
 

Two measurement techniques to determine Higher Order
Sinusoidal Input Describing Functions
Citation for published version (APA):
Nuij, P. W. J. M., & Steinbuch, M. (2004). Two measurement techniques to determine Higher Order Sinusoidal
Input Describing Functions. In P. Sas, & M. Munck, de (Eds.), Noise and vibration engineering : proceedings of
ISMA 2004, Leuven, 2004, September 20-22 (pp. 2145-2154). Katholieke Universiteit Leuven.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/8af69437-25ce-46a5-bc60-9b91203a2c7c


Two measurement techniques to determine Higher Order 
Sinusoidal Input Describing Functions 

P. Nuij, M. Steinbuch 
Eindhoven University of Technology, Department of Mechanical Engineering 
Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands 
E-mail: p.w.j.m.nuij@tue.nl 

Abstract 
For high precision motion systems, modelling and control design specifically oriented at friction effects is 
instrumental. The Sinusoidal Input Describing Function theory represents a solid mathematical framework 
for analysing non-linear system behaviour. This theory however limits the description of the non-linear 
system behaviour to an approximated linear relation between sinusoidal excitation and sinusoidal re-
sponse. An extension to Higher Order Describing Functions can be realised by calculating the correspond-
ing Fourier coefficients. The resulting Higher Order Sinusoidal Input Describing Functions (HOSIDFs) 
relate the magnitude and phase of the higher harmonics of the periodic system response to the magnitude 
and phase of a sinusoidal excitation. This paper describes two techniques to measure HOSIDFs. The first 
technique is FFT based. The second technique is based on IQ (=in phase/quadrature phase) demodulation. 
In a case study both techniques are used to measure the changes in dynamics due to friction as function of 
drive level in an electric motor.  
 

1 Introduction 
 
In the analysis and synthesis of dynamic systems, linearity is often a prerequisite. Frequency domain 
based concepts like the Frequency Response Function, Bode plot etc. describe linear system behaviour. If 
the system is non-linear, the Frequency Response Function describes a linearized version of the system 
behaviour in a working point or limited operating range. Every real life system is non-linear although the 
implications are not always noticeable in the operating range. As the required performance of mechanical 
systems increases, non-linear behaviour becomes of interest due to its adverse influence on system per-
formance. In positioning systems, for example, friction can lead to limit cycling, which deteriorates posi-
tioning accuracy and increases wear and power consumption. Even in the simplest trajectory, the transition 
from the pre-sliding to the sliding regime causes changes in system dynamics due to a significant change 
in stiffness and damping in the friction contact, as has been demonstrated in [1], [2]. In ultra precision 
equipment like wafer-steppers and DVD mastering recorders the effect of friction is minimized by the ap-
plication of gas bearings or fluid bearings. This results in rather complex, expensive mechanical construc-
tions. In the majority of industrial positioning equipment the application of these ultra low friction bear-
ings is too expensive. Hence, the negative effects of friction on the dynamics of the machine have to be 
taken into account. Often, servo controllers are used to reduce the position errors caused by friction. The 
complexity of these controllers varies from a basic PID action to sophisticated model based compensation 
schemes, combining advanced friction models with digital signal processing [3], [4]. Increasing demands 
on positioning performance call for a steady advance in the synthesis techniques of controllers. The influ-
ences of non-linear system behavior have to be taken into account. It is evident that one cannot do without 
reliable data both for validation of the sophisticated models as well as input for state dependent control 
actions like gain scheduling as put into practice in these advanced controllers. This requires practical but 
reliable measurement techniques, which are not limited to linear system behavior. In this work we would 
like to extend the well-known procedures from frequency response analysis for linear systems, towards a 
class of non-linear dynamical systems, with harmonic responses where amplitude dependent behavior is 
obvious. Some approaches have been addressing the describing function analysis [5], [6]. Although this 
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theoretical framework allows for higher order analysis it ignores the influence of higher order components 
and in this way produces a linearized version of the non-linear system. In [7], [8] an extension of the sin-
gle input sinusoidal describing functions to multiple inputs is proposed. 
In this paper two measurement techniques are presented to determine the complex relations i.e. the magni-
tude and phase relations, between a fixed frequency sinusoid with variable amplitude and the individual 
components of the harmonic non-linear system response signal. Hereto we will define the notion of this 
framework in section 2. In section 3 we will introduce the measurement schemes and in section 4 experi-
mental results of a motion system case study will be shown. Finally, the main results will be discussed in 
the form of conclusions in section 5. 
 

2 Higher Order Sinusoidal Input Describing Function 
 

2.1 Sinusoidal input describing function 
 
Consider a stable, non-linear time invariant system with an odd non-linearity. Let u )sin()( 0tat ω)= be the 
input signal. The system response  is considered to be periodic with the fundamental frequency ω)(ty 0 of 
the input signal u(t), i.e. we assume that the transient behaviour has died out. Response y(t) can be written 
as a summation of harmonics of the input signal u(t), each with an amplitude and phase, which can depend 
on the amplitude â and frequency ω0 of the input signal, see figure 1. 
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Figure 1: General sinusoidal input-output relation 

The describing function H(â,ω) of the system is the complex ratio of the fundamental component )(~ ty of 
the system response and the input sinusoid , see figure 2. )(tu
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Figure 2: Describing function representation 

The describing function H(â,ω) is defined as [9]: 
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2.2 Higher order sinusoidal input describing function 
 
The describing function as defined above can be interpreted as the first order representation of a more 
global describing function Hn(â,ω), see figure 3. This function can be defined as the complex ratio of the 
nth harmonic component in the output signal to a virtual nth harmonic signal derived from the excitation 
signal (4). This virtual harmonic has equal amplitude as the fundamental sinusoid and zero phase.  
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In this paper Hn(â,ω) will be referred to as the Higher Order Sinusoidal Input Describing Function 
(HOSIDF). 
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Figure 3: Higher order sinusoidal input describing function representation 

 
 

3 Measurement techniques for HOSIDFs 
 
As stated in (4), determining HOSIDFs requires a method to measure the complex ratio of two bandpass 
filtered signals. Two methods are investigated. The first method employs the FFT techniques to determine 
auto and cross-spectral information and operates upon blocks of data. The second method uses IQ de-
modulation and is sample based [10], [11]. 
 

3.1 FFT method 
 
In this measurement technique both the input signal u(t) and output signal y(t), see figure 1, are Fourier 
transformed. The data block length is chosen equal to p times the period T0 of the excitation signal. This 
assures that all the power of the excitation signal is concentrated in line p. The power of the response sig-
nal is fully concentrated in frequency lines n*p so leakage is absent. Let us consider the calculation of the 
kth order HOSIDF, see figure 4. 
The frequency line p with value ap+jbp represents the input signal. The Fourier coefficients ap and bp are 
calculated as: 
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The kth component of the output signal is contained in frequency line k*p of its spectrum and has the com-
plex value akp+jbkp.  Its Fourier coefficients are calculated as in (5), (6), with p=kp. 
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Figure 4. Determination of kth order HOSIDF using FFT techniques 

  

 

The amplitudes â of the excitation signal and Ak(â,ω) of the kth harmonic component in the output signal 
are calculated from the autospectra. The phase φk(â,ω) of the kth order describing function is the phase dif-
ference between the real kth harmonic component of the output signal and the virtual kth harmonic derived 
from the input signal. In linear system theory the system phase at frequency ω is the phase of the measured 
cross-spectrum from the input and output signals at frequency ω. In this non-linear situation however we 
calculate a cross spectrum component between two FFT lines with different frequency. 
Let ap+jbp be the value of FFT line p of the input signal with frequency ω0 and let akp+jbkp be the value of 
FFT line kp of the output signal with frequency kω0, then: 

ϕj
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So the phase of the cross spectrum between the two FFT lines containing the excitation signal and its kth 

harmonic component of the output signal equals the phase of the kth order describing function.  
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3.2 IQ demodulation method 
 
An alternative to the FFT method is the IQ demodulation method [10], [11]. In this method n IQ demodu-
lators decompose the system response signal into its n components, see figure 5.   
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Figure 5: Signal decomposition using IQ demodulation 

 
In figure 6 the IQ demodulator for the kth harmonic of the output signal is explained in more detail. The 
signal is multiplied with sin(kω0) and cos(kω0) in two separate branches. These multiplications result in 
the generation of two new signals, each consisting of the sum and difference frequencies of the original 
signal and the oscillator signals (10), (11). These new signals are 90 deg apart.  
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{ })),ˆ(2sin(),ˆ(sin(),ˆ()),ˆ(sin(),ˆ()cos(2 000 ωϕωωϕωωϕωωω atkaaAatkaAtk kkkkk ++=+         (11) 

 After low-pass filtering the remaining signals representing the kth harmonic are )),ˆ(sin(),ˆ( ωϕω aaA kk  
called the I-signal (= in phase) component and )),ˆ(cos(),ˆ( ωϕω aaA kk called the Q signal (= quadrature) 
component. From the I and Q components Ak(â,ω) and φk(â,ω) are computed.  
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Figure 6: Determination of kth order HOSIDF using IQ demodulation 
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4 Case study 
 

4.1 Description of the system 
 
In this case study the HOSIDFs of a real mechanical system with friction are measured. The test object is a 
system, which consists of a 20 W electric DC collector motor with encoder. The motor is powered by a 
voltage-to-current converter see figure 7. The input to the system, i.e. the motor current Im, is measured 
using a current probe with a sensitivity of 2 A/V. The response signal is angular velocity ωout. For small 
rotations this angular velocity can be measured with a dual fibre laser vibrometer as the linear velocity 
difference between two points spaced 180° on the circumference of the shaft divided by the spacing of the 
points. The resulting sensitivity is 0.588 rad/s/V. A block diagram of the measurement set-up is given in 
figure 8. J1 and J2 represent the inertias of the motor and the encoder. T is the driving torque and C the 
stiffness of the motor shaft. As in the LuGre model [13] the friction influence is modelled with σ0 the bris-
tle stiffness, σ1 the bristle damping and σ2, the viscous damping. The combination of the bristle stiffness 
σ0 and the inertias J1 and J2 will cause a friction-induced resonance [1], [2], [4] which frequency will de-
pend upon the excitation level.  
 

 
 

Figure 7: Case study on a small DC motor 
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Figure 8: Block diagram of measurement set-up 

 
 

4.2 Measurement of the FRF using white noise excitation 
 
Using a SigLab 20-42 dynamic signal analyser [13] with 90 dB aliasing protection the H1 frequency re-
sponse function ωout/Im was measured with ∆f = 0.313 Hz and Hanning weighting in a frequency range of   
0 Hz to 1 kHz. The excitation signal was band-limited random noise in an equal frequency range. The 
crest factor of the noise was 3; the (very low) excitation levels were 1.5 mARMS, 6 mARMS and 36 mARMS, 
in order to be able to measure the non-linear phenomenon. This situation occurs frequently in accurate 
point-to-point motion tasks. Figure 9 shows the results after 20 averages per measurement. In the plots two 
resonances are visible. The resonance at approximately 650 Hz is caused by the finite stiffness C in com-
bination with the bristle stiffness σ0 (see figure 8). The amplitude dependent friction induced resonance is 
visible and varies between 540 Hz and 200 Hz. Its damping varies too as can be seen from the differences 
in phase gradients. The fact that the system behaviour depends upon the amplitude of the excitation signal 
is reflected in the coherence plot. 
 

2150 PROCEEDINGS OFISMA2004



0 100 200 300 400 500 600 700 800 900 1000 -50 

0 

50 
ga

in
 [0

dB
=1

ra
d/

s/
A]

 

0 100 200 300 400 500 600 700 800 900 1000 -200 

0 

200 

ph
as

e 
[d

eg
re

es
] 

0 100 200 300 400 500 600 700 800 900 1000 0 

0.5 

1 

linear frequency [Hz]

C
oh

 

36 mA 
 6 mA 
1.5 mA 

 
Figure 9 H1 estimate of FRF 

 
 

4.3 Measurements of the HOSIDFs 
 
To further investigate this non-linear behaviour, the HOSIDFs were determined using the measurement 
techniques described in 3.1 and 3.2. The frequency of the generator signal was chosen 320 Hz to excite the 
system both above and below its friction induced resonance frequency depending upon the instantaneous 
amplitude of the excitation signal, see the vertical dashed line in figure 9. Other considerations are that 
320 Hz is not a multiple of the 50 Hz mains frequency and that the signal can be generated with an integer 
number of 12,8 kHz samples per period, being one of the sampling frequencies of the SigLab 20-42 dy-
namic signal analyser. Figure 10 shows the generator signal, the input current signal and the system re-
sponse.  
The main parameters used for the FFT method are a block-size of 1600 samples and a sampling frequency 
of 12,8 kHz so ∆f = 8 Hz, hamming window, no overlap processing. For the IQ method the low-pass fil-
ters are 8th order Butterworth with 4 Hz cut-off frequency. 
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Figure 10 Generator signal, input and output measurement signals 
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4.4 Results 
 
Figure 11 shows the amplitude dependency of the HOSIDFs measured at the fixed frequency of 320 Hz. 
The blue (solid) line shows the results from the IQ method, the (red) dots indicate the measurements from 
the block based FFT method. In the left column the magnitude plots are presented for the odd order Sinu-
soidal Input Describing Functions (SIDF). The even orders are all zero because of the odd characteristic of 
the non-linearity. The right hand column gives the corresponding phase relations. In the magnitude plot of 
the first order SIDF we can distinguish three regions. From 0 to approximately 0.5 mA the system gain is 
excitation independent. Between 0.5 mA and approximately 2.5 mA a strong excitation level dependency 
is visible. Above 2.5 mA the gain is independent of the excitation level at a stable 18 dB but the system 
remains non-linear as can be concluded from the plots of the higher order SIDFs. The gain of the third or-
der FRF decreases initially until it reaches a minimum at an excitation of 0.5 mA. This is due to the low 
signal to noise ratios in this region resulting in large uncertainties in the calculations. For increasing exci-
tation its magnitude increases and reaches a maximum of –8 dB at approximately 2.5 mA. Above that ex-
citation level the gain decreases again slightly. The same pattern is visible for the fifth order SIDF, how-
ever its maximum of –15 dB is reached at an excitation level of 4.5 mA.  
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Figure 11: HOSIDFs measured with IQ and FFT method 
 
In figure 11 first row, right column the phase relation of the first order FRF must not be mistaken for the 
phase graph of the bode-plot of a standard linear second order system relating input torque and output an-
gular velocity, since the x-axis does not indicate frequency but input signal magnitude. This plot however 
does contain information about the resonance frequency of the system as function of excitation level. In 
the phase plot of figure 9 we see for low excitation levels at 320 Hz a phase of approximately 90 deg and a 
resonance frequency above 320 Hz. For high excitation levels the phase is dropped to –90 deg, and the 
resonance frequency is shifted below 320 Hz. At the actual resonance frequency the phase will be 0 deg. 
These results match with the first order phase plot in figure 11. From this phase plot the excitation level 
required for the system to resonate at 320 Hz could be determined to be approximate 2.5 mA. 
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4.5 Discussion 
 
An important difference between the FFT method and the IQ method is the way of processing data. The 
FFT method is block oriented and generates results every 0.125 sec where the IQ method is sample based 
so the time between two measurements equals the sample period of 1/12800 sec. This results in less meas-
urement points for the FFT method in the corresponding HOSIDF plots as can be seen in figure 11. Apart 
from this difference the results of the two methods are substantially equivalent. The visible differences 
which are mainly concentrated in the range of low excitation levels are probably due to low signal to noise 
ratios.  
 

5 Conclusion and further research 
 
An extension of the theory of Describing Functions was presented. Higher Order Sinusoidal Input De-
scribing Functions (HOSIDF) can be defined as the excitation amplitude dependent gain and phase rela-
tions between a virtual set of harmonics of the excitation signal of a non-linear system and the correspond-
ing real harmonics in the output signal. The theory developed assumes the non-linear system to respond 
harmonically at a sinusoidal excitation. To measure the HOSIDF two measurement methods were de-
scribed. The first method is FFT based and uses auto and cross spectrum information to determine the sys-
tem gain and phase of the HOSIDF as function of the input signal amplitude and frequency. The second 
measurement technique uses IQ demodulation techniques and is sample based. A case study was presented 
describing the application of the two measurement techniques. In this case study the device under test was 
a small current fed DC electric motor. Due to its construction this motor exhibits a significant amount of 
friction. Initial FRF measurements with various levels of random noise excitation display a significant in-
put level dependency of the system dynamics. The friction-induced stiffness causes one resonance to vary 
significantly in frequency and damping. With both measurement techniques the HOSIDFs have been suc-
cessfully identified. The results clearly show non-linear system behaviour as function of excitation level.  
Since the HOSIDF is not only a function of amplitude but also of excitation frequency many single fre-
quency measurements have to be done in order to quantify its frequency dependency. Future work will 
comprise merging the multi-sine excitation techniques [14] with the HOSIDF technique described in this 
paper. Implementation of this combined knowledge in hardware like FPGAs will hopefully result in the 
construction of a new, valuable and practical measurement tool.  
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