furthermore, observe that, each deterministic Markov control (DMC) policy

results in a single recurrent class of states and a possibly empty set of transient states. Therefore,

the uniformized MDP is unichain (see page 348 of Puterman (2005)). Consequently, by theorem

8.4.3 of Puterman (2005), the Bellman equation (A.103) has a unique solution which is associated

with a DMC policy that is optimal among all DMC policies. Furthermore, by theorem 8.4.7 of

Puterman (2005), an optimal DMC policy is also optimal among the randomized and history-

dependent control policies. Finally, by theorem 8.6.6 of Puterman (2005), the policy iteration

algorithm (see section 8.6.1 of Puterman (2005)) finds an optimal DMC policy in finite number of

iterations.

A.10.2. Inventory Enumeration

We present the pseudocode that we use for the inventory enumeration. Let C̃(S1, S2) denote the

long-run average cost under the inventory vector (S1, S2), under a given policy, and under a param-

eter instance, which is computed by solving the uniformized MDP model.

1. C̃2←+∞ and S2← 0

2. While 1

3. C̃1←+∞ and S1← 0

4. While 1

5. If C̃1 > C̃(S1, S2)

6. C̃1← C̃(S1, S2) and S∗∗1 ← S1

7. Else

8. Break loop

9. End if

10. S1← S1 + 1.

11. End while

12. If C̃2 > C̃1
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13. C̃2← C̃1, S∗2 ← S2, and S∗1 ← S∗∗1

14. Else

15. Break loop

16. End if

17. S2← S2 + 1.

18. End while

19. Return C̃2, S∗1 , and S∗2

A.10.3. Illustration of the LS under an instance from Table 1

We present additional information about the instance from Table 1 in which the performance gap

between the LS and the enumeration is the highest (1.56%) under the proposed policy. Specifically,

Table A.10.2 presents the costs under the proposed policy for various given inventory vectors under

a specific instance from Table 1. The yellow cells show the path followed by the LS and the red

cell shows the optimal cost. We make the following observations from Table A.10.2.

• The optimal solution is a diagonal neighbor of the solution provided by the LS and thus the

LS solution is very close to the optimal one.

• When Sn1 (Sn2 ) is fixed, the cost is “almost” convex in Sn2 (Sn1 ). This is why the LS performs very

close to the enumeration in the numerical experiments. However, in some cases, the aforementioned

convexity does not hold and the LS can stuck in a local optimum solution. For example, in Table

A.10.2, C̃(15,10) = 3.9487, C̃(16,10) = 3.9582, and C̃(17,10) = 3.9069, where C̃(Sn1 , S
n
2 ) denotes

the cost under the proposed policy under the inventory vector (Sn1 , S
n
2 ).

A.10.4. Experiments in Section 6.3 under the proposed policy with the LS

We repeat the experiments in Section 6.3 under the PP2. On the one hand, the PP1 never outper-

forms the PP2. On the other hand, the performance gap is small. In Table A.10.1, we present the

average and maximum absolute % deviations of the costs under the PP2 from the PP1, that is, at

each instance (among the 204 instances), we compute

100× |cost under the PP2− cost under the PP1|
cost under the PP1

.
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Table A.10.1 Average and maximum absolute % deviations of the costs under the PP2 from the PP1 under the

experiments in Table 2.

n1 = n2 = 10 n1 = n2 = 25 n1 = n2 = 50
ρn Avg. Max. Avg. Max. Avg. Max.
0.8 0.34 3.43 0.16 1.96 0.18 2.27
0.9 0.22 2.32 0.17 1.9 0.12 1.23
0.95 0.49 1.9 0.16 1.3 0.08 0.57

1 0.87 2.95 0.1 0.84 0.05 0.43
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A.10.5. Experiments with different emergency repair cost scalings

We assume that the emergency repair costs are scaled with the order of n in the assumption in

(2). Because both n and cni are fixed in a pre-limit system for all i∈ I, any cni value can be scaled

by n (e.g., cni = nci where ci := cni /n). Therefore, this assumption is not restrictive in a pre-limit

system. To illustrate this, we present numerical experiments in which the emergency repair costs

are not scaled with the order of n. Specifically, we repeat the numerical experiments depicted in

Figure 4b by updating the emergency repair cost with cn2 = 2cn1 = 4
√
n or cn2 = 2cn1 = 4n1.5.
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(b) cn2 = 2cn1 = 4n1.5 and the switch point is 19

Figure A.10.1 (Color online) Performances of the optimal policy and the PP1 when n1 = n2 = 50, µ1 = µ2 = 1,

λn1 = λn2 = 0.95/n, h2 = 2h1 = 0.2, b2 = 2b1, and b1 ∈ {0.1,0.7,0.13, . . . ,9.7}.

Figure A.10.1a presents the numerical experiments in which cn2 = 2cn1 = 4
√
n and the switch point

is λn1 c
n
1 = 1.9/

√
n= 0.19. Observe that as n increases, the switch point decreases in the order of

√
n

and thus the proposed policy becomes the barrier policy in more cases. For example, the proposed

policy is the NER policy only when b1 = 0.1 in the experiments depicted in Figure A.10.1a. This is

not surprising because as n increases, the emergency repairs become relatively less expensive and

thus the barrier policy becomes more preferable.

Figure A.10.1b presents the numerical experiments in which cn2 = 2cn1 = 4n1.5 and the switch

point is λn1 c
n
1 = 1.9

√
n. Observe that as n increases, the switch point increases in the order of

√
n
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and thus the proposed policy becomes the NER policy in more cases. For example, the switch

point is 19 and thus the proposed policy is always the NER policy in the experiments depicted in

Figure A.10.1b. As n increases, the emergency repairs become more expensive and thus the NER

policy becomes more preferable. Nevertheless, the proposed policy performs reasonably well in the

experiments depicted in Figure A.10.1.

A.10.6. Experiments in Table 1 with a simplified version of the proposed policy

Recall that the optimal EWF (10) solution and thus the proposed policy simplify significantly

under Assumption 2. For example, under Assumption 2, the optimal EWF (10) solution backorders

only the demands of a particular SKU and keeps non-zero inventory only for a particular SKU,

and the proposed policy simplifies accordingly. Therefore, the proposed policy under Assumption

2 is more static than it is in the general case.

We repeat the numerical experiments presented in Table 1 with the simplified version of the

proposed policy (specifically, with the PP1) even though Assumption 2 does not hold in those

instances. Specifically, we implement the PP1 by assuming that λn1 > λn2 even though λn1 < λn2

in those experiments. The results are presented in Table A.10.3. According to the results, the

PP1 performs poorly. Therefore, when Assumption 2 does not hold, it is crucial to implement the

dynamic version of the proposed policy that is designed for the general case.
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Table A.10.3 Average and maximum % deviations of the costs under the PP1 from the optimal costs under the

numerical experiments in Table 1.

n1 = n2 = 10 n1 = n2 = 25 n1 = n2 = 50
ρn Avg. Max. Avg. Max. Avg. Max.

µ2 = 3

0.8 6.78 12.59 4.76 6.45 4.67 6.37
0.9 9.29 19.82 4.72 5.86 4.30 5.59
0.95 9.02 15.98 4.60 7.94 4.10 6.26

1 7.81 14.23 4.50 13.95 4.72 15.12

µ2 = 4

0.8 10.03 20.45 4.78 6.32 4.51 5.84
0.9 13.82 27.40 6.50 9.15 5.20 6.31
0.95 13.76 22.79 7.92 13.87 6.72 11.84

1 12.96 22.26 10.06 26.37 10.74 29.10

µ2 = 5

0.8 13.83 28.20 5.84 8.70 4.65 5.85
0.9 18.12 34.28 9.53 11.73 6.86 9.02
0.95 18.47 28.41 11.98 18.97 9.91 16.55

1 18.66 32.85 17.22 36.65 18.47 40.06

µ2 = 6

0.8 17.52 35.13 7.92 12.75 5.17 7.48
0.9 22.15 39.68 13.12 15.58 9.36 11.19
0.95 23.73 34.07 17.05 24.67 14.26 21.10

1 22.69 37.29 22.57 42.77 24.54 46.96
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