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Abstract

Future mobile systems will support various high-mobility scenarios (e.g., unmanned

aerial vehicles and high-speed trains) with strict mobility requirements. However,

the current orthogonal frequency division multiplexing (OFDM) is unsuitable for

these scenarios because Doppler shifts caused by high-mobility reflectors lead to

high inter-carrier interference (ICI). A new modulation scheme, orthogonal time

frequency space (OTFS), was proposed to overcome this challenge. OTFS multi-

plexes the transmitted symbols in the delay-Doppler (DD) domain, then spreads

them into the time-frequency (TF) domain. The DD domain multiplexing captures

the delay and Doppler characteristics of the channel paths due to the high-mobility

reflectors that cause ICI. The receiver needs to know numerous channel responses

representing all wireless paths for each symbol as a matrix. The signal processing

of a large matrix poses a significant challenge in OTFS symbol detector design.

Currently, state-of-the-art OTFS detectors consist of classical and training-based

deep neural network (DNN) detectors. Classical OTFS detectors typically utilize

matrix inversion operations to denoise the received signal before or within their

ICI cancellation algorithms, resulting in high computational complexity. Training-

based DNN OTFS detectors outperform classical detectors regarding symbol error

rate (SER) performance. These detectors employ datasets to train the DNN to

learn the symbol detection process before implementation. However, these detec-

tors rely on enormous computation resources and the fidelity of datasets for the
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training phase, and both are expensive. An alternative approach, an untrained

DNN known as deep image prior (DIP), has recently been proposed as a denoiser

for image processing. DIP requires no training datasets and employs an encoder-

decoder DNN architecture to denoise the image. The appealing aspect of DIP

in OTFS detector design is its potential to deliver a similar SER performance

as training-based DNN. However, DIP consists of tens of layers and up to mil-

lions of trainable parameters; this results in high latency, making it unsuitable for

real-time symbol detection.

In this thesis, we first propose an untrained DNN denoiser to iteratively denoise

the received signal. We develop a new real-time, decoder-only DNN architecture

for DIP called D-DIP denoiser. We use a decoder-only DNN to ensure low latency

by using significantly fewer trainable parameters and layers than DIP’s encoder-

decoder architecture. We then combine the D-DIP denoiser with Bayesian-based

parallel interference cancellation (BPIC) for symbol detection, resulting in the D-

DIP-BPIC OTFS detector. The iterative BPIC algorithm employs PIC to subtract

interference from the received signal using symbol estimates from the previous it-

eration. The Bayesian inference is then employed to obtain new symbol estimates

based on the PIC outputs. Our simulation results demonstrate that the proposed

D-DIP-BPIC OTFS detector outperforms state-of-the-art OTFS detectors regard-

ing SER performance and computational complexity.

To further enhance the performance of the D-DIP denoiser, we introduce a novel

approach by incorporating a graph representation of wireless interference knowl-

edge into the D-DIP denoiser. Specifically, we devise a graph that captures the

wireless interference relationships among the multiplexed transmitted symbols ob-

served by the receiver. We construct an adjacency matrix based on this graph

representation. To integrate this knowledge into the D-DIP denoiser, we embed

the adjacency matrix and an additional layer after D-DIP to further improve its

performance. We name the combination of graph wireless interference represen-
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tation and D-DIP as GDIP denoiser. Simulation results demonstrate that the

proposed GDIP denoiser requires significantly fewer iterations than the D-DIP

one to denoise the received signal. The combination of GDIP and BPIC shows an

excellent SER performance under various OTFS configurations.
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Chapter 1

Introduction

Future wireless communication systems aim to accommodate diverse emerging ap-

plications (e.g., unmanned aerial vehicles, high-speed trains, and low-earth-orbit

satellites) in high-mobility environments. However, communicating in such envi-

ronments poses challenges due to the inherent time-varying nature of the wire-

less channel. Conventional orthogonal frequency division multiplexing (OFDM)

modulation can achieve high spectral efficiency under time-invariant channels [1].

However, OFDM suffers from significant performance degradation under time-

varying channels, where high Doppler shifts exist in high-mobility environments

[2]. This degradation is due to the high inter-carrier interference (ICI) caused by

high Doppler shifts. Consequently, OFDM is unsuitable to be employed in high-

mobility scenarios. Promisingly, the orthogonal time frequency space (OTFS) [3]

has been recently proposed for high-mobility scenarios, offering superior perfor-

mance to the conventional OFDM modulation system. OTFS processes the trans-

mitted symbols in the delay-Doppler (DD) and time-frequency (TF) domains, re-

quiring tracking the channel’s delay and Doppler characteristics of high-mobility

reflectors that cause ICI. The OTFS channel responses parameterize the time-

varying channel’s effects by capturing the latter’s delay and Doppler parameters
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[1]. However, this results in a large OTFS channel matrix size, which poses a sig-

nificant challenge in the design of OTFS detectors. Various OTFS detectors have

been investigated in the literature, and they can be categorized as 1) classical and

2) Training-based deep neural network (DNN).

Classical OTFS detectors can be further divided into linear and iterative detectors.

Low complexity linear detectors zero-forcing (ZF) and minimum-mean-square-

error (MMSE) proposed in [4] only have a logarithmic complexity compared to

conventional ZF and MMSE that have high computational complexity matrix in-

version operation. However, they still cannot achieve an acceptable symbol error

rate (SER) performance in OTFS systems. Iterative detectors typically provide

a better SER performance than linear ones due to their interference approxima-

tion or interference cancellation algorithm. The message passing (MP) [5] and

approximate message passing (AMP) [6] achieve superior SER performance to

linear detectors by using Gaussian functions to approximate the interference. A

variational Bayes (VB) OTFS detector proposed in [7] has shown the ability to im-

prove the convergence of the MP OTFS detector. Unfortunately, they suffer from

performance degradation in rich scattering environments (i.e., multiple mobile re-

flectors exit). The unitary approximate message passing (UAMP) [6] detector was

proposed to address this issue by performing singular value decomposition (SVD)

to apply the unitary transformation to the received signal and channel matrix

before executing AMP. Additionally, a similar performance in terms of reliabil-

ity and complexity to the UAMP detector has also been achieved by iterative

Bayesian-based parallel interference cancellation (BPIC) one in [8]. It combined

an MMSE denoiser, the Bayesian concept, and PIC to perform iterative symbol

detection. Unfortunately, their performance is still sub-optimal compared to the

expectation propagation (EP) [9] OTFS detector. EP can achieve Bayes-optimal

performance using the Bayesian concept and multivariate Gaussian distributions

to approximate the mean and variance of posterior detected symbols from the ob-
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served received signals iteratively. However, the excellent performance achieved by

UAMP, MMSE-BPIC, and EP comes at the cost of high complexity due to matrix

inversion or SVD operations. The signal processing of these complex operations

is costly in OTFS systems, as the OTFS channel matrix is large.

In addition to those iterative detectors, training-based DNN approaches are widely

used in symbol detector design. These detectors utilize datasets to train the train-

able parameters within the DNN, enabling them to learn the symbol detection

process before implementation. Recently proposed training-based DNN OTFS

detectors, e.g., symbol DNN [10] and 2-D convolutional neural network (CNN)

[11] achieve a good SER performance by employing a large number of trainable

parameters in the DNN design. Meanwhile, GAMP-NET[12], BPICNet[13], and

EP-NET [14] have shown excellent performance in terms of SER and convergence

by embedding only several trainable parameters into the corresponding GAMP,

BPIC, and EP algorithms. However, training-based detectors typically require

large datasets to train before implementation. There are two major disadvan-

tages to the training-based DNN approach: 1) dependency on the availability of

extensive computation resources that necessitate substantial energy or CO2 con-

sumptions and high cost of the training phase [15]; and 2) the fidelity of synthetic

training data, artificially generated due to high cost of acquiring real datasets,

in the realistic environment [16]. For example, a high-fidelity training dataset

implies the distribution functions for all possible velocity of mobile reflectors is

known beforehand, which is impossible.

Promisingly, the recently proposed untrained DNN approach named deep image

prior (DIP) [17] avoids the need for training datasets. The encoder-decoder archi-

tecture used in the original DIP shows excellent performance in image denoising,

but the use of up to millions of trainable parameters results in high latency. Re-

cently, the authors in [18] have shown that the decoder-only DIP performs simi-

larly to an encoder-decoder DIP architecture when applied to magnetic resonance
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1.1. RESEARCH PROBLEMS AND CONTRIBUTIONS

imaging (MRI). The computational complexity and latency of a decoder-only DIP

are significantly lower than the original encoder-decoder DIP, thus enhancing its

potential use as a real-time OTFS detector. To date, the DIP concept has not

been used in OTFS detector design.

To improve the performance of DNN, graph-based neural network (GNN) is pro-

posed to process the signal by exploring their graph representation in the neural

network design. The training-based GNN has shown an excellent SER performance

in wireless communications, e.g., massive multiple-input multiple-output (MIMO)

detection [19], multi-user MIMO detection [20], [21], and OTFS detection [22].

However, training those GNN will result in high computational complexity (e.g.,

need extensive computation resources to model the interference between different

users in massive MIMO). Recently, an untrained GNN proposed in [23] uses a

combination of signal’s graph representation and CNN, referred to as graph con-

volutional generator (GCG). This approach has shown promising denoising per-

formance in signal processing, avoiding the complex training process. Until now,

no research has been conducted on untrained GNN in OTFS detector design.

1.1 Research Problems and Contributions

The main objective of this thesis is to develop untrained DNN based OTFS de-

tectors that can eliminate the training process for the DNN and achieve high

performance with low computational complexity. While existing OTFS detectors

have demonstrated good SER performance, they suffer from high computational

complexity when OTFS frame size increases. Additionally, some detectors perform

poorly under ill-conditioned OTFS channels (i.e., high interference exists).

The first research problem we investigated in this thesis is how to eliminate

high computational complex matrix inversion operation within the state-of-the-art
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1.1. RESEARCH PROBLEMS AND CONTRIBUTIONS

OTFS detector (i.e., BPIC [8]). We propose an untrained DNN denoiser to replace

the MMSE one within the BPIC. We want to improve BPIC because the MMSE

denoiser’s performance is limited in terms of SER performance and computational

complexity.

The main contribution of this architecture is that it is the first to combine un-

trained DNN (i.e., DIP), Bayesian inference, and PIC concept in OTFS detector

design. Specifically, we propose an untrained DNN denoiser based on the DIP,

decoder DNN structure, and stopping criteria, referred to as the D-DIP denoiser.

We use stopping criteria to control the iterative denoising process of D-DIP. We

then combine the D-DIP denoiser and BPIC for iterative symbol detection, leading

to the D-DIP-BPIC OTFS detector. The SER performance and computational

complexity of this architecture are presented in [C1], considering the rectangular

(i.g., high interference exists) and ideal waveforms (i.g., low interference exists).

The simulation results show that the D-DIP-BPIC offers a close to EP and BPIC-

Net SER performance with much lower computational complexity under various

OTFS configurations.

The second research problem we investigate is how to embed domain knowledge

(i.g., wireless channel information) in the untrained DNN. We propose embedding

the graph representation of wireless interference into D-DIP to improve it further,

referred to as GDIP denoiser.

The main contribution of this architecture is that it is the first to combine graph

representation of wireless interference and untrained DNN in the OTFS detec-

tor design. We first design a graph based on the wireless interference among the

transmitted symbols seen at the receiver side. We then construct the adjacency

matrix based on the designed graph. Finally, we embed the adjacency matrix and

additional layer after D-DIP. The simulation results show that the GDIP denoiser

significantly reduces the number of iterations needed to denoise the received signal
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1.2. THESIS OUTLINE

compared to the D-DIP one. Additionally, after being combined with BPIC, the

proposed GDIP-BPIC is the only detectors that achieve a near EP SER perfor-

mance under various OTFS configurations, while GDIP-BPIC has a much lower

complexity.

1.2 Thesis Outline

Chapter 1 explains the research motivation and research problems. A brief overview

of state-of-the-art OTFS detectors is also presented.

Chapter 2 investigates the basic concept of symbol detection and existing state-of-

the-art detectors, consisting of linear, iterative, and training-based DNN detectors.

Then an investigation on untrained DNN approaches, i.e., deep image prior and

untrained graph convolutional network, is conducted.

Chapter 3 explains the OTFS system model, consisting of an OTFS transmit-

ter, wireless channel, and OTFS receiver. We analyze the OTFS systems with

different waveforms (i.e., rectangular and ideal waveforms) and different Doppler

(i.e., integer and fractional Doppler). We then analyze the corresponding channel

conditions.

Chapter 4 presents an untrained DNN OTFS detector consisting of the D-DIP

denoiser and BPIC. We analyze the convergence of the D-DIP denoiser and com-

pare the SER performance of the proposed detector with existing state-of-the-art

OTFS detectors.

Chapter 5 discusses the approach of embedding graph interference knowledge into

the D-DIP denoiser. We present a graph representation of the wireless interference

and create a new denoiser architecture by embedding the graph into the denoiser

design.
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1.2. THESIS OUTLINE

Chapter 6 summarizes the thesis and provides some insights into future work.
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Chapter 2

Background

Symbol detection plays an essential role in communication systems, determining

the quality of the estimated transmitted symbols. In this chapter, we investigate

several types of detectors for wireless communication systems.

A general wireless transmission process is shown in Fig. 2.1, consisting of a trans-

mitter, wireless channel, and receiver. The received signal yc is obtained by passing

the transmitted symbols xc through the wireless channel matrix Hc, expressed as

yc = Hcxc + nc, (2.1)

where xc ∈ CNt represents the complex-valued vector of transmitted symbols (e.g.,

quadrature amplitude modulation (QAM) symbols) with size Nt. yc,nc ∈ CNr and

H ∈ CNr×Nt represent the complex-valued received signal, additive white Gaussian

noise (AWGN) with a zero mean and covariance matrix σ2INr , and channel matrix

respectively. INr is an Nr dimensional identical matrix, and Nt and Nr represent

the number of transmitted and received symbols, respectively. For convenience,
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2.1. LINEAR DETECTORS

Transmitter
Wireless 

Channel
Receiver

Signal 

detection

Figure 2.1: General wireless communication system

we transfer the complex-valued model in (2.1) to a real-valued model as

y = Hx+ n, (2.2)

where x =
[
ℜ(xc)

T ℑ(xc)
T

]T
∈ R2Nt , y =

[
ℜ(yc)

T ℑ(yc)
T

]T
∈ R2Nr , n =[

ℜ(nc)
T ℑ(nc)

T

]T
∈ R2Nr , H =

ℜ(Hc) −ℑ(Hc)

ℑ(Hc) ℜ(Hc)

 ∈ R2Nr×2Nt , ℜ(·) and ℑ(·)

takes the real and imaginary parts, respectively. We use this real-valued model

for the rest of this chapter.

Symbol detection is the process of estimating the transmitted symbols x from the

received signal y with the knowledge of channel information H. In this chapter,

we investigate several types of detectors, categorized as 1) linear, 2) iterative, and

3) training-based DNN detectors.

2.1 Linear Detectors

Classical linear detectors such as ZF and MMSE [4] are widely used. For ZF, the

transmitted symbol x̂ is estimated by a matrix inversion operation

x̂ = (HTH)−1HTy, (2.3)
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2.2. ITERATIVE DETECTORS

where (·)T represents the transpose of a matrix. Compared to ZF, MMSE considers

the noise in the symbol estimations process, expressed as

x̂ = (HTH+ σ2I)−1HTy. (2.4)

Typically, MMSE outperforms ZF because the noise impact is considered in the in-

version operation. However, the matrix inversion operation within ZF and MMSE

is costly for a large channel matrix. This will result in high computational complex-

ity when applied in OTFS systems, as the OTFS channel matrix size is relatively

large. Thus, they are not suitable to be implemented as OTFS detectors.

2.2 Iterative Detectors

Compared to linear detectors, iterative ones such as AMP [21], UAMP [24],

MMSE-BPIC [25], and EP [20] can achieve a better SER performance as they

use the Gaussian function to approximate the posterior probability distribution

of the transmitted symbols conditioned on the received signal. Typically, the pro-

cess within those detectors can be divided into symbol observation and symbol

estimation models. In the symbol observation model, the mean and variance of

the transmitted symbols are conducted based on the information of the received

signal, channel, and noise. In the symbol estimation model, the transmitted sym-

bols’ mean and variance are obtained by the Gaussian function (also known as

Bayesian estimation) and feedback to the observation model for the next itera-

tion. The iterative process will stop when the maximum number of iterations is

reached.
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2.2. ITERATIVE DETECTORS

2.2.1 Approximate Message Passing

AMP is a low-complexity algorithm proposed to solve sparse linear inverse prob-

lems in compressed sensing [21]. Its low complexity is because only the matrix-

vector multiplication is involved in its iterative process. It is also widely used in

wireless communication applications, e.g., MIMO detection [21] and OTFS detec-

tion [6].

We use the AMP algorithm proposed in [26] and [21]. The symbol observation

model is expressed as

V
(t)
k =

Nt∑
q=1

|hkq|2v(t)q , (2.5)

Z
(t)
k =

Nt∑
q=1

hkqx̂
(t)
q − V

(t)
k (yk − Z

(t−1)
k )

σ2 + V
(t−1)
k

, (2.6)

Σ(t)
q =

Nr∑
k=1

(|hkq|2(σ2 + V
(t−1)
k ))−1, (2.7)

r(t)q = x̂(t)
q + Σ(t)

q

Nr∑
k=1

hkq(yk − Z
(t)
k )

σ2 + V
(t)
k

, (2.8)

where hkq represents (k, q)-th entry of channel matrix H, and yk represents k-th

symbol in the received signal y, where k = 1, · · · , Nr, q = 1, · · · , Nt. x̂
(t)
q and v

(t)
q

are the estimated mean and variance of the q-th transmitted symbol, respectively.

When t = 1, we set x̂
(0)
q = 0, v

(0)
q = 1, and Z

(0)
k = yk, as shown in [26] and [21].

The symbol’s mean r
(t)
q in (2.8) and variance Σ

(t)
q in (2.7) are then forwarded to

the estimation model to perform the posterior mean and variance estimation [21]

x̂(t+1)
q = E

[
xq

∣∣∣r(t)q ,Σ(t)
q

]
, (2.9)

v(t+1)
q = Var

[
xq

∣∣∣r(t)q ,Σ(t)
q

]
, (2.10)

This process will repeat for t = 1, · · · , TAMP, where TAMP is the maximum number

11



2.2. ITERATIVE DETECTORS

of AMP iterations. Finally, the estimated symbol is outputted in vector form, as

x̂(TAMP) = [x̂
(TAMP)
1 , · · · , x̂(TAMP)

q , · · · , x̂(TAMP)
Nt

]T .

This form of AMP is named Bayes-optimal AMP, which can achieve Bayes-optimal

performance in i.i.d (sub)-Gaussian [26]. However, the AMP may file to converge

when the channel matrix H is ill-conditioned (e.g., large channel condition num-

ber, non-zero mean) [6], [24], [27]. Therefore, AMP may suffer from performance

degradation when applied in OTFS systems as the channel matrix in OTFS sys-

tems is probably ill-conditioned [28].

2.2.2 Unitary Approximate Message Passing

The UAMP proposed in [24] solves the problem of AMP by applying the unitary

transformation to model (2.2) instead of directly working on it. The model after

unitary transformation is obtained by SVD operation on channel matrix H (i.e.,

H = UΛV), expressed as in [24]

r = Φx+w, (2.11)

where r = UHy,Φ = UHH = ΛV. U,V are unitary matrix, Λ is a rectangular

diagonal matrix. The UAMP algorithm is implemented by replacing the channel

matrix H and received signal y with Φ and r, respectively, before executing the

AMP algorithm.

The UAMP performs better than AMP benefits from the SVD operation for the

unitary transformation. However, the computational complexity of the SVD op-

eration is high when applied in OTFS systems, as the OTFS channel matrix is

large.

12



2.2. ITERATIVE DETECTORS

2.2.3 Bayesian-based Parallel Interference Cancellation

BPIC combines the Bayesian inference and parallel interference cancellation (PIC)

concept. PIC is used to cancel the interference from the received signal iteratively,

and Bayesian inference is used to estimate the transmitted symbols. Typically,

BPIC is used together with MMSE denoiser for symbol estimation [8], [25]. BPIC

executes MMSE before BPIC iterations, similar to UAMP (i.e., SVD is executed

before AMP iteration).

BPIC consists of three modules: Bayesian symbol observation (BSO), Bayesian

symbol estimation (BSE), and decision statistics combining (DSC). BSO is a

matched filter-based PIC scheme that is used to estimate the transmitted symbols

in iteration t based on the estimated symbols x̂(t−1) from the previous iteration.

The BSO module is shown as

µ(t)
q = x̂(t−1)

q +
hT
q

(
y−Hx̂(t−1)

)
∥hq∥2

, (2.12)

where µ
(t)
q is the soft estimate of q-th symbol xq in iteration t, and hq is the q-th

column of matrix H. x̂(t−1) = [x̂
(t−1)
1 , · · · , x̂(t−1)

q , · · · , x̂(t−1)
2Nt

]T is the vector of the

estimated symbol. The variance Σ
(t)
q of the q-th symbol estimate is derived in[25]

as

Σ(t)
q =

1

(hT
q hq)2

 Nt∑
j=1
j ̸=q

(hT
q hq)

2v
(t−1)
j + (hT

q hq)σ
2

 , (2.13)

where v
(t−1)
j is the j-th element in a vector of symbol estimates variance v(t−1) in it-

eration t− 1, and v(t−1) = [v
(t−1)
1 , · · · , v(t−1)

q , · · · , v(t−1)
Nt

]T . We set v(0) = 0 because

we have no prior knowledge of the variance at the beginning. Then the estimated

symbol µ(t) = [µ
(t)
1 , · · · , µ(t)

q , · · · , µ(t)
Nt
]Tand varianceΣ(t) = [Σ

(t)
1 , · · · ,Σ(t)

q , · · · ,Σ(t)
Nt
]T

are forwarded to the BSE module.

13



2.2. ITERATIVE DETECTORS

In the BSE module, we compute the Bayesian symbol estimates and the variance

of the q-th symbol obtained from the BSO module. given as

x̂(t)
q = E

[
xq

∣∣∣µ(t)
q ,Σ(t)

q

]
=

∑
a∈Ω

ap̂(t)(xq = a|y) (2.14)

v(t)q = E
[∣∣∣xq − E

[
xq

∣∣∣µ(t)
q ,Σ(t)

q

]∣∣∣2] , (2.15)

where p̂(t) (xq|y) = N (xq : µ
(t)
q ,Σ

(t)
q ) is obtained from the BSO module, and it is

normalized so that
∑

a∈Ω p̂(t) (xq = a|y) = 1. The outputs of the BSE module,

x̂
(t)
q and v

(t)
q , are then sent to the following DSC module.

The DSC module performs a linear combination of the symbol estimates in two

consecutive iterations, shown as

x̂(t)
q =

(
1− ρ(t)q

)
x̂(t−1)
q + ρ(t)q x̂(t)

q (2.16)

v(t)q =
(
1− ρ(t)q

)
v(t−1)
q + ρ(t)q v(t)q . (2.17)

The weighting coefficient is determined by maximizing the signal-to-interference-

plus-noise-ratio variance, given as

ρ(t)q =
ϵ
(t−1)
q

ϵ
(t)
q + ϵ

(t−1)
q

, (2.18)

where ϵ
(t)
q is defined as the instantaneous square error of the q-th symbol estimate,

computed by using the maximum ratio combining (MRC) filter, shown as

ϵ(t)q =

∥∥∥∥∥ hT
q

∥hq∥2
(
y−Hx̂(t)

)∥∥∥∥∥
2

. (2.19)

The weighted symbol estimates x̂(t), and their variance v(t) are then returned to

the BSO module to continue the iteration. After TBPIC iterations, x̂(TBPIC) is taken

14



2.2. ITERATIVE DETECTORS

as a vector of symbol estimates.

MMSE denoiser is used to yield good initial symbol estimates as

x̂(0) = (HTH+ σ2I)−1HTy (2.20)

This is because the BPIC performance is highly related to the symbol estimate

in the first iteration [25]. However, this also brings extra complexity due to the

matrix inversion inside the MMSE denoiser, which is costly when applied in OTFS

systems.

2.2.4 Expectation Propagation

EP algorithm can achieve a Bayes-optimal performance compared to AMP, UAMP,

and MMSE-BPIC. We consider the EP in [20], where the symbol observation

process can be expressed as

Σ(t) = (σ−2HHH+ λ(t−1))−1, (2.21)

µ(t) = Σ(t)(σ−2HHy+ γ(t−1)), (2.22)

v(t) = (diag(Σ(t))−1 − λ(t−1)), (2.23)

x(t) = v(t)(µ(t)diag(Σ(t))−1 − γ(t−1)), (2.24)

where λ(t),γ(t) are tunable parameters. When t = 1, they are set as λ(0) =

1,γ(0) = 0. Similar to AMP, the mean x(t) in (2.24) and variance v(t) in (2.23)

are then forwarded to the symbol estimation model, shown as

x̂(t) = E
[
x
∣∣x(t),v(t)

]
, (2.25)

v̂(t) = Var
[
x
∣∣x(t),v(t)

]
. (2.26)
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2.3. TRAINING-BASED DNN DETECTOR

We then calculate λ(t),γ(t) according to the estimated mean and variance in (2.25)

and (2.26), respectively.

λ(t) = (v̂(t))−1 − (v(t))−1, (2.27)

γ(t) = x̂(t)(v̂(t))−1 − x(t).(v(t))−1 (2.28)

Finally, we weight λ(t),γ(t) based on the previous and current iteration with a

damping factor η

λ(t) = (1− η)λ(t) + ηλ(t−1), (2.29)

γ(t) = (1− η)γ(t) + ηγ(t−1). (2.30)

The iterative process will repeat until the maximum number of EP iterations (i.e.,

t = 1, · · · , TEP). The final symbol estimation is shown as x̂(TEP)

However, the matrix inversion operation in (2.21) is done in every EP iteration,

which brings a high computational complexity when applied to OTFS systems.

Thus, low complexity and near EP performance detector design is attractive.

2.3 Training-based DNN Detector

Deep neural network (DNN) has been a hot spot in recent years. It can learn a

specific process using datasets to train the neural network, optimizing the neural

network parameters. A well-trained DNN can be used to predict the output for

a given input via the learned process. DNN-based detectors are widely used in

wireless communications, such as BPICNet [13], which can achieve a close to

EP SER performance with lower computational complexity. BPICNet embeds

learnable neurons into the BSO and DSC models for every BPIC iteration. The
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2.3. TRAINING-BASED DNN DETECTOR

equations (2.12),(2.13), and (2.19) can be rewritten for BPICNet as

µ(t)
q (θ

(t)
1 ) = x̂(t−1)

q + θ
(t)
1

hT
q

(
y−Hx̂(t−1)

)
∥hq∥2

, (2.31)

Σ(t)
q (θ

(t)
2 ) =

θ
(t)
2

(hT
q hq)2

 Nt∑
j=1
j ̸=q

(hT
q hq)

2v
(t−1)
j + (hT

q hq)σ
2

 , (2.32)

ϵ(t)q (θ
(t)
3 ) = θ

(t)
3

∥∥∥hT
q

(
y−Hx̂(t)

)∥∥∥2

, (2.33)

where θ
(t)
1 , θ

(t)
2 , and θ

(t)
3 for t = 1, · · · , TBPICNet are trainable neurons that are

adjusted by minimizing the loss function via backpropagation, shown as

L =
1

256

256∑
w=1

Nt∑
q=1

(xq,w − x̂(TBPICNet)
q,w )2 (2.34)

where w is the index of the training sample in each batch and x̂
(TBPICNet)
q,w refers to

the final BPICNet symbol estimate of xq,w obtained from the last layer.

Although the SER performance achieved by BPICNet is close to EP, there are two

main weaknesses for this trained DNN-based detector. First, it requires a large

amount of training data in the training process (i.e., 40 batches of 256 samples in

each epoch, resulting in approximately five million samples for 500 epochs). Thus,

the training process takes a long time before implementation. Second, it might

suffer from performance degradation when testing for unseen data (i.e., training for

some channel configurations but testing for different configurations, which often

happens as the mobility of mobile reflectors varies).
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2.4. UNTRAINED NEURAL NETWORK

2.4 Untrained Neural Network

Compared to training-based neural networks (e.g., DNN, GNN), untrained one

avoids the need for training data and the training process, which makes it attrac-

tive in OTFS detector design. Firstly, we consider an untrained DNN approach

named deep image prior [17]. We then consider an graph convolutional genera-

tor (GCG) proposed in [23] that combines the signal’s graph representation and

untrained CNN.

2.4.1 Deep Image Prior

DIP is an untrained DNN requiring no training datasets [17]. It was initially

proposed to solve image inverse problems as a denoiser. Recently, DIP has been

applied successfully in many areas (e.g., magnetic resonance imaging [18], positron

emission tomography [29], and compressed sensing [30]). DIP only needs a noisy

image and a well-constructed DNN for image denoising. This avoids the need for

labeled data that might be hard to obtain in some cases (e.g., medical images [18]).

Typically, in image denoising, the system model is different from (2.2), where H

is set to I. Thus, we consider an image denoising model x0 = x + n, where x is

the ground truth clean image, x0 is the noisy observation, and n is the noise. The

denoising process estimates the clean image x from the noise observation x0.

DIP uses a L-layer DNN as prior knowledge to solve the denoising problem by

assuming the DNN output is the estimated clean image, expressed as

x̂(i) = f
(i)
L (f

(i)
L−1(· · · (f

(i)
1 (z

(i)
1 )))), (2.35)

f
(i)
l (z

(i)
l ) = ReLU(W

(i)
l z

(i)
l + b

(i)
l ), (2.36)

where x̂(i) is the DNN output at iteration i that is assumed as the estimated
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2.4. UNTRAINED NEURAL NETWORK

(a) Ground truth clean image (b) Noisy observation

Figure 2.2: Images for denoising

clean image, and f
(i)
l (z

(i)
l ) and z

(i)
l represent the output and input of layer l at

iteration i, respectively. z
(i)
1 ∈ Rc1×1 is a random input vector, and it is fixed

during the iteration. W
(i)
l ∈ Rcl×cl−1 represents the weight matrix between layer l

and l − 1 at iteration i. b
(i)
l ∈ Rcl×1 is the bias vector in layer l at iteration i. cl

is the number of neurons in layer l. ReLU is the activation function. We use the

mean-square-error (MSE) loss function to calculate the loss, shown as

L(i) =
1

cL
∥x̂(i) − x0∥2, (2.37)

we then calculate the gradients and update the DNN weights and bias via opti-

mization techniques (e.g., Adam optimizer [31]).

Here, we give an example of image denoising, as shown in Fig.2.2. Fig. 2.2a is the

clean image x, and Fig. 2.2b is the noisy observation x0 after adding noise. Fig.

2.3 shows the iterative denoising performance in image representation. Fig. 2.3a

shows that at iteration 1, the DIP output x̂(1) is messy due to the random input to
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2.4. UNTRAINED NEURAL NETWORK

DIP. As the iteration goes on, DIP is learning the images and the basic structure

of the images is shown in Fig. 2.3b. Moreover, Fig. 2.3c shows that the DIP

output x̂(2500) is close to the ground truth clean image x at around 2500 iterations.

However, Fig. 2.3d shows that the DIP output is similar to noisy observation x0.

Also, Fig. 2.4 shows the peak signal to noise ratio (PSNR) measurement of the DIP

iterative denoising process: the value of PSNR determines the difference between

two images (i.e., a large PSNR means a slight difference, and vice versa for a small

PSNR). We use two curves to represent the PSNR of x̂(i) to x and x0, respectively.

Fig. 2.4 demonstrates that DIP has the ability to learn the clean image x and noise

n but learns the clean image faster than the noise. However, the DIP output will

eventually overfit to the noise, as shown at the point of 10000 iterations. Thus, a

proper stopping criteria for DIP is needed, as the fixed number of iterations used

in the DIP [17] is hard to generalize. That is because the iterations required for

denoising different images might differ [32]. Note that the image denoising model

can be extended to (2.2) for received signal denoising in wireless communication.

We will explain the details in Chapter 4.
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2.4. UNTRAINED NEURAL NETWORK

(a) Iteration 1 (b) Iteration 500

(c) Iteration 2500 (d) Iteration 10000

Figure 2.3: Iterative denoising in image representation
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Figure 2.4: Iterative denoising in PSNR representation

2.4.2 Graph Convolutional Generator

Different from DIP, which is used to denoise images in fixed grids (e.g., 512x512

sized images in Fig. 2.2). The untrained graph neural network proposed in [23]

can denoise un-euclidean data (i.e., a graph signal), referred to graph convolution

generator (GCG). A graph signal can be represented as G(v, ϵ), where v and ϵ

represent sets of nodes and edges in graph G. For example, we consider an undi-

rected graph with four nodes, as shown in Fig. 2.5. Node i, j are connected if

eij ̸= 0, then the adjacency matrix of the graph can be represented as A, where

each entry Ai,j = ej,i. Note that, for an undirected graph, the adjacency matrix

is symmetric. The neural network in the GCG can be seen as embedding graph
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Figure 2.5: An undirected graph signal example

information into the neural network layers. Thus, we can rewrite (2.36) as

f
(i)
l (z

(i)
l ) =

ReLU(W
(i)
l (A′z

(i)
l ) + b

(i)
l )) l = 1, · · · , L− 1

W
(i)
l (A′z

(i)
l ) + b

(i)
l ) l = L,

(2.38)

where A′ is a polynomial of the adjacency matrix, as shown in [23]. A′ :=∑M−1
m=0 hmA

m, where M determines the diffuse signals across (M − 1)-hop neigh-

borhoods, and hm is the corresponding coefficient.
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Chapter 3

OTFS Systems

The interference approximation and cancellation within those iterative detectors

are beneficial for OTFS systems, as the OTFS has the ability to model the inter-

ference efficiently. In this chapter, we investigate a single-input and single-output

(SISO) OTFS system used in [5] and [6], as illustrated in Fig. 3.1. First, we explain

the OTFS system from the transmitter, wireless channel, and receiver perspective.

We then analyze the OTFS input-output relationship under ideal and rectangular

waveforms with integer and fractional Doppler. Finally, we analyze the channel

conditions for OTFS systems with different waveforms and Doppler.

[ , ] [ , ]( )Heisenberg 

Transform

Wigner 

Transform
ChannelISFFT SFFT

[ , ] ( ) [ , ]

Time-Frequency Domain

Delay-Doppler Domain

Figure 3.1: OTFS modulation system model
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3.1 OTFS System Model

3.1.1 OTFS Transmitter

On the transmitter side, we allocate O-ary quadrature amplitude modulation (O-

QAM) symbols into an N × M grid in the DD domain, shown as x[k, l], where

N and M represent the number of subcarriers and time slots used, respectively.

k = 0, · · · , N − 1, l = 0, · · · ,M − 1, are the indices of discretized delay and

Doppler shifts, respectively. As illustrated in Fig. 3.1, the DD domain symbols

are transformed into the TF domain by using the inverse symplectic finite Fourier

transform (ISFFT) [5], shown as

X[n,m] =
1

NM

N−1∑
k=0

M−1∑
l=0

x[k, l]ej2π(
nk
N

−ml
M

), (3.1)

where n = 0, · · · , N − 1, m = 0, · · · ,M − 1.

The Heisenberg transform is applied to generate the time domain transmitted

signal with a transmit waveform gtx(t)

s(t) =
N−1∑
n=0

M−1∑
m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ), (3.2)

where ∆f is the subcarrier spacing and T = 1
∆f

. The transmitted signal then

passes through the wireless channel.
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3.1.2 OTFS Wireless Channel

The OTFS wireless channel is a time-varying multi-path channel, represented by

the impulse responses in the DD domain

h(τ, v) =
P∑
i=1

hiδ(τ − τi)δ(v − vi), (3.3)

where δ(·) is the Dirac delta function, hi ∼ N (0, 1/P ) denotes the i-th path gain,

and P is the total number of propagation paths. Each path represents a channel

between a moving reflector/transmitter and a receiver with different delay τi and

Doppler vi characteristics. The delay and Doppler shifts are given as

τi = li
1

M∆f
, (3.4)

vi =
ki + κi

NT
, (3.5)

where li and ki denote the indices of the delay index and integer Doppler index for

the i-th path, respectively. For each path, li ∈ [0, lmax] and ki ∈ [−kmax, kmax] are

randomly selected integers. κi represents the fractional Doppler associated with

the i-th path that is drawn from a uniform distribution (−0.5, 0.5] because the

Doppler index may not perfectly align with the grids as illustrated in [5].

3.1.3 OTFS Receiver

On the receiver side, the time domain received signal s(t) is obtained by passing

s(t) through a time-varying multi-path channel expressed as

r(t) =

∫ ∫
h(τ, v)s(t− τ)ej2πv(t−τ)dτdv =

P∑
i=1

his(t− τi)e
j2πvi(t−τi), (3.6)
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where h(τ, v) is the channel impulse response. The time domain received signal

r(t) is transformed to TF domain with a receive waveform grx(t)

Y (t, f) =

∫
g∗rx(t

′ − t)r(t′)e−j2πf(t′−t)dt′, (3.7)

we then can get a discrete TF domain received signal Y [n,m] by sampling Y (t, f)

at t = nT and f = m∆f , shown in [33] as

Y [n,m] = Y (t, f)|t=nT,f=m∆f =
N−1∑
n′=0

M−1∑
m′=0

X[n′,m′]

×
P∑
i=1

hie
j2πm′∆f(−τi)ej2πvi(−τi)ej2πvi(nT )

×Agrx,gtx((n− n′)T − τi, (m−m′)∆f − vi),

(3.8)

where Agrx,gtx((n− n′)T − τi, (m−m′)∆f − vi) is the ambiguity function between

grx(t) and gtx(t), which is used to model the interference generated by the pulses.

Finally, the DD domain received signal y[k, l] is obtained by applying SFFT to

Y [n,m] given by

y[k, l] =
1

NM

N−1∑
n=0

M−1∑
m=0

Y [n,m]e−j2π(nk
N

−ml
M

), (3.9)

3.2 OTFS with Ideal Waveform

In this section, we investigate the ideal waveform in the OTFS system, which can

help us find its upper bound despite its not applicable in the real world [5]. Under

ideal waveform, gtx(t) and grx(t) satisfy the bi-orthogonal property, resulting in

Agrx,gtx((n − n′)T − τi, (m − m′)∆f − vi) = 1, for n = n′,m = m′ and zeros

otherwise [33] in (3.8). The OTFS input-output relationship in the DD domain
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can then be expressed as [6]

y[k, l] =
P∑
i=1

Ni∑
γ=−Ni

hi
1− e−j2π(−γ−κi)

N −Ne−j2π
−γ−κi

N

e−j2π
li(ki+κi)

NM

×x[[k − ki + γ]N , [l − li]M ] + w[k, l],

(3.10)

where Ni < N is an integer, w[k, l] is the Gaussian noise in the DD domain that

follows N (0, σ2
c ), σ

2
c is the noise variance. The received signal y[k, l] is a linear

combination of S = ΣP
i=12Ni + 1 transmitted signal. The transmitted signals

x[[k−ki+γ]N , [l− li]M ], for γ = −Ni, · · · , Ni and γ ̸= 0 are treated as interference

to the signal x[[k − ki]N , [l − li]M ], referred to as inter-Doppler interference (IDI)

[5]. The matrix-vector form of (3.10) is shown as

yDD = HidealxDD +wDD, (3.11)

where yDD,xDD,wDD ∈ CNM×1 represent the received signal, transmitted signal,

and noise in the DD domain, respectively. The (k + Nl)-th element of yDD is

yk+Nl = y[k, l] for k = 0, · · · , N − 1, l = 0, · · · ,M − 1, and similar for xDD and

wDD. Hideal ∈ CNM×NM is the effective channel matrix with the ideal waveform

in the DD domain, and it can be expressed as [6]

Hideal =
P∑
i=1

Ni∑
γ=−Ni

IN(−[γ − ki]N)⊗ [IM(li)hi

×
(

1− e−j2π(−γ−κi)

N −Ne−j2π
−γ−κi

N

)
e−j2π

li(ki+κi)

NM ],

(3.12)

where IN(−[γ − ki]N) is an N × N matrix that circularly shifts the rows of the

identity matrix by −[−γ − ki]N , and similar for IM(li).

When only the integer Doppler exists (i.e., κi = 0, ∀i). IDI disappears as the
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Doppler frequency exactly matches the corresponding Doppler taps. By replacing

Ni = 0, the received signal in (3.10) can be rewritten as [5]

y[k, l] =
P∑
i=1

hie
−j2π

liki
NM x[[k − ki]N , [l − li]M ] + w[k, l], (3.13)

and correspondingly, the Hideal in integer Doppler cases can be simplified as [6]

Hideal =
P∑
i=1

IN(ki)⊗
(
IM(li)hie

−j2π
liki
NM

)
. (3.14)

3.3 OTFS with Rectangular Waveform

We analyze a more practical rectangular waveform commonly used in the litera-

ture, as the ideal waveform can not be used in practice. Under the rectangular

waveform, the bi-orthogonal property does not exist. Thus, interference generated

in (3.8) degrades the OTFS system performance. Here, we assume the rectangu-

lar pulse has an amplitude of 1√
T

for t ∈ [0, T ], and 0 otherwise. The OTFS

input-output relationship in the DD domain is expressed as [5],

y[k, l] =
P∑
i=1

Ni∑
q=−Ni

hie
j2π(

l−li
M

)(
ki+κi

N
)αi(k, l, q)

×x[[k − ki + q]N , [l − li]M ] + w[k, l],

(3.15)

where

αi(k, l, q) =


1
N
(βi(q)− 1)e−j2π

[k−ki+q]N
N , 0 ≤ l < li

1
N
βi(q), li ≤ l < M,

(3.16)

and

βi(q) =
e−j2π(−q−κi) − 1

e−j 2π
N

(−q−κi) − 1
. (3.17)
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3.3. OTFS WITH RECTANGULAR WAVEFORM

Note the rectangular pulses do not satisfy the biorthogonality conditions. Thus,

there will be inter-symbol interference (ISI) and inter-carrier interference (ICI)

due to the ambiguity function and IDI due to the fractional Doppler. That differs

from the ideal waveform, where ISI and ICI do not exist. We then write the

matrix-vector form of (3.15) as

yDD = HrectxDD +wDD, (3.18)

where yDD,xDD,wDD ∈ CNM×1 represent the received signal, transmitted signal,

and noise in the DD domain, respectively. Hrect is the effective channel matrix

with the rectangular waveform in the DD domain, and it can be expressed as [34]

Hrect =
P∑
i=1

Ni∑
q=−Ni

IN(−[q − ki]N)⊗
(
ΛIM(li)hie

−j2π
li(ki+κi)

MN

)
·∆−[q−ki]N , (3.19)

where Λ ∈ CM×M is a diagonal matrix and its l-th diagonal element Λll is shown

as

Λll =

e−j2π
l(ki+κi)

MN (βi(q)− 1)/N, 0 ≤ l < li,

e−j2π
l(ki+κi)

MN βi(q)/N, li ≤ l < M.

(3.20)

∆−[q−ki]N ∈ CMN×MN is an MN × MN block diagonal matrix by shifting the

block in matrix ∆ by −[q−ki]N , where ∆ = diag[∆0, · · · ,∆N−1], ∆n = ΨIM(li),

where Ψ ∈ CM×M is a diagonal matrix with l-th diagonal element Ψll expressed

as

Ψll =

e−j 2πl
N , 0 ≤ l < li

1, li ≤ l < M.

(3.21)

When only integer Doppler exists (i.e., κi = 0, ∀i), we can rewrite (3.15) as [5]

y[k, l] =
P∑
i=1

hie
j2π(

l−li
M

)
ki
N αi(k, l)x[[k − ki]N , [l − li]M ] + w[k, l], (3.22)
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3.4. OTFS CHANNEL CONDITION ANALYSIS

where

αi(k, l) =


N−1
N

e−j2π
[k−ki]N

N , 0 ≤ l < li

1, li ≤ l < M.

(3.23)

Therefore, The Hrect can be simplified as

Hrect =
P∑
i=1

IN(ki)⊗
(
ΛIM(li)hie

−j2π
liki
MN

)
·∆ki , (3.24)

and

Λll =

e−j2π
lki
MN (N − 1)/N, 0 ≤ l < li

e−j2π
lki
MN N, li ≤ l < M.

(3.25)

For convenience, we transfer the complex-valued model in (3.11) and (3.18) into

the real-valued model and omit the subscript, following the same transformation

in (2.2). Thus we have

y = Hx+ n (3.26)

where x =
[
ℜ(xDD)

T ℑ(xDD)
T

]T
∈ R2NM , y =

[
ℜ(yDD)

T ℑ(yDD)
T

]T
∈ R2NM ,

n =
[
ℜ(wDD)

T ℑ(wDD)
T

]T
∈ R2NM ,H =

ℜ(Hideal) −ℑ(Hideal)

ℑ(Hideal) ℜ(Hideal)

 ∈ R2NM×2NM ,

or H =

ℜ(Hrect) −ℑ(Hrect)

ℑ(Hrect) ℜ(Hrect)

 ∈ R2NM×2NM depending on different waveforms

used, we assume H is perfectly known at the receiver, and we use the model (3.26)

for the rest of the thesis.

3.4 OTFS Channel Condition Analysis

OTFS system’s performance is highly related to the channel conditions, as symbol

detection in an ill-conditioned channel is challenging [20], [35]. Typically, the
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3.4. OTFS CHANNEL CONDITION ANALYSIS

channel condition number, defined as the ratio of maximum to minimum singular

values of the channel matrix, is used to evaluate the channel condition. A large

condition number implies an ill-conditioned channel. Therefore, a small channel

condition number is often desired, as it impacts the robustness of matrix inversion

and decomposition in the symbol detection process [35].

Here, we evaluate the channel condition number of the OTFS channel matrix for

different waveforms and Doppler cases. We generate 5000 channel realizations

for the OTFS setting of N = M = 8, lmax = 7, kmax = 2, P = 8, Ni = 1. Fig.

3.2 shows the cumulative distribution function (CDF) for four different cases: 1)

the ideal waveform with integer Doppler, 2) the ideal waveform with fractional

Doppler, 3) the rectangular waveform with integer Doppler, 4) the rectangular

waveform with fractional Doppler. Fig. 3.2 demonstrates that as the interference

in the OTFS channel increases, so does the channel condition number, resulting

in an ill-conditioned OTFS channel matrix. Specifically, fractional Doppler will

result in a large condition number compared to integer one. The condition number

in the rectangular waveform is larger than that in the ideal one, as ISI and ICI

are considered additional interference in the former case.
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Figure 3.2: CDF of channel condition number
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Chapter 4

D-DIP-BPIC

In Chapter 3, we analyzed OTFS systems with rectangular and ideal waveform,

and their corresponding channel conditions. The channel in the rectangular wave-

form is typically ill-conditioned, which will influence the symbol detection quality

on the receiver side. To achieve excellent SER performance under ill-conditioned

OTFS channels (i.e., under rectangular waveform), we propose an untrained DNN

based OTFS detector. In this chapter, we explain the D-DIP-BPIC OTFS de-

tector, consisting of the D-DIP denoiser and BPIC, as shown in Fig.4.1. First,

we present the decoder DNN architecture of the D-DIP denoiser and analyze the

stopping criteria and its convergence. We then investigate the computational

complexity and SER performance of the D-DIP-BPIC OTFS detector.
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4.1. D-DIP DENOISER
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Figure 4.1: D-DIP-BPIC model

4.1 D-DIP Denoiser

4.1.1 Decoder DNN Architecture

The NN architecture used in D-DIP is shown in the decoder NN block in Fig. 4.1,

consisting of L = 4 fully connected (FC) layers, and the Tanh activation function

is used after each FC layer. The NN output is defined as

x̃(i) = αf
(i)
L (f

(i)
L−1(· · · (f

(i)
1 (z

(i)
1 )))), (4.1)

where x̃(i) is the NN output in iteration i. The NN first layer input z
(i)
1 ∈ R4×1 is

a random vector drawn from a normal distribution N (0,1) and it is fixed during

the iterative process. α is a constant used to control the output range of the NN.

We use f
(i)
l (z

(i)
l ) to represent the NN output of layer l at iteration i, where z

(i)
l

is the input of layer l, which is also the output of layer l − 1 in iteration i (i.e.,

z
(i)
l = f

(i)
l−1(z

(i)
l−1)). The layer l output is defined as

f
(i)
l (z

(i)
l ) = Tanh(W

(i)
l z

(i)
l + b

(i)
l ) (4.2)

where W
(i)
l ∈ Rcl×cl−1 represents the weight matrix between layer l and l − 1 at

iteration i. b
(i)
l ∈ Rcl×1 is the bias vector in layer l at iteration i. Each entry
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Figure 4.2: D-DIP iterative process

of W
(0)
l and b

(0)
l are initialized following a uniform distribution with a range of

( −1√
cl
, 1√

cl
) [36], where cl is the output size of layer l. c1 = 8, c2 = 16, c3 = 32, c4 =

2NM .

We then use the MSE loss function to calculate the difference between the denoised

signal x̃(i) obtained from (4.1) and the received signal y shown as

L(i) =
1

2NM
∥Hx̃(i) − y∥2. (4.3)

Adam optimizer [31] is then used to calculate the gradient and update weights

W
(i)
l and biases b

(i)
l by using the calculated error in (4.3).
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Figure 4.3: CDF of the iterations needed for D-DIP to satisfy stopping criteria

4.1.2 Stopping Criteria and Convergence Analysis

As discussed in Chapter 2, the DIP output will eventually overfit to noise without

early stopping. Here, we use the stopping criteria in [37] to control the iterative

process of D-DIP by using the computed variance of the NN output in (4.1). This

is given as

ς(i) =
1

D

i∑
j=i−D

∥x̃(j) − 1

D

i∑
j′=i−D

x̃(j′)∥2, i ≥ D, (4.4)

where ς(i) is the variance value at iteration i. D is the window size that determines

how many outputs are used for calculating the variance. When i < D, the variance

calculation is inactive. We control the iterative process by comparing ς(i) with a

threshold Ψ. If ς(i) < Ψ, the iterative process of D-DIP will stop. When the

stopping criteria is satisfied, the D-DIP output x̃(ID−DIP) will be used as initial

symbol estimates in BPIC (i.e., x̂(0) = x̃(ID−DIP), in (2.12)), where ID−DIP denotes

the last D-DIP iteration. Otherwise, the iterative process of D-DIP is repeated,

as shown in the D-DIP denoiser block in Fig. 4.1.

37



4.2. COMPLEXITY ANALYSIS

Fig. 4.2 gives an example of the SER performance of iterative D-DIP denoising

and the corresponding variance value ς(i) with an OTFS configuration N = M =

8, lmax = 7, kmax = 2, P = 8, ideal waveform, and integer Doppler. 4-QAM

modulation is considered, and the signal to noise ratio (SNR) is set to 15dB.

The label ’SER w.r.t (i)’ shows the SER computed based on the output of (4.1)

for a different iteration number (i). The SER curve decreases as the number of

iterations increases. However, the SER increases after it reaches the valley. This

is referred to as the DIP overfitting problem, as discussed in Chapter 2. The

corresponding variance curve is also shown in Fig. 4.2, starting from iteration 30

(i.e., D = 30). We control the iterative process by comparing ς(i) with a threshold

Ψ. If ς(i) < Ψ, the iterative process of D-DIP will stop. For example, if we

set Ψ = 0.001, the D-DIP will stop at around 50 iterations, which shows almost

the lowest SER value. Moreover, Fig. 4.3a shows the CDF of ID−DIP (i.e., the

number of D-DIP iterations needed to satisfy the stopping scheme in (4.4) for

D = 30,Ψ = 0.001 ). The figure shows that the number of iterations required for

D-DIP to converge, ID−DIP, is not sensitive to the noise level (i.e., SNR values).

Additionally, Fig. 4.3b shows the CDF of ID−DIP for different OTFS sizes (i.e.,

N = 8, 16, 24, 32). The figure demonstrates that ID−DIP is not sensitive to the

OTFS frame size. Therefore, the stopping criteria can be generalized to various

scenarios (e.g., different SNR values and OTFS frame size), and the computational

complexity of D-DIP is independent of the iteration number ID−DIP.

4.2 Complexity Analysis

In this section, we analyze the computational complexity of the proposed D-

DIP-BPIC detector. As for the complexity of D-DIP, the computational com-

plexity of fully-connected layers is matrix-vector multiplications with a cost of

O(M2N2ID−DIP), where ID−DIP denotes the number of iterations needed for D-
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4.3. SIMULATION RESULTS

OTFS Detector Computational Complexity order
MP[5] O(MNPOTMP)
VB[7] O(MNPOTVB)

MMSE[4] O(M3N3)
D-DIP O(M2N2ID−DIP)
AMP[6] O(M2N2IAMP)
UAMP[6] O(M3N3 +M2N2TUAMP)

MMSE-BPIC[8] O(M3N3 +M2N2TBPIC)
EP[9] O(M3N3TEP)

BPICNet[13] O(M3N3 + (MN +M2N2)TBPICNet)
D-DIP-BPIC O(M2N2ID−DIP +M2N2TBPIC)

Table 4.1: Computational complexity comparison

DIP. The computational complexity for different detection algorithms is shown

in Table 4.1, where TMP , TV B, TAMP , TUAMP , TBPIC , TEP , TBPICNet represent the

iterations needed for the MP, VB, AMP, UAMP, BPIC, EP, and BPICNet detec-

tors, respectively. N,M,P , and O represent the number of subcarriers, timeslots,

paths, and modulation order, respectively. Our proposed D-DIP-BPIC detector

has a higher complexity than those low complex ones (e.g., MP, VB, and AMP).

It has a lower complexity order compared to the state-of-the-art high complexity

OTFS detectors (e.g., MMSE-BPIC, UAMP, EP, and BPICNet). On the other

hand, the complexity of high computational complexity order detectors increases

significantly as the OTFS size increases compared to the D-DIP-BPIC.

4.3 Simulation Results

In this section, we evaluate the performance of our proposed detector by comparing

its SER performance with those in MMSE[4], AMP [6], UAMP [6], MMSE-BPIC

[8], BPICNet [13], and EP [9]. For the simulations, we set N = M = 8, P =

8, lmax = 7, kmax = 2, ∆f = 15kHz. The carrier frequency is set to fc = 10GHz.
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4.3. SIMULATION RESULTS

We set Ni = 1 for the fractional Doppler case. Note that the OTFS settings we use

in this thesis differ from those in [C1], as we want to unify them for the entire thesis.

The 4-QAM modulation is employed for the simulations, and we set α = 1/
√
2,

which corresponds to the normalized power of constellations to normalize the NN

output. We use the Adam optimizer with a learning rate of 0.01 to optimize the

weights and biases in the NN. The stopping criteria parameter for (4.4), D, is

set to 30, and the threshold Ψ is set to 0.001. The number of iterations for the

AMP, UAMP, BPIC, EP, and BPICNet is set to 10 to ensure convergence. For the

training setting of BPICNet, we use the same configuration as above. 500 epochs

are used during the training process. In each epoch, 40 batches of 256 samples

were generated. The values of SNR are uniformly distributed in a certain range.

Different waveforms (i.e., ideal and rectangular) and Doppler cases (i.e., integer

or fractional Doppler) are trained for BPICNet separately.

Fig. 4.4 shows the SER performance of different OTFS detectors for the ideal

waveform. In Fig. 4.4a, DIP performs the same as AMP. However, the latter

suffers from performance degradation when fractional Doppler is considered, as

shown in Fig. 4.4b. D-DIP-BPIC achieves a close to EP and BPICNet SER

performance, slightly outperforming MMSE-BPIC and UAMP for both cases in

the ideal waveform.

Fig. 4.5 shows the SER performance of different OTFS detectors for the rectan-

gular waveform where all the detectors’ SER performance degrades compared to

the SER performance in the ideal waveform, as high interference exists (i.e., ill-

conditioned channel). However, the outperformance of D-DIP-BPIC over MMSE-

BPIC and UAMP is widened to around 0.5 dB compared to the ideal waveform,

and so does for EP and BPICNet. The AMP outperforms D-DIP under the integer

case as it has the ability to cancel the ICI and ISI. However, this outperformance

disappears in the fractional Doppler cases as IDI occurs.
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Figure 4.4: SER performance of the ideal waveform

Fig. 4.6a evaluates the scalability of our proposed D-DIP-BPIC detector. As we

increase the number of time slots M = 8, 16, 24, 32 and fix the number of sub-

carriers N = 8, D-DIP-BPIC achieves the best SER performance among all those

detectors. Fig. 4.6b shows that when the number of paths (e.g., mobile reflectors)

increases, the proposed D-DIP-BPIC detector achieves the best SER performance

compared to others. While AMP suffer from performance degradation due to the

ill-conditioned channel, as discussed in Chapter 2.2.1.

In conclusion, the proposed D-DIP-BPIC offers close to EP and BPICNet SER

performance with much lower complexity under various OTFS configurations. D-

DIP-BPIC is shown to be robust to the rectangular waveform. This is beneficial,

as the rectangular waveform is more practical in real environments. In contrast,

UAMP and MMSE-BPIC suffer from performance degradation under this wave-

form compared to the ideal one. Additionally, D-DIP-BPIC is robust to the OTFS

frame size and scattering environment (i.e., large number mobile reflectors exist).
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Figure 4.5: SER performance of the rectangular waveform
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Figure 4.6: SER performance of the rectangular waveform with fractional Doppler
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Chapter 5

GDIP-BPIC

In the previous chapter, the proposed D-DIP-BPIC detector demonstrated excel-

lent SER performance with low computational complexity order under ill-conditioned

OTFS channels discussed in Chapter 3. However, this performance is at the cost

of iterations needed for D-DIP to denoise the received signal. Thus, reducing the

number of iterations for the denoising process is preferable. In this chapter, we

propose to embed the graph concept into the D-DIP denoiser design. Specifically,

we first explain the graph representation of wireless interference. We then present

how to embed the graph representation into the D-DIP denoiser neural network

layers. In the simulations, we consider 16-QAM and 64-QAM to show the robust-

ness of the proposed detector under high modulation order. The reason is that

most existing detectors are designed for low modulation orders, and they perform

poorly under high ones [38]. We then investigate the impact of channel estimation

error on the proposed OTFS detector. Finally, we compare the SER performance

of the proposed detector in OTFS with it in the OFDM system.
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5.1 GDIP Denoiser

5.1.1 Graph Representation of Wireless Interference

The graph representation of wireless interference is shown as a directed graph in

Fig. 5.1, where nodes x1, · · · , x2NM represent the transmitted symbols seen at

the receiver, and x = [x1, · · · , x2NM ] in (3.26). We refer to x1, · · · , x2NM as the

features of the transmitted symbols and ei,j as an edge representing the interference

between xi and xj. ei,j ̸= ej,i as the interference from xi to xj is different from the

interference from xj to xi. The value of edges is defined as ei,j =
hT
i hj

∥hj∥2 , where hi,j,

hj represent the (i, j)-th entry and j-th column of channel matrix H, respectively.

Also, each node has a self-loop when updating its feature, as shown in Fig. 5.1.

Thus, the adjacency matrix of the graph is expressed as F ∈ R2NM×2NM , where

the (i, j)-th entry of F is ei,j.

5.1.2 Graph Embedding

The interference graph knowledge is embedded after the decoder NN in Fig. 5.2.

We use the decoder NN (i.e., layer from 1 to L) to obtain the initial node features

and the graph embedding process (i.e., layer L + 1) to measure the interference

between transmitted symbols. As a consequence, (4.2) can be expanded to

f
(i)
l (z

(i)
l ) =

Tanh(W
(i)
l z

(i)
l + b

(i)
l ) l = 1, 2, 3, 4,

Tanh(W
(i)
l (Fz

(i)
l ) + b

(i)
l )) l = 5.

(5.1)

Note that the output size for each NN layer is c1, · · · , c5 = 8, 16, 32, 2NM, 2NM ,

respectively. From (5.1), we can see that the wireless interference graph embedding

process adds the 5-th layer in GDIP NN design, which makes GDIP learn the

signal using the NN weights (i.e., W
(i)
l ), biases (i.e., b

(i)
l ), and the neighboring
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Figure 5.1: Directed wireless interference graph

information from the adjacency matrix (i.e., F). In contrast, D-DIP learns the

signal by fitting only the weights and biases of the NN (i.e., layers 1 to 4), as

discussed in Chapter 4.1.1. Therefore, GDIP will learn faster than D-DIP in

signal denoising.

Here, the graph design differs from the GCG in [23]. Specifically, we use a directed

graph to represent the wireless interference relationship, i.e., ei,j ̸= ej,i in the

adjacency matrix. That is because OTFS has different wireless channel responses

for different subcarriers and Doppler shifts. In [23], an undirected graph is used

that implies ei,j = ej,i, which is not relevant to our OTFS scenarios. Secondly, we

use a L layer decoder NN to get the initial node features for the graph in the last

layer, followed by the adjacency matrix to update those features to yield the final

symbol estimates (i.e., denoised signal). In contrast, the initial node features are

45



5.2. SIMULATION RESULTS

Adam for updating 

weights and biases
,

( ) <

Calculate 

MSE loss

( )

No

Yes

GDIP Denoiser

FC layer

Tanh

Adjacency matrix

interference 

knowledge

Decoder NN

BPIC

GDIP-BPIC Detector

( )

Figure 5.2: GDIP-BPIC model

set randomly in [23], which may result in a longer feature learning process.

We follow the same way to combine GDIP with BPIC, as discussed in Chapter 4.

We use the GDIP output x̃(IGDIP) as the initial symbol estimates of BPIC, leading

to the GDIP-BPIC detector.

5.2 Simulation Results

In this section, we first compare the proposed D-DIP and GDIP denoiser with

state-of-the-art untrained graph neural network (i.e., GCG [23]). We then com-

pare the proposed GDIP-BPIC detector with the state-of-the-art OTFS detec-

tors, MMSE[4], AMP[6], UAMP[6], MMSE-BPIC [8], BPICNet[13] and EP [9].

Finally, we consider the impact of channel estimation error on the proposed

detector and its performance in the OFDM system. Unless specified, we set

N = 8,M = 8, lmax = 7, kmax = 2, P = 8 ,and use 16-QAM and rectangular

waveform and fractional Doppler for all the simulations. We set Ni = 1 in the

fractional Doppler case. For both D-DIP and GDIP, the learning rate is 0.01,

and α = 3/
√
10 for 16-QAM modulation. For the stopping criteria, we set the

threshold Ψ = 0.001 and the window size D = 120, 200 for GDIP and D-DIP,

respectively. The number of iterations for AMP and UAMP is set to 30 to ensure
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convergence, and they are set to 10 for BPIC, EP, and BPICNet. For the training

of BPICNet, we follow the same settings as Chapter 4 with 16-QAM modulation

instead.

We first compare the SER performance of GDIP, D-DIP, and GCG [23]. Fig.

?? demonstrates that the proposed GDIP denoiser needs significantly fewer it-

erations to denoise the received signal than D-DIP. . . . The reason is that the

adjacency matrix F in (5.1) incorporates prior information (i.e., graph interfer-

ence knowledge) in the signal denoising process [23]. Also, it outperforms GCG

in performing OTFS symbol detection. Fig. 5.3b shows the cumulative density

function (CDF) of the number of iterations needed for D-DIP and GDIP to satisfy

the stopping criteria in (4.4). It shows that the stopping criteria is not sensitive

to SNR. Thus, we can apply the same parameters in the stopping criteria for

various SNR values. Also, it shows that the proposed GDIP denoiser needs signif-

icantly fewer iterations to denoise the received signal than D-DIP, which results in

a lower computational complexity for the GDIP-BPIC detector than D-DIP-BPIC

one. D-DIP-BPIC is less complex than those high complexity detectors (e.g., EP,

MMSE-BPIC, UAMP, BPICNet), as discussed in Chapter 4.2. Therefore, the

proposed GDIP-BPIC is the most computationally advantageous detector com-
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Figure 5.3: SER performance under untrained environment

pared to state-of-the-art OTFS ones. Here, the low complexity detectors, e.g.,

MP, AMP, and VB, are not considered, as their SER performance is much worse

than our proposed detectors.

The SER performance comparison of the proposed GDIP and GDIP-BPIC to

state-of-the-art OTFS detectors is shown in Fig. 5.3, where ”BPICNet-trained” is

trained under lmax = 7, kmax = 2, P = 8, and ”BPICNet-untrained” is trained

under lmax = 4, kmax = 2, P = 4. The Fig. 5.3 shows that GDIP outper-

forms MMSE-BPIC and AMP by 1dB, and after being combined with BPIC,

the proposed GDIP-BPIC outperforms UAMP and BPICNet-trained/BPICNet-

untrained by around 2dB. Also, its SER performance is close to EP, which has a

much higher computational complexity. Moreover, BPICNet-trained outperforms

BPICNet-untrained by around 0.5dB. This is referred to as the training dataset fi-

delity issue, which is the performance degradation when the training environment
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Figure 5.4: SER performance of GDIP for different modulation order

7 9 11 13 15

SNR

10
-4

10
-3

10
-2

10
-1

S
E

R

MMSE[4]

AMP[6]

UAMP[6]

MMSE-BPIC[8]

BPICNet[13]

GDIP

GDIP-BPIC

EP[9]

(a) 4-QAM

16 18 20 22 24

SNR

10
-4

10
-3

10
-2

10
-1

10
0

S
E

R

MMSE[4]

AMP[6]

UAMP[6]

MMSE-BPIC[8]

BPICNet[13]

GDIP

GDIP-BPIC

EP[9]

(b) 16-QAM

26 28 30 32 34

SNR

10
-4

10
-3

10
-2

10
-1

10
0

S
E

R

MMSE[4]

AMP[6]

UAMP[6]

MMSE-BPIC[8]

BPICNet[13]

GDIP

GDIP-BPIC

EP[9]

(c) 64-QAM

Figure 5.5: SER performance comparison of state-of-the-art OTFS detectors for
different modulation order

and testing environment are mismatched. This often happens in real wireless en-

vironments, as the path delay, number of mobile reflectors, and their mobility are

unknown beforehand.

Moreover, we investigate the impact of modulation order on the proposed GDIP

denoiser. Fig. 5.2 shows the SER performance of the GDIP denoiser for different

modulation orders with different SNR values. Here, we make a fair comparison

at the same SER level by considering different SNR values for each modulation

order. For 4-QAM 15dB, Fig. 5.4a shows that GDIP needs around 60 iterations

to converge. While for 16-QAM 24dB and 64-QAM 34dB, GDIP requires approx-

imately 150 and 800 iterations to denoise the received signal, as shown in Fig.

5.4b and Fig. 5.4c, respectively. From those results, we can see that as modu-
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lation order increases, the number of iterations needed for the GDIP denoiser to

denoise the received signal increases. The reason is that the NN needs a longer

learning process to learn complex signals. We then compare the SER performance

of GDIP-BPIC with other detectors for three different modulation orders (i.e.,

4-QAM, 16-QAM, and 64-QAM). TAMP and TUAMP are set to 10, 30, and 50 for

4-QAM, 16-QAM and 64-QAM, respectively. TBPIC = TEP = 10, and BPICNet

is trained individually for all those modulation orders. For GDIP, the windows

size D = 30, 120, 700 for 4-QAM, 16-QAM, and 64-QAM, respectively. Fig. 5.5

shows the SER performance comparison of state-of-the-art OTFS detectors under

different modulation orders. In Fig. 5.5a, we can see GDIP-BPIC has a com-

parable SER performance with BPICNet and EP and outperforms UAMP and

MMSE-BPIC by around 0.5dB for 4-QAM. As for 16-QAM in Fig. 5.5b, GDIP-

BPIC outperforms UAMP, MMSE-BPIC, and BPICNet over 2dB and remains

comparable to EP. However, this outperformance is widened to 3dB for 64-QAM,

as shown in Fig. 5.4c. Thus, we can see that GDIP-BPIC and EP are robust to

modulation orders compared to UAMP, MMSE-BPIC, and BPICNet. However,

EP has significantly higher computational complexity than ours.

The impact of channel estimation error is investigated in Fig. 5.6. Here, we

consider a channel estimation error model in [5] as

ĥi = hi + ne, (5.2)

where ne ∼ CN (0, σ2
e). Fig. 5.6 demonstrates that the gap between GDIP-BPIC

and EP decreases as the error variance σ2
e increases. σ2

e = 0 represents perfect

channel state information. Therefore, the proposed GDIP-BPIC OTFS detector

is more robust to channel estimation error than EP. However, EP has significantly

higher computational complexity than ours.

Finally, we compare the proposed GDIP-BPIC’s performance under OFDM and
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OTFS systems. Here, we use the OFDM system model in [5], y = Hofdmx + z

where, x ∈ CN×1 y ∈ CN×1, z ∈ CN×1 is the transmitted, received OFDM symbol

and noise. Hofdm = WHtW
H , and W is N -point FFT matrix, Ht is the time

domain channel matrix, where the (p, q)-th entry is expressed as,

Ht[p, q] =
P∑
i=1

hiδ

[[
p− q − τiN

T

]
N

]
ej

2π(q−1)vi
N , p, q = 1, · · · , N (5.3)

Fig. 5.7 shows the SER performance of the proposed GDIP-BPIC detector under

4-QAM with ideal waveform and integer Doppler. We can see that OTFS outper-

forms OFDM by over 3dB due to the effective tracking of Doppler shift in the DD

domain by using OTFS.

In conclusion, we use graph embedding of wireless interference to reduce the num-

ber of iterations needed for D-DIP denoiser. The proposed GDIP-BPIC OTFS de-

tector outperfoms MMSE-BPIC, UAMP and BPICNet for both 16 and 64-QAM.

Training-based NN detector, e.g., BPICNet suffers from performance degradation

in untrained environment. However, our proposed GDIP-BPIC is independent

with traing datasets, thus, is beneficial for dynamic wireless environment.
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Chapter 6

Conclusion

In this thesis, we proposed a denoiser design based on untrained DNN to iteratively

denoise the received signal. We combined the denoiser with BPIC to perform iter-

ative symbol detection in OTFS systems. This combination shows excellent SER

performance and low complexity compared to state-of-the-art OTFS detectors.

6.1 Summary of the thesis

In Chapter 2, we investigated several types of detectors, including linear, iterative,

and training-based DNN detectors. We then showed the fundamental concept of

DIP for the image denoising process. Additionally, we showed how graph repre-

sentation can be embedded into the DIP neural network layer design.

In Chapter 3, we developed a SISO OTFS model. We analyzed the input-output

relationship in different waveforms and Doppler and the corresponding interfer-

ence. We then used the condition number to evaluate the OTFS channel condition

under different waveforms and Doppler. These analyses helped us in the OTFS

symbol detector design and the analysis of state-of-the-art OTFS detectors.
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In Chapter 4, we proposed a D-DIP denoiser to replace the high computational

complex MMSE one within the BPIC. The D-DIP denoiser combines the con-

cept of DIP, decoder-only DNN, and stopping criteria to iteratively denoise the

received signal. The simulation results showed that the proposed D-DIP-BPIC de-

tector offers comparable SER performance to EP and BPICNet with much lower

computational complexity under various OTFS configurations.

In Chapter 5, we proposed to embed the graph representation of wireless interfer-

ence into the D-DIP denoiser to improve its denoising performance further. The

simulation results showed that the GDIP denoiser needs significantly fewer iter-

ations to denoise the received signal than the D-DIP one. After being combined

with BPIC, the GDIP-BPIC outperforms others except EP under different OTFS

configurations, while GDIP-BPIC has a much lower computational complexity.

6.2 Future work

In this thesis, we proposed D-DIP and GDIP denoisers to iteratively denoise the

received signal to improve the BPIC’s symbol estimation performance. However,

the number of iterations needed for denoiser is a problem for high modulation order

(e.g., 64-QAM). The performance gap between the proposed OTFS detectors and

EP increases when the modulation order increases. Therefore, we will focus on

improving the proposed detectors’ performance under high modulation order in

the future.

The proposed detector’s performance under high IDI environments will be inves-

tigated in the future, as our current OTFS model has a small IDI due to the

small OTFS frame size. Moreover, in the future, we will investigate the proposed

detectors’ performance under more practical channel models (e.g., the 3GPP 3D-

urban macro (UMa) channel model). Furthermore, we will investigate the sparse
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property of the OTFS channel matrix in the untrained neural network design in

the future.
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