
 

A reinforcement learning approach for transaction scheduling
in a shuttle-based storage and retrieval system
Citation for published version (APA):
Ekren, B. Y., & Arslan, B. (2024). A reinforcement learning approach for transaction scheduling in a shuttle-
based storage and retrieval system. International Transactions in Operational Research, 31(1), 274-295.
https://doi.org/10.1111/itor.13135

Document license:
CC BY

DOI:
10.1111/itor.13135

Document status and date:
Published: 01/01/2024

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1111/itor.13135
https://doi.org/10.1111/itor.13135
https://research.tue.nl/en/publications/5e7ed273-9f54-4b6d-9b68-4820c85d0565


Intl. Trans. in Op. Res. 31 (2024) 274–295
DOI: 10.1111/itor.13135

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

A reinforcement learning approach for transaction scheduling
in a shuttle-based storage and retrieval system

Banu Y. Ekrena,b,∗ and Bartu Arslanc

aDepartment of Industrial Engineering, Yasar University, No: 37-39, Bornova, Izmir, Turkey
bSchool of Management, Cranfield University, UK

cDepartment of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, Eindhoven, the
Netherlands

E-mail: banu.ekren@yasar.edu.tr [Ekren]; b.arslan@tue.nl [Arslan]

Received 27 April 2021; received in revised form 11 November 2021; accepted 24 February 2022

Abstract

With recent Industry 4.0 developments, companies tend to automate their industries. Warehousing compa-
nies also take part in this trend. A shuttle-based storage and retrieval system (SBS/RS) is an automated
storage and retrieval system technology experiencing recent drastic market growth. This technology is mostly
utilized in large distribution centers processing mini-loads. With the recent increase in e-commerce practices,
fast delivery requirements with low volume orders have increased. SBS/RS provides ultrahigh-speed load
handling due to having an excess amount of shuttles in the system. However, not only the physical design of
an automated warehousing technology but also the design of operational system policies would help with fast
handling targets. In this work, in an effort to increase the performance of an SBS/RS, we apply a machine
learning (ML) (i.e., Q-learning) approach on a newly proposed tier-to-tier SBS/RS design, redesigned from
a traditional tier-captive SBS/RS. The novelty of this paper is twofold: First, we propose a novel SBS/RS
design where shuttles can travel between tiers in the system; second, due to the complexity of operation of
shuttles in that newly proposed design, we implement an ML-based algorithm for transaction selection in
that system. The ML-based solution is compared with traditional scheduling approaches: first-in-first-out
and shortest process time (i.e., travel) scheduling rules. The results indicate that in most cases, the Q-learning
approach performs better than the two static scheduling approaches.

Keywords: SBS/RS; reinforcement learning; Q-learning; simulation; warehousing; automated storage

1. Introduction

With the recent Industry 4.0 developments established on the collaboration of automated systems
within facilities, warehouse managers have become very eager to invest in automation technologies
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for their enterprises. For instance, they tend to deploy goods with radio frequency identification
(RFID) tags, sensors, and other novel technologies, helping the implementation of robotic tech-
nologies to transform material handling technology through the transparency and traceability of
products and smart environments.

According to ReportLinker (2020), the global automated material handling market (GAMHM)
was valued at 50,544.6 million USD in 2019 and is expected to reach 101,487.3 million USD by
2025. In that GAMHM, the automated storage and retrieval system (AS/RS) market size was val-
ued at $7351 million in 2019, and it is projected to reach $12,928 million by 2027 (Allied Market Re-
search, 2020). AS/RSs are utilized for inventory management systems in warehouses, distribution
centers, and manufacturing facilities. They work on computer-controlled systems for autonomous
storage and retrieval of loads from one location to another. These systems are mostly utilized for
large warehouses for quick, accurate, reliable, and low-cost solutions.

AS/RS technology providers aim to market designs providing maximized storage capacity, in-
creased performance, reduced energy costs, and increased inventory accuracy and customer service.
For instance, one of the well-known companies, Dematic Group, markets a mini-load AS/RS tech-
nology providing ultrahigh-speed load handling referred to as shuttle-based storage and retrieval
system (SBS/RS). SBS/RS is mostly utilized in large distribution centers and in raw material stor-
age places that are specially designed for ultrahigh-speed load handling (Dematic, n.d.). Due to
having a dedicated shuttle in each tier of the shelves, this design is also referred to as the tier-captive
SBS/RS in the literature.

To describe, SBS/RS is an AS/RS that comprise shelves, shuttles, and lifts. Shuttles and lifts are
fully automated devices. In an initial design implementation of SBS/RS, shuttles are designed to be
tier-captive, providing horizontal movement for loads within a tier. A lifting mechanism is installed
at each cross-aisle, providing vertical movement for loads. Lifts carry storage transactions for their
destination tiers from the input/output (I/O) locations located at the first (ground) level of each
aisle. Lifts also carry the retrieval transactions from their current tiers to the I/O locations in their
aisle addresses. Shuttles pick up/drop off the transactions at the buffer locations located at both
sides of each tier connected with the lifting mechanism.

Figure 1 shows side and top views for a tier-captive SBS/RS design. For instance, there are
eight tiers in that design. Lift 1 represents the lifting mechanism located at the cross-aisle that can
carry two loads independently. As mentioned, we refer to this design as the tier-captive SBS/RS
throughout this paper. Note that there is a dedicated shuttle in each tier in this design.

A typical handicap of a tier-captive SBS/RS design is that, since there is a dedicated shuttle in
each tier of shelves and a single lifting mechanism installed at each cross-aisle, lifts mostly become
bottlenecks in the system. Namely, the average utilization of shuttles is very low, compared to those
lifts. In an effort to overcome this handicap, we propose an alternative SBS/RS design in which
the total number of shuttles is decreased in the system so that shuttles can travel between tiers
within a dedicated aisle (see Fig. 2). With the decreased number of shuttles in the system, we aim
to balance the utilization of shuttles and lifts as well as have a decreased investment cost in the
system. Here, shuttles can travel between tiers by using a separate lifting mechanism installed at
the other cross-aisle side. The new lifting mechanism is solely dedicated to the travel of shuttles
between tiers. The applicability of transportation of autonomous vehicles between tiers by a lifting
mechanism has already well-studied by Ekren et al. (2010), Ekren and Heragu (2010a), Ekren and
Heragu (2011), Ekren et al. (2013), and Ekren et al. (2014). The advantage of this new design would
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Fig. 1. A tier-captive shuttle-based storage and retrieval system (SBS/RS) design.

be the decreased number of shuttles in the system also resulting in decreased initial investment cost
as well as increased utilization of shuttles. We refer to this novel design as the tier-to-tier SBS/RS
throughout this paper and show this proposed system in Fig. 2.

Remember that while the tier-captive SBS/RS has a single lifting mechanism dedicated to carry
loads, in the proposed tier-to-tier SBS/RS, there are two lifting mechanisms, one of which is ded-
icated to the vertical travel of loads (i.e., totes). This lifting mechanism is referred to as Lift 1 in
Fig. 2. The other lifting mechanism dedicated to the travel of shuttles between tiers is referred to
as Lift 2 in Fig. 2. Loads are picked up/dropped off by the shuttles at the buffer locations for stor-
age/retrieval of transactions. If the process is a retrieval process, then the load is dropped off at the
I/O point (i.e., the ground level) by Lift 1.

Due to the flexible travel of shuttles within an aisle, one of the significant management issues in
a tier-to-tier SBS/RS design is selecting the most proper transaction waiting in the shuttle queue.
Namely, when a shuttle becomes idle, it should select the most proper transaction waiting in its
queue so that the system’s transaction process rate increases. In the studied tier-to-tier SBS/RS,
because there are three different servers (i.e., Lift 1, Lift 2, and shuttles) and they are working
interactively with each other as well as each server’s process time might be affected by a transaction
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Fig. 2. A tier-to-tier SBS/RS.

type (i.e., storage or retrieval) processed and its address, it is significant to allocate the most proper
transaction to the available shuttles resulting in decreased travel time for each server. Hence, in such
an integrated and complex operating system, developing smart management algorithms resulting in
the increased performance of the system becomes an important issue. For this purpose, we propose
a recent machine learning (ML) algorithm, the Q-learning algorithm, for the smart transaction
selection problem in this system. Instead of a static scheduling rule, we suggest a trial-and-error
method (i.e., reinforcement learning [RL] algorithm) where intelligent shuttle agents are trained
during their practical experiences in the system. The RL algorithm is modeled by simulating the
system in ARENA 16.0, a commercial software. The results are compared with a first-in-first-out
(FIFO) and shortest process time (SPT) scheduling rules. Details of the RL algorithm as well as
the implementation procedure are presented in Section 3.

The main research questions in this paper can be summarized as follows:

• Q1–Is there an alternative design for SBS/RS in which shuttle and lift utilizations are balanced?
• Q2–Can an ML method be applied for smartly operating (i.e., selecting) transactions in the pro-

posed novel SBS/RS design, resulting in better performance metrics than some well-known static
rules?

By Q1, we suggest a novel SBS/RS design that is the tier-to-tier SBS/RS (see Fig. 2). By Q2, we
propose an RL algorithm developed on Q-learning.

© 2022 The Authors.
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ML-based methods are gaining popularity among researchers and industry (Bengio et al., 2021;
Emilio et al., 2021). Bertolini et al. (2021) review the papers that are based on ML and deep learning
approaches applied to industry problems. They discover that production planning and control and
defect analysis are the most studied subjects. Their study suggests that more ML-based methods
will be common in the field of operations management.

In order to handle today’s major challenges of complex manufacturing systems, ML techniques
play a significant role, which is data-driven approaches, and are able to find highly complex and
non-linear patterns in environmental data. They can be later applied for prediction, detection, clas-
sification, regression, or forecasting. By applying an ML-based modeling to an automated ware-
housing problem, this paper aims to be a pioneer in the field of warehouse management imple-
menting artificial intelligence (AI) methods. Additionally, successful applications of RL methods
on dynamic task scheduling are presented well in Shyalika et al. (2020).

The flow of the paper is as follows: Section 2 describes the literature review. Section 3 presents the
implementation of the RL algorithm on the proposed SBS/RS design. Section 4 gives the results
and comments on the implementation of the methodology. Section 5 summarizes the paper along
with the findings.

2. Literature review

In this section, we present a literature review in two sub-sections. First, we summarize the current
works on SBS/RS and its variants. Second, because we focus on ML application on transaction
scheduling in the system, we summarize the ML-based works on task scheduling.

2.1. SBS/RS-related works for tier-captive design

Most studies in the literature focus on tier-captive SBS/RS. We discuss both tier-captive and tier-
to-tier-related studies in this section.

Marchet et al. (2011) model tier-captive SBS/RS design by an open queuing network model-
ing approach. Their aim is to estimate the average waiting time as well as the average cycle time
per transaction performance metrics correctly. Later, Marchet et al. (2013) show design trade-
offs in the tier-captive SBS/RS by using a simulation modeling approach. Several designs are
evaluated by considering different performance metrics, including the initial investment cost. The
results suggest that decreasing the number of aisles provides decreased investment costs in the
system.

Carlo and Vis (2012) study a novel variant of a tier-captive SBS/RS utilized by a company in the
Netherlands. There are non-passing lifting mechanisms in the system. They develop heuristic-based
scheduling algorithms developed on two functions for scheduling those lifts.

Lerher et al. (2015b) show the advantages of the tier-captive SBS/RS by comparing it with an-
other warehousing technology. They focus on throughput rate performance metrics for different de-
signs of the warehouse. They show that SBS/RS produces a higher throughput rate. Lerher (2015)
studies double-deep storage compartments in a tier-captive SBS/RS. The advantage of this rack-
ing system is that the floor space utilization is decreased by the decreased number of aisles in the
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system. Lerher et al. (2015a, 2016) develop analytical travel time models for a tier-captive SBS/RS
by including velocity profiles of shuttles and lifts (e.g., acceleration, deceleration, and maximum
velocities) as well as single and dual command scheduling rules of transactions in the systems. The
proposed models are validated by their simulation models. That work is lacking in considering
queuing performance metrics. Ekren et al. (2015) study class-based storage policy in a tier-captive
SBS/RS by using simulation modeling. They show the efficiency of the class-based storage policy
by comparing it with a random storage policy.

Ekren and Heragu (2011) present simulation-based design approaches for a different variant of
an automated warehousing technology. Ekren (2017) shows the design trade-offs of a tier-captive
SBS/RS under different warehouse designs. She presents several graphs illustrating several perfor-
mance metrics under those designs allowing warehouse managers to decide the most proper one
based on their requirements. Ekren et al. (2018) present analytical models predicting the mean and
variance of the travel time of lifts and shuttles in a tier-captive SBS/RS. In addition, those models
can also predict the mean amount of energy consumption and energy regeneration per transaction
based on several design parameters: velocity profiles of vehicles/lifts, number of tiers, number of
bays, and so forth.

Wang et al. (2015) propose a mathematical model for scheduling tasks in a tier-captive SBS/RS.
They apply a non-dominated sorting genetic algorithm (GA) in order to find out a multi-objective
optimal solution. Tappia et al. (2016) present a queuing network model predicting several per-
formance metrics from a tier-captive SBS/RS. Zou et al. (2016) propose an approximate model
developed on a fork-join queueing network approach to estimate several performance metrics from
a tier-captive SBS/RS. They consider the sequential movement and parallel processing of vehi-
cles and lifts in the model. Recently, Eder (2019) studied a continuous-time open queueing net-
work (OQN) with limited capacity to estimate important performance metrics from a tier-captive
SBS/RS design.

Kazemi et al. (2019) propose a hybrid solution combining the ant colony algorithm and adaptive
large neighborhood search. Their system design includes a storage and retrieval machine that can
move simultaneously in horizontal and vertical directions. The system utilizes shuttles to move
within aisles. In a recent work, Liu et al. (2021) study a tier-captive SBS/RS, and they propose a
mathematical model including a cross-aisle shuttle that travels the transactions between aisles. They
consider throughput rates, travel times, and energy consumptions. In addition, the optimal velocity
and acceleration values are studied. Wauters et al. (2016) study a mini-load AS/RS design including
a dual shuttle crane. They introduce a mathematical model and different heuristic strategies for the
optimization of the system.

A recent study on tier-captive SBS/RS has been completed by Ekren (2020a). In that work, she
studies a statistical experimental design to identify significant design factors affecting the perfor-
mance of tier-captive SBS/RS. The paper shows that increasing the number of aisles in the system
affects the system performance, significantly. Ekren (2020b) proposes a multi-objective optimization
solution for the design of a tier-captive SBS/RS. In that study, as multi-objectives, minimization
of both average cycle time per transaction, and energy consumption per transaction is considered.
Ekren and Akpunar (2021) present a tool that can compute several performance metrics from a pre-
defined SBS/RS design. The tool is developed on an open queuing network modeling approach and
shared via a website for free.

© 2022 The Authors.
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2.2. SBS/RS-related works for tier-to-tier design

A similar system is also referred to as the autonomous vehicle-based storage and retrieval system
(AVS/RS) in the literature, where autonomous vehicles can travel between tiers and aisles in a more
flexible travel pattern in the system. We provide some of them here. Besides, there are few studies
on tier-to-tier SBS/RS. We present all of them here.

Ekren and Heragu (2012) compare the performance of two systems in automated warehousing:
crane-based AS/RS and AVS/RS. The performance of the systems is compared based on their ini-
tial investment costs and several other operational metrics. Ekren et al. (2013, 2014) model AVS/RS
by semi-OQN models efficiently. In the solution of the proposed queueing network models, they
utilize their pre-extended algorithm (Ekren and Heragu, 2010a). Heragu et al. (2011) study analyt-
ical models for crane-based AS/RS and AVS/RS by OQN models. They utilize the manufacturing
system performance analyzer tool for modeling purposes.

The first study on the tier-to-tier SBS/RS is studied by Ha and Chae (2018a). They define a
free-balancing approach for collision prevention of shuttles in the system. Their system includes a
single lifting mechanism carrying both loads and shuttles. By also studying a non-free balancing ap-
proach, they compare the two solution approaches on the system performance. Later, Ha and Chae
(2018b) introduce a decision model to determine the optimal number of shuttles in the tier-to-tier
SBS/RS by using several parameters, such as acceleration, velocity, physical designs, and so forth.

Zhao et al. (2019) publish a study proposing an integer programming model for the scheduling of
transactions to minimize the idle time of lifts and waiting time of shuttles in a tier-to-tier SBS/RS
by utilizing simulation-based optimization. Their work lacks in ignoring collision possibilities as
well as in considering both storage and retrieval processes in the system.

A recent work by Küçükyaşar et al. (2020) study the comparison of tier-captive and tier-to-
tier SBS/RSs under different design configurations. In the comparison, the initial investment cost
and some other performance metrics are considered. The results suggest that there could be better
designs in tier-to-tier SBS/RS than in tier-captive SBS/RS with decreased investment cost and
increased performance metrics. Later, Kucukyasar et al. (2021) study a tier-to-tier SBS/RS design
from an energy efficiency design. Kucukyasar and Ekren (2022) also study the scheduling rules of
transactions in a tier-tier SBS/RS by comparing two selected rules: the FIFO and SPT rules. Their
results show that SPT outperforms FIFO. Later, Kucukyasar and Ekren (2022a) also show that
the number of tiers, shuttles, and aisles affect the performance of the tier-to-tier SBS/RS design,
significantly.

Arslan and Ekren (2021) apply deep Q-learning for a tier-to-tier SBS/RS for smart transaction
selection of shuttles. By that, they aim to have system performance with decreased average cy-
cle time per transaction performance metric. A different work is completed by Eroglu and Ekren
(2022), where shuttles can travel flexibly between aisles within a tier. In that work, the authors focus
on collision and deadlock prevention algorithms for safely travel of shuttles.

Different from the current works, this paper studies a tier-to-tier SBS/RS by implementing a
novel RL-based scheduling procedure for smart transaction selection of shuttles from their queue.
The performance of the system is observed by the average cycle time per transaction and the average
waiting time of a transaction in the queue. Note that to the best of our knowledge, this is the first
time that we have applied an ML-based approach for an AS/RS. In the following subsection, we
summarize how RL-based scheduling algorithms are implemented on related cases.

© 2022 The Authors.
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2.3. RL-based automated guided vehicle (AGV)-related works

Scheduling and priority assignment problems are hot topics for multi-robotic systems in ware-
houses. To the best of our knowledge, there is no work studying intelligent task selection problems
(e.g., by applying an ML-based algorithm) for autonomous storage and retrieval systems. How-
ever, there are few works on the application of ML algorithms for the dispatching of jobs in AGVs
systems. We summarize the most related works here.

Jennings (1996) introduce a task negotiation approach for autonomous robots in warehousing
systems. However, when the environment becomes stochastic, the approach cannot be applied. A
combinatorial auction algorithm is proposed by Sandholm (2002). The algorithm divides tasks
into different clusters based on correlations between them, and then, robots bid on the unrestricted
combinations of tasks. This makes the solution more efficient than the traditional mechanisms.

A hybrid solution approach for task scheduling in an automated warehouse environment with
multi-robot system is presented by Dou et al. (2015). They propose a GA-based task scheduling
method combined with RL.

Xue et al. (2018) apply an RL algorithm for the flow-shop scheduling problem for a multi-AGV
environment. The objective function considers the minimization of the average job delay and total
makespan in the system. They model the problem as a Markov process by defining state features,
action space, and reward function based on RL. Simulation results show that the RL agent can
learn the optimal or near-optimal solution from its past experience, and the results provide better
performance outputs than the multi-agent scheduling method.

Malus et al. (2020) present how the multi-agent RL method can be applied to the problem of or-
der dispatching of autonomous mobile robot fleets. In the proposed problem, agents can be trained
to bid for the orders to process given order specifications. The results show that the training policy
outperforms the closest-first rule.

Watanabe et al. (2001) propose two methods providing intelligence for AGVs. The first is the
AGV navigation problem, and the second is the collision avoidance problem. In the first problem,
the navigation routes are learned by the AGVs with the help of Q-learning. The second problem
is defined as the mutual understanding of behaviors among AGVs by using Q-learning. In the
experimental simulations, it is verified that the two proposed methods can manage the target goals.

Takahashi and Tomah (2020) propose a deep RL method to control multiple AGVs optimally.
Simulation experiments are performed to train the model. Later, the learned network is used to
optimize another model. The results show that the proposed method learns optimally or near-
optimally from past experience and provides superior performance in new environments.

Different from the existing studies, in this paper, we apply an RL algorithm developed on Q-
learning for the shuttle’s transaction selection problem. Here, we treat the shuttles as intelligent
agents so that they can be trained from their past experiences. The modeling approach is detailed
in the following section.

3. Simulation-based RL modeling

In this section, we present the developed RL algorithms for smart transaction selection of shut-
tle agents. First, we present the main working rule of the RL method. Second, since we model
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Fig. 3. Working rule of the reinforcement learning (RL) algorithm.

the system by simulation, we present the simulation modeling details along with the considered
assumptions. Third, we present the RL implementation on the problem and the obtained results.

3.1. RL method

RL is an ML modeling approach that addresses how an autonomous agent is trained to select the
most appropriate action by interacting with its environment to achieve its goal. In this framework,
an agent sensing and observing its environment is created so that the current state changes are
tracked in real time. By using the perceived state information, that agent aims to select an action
maximizing its reward. When an action is performed by the agent, the current state may change.
That state is rewarded or penalized based on the selected action. These interactions between the
agent and its environment continue until the agent is trained for a decision-making strategy max-
imizing the total reward. To address an RL problem, Sutton and Barto (2015) define four key
elements: a policy, reward function, value function, and the model of the environment. Here, the
intelligent RL agent aims to maximize some portion of the defined cumulative reward. Figure 3
shows the working rule of the RL algorithm. According to that, there is a continuous interaction
between the environment and the agent. Based on the changed environment, the agent takes an
action at time t.

Some important terms that are used in the RL algorithm are summarized below:

• Agent: It is an entity performing actions in an environment.
• Environment: A set of states that an agent has to face.
• Reward (R): An immediate return (i.e., performance metric) given to an agent when it performs

a specific action or task.
• State (s): Current condition returned by the environment.
• Policy (π): A strategy applied by the agent to decide the next action based on the current state.
• Value (V): Expected long-term return with discount compared to the short-term reward.
• Value Function: It specifies the value of a state that is the total amount of reward

In this study, we evaluate the value (V) of the system by the average cycle time of a transaction.
Here, cycle time is the time between when a transaction request is created in the system until it is
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disposed. We define the Q value (or action value) by (1), which is calculated by taking an additional
parameter as a current action. In Q-learning, the aim is to develop a state-action matrix by provid-
ing a value function regarding the system environment. The main goal of this is to train the agent
so that it can select the best policy (action) under a current state. Remember that the state includes
all the information about the environment that is needed to take an action and that an action is
what to do in a given state.

Qnew (s, a) ← (1 − α) Q (s, a) + α
[
R (s, a) + γ max Q

(
s′, a′)] . (1)

In (1), Qnew(s, a) is the newly derived Q value, α is the learning rate, γ is the discount rate, and
R(s, a) is the reward when action a is taken in state s (Gosavi, 2015). max Q (s’, a’) is the maximum
expected future reward among all possible actions at the next state s′, when action a is taken at state
s.

Note that RL is a “model-free” algorithm not using the transition probability distribution and
the reward function associated with the Markov decision process (Gosavi, 2015). Instead, RL finds
out those distributions and functions by trial-and-error. Namely, the transition probability distri-
bution and the reward function together are called the “model” of the environment, and they are
estimated by the RL algorithm in simulation.

In the working principle of Q-learning, after a sufficient amount of time, the Q-matrix becomes
stable. This means that the intelligent agent is trained so that it estimates the state-action relation-
ship based on the reward output. In other words, the system agent can estimate how big a reward
can be earned when and afterward of a state.

In the tier-to-tier SBS/RS, the environment (e.g., state (s of the system) is determined by (i, j),
where i and j show the current tier of Lift 1 and the current tier of the available shuttle, respectively.
The actions are defined based on the attributes of the waiting transactions. Waiting transactions
have several attributes, two of which are significant and might affect the processing time of the
servers. These are: the tier addresses of transactions and the transaction type (i.e., storage or re-
trieval). Thus, the actions (a) in the Q-matrix are defined to be (a1, a2), where a1 and a2 denote
the tier address and the transaction type of the waiting transactions. The state-space of transaction
types is defined as {1, 2} where 1 represents storage and 2 represents retrieval transaction types.
Once again, by the described actions, the aim is to select a waiting transaction providing the best
reward (i.e., decreased cycle time). For modeling purposes, first, we simulate the system, and then
we integrate the RL algorithm into the simulation model. In the following sub-section, the details
of the simulation model and how the RL algorithm is integrated into this model are presented.

3.2. Simulation modeling of the system

Due to the operational complexity of the proposed SBS/RS design, where shuttles can travel be-
tween tiers by using a separate lifting mechanism and there is a collision possibility of shuttles, as
well as there are mainly three servers (i.e., Lift 1, Lift 2, and shuttles) working interactively with
each other, a simulation modeling approach is utilized. Before implementing the RL algorithm,
first, the considered system is simulated by the ARENA 16.0 commercial software. The notations
that we use in this paper are summarized in Table 1.
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Table 1
The notations used for the model

Notation Description Unit

VSmax Maximum velocity that shuttles can reach m/s
asv Acceleration value for the shuttles m/s2

dsv Deceleration value for the shuttles m/s2

VLmax Maximum velocity that lifts can reach m/s
alv Acceleration value for the lifts m/s2

dlv Deceleration value for the lifts m/s2

L Distance between two adjacent bays m
H Distance between two adjacent tiers m
USavg Average utilization of a shuttle %
ULavg Average utilization of Lift 1 %
ULSavg Average utilization of Lift 2 %
Cavg Average cycle time of a transaction s
Wavg Average waiting time of a transaction s
W Average number of transactions waiting in shuttle queue
T Number of tiers in a single aisle
B Number of bays at a single side of a tier in an aisle
NS Number of total shuttles in the system

For a storage transaction, those processes take place:

1. Lift 1 travels to the I/O point (i.e., first tier) to pick up the arriving tote. At the same time, the
shuttle travels to the Lift 2 location to travel to the storage tier address if it is not at that tier.

2. Lift 1 travels to the storage address tier and drops off the tote at the buffer location.
3. The shuttle travels to the buffer location to pick up the tote at the storage tier.
4. The shuttle travels to the storage bay with the tote and drops off it at the storage bay.

For a retrieval transaction, those processes take place:

1. The shuttle travels to the Lift 2 location, to travel to the retrieval tier address, if it is not at that
tier.

2. Lift 2 travels to the shuttle’s tier, and both travel to the retrieval tier.
3. The shuttle travels to the retrieval bay address to pick up the tote at the retrieval address.
4. The shuttle travels to the buffer location to drop off the tote. Lift 1 travels to the retrieval address

tier to pick up the tote.
5. Tote travels to the I/O point in Lift 1.

The simulation model’s flow chart including the RL algorithm is given in Fig. 4.
First, we verify and validate the simulation models by debugging the codes. Then, the RL algo-

rithm is integrated by coding in the visual basic for applications (VBA) interface in this software.
The considered operating rules along with the tier-to-tier SBS/RS assumptions are provided be-
low:

• Transactions arrive at the I/O locations in the SBS/RS warehouse and enter a single shuttle
queue defined for all shuttles immediately.
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Fig. 4. Flow chart of the RL algorithm and the simulation model.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies

 14753995, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13135 by T

echnical U
niversity E

indhoven, W
iley O

nline L
ibrary on [06/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



286 B. Y. Ekren and B. Arslan / Intl. Trans. in Op. Res. 31 (2024) 274–295

• Shuttles are defined as agents. When a busy shuttle becomes available, the environment (state)
changes. The available shuttle agent selects the best transaction from waiting transactions based
on the RL rule defined by the Q-matrix (see Section 3.2).

• In an effort to avoid collision of shuttles, the available shuttle agent first eliminates the trans-
actions at whose tier addresses, there are already shuttles or there is a shuttle heading to that
tier.

• Once the available shuttle selects a waiting transaction from the queue, the entities are duplicated
and are immediately sent to the Lift 1 and Lift 2 queues based on the requirements. Hence,
simultaneous travel of lifts and shuttles is allowed in the system. To avoid losing the future
(i.e., next state’s) tier address information, the queue order of lifts is considered to be a FIFO
rule.

• If the transaction is a storage process, then Lift 1 transfers the load to the storage address. If the
transaction is a retrieval process then, Lift 1 carries the load at the ground level. If the transaction
address is at the first (ground) level, then Lift 1 is not utilized.

• Lift 2 is utilized when the shuttle requires changing its tier level. If Lift 2 is seized during the
shuttle’s travel, the two can travel simultaneously.

• Lift 1 has two loads capacities that can travel independently. Lift 2 has a single shuttle capacity.
• The simulation stops when there is no change in the average cycle time per transaction perfor-

mance metric in a pre-specified time amount.
• As a dwell point policy, shuttles and lifts are assumed to stay at their last process points.

For the data used as model inputs, we use parameters from Lerher et al. (2015a, 2015b), Ekren
et al. (2018), and (Ekren, 2020a).

• L = 0.5 m.
• H = 0.35 m
• VSmax = VLmax = 2 m/s
• asv = dsv = alv = dlv = 2 m/s2

• B = 25
• Arrivals of transactions at the warehouse follow a Poisson process.

By assuming a random storage policy in the system and that each aisle is identical in terms of the
number of tiers and bays and arriving loads, we simulate a single aisle. Due to the Poisson arrival
assumption, to calculate the mean arrival rate to a single aisle, we divide the mean arrival rate by
the total number of aisles in the system. We detail the RL algorithm integrated into the simulation
model in Section 3.2.

3.3. RL implementation

In the problem, we treat shuttles as agents. Before a shuttle picks a transaction from its queue, the
current state information is observed from the environment.

We define the state as S(k) = (i, j):
S(k) = (Current tier of Lift 1, Current tier of the agent shuttle k)
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Here, k represents the shuttle ID selecting a transaction from the queue, i represents the cur-
rent tier of Lift 1, and j represents the current tier of shuttle k. From the Q-table, first, the agent
checks the current positions of the two Lift 1 lifting tables and then selects the lifting table with the
higher Q-value. In this case, the state information takes integer values between 1 and T, in which T
represents the total number of tiers in the system.

The actions are defined as the attributes of the waiting transactions.
A(k) = (Tier address of the transaction, transaction type)
For agent shuttle k, the tier addresses of transactions are integers between 1 and T, and the

transaction type can be either 0 (for storage) or 1 (for retrieval).
In the case of two shuttles available at the same time, priority is given to the first released shuttle

to select an action (i.e., transaction). However, since the experiments are designed in such a way
that average shuttle utilizations are very high, this case rarely occurs. Since the state-space consists
of tiers of the lifts and shuttle and the action space consists of tier addresses and transaction types,
the Q-matrix size is equal to the multiplication of states and actions, T2 × 2T. An example for T =
5 is given below.

States Actions

Q =

(1, 1)
(1, 2)
(1, 3)

...
(5, 4)
(5, 5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) (1, 2) (2, 1) (2, 2) . . . (5, 2)
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Here, the reward function is defined by (3):

R (s, a) = 1
f low time (a)

. (3)

Since the queue length and content information of transactions are not included in the state
definitions, the reward is considered to be flow time, which does not include the waiting time value
in it and does not correlate with the states. The steps of the considered RL algorithm are explained
below.

Step 1. Initialize the Q-values. In other words, set for all (s, a) where s∈ S and a∈ A: Q(s, a) = c.
Here, the initial values of c are calculated by solely considering the travel time of shuttles and lifts
for each pair of state and action by ignoring any waiting times. Set k = 0, the number of days the
program runs. We run the algorithm for kmax iterations, where kmax is chosen to be 40 days. Start
the system simulation at an arbitrary state.

Step 2. Observe current state S(i, j).
Step 3. With probability 1-ß, select random action a, otherwise select a = argmax Q(s, a)
Step 4. Execute action a. Let R(i, j, a) be the immediate reward earned by state (i, j) under the

influence of action a. Let the next state be S(i’, j’)
Step 5. Update Q(s, a) by using (1)
Step 6. If k < kmax, set be (i, j) ← be (i’, j’), go to Step 2, otherwise end the simulation.
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Fig. 5. Average cycle time per transaction change during training.

In the solution procedure, the β is initialized as 0.2, α = 0.1, γ = 0.2. In the learning period,
the β and α values are updated dynamically in time, based on the learning condition. Namely,
the exploration probability (i.e., β value) and the learning rate is decreased in time because the
agent learns the state-action relation based on the reward produced. Hence, the β value is in-
creased and α is decreased by 0.2 and 0.02, respectively, every 10 days, until ß becomes 1 and
α becomes 0. Q-values are initialized by travel times of servers by considering that they are at
middle locations through their travel paths. This would help decrease of training times of shuttle
agents. Since the values are initialized and the system is stochastic, α value is considered to be
low. In addition, since the next available actions are unknown, we keep the γ value at a low rate
of 0.2.

The RL algorithm is coded by using the VBA interface integrated into the ARENA 16.0 software.
After verifying and validating the model, we complete several experiments to test the behavior of
the system developed on the ML operating rule.

Figure 5 shows the average cycle time per transaction versus time graph during the learning
process. The time point where the cycle time is stable is the point at which the RL agent completes
the learning process. Note that in Fig. 5, initially, the average cycle time per transaction is high and
tends to decrease. This is because the RL agent is trained in time. The statistics in the simulation
are collected after that time as shown in Fig. 6.

Since the initial Q-values are assigned based on each server’s travel time from a middle point from
its travel path, computational time tends to decrease, compared to assigning all the Q-values to 0.
Even though we initialize the values based on those travel lengths, since the compared algorithms
are static (i.e., FIFO and SPT), RL runs longer to converge than those compared models.
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Fig. 6. Average cycle time per transaction after training.

In Fig. 5, the time point at which the RL agent completes its learning process is assumed to
be approximately 3,000,000 seconds. Hence, statistics of interest are observed after that point for
comparison purposes.

4. Experiments, the results, and comments

Recall that the immediate reward is computed based on the flow time of the processed transaction
shown by (3). However, we also track the cycle of a transaction representing the time between when
a transaction is created until its process is completed (i.e., until the entity is disposed). Note that
during the process of a transaction, Lift 1, Lift 2, or both might be requested. Hence, the waiting
time in those servers’ queues is also included in the cycle time consideration. In the environment
definition, since we do not include any information about the queue lengths of those Lift 1 and
Lift 2 servers, as well as bay addresses, the same state-action pair may provide different cycle time
values. In an effort to obtain a stable Q-matrix and ignore such unknown variations, we obtain the
average of the previously earned rewards at the same pair action. Since the Q-matrix size increases
exponentially by the increase of T in the system, we conduct experiments for the tier-to-tier SBS/RS
having up to 15 number of tiers in each aisle. The conducted experiments are summarized in Table 2.
According to that, we change T scenarios for 15, 12, and 10. For each T scenario, a specific number
of shuttles per aisle scenario is also considered. For instance, for the 15-tier scenario, it is assumed
that there are five shuttles per aisle. For instance, we try that combination for all the scheduling rule
scenarios, FIFO, SPT, and RL.
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Table 2
Conducted experiments

T--Ns Scheduling rule Arrival scenario

15–5 First-in-first-out (FIFO) Single type
12–4 Shortest process time (SPT) Batch
10–3 Reinforcement learning (RL)

Table 3
Experimental results for single transaction arrival

Rule T Ns ULavg ULSavg USavg Cavg Wavg

Arrival rate
(transaction/hour)

FIFO 15 5 87% 93% 90% 55.49 ± 0.46 36.98 ± 0.45 947
RL 15 5 83% 82% 81% 24.8 7.93 947
SPT 15 5 83% 81% 81% 24.28 ± 0.21 7.48 ± 0.09 947
FIFO 15 3 67% 79% 91% 61.59 ± 1.07 44.2 ± 1.06 600
RL 15 3 64% 70% 85% 28.21 11.86 600
SPT 15 3 64% 69% 85% 27.74 ± 0.06 11.43 ± 0.18 600
FIFO 12 4 78% 88% 93% 101.85 ± 3.5 84.8 ± 3.5 837
RL 12 4 74% 74% 84% 24.85 9.4 837
SPT 12 4 74% 74% 83% 24.37 ± 0.03 9.01 ± 0.15 837
FIFO 10 4 76% 87% 92% 102.86 ± 2.94 86.38 ± 2.93 857
RL 10 4 71% 69% 81% 22.9 8.37 857
SPT 10 4 71% 69% 81% 22.67 ± 0.02 8.17 ± 0.09 857

In the FIFO scheduling rule, the shuttle agent selects the earliest arriving transaction from its
queue. In the SPT rule, the shuttle agent selects the transaction whose tier address is the closest
one to its current tier. The simulation models for those scheduling rules are run for 10 indepen-
dent replications. In the arrival scenarios, a single entity (i.e., transaction) arrival as well as batch
(multiple transactions) arrivals at a time are considered. An arriving entity’s transaction type (i.e.,
storage or retrieval) is assigned randomly by assuming equal probability. The simulation results are
summarized for averages of 10 replications along with their 95% confidence intervals (CI) in the
following tables. Note that since RL-based models do not have multiple replications, the results are
shown without CI.

In the simulation models, the mean arrival rates are adjusted so that the bottleneck server’s (i.e.,
Lift 1, Lift 2, or shuttle) average utilization is larger than 90%. Since the FIFO scheduling rule
produces the highest results for the average cycle time per transaction performance metric, we first
experiment and fix the mean arrival rate for that scenario. Then, to make fair comparisons, we run
the other rule scenarios at the same rate. Table 3 summarizes the results along with the considered
arrival rates. As mentioned in the model assumptions section, arrivals of transactions follow a
Poisson process.

From Table 3, it is observed that the RL and SPT scheduling results are very close to each other
and they outperform the FIFO rule. The reason for the closeness of the RL and SPT rules would
be that, in the RL approach, we consider the flow time as the reward return for a state-action
pair. Thus, by the Q-matrix, the RL agent tends to select the transaction that would result in the
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Table 4
Experimental results for batch transaction arrivals

Rule T Ns ULavg ULSavg USavg Cavg (seconds)
Wavg

(seconds)
W
(seconds)

Arrival rate
(transaction/10 minute)

FIFO 15 5 87% 93% 91% 306.16 ± 5.12 287.5 76 158
RL 15 5 58% 13% 57% 178.98 166.17 44 158
SPT 15 5 58% 13% 58% 188.96 ± 2.56 176.01 47 158
FIFO 15 3 67% 79% 91% 299.14 ± 4.78 281.7 47 100
RL 15 3 45% 15% 56% 173.05 161.7 27 100
SPT 15 3 45% 14% 56% 177.31 ± 2.69 165.9 28 100
FIFO 12 4 79% 90% 93% 384.83 ± 4.86 367.75 86 140
RL 12 4 52% 10% 57% 179.06 168.04 39 140
SPT 12 4 52% 10% 57% 183.93 ± 2.07 172.79 40 140
FIFO 10 4 77% 88% 92% 399.74 ± 5.08 383.23 94 143
RL 10 4 52% 8% 56% 175.98 165.54 40 143
SPT 10 4 51% 8% 56% 180.18 ± 2.47 169.6 41 143

least flow time (i.e., travel time) as in the SPT rule. Also, because in the state definition, we do not
consider the bay location addresses as well as the number of tasks waiting in queues, and so forth,
the environment might not be captured completely, and the RL agent might behave as if an SPT
rule. Also, because, as in the SPT rule, the RL approach considers the tier addresses as actions, the
RL results tend to be close to the SPT results. Namely, although a transaction might be at a longer
tier travel, it might have the least travel time due to its bay location. By ignoring the bay locations in
the action definition, the RL agent might skip such better selections. Hence, it tends to behave as if
the SPT rule is considered. Note that including the bay addresses in the state definition is suggested
as future work in the conclusion section.

Note that when a shuttle becomes available, it selects a transaction from the shuttle queue based
on the Q-matrix. If there were few transactions waiting, the RL agent would not have many op-
tions to evaluate. In order to let the RL agent evaluate more waiting transaction options in action
selection and observe how the RL approach behaves under the transaction’s long queue waiting,
we consider batch arrivals in the second arrival scenario case. Table 4 summarizes the batch ar-
rival scenarios results. Note that the mean arrival rates in Table 4 are derived from Table 3 rates by
creating batch arrivals every 10 minutes in the simulation models.

From Table 4, it is again observed that both SPT and RL-based scheduling approaches outper-
form the FIFO scheduling rule. This time, in the batch arrival scenario, the RL approach produces
better results than the SPT. This is probably because in action selection, the RL agent can evaluate
more transaction options and select the best option according to its goal intelligently.

Last, we ignore the FIFO rule and focus on the comparison of SPT- and RL-based schedul-
ing approaches. In the batch arrival case, remember that we observe that when there are more
waiting transactions in action evaluation, the RL-based approach tends to produce better results.
Hence, this time, we increase the mean arrival rate scenarios so that we can obtain large (i.e.,
larger than 85%) utilization values in the SPT and RL approaches. We run the simulation mod-
els for batch transaction arrival scenarios under those arrival rates. The results are summarized in
Table 5.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies

 14753995, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13135 by T

echnical U
niversity E

indhoven, W
iley O

nline L
ibrary on [06/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



292 B. Y. Ekren and B. Arslan / Intl. Trans. in Op. Res. 31 (2024) 274–295

Table 5
Experimental results for batch transaction arrival for SPT and RL approaches under higher arrival rates

Rule T Ns ULavg ULSavg USavg Cavg Wavg W
Arrival rate
(transaction/minute)

RL 15 5 87% 21% 86% 175.75 162.76 64 150/6.4 minute
SPT 15 5 86% 20% 87% 181.82 ± 1.56 168.7 66 150/6.4 minute
RL 15 3 73% 17% 86% 249.87 238.82 63 150/9.5 minute
SPT 15 3 69% 15% 85% 252.56 ± 2.36 241.5 64 150/9.5 minute
RL 12 4 81% 19% 86% 160.81 149.58 52 120/5.8 minute
SPT 12 4 78% 18% 86% 161.52 ± 0.94 150.3 52 120/5.8 minute
RL 10 4 74% 12% 87% 126.62 116.07 41 100/4.7 minute
SPT 10 4 77% 17% 85% 132.97 ± 1.12 122 43 100/4.7 minute

From Table 5, it is observed that in the batch arrival case and at higher utilization of servers, the
RL approach still produces better results than the SPT approach.

5. Conclusion and future work

This paper studies an ML (i.e., Q-learning) method application for SBS/RS for intelligent trans-
action selection of shuttle agents to process transactions with decreased flow time. Specifically, our
aim is to implement an adaptive and dynamic scheduling rule that is developed on real-time state-
action information by applying an RL algorithm. The RL algorithm is a “model-free” approach
in which an intelligent RL agent is trained on its environment by trial and error. The advantage
of this approach is that it is adaptive, and it is able to overcome today’s major challenges of com-
plex industry systems by finding highly complex and non-linear patterns in environmental data.
They can be later applied for prediction, detection, classification, regression, or forecasting. By
applying ML-based modeling to an automated warehousing problem, this paper aims to be a pio-
neer in the field of warehouse management implementing AI methods. We simulate the proposed
system by using the ARENA 16.0 commercial software by integrating the RL codes in the VBA
interface.

We compare the RL-based scheduling approach with FIFO and SPT scheduling rules under dif-
ferent warehouse designs. It is observed that RL outperforms the FIFO scheduling rule. Although
the RL produces close values to the considered SPT results, when we consider batch arrivals, the
RL results produce slightly better results than the SPT results. Hence, this work provides promising
results; if we utilize a more complex deep Q-learning approach than a basic Q-learning approach,
we might obtain better results than SPT.

In this paper, we show that RL is applicable for a transaction selection problem in an automated
warehousing system. The RL method can also be implemented for any job selection problem in
industries. As a future work, we suggest implementing a deep learning method to capture more
detailed information from the environment. Hence, the results might outperform even SPT. In ad-
dition, a sensitivity analysis for different parameter values and computational time comparisons
can also be completed.
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