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ABSTRACT 

 
Humpback whale populations that migrate along Australian coastlines each year have 

rapidly increased in population size since modern whaling. This population growth has 

been associated with increased presence and activity of humpback whales in coastal 

embayments along the Australian coastlines, particularly mother-calf groups who use the 

sheltered waters to conserve energy. However, growing numbers in nearshore areas also 

increases the potential for disturbance from Defence, recreational and commercial 

activities. The disturbance of resting mothers and calves may have longer term 

implications for calf growth during key development stages. Jervis Bay is a coastal 

embayment in which increased numbers of mother-calf groups have been observed in 

the last two decades and is also an area of significant anthropogenic activity. This thesis 

aims to assess the significance of Jervis Bay to humpback whale groups using novel 

survey methods.  The movement patterns in the Bay are characterised and compared 

with that observed for humpback whales migrating south offshore. During the peak 

timing for humpback whales passing Jervis Bay in 2018, 2019, and 2021, land-based, 

boat-based, and unoccupied aerial vehicle (UAV) survey methods were conducted. 

Results showed that a disproportionately high percentage of groups entering the Bay 

contained a calf and that travel of mother-calf groups in the Bay was significantly slower 

and less directed than movements of these groups offshore. Resting and nurturing 

behaviour was observed in aerial footage. These findings support the argument for 

identifying Jervis Bay as a resting ground for mother-calf humpback whale groups of the 

east Australia (substock E1) population. With improved understanding of their behaviour 

and movement in the Bay, there is a need to monitor and manage increased 

anthropogenic activities during the southern migration season.  

 

Post-processing methods and thermal infrared sensors to improve current whale 

detection methods were evaluated. Detection of marine animals using UAV-captured 

images is impacted by attenuation of visible light as it passes through the water column. 

Correction methods, used widely in remote sensing studies to enhance the detection of 

underwater substrate and benthic habitats, can be applied to improve the detection of 

submerged animals. A modified version of Lyzenga’s water column correction was 

applied to UAV images over humpback whale groups. Using RGB sensors, commonly used 
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in marine wildlife surveys, the performance of three depth-invariant band pairs (i.e., 

red/green, red/blue, green/blue) were examined for improving visibility, contrast, and 

edge definition. Findings demonstrate the optimal band pair combination will be 

dependent on the depth of the whale.  

 

Thermal infrared images can enhance the contrast between a whale and their surrounds, 

particularly in low light conditions, to improve detection rates. The whale detection 

capabilities of three UAV-mounted sensors with synchronous visual and thermal capture 

were reviewed. Thermal sensor resolution had a significant impact on the detection of 

the direct whale cues (i.e. the body on the surface), with only the higher resolution 

sensors detecting a contrast. However, the lowest resolution sensor was able to detect 

the thermal gradient of a whale’s footprint on the surface after the whales were observed 

in visual images. Although these sensors were not a viable option to replace visual 

sensors for whale detection, they can be used in simultaneous data capture to enhance 

whale detection rates and extend the availability of observation time.  

 

Unlike thermal detection from a UAV, thermal detection systems from near-horizontal 

platforms (i.e., ship or shore) can provide continuous observation. Methods for improving 

thermal imaging systems for round-the-clock detection of cetaceans were investigated. A 

field study to assess the thermal capabilities of three different sensors for detecting 

bottlenose dolphins was conducted to review the influence of sensor resolution, detector 

temperature, and spectral range on detection rates. Cetacean cues at distances ~ 1km 

were clearly detected from a very high resolution (1280 x 1024) cryogenically cooled 

sensor in calm, clear conditions.  

 

Jervis Bay, a semi-enclosed embayment, provides a resting ground for humpback whale 

mother-calf groups on the southern migration pathway. Critical resting and nurturing 

behaviours were observed prior to their 3,500 km migration to the Antarctic feeding 

grounds. Recognition of the importance of key marine habitats for migrating cetacean 

species highlights the need to understand and monitor for the potential impacts of 

increased anthropogenic activity and development of our oceans, including offshore 

mining, shipping, and naval operations. Emergent sensor technology and remote sensing 
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approaches can provide novel, accurate and resource effective methods for cetacean 

monitoring.  
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1.1 HUMPBACK WHALE MIGRATION PATTERNS 

The humpback whale (Megaptera novaeangliae) is a cosmopolitan species, found in all 

oceans of the world. These whales undertake one of the most extensive mammalian 

annual migrations between high-latitude summer feeding areas and low-latitude winter 

breeding and calving areas (Dawbin, 1966; Rasmussen et al., 2007; Stevick et al., 2011). 

The International Whaling Commission (IWC) currently recognises seven breeding 

stocks (IWC, 1998) (A – G ; Figure 1). They are classified according to their distributions 

in winter breeding areas: (A) east coast of South America; (B) west coast of Africa; (C) 

east coast of South Africa, Africa and western Indian ocean; (D) west coast of Australia; 

(E) east coast of Australia and western Pacific Ocean; (F) south central Pacific Ocean; and 

(G) west coast of South America. All seven breeding stocks, excluding the isolated Arabian 

Sea Population (known as 'Group X';  Mikhalev, 1997; Pomilla et al., 2014), with each 

stock undertaking well-documented seasonal migrations (Dawbin, 1966). The Northern 

and Southern Hemisphere populations remain mostly distinct, although some gene flow 

between populations has been identified (Baker et al., 1994; Schmitt et al., 2014).  
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Figure 1. Geographic distribution of humpback whale populations globally illustrating 

IWC stock structure. Migration from high latitude feeding grounds (empty ellipses) to low 

latitude breeding grounds (filled ellipses) and known (solid line) and assumed (broken 

line) migration paths are shown. Area’s I – VI denote Antarctic feeding areas (Donovan, 

1991). Figure taken from Olavarría (2008).  

The timing of both the northbound and southbound migrations are temporally staggered 

by age, sex, and reproductive status. The first whales to migrate from the feeding to the 

breeding grounds are yearlings and lactating females, followed by immature whales, 

mature males and resting females (Chittleborough, 1965; Dawbin, 1966). This pattern is 

mirrored for the southern migration. Non-lactating females are the first to leave the 

breeding grounds, followed by immature males and females, mature males, and finally 

lactating females with their newly born calves (Dawbin, 1966; Craig et al., 2003; Franklin, 

2012).  

 

During the migration, there is distinct temporal and geographic separation of breeding, 

feeding, and resting activities. From late autumn the humpback whales migrate to low 

latitudes where they predominantly engage in breeding and calving during the winter 

and early spring months before migrating south to the feeding grounds (Chittleborough, 
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1965). The extensive migration is likely driven by the warmer waters of the breeding 

grounds, providing calves an environment in which to conserve energy and prioritise 

growth and development (Clapham, 2001; Rasmussen et al., 2007). Feeding is largely 

absent during the migration and time spent on the breeding grounds, with whales relying 

on stored energy reserves acquired on the seasonal feeding grounds. However, 

supplemental feeding has been observed off south-east Australia (Owen et al., 2015; 

Pirotta et al., 2021), South Africa (Barendse et al., 2010; Findlay et al., 2017), and South 

America (Pinto de sa Alves et al., 2009). 

 

During the southbound migration, lactating females and nursing calves have shown a 

preference for resting in calm, sheltered waters (Franklin et al., 2011; Bejder et al., 2019). 

This behaviour is considered beneficial for mothers who can reduce their energy 

consumption during lactation, by avoiding the open oceanographic conditions, and 

consequently provide greater maternal energetic investment (milk transfer) to their 

nursing calf (Bejder et al., 2019).  Christiansen et al. (2016) used UAV-captured aerial 

images to determine lactating mothers in better body condition (greater width and girth) 

produced calves in better body condition. They proposed that during gestation and 

lactation, females in poor condition will prioritise their own body condition over that of 

their calf. Increased energetic investment results in larger calves that will be stronger, 

faster, and more resilient to environmental variations, such as reduced food supply 

(Christiansen et al., 2016; Christiansen et al., 2018). This has direct implications for a 

successful migration returning to nutrient rich colder polar feeding grounds.   

 

In Australian waters, resting behaviour has been observed on the migratory corridor 

(Noad & Cato, 2007), but previous research has focused more on large open embayments 

south of the breeding grounds. Two well researched sites are Hervey Bay on the east coast 

(Corkeron et al., 1994; Chaloupka et al., 1999; Franklin et al., 2011; Stack et al., 2019), and 

Exmouth Gulf on the west coast (Bejder et al., 2019; Ejrnæs & Sprogis, 2021; Sprogis & 

Waddell, 2022). High proportions of mother-calf groups have also been observed in Jervis 

Bay, towards the southern end of east coast of Australia (Bruce et al., 2014) which differs 

from these other sites as it is a semi-enclosed embayment.  
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Humpback whales are the most extensively studied whale species, particularly in relation 

to population structure, distribution, and migratory movements. In the Northern 

Hemisphere, research has been concentrated on their breeding grounds where water is 

typically calm and relatively shallow, such as off Hawaii (Herman et al., 2011; Cartwright 

et al., 2012; Craig et al., 2014). This is likely because most humpback whales in the 

Northern Hemisphere migrate across deep open oceans that are difficult to access, 

limiting research on these animals. In the Southern Hemisphere, a significant proportion 

of the migrations occur in predominantly coastal waters before the oceanic section south 

of the continents. Substock populations D and E1 migrate along the continental shelf 

along west and east coast of Australia, respectively (Figure 1). This provides an 

opportunity to research these population mid-migration, and obtain a sound 

understanding of their distributions, migratory corridors and timings, and apparent rates 

of population growth (Paterson et al., 1994; Corkeron & Brown, 1995; Jenner et al., 2001; 

Salgado Kent et al., 2012; Noad et al., 2019).  

 

1.2  CONSERVATION STATUS OF HUMPBACK WHALES IN 

AUSTRALIAN WATERS 

Modern whaling began in Australian waters in 1912 (Chittleborough, 1965). This and 

substantial unreported Soviet whaling in the Southern Ocean substantial reduced 

population numbers. When whaling ceased in 1963, populations were thought to be as 

low as 3.5-5% of pre-whaling numbers (Bannister & Hedley, 2001). Numbers on the east 

coast may have been as few as 100 (Paterson et al., 1994) and less than 300 on the west 

coast (Bannister & Hedley, 2001). Despite this, populations on both coasts have made 

remarkable recovery, increasing at rates of about 11.0% (95% confidence interval (CI) 

10.6–11.3%) from 1984 – 2015 for the east coast, with no evidence this rate is slowing 

down (Salgado Kent et al., 2012; Noad et al., 2019). The most recent population estimate 

of the east coast population by Noad et al. (2019), who conducted land surveys in 2007, 

2010 and 2015, predicted the absolute abundance and rate of recovery of this population 

to be 24,545 (95% CI 21,631 – 27,851). The west coast, population estimates ranged from 

26,100 (95% CI 20,152 – 33,272) from Salgado Kent et al. (2012) who used aerial surveys 

to 34,290 (95% CI 27,350 - 53,50) Hedley et al. (2020), who used aerial and land surveys. 

Both studies acknowledged potential data limitations, including a limited number of 
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samples, not accounting for perception bias, and restricted view from land surveys.  

 

In Australia, the Environmental Protection and Biodiversity Conservation (EPBC) Act 

1999 is the primary legislation protecting humpback whales. The EPBC Act protects all 

cetaceans within the Australian Whale Sanctuary that encompasses all Commonwealth 

waters, from the state limit (three nautical miles) to the Australian Exclusive Economic 

Zone boundary (200 nautical miles). In February 2022, the Threatened Species Scientific 

Committee removed humpback whales as a vulnerable species from Australia’s EPBC Act 

list of threatened species, resulting from strong population recovery and no current 

threats to prevent population growth. They are still protected under the EPBC Acts as a 

listed Migratory Species and under EPBC Act Division 3, where it is an offence to interfere 

with a cetacean. In New South Wales, humpback whales are protected by the Biodiversity 

Conservation Regulation 2017 (Division 2.1). Any activity within Australian waters that 

is likely to have an impact on a humpback whale requires government approval and 

permits. In 2018, humpback whale populations globally, except for the endangered 

Arabian Sea population, had their status changed from ‘vulnerable’ to least ‘least concern’ 

on the International Union for Conservation of Nature (IUCN) Red List. 

 

1.3   STUDY AREA  

Fieldwork for this thesis was undertaken in Jervis Bay (35° 07’ S, 150° 42’ E), a semi-

enclosed embayment situated along the New South Wales (NSW) coastline (Figure 2). 

Jervis Bay is roughly 3,500 km north of Antarctic feeding grounds and 1,500 km south of 

the breeding and calving grounds for the E1 population, in the waters of the Great Barrier 

Reef (Smith et al., 2012). In addition to a migratory humpback whale population, a 

population of resident Indo-Pacific bottlenose dolphins (Tursiops aduncus) inhabit Jervis 

Bay (Möller et al., 2002). 

 

Humpback whales were abundant in Jervis Bay during the migration season prior to 

industrial whaling and whaling operations commenced in the Bay during 1912 - 1913 

(Dakin, 1938). Over the last two decades, citizen science data and opportunistic sightings 

have highlighted increased sighting of mother-calf groups in Jervis Bay, highlighting the 

area as potential resting ground  (Sheehan & Blewitt, 2013; Bruce et al., 2014). Jervis Bay 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/exclusive-economic-zone
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/exclusive-economic-zone
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encompasses the multiple-use Jervis Bay Marine Park, waters of the Booderee National 

Park and part of the East Australian Defence Exercise Area, an important naval training 

site. Within the Bay, there is significant naval activity, commercial whale watching, 

recreational boating and fishing. Since 2019 two commercial dive operators have 

acquired permits to operate swim-with-activities. The strong recovery of the E1 

population, has increased the potential for spatio-temporal overlap with anthropogenic 

activities.  

 

Compared to other identified resting areas, Jervis Bay is geomorphologically distinct. The 

relatively narrow entrance to the Bay (3.7 km) runs northeast-southwest, parallel to the 

migration, compared to that of the entrances of Hervey Bay (70 km) and Exmouth Gulf 

(50 km) that run west-east, facing the migration. The southbound migration closely 

follows the Australian coastline (Paterson & Paterson, 1989; Gales et al., 2010), requiring 

whales to change their direction of travel to enter Jervis Bay. Furthermore, the elevation 

of the Point Perpendicular headland (75 m), at the northern end of Jervis Bay provides an 

optimal vantage point to track whales entering the Bay, their movements in the Bay and 

allows for a comparison with whales migrating south offshore (within 10km).  
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Figure 2. Jervis Bay study site illustrating the zoning of the Jervis Bay Marine Park and 

Booderee National Park  

1.4   NOVEL METHODS FOR MONITORING WHALE MOVEMENTS 

Highly mobile cetacean species are notoriously difficult to study as they spend large 

periods of time underwater, surface for short periods, have unpredictable movement 

patterns, and are often found in remote habitats that extend over large areas. Cetacean 

survey methods traditionally involve obtaining counts of whales from land-based vantage 

points, piloted aerial surveys or boat surveys (Eberhardt et al., 1979). These methods can 

be very labour intensive, involving long hours of recording, and as whales’ range over 

large geographic areas, these survey methods can be costly and inefficient. These 

methods are also subject to visibility biases, which includes both availability bias, when 

an animal is present in the study area but not available to the observer (e.g., submerged), 

and perception bias, where an animal is available for detection but missed by observers 
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or an automated detection algorithm (Marsh & Sinclair, 1989; Brack et al., 2018). 

 

The past decade has seen an emergence of new and innovative methods for surveying 

cetacean species, particularly remote aerial methods providing large spatial coverage 

without the risks associated with piloted surveys.  The use of sub-metre very high 

resolution (VHR) satellites for whale detection have been proposed and demonstrated as 

a relatively cost-effective method, for one-off abundance counts in surveying relatively 

large areas (Fretwell et al., 2014; Cubaynes et al., 2018; Guirado et al., 2019). However, 

these methods are only useful if the timing of data collection is not critical. Additionally, 

satellites cannot provide imagery at the temporal and spatial scales required to explore 

whale movements or behaviour, and many satellite systems are subject to atmospheric 

and weather effects (e.g., cloud contamination, Johnston, 2019).  Importantly, species can 

still be difficult to detect, and detection probabilities remain unknown (Fretwell et al., 

2014; Cubaynes et al., 2018).   

 

Unoccupied aerial vehicles (UAVs), commonly referred to as drones, provide a cost-

effective, unobtrusive solution with flexibility unlike other survey approaches, including 

land- or boat-based methods or other aerial surveys. Larger, fixed-wing models have been 

used for transect surveys (Hodgson et al., 2013) and demonstrated to have detection 

probabilities for humpback whales within the range of piloted aerial surveys (Hodgson 

et al., 2017). Smaller UAV models, such as quadcopters, are particularly beneficial as they 

can be flown opportunistically (Horton et al., 2019), launched from small boats 

(Christiansen et al., 2016), and hover over target animal(s). This is particularly 

advantageous for marine research when surveying vagile and often elusive animals.  

 

In the last decade there has been an increase in marine studies utilizing UAVs (Schofield 

et al., 2019), which allows for novel insights on the abundance (Hodgson et al., 2017), 

behaviour (Torres et al., 2018; Fiori et al., 2019), and body condition (Christiansen et al., 

2016; Hodgson et al., 2020) of marine wildlife. The potential of UAVs for behavioural 

studies has been recognised (Nowacek et al., 2016), although research to date has been 

somewhat limited (Schofield et al., 2019). Continuous, unbiased observations are 

required to study animal behaviour and boat-based surveys are restricted to horizontally 
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observing a snapshot of the animals’ behaviour at the surface. Torres et al. (2018) 

demonstrated that UAVs provided three times more observational capacity than boat-

based observations when surveying gray whales (Eschrichtius robustus), finding UAVs 

provided longer observation of all primary behaviour states (travelling, foraging, 

socializing, and rest) and documented fine-scale foraging and social behaviour. Similarly, 

Fiori et al. (2019) found socializing and nurturing behaviours of humpback whales on a 

calving ground in Tonga were significantly underrepresented in boat-based observations 

compared to UAV-based data. Currently the main limitation is the restricted flight time of 

small UAV models (e.g., 30 minutes for the Phantom 4). However, rapid advancements in 

UAV platform technology resulting in increased flight times will likely improve their 

flexibility for marine surveys in the near future (Nowacek et al., 2016).  

 

1.4.1 Sensors 
While UAV surveys to date have primarily focused on the visual red-green-blue (RGB) 

spectrum for detection of marine wildlife, advances in the miniaturisation of payloads 

provide flexibility for mounting alternative sensors, including thermal infrared (TIR), 

multispectral (four or more bands), and hyperspectral (30 to hundreds of narrow bands), 

onto many UAV models. These sensors have the potential to overcome limitations 

encountered with traditional RGB imagery where animal detection is subject to light 

levels and requires clear contrast between an animal and their surrounds (Hinke et al., 

2022). The effectiveness of thermal sensors for discriminating animals in low-light 

conditions has been well established in terrestrial environments, for example, the night-

time detection of arboreal mammals (Kays et al., 2018; Witt et al., 2020; McCarthy et al., 

2022). Thermal sensors for detecting cetaceans are limited to detecting animals on the 

surface, as infrared waves are rapidly attenuated in water. Previous research from UAV-

mounted thermal sensors has focused on detection of cetacean footprints, where sub-

surface fluke strokes result in a cold anomaly on the surface (Churnside et al., 2009; 

Florko et al., 2021; Lonati et al., 2022), and whale health through biometric 

measurements (Horton et al., 2019). From near-horizontal platforms (e.g., off a vessel) 

thermal infrared imaging has been used to detect the warm exhalations of cetacean in the 

distance (Zitterbart et al., 2013; Smith et al., 2020; Zitterbart et al., 2020).  

 

Multispectral and hyperspectral sensors have the potential to be particularly beneficial 
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in marine environments as wavelengths can be selected to improve detection of 

submerged objects. Colefax et al. (2021) used a UAV fitted with a hyperspectral sensor 

(400 – 1000nm) to identify the optimal wavelengths for detecting submerged marine 

fauna, finding the key wavelengths to be 474 – 594 nm provided the greatest contrast. 

Similarly, Fretwell et al. (2014) identified wavelengths of 400-450 nm (coastal band) 

from a VHR multispectral satellite image to be optimal for detecting southern right 

whales (Eubalaena australis), due to increased water penetration. Detection of 

submerged objects using optical remote sensing from satellites and UAVs is also subject 

to sun glint contamination which is present in an image when the solar irradiance is 

reflected directly toward the sensor (specular reflectance) due to the relative orientation 

of the water surface. Sun glint causes high brightness in images, reduces the signal-to-

noise ratio, and reduces the accuracy of remotely sensed observation data (Muslim et al., 

2019). Sun glint is influenced by sun position, viewing angle and sea surface state (Kay et 

al., 2009).  The effects of sun glint can be avoided by selectively choosing to survey in the 

early morning or later afternoon. Whilst this can be effective for static objects, including 

the mapping of nearshore benthos, this is not always feasible for moving and wide-

ranging marine vertebrates. In the absence of flexibility in survey timing, there are robust 

methods to remove sun glint contamination from multispectral images (Hedley et al., 

2005; Martin et al., 2016). Whilst these techniques are effective for multi-spectral images 

containing a NIR band, they are not suitable for images containing only red, green and 

blue bands. This limits the use of sun glint removal techniques for most off-the-shelf 

UAVs, fitted with RGB cameras, commonly used in wildlife studies (Anderson & Gaston, 

2013).  

 

1.5   THESIS AIMS AND OVERVIEW 

The broader objective of this research is to evaluate multiple methods for optimising the 

detection of whales and to characterise the movement patterns of humpback whales 

during the southern migration (Figure 3).   

 

Chapter 2 provides the first comprehensive analysis of the behaviour and movement 

parameters of mother-calf humpback whale groups in Jervis Bay. These movement 

patterns, including speed and linearity, are compared with whales travelling south on the 
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main migratory pathway. This is achieved using predominantly traditional survey 

techniques, including land-based theodolite surveys and boat-based photo-identification 

methods. Additionally, UAV surveys are employed to provide insight on fine-scale 

behaviour in Jervis Bay, particularly resting and nurturing behaviour.  

 

Chapters 3 and 4 investigate different methods to overcome limitations commonly 

encountered in aerial surveys, particularly perception bias. Chapter 3 presents a modified 

water column correction for enhancing UAV-acquired visual image data to improve the 

contrast of whales on the water surface and submerged near the surface. A modified 

version of Chapter 3 is published in Marine Mammal Science (Jones et al., 2022). Chapter 

4 evaluates the effectiveness of thermal sensors for detecting direct and indirect whale 

cues on the surface through comparison of simultaneous acquired UAV thermal and 

visual image data. This chapter also considers trade-offs between different UAV-borne 

thermal sensors for optimising whale detections taken at oblique or nadir angles, 

including sensor resolution, radiometric capability, and model size.  

 

Chapter 5 evaluates how thermal infrared sensor configuration will influence cetacean 

detection rates from near-horizontal ship and shore platforms for cetacean mitigation 

from human activities. In this chapter the capabilities of three thermal that differ in 

sensitivity, resolution, spectral range, and detector temperature, for discriminating 

bottlenose dolphin from surrounding waters are assessed. The current state of 

knowledge on the use of thermal imaging for the long-range detection of cetaceans from 

ship and shore systems is reviewed to provide a detailed understanding of how the 

characteristics of cetacean cues and environmental conditions will influence automated 

detection methods.   

  

Chapter 6 provides a general discussion and synthesis of the key research findings. Future 

research priorities and conservation implications of this research are presented.  
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Figure 3. Overview of methods used in each data chapter. All images were taken during 

fieldwork in Jervis Bay. Created with BioRender.com.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13  

1.6   REFERENCES  

Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will 

revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 

138-146. doi:10.1890/120150 

Baker, C., Slade, R., Bannister, J., Abernethy, R., Weinrich, M., Lien, J., . . . Vasquez, O. (1994). 

Hierarchical structure of mitochondrial DNA gene flow among humpback whales 

Megaptera novaeangliae, world‐wide. Molecular Ecology, 3(4), 313-327.  

Bannister, J., & Hedley, S. (2001). Southern Hemisphere group IV humpback whales: their 

status from recent aerial survey. Memoirs-Queensland Museum, 47(2), 587-598.  

Barendse, J., Best, P. B., Thornton, M., Pomilla, C., Carvalho, I., & Rosenbaum, H. C. (2010). 

Migration redefined? Seasonality, movements and group composition of 

humpback whales Megaptera novaeangliae off the west coast of South Africa. 

African Journal of Marine Science, 32(1), 1-22. doi:10.2989/18142321003714203 

Bejder, L., Videsen, S., Hermannsen, L., Simon, M., Hanf, D., & Madsen, P. T. (2019). Low 

energy expenditure and resting behaviour of humpback whale mother-calf pairs 

highlights conservation importance of sheltered breeding areas. Scientific Reports, 

9(1), 771. doi:10.1038/s41598-018-36870-7 

Brack, I. V., Kindel, A., Oliveira, L. F. B., & Scales, K. (2018). Detection errors in wildlife 

abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, 

solutions, and challenges. Methods in Ecology and Evolution, 9(8), 1864-1873. 

doi:10.1111/2041-210x.13026 

Bruce, E., Albright, L., Sheehan, S., & Blewitt, M. (2014). Distribution patterns of migrating 

humpback whales (Megaptera novaeangliae) in Jervis Bay, Australia: A spatial 

analysis using geographical citizen science data. Applied Geography, 54, 83-95. 

doi:10.1016/j.apgeog.2014.06.014 

Cartwright, R., Gillespie, B., Labonte, K., Mangold, T., Venema, A., Eden, K., & Sullivan, M. 

(2012). Between a rock and a hard place: habitat selection in female-calf 

humpback whale (Megaptera novaeangliae) Pairs on the Hawaiian breeding 

grounds. PLoS One, 7(5), e38004. doi:10.1371/journal.pone.0038004 

Chaloupka, M., Osmond, M., & Kaufman, G. (1999). Estimating seasonal abundance trends 

and survival probabilities of humpback whales in Hervey Bay (east coast 

Australia). Marine Ecology Progress Series, 184, 291-301.  



14  

Chittleborough, R. (1965). Dynamics of two populations of the humpback whale, 

Megaptera novaeangliae (Borowski). Marine and Freshwater Research, 16(1), 33-

128.  

Christiansen, F., Dujon, A. M., Sprogis, K. R., Arnould, J. P., & Bejder, L. (2016). Noninvasive 

unmanned aerial vehicle provides estimates of the energetic cost of reproduction 

in humpback whales. Ecosphere, 7(10), e01468.  

Christiansen, F., Vivier, F., Charlton, C., Ward, R., Amerson, A., Burnell, S., & Bejder, L. 

(2018). Maternal body size and condition determine calf growth rates in southern 

right whales. Marine Ecology Progress Series, 592, 267-281.  

Churnside, J., Ostrovsky, L., & Veenstra, T. (2009). Thermal Footprints of Whales. 

Oceanography, 22(1), 206-209. doi:10.5670/oceanog.2009.20 

Clapham, P. (2001). Why do baleen whales migrate? A response to Corkeron and Connor. 

Marine Mammal Science, 17(2), 432-436.  

Colefax, A. P., Kelaher, B. P., Walsh, A. J., Purcell, C. R., Pagendam, D. E., Cagnazzi, D., & 

Butcher, P. A. (2021). Identifying optimal wavelengths to maximise the detection 

rates of marine fauna from aerial surveys. Biological Conservation, 257, 109102.  

Corkeron, P., & Brown, M. (1995). Pod characteristics of migrating humpback whales 

(Megaptera novaeangliae) off the east Australian coast. Behaviour, 132(3-4), 163-

179.  

Corkeron, P. J., Brown, M., Slade, R. W., & Bryden, M. M. (1994). Humpback whales, 

Megaptera novaeangliae (Cetaceaa: Balaenopteridae), in Hervey Bay, Queensland. 

Wildlife Research, 21(3), 293-205.  

Craig, A., Gabriele, C., Herman, L., & Pack, A. (2003). Migratory timing of humpback whales 

(Megaptera novaeangliae) in the central North Pacific varies with age, sex and 

reproductive status. Behaviour, 140(8-9), 981-1001.  

Craig, A. S., Herman, L. M., Pack, A. A., & Waterman, J. O. (2014). Habitat segregation by 

female humpback whales in Hawaiian waters: avoidance of males? Behaviour, 

151(5), 613-631.  

Cubaynes, H. C., Fretwell, P. T., Bamford, C., Gerrish, L., & Jackson, J. A. (2018). Whales 

from space: Four mysticete species described using new VHR satellite imagery. 

Marine Mammal Science, 35(2), 466-491. doi:10.1111/mms.12544 

Dakin, W. J. (1938). Whalemen Adventurers: The Story of Whaling in Australian Waters and 



15  

Other Southern Seas Related Thereto, from the Days of Sails to Modern Times: Angus 

& Robertson. 

Dawbin, W. (1966). The seasonal migratory cycle of humpback whales. In: Whales, 

dolphins and porpoises. University of California Press, Berkeley. 145 – 170. 

Donovan, G. (1991). A review of IWC stock boundaries. Report of the International 

Whaling Commission. Special Issue 13. , 39-68.  

Eberhardt, L. L., Chapman, D. G., & Gilbert, J. R. (1979). A review of marine mammal census 

methods. Wildlife Monographs(63), 3-46.  

Ejrnæs, D. D., & Sprogis, K. R. (2021). Ontogenetic changes in energy expenditure and 

resting behaviour of humpback whale mother–calf pairs examined using 

unmanned aerial vehicles. Wildlife Research, 49(1), 34-45.  

Findlay, K. P., Seakamela, S. M., Meyer, M. A., Kirkman, S. P., Barendse, J., Cade, D. E., . . . 

Wilke, C. G. (2017). Humpback whale "super-groups" - A novel low-latitude 

feeding behaviour of Southern Hemisphere humpback whales (Megaptera 

novaeangliae) in the Benguela Upwelling System. PLoS One, 12(3), e0172002. 

doi:10.1371/journal.pone.0172002 

Fiori, L., Martinez, E., Bader, M. K. F., Orams, M. B., & Bollard, B. (2019). Insights into the 

use of an unmanned aerial vehicle (UAV) to investigate the behavior of humpback 

whales (Megaptera novaeangliae) in Vava'u, Kingdom of Tonga. Marine Mammal 

Science, 36(1), 209-223. doi:10.1111/mms.12637 

Florko, K. R. N., Carlyle, C. G., Young, B. G., Yurkowski, D. J., Michel, C., & Ferguson, S. H. 

(2021). Narwhal (Monodon monoceros) detection by infrared flukeprints from 

aerial survey imagery. Ecosphere, 12(8). doi:10.1002/ecs2.3698 

Franklin, T. (2012). The social and ecological significance of Hervey Bay Queensland for 

eastern Australian humpback whales (Megaptera novaeangliae). Southern Cross 

University, Lismore, Australia.  

Franklin, T., Franklin, W., Brooks, L., Harrison, P., Baverstock, P., & Clapham, P. (2011). 

Seasonal changes in pod characteristics of eastern Australian humpback whales 

(Megaptera novaeangliae), Hervey Bay 1992-2005. Marine Mammal Science, 

27(3), E134-E152. doi:10.1111/j.1748-7692.2010.00430.x 

Fretwell, P. T., Staniland, I. J., & Forcada, J. (2014). Whales from space: counting southern 

right whales by satellite. PLoS One, 9(2), e88655. 



16  

doi:10.1371/journal.pone.0088655 

Gales, N., Double, M. C., Robinson, S., Jenner, C., Jenner, M., King, E., . . . Paton, D. (2010). 

Satellite tracking of Australian humpback (Megaptera novaeangliae) and pygmy 

blue whales (Balaenoptera musculus brevicauda). White paper presented to the 

Scientific Committee of the International Whaling Commission.  

Guirado, E., Tabik, S., Rivas, M. L., Alcaraz-Segura, D., & Herrera, F. (2019). Whale counting 

in satellite and aerial images with deep learning. Scientific Reports, 9(1), 14259.  

Hedley, J. D., Harborne, A. R., & Mumby, P. J. (2005). Technical note: Simple and robust 

removal of sun glint for mapping shallow‐water benthos. International Journal of 

Remote Sensing, 26(10), 2107-2112. doi:10.1080/01431160500034086 

Hedley, S. L., Bannister, J. L., & Dunlop, R. A. (2020). Abundance estimates of Southern 

Hemisphere Breeding Stock ‘D’ humpback whales from aerial and land-based 

surveys off Shark Bay, Western Australia, 2008. Journal of Cetacean Research and 

Management, 209-221.  

Herman, L. M., Pack, A. A., Rose, K., Craig, A., Herman, E. Y. K., Hakala, S., & Milette, A. 

(2011). Resightings of humpback whales in Hawaiian waters over spans of 10-32 

years: Site fidelity, sex ratios, calving rates, female demographics, and the 

dynamics of social and behavioral roles of individuals. Marine Mammal Science, 

27(4), 736-768. doi:10.1111/j.1748-7692.2010.00441.x 

Hinke, J. T., Giuseffi, L. M., Hermanson, V. R., Woodman, S. M., & Krause, D. J. (2022). 

Evaluating Thermal and Color Sensors for Automating Detection of Penguins and 

Pinnipeds in Images Collected with an Unoccupied Aerial System. Drones, 6(9), 

255.  

Hodgson, A., Kelly, N., & Peel, D. (2013). Unmanned aerial vehicles (UAVs) for surveying 

marine fauna: a dugong case study. PLoS One, 8(11), e79556. 

doi:10.1371/journal.pone.0079556 

Hodgson, A., Peel, D., & Kelly, N. (2017). Unmanned aerial vehicles for surveying marine 

fauna: assessing detection probability. Ecological Applications, 27(4), 1253-1267.  

Hodgson, J. C., Holman, D., Terauds, A., Koh, L. P., & Goldsworthy, S. D. (2020). Rapid 

condition monitoring of an endangered marine vertebrate using precise, non-

invasive morphometrics. Biological Conservation, 242, 108402. 

doi:https://doi.org/10.1016/j.biocon.2019.108402 



17  

Horton, T. W., Hauser, N., Cassel, S., Klaus, K. F., Fettermann, T., & Key, N. (2019). Doctor 

Drone: Non-invasive Measurement of Humpback Whale Vital Signs Using 

Unoccupied Aerial System Infrared Thermography. Frontiers in Marine Science, 6. 

doi:10.3389/fmars.2019.00466 

IWC. (1998). Report of the Sub-Committee on comprehensive assessment of Southern 

Hemisphere humpback whales. Report of the Scientific Committee. Annex G. 

Report of the International Whaling Commission. (48), 170 - 182.  

Jenner, K. C., Jenner, M. M., & McCabe, K. A. (2001). Geographical and temporal movements 

of humpback whales in Western Australian waters. The APPEA Journal, 41(1), 749-

765.  

Johnston, D. W. (2019). Unoccupied Aircraft Systems in Marine Science and Conservation. 

Annual Review of Marine Science, 11, 439-463. doi:10.1146/annurev-marine-

010318-095323 

Jones, A., Bruce, E., Davies, K. P., & Cato, D. H. (2022). Enhancing UAV images to improve 

the observation of submerged whales using a water column correction method. 

Marine Mammal Science.  

Kays, R., Sheppard, J., McLean, K., Welch, C., Paunescu, C., Wang, V., . . . Crofoot, M. (2018). 

Hot monkey, cold reality: surveying rainforest canopy mammals using drone-

mounted thermal infrared sensors. International Journal of Remote Sensing, 40(2), 

407-419. doi:10.1080/01431161.2018.1523580 

Lonati, G. L., Zitterbart, D. P., Miller, C. A., Corkeron, P., Murphy, C. T., & Moore, M. J. (2022). 

Investigating the thermal physiology of Critically Endangered North Atlantic right 

whales Eubalaena glacialis via aerial infrared thermography. Endangered Species 

Research, 48, 139-154. doi:10.3354/esr01193 

Marsh, H., & Sinclair, D. F. (1989). Correcting for visibility bias in strip transect aerial 

surveys of aquatic fauna. The Journal of wildlife management, 1017-1024.  

Martin, J., Eugenio, F., Marcello, J., & Medina, A. (2016). Automatic Sun Glint Removal of 

Multispectral High-Resolution Worldview-2 Imagery for Retrieving Coastal 

Shallow Water Parameters. Remote Sensing, 8(1). doi:10.3390/rs8010037 

McCarthy, E. D., Martin, J. M., Boer, M. M., & Welbergen, J. A. (2022). Ground-based 

counting methods underestimate true numbers of a threatened colonial mammal: 

an evaluation using drone-based thermal surveys as a reference. Wildlife Research.  



18  

Mikhalev, Y. A. (1997). Humpback whales Megaptera novaeangliae in the Arabian Sea. 

Marine Ecology Progress Series, 149, 13-21.  

Möller, L. M., S. J. Allen, & R. G. Harcourt. (2002). "Group characteristics, site fidelity and 

seasonal abundance of bottlenosed dolphins (Tursiops aduncus) in Jervis Bay and 

Port Stephens, South-Eastern Australia." Australian Mammalogy 24.1, 11-22. 

Muslim, A. M., Chong, W. S., Safuan, C. D. M., Khalil, I., & Hossain, M. S. (2019). Coral Reef 

Mapping of UAV: A Comparison of Sun Glint Correction Methods. Remote Sensing, 

11(20), 2422.  

Noad, M. J., & Cato, D. H. (2007). Swimming Speeds of Singing and Non-Singing Humpback 

Whales during Migration. Marine Mammal Science, 23(3), 481-495. 

doi:10.1111/j.1748-7692.2007.02414.x 

Noad, M. J., Kniest, E., & Dunlop, R. A. (2019). Boom to bust? Implications for the continued 

rapid growth of the eastern Australian humpback whale population despite 

recovery. Population Ecology, 61(2), 198-209. doi:10.1002/1438-390x.1014 

Nowacek, D. P., Christiansen, F., Bejder, L., Goldbogen, J. A., & Friedlaender, A. S. (2016). 

Studying cetacean behaviour: new technological approaches and conservation 

applications. Animal Behaviour, 120, 235-244. 

doi:10.1016/j.anbehav.2016.07.019 

Olavarría, C. (2008). Population structure of Southern Hemisphere humpback whales. 

Doctoral Dissertation ResearchSpace@ Auckland,  

Owen, K., Warren, J. D., Noad, M. J., Donnelly, D., Goldizen, A. W., & Dunlop, R. A. (2015). 

Effect of prey type on the fine-scale feeding behaviour of migrating east Australian 

humpback whales. Marine Ecology Progress Series, 541, 231-244. 

doi:10.3354/meps11551 

Paterson, R., & Paterson, P. (1989). The status of the recovering stock of humpback 

whales Megaptera novaeangliae in east Australian waters. Biological Conservation, 

47(1), 33-48.  

Paterson, R., Paterson, P., & Cato, D. H. (1994). The status of humpback whales Megaptera 

novaeangliae in east Australia thirty years after whaling. Biological Conservation, 

70(2), 135-142.  

Pinto de sa Alves, L. C., Andriolo, A., Zerbini, A., Altmayer Pizzorno, J. L., & Clapham, P. 

(2009). Record of feeding by humpback whales (Megaptera novaeangliae) in 



19  

tropical waters off Brazil. Publications, Agencies and Staff of the US Department of 

Commerce, 45.  

Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J., & Harcourt, R. (2021). First evidence of 

bubble‐net feeding and the formation of ‘super‐groups’ by the east Australian 

population of humpback whales during their southward migration. Aquatic 

Conservation: Marine and Freshwater Ecosystems, 31(9), 2412-2419.  

Pomilla, C., Amaral, A. R., Collins, T., Minton, G., Findlay, K., Leslie, M. S., . . . Rosenbaum, H. 

(2014). The world's most isolated and distinct whale population? Humpback 

whales of the Arabian Sea. PLoS One, 9(12), e114162. 

doi:10.1371/journal.pone.0114162 

Rasmussen, K., Palacios, D. M., Calambokidis, J., Saborio, M. T., Dalla Rosa, L., Secchi, E. R., 

. . . Stone, G. S. (2007). Southern Hemisphere humpback whales wintering off 

Central America: insights from water temperature into the longest mammalian 

migration. Biol Lett, 3(3), 302-305. doi:10.1098/rsbl.2007.0067 

Salgado Kent, C., Jenner, C., Jenner, M., Bouchet, P., & Rexstad, E. (2012). Southern 

hemisphere breeding stock D humpback whale population estimates from North 

West Cape, Western Australia. J. Cetacean Res. Manage., 12(1), 29-38.  

Schmitt, N. T., Double, M. C., Jarman, S. N., Gales, N., Marthick, J. R., Polanowski, A. M., . . . 

Jenner, M. N. (2014). Low levels of genetic differentiation characterize Australian 

humpback whale (Megaptera novaeangliae) populations. Marine Mammal Science, 

30(1), 221-241.  

Schofield, G., Esteban, N., Katselidis, K. A., & Hays, G. C. (2019). Drones for research on sea 

turtles and other marine vertebrates – A review. Biological Conservation, 238. 

doi:10.1016/j.biocon.2019.108214 

Sheehan, S., & Blewitt, M. (2013). Jervis Bay: an Area of Significance for Southward 

Migrating Humpback Whale Cow/Calf Pairs? Paper presented at the Australian 

Marine Science Association (AMSA), Gold Coast, Queensland, Australia.  

Smith, H. R., Zitterbart, D. P., Norris, T. F., Flau, M., Ferguson, E. L., Jones, C. G., . . . Moulton, 

V. D. (2020). A field comparison of marine mammal detections via visual, acoustic, 

and infrared (IR) imaging methods offshore Atlantic Canada. Marine Pollution 

Bulletin, 154, 111026. doi:10.1016/j.marpolbul.2020.111026 

Smith, J. N., Grantham, H. S., Gales, N., Double, M. C., Noad, M. J., & Paton, D. (2012). 



20  

Identification of humpback whale breeding and calving habitat in the Great Barrier 

Reef. Marine Ecology Progress Series, 447, 259-272. doi:10.3354/meps09462 

Sprogis, K. R., & Waddell, T. L. (2022). Marine mammal distribution on the western coast 

of Exmouth Gulf, Western Australia. Report to the Australian Marine Conservation 

Society.(Aarhus University and Carijoa Marine Environmental Consulting: Rivervale, 

WA, Australia) p, 17.  

Stack, S. H., Currie, J. J., McCordic, J. A., Machernis, A. F., & Olson, G. L. (2019). Distribution 

patterns of east Australian humpback whales (Megaptera novaeangliae) in Hervey 

Bay, Queensland: a historical perspective. Australian Mammalogy. 

doi:10.1071/am18029 

Stevick, P. T., Neves, M. C., Johansen, F., Engel, M. H., Allen, J., Marcondes, M. C., & Carlson, 

C. (2011). A quarter of a world away: female humpback whale moves 10,000 km 

between breeding areas. Biology Letters, 7(2), 299-302. 

doi:10.1098/rsbl.2010.0717 

Torres, L. G., Nieukirk, S. L., Lemos, L., & Chandler, T. E. (2018). Drone Up! Quantifying 

Whale Behavior From a New Perspective Improves Observational Capacity. 

Frontiers in Marine Science, 5. doi:10.3389/fmars.2018.00319 

Witt, R. R., Beranek, C. T., Howell, L. G., Ryan, S. A., Clulow, J., Jordan, N. R., . . . Roff, A. 

(2020). Real-time drone derived thermal imagery outperforms traditional survey 

methods for an arboreal forest mammal. PLoS One, 15(11), e0242204. 

doi:10.1371/journal.pone.0242204 

Zitterbart, D. P., Kindermann, L., Burkhardt, E., & Boebel, O. (2013). Automatic round-the-

clock detection of whales for mitigation from underwater noise impacts. PLoS One, 

8(8), e71217. doi:10.1371/journal.pone.0071217 

Zitterbart, D. P., Smith, H. R., Flau, M., Richter, S., Burkhardt, E., Beland, J., . . . Boebel, O. 

(2020). Scaling the Laws of Thermal Imaging–Based Whale Detection. Journal of 

Atmospheric and Oceanic Technology, 37(5), 807-824. doi:10.1175/jtech-d-19-

0054.1 

 

 

 

 



21  

2 
CHARACTERISING RESTING PATTERNS OF MOTHER-

CALF HUMPBACK WHALE GROUPS IN A SEMI-

ENCLOSED EMBAYMENT ALONG THE AUSTRALIAN 

EAST COAST MIGRATION PATHWAY 

 

 

Jones, A., Bruce, E., Cato, D. H. (2023). Characterising resting patterns of mother-calf 

humpback whale groups in a semi-enclosed embayment along the Australian east coast 

migration pathway, Scientific Reports, 13, 14702.    

https://doi.org/10.1038/s41598-023-41856-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1038/s41598-023-41856-1


1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14702  | https://doi.org/10.1038/s41598-023-41856-1

www.nature.com/scientificreports

Characterising resting patterns 
of mother‑calf humpback whale 
groups in a semi‑enclosed 
embayment along the Australian 
east coast migration pathway
Alexandra Jones 1,2*, Eleanor Bruce 1,2 & Douglas H. Cato 1,2

On migration from low latitude breeding grounds to high latitude feeding grounds, humpback whale 
mothers and calves spend time resting in coastal embayments. Unlike other areas where resting has 
been documented, Jervis Bay, on Australia’s east coast, is remote from both breeding and feeding 
grounds, and provides a unique opportunity to compare resting behaviour observed within a semi‑
enclosed embayment to observations offshore. Land‑based, and UAV surveys were conducted in 
Jervis Bay in 2018, 2019, and 2021. We show that (i) a disproportionately high percentage of groups 
with a calf enter Jervis Bay during the southbound migration, (ii) travelling speeds are significantly 
slower in the Bay compared to offshore, indicating resting behaviour, and (iii) aerial observations 
highlight resting and nurturing behaviour. Subsequently, we conclude that Jervis Bay is an important 
area for resting mother‑calf humpback whale groups. Comparison with reports of resting behaviour 
during migration in areas nearer the breeding grounds shows commonalities that characterise 
resting behaviour in mothers and calves. This characterisation will allow improved monitoring 
and management of humpback whales in nearshore embayments during a critical stage of calf 
development, particularly those with increased anthropogenic activities.

Humpback whales (Megaptera novaeangliae) undertake one of the most extensive mammalian annual migrations 
between high-latitude summer feeding areas and low-latitude winter breeding and calving areas 1–3. This migra-
tion may be driven by the energetic benefits provided by the warm waters of breeding grounds that allow calves 
to conserve energy, leading to increased growth, development, and potentially future reproductive success 2,4. 
Travelling to warmer waters for whales to molt their skin has also been proposed as a factor potentially driving 
the  migration5. During the migration, distinct temporal, and geographic separation of activities, namely breed-
ing/calving, resting, and feeding, is linked to functional adaptations in resource availability 6,7. Humpback whales 
migrate along both the east and west coasts of Australia, to and from breeding grounds in the warm sheltered 
waters within the Great Barrier Reef on the east coast (International Whaling Commission (IWC) designated 
substock E1) 6 and on the North West Shelf on the west coast (substock D) 8. Whales are present inside the Great 
Barrier Reef from June to September 6. From here, the population migrates, ~ 5000 km south along a narrow 
migratory pathway 9 along the east Australian coastline to the nutrient rich Antarctic summer feeding grounds 
(IWC Antarctic Management Areas IV, V and VI). During the southbound migration females and their calves 
have been observed to rest in large open bays near the breeding grounds. Hervey Bay on the east coast 10–12 and 
Exmouth Gulf on the west coast 13,14. Resting has also been observed in open oceanic waters off Peregian Beach 
15 on the east coast, however it is generally considered that mothers and calves prefer to rest in relatively shallow, 
calm waters or protected embayments 16. It has been proposed that these sheltered waters provide protection 
from rough seas, predators and conspecifics 17 and the calm surface conditions reduce energy consumption of 
lactating mothers and nursing calves 18.

The E1 subpopulation size was substantially reduced by commercial whaling, both from stations on the east 
Australian  coast19 and from Soviet Union whaling ships in the Southern  Ocean20. Whaling of this subpopulation 
ceased off the east coast in 1962 and in the Southern Ocean in 1968, but by then the population had been reduced 
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to possibly as low as 100  individuals19. Since then there has been a substantial recovery of this subpopulation. 
Population size was estimated to be about 25,500 in 2015, increasing at about 11% per annum 21. The strong 
recovery of substock E1, has seen increased observations of humpback whales in coastal embayments along the 
southern migration pathway, including Hervey Bay, Queensland (QLD) 10–12 and Jervis Bay, New South Wales 
(NSW) 22.

Jervis Bay is a semi-enclosed embayment encompassing the multiple-use Jervis Bay Marine Park, waters of the 
Booderee National Park and part of the East Australian Defence Exercise Area, an important naval training site. 
In 1998, the area was declared a marine park by the NSW government based on its unique geology and oceanog-
raphy, diverse habitats and ecosystems, and abundant flora and fauna. Humpback whales were abundant in Jervis 
Bay during the migration season prior to industrial whaling 23. Citizen science data collected from a commercial 
whale watching platform between 2007 and 2010 demonstrated the prevalence of mother-calf groups within the 
Bay from September to November corresponding to the southern migration 22. Whales, predominantly groups 
with calves, come into the Bay on the southbound migration thus geographically separating groups in the Bay 
from those migrating south, allowing for direct comparison of behaviour. Unlike other areas where resting has 
been documented previously, Jervis Bay is further from the recognised breeding grounds (~ 1500 km) almost one 
third of the way to the Antarctic feeding grounds which are ~ 3500 km further south. Although opportunistic 
feeding by sub-adult humpback whales has been observed at Eden, NSW 24, ~ 230 km south of Jervis Bay, this 
is linked to variable nutrient-rich upwelling events associated with the East Australian Current (EAC) and is 
unlikely to provide a consistent feeding area for energy intake by lactating mothers.

Previous studies have examined humpback whale movement trends and aggregations in breeding/resting 
grounds 13 and potential resting areas within migratory corridors 10,11,25, but there has been no systematic surveys 
of humpback whale usage patterns in semi-enclosed coastal embayments located at remote distances from breed-
ing and feeding grounds. Off Australia, humpback whales follow the coastline during the migration 26,27. Due 
to the geomorphic configuration of Jervis Bay, access requires humpback whales to divert from the migration 
direction. Whales will enter Exmouth Gulf and Hervey Bay without needing to change their course of direction. 
However, whales will travel south past Jervis Bay in a southwest direction and to enter the Bay need to travel 
in a northwest direction. Jervis Bay has a much narrower entrance (3.7 km) which runs almost parallel to the 
migration compared with entrances of 70 km for Hervey Bay and 50 km for Exmouth Gulf, both of which run 
east to west and face the oncoming migration.

Resting opportunities involving low energetic expenditure are likely critical for minimising the rate of decline 
in body condition of lactating females 13 and optimising calf growth during key development stages which may 
have implications for individual reproductive success in adulthood 2. Additionally, in baleen whales calf growth is 
directly related to maternal energetic investment (milk transfer). Females with better body condition will produce 
larger calves who are stronger, faster and more resilient to environmental fluctuations (e.g., food shortages) 28,29. 
This has direct implications for surviving the migration back to colder polar feeding grounds.

Sheltered waters along the migration pathway, as in Jervis Bay, may facilitate nursing and energy conserva-
tion allowing calves to allocate energy to growth rather than movement 30. The fine-scale neonate humpback 
whale suckling behaviour of eight calves were quantified in Exmouth Gulf, Western Australia, and showed calves 
suckling 20.7 ± 7% of the total tagging time during which mothers were resting on the surface or submerged 
13,30. Furthermore, these studies demonstrated that lactating mothers and their calves spent considerable time 
resting (~ 35%).

Jervis Bay is an area of significant naval, commercial, and recreational activity. Two commercial whale watch-
ing companies operate in the Bay and since 2019, permits have been approved for two commercial dive operators 
to offer swim-with-whale activities. Thus, with increasing numbers of resting whales, there is increasing poten-
tial for spatio-temporal overlap with anthropogenic activities which may impact on the energy conservation of 
lactating mothers and their calves.

Understanding how humpback whales use Jervis Bay is critical for guiding policy and management decisions 
regarding commercial, military, and recreational use of this area. This paper presents a characterisation of the 
behaviour of mother-calf groups resting in a semi-enclosed embayment, remote from the breeding grounds, 
where there is clear separation from the whales travelling past the bay on the migration. We compare results with 
observations in other areas in which humpback whales have been observed resting along the migration pathway 
to identify the characteristics of resting behaviour. The specific objectives were to: (i) determine the composi-
tion of humpback whale groups entering Jervis Bay during the southern migration using systematic surveys; (ii) 
compare the movement patterns of mother-calf groups, including speed and linearity, in Jervis Bay with whales 
travelling south on the main migratory pathway; (iii) quantify the behavioural states most frequently observed 
in the Bay; (iv) compare the results with those from other areas to determine general characteristics of resting 
behaviour. Land-based theodolite surveys and unoccupied aerial vehicles (UAVs) were employed during 2018, 
2019 and 2021 to meet these objectives.

Results
Land-based theodolite surveys were conducted on 23 (72%) of the scheduled survey days between 24 September 
and 25 October 2018, on 34 (89%) of the scheduled survey days between 30 September and 6 November 2019, 
and 14 (64%) of the scheduled surveys days between 6 and 27 October 2021.

Group size and composition. A total of 609 humpback whales in 326 groups were observed entering/
leaving, or within, Jervis Bay and 1955 humpback whales in 1181 groups, were observed travelling southwest 
past Point Perpendicular without entering the Bay. Humpback whale groups observed entering/leaving or 
within Jervis Bay, ranged in size from one to four whales (mean ± SD = 1.9 ± 0.7). Mother-calf pairs were the 
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most frequently observed group composition (72%) followed by non-calf groups (15%), and mother-calf-escort 
groups (13%). Overall, 84% of groups that entered the Bay contained at least one calf. A total of 1181 groups were 
observed bypassing Jervis Bay, 22% of these groups contained a calf. A total of 507 groups containing a calf were 
observed, 247 of these (49%) entered/left Jervis Bay.

Three or more reliable fixes were obtained for 477 humpback whale groups. Of these, 158 groups were tracked 
entering/leaving, or within, Jervis Bay. Of these, 31 remained in the inshore area during observations (category 
1), 57 groups entered/left the inshore area from offshore or the mouth of the Bay (category 2), and 70 groups 
entered/left the Bay but did not enter the inshore area (category 3). 319 groups were tracked offshore but did 
not enter the Bay. Groups were tracked on average for 44.3 min ± 45.9 (SD), the shortest track lasting for 10 min 
and the longest 247 min.

Speed and linearity of movement. Mother-calf pairs tracked in the inshore area only (category 1), had 
significantly slower average track speeds (Mann–Whitney U = 247, Z = − 5.015, p < 0.001, 2-tailed), average net 
speeds (Mann–Whitney U = 95, Z = − 6.309, p < 0.001, 2-tailed), and lower linearity measurements (Mann–Whit-
ney U = 86, Z = − 6.386, p < 0.001, 2-tailed) compared to mother-calf pairs migrating south offshore (category 4). 
The comparison of movement parameters for the four track categories are summarised in Table 1.

Assessment of the proportion of mother-calf pairs travelling in almost straight lines, displaying “strong” 
linearity > 0.9531, showed that 39% of groups entering/leaving, or within, the Bay displayed strong linearity com-
pared to 68.2% of groups travelling offshore. For groups that entered Jervis Bay, 30.1% had a linearity score below 
0.5, suggesting meandering behaviour, compared to 3.5% of groups that did not enter the Bay. Of the groups 
that were tracked only in the inshore area (category 1), one (< 5%) had a linearity > 0.95 while 52% were < 0.5.

Mother-calf pair groups spent considerably more time travelling at speeds < 1 km/h, indicating resting or 
drifting behaviour 15, within Jervis Bay compared to groups offshore (Fig. 1). Categories 1 and 3 demonstrated 
a clear preference (> 30% of the time) for travelling at speeds < 1 km/h. Whales in category 2 spent 48.7% of the 
time travelling at speeds 2–4 km/h. Offshore (category 4), whales showed a peak distribution of travelling at 
speeds 3.01–4 km/h (24.6% of the time). Offshore calf groups spent 3.2% of the time travelling at speeds < 1 km/h.

Table 1.  Summary of movement paraments of mother-calf humpback whale pairs with averages ± standard 
deviation (SD) using data pooled from land surveys conducted from the Point Perpendicular Lighthouse in 
2018, 2019, and 2021. Track categories represented groups that were tracked; (1) entirely within the inshore 
area, (2) from offshore/mouth of Jervis Bay into the inshore area, (3) entering/leaving the entrance of the Bay, 
(4) offshore. “Track speed” is the sum of the distances between consecutive fixes for a track divided by the sum 
of times between fixes. “Net speed” is the linear distance between the first and last fixes of a track divided by 
the total time. “Linearity” is track distance divided by net distance.

Track category

1 2 3 4

Sample size 25 38 51 76

Average track speed ± SD (km/h) 2.4 ± 1.3 3.5 ± 1.3 3.3 ± 1.3 4.6 ± 1.8

Average net speed ± SD (km/ h) 1.1 ± 0.9 2.7 ± 1.6 2.9 ± 1.4 4.3 ± 1.7

Average linearity ± SD 0.5 ± 0.3 0.6 ± 0.3 0.8 ± 0.3 0.9 ± 0.2
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Figure 1.  Frequency distributions of the percentage of time spent in speed classes grouped in bins of 1 km/h for 
mother-calf groups. Data taken from individual leg speeds (n = 1364). Bins from > 7 to 16 km /h were grouped 
given the low proportion of time spent at these speeds. Track categories represented groups that were tracked; 
(1) entirely within the inshore area, (2) from offshore/mouth of Jervis Bay into the inshore area, (3) entering/
leaving the entrance of the Bay, (4) offshore.
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UAV behaviour observations. UAV flights were conducted over four days during 2019 and 2021 (sum-
marised in Table 2). The behaviour of six mother-calf groups were observed from UAV surveys (five mother-calf 
pair groups and one mother-calf-escort group) (Fig. 2).

Resting was the most observed behavioural state over the four days of flights (29% for both mother and calf 
resting, 9% when mother was resting and calf was active). This was followed by nurturing behaviour (29%), 
travelling (19%), socialising (10%), and surface-active behaviour (5%). 55% of the time spent ‘travelling’ were 
whales observed leaving the Bay. During 39% of observations, whales were completely submerged. All UAV 
flights were conducted in the inshore area.

Discussion
This study used two complementary survey methods to provide detailed observations of humpback whales (E1 
east coast population) in Jervis Bay, a site remote from the breeding grounds, during the southern migration 
during 2018, 2019, and 2021. The combination of (i) a high proportion of groups entering/leaving Jervis Bay 
containing a calf, (ii) a high proportion of time observed resting and (iii) aerial observations of resting and 
nurturing behaviour indicate that the area is a resting ground for mother-calf groups.

Over the observation period, 84% of humpback whale groups within Jervis Bay contained a calf. Of all groups 
that entered or left the inshore area (track categories 1 and 2), 92% contained a calf. Such a high proportion of 
groups with calves has not been observed elsewhere. Observing a high proportion of mother-calf groups towards 
the end of the southern migration is not unexpected. The migratory timing of humpback whales leaving the 
breeding and calving grounds is temporally staggered. Non-lactating females are the first to leave the breed-
ing grounds, followed by immature males and females, mature males, and finally lactating females with their 
newly born calves 1,11,32. However, the proportion of groups within Jervis Bay containing a calf is considerably 
higher than other Australian areas where resting has been observed at equivalent seasonal timing. In Hervey 
Bay, Queensland, a peak occurrence of 40% of groups containing a calf was recorded from early August to mid-
October 10. Similarly, the Exmouth Gulf, Western Australia, had an average of 41% for humpback whale groups 
containing a calf, peaking at 61% in mid-October 33. Off Peregian Beach, Queensland, the proportion of calf 

Table 2.  Summary of UAV flights conducted in 2019 and 2021. Dates where two groups were recorded denote 
an A and B group.

Year Dates Flights flown between Flight time (to nearest min)
Duration of recorded 
behaviours (min) Platform

2019

31 Oct 0805–0829 24 3

DJI Mavic 2 enterprise dual
3 Nov 0715–1111 23

A: 10

B: 5 

2021
23 Oct 08011–0917 43

A: 37
DJI Mavic 2 enterprise 
advancedB: 6

28 Oct 1004–1316 33 33

0

20

40

60

80

100

31/10/19  3/11/19
Group A

3/11/19
Group B

23/10/21
Group A

23/10/21
Group B

28/10/21

Ti
m

e 
sp

en
t i

n 
ea

ch
 b

eh
av

io
ur

al
 s

ta
te

 (%
)

Travelling M & C resting M resting, C active

M & C surface-active Socialising Nurturing

Figure 2.  The proportion of time spent in behavioural states for six mother-calf humpback whale groups in 
Jervis Bay based on UAV aerial observations (left). M and C denote mother and calf, respectively. Humpback 
whales captured within Jervis Bay displaying: (A) resting, (B) nurturing, and (C) socialising behaviours (right).



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14702  | https://doi.org/10.1038/s41598-023-41856-1

www.nature.com/scientificreports/

groups was 24% of all migrating groups over a similar time period 15. These calculations were taken of whales 
on the migratory corridor, indicating this is typical for whales offshore. Thus, the observations in Exmouth Gulf 
and Hervey Bay have a higher concentration than expected for the migration as a whole. Calf groups were about 
22% of all groups passing Jervis Bay, similar to the proportion observed off Peregian Beach.

Mother-calf pairs inshore Jervis Bay (category 1) spent ~ 35% of the time resting at speeds < 1 km/h, consist-
ent with 38% resting observed during UAV surveys (29% for mother and calf resting, 9% when mother was 
resting and calf was active). This is comparable with the 35% of time resting in Exmouth Gulf which was deter-
mined based on acceleration data from DTAGs 13, recognising that the different methods limit the accuracy of 
comparison. Aerial surveys over the Hawaiian breeding grounds observed that 26% of mother-calf pairs were 
resting 34. During the predominantly southbound migration off Peregian Beach, calf groups were observed to 
be drifting at < 1 km/h, apparently resting 16% of the time whereas non-calf groups drifted for 5.5% of the time 
15. Results off Peregian Beach highlight resting behaviour in exposed oceanic waters, however, high proportions 
of mother-calf groups in embayments suggests these waters are preferred. Resting in exposed oceanic waters is 
likely during migrations when whales are moving from breeding areas (e.g., Hawaii or the South Pacific Islands) 
to feeding grounds in open waters rather than along coastlines.

The semi-enclosed embayment of Jervis Bay, with an irregular ellipsoidal shape, provides a distinct geomor-
phic setting along the eastern Australian coastline. A continuous stretch of ocean cliffs that form the coastal 
pathway between Beecroft Head and Cape St George is breached by the relatively narrow entrance of the bay 
(3.7 km). This discontinuity in the coastline is parallel to the south westerly direction of the migration and 
requires whales to detour from the main migratory pathway to move into the Bay. Although wind waves are 
generated across the surface of the bay, ocean swell (from the Tasman Sea and Southern Pacific Ocean) that pass 
through the entrance are increasingly refracted by a gently shelving bathymetry 35. The entrances to Hervey Bay 
and the Exmouth Gulf are oriented east–west facing towards the migrating whales and span close to 70 km and 
50 km, respectively, each with a total area of ~ 4000  km2, so that whales of all group compositions are likely to 
move into these bays as they move south. This is consistent with the lower proportion of calf group observations 
in these locations than in Jervis Bay. The importance of Jervis Bay as an area for resting is further highlighted 
when considering the vast distances between both breeding (~ 1500 km) and feeding grounds (~ 3500 km).

Humpback whale mother-calf pairs in Jervis Bay travel at slower speeds, with less directed movements com-
pared to groups travelling offshore on the southern migration. Travel speed and directional, linear movements 
offshore were as expected and consistent with other research along the Australian coast 15,27. Slow, non-linear 
movements, as observed by lactating females and their calves in Jervis Bay, suggest low energy expenditure and 
resting by these groups.

Resting implies saving of energy. For marine mammals, the rate of energy expended by travelling to overcome 
the drag resistance of water theoretically increases as the  3rd power of their  speed36. Total energy expenditure also 
includes the basal metabolic rate and factors involved in thermal regulation. Measurements of energy expenditure 
rate as a function of speed for a range of small marine mammal species generally show a gradual increase above 
the basal metabolic rate at the lowest speeds 36,37,39. With increasing speed, the energy expenditure increases 
at a progressively faster rate as the effect of travelling becomes more dominant. Hind and Gurney 36 provide a 
comprehensive model of the metabolic cost of swimming in marine homeotherms in which the basal metabolic 
rate dominates at very low speeds and the energy to overcome drag resistance dominates at high speeds, con-
sistent with measurements. In this model, part of the basal metabolic rate at rest includes the generation of heat 
required to maintain thermal equilibrium of the body core if heat is lost to the surrounding colder water. Heat 
generated by travelling can to some extent compensate for this heat loss thus reducing the net additional energy 
expenditure during travel at low speeds. The result is that the increase in energy with speed from rest is more 
gradual than without this compensation, up to a speed where the heat from travelling exceeds that needed to 
compensate for heat loss to the water.

However, this effect may not be significant for large whales in warm waters, such as those in 40 and outside 
Jervis Bay where temperatures are typically 18–19 °C during the southbound migration. Modelling of thermal 
processes in marine mammals 40–42 has shown that large whales may need to dissipate excess heat in warm waters, 
especially when travelling, and that blood circulation through flippers, fins and flukes is important in dissipation. 
Energy saving through reduced speed may therefore be more for humpback whales in warm water than expected 
from the measurements for small marine mammals because there is not the need to generate heat at low speeds 
to compensate for heat loss to the water, as in the model of Hind and Gurney. With their rapid growth, calves 
have higher metabolic rates per kilogram of body mass than conspecific adults and higher than for adults of 
similar size from other smaller  species40 so measurements of smaller marine mammal adults are not applicable, 
even if of similar size. There appear to be no measurements of the dependence of energy expenditure on speed 
for large whales in warm waters, or the data required to evaluate the model of Hind and Gurney to clarify this. 
However, it seems likely that there is considerable saving of energy by the significant reduction in speed and 
the high proportion of time spent with little movement by humpback whale mothers and calves in Jervis Bay 
compared to similar groups travelling offshore.

Respiration rate has been also be used to estimate energy expenditure in large whales 14,43. However, this 
assumes that expiration and inspiration gas exchange (tidal volume) is constant irrespective of speed or the rate 
of energy consumption. This is not supported by gas flow measurements at low speeds which found significant 
variation in tidal volume as flow rate of the blow as well as the duration varied and blows were observed to be 
weaker and more difficult to observe as the whales  rested44. Hence respiration rates are likely to overestimate 
energy expenditure at low speeds and resting, leading to an underestimate of the dependence of energy expendi-
ture on speed. In Jervis Bay, we found that blows from whales were often too weak to be reliably counted from 
the observation site, especially for calves and for longer distances, thus respiration rates were not measured. In 
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studies off Peregian Beach, theodolite observations were found to underestimate respiration rates of migrating 
humpback whales compared with boat observation, especially the smaller blows from calves 45.

Bejder et al. 13 found that respiration rates of humpback whale mothers and calves in Exmouth Gulf were 
significantly less than for foraging whales off Greenland, based on aural detection of blows recorded on tags 
affixed to whales by suction cups. If respiration rate tends to overestimate energy expenditure at low speeds, the 
difference in energy expenditure between resting and foraging would be even more pronounced.

UAV surveys were conducted to observe fine-scale behaviour of humpback whales in Jervis Bay and comple-
ment movement parameters calculated using land-based theodolite data. Clear resting and nurturing behaviour 
was evident. In addition to the energetic advantages afforded by resting behaviour, as discussed above, maternal 
behaviour, including nursing and back riding, is linked to calf survival 46. Back-riding is particularly beneficial for 
younger calves by helping calves to stay afloat right after birth and facilitating protection from predators during 
developmental stages 29,47. Close proximity between mother and calf provides several advantages, including close 
access to milk, saving on energetic costs of travelling, reducing the need for loud acoustic communication which 
may attract predators 30,47. Few observations of surface-active behaviours in the UAV surveys further support 
minimisation of energy expenditure by mother-calf groups during their time in Jervis Bay.

UAVs provide a superior platform to visualise more subtle social and nurturing behaviours, as well as behav-
iours immediately below the surface, when compared to oblique methods from land or on a vessel which under-
estimate these activities 48. In our UAV surveys, whales were submerged for 39% of observations. Compared to 
boat-based observations, UAVs provide three times more observational capacity for the same time period 49. 
Additionally, UAV observation methods improve reliability of assigned behavioural states as video footage can 
be examined multiple times, by multiple researchers post-flight 48. The authors recognise the limitations associ-
ated with the restricted data available from four flights coordinated during periods of COVID related travel and 
fieldwork restrictions. However, these flights provided insights on nurturing and resting behaviour of submerged 
whales, that would not have been distinguishable from land or boat surveys.

This study confirms the role of Jervis Bay as a resting ground for mother-calf pairs from the east Australian 
humpback whale population as suggested by Bruce et al. 22. It also provides information that, when combined 
with other studies in the literature, allows a characterisation of resting behaviour that could be applied gener-
ally. Unlike other seasonally significant habitats for humpback whales, such as breeding and feeding grounds, 
requirements for an area to be considered a resting ground is less established in the literature. Jervis Bay meets 
the requirements of a resting ground as defined in other research studies in that it is an enclosed coastal area 
which provides shelter from open oceanographic conditions 54 where whales are not actively travelling and 
making up distance on their migration 8. We argue that these definitions are inadequate and not inclusive of all 
conditions and behaviours in which resting has been observed. Within the literature, it is accepted that resting 
behaviour involves whales near or on the surface displaying little activity other than breathing, also known as 
logging behaviour, but may also include calf back riding 48,55,56. Humpback whale mother-calf groups have been 
observed resting in exposed oceanic waters on the migration path 15, so resting is not confined to sheltered 
waters. An approach for improving the definition and characterisation of an area as a resting ground would be to 
conduct systematic surveys to quantify movements and observe behaviours over a significant proportion of the 
migration for more than one migration season. These could be directed towards open ocean areas to improve our 
knowledge of resting in non-enclosed and unsheltered waters. In this study we have demonstrated the benefits 
of using multiple survey methods to establish resting behaviour. This allowed validation across different data 
sets and showed the degree of complementarity between trends in the travel speed, linearity of movement and 
aerial UAV observations.

Resting mother-calf groups in Jervis Bay, and other sheltered waters, are especially vulnerable to human 
disturbances as they move at slow speeds and spend high proportions of time resting stationary at or near the 
surface 13. Despite being protected within the Jervis Bay Marine Park and Booderee National Park, mother-calf 
groups are temporally and geographically coincident with naval, recreational, and commercial activities during 
October, the peak time for their presence in Jervis Bay. Commercial whale watching and recently introduced 
swim-with-whale activities are also focused on observing these animals at close distances. This highlights the 
need to monitor and manage potential impacts of these activities during an important stage for calves undertak-
ing their first southern migration.

Materials and methods
Field surveys. Fieldwork was undertaken in Jervis Bay (35°07′S, 150°42′E; Figs.  3 and 4), a semi-closed 
embayment on the NSW coastline, 115  km2 in area with an average depth of 15–20 m (maximum depth 40 m). 
Fieldwork was completed over three annual seasons; 24 September to 5 October, 2018; 30 September to 6 Novem-
ber, 2019; 4 October to 31 October, 2021. Restrictions resulting from the COVID-19 pandemic prohibited field-
work in 2020. Survey timing and duration was based on the peak southern migration of humpback whales in 
the Jervis Bay area 22. Two survey methods were employed; daily land surveys and UAV surveys (summarised in 
Table 3). During all survey methods no signs of disturbance, as outlined in the scientific permits, were observed.

Theodolite tracking. Point Perpendicular headland (75 m elevation), at the entrance of Jervis Bay, pro-
vided an optimal vantage point to observe whales entering or bypassing the Bay (Fig. 4). Operating from the 
Point Perpendicular Lighthouse upper balcony (~ 93 m above sea level), trained observers worked in teams of 
3–4 on 2.5 h shift rotation with 1–2 dedicated spotters, 1 theodolite operator and 1 data entry operator, dur-
ing daylight survey hours (Table 2). Spotters scanned the ocean and the Bay using the naked eye and 7 × 50 
magnitude binoculars. Sighted whales were tracked using a theodolite (TC1105) connected directly to a laptop 
with custom software, VADAR© Version 2.057, which determined the whale position using the horizontal angle 
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(bearing) and the vertical angle to the whale to calculate the distance, as in previous experiments off Peregian 
Beach 15,58. If ≤ 5 whale groups were in the study area, all groups were tracked. For > 5 groups, groups within, 
entering, or leaving the Bay were prioritised. Consequently, to the best of our knowledge, most of the groups 
west of the entrance line (Fig. 4) were tracked. For groups offshore, we acknowledge some groups would have 
been missed.

Theodolite tracking was limited to whale groups within 10 km, the distance of sufficient visibility under good 
survey conditions (clear and calm). For a small area of the Bay (~ 2.8  km2), directly under the Point Perpendicular 
cliffs and behind (north of) Honeymoon Bay, observations were obscured by land (Fig. 4).

A whale group was defined as either a lone whale or multiple individuals (usually two or three) within 100 m 
of each other and surfacing at similar times. Following sighting, the group position was tracked at every surfacing 
event until they left the study area, travelled south offshore past Bowen Island, or were no longer detected. The 
group composition (e.g. lone adult; mother and calf (MC); mother, calf and escort (MCE)) was recorded for all 
sighted groups. A calf was defined as a whale of less than 70% the length of the accompanying whale, presum-
ably its mother, with whom it maintained a close and constant association 59. Groups that merged or split were 
not included in the analysis.

Figure 3.  (A) Locations of documented aggregations for humpback whales migrating along the east and west 
coasts of Australia. A comparison of three areas where humpback whale resting has been observed off Australia 
is illustrated in (B–D). Figure created using ArcGIS Pro (v 2.9).
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Sectioning of observation area, group composition and movement analysis. The observation 
area was divided into three sections (Fig. 4): (a) inshore Jervis Bay: the area west of the line from Bowen Island to 
Longnose Point, (b) the entrance of Jervis Bay: the area between the entrance line (west of the line from Bowen 
Island to Point Perpendicular) and area (a), and (c) offshore: all areas seaward of the line from Bowen Island 
to Point Perpendicular. The boundary of area (a) was derived using seabed exposure models 60 as a proxy for 
protection from ocean swell.

For the movement analysis, whale groups were assigned to four categories based on their tracked movements 
during the period of observation: category (1) groups whose tracks remained entirely within the inshore area, 
category (2) groups that were tracked from offshore or the mouth into the inshore area (including both tracks 
entering or leaving the inshore area), category (3) groups that entered or left the entrance without entering the 
inshore area, and category (4) groups that were tracked entirely offshore. The proportion of groups within the 
Bay were recorded and categorised by their composition.

Comparative analysis of whale movement patterns for the four categories was performed on time-enabled 
data points in ArcGIS Pro (version 2.9). Only tracks containing > 3 reliable theodolite position fixes and tracked 
for a total of duration > 10 min were included in the data sample. Track distance (m), duration (s), and speed 
(km/h) were calculated using ArcGIS Pro Motion Statistics.

The distance between any two consecutive fix positions is referred to as a leg. For each track the following 
parameters were calculated:

(a) Leg speed: the speed of each individual leg.
(b) Track speed: the swimming speed along a track calculated by summing the leg distances for entire track 

and dividing by the sum of the leg durations.

Figure 4.  (A) Jervis Bay study site illustrating observation areas and example tracks to demonstrate movement 
from each category. (B) The 10 km observation extent from the Point Perpendicular Lighthouse. (C) The zoning 
and extent of the Jervis Bay Marine Park (JBMP) and the extent of the waters of the Booderee National Park. 
Figure created using ArcGIS Pro (v 2.9).

Table 3.  Summary of field methods conducted during the 2018, 2019, 2021 southern migration seasons.

2018 2019 2021

Land surveys
Survey hours 0800–1700 0800–1700 0900–1500

Dates 28 Sept–5 Oct 30 Sept–6 Nov 4–31 Oct

UAV surveys Dates N/A 31 Oct, 3 Nov 23, 28 Oct
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(c) Net speed: the straight line speed calculated by dividing the linear distance between the first and last posi-
tion fixes in a track by the travel time between them (i.e. total duration of track);

(d) Linearity: a form of migration index, calculated by dividing the net distance covered over a track (i.e. the 
linear distance between the first and last fixes) by its cumulative distance (the sum of all leg distances). 
Linearity values range between 0 and 1, with values close to 1 representing a straight track-line, and values 
close to 0 indicating no constant direction.

Mann–Whitney-U tests were performed to compare the three movement parameters between mother-calf 
pairs in the inshore waters of Jervis Bay (category 1) and mother-calf pairs travelling south offshore (category 
4). Mother-calf escort groups were excluded from these comparisons because the sample size in the bay/inshore 
was too small. Movement parameters from these two geographical areas could be assumed to be statistically 
independent which may not be the case for groups in categories 2 or 3. Non-parametric statistics do not assume 
normal data distribution and are less sensitive to unequal sample sizes 61.

UAV surveys. UAV surveys were conducted using a DJI Mavic 2 Enterprise Dual (M2ED) in 2019, and a 
DJI Mavic 2 Enterprise Advanced (M2EA) in 2021. At the time of survey these were the most suitable light-
weight UAV models available for launch and recovery on a small research boat. Following a confirmed whale 
sighting, whale’s behaviour and travel direction were observed for five minutes from a distance > 300 m at idle 
speed before the whales were approached whilst maintaining > 100 m distance. During flights the boat remained 
at this distance to provide a clear line of sight to the UAV and facilitate vertical positioning over the whales. The 
UAV was operated by the University of Sydney Chief UAV Pilot in accordance with Australian Civil Aviation 
Safety Authority regulations. A field researcher deployed and recovered the UAV by hand, assisted by a custom-
ised platform at the rear of the boat. An initial launch altitude of 55 m provided sensor field of view for whale 
detection within the video frame. The UAV pilot monitored the live video feed and once the whales were visible 
lowered to ≥ 25 m altitude. Video footage was captured at continuous 2–3 min intervals until the whales were 
no longer visible or travelling to a new location with direct movements or until 20% of the battery remained.

Jervis Bay is a restricted airspace and UAV flights are only approved during non-military use this confined 
the survey window to weekends and specified < 2 h time blocks on weekdays approved at short notice.

UAV data analysis. Post-capture UAV video analysis of behavioural states followed methods outlined by 
Fiori et al. 48,67. Six mutually exclusive and cumulatively inclusive behavioural states were defined to describe 
whale group behaviour during each encounter: both mother and calf resting, mother resting whilst calf is active, 
travelling, surface-active, socialising, and nurturing (Table 4). Only behaviours observed were included in the 
analysis.

Behavioural states were recorded at one-minute sampling intervals and assumed to remain constant between 
observations 56. If whales were last observed diving, travelling was the behavioural state allocated until the whales 
were resighted 67. The proportion of time that whales were fully submerged in the footage was also calculated.

Ethics and permit statement.  Fieldwork activities were compliant with guidelines and regulatory 
requirements under permits authorization by the University of Sydney Animal Ethic Committee (permit 
2019/1592), the Department of Primary Industries Marine Parks (permit MEAA19/179) and the Department of 
Planning, Industry and Environment, New South Wales (SL102287). Compliant with the Australian Civil Avia-
tion Authority (CASA) all UAV flights were within visual line of sight. UAV flight approval within the Restricted 
Airspaces (R421A Nowra and R452 Beecroft Head) overlapping the Jervis Bay study site was obtained from the 
Australian Department of Defence.

Data availability
All datasets collected and analysed during the current study are available from the corresponding author on 
reasonable request.

Table 4.  Definitions of behavioural states of humpback whale groups modified from Fiori et al.67.

Both mother and calf resting
Mother and calf are motionless and horizontal at, or just below, the water’s surface, surfacing only 
to breathe

Mother resting, calf active
Mother is motionless and horizontal at, or just below, the water’s surface, surfacing only to breathe. The 
calf is displaying surface-active behaviours, including rolling, breaching, spy hopping, pectoral fin or head 
slapping

Travelling Mother and calf are travelling from location to location with persistent, directional movement, covering 
noticeable distances

Surface-Active Mother and calf are causing displacement of water at the surface by rolling, breaching, spy hopping, pecto-
ral fin or head slapping. Behaviours in quick succession (< 1 min) but not necessarily simultaneous

Socialising A whale mother or her calf are actively chasing or circling around the other whale

Nurturing A whale mother and her calf are rubbing or touching; this includes mother lifting the calf with its rostrum. 
Suckling may be observed
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3 
ENHANCING UAV IMAGES TO IMPROVE THE  

OBSERVATION OF SUBMERGED WHALES USING A 

WATER COLUMN CORRECTION METHOD    

3.1  INTRODUCTION  

Ultra-high spatial resolution sensors made available by advancements in the 

miniaturization of instruments deployable on unoccupied aerial vehicle (UAVs)2, present 

new and innovative opportunities for remote detection of marine wildlife. The spatio-

temporal resolution and survey responsiveness afforded by these low-cost platforms 

enables the collection of data that can provide insights on the spatio-temporal dynamics 

of individual marine animals at close range (Anderson & Gaston, 2013). In the last decade 

there has been an increase in marine studies utilizing UAVs (Schofield et al., 2019), which 

allows for novel insights on the abundance (Hodgson et al., 2017), behaviour (Torres et 

al., 2018; Fiori et al., 2019), and body condition (Christiansen et al., 2016; Hodgson et al., 

2020) of marine wildlife. Importantly, UAV-based image capture has the potential to 

increase the duration of visible observation through detection of animals below the water 

surface (Torres et al., 2018). This has significant ramifications for the study of mother-

calf humpback whale groups that rest in shallow protected embayments (Bruce et al., 

2014; McCulloch et al., 2021), spending high proportions of time resting at depths of less 

than 5 m (Bejder et al., 2019; Iwata et al., 2021). However, the use of remotely sensed 

data in coastal environments is challenged by the optical complexity of the water column 

(Figure 1).  

  

Environmental conditions (e.g. sun glint, water turbidity and sea state) associated with 

UAV-captured images are well recognized as limiting factors impacting detection rates 

(Aniceto et al., 2018; Colefax et al., 2018). Processing techniques are commonly used in 

remote sensing research to enhance or enable the detection of underwater features, 

including benthic habitat (Mumby et al., 1998; Zoffoli et al., 2014; Hedley et al., 2016). 

Similar techniques, including water column correction, can be applied to UAV-captured 

 
2 Also commonly referred to as drones, unmanned, uncrewed aerial vehicles, or remotely piloted aircraft system.  
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images to enhance visibility of animals below the water surface, which may be missed in 

manual counts or automated deep-learning based classifications (Gray et al., 2019). This 

chapter presents remote sensing-based methods for enhancing UAV-acquired visual 

image data to improve the contrast of whales on the water surface and submerged near 

the surface. Application of these methods has the potential to compensate for perception 

bias (when an animal is present but missed by the observer) which is influenced by 

environmental conditions (e.g., contrast between an animal and their environment) 

(Brack et al., 2018). By removing complexities in the water column, through a water 

column correction technique, there is potential to improve rates of detection.  Image 

correction is demonstrated using UAV data captured over the Jervis Bay Marine Park, a 

case study site on the eastern Australian coastline that is frequented by humpback whale 

(Megaptera novaeangliae) mother-calf groups during the southern migration from the 

breeding grounds (Bruce et al., 2014; Jones, 2019).  

3.1.1  Background: Water Column Correction 

Remote sensing measurements of submerged features are impacted by variations below 

the water surface including depth, water quality and variations in bottom substrate 

(Figure 1, Holden & LeDrew, 2002). The overlying water column significantly affects the 

remotely sensed signal of an object or substrate due to the optical attenuation (scattering 

and absorption) of light as it passes through water. Differential attenuation of light in the 

water column results in a decreased ability to discriminate between underwater objects 

(Hamylton, 2011). Water column correction techniques remove much of the depth-

induced variation in spectral data and may improve discrimination of submerged objects. 

Importantly, the decay of the radiance within the water column caused by absorption and 

scattering is wavelength dependent and the spectral bands (radiometric channels) of the 

sensor will influence the effectiveness of correction methods for improving 

discrimination of submerged objects. The most widely used water column correction is 

that proposed by Lyzenga (1978, 1981), based on the assumptions that: 1) depth plays a 

significant role in changing the reflected radiance of an object, and 2) that water quality 

is constant over the image (Manessa et al., 2016). This method, suitable for high clarity 

water, produces a depth-invariant bottom index by ratioing the radiance values of each 

pair of spectral (wavelength) bands. Visual (RGB) sensors with an RGB array filter, most 

commonly found on UAVs, are limited to three possible band pairs (i.e. red/green, 
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red/blue, green/blue) which are limited in providing optimal band ratios for detailed 

outputs (Hamylton, 2011). However, due to higher cost and payload requirements of 

multispectral sensors, to date many UAV-based marine wildlife surveys have used RGB 

sensors integrated on standard small payload rotary UAVs (e.g. DJI Phantom models; 

Torres et al., 2018; Fiori et al., 2020) or fixed wing platforms (e.g. ScanEagle; Hodgson et 

al., 2017).  

 

 

 

Figure 2. Diagram illustrating the various processes contributing to complexities in 

surveying large marine species from a UAV platform. Created with BioRender 

(https://biorender.com/). 

 

3.2 METHODS 

3.2.1 UAV data capture 

All fieldwork was conducted in Jervis Bay (see Section 4.3 for detailed site description). 

Jervis Bay is a restricted airspace and UAV flights are only approved during times the 
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airspace was not in military use.  This restricted the window of survey opportunity to 

weekends and specified one-two hour time blocks during weekdays often approved at 

short notice. Surveys were conducted when there was no rain, visibility was >5 km with 

clear skies, and sea state at or below Beaufort force 2. 

 

The visible RGB imaging capabilities of sensors for detecting whales were evaluated using 

a DJI Mavic 2 Enterprise Dual (M2ED). This was the most suitable light-weight UAV option 

available for launch and recovery on a small research vessel. The Bay was visually 

scanned by researchers on the vessel. Following a confirmed whale sighting, the whale’s 

behaviour and direction of travel were observed for five minutes from the vessel at a 

distance >300 m before an approach was made to a distance >100 m from the whale.  

 

The UAV was launched and landed using a portable wooden platform at the stern of the 

boat. The initial launch altitude was 55 m to provide sufficient sensor field of view for 

identifying the whale. The UAV pilot viewed the live feed (visible mode) throughout the 

flight and lowered the altitude to ≥ 25 m once the whales were visible on the controller 

screen. As soon as whales were no longer visible in the live feed, the UAV was raised to 

an altitude >50 m. The vessel remained at a distance >100 m from the whales during the 

flights to provide a clear line of sight to the UAV and facilitate positioning over the whales. 

Still images and videos were captured throughout the flight and GPS timestamped.  

3.2.2 Water column correction 

The spectral signal of the whale in contrast to the surrounding waters was enhanced by 

using Lyzenga’s water column correction model for clear water environments (Lyzenga, 

1981), as modified by Mumby et al. (1998) and Hamylton (2011). Three images taken 

from the M2ED, containing two different mother-calf groups at different depths were 

used to assess the water column correction. This included both still images and images 

extracted from video footage. All processing steps were performed in ENVI™ 5.5.3.  

 

To remove light scattering and absorption effects within the atmosphere and water 

column, the following algorithm was used to calculate a depth-invariant index: 

𝑋𝑖 = 𝑙𝑛(𝐿𝑖)           (1) 

where Li is the radiance in band i and 
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𝑘𝑖

𝑘𝑗
= 𝑎 + √𝑎2 + 1, 𝑎 =

𝜎𝑖𝑖+𝜎𝑗𝑗

2𝜎𝑖𝑗
         (2) 

where ki is the irradiance attenuation coefficient of the water in band i,𝜎𝑖𝑖 is the variance 

of Xi in band i and 𝜎𝑖𝑗  is the covariance between bands i and j. The depth invariant bands 

between bands i and j are then calculated as:      

 𝑑𝑒𝑝𝑡ℎ𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑏𝑎𝑛𝑑𝑖𝑗 = 𝑙𝑛(𝐿𝑖) − [(
𝑘𝑖

𝑘𝑗
) 𝑙𝑛(𝐿𝑗)]       (3) 

 

The model generates a single depth invariant band from each pair of spectral bands 

within the image. This image-based correction method assumes the reflectance of an 

object is a function of water depth and that water quality is constant across the area of 

interest. In this study, it could be assumed that there was no variability in the water 

optical properties across the small area of interest confined to the region immediately 

adjacent to the whale. In this correction, depth in each pixel is constant for all bands and 

thus attempts to linearise the relation between two bands i and j and water depth.  

 

The following steps outline the process for a single image (illustrated in Figure 2). First a 

natural logarithm was applied to the raw RGB image. The next correction step was to 

select the pixel samples across the whale. The focus here was to reduce the effects of 

depth between the whale and ocean surface. Thus, radiance values were taken from the 

whale’s body surface along transects. Subsequently, a polyline region of interest (ROI) 

was traced along the centerline of the whale’s body, down the center of each tail fluke, 

and across the widest part of the body between the dorsal and pectoral fins. This ROI was 

used to calculate radiance values and thus ensured inclusion of body surface pixels at 

different depths accounting for the characteristic fusiform shape of the whale’s body. The 

covariance values across the ROI for each RGB band were determined and depth invariant 

indices were calculated for all three band pairs (i.e. red/green, red/blue, green/blue) 

using equation 3 above. Subsequently, the three processed images were converted back 

to base values using an exponential function. 

 

To compare the pixel values between the original image and processed images, all pixels 

were converted into Z-scores (equation 4) enabling detection of anomalies, for all four 

images used (RGB image and three band pairs). 
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𝑍 =
[𝑝𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛]

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
         (4) 

 

The performance of the applied image processing methods was assessed visually, and 

quantitively by evaluating the mean Z-score values extracted across the whale’s surface, 

for the original RGB images and the three resulting band pairs. Additionally, a horizontal 

profile was taken across the original RGB images and the three band pairs.  

 

Figure 3. Overview of processing steps applied in the depth invariant analysis. In Step 3, 

the yellow transect outlines where the radiance values were extracted for inclusion in the 

correction. The correction process resulted in three depth-invariant band pairs. These 

images were then converted into Z-scores. Transects (black dotted line, Step 4) were 

extracted along the length of the whale to determine average values for each image and 

horizontal profiles were taken along the whales in the image (Step 5).  

3.3 RESULTS 

In Figure 3, the calf’s body is predominantly on the surface, whilst the mother’s body is 

predominantly submerged, with the mother’s rostrum at the deepest point. The 

red/green band pair provided the highest Z-scores both across the whale (Table 1) and 

the highest peak when comparing the whale to surrounding water, as demonstrated in 

the horizontal profiles (Figure 3G). This improved contrast is evident in the visual results 

(Figure 3B). These results were followed closely by the improved contrast provided by 

the red/blue band pair (Table 1, Figure 3C, H). Across the whale, the green band provided 

the least deviation from the mean (mean Z=-0.28). 
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Figure 4. A) RGB image, B-D) visual results of depth invariant images derived from band 

pairs red/green (B), red/blue (C), green/blue (D), E) RGB image demonstrating where 

the horizontal transects were taken, F-I) horizontal profiles of the individual bands within 

the RGB image (F) and processed band pairs red/green (G), red/blue (H), green/blue (I) 

The image in Figure 4 was captured five seconds after the image in Figure 5 and shows 

both the mother and calf submerged. The mother is noticeably deeper in the water 

column compared with the image in Figure 3, and the green/blue band pair demonstrated 

the best overall contrast between the mother whale and her surrounds (mean Z-score 

across whale = 1.64). This is supported by the visual result illustrating the clear outline 

of the whales submerged below the water surface (Figure 4D). In contrast, the horizontal 

profiles demonstrate the red/green and red/blue band pairs provide the greatest 

contrast with surrounding waters (Figure 4G-H). The green/blue band pair (Figure 4I) 
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still provides a greater contrast compared to the RGB image (Figure 4F). The influence of 

sun glint is evident in this image, particularly in the top left corner. 

 

 

Figure 5. A) RGB image, B-D) visual results of depth invariant images derived from band 

pairs red/green (B), red/blue (C), green/blue (D), E) RGB image demonstrating where 

the horizontal transects were taken, F-I) horizontal profiles of the individual bands within 

the RGB image (F) and processed band pairs red/green (G), red/blue (H), green/blue (I) 

Figure 5 also shows a fully submerged whale. The visual results in Figure 6 highlight that 

band pairs red/green and red/blue most successfully enhanced the shape (edge 

definition) of the submerged whale. This is quantitively supported by the mean Z-scores 

across the whale for red/green and red/blue band pairs of 1.85 and 1.88, respectively. 

The green/blue band pair had a mean Z-score of 1.25 across the whale. The red, green, 
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and blue bands of the RGB image had notably lower mean Z-scores of 0.40, 0.07, and -

0.08, respectively. In the horizontal profiles (Figure 5F-I) there are no obvious peaks that 

correspond to the whale in the water. In these profiles the whitewash has been observed 

as a more dominant visual feature than the whale object.    

 

 

Figure 6. A) RGB image, B-D) visual results of depth invariant images derived from band 

pairs red/green (B), red/blue (C), green/blue (D), E) RGB image demonstrating where 

the horizontal transects were taken, F-I) horizontal profiles of the individual bands within 

the RGB image (F) and processed band pairs red/green (G), red/blue (H), green/blue (I). 

 



43  

Table 1. Mean Z-scores extracted along pixel profile lines across the whales in the three 

images shown in Figures 3-5, presenting results from the RGB image and three depth 

invariant images derived from band pair combinations. The results from the RGB image 

are presented as individual red, green, and blue bands. The highest value for each image 

is shown in bold.  

 Mean Z-scores 

 Figure 3 Figure 4 Figure 5 

Red 1.00 0.85 0.40 

Green -0.28 0.90 0.07 

Blue -0.45 0.54 -0.08 

Red/green 2.21 0.67 1.85 

Red/blue 2.11 1.05 1.88 

Green/blue 0.32 1.64 1.25 

 

3.4 DISCUSSION 

The accurate detection of marine vertebrates in aerial images is made complex by 

environmental factors, including light attenuation in the water column, white caps and 

specular reflection, particularly sun glint (Hodgson et al., 2013). This study demonstrated 

a modified version of Lyzenga’s water column correction method has the potential to 

improve the detection of humpback whales in UAV-captured RGB imagery. Overall, the 

red/green and red/blue band pair ratios were the most effective band pair combination 

for enhancing contrast between the whale and surrounding waters in the visual 

qualitative results and horizontal profiles. This is consistent with Niroumand-Jadidi et al. 

(2018) who applied Lyzenga’s water column correction using an 8-band WorldView-2 

satellite image and identified the red/green band pair to be optimal for mapping a 

shallow (<1 metre deep) river environment. In the current study, the red/blue band pair 

provided comparable results, highlighting the effectiveness of the red band in shallow 

and clear waters, for discriminating submerged objects, before it is fully attenuated at 

greater depth. The effectiveness of the red band for animals on or near the surface is 

consistent with findings from Colefax et al. (2021), who demonstrated the red band 

produced the greatest spectral contrast for detecting dolphins, sharks, and other marine 
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fauna from a UAV.  

 

At increasing depths, attenuation of light within the red region increases limiting the 

value of this waveband. This is demonstrated in this study which showed that images in 

which the whale or parts of the whale body were at greater depth (Figure 4) have a 

stronger visual green/blue band pair result and the highest Z-score across the whale. 

However, the red/green and red/blue band pairs still provided the best detection peaks 

in the horizontal profiles. This is likely due to the sun glint noise present in the green/blue 

band pair ratio. The depth of the target animal/s will influence the optimal band pairing 

and subsequent object enhancement within the image. The red band (610-700 nm), and 

other bands with wavelengths approaching the red end of the spectrum, will become fully 

attenuated around 2-3 metres depth (Mishra et al., 2005; Hamylton, 2011). Thus, the 

effectiveness of band pairs using the red band will substantially reduce at this depth. 

However, in turbid waters, where sightability below the surface is limited, longer 

wavelength bands may be optimal for increasing the contrast of animals just below the 

surface (Colefax et al., 2021). Image enhancement methods for improving whale 

detection rates even in optically shallow waters (<3 metres) has important implications 

for studies reliant on accurate detection such as abundance surveys (e.g., Hodgson et al., 

2017). Compensating for water attenuation is also important for research conducted on 

breeding/resting grounds, with lactating females and their calves spending over 50% of 

time within 3 metres of the surface (Bejder et al., 2019).  

3.4.1 Conservation Implications 

The methods presented here have the potential to increase the confidence of machine 

learning and automated detection models. Machine learning techniques for automated 

detection of whales are increasingly being applied to UAV-collected data sets providing 

an efficient way to process large amounts of data. Between 2004 and 2018, 15% of 

ecological studies involving UAVs used machine learning (Dujon & Schofield, 2019). 

However, data driven machine learning models require a large-scale archive of ‘ground-

truthed’ images for model training and validation to optimize model accuracy gain. 

Studies using machine learning to detect individual animals or plants rely on the 

detection of target objects against mostly homogenous backgrounds which provide a 

clear contrast to reliably discriminate animals from their environment (Laliberte & 
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Ripple, 2003). The use of machine learning for detecting marine vertebrates is further 

complicated by colouration similarities between some species and the surrounding water 

(e.g. blue whales; Gray et al., 2019) and non-uniform backgrounds that are subject to 

varying environmental conditions. In ecological studies, object-based image analysis 

(OBIA) is a commonly used image segmentation method (Dujon & Schofield, 2019). It 

provides versatility for detecting objects in varied backgrounds with confounding 

features, objects that vary in size and shape, and may be sparsely distributed in the image 

dataset (Chabot et al., 2018), making it ideal for abundance and distribution studies. 

Importantly, even with increased flexibility over other methods such as machine learning, 

OBIA is still reliant on the object/s of interest in the image being localized from 

surrounding pixels through a local brightness contrast, either as a relatively brighter or 

relatively darker group of image pixels (Groom et al., 2013). For whale detection, 

increasing the anomaly (Z-score) of the whale object, as demonstrated here, could 

potentially improve OBIA segmentation and classification results and increase detection 

availability.  

 

In all RGB images the contrast between humpback whales, on or near the surface, and 

their surroundings can be increased, or at least maintained, using a modified water 

column correction. There is a clear value of these methods in improving the detection, 

and reducing the perception bias associated with aerial surveys, of resting mother and 

calf whale groups who spend significant proportions of time resting less than 5 metres 

from the surface (Bejder et al., 2019; Iwata et al., 2021).  

 

Depth is a key limiting factor in the detection of submerged marine animals. Butcher et 

al. (2019) found that an increase in depth by 1 metre reduced the odds of detection by 

58% when reviewing UAV footage of shark analogues post-capture. At depths greater 

than 3.5 metres, the probability of detection was less than 50%. Similarly, Dujon et al. 

(2021) used machine learning to detect loggerhead sea turtles (Caretta caretta) in UAV-

captured imagery, finding detection decreased significantly with each metre in depth and 

was close to zero at 5 metres. In clear water, their machine learning model detected less 

than 40% of turtles at 2 metres depth (Dujon et al., 2021). The correction methods 

presented here clearly enhanced the whales’ fluke shape and outline, demonstrated in 
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the visual results. The distinctive shape of the fluke could provide an opportunity to train 

more sophisticated machine learning models to detect whales using this feature. The 

effectiveness of these results will depend on several factors, including the depth of the 

whales, their orientation in the water column (i.e., horizontal or vertical), water turbidity 

and specular reflection including sun glint. Although resting mother and calf humpback 

whale groups were the focus of this study, the methods presented here are applicable to 

other marine vertebrate species that are often found in clear, shallow waters, such as 

dugongs (Dugong dugon), sea turtles and stingrays.  

3.4.2 Limitations of RGB sensors 

This study demonstrated that water column correction techniques can enhance the visual 

outline and anomaly signal over the body of whales on the surface and submerged at 

shallow depths. However, constraints associated with the limited spectral resolution 

provided when working with three bands (i.e., red, green, and blue) within the visible 

range (wavelength 400-700 nm) are recognised. The higher number of wavelength bands 

available in multispectral sensors and hyperspectral sensors provide a greater selection 

of band pairs for depth-invariant processing and are demonstrated to improve the 

detectability of submerged objects (Colefax et al., 2018). Employing multispectral or 

hyperspectral sensors and customising or selecting bands configured to focus on 

wavelength bands optimal for the spectral characteristics of the water body, such as the 

coastal band (Fretwell et al., 2014), and target species may further reduce perception bias 

and subsequently improve animal availability at depth compared to standard RGB 

sensors (Colefax et al., 2018). For example, the MicaSense RedEdge-MX Dual Camera 

Imaging System has 10 bands, including a coastal blue band for monitoring shallow water 

environments (Román et al., 2021) and a near infrared band (NIR) allowing for sun glint 

correction.   

 

Specular reflectance including sun glint was evident in all water column correction 

results presented here. The specular reflection apparent in the visual RGB images shows 

as noise in the corrected images and where present there is a noticeable reduction in 

contrast between the whale/s and surrounding water (e.g., adjacent to the mother whale 

in Figure 4). In coastal UAV surveys, the effects of sun glint can be avoided, or reduced, by 

scheduling data capture in the early morning or later afternoon which is a viable option 
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for static objects, such as nearshore benthos. However, for moving and wide-ranging 

marine vertebrates this is not always feasible. Whilst studies have reported that sun glint 

had no significant impact on sighting rates (Hodgson et al., 2013; Butcher et al., 2019), 

removing the effects of sun glint may further improve the image enhancement methods 

demonstrated here and should be considered when designing UAV based marine surveys. 

NIR bands are present in most multispectral sensors and can be used to remove sun glint 

contamination through post-processing techniques (Hedley et al., 2005; Martin et al., 

2016). However, the need for a NIR band limits the use of sun glint removal techniques 

for most off-the-shelf UAVs, fitted with an RGB sensor, commonly used in wildlife studies. 

Furthermore, there is a trade-off between spectral resolution and UAV cost. For example, 

the DJI Phantom 4 (RGB; 1/2.3” CMOS; 12.4 MP) currently retails for one sixth of the price 

of the DJI Phantom 4 multispectral with 5 bands: RGB, Red Edge, and NIR (1/2.9” CMOS; 

2.12 MP) with a lower sensor resolution. 

3.4.3 Future Directions 

Obtaining a larger image data set is critical for understanding the effectiveness of depth 

invariant indices derived from possible band pairs, and whether these differ with the 

whale depth and environmental factors (e.g., turbidity). The irradiance attenuation 

coefficients (
𝑘𝑖

𝑘𝑗
) calculated in this study did not vary by more than 0.44 within each band 

pair, suggesting little variation in a range of conditions. Calculating an optimal index value 

for each band pair, with little variation in results, has important ramifications for 

automated detection methods by removing the necessity to first identify if a whale is 

present in the image. This would involve acquiring images with whales at known depths 

achieved through DTAGS (Bejder et al., 2019) for accurate depth measurements.  

However, the need to tag individual animals may limit sample size. The use of analogues, 

similar to those used in Butcher et al. (2019), would overcome this issue and allow for 

controlled depths in range of environmental conditions and flights at range of altitudes. 

This would also require an understanding of the similarity between the reflective 

signatures of whales and the analogue surface.  

 

Marine wildlife surveys to date have predominantly employed visual (RGB) sensors 

which highlights the importance of correction methods suitable for visible images, 
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particularly for time series studies using historical data. However, there is a need to 

evaluate the role of multispectral sensors, particularly the use of the NIR band, for water 

column correction methods focused on the detection of marine wildlife. Methods for 

detecting and removing the sun glint from images using data in the NIR waveband (700-

1,500 nm) are well established (Kay et al., 2009). Finally, increasing the number of 

potential band pair combinations will provide a greater range of results which may offer 

superior enhancement of submerged objects in UAV imagery.   

3.5 CONCLUSIONS 

An understanding of the role of water column attenuation correction is critical for 

accurate detection of whales and is particularly relevant with the increasing use of low-

cost UAV platforms and machine learning techniques for achieving estimates of 

population abundance and monitoring movement patterns of marine wildlife in shallow 

coastal habitats. Water column correction techniques can enhance the visual outline and 

anomaly signal over the body of whales on the surface and submerged at shallow depths. 

Finally, the optimal band pair combination will depend on whale depth and therefore it 

is not possible to recommend a single band combination for achieving improved overall 

detection.  
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4 ASSESSING THE EFFECTIVENESS OF UAV-BORNE 

THERMAL IMAGERY FOR WHALE DETECTION  

4.1 ABSTRACT 

Unoccupied aerial vehicles (UAVs) 3 provide flexibility when surveying vagile, highly 

mobile species, such as whales. However, UAV research to date has predominantly 

focused on detection with visual (RGB) sensors which are limited by light levels and 

require a clear contrast between an animal and its surrounds. Thermal infrared imaging 

enables the detection of animals in low light conditions and high water turbidity. Here we 

tested the whale detection capabilities of three sensors that allowed for synchronous 

visual (RGB) and thermal capture in a sheltered coastal embayment in NSW, Australia. 

The results highlight the importance of thermal sensor resolution for improving aerial 

detection. The highest resolution sensor (Zenmuse XT2) detected whales on the surface 

at distances over 500 m. The lowest resolution sensor (M2ED thermal camera) was 

unable to detect whales on the surface, however, could detect the thermal gradient of a 

whale’s surface footprints, extending the available time for observation. Thermal images 

were often contaminated by sun glint, water surface roughness and angular effects on 

emissivity which can impact the discrimination of whale cues. UAV-borne thermal 

sensors can be used to complement data captured from visual sensors to enhance whale 

detection rates, but preliminary results indicate these sensors are not a viable option to 

replace visual sensors for daytime detection in marine environments.  

4.2 INTRODUCTION 

Growth in humpback whale (Megaptera novaeangliae) populations, particularly in the 

Southern Hemisphere (Wedekin et al., 2017; Noad et al., 2019), is likely to result in 

greater potential of whale exposure to vessel disturbances and acoustic energy, especially 

from naval and seismic vessels, which may impact on whale health and behaviour long-

term (Dunlop et al., 2017). Areas of particular concern are humpback whale resting areas 

3 Also commonly referred to as drones, unmanned, uncrewed aerial vehicles, or remotely piloted aircraft system.  
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where mothers and calves rest in shallow protected embayments (Bruce et al., 2014; 

Bejder et al., 2019). These groups are especially vulnerable to disturbances due to their 

slower movements and high proportions of time spent resting in depths of less than 5 

metres (Bejder et al., 2019; Iwata et al., 2021). However, whales are intrinsically difficult 

to observe and monitor, spending a significant proportion of time submerged, only 

surfacing for short periods (Nowacek et al., 2016), and exhibiting wide-ranging and 

unpredictable movement patterns (Schofield et al., 2019).  These challenges highlight the 

need to evaluate the effectiveness of alternative UAV-borne methods for detection of 

whales in coastal waters. 

 

Remote sensing methods enable synoptic coverage and high temporal resolution which 

are particularly beneficial in ecological surveys. Advancements in micro-UAV platforms 

(<5kg) and payloads including Inertial Measurement Units (IMUs), GPS receivers and 

image sensors has increased the commercialisation of these platforms (Turner et al., 

2014; Nex et al., 2022). This has enabled the accessibility of ultra-high resolution remote 

sensing image data for marine wildlife surveys using methods that are both less obtrusive 

and repeatable over time and space (Anderson & Gaston, 2013; Christie et al., 2016). The 

flexibility afforded by UAV surveys is unparalleled by other survey approaches, including 

piloted aerial surveys, boat, or land surveys. Whilst larger, fixed-wing models can be used 

for transect surveys (Hodgson et al., 2013), smaller models, such as quadcopters, can be 

flown opportunistically (Horton et al., 2019) and launched from small boats (Christiansen 

et al., 2016). This is particularly advantageous for marine research when surveying vagile 

and often elusive animals. UAVs have enabled detection probabilities within the range of 

piloted aerial surveys for humpback whales (Hodgson et al., 2017). However, research 

until now has focused primarily on image detection based on the visual spectrum (RGB) 

with limited evaluation of thermal sensors for improving detection rates. 

 

Traditional visual (RGB) imagery is subject to animal detection dependent on light levels, 

contrast of the target animal with their background habitat, and shadows that may mask 

targets (Hinke et al., 2022). One useful progression in UAV surveys is the improved 

payload capability for multiple passive sensors (e.g. optical RGB and thermal infrared) to 

be deployed simultaneously allowing synchronous image capture. Dual visible-thermal 
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camera methods have been demonstrated in wetland environments (McKellar et al., 

2021).   

 

Thermal infrared sensors generally provide a lower spatial resolution than many RGB or 

RGB-NIR sensors, but provide an alternative to detect animals, in low light conditions or 

turbid waters where the animal’s surface temperature is warmer than the surrounding 

environment (Hughey et al., 2018; Verfuss et al., 2018; Burke et al., 2019). These sensors 

operate in two wavelength bands in the infrared portion of the infrared spectrum: 3–5 

µm or mid-wave infrared (MWIR), and 8 - 12 µm or longwave infrared (LWIR). UAV-

deployed thermal imaging systems have been demonstrated to outperform traditional, 

ground-based survey methods for the detection of arboreal mammals (Kays et al., 2018; 

Witt et al., 2020; McCarthy et al., 2022). Thermal sensing methods have also been 

effective for aerial surveys of marine mammal species that come ashore (pinnipeds and 

fissipeds) in open habitats, such as rocky substrates (Seymour et al., 2017; Gooday et al., 

2018; Young et al., 2019; Christman et al., 2022) and snow (Smith et al., 2020). However, 

detecting temperature differentials using thermal methods is considerably less effective 

in the marine environment where infrared waves are rapidly attenuated by the water 

column. Cetacean species present further challenges: the insulative properties of their 

specialised blubber layer (Favilla et al., 2022) reduces the thermal contrast between the 

animal and surrounds, and the thin layer of water that covers the body when surfacing 

can partially or completely mask skin temperature. However, in cetacean surveys, 

additional cues are advantageous to thermal infrared detection, including: warm 

exhalations or blows (Horton et al., 2019), and the cold thermal signature of a cetaceans 

footprint where animal movement has disturbed the water column resulting in localised 

upwelling of colder water referred to as a thermal footprint (Churnside et al., 2009; 

Florko et al., 2021). Churnside et al. (2009) used a simple hydrodynamic model of the jet, 

generated by the upward movement of a humpback whale fluke, as it hits the water 

surface and disperses. They modelled the rate of turbulent mixing of the cooler water 

with the warmer surface water to estimate the magnitude of temperature change and rate 

of signature decay to explain the persistence of this thermal cue. Florko et al. (2021) 

found that infrared video complemented visible camera data in the detection of narwhals 

(Monodon monoceros) in high latitude waters with the footprint providing an indirect 
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indicator of animal presence. Although these methods are still in their infancy, the 

thermal detection of thermo-stratified water mixing associated with cetacean fluke 

movements has the potential to increase the duration of an animal’s detectability.  

 

This paper aims to: (1) analyse surface water thermal gradients associated with the 

presence of humpback whale(s) in temperate coastal waters; (2) review the trade-offs 

between three UAV-integrated thermal sensors to assess sensor resolution, radiometric 

capability, and the impact of payload size on launch and recovery options.  

4.3 METHODS 

4.3.1 Study Site 

Jervis Bay is a semi-closed embayment situated along the New South Wales (NSW) 

coastline, approximately 180 km south of Sydney and approximately 115 km2 in area 

(Figure 1). Jervis Bay appears to be an important resting ground for substock E1 (East 

Australian population) humpback whales on their southern migration from the Great 

Barrier Reef to Antarctic feeding grounds. October and November are the peak months of 

humpback whales, specifically mothers and calves, entering and resting in Jervis Bay 

(Sheehan & Blewitt, 2013; Bruce et al., 2014). During October and November, the average 

water temperature in the Bay is ~18°C and ~19°C, respectively. The Point Perpendicular 

headland (75 m elevation), at the northern end of Jervis Bay provides an optimal vantage 

point to observe whales travelling south and entering or bypassing the Bay. Due to the 

combination of reliable whale numbers resting on or near the water surface and calm 

weather conditions Jervis Bay is a suitable site for evaluating the use of UAV-borne 

sensors for detecting humpback whales.  
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Figure 1. A) Study area highlighting the Jervis Bay Marine Park and UAV launch site; B) 
The UAV launch site in relation to the Point Perpendicular Lighthouse; C) Aerial image of 
launch site taken with UAV landing pad 
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4.3.2  UAV data capture 

The visible (RGB) and thermal imaging capabilities for detecting humpback whale cues 

were evaluated using three UAV platforms: the DJI Matrice 600 Pro (M600 Pro), the DJI 

Mavic 2 Enterprise Dual (M2ED), and the DJI Mavic 2 Enterprise Advanced (M2EA). All 

three thermal cameras were uncooled micro-bolometer imaging sensors but differed in 

resolution (Table 1). 

 

Jervis Bay is a restricted airspace and UAV flights are only approved during times the 

airspace are not in military use. This restricted the window of survey opportunity to 

weekends and specified one-two hour time blocks during weekdays often approved at 

short notice. 

 

UAV surveys were flown in October 2019 using the M600 Pro (Figure 2, Table 1) 

equipped with a DJI infrared Zenmuse XT2 sensor (FLIR® Tau 2 Thermal, radiometric). 

The M600 Pro was launched from a portable wooden pad on a flat section of the headland 

away from the cliff edge and vegetation in accordance with environment and heritage 

permits and fire safety requirements (Figure 1). A headland launch site was chosen to 

capture whales travelling into Jervis Bay following the coastline. This behaviour had been 

observed in a previous survey (Jones, 2019), and the location was optimal for ensuring 

the highest probability of capturing imagery over whales whilst complying with UAV 

operational restrictions. This includes the UAV remaining within a one-kilometre radius 

from the launch site and within the pilot’s visual line-of-sight.  

 

The UAV was launched once whales were in line of sight from the headland launch site 

with the assistance of trained observers surveying from the Point Perpendicular 

Lighthouse (130 metres from the launch site). The UAV was flown at an altitude of 100 m 

above sea level until whales were spotted by the UAV pilot using the live video feed. The 

altitude was then lowered to a height at or above 50 m during the observation leg of the 

flight. The FLIR thermal imaging sensor captured video (RGB and thermal infrared) for 

the entire flight duration. The remote video feed captured from the FLIR thermal sensor 

was used by the operator to maintain real-time sight of the whales.  
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Figure 2. The DJI Matrice 600 Pro with mounted DJI infrared Zenmuse XT2 sensor shown 

on the launch pad (left) and in flight (right). 

To compare the thermal and visible capabilities of small, boat-deployed UAV’s, the M2ED 

and M2EA were launched from and landed on a 5.9 metre research boat within Jervis Bay 

in 2019 and 2021, respectively (see Table 1 for dates). Both UAV models had an 

integrated dual camera and gimbal system and were the most suitable light-weight UAV 

options for launching and landing on a small boat. The M2EA was released by DJI in 2020 

and provided improved pixel resolution for both thermal and RGB sensors (Table 1). The 

Bay was visually scanned by researchers on the vessel. Following a confirmed whale 

sighting, the whale’s behaviour and direction of travel were observed for five minutes 

from the boat at a distance >300 m before an approach was made to a distance >100 m 

from the whale(s). 

 

The UAVs were launched and landed using a portable wooden platform at the stern of the 

boat (Figure 3). The initial launch altitude was 55 m to provide sufficient sensor field of 

view for identifying the whale. The UAV pilot viewed the live feed (visible mode) 

throughout the flight and lowered the altitude to ≥ 25 m once the whales were visible on 

the controller screen. As soon as whales were no longer visible in the live feed, the UAV 

was raised to an altitude >50 m. The vessel remained at a distance >100 m from the 

whales during the flights to provide a clear line of sight to the UAV and facilitate 

positioning over the whales. Still images and videos were captured throughout the flight 

and GPS location timestamped.  
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During all survey days, environmental conditions were favourable for sighting whales. 

Surveys were conducted when there was no rain, visibility was >5 km with clear skies, 

and sea state at or below Beaufort force 2.  

 

 

Figure 3. The DJI Mavic 2 Enterprise Dual on the launch pad at the stern of the boat (left) 

and in flight (right). 
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Table 1. Summary of the survey dates and sensor resolution of the three UAV models, 

flown over humpback whales in Jervis Bay.  

 

4.3.3 Thermal image processing 

Thermal videos taken from the DJI infrared Zenmuse XT2 sensor on the DJI Matrice 600 

Pro were reviewed using the FLIR Tools® software. The videos were scanned using the 

FLIR ‘ironbow’ false colour palette which is effective for quick manual identification of 

thermal anomalies. For each video, the temperature scale was adjusted for optimal image 

UAV model Sensors Sensor 

Resolution 

Thermal 

accuracy 

Dates 

flown 

No. of flights/total 

flight duration 

(nearest min.) 

Matrice 600 

Pro 

Zenmuse XT2 

thermal (7.5-13.5 

μm), true 

radiometric 

640×512 @ 

30Hz 

Not stated 18 – 20,  

25 – 27  

Oct 2019 

8 flights, 104 

minutes 

Zenmuse XT 2 

visual RGB 

1/1.7" CMOS 

Effective 

Pixels: 12 M 

  

Mavic 2 

Enterprise 

Dual 

Thermal (8 – 14 

μm)  

160×120 ± 5% 31 Oct, 

3 Nov  

2019 

8 flights, 47 minutes 

Visual RGB, non 

radiometric, 

Uncooled VOx 

Microbolometer 

1/2.3” CMOS

； 

Effective 

pixels:12 M 

 

Mavic 2 

Enterprise 

Advanced 

Thermal (8 – 14 

μm)  

640×512 @ 

30Hz 

± 2˚C or 2% 

(whichever 

is greatest) 

23, 28  

Oct 

2021 

21 flights, 76 minutes 

 Visual RGB, non 

radiometric, 

Uncooled VOx 

Microbolometer 

1/2” CMOS,  

Effective 

Pixels: 48 M 
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brightness and contrast to maximise the thermal gradients of small brighter objects (i.e. 

whales and boats). Whale cues detected in the thermal video were verified with the RGB 

videos and theodolite observations. Thermal videos and images taken from the DJI M2ED 

were not radiometric and consequently could not be scaled using FLIR Tools®. Thermal 

videos were manually reviewed for the presence of thermal anomalies. In sequences 

where anomalies were evident, the corresponding RGB video was reviewed. For both the 

thermal and RGB video, the sequences were extracted to static image files at an interval 

(e.g., three seconds) determined most appropriate to highlight the movement in the 

video.  The thermal images taken from the DJI M2EA were analysed using DJI Thermal 

Analysis Tools 2.1 ©, compatible with the M2EA. Videos were not recognised by this 

software. Although advertised as producing radiometric images, the images and videos 

were not recognised as radiance images by FLIR Tools ®. Images were reviewed using 

the ‘Iron Red’ false colour palette to highlight nuanced differences in heat signatures and 

was the closest match to ‘ironbow’ for comparison with footage from the Zenmuse XT 

sensor. Videos from the M2EA were processed following the same methods as videos 

from the M2ED. A sample of two images or sequences were selected from each UAV to 

demonstrate their respective detection capabilities.  

4.3.4 Permit statement 

Fieldwork activities were compliant with guidelines and regulatory requirements under 

permits authorization by the University of Sydney Animal Ethic Committee (permit 

2019/1592), the Department of Primary Industries Marine Parks (permit MEAA19/179) 

and the Department of Planning, Industry and Environment, New South Wales 

(SL102287). Compliant with the Australian Civil Aviation Authority (CASA) all UAV flights 

were within visual line of sight. UAV flight approval within the Restricted Airspaces 

(R421A Nowra and R452 Beecroft Head) overlapping the Jervis Bay study site was 

obtained from the Australian Department of Defence. 

4.4  RESULTS 

Whales were detected in the video images taken from both thermal and RGB sensors of 

the Zenmuse XT2 (DJI Matrice 600 Pro) (Figure 4). The sea surface temperature (SST) 

was ~18°C and atmospheric temperature was  ~17.5°C  at time of image capture.   
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The oblique images in Figure 4A were captured at 1113 AEDT, at an altitude of 92 m, 

when the solar azimuth was 41.72 ° and solar elevation was 54.89 °. The visible and 

thermal signature of a whale on the surface and boats were detected at a distance of 478 

m. The oblique images in Figure 4B were captured at 1821 AEDT, at an altitude of 86 m, 

when the solar azimuth was 267.53 ° and solar elevation was 8.71 °. The visible and 

thermal footprint of a whale breaching was detected at a distance of 548 m.      

 

 

Figure 4. Humpback whale detected in RGB (left) and thermal (right) sensors at distances 

of A) 478 m and B) 548 m.  

 

In the images captured by the DJI Mavic 2 Enterprise Dual (M2ED) thermal sensor, the 

thermal signature of colder water upwelled by the whale fluke when diving (Figure 5) or 

swimming (Figure 6) was observed. The SST was ~19°C and atmospheric temperatures 

were ~17.5°C and ~21°C at time of image capture for Figures 5 and 6, respectively. In 

both figures the whale’s footprints, shown by the smooth surface of the water in the visual 

(RGB) images, are captured as a distinct surface temperature gradient in the thermal 

images. In Figure 6, the thermal signature of the whale’s footprint was evident after the 

visual footprint had dissipated. The thermal signature of a whale on the surface was not 

detected in any of the thermal footage taken from the M2ED.   



65  

 

 

Figure 5. A comparison of synchronous thermal (left) and visual (RGB, right) images 
taken of a whale’s footprint. The whale’s outline, visible in the top two thermal images, 
was enhanced in the FLIR MSX® (Multi-Spectral Dynamic Imaging) product, which adds 
visible light details to thermal images. To represent deviation from the mean, the thermal 
images are represented as anomalies. The red outline illustrates the extent of the thermal 
image within the visual RGB image. M and C denote the mother (M) and calf (C) humpback 
whale. Image sequence capture began at 1108 AEDT.  
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Figure 6. A comparison of synchronous thermal (left) and visual (RGB, right) images 
taken of a whale’s footprint. To represent deviation from the mean, the thermal images 
are represented as anomalies and coloured in ArcGIS. The red outline illustrates the 
extend of the thermal image compared to the visual RGB image. C denotes the calf 
humpback whale. Image sequence was taken on 3 November 2019. Capture began at 
0824 AEDT.  
 

Similarly, the thermal sensor on DJI Mavic 2 Enterprise Advanced (M2EA), was able to 

detect the thermal gradient of the whale’s footprint (Figure 7A). In the corresponding 

RGB image, the footprint is also evident as a smooth slick on the water surface. The 

observed temperature difference between footprint and surrounding water was 1.3°C. 

This sensor was also able to detect the thermal signature of whales on the surface (Figure 

7B). The calf’s blowhole was the warmest detected feature in the image (23.4°C ± 2℃). 

The calculated temperature difference between the whale and adjacent water was of 

1.3°C.  The sea surface temperature was ~18°C and atmospheric temperature was ~18°C 

at time of image capture. 
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Figure 7. A) A comparison of synchronous thermal (left) and visual (RGB, right) images 
taken of a whale’s footprint (A) and mother and calf humpback whale on the surface (B). 
A) Images were taken on 28 October 2021 at A) 1035 AEDT, at an altitude of 55 m, and 
B) at 1038 AEDT, at an altitude of 42 m. Inset images (i) and (ii) are clipped to illustrate 
the formation of the footprint with images (ii) and A taken 8 and 13 seconds after image 
(i), respectively. The red outline illustrates the extent of the thermal image compared to 
the visual RGB image. The white outline highlights the footprint in the image. M denotes 
the mother humpback whale, and C denotes the calf.  
 

4.5  DISCUSSION 

UAV thermal sensing methods can be used to detect whales based on thermal signatures 

characteristic of both direct (body on the surface) and indirect (footprint) cues. The 

efficacy of these methods is influenced by sensor resolution (microbolometer sensitivity) 

and focal length, sea state conditions and emissivity effects. Whales were detected in 

images acquired from all three UAV-borne thermal sensors but differences in 

thermographic accuracy between sensors impacted the types of cues observed. Previous 

studies on surface water temperature differentials generated by whale movements have 

been restricted to colder waters (Churnside et al., 2009; Florko et al., 2021; Lonati et al., 
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2022). Findings from this study demonstrated the abilty to detect these thermal contrasts 

in temperate waters (~19°C SST).  

Synchronous capture of thermal and visual (RGB) imagery highlighted the benefits of 

utilising thermal imagery to complement visual (RGB) imagery. Direct whale were cues 

detected from the higher resolution sensors (Zenmuse XT2 and M2ED), however, these 

were limited to detecting whale(s) for brief periods (<5 seconds) when they were 

surfacing. This is not comparable with the increased observation capacity of submerged 

whales provided by UAV-borne visual (RGB) sensors (Torres et al., 2018). However, our 

results highlight the advantage of the thermal detection of indirect cues. The temperature 

differential associated with a whale’s footprint persisted beyond the period the whale 

was visible at the surface, increasing observation time. Florko et al. (2021) reported that 

of 29 narwhals detected using thermal sensors from a piloted aerial survey, 100% left 

footprints that were detected in a thermal sensor. This highlights the potential for these 

methods to be used to track whale movments. However, the flight altitude (e.g., altitude 

of 300 m and 305 m in Churnside et al., 2009 and Florko et al., 2021, respectively) and 

continuous flight time afforded by piloted aerial surveys, or fixed wing UAV models 

(Hodgson et al., 2017), are likely necessary to track movements. In comparison, smaller 

UAV models, as flown in this research, have flight times limited  ~30 minutes (Table 2). 

Even with the benefits of thermal sensors for detection of indirect whale cues, visual 

(RGB) sensors are required to provide information on species, size of the whale(s), and 

counts of individuals (Florko et al., 2021).  

Emisivity defines the efficiency with which an object radiates energy compared to a 

blackbody (Handcock et al., 2012). Due to lower levels of background emisivity in data 

recorded from thermal sensors operating horizontally from the surface, they have 

previously been considered more effective in detecting cetacean blows than sensors 

recording on the nadir (Churnside et al., 2009). Ocean surface roughness, refractive index, 

and the zenith angle from which the surface is being observed (Masuda et al., 1988) will 

influence the noise associated with emissivity in UAV captured thermal imagery. 

Depending on the angle of capture, emissivity associated with rough ocean water could 

mask whale cues, but this physical property can also be adventagous. We found that 

thermal image captured on an oblique geometric angle can generate greater IR signal 
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contrast as a whale breaks the water surface due to emissivity effects. An increased view 

geometry achieved from an elevated UAV platform can result in stronger thermal 

contrast. 

 

The thermal gradient associated with the footprints were still observable after the 

footprint had dissipated in the visual images, prolonging the availability of the whale for 

detection. The temperature gradient between footprint and surrounding waters was 

1.3˚C, highlighting the thermal stratification in Jervis Bay, as modelled by Liao and Wang 

(2018). Comparing our detection of footprints in temperate waters, with comparable 

results in Arctic (Florko et al., 2021) and subarctic waters (Churnside et al., 2009), it is 

apparent that absolute temperature does not impact the contrast, however, a 

temperature gradient between the surface and subsurface layer is required (Lonati et al., 

2022).  Further research is needed to assess how environmental conditions (e.g. sea 

surface temperature and sea state) and an animal’s behaviour influence detectability 

from an aerial viewpoint.  

 

The distinguishable circular shapes of whale footprints is evident in Figures 6 and 7A and 

more so in Churnside et al. (2009) who detected the thermal footprints of north Atlantic 

right whales (Eubalaena glacialis) and humpback whales using a thermal infrared camera 

mounted on a piloted aircraft. The ability to detect whales using the thermal gradient of 

footprints without visual confirmation requires further investigation, however these 

results demonstrate a novel use for thermal sensor capabilities and potential for 

enhanced machine learning techniques for whale detection. 

4.5.1 Thermal sensor comparison  

Although simultaneous thermal and visual (RGB) imagery was captured directly above a 

humpback whale mother-calf group using both the M2ED and M2EA, the M2ED had 

limited capability for detecting thermal signature gradients associated with the presence 

of a whale on the water surface. However, both these non-radiometric thermal sensors, 

were able to detect thermal footprints (Figures 5, 6, and 7A). The clear advantage of the 

Zenmuse XT2 sensor was the long-distance thermal gradient detection capability with 

whales detected on the surface at 478 m and a whale breach detected at 548 m (Figure 

4). Potential issues in the application of UAV-borne thermal infrared sensors include; the 
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distance between the camera and target object, emissivity of the target object, humidity, 

temperature of surrounding objects, atmospheric attenuation, sensitivity of the sensor 

which can detect thermal radiation from the camera interior, and the non-uniformity 

correction (NUC) which offsets temperature change which is affected by wind and sudden 

temperature changes (Kelly et al., 2019).  Here we assess the trade-offs between UAV 

platform/payload, subsequent launch/landing site options and thermographic accuracy 

(Table 2).  

 

In determining an optimal UAV payload and platform for thermal detection of whales, 

compromises are reached between price, flexibility in flight mission, thermal sensor 

resolution, and radiometric calibration. Sensor sensitivity and accuracy increases with 

cost with a significance price difference between the true radiometric thermal Zenmuse 

XT2 sensor and the non-radiometrically calibrated inbuilt thermal sensor on the M2ED 

(Table 2) which only provides relative temperature differences (Kelly et al., 2019). Cost 

and smaller payloads are the only advantage of the non-radiometric thermal sensors over 

higher-end radiometric thermal sensors for detecting temperature gradients or 

anomalies (Horton et al., 2019). Studies involving accurate recordings of body 

temperature will require radiometric calibration, however, for detection purposes 

directly above the whale (temperature gradients and anomalies) non-radiometric 

thermal data is sufficient.  

 

The advantage of the radiometric Zenmuse XT2 thermal sensor is that it captures 

temperature data in every pixel within the image providing accurate relative 

measurements of surface temperature. However, the distance between the sensor and 

whale target, and atmospheric conditions, may reduce the detectability of the gradient 

between the surface temperature of the whale and the background (i.e., water and 

atmosphere). This study demonstrated that surfacing humpback whales can be detected 

on the oblique at distances >500 metres in images acquired from the Zenmuse XT2. The 

threshold performance of high-end radiometric thermal sensors for the detection of 

whales at distance would need to be systematically assessed both during daylight and 

low light conditions to determine their potential detection capability within management 

areas that have regulated distances such as whale impact zones.  
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The larger payload of the Zenmuse XT2 meant it was unsuited to launch and recovery 

from a small research vessel. There were logistical difficulties associated with surveying 

fast moving animals from a static point on land. The flexibility of boat launch and recovery 

afforded by the M2ED/M2EA eliminated many of the issues encountered launching a UAV 

from land. Once the humpback whales had been located launching the UAV and 

positioning it directly above the whales was relatively simple for a trained UAV operator 

providing the UAV settings are updated for safe landing on a boat. These will depend on 

UAV model but include updating the home point during flight and turning off obstacle 

avoidance sensors and landing protection to allow UAV landing on a moving object. It is 

necessary to sight the target whales through the visual (RGB) live feed during the flight 

(Horton et al., 2019), a UAV model that allows for thermal capture using a visible display 

mode should be prioritised, as was possible with the M2EA but not the M2ED.  

 

The Zenmuse XT2 sensor on the M600 Pro and the inbuilt thermal sensors on the M2ED 

and M2EA have demonstrated that simultaneous thermal image capture from multiple 

sensors is possible. Dual sensor UAV payloads eliminate the need for multiple flights to 

capture images from different sensors, an issue identified by Horton et al. (2019) when 

collecting biometrical thermal data. Surveys involving fast moving animals, such as 

whales, that rely on multiple consecutive flight missions to capture data from different 

UAV platforms will present logistical constraints due to the likelihood that the target 

whale/s will be out of range within a short timeframe.     
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Table 2. Summary of the trade-offs between the three UAV platforms and sensors used 
in this study. Using the same Zenmuse XT sensor, Horton et al. (2019) detected the 
thermal signature of whales on the surface. *Advertised as radiometric but 
images/videos captured were not true radiometric. 

 

 

 

 

 

  Matrice 600 Pro with 

XT2 sensor 

Mavic 2 

Enterprise Dual 

Mavic 2 

Enterprise 

Advanced 

Radiometric Yes No* No* 

Price (approx. 

AUD) 

UAV: $7,500 

Zenmuse XT2: $20,000 

$4,500 off the 

shelf 

$10,000 off the 

shelf 

Multiple payloads Yes - 6 kg payload 

capacity 

No No 

Flight time  

(approx. minutes) 

18 (with payload) 

35 (no payload) 

30  31 

Dimensions  

(LxWxH mm)  

1668×1518×727 

 

322×242×84 

 

322×242×84 

 

Max takeoff weight 

(kg) 

15.5 1.1 1.1 

Thermal detection 

of whales on the 

surface  

Yes1 No Yes 
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4.6  CONCLUSIONS 

Here we demonstrated that a high resolution, radiometrically calibrated sensor 

(Zenmuse XT2) was able to detect the direct cues of whales above the water surface at 

distances > 500 metres. Synchronous visual (RGB) and thermal capture showed that 

footprints were detectable in the thermal sensors after they were no longer evident in 

the visual RGB sensor images, extending whale observation time. This demonstrated the 

thermal footprint of a whale signature could be detected in temperate waters by low 

resolution thermal sensors. These results highlight that UAV-borne thermal sensors can 

be used to complement data captured from visual sensors to enhance whale detection 

rates but are not a viable option to replace visual sensors for daytime detection in marine 

environments. 
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5 
OPTIMISING THE USE OF THERMAL INFRARED 

IMAGERY FOR MITIGATING IMPACTS OF CETACEANS 

AND HUMAN INTERACTIONS: A REVIEW AND CASE 

STUDY 

5.1  ABSTRACT 

With increasing potential for anthropogenic impact on cetacean species there is a need to 

improve current methods, reliant on visual detection, to increase detection rates. 

Thermal imaging systems have been proposed as a solution to provide effective, round 

the clock detection of cetaceans. However, there has been limited evaluation of how 

thermal sensor configuration may influence detection rates.  Here we tested the thermal 

capabilities of three sensors that differed in sensor resolution, detector temperature, and 

spectral range, for the detection of bottlenose dolphins. Additionally, we present a review 

of how cetacean cues and environmental factors will influence the effectiveness of 

automated detection systems. All three sensors sufficiently detected dolphins at 

distances of ~1km, however, the cooled high resolution sensor provided enhanced clarity 

of dolphin cues at greater distances. Six research studies that have used thermal imaging 

systems for the detection of whales from ship or shore platforms were identified. These 

studies highlighted that current automated detection methods are unable to detect 

cetaceans to a species level and high rates of false detections are delaying potential use 

for mitigation. There is a need to evaluate the efficiency of innovative thermal sensor 

platforms for improved detection rates and low levels of false detections.  
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5.2  INTRODUCTION 

Expansion of the ‘blue economy’ and associated investment in ocean development and 

infrastructure including offshore renewable energy (Dolman et al., 2003), shipping, 

commercial fishing (Davies & Brillant, 2019), mining (Thompson et al., 2023), and naval 

operations is projected to increase risk of human interactions potentially harmful to 

whales. Simultaneously, growth in humpback whale populations globally, particularly in 

the Southern Hemisphere (Wedekin et al., 2017; Noad et al., 2019), could further increase 

exposure to vessel disturbances and anthropogenic noise pollution. High levels of 

acoustic energy, especially from naval and seismic vessels, have the potential to interfere 

with whale behavioural patterns that may influence their longer-term survival (Dolman 

& Jasny, 2015). Concern about the potential impacts of marine activities on cetaceans has 

led to many nations regulating the conduct of activities to manage the impacts, for 

example the Environmental Protection and Biodiversity Act (EPBC, Department of the 

Environment, 2008) in Australia. There is a clear need for robust and deployable methods 

for improving the detection of whales and other cetaceans in seascapes exposed to 

increasing levels of human interaction. 

Regulated measures to mitigate the effects of maritime activities producing high noise 

levels (e.g., seismic arrays and naval sonar) include the shut-down of acoustic sources 

when cetaceans are in exclusion zones based on minimum acceptable distance from the 

source. This requires constant observation of marine mammals by observers who 

systematically scan the ocean’s surface with the naked eye and binoculars for cetacean 

sighting cues, including blows (exhalations), body parts above the ocean’s surface (dorsal 

fins or flukes), and easily identified surface behaviours (e.g. pectoral slapping and 

breaching). Compton et al. (2008) estimated that MMOs detect 70% of animals in daylight 

and optimal survey conditions (clear and calm). However, this survey method is limited 

to daylight hours, subject to operator fatigue, and visual sighting rates are reduced in 

weather conditions such as fog, rain, high sea states, and glare. Additionally, visual 

detection is often subjective, and sightings may be difficult to confirm (Verfuss et al., 

2018). Human based observation methods are also not viable for longer term sources of 

disturbance such as pile driving in construction of offshore infrastructure for wind farms. 

Existing research has demonstrated the effectiveness of thermal infrared (TIR) imaging 

systems for improving visual detection of cetaceans over traditional human observation 
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methods (Smith et al., 2020). Additionally, TIR systems have been proposed as additional 

measures to complement speed limit regulations and routing of ships to minimise vessel 

strikes (Cates et al., 2017). However, there has been limited assessment of different 

thermal sensor configurations for optimising long-range detection rates of cetaceans. 

Thermal imaging sensors capture infrared radiation (heat) emitted from an object 

(Sarawade & Charniya, 2018). They are designed to operate in two specific wavelength 

bands in the infrared portion of the electromagnetic spectrum: 3–5 µm or mid-wave 

infrared (MWIR), and 8 - 12 µm or longwave infrared (LWIR). Thermal infrared sensors 

are effective for detecting animals, notably endothermic mammals, in environments 

where the animal’s surface temperature is warmer than the surrounding environment 

(Kays et al., 2018; Witczuk et al., 2018; Witt et al., 2020; McCarthy et al., 2022). Compared 

to visual detection by eyesight or visual red-green-blue (RGB) sensors, TIR can 

potentially reduce image complexity and improve target detectability, irrespective of 

light levels (Hinke et al., 2022). These benefits have been demonstrated in terrestrial 

environments where thermal imaging systems have outperformed traditional, ground-

based survey methods for the detection of arboreal mammals (e.g., Witt et al., 2020; 

McCarthy et al., 2022). For marine mammal species that come ashore, specifically 

pinnipeds and marine fissipeds, thermal methods have also proved effective for detection 

from aerial surveys in open habitats, such as rocky substrates (Seymour et al., 2017; 

Gooday et al., 2018; Young et al., 2019; Christman et al., 2022) and in snow (Conn et al., 

2021). However, thermal methods are less effective in the marine environment, due to 

the rapid attenuation of infrared radiation with depth in the water column. The insulation 

capacity of cetacean species also reduces the thermal contrast between the animal and 

surrounds, and surfacing animals are covered by a thin layer of water which partially or 

completely masks skin temperature. Thermal imaging to detect cetaceans has primarily 

focused on detecting their warm exhalations or blows (Zitterbart et al., 2013; Smith et al., 

2020; Zitterbart et al., 2020). 

Previous studies that use TIR systems to detect cetaceans can be grouped into three main 

platforms (1) hand-held systems (Horton et al., 2017); (2) aerial methods (Churnside et 

al., 2009; Florko et al., 2021) and; (3) ship- or shore-based systems (Zitterbart et al., 2013; 

Sullivan et al., 2020). Although previous studies have compared the detection 

performance between visual, acoustic, and thermal imaging methods (Smith et al., 2020), 
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there has been limited review of thermal sensor configuration for optimising detection 

rates of cetaceans and the implications of improved thermal image quality for automated 

detection methods. This requires a detailed understanding of: (i) the characteristics of 

cetacean cues (surface exposure and exhalations) that will influence the training of 

automated detection models and, (ii) the impact of environmental conditions, including 

sea surface temperature, humidity, sea state, wind, and visibility, on detection rates. The 

intent of this paper is to provide an evaluation of how TIR sensor configuration will 

influence detection rates and the reliability of automated detection models. Here we 

review the current literature related to the use of thermal imaging for the long-range 

detection of cetaceans and present a case study comparing the capabilities of three 

thermal infrared sensors for detecting bottlenose dolphins (Tursiops aduncus). Because 

bottlenose dolphins have a smaller thermal signature than most cetaceans this provided 

an opportunity to evaluate sensor sensitivity on more challenging smaller sized cetacean 

targets. 

5.3 METHODS 

5.3.1 Literature Review 

A quantitative scoping review of academic literature was conducted to synthesise 

emerging approaches for detection of cetaceans using thermal sensors, automated 

detection, and identify evidence for informing optimal sensor configuration. Original peer 

reviewed publications and conference proceedings in the English language were accessed 

from electronic database searches the Web of Science (Core Collection) and Google Scholar 

February 2021 to February 2023.  Keywords used in the searches were ‘thermal imaging’, 

‘thermal infrared’, ‘whales’, ‘cetaceans’, ‘automated’, ‘detection’ were applied to search 

these databases. Reference lists of articles found in the initial search were also reviewed. 

For research focused on whale detection, only studies that detected whales at distances 

greater than 500 metres, the minimum required radius for the shut-down zone in many 

mitigation guidelines, were included. Studies focused on automated detection were 

reviewed separately. 

 

For each publication that matched the above criterion, the specifications of the thermal 

imaging system(s), detector type, study location and respective sea surface temperature, 
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system height, automated detection capability, species detected, and the maximum 

distance of detection were noted. The compiled database of papers was analysed to 

identify trends in thermal sensor configuration, artificial intelligence (AI) methods and 

impact of environmental conditions. 

5.3.2 Field Data Collection 

The research platform was the commercial whale watching vessel Dolphin Watch Cruises 

(17m length, 5m height above the water line). The detection capabilities of three different 

Forward Looking Infrared (FLIR) thermal sensors of varying resolution and detector 

types, were assessed on 18 February (mean monthly SST = 22.6°C) and 1 April 2021 

(mean monthly SST = 21.3°C) (sensor specifications are shown in Table 1). Survey 

conditions were clear and calm on both survey days. The Indo-Pacific bottlenose dolphin 

(Tursiops aduncus) in Jervis Bay, on the east coast of Australia was selected as the target 

object for sensor comparison due to smaller target size, site accessibility and consistent 

presence of a resident population. The FLIR Boson, a low resolution uncooled sensor, and 

x8400sc, a very high resolution cooled sensor, were handheld. The x8400sc sensor 

remained on the bottom platform (1.6 m) due to weight (> 5kg) and size and the Boson 

sensor, connected to a tablet for real time visual monitoring, recorded from the upper 

deck (4.2 m). The uncooled FLIR Tau 2 was mounted to the top of the vessel (4.2 m) within 

a rotating system (RobotEye) and controlled remotely from inside the boat (Figure 1). 

The surveys were not systematic, and the direction and movement of the boat was 

determined based on common sighting locations. Once a pod of dolphins was sighted by 

trained observers, the three sensors simultaneously focused on the pod. Six videos from 

the Boson sensor were captured, and five videos were captured from both the Tau 2 and 

x8400sc sensors.    

 

 

 

 

 

 



84  

Table 1. Summary of thermal sensors tested on bottlenose dolphins in Jervis Bay 

Imager Detector Type Resolution Frame rate Spectral Range 

FLIR Boson Uncooled VOx 

microbolometer 

320 x 256 

 

6.3 mm 

(focal 

length) 

<9 Hz 8 – 14 µm (LWIR) 

FLIR Tau 2 Uncooled VOx 

microbolometer 

640 x 512 30 – 60 Hz 7.5 - 13.5 µm 

(LWIR) 

FLIR 

x8400sc 

Cooled InSb 

detector 

1280 x 1024 106 Hz 1.5 – 5.1 µm 

(MWIR) 

 

 

Figure 1. Setup of the Tau 2 integrated into the RobotEye on the top platform of a vessel 

operated by Dolphin Watch Cruises 

5.3.3  Field Data Analysis 

Individual images were extracted from the videos at one frame per second using VLC 

media player and grouped by sensor. All processing steps below were performed in 

ENVI™ 5.5.3. Videos from the Tau 2 sensor were captured in grey scale, providing a single 
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band for analysis. Footage from the Boson and x8400 sensors were captured using a 

colour gradient and exported as RGB three band images, and were transformed into a 

single, grey-scale band using equation 1 (Stokes, 1996), where R, G, and B represent 

bands red, green and blue, respectively. 

𝑌 = 0.2126𝑅 + 0.7152𝐺 +  0.0722𝐵       (1) 

The greyscale images were used for comparison across each sensor type. The thermal 

contrast (anomaly) between the target animal and the surrounding background was 

compared between sensors by converting pixels into a Z-Score, using the mean and 

standard deviation of all pixels in the image (equation 2). 

𝑍 =
[  ]

 
          (2) 

A horizontal profile was extracted across at least one dolphin cue in each image to 

quantify the anomaly peak of the target animal(s). For each sensor, four images were 

selected to evaluate sensor effectiveness in detecting dolphin targets at different 

distances. Given the absence of a true horizon inside Jervis Bay, accurate distance 

estimates were not possible.  
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5.3  RESULTS 

5.3.1  Literature Review 

The literature search identified six research studies, published between 1999 and 2020, 

using thermal imaging systems for the detection of whales at a distance > 500 m from 

ship or shore (summarised in Table 2). Three of the studies utilised the same rotating 

system (FIRST-Navy), testing the system both from land and vessel under a range of 

environmental conditions, with sea surface temperature (SST) ranging from -1.8°C to 

~25°C. The remaining three studies tested systems from land only. All systems detected 

whales at distances > 5km using their exhalations.  Four of these studies used automated 

detection algorithms with varying levels of accuracy (Table 3). 
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Table 3. Computer vision methods used in IR-based automatic detection of whales. 

Detection and 
classification method 

Automation Training/validation 
data sets 

Detection 
accuracy 

Study 

Combined adaptive 
thresholding and neural 

networks 

Automated 5 video hours 
96 visual detections 

85-90.0% Santhaseelan 
et al. (2012) 

Support vector machine 
models. Change in 

contrast in multi-scale, 
sliding windows used for 
detection. Classification 
combined Eigenimage 
approach and Support-
Vector-Machine model. 

Events 
manually 
annotated 

120 validated blow 
signatures (true 

event) 
1400 non-blow 

signatures (false 
event) 

82% within 5km Zitterbart et 
al. (2013) 

Heuristic rule based 
using customised 

software Tashtego 

Automated, 
observers 
checked 

detections to 
verify 

sightings and 
record false 

positives 

Not stated Not stated. 
Mean false 

positive rates 8-
13 fp/h 

(location 
dependent) 

Zitterbart et 
al., (2020) 

True positive 
detection 

15.5%, false 
positive 84.5% 

Smith et al., 
(2020) 

State vector involving a 
mixed continuous-

discrete state 

Semi-
automated, 

output 
reviewed by 

humans 

Not stated 85% Sullivan et 
al. (2020) 
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5.3.2  Field data 

The horizontal profiles extracted from the images captured by each sensor exhibited a 

dominant peak in Z-score across all dolphin cues captured at various distances (Figure 

2). The maximum Z-score (Z = 10.99; Fig 2i) was caused by sun glint reflection from the 

back of the dolphin. This Z-score was substantially higher than any other dolphin cue 

profile. Sun glint was present in several images, both visually and on the respective 

horizontal profiles (Figures 2a, b, e, i, j). In these images, the dolphins were closer to the 

sensor that in other images. At distances further from the sensor, sharper detection peaks 

were apparent for all three sensors, demonstrating improved contrast between a dolphin 

and the surrounding water.  Although, Z-scores did not greatly differ between sensors, 

image detail and shape definition of dolphin cues improved with increasing sensor 

resolution. This comparison is illustrated in the images nearest to the sensor (Fig 2.a, e, 

i). 
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Figure 2. Visual results and horizontal profiles of anomaly detections taken from FLIR thermal 
sensors: Boson (a-d), Tau2 (e-h), x8400sc (i-l). Images have been clipped to highlight the location of 
the horizontal profile within the image (white dotted line). A break in the line has been left across 
the dolphin(s) for easier visualisation. For all except, except i and l, the y column ranges from 0 – 4. 
Images i and l had greater peaks, thus their maximum values are shown. Full images are presented 
in Figure S1.  
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5.4  DISCUSSION 

5.4.1  Sensor configuration 

The Boson (uncooled low resolution), Tau 2 (uncooled high resolution) and x8400sc 

(cooled very high resolution) all detected the thermal signature of bottlenose dolphins 

on the water surface. The case study demonstrated that a low-resolution, uncooled 

sensor (Boson) will be sufficient for detecting dolphins at a ~1km distance.  The small 

thermal signature of dolphins provided an opportunity to test sensor sensitivity on a 

small target, recognising the thermal signature will differ to that of a larger whale 

exhalation cue. The calm sea state conditions at the time of survey also limits the 

translation of these results to whale exhalation cues in open ocean conditions. However, 

consideration of sensor resolution, detector temperature, and spectral range is important 

for improving detection results. Sensor resolution is important when detecting small 

objects at significant distances. In our results, there was no clear difference between 

detection capabilities of the sensors, however at distances >1km it is expected the sensors 

with increased resolution (i.e., x8400sc) will provide greater detection capabilities at 

further distances. However, Guazzo et al. (2019) and Sullivan et al. (2020) were able to 

detect the exhalations of gray whales at distances > 5km, using an uncooled sensor of 640 

x 480 resolution. 

A key distinguishing factor of thermal systems is the use of cryogenically cooled sensors, 

operating within 60-100 K (-213 to -173°C) range, or uncooled sensors, operating at 

ambient temperature.  The thermal sensitivity of a cooled sensor typically increases by a 

factor of 3 to 5 compared to uncooled sensors, resulting in improved detection 

probabilities (Verfuss et al., 2018). Increased image clarity, provided by a cooled sensor, 

required for enhanced delineation of cue shape is evident in the x8400 sensor (Fig. 2i-l).  

This improved sensitivity is critical for cetacean detection at distance. For example, the 

warm thermal signature of a whale blow at a distance >3 km can be as little as four pixels 

in an image or video stream for a sensor of 640x480 resolution (Sullivan et al., 2020). 

Representation of a cetacean cue by only a small number of image pixels results in a high 

proportion of image pixels not contributing to the object of interest. Optimising the 

signature response of these pixels is also relevant for improving the accuracy of 

automated detection models as discussed further in section 5.4.2. However, cryogenically 
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cooled sensors do have disadvantages which include the significantly higher cost, slower 

start up times that limits their agility for rapid response, greater fragility in marine field 

environments and increased maintenance requirements (every ~10,000 hours of 

operation) (Hristov et al., 2008). 

The limited range of survey conditions encountered during our field collection restricted 

evaluation of the influence of atmospheric conditions, however, these conditions will 

have the greatest influence on the choice of MWIR or LWIR systems.  MWIR sensor will 

perform better in warm, humid climates, and for longer ranges than LWIR. In contrast 

LWIR will perform better in cooler atmospheres and if smoke, fog, or haze is present 

(Havens & Sharp, 2015). For example, in category II fog and a temperature gradient of 

10°C between target and background, FLIR (2013) reported that LWIR sensors will have 

a detection range of 2.4km compared to 0.5km for a MWIR system. Havens and Sharp 

(2015) propose surveys should be undertaken when atmospheric conditions are 

optimised. This is not viable for whale mitigation purposes, however, the climatic and 

weather conditions of the location of operations, may influence decisions for the spectral 

range of the sensor. Furthermore, the atmospheric conditions alone are not sufficient in 

determining detection range. The size of the target, temperature contrast, and spatial 

resolution will have an impact. For long range detection, cooled sensors will be more 

effective, irrespective of atmospheric conditions or spectral resolution.  

5.4.2  Automated detection  

Applications in which cetacean detection requires continuous observations, for extended 

periods of time (weeks to months), such as monitoring migration movements or 

determining cetacean presence within high disturbance zones (windfarm construction 

sites and shipping lanes), may rely on automated methods.  Automated detection 

methods using thermal image input are effective in terrestrial mammal applications, due 

to the steep thermal gradient between the target and their surrounds (Seymour et al., 

2017). Previous studies involving automated or semi-automated systems demonstrated 

that thermographic imaging provided comparable results with the performance of 

human observers using eyesight and binoculars during daylight hours at distances of 

several kilometres (Sullivan et al., 2020; Zitterbart et al., 2020).  Consistent and 

reproduceable temperature anomalies were used to identify quantitative constraints that 
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can inform transient temperature anomaly detection algorithms (Sullivan et al., 2020). 

However, reliability of automated detection methods is impacted by high false-alarm 

rates associated with the thermal detection of other visual stimuli (e.g. white caps, small 

vessels and birds), and obstruction by sea spray and large waves when surveying near-

horizontal (Smith et al., 2020). Due to the situational complexity and confounding 

variables in thermal images captured at sea, data driven machine learning models with 

adequate detection and classification accuracy require a higher standard of thermal 

image quality. Sensors with high thermal sensitivity that are cryogenically cooled and/or 

have sufficiently large focal length required for detection at distances >1-2km are 

expensive and less manoeuvrable. Poor stabilisation of the thermal sensor platform has 

been identified as the key determinant for high positive rates (Smith et al., 2020). 

A high contrast between an animal and their surroundings is particularly important for 

automated methods (Chabot & Francis, 2016; Hollings et al., 2018). This is where thermal 

imaging is particularly beneficial, particularly for cetacean species of lighter colouration 

that may appear similar in colour to surrounding waters in RGB imagery (Cubaynes et al., 

2018). The clear contrast between a dolphin and surrounding waters is demonstrated in 

our results, particularly at greater distances. 

5.4.3 Factors influencing detection reliability 

The six research studies identified using thermal imaging systems for the horizontal 

detection of whales at a distance >500m (Tables 2, 3), provide insight into how 

characteristic cetacean cues can influence automated detection models and the impact of 

environmental conditions on detection rates. 

(i) Blow characteristics 

TIR imaging for the detection of marine mammals relies on the thermal contrast between 

a marine mammal cue, either their body on the surface or their blow, and the surrounding 

colder ocean. These surveys do not require absolute temperature measurements. Whale 

blows, observed as bright, transient features, are the most common cue and have been 

the focus of studies utilising thermal detection methods (Zitterbart et al., 2013; Guazzo et 

al., 2019; Sullivan et al., 2020). Consistency in the characteristics of these features have 

potential to facilitate the development of automated detection algorithms. For example, 
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blow heights will vary in response to species, wind strength, the volume of sea water in 

the blow hole at exhalation, the whale’s position relative to the ocean surface when 

exhaling, and whale size (i.e. the blow from a calf vs an adult) (Horton et al., 2017). The 

growth of a blow is predictable (Santhaseelan et al., 2012) and there will be a linear decay 

of detectability with increased distance from sensor. Horton et al. (2017) analysed the 

blows of 174 humpback whales surveyed in the Cook Islands and Alaska and found that 

all blows reached a maximum blow height in less than 1.2 seconds. The same study 

estimated that at 0.4 seconds after exhalation, blow heights ranged from 1 to 3.3 metres, 

with an average of 2.2 metres. Using sensor resolution, blow heights and distance 

measurements, it is possible to determine how many bright pixels should be present in 

the image at a set distance from a blow. Sullivan et al. (2020) used the blow characteristics 

of gray whales (Eschrichtius robustus) to train an automated detection system. For 

example, if the whale is within one kilometre to the sensor, the blow should comprise 49 

pixels in the frame (25 pixels if >1 km, < 2 km etc.) and each blow must persist for at least 

0.4 seconds but no longer than six seconds. Blow characteristics will also differ between 

species, for example southern right whales (Eubalaena australis) have a distinctive V-

shaped blow, but the capability of thermal sensors and automated systems to 

differentiate between species based on blows has not been studied. 

(ii) Environmental conditions 

Thermal detection systems over water are subject to environmental conditions, wind, sea 

surface temperature, sea state and visibility (sun glint, rain, fog) which can mask whale 

cues and impact both visual and thermal detection methods. 

Sun glint, or glare, from specular reflection of sunlight off the water surface, visualised as 

a bright reflection, can both obscure features and  be visually confused with the body of 

a whale on the surface (Araújo et al., 2022) and glint contamination (warm contrast) can 

reduce the likelihood of detecting a whale cue. However, thermal images have a narrower 

field of glare than visual detectors as the thermal sensor only captures the local contrast 

of each frame (Zitterbart et al., 2013). Thermal sensors are typically more effective at 

night due to the decrease in reflected radiation from the sun (Verfuss et al., 2018). 

Fog and rain can significantly reduce the range of thermal imaging and detection accuracy 

as the scattering of light by water droplets diminishes the thermal signal. Zitterbart et al. 
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(2020) found that in “hazy or misty conditions”, LWIR thermal sensors still had a greater 

detection distance than MMOs, as infrared radiation can penetrate better than visible 

bands. In dense fog conditions, thermal systems and observers will be equally affected 

(Beier et al., 2004; Zitterbart et al., 2020).  The impact of rain on system performance is 

understudied but it is likely to be reduced as thermal infrared imaging cannot penetrate 

water. 

With increased sea state, an exponential decline in detection probability is expected. 

Using visual line-transect surveys, Barlow (2015), determined that detection probability 

decreased to 0.6 in Beaufort 6 conditions for humpback whales (Megaptera 

novaeangliae). All other species (small and large baleen species, sperm whales Physeter 

macrocephalus and delphinids) had lower detection probabilities in the same 

environmental conditions. Zitterbart et al. (2020) found that at Beaufort states ~3-4, 

detection probabilities started to significantly reduce. Sea state also impacts rates of false 

positives. In larger swell, birds and small vessels disappearing behind waves and then 

reappearing for a short time period (2-3 seconds), mimics the same thermal pattern of a 

whale blow (Zitterbart et al., 2020). Floating blocks of ice follow this same pattern 

(Zitterbart et al., 2013). Breaking waves and white caps are another key source for false 

positives. In automated thermal detection, white caps increase the contrast across an 

image, increasing overall noise and thus reducing the signal to noise ratio for whale cues 

(Zitterbart et al., 2020). 

Although it could be expected that colder sea surface temperature (SST) will provide a 

greater temperature contrast, Zitterbart et al. (2020) successfully detected whale cues up 

to 10 kilometres in subtropical waters (SST >20°C) off Queensland, Australia, using a 

rotating, cooled sensor. Similarly, using a handheld uncooled thermal sensor Horton et al. 

(2017), found a constant thermal anomaly of ~3°C warmer for whale blows compared to 

the adjacent 8°C and 24°C ocean waters in Alaska and the Cook Islands, respectively. 

These warmer water detections demonstrate that the efficacy of thermal imaging 

techniques for capturing cetacean exhalations is not restricted to higher latitude waters. 

5.4.4  Species Identification 

The dynamic movement of thermal anomalies can potentially be used to develop 

automated detection models for species identification with sufficiently large visible and 
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thermal image datasets to characterise blow velocity and geometry (Horton et al., 2017).  

However, species-level identification requires high sensitivity and pixel cover which is 

limited by distance and direction of image capture. Previous studies demonstrating 

automated detection of whale blows at distances up to ~5 km (Table 2) have used 

sightings by visual observers to confirm detected species but there has been no attempt 

to automate species identification using either visual or thermal images. Machine 

learning has been used to discriminate between species relatively successfully for 

terrestrial animals of different sizes and body shapes. For example, Ulhaq et al. (2021)  

successfully trained an automated detection system to identify rabbits, pigs, and 

kangaroos using thermal aerial imagery. However, there are additional logistical 

challenges in collecting a sufficient number of verified images (1000+) to train automated 

models from animals that are highly mobile and often in remote locations. Furthermore, 

species identification based on transient features that are not always characteristic of the 

species, e.g. V-shaped humpback whale blow (characteristic for a right whale) (see Fig. 

S2 in  Zitterbart et al., 2013), adds significant complexity. In addition to variations in 

whale blows, environmental conditions (e.g. wind and glare) may alter the appearance of 

the blow. Smith et al. (2020) reported that experienced MMOs were only able to identify 

~50% of species at distances greater than 500 m, using visual observations. 

Retrospective assessment of 1427 thermal cetacean detections demonstrated that only 

four could be identified confidently as sperm whales (Smith et al., 2020). Despite the 

potential of high resolution thermal sensors for discriminating species cues in low light 

conditions, these findings demonstrate current limitations in accurate species 

identification beyond 500 m in low light conditions. 

5.4.5 Thermal sensor platforms 

Due to the sensitivity of thermal sensors, platform stability and design will influence 

image quality and is an important consideration when using cryogenically cooled sensors. 

In this study, the uncooled Tau 2 sensor was integrated on a RobotEye (developed and 

manufactured by Ocular Robotics) a rapidly rotating 360° system that uses an 

autonomously-controlled lens-mirror system and point and feeds images to stationary 

cameras. The low inertia unit that delivers captured light to an imaging array avoids the 

complexity associated with current technology, such as rotating cameras (FIRST-Navy 

system from Zitterbart et al. (2013), Smith et al. (2020), and Zitterbart et al. (2020)) or 
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multiple fixed cameras (e.g., Sullivan et al., 2020). The system has extremely high 

acceleration rates (60,000⁰/s2), aperture speeds (4,000⁰/s) and pointing precision 

(0.00055⁰) which allowed clear thermal image capture of dolphins (Tau 2 sensor in 

Figure 2). The ability of the RobotEye to automatically zoom in on detected objects 

enables maximization of the number of pixels covered by the object for classification as 

cetacean or non-cetacean (Figure 3). A high pixel count is essential since even state-of-

the-art artificial intelligence (AI) methods are limited by the quality of the images.  

Further research is required to evaluate the efficacy of improved thermal sensor platform 

design on detection rates. 

 

Figure 3. Comparison of A) conventional methods to scan for whales using an imaging 

array that projects pixel values over an entire hemisphere resulting in a low resolved 

region where only a few pixels contribute a whale event ultimately reducing detection 

accuracy B) robotically controlled automatic zoom within the RobotEye captures a high-

resolution image of the object ensuring every pixel on the detector is maximised for target 

identification. 

5.4.6  Research limitations 

Here we demonstrated that all three thermal sensors were able to detect dolphin cues in 

clear and calm survey conditions. Sun glint can be problematic for automated methods 

due to decreased noise, and was evident in our results, appearing as a bright anomaly 

feature (Verfuss et al., 2018). Although glint is not problematic for night time detections, 

it cannot be avoided during the day, and detection for mitigating human activities on 

cetaceans may be required at any time of day. Research is needed to investigate the 

potential for deep learning methods to assist in improving the discrimination between a 

cetacean cue and sun glint (Giles et al., 2021) to reduce false positives in automated 

systems (Smith et al., 2020). Our results were limited in only testing the sensors in clear 
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and calm conditions. As outlined above, sensor effectiveness will depend on 

environmental conditions and may influence sensor selection (e.g., LWIR vs MWIR, 

cooled vs uncooled). In addition to reviewing how sensor resolution, detector 

temperature, and spectral range may impact on the detection rate of cetacean cues, we 

recognise there are several other factors that would impact sensor effectiveness. These 

include, but are not limited to, sensor field of view, thermal sensitivity, and focal length, 

however these were outside the scope of this research.  

 

5.5 CONCLUSIONS 

An understanding of how thermal sensor configuration will influence cetacean detection 

accuracy and the reliability of automated detection methods is critical for optimising 

detection rates to mitigate the impacts of anthropogenic interactions, particularly at 

night. Here we demonstrated the effectiveness of three thermal sensors for detecting 

dolphin cues within one kilometre of the sensor and in calm conditions. We highlighted 

how characteristic cetacean cues, particularly whale exhalations, and environmental 

factors may help inform automated detection methods. Despite advances in computer 

vision detection and classification techniques, current automated systems still have high 

levels of false detections, hindering potential use for mitigation.  
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SUPPLEMENTARY MATERIAL 

 

Figure S1. Unclipped images corresponding to thermal image results presented in Figure 

2 
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6 
 

GENERAL DISCUSSION   

Humpback whale populations that migrate along the Australian east (subpopulation E1) 

and west coast (subpopulation D) each year have recovered at a remarkable rate since 

modern whaling ceased in 1963 (Noad et al., 2019; Hedley et al., 2020). Larger 

populations have been associated with increased numbers of humpbacks in coastal 

embayments where there is potential for disturbance from anthropogenic activities. This 

highlights the need to understand the importance of coastal areas long the migratory 

route and methods for monitoring the movement patterns of humpback whales in multi-

use marine environments. The outcomes of this research were twofold. First, the research 

provided key insight into the use of Jervis Bay, on Australia’s east coast, for-mother calf 

humpback whale groups and characterised resting patterns and second, the feasibility of 

novel methods for optimising whale detection was assessed. 

Systematic land-based surveys, boat-based photo identification methods, and UAV 

surveys were utilised to provide the first detailed observation of humpback whales in 

Jervis Bay (Chapter 2). Unlike other areas where resting behaviour has been observed, 

including Hervey Bay, Queensland, (Franklin et al., 2011) and the Exmouth Gulf, Western 

Australia, (Bejder et al., 2019; Ejrnæs & Sprogis, 2021), Jervis Bay is considerably further 

in distance from recognised breeding grounds (~1,500 km) and whales must divert from 

the main migratory corridor to enter the Bay. Results demonstrated that of the groups 

entering Jervis Bay, a very high proportion contained a calf and these groups travelled at 

significantly slower speeds with less directed travel than groups migrating offshore. 

Furthermore, UAV surveys enabled clear observation of resting and nurturing behaviour. 

Findings from these multiple survey methods indicate that Jervis Bay is a resting ground 

for mother-calf groups. This research also highlighted the need to systematically quantify 

resting behaviour. Prior to this work, resting behaviour had predominantly been 

established through individual methods. This included boat-based surveys that are 

limited to observations on the water surface (McCulloch et al., 2021), UAV observations 

that are unable to provide continuous observations (Fiori et al., 2019a), or DTAGs that 

are able to quantify fine-scale behaviour, but are costly and limited to small sample sizes 
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and short windows of observation (average 10 hours in Bejder et al., 2019). Land surveys 

allowed for continuous observation (during daylight hours) and allowed a direct 

comparison with whales migrating offshore. This enabled quantitative analysis of the 

differences in whale movement inside a sheltered embayment compared with offshore 

which has not previously been presented in the literature. 

The benefits of traditional survey methods, particularly, land-based surveys for 

comprehensive detection and observation of humpback whales during daylight hours 

were demonstrated in this research. There has been a rapid increase in the uptake of new 

technologies and methodologies, particularly UAVs (Schofield et al., 2019), thermal 

sensors that enable round-the-clock detection, and automated detection methods 

(Rodofili et al., 2022). There is an immediate need to evaluate other methods that 

leverage these emergent technologies to optimise cetacean detection (Chapters 3 – 5). 

Environmental conditions (e.g. water turbidity) associated with aerial imagery are 

recognised as limiting factors in the detection of submerged objects (Aniceto et al., 2018; 

Colefax et al., 2018). In Chapter 3 a method for compensating for water attenuation 

through simple post-processing of UAV-captured images was applied. Using a modified 

version of Lyzenga’s (1978; 1981) water column correction (Mumby et al., 1998; 

Hamylton, 2011) image enhancement improved detection of whales on the surface, and 

submerged below. The results showed that post-processed band pairs improved the 

contrast and definition of the whale in all images compared to the visual red-green-blue 

(RGB) images. Increasing the contrast between the whale and surrounding waters, 

demonstrated the potential for increasing the confidence of machine learning and 

automated detection methods that are reliant on a clear contrast between an animal and 

their surrounds (Laliberte & Ripple, 2003).  

Although RGB imagery is most commonly used for animal detection, it is subject to light 

levels, contrast of the target animal compared to their environment, and shadows that 

may mask targets (Hinke et al., 2022). In Chapter 4 the effectiveness of UAV-borne 

thermal sensors to improve whale detection methods was assessed by testing three UAV 

platforms with synchronous capture capability. The higher resolution thermal sensors 

(640 x 512) detected both direct (e.g., body on the surface) and indirect (e.g., footprint) 

thermal whale cues from nadir and oblique angles. Previous studies have identified 

surface water temperature differentials for indirect thermal cues in colder waters 
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(Churnside et al., 2009; Florko et al., 2021; Lonati et al., 2022). However, the results 

presented here highlighted that a thermal contrast can be observed between a whale 

footprint and surrounding temperate waters (SST ~19°). Synchronous capture also 

showed that footprints were detectable in the thermal sensors after they were no longer 

evident in the visual RGB sensor images. Importantly, these results established that 

although thermal sensors are not a viable option to replace visual sensors for the daytime 

detection of whales, they complement RGB sensors and extend whale observation time.  

Previous research has demonstrated that thermal sensors deployed from horizontal 

platforms (i.e., from ship or shore) provide detection rates comparable to visual sightings 

during good visibility conditions (Smith et al., 2020). Although, they have been deployed 

to improve continuous, round-the-clock detection methods required for regulatory 

purposes (e.g., during seismic surveys or naval activity) (Zitterbart et al., 2013; Smith et 

al., 2020), the importance of thermal sensor properties have received limited attention in 

the literature. In Chapter 5 the current state of knowledge was reviewed and the 

detection capabilities of three sensors were tested. Each sensor differed in sensor 

resolution, detector temperature, and spectral range to increase understanding of how 

thermal sensor configuration, cetacean cues, and environmental conditions will influence 

animal detection and the reliability of automated detection models. Although these field 

results applied to clear, calm conditions that cannot translate directly to open ocean 

conditions, the highest resolution cooled sensors demonstrated improved enhanced 

clarity of dolphin cues at distances of ~ 1km. The rapid rotating RobotEye system, that 

can be trained to automatically zoom into objects of interest (acceleration rates of 

60,000⁰/s2), such as cetacean cues, was proposed to improve current limitations in 

existing automated thermal detection systems.  

6.1   MANAGEMENT IMPLICATIONS 

The humpback whale groups using Jervis Bay on their southern migration are 

disproportionately mother-calf groups which were observed demonstrating resting and 

nurturing behaviour. The peak time for mother-calf groups in the Bay from late 

September to early November, coincides with both naval activity and commercial whale 

watching and recently introduced swim-with-whale activities that rely on close 

encounters with these animals. The importance of this stage for calves undertaking their 
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first southern migration highlights the need to monitor and manage the potential impacts 

of these activities. 

The potentially invasive nature of swim-with-whale activities are of particular concern 

from a management perspective, not only for the wellbeing of the whales but also 

participants swimming. Due to their reliable seasonal occurrence and preference for 

calm, shallow waters, humpback whales are the most common large cetacean species 

targeted for swim-with-whale tourism. There is increasing evidence to highlight short-

term behavioural effects associated with these activities. Fiori et al. (2020) used UAV 

methods to assess humpback whale response to swim-with activities in Tonga, 

demonstrating that for groups with a calf, surface-active behaviours reduced significantly 

in the presence of swimmers. Additionally, nurturing behaviour decreased almost five-

fold and the time spent travelling almost doubled compared to behaviour in the absence 

of swimmers. Similarly, southern right southern right whales (Eubalaena australis) were 

found to significantly reduce their resting and socialising behaviours, whilst increasing 

travel in the presence of swimmers (Lundquist et al., 2013). Although not as invasive as 

swim-with activities, commercial whale watching activities still have the potential for 

disturbance. Sprogis et al. (2023) used UAV methods to find a significant reduction in 

resting of southern right whale mothers and calves during whale watching activities off 

the South Australian coastline. However, they found no significant effect on maternal 

swim speed, nursing rate or respiration rate, at the 300 m regulation distance. 

Disturbance to resting behaviour can have significant energetic costs to the calf if they 

are required to allocate energy to travelling. Additionally, the energy reserves of lactating 

females may decrease if whales are required to increase their travel speed or add distance 

to their migration, resulting in reduced calf growth (Braithwaite et al., 2015). Larger calf 

size provides the calf an energetic advantage during the subsequent migration and 

increases the probability of surviving a predation attempt (Videsen et al., 2017). 

In Jervis Bay swimming with a whale group is prohibited if a calf is present, under 

requirements of the Australian National Guidelines for Whale and Dolphin Watching 

2017. However, enforcing these activities is difficult and resource intensive. Sprogis et al. 

(2017) observed nine whale watching vessels that participated in swim-with-whale 

activities within the Ningaloo Marine Park, Western Australia, and reviewed the 

effectiveness of regulations. Overall, swimmers were placed in the water with calves 
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during 19.6% of observations.  Low levels of compliance appear to be frequently 

observed for swim-with-whale activities involving humpback whales elsewhere (Tonga; 

Fiori et al., 2019b; Reunion Island; Hoarau et al., 2020). Sprogis et al. (2017) highlighted 

that the initial definition of a “calf” as “half the length or less of adult individuals of its 

species” was inadequate for encompassing all year-of-young calves. However, they still 

observed non-compliance during 33% of observations following a revised definition of “a 

young whale, paler in colour than adults of its species and/or less than 8 metres in length 

and/or less than two thirds of the adult it is in association with”. Commercial operator 

confusion over the definition of a calf and ability to distinguish a calf from a juvenile 

highlight that to provide adequate protection for calves during their first migration, 

swim-with-activities should not be permitted during the southern migration. 

The importance of Jervis Bay as a nursing/resting area for fasting, lactating females and 

their calves, underscores the need to minimise disturbance from naval, commercial 

whale-watching and swim-with-whale activities. Given the high likelihood of a calf being 

present in all observed whale groups during October, management regulations, such as 

enforcing the 300 m caution zone within which vessels must not enter should be 

prioritised. 

6.2   FUTURE RESEARCH DIRECTIONS 

This research provided a comprehensive analysis of the movement patterns of mother-

calf humpback whales in Jervis Bay compared to whales migrating offshore. However, 

there is a need for longitudinal research to further explore residency time and site 

fidelity. Photo-identification methods in Jervis Bay were limited to two consecutive field 

seasons in 2018 and 2019, due to COVID-19 lockdown and social distancing restrictions 

in 2020 and 2021, respectively, prohibiting opportunity for data capture during 

successive migrations to investigate potential for maternal site fidelity. Sheehan and 

Blewitt (2013) demonstrated on one occasion that a mother entered the Bay two years 

apart with two different calves. Additional dedicated photo-identification methods are 

required to accurately determine extended residency in the Bay (beyond 1-2 days). 

Sheehan and Blewitt (2013) observed one mother-calf group stayed in the Bay for eight 

days. Understanding residency time and site fidelity is particularly important when 

assessing the impact of anthropogenic activity in the Bay and will help inform 

management decisions, particularly regarding commercial whale interactions.  
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Marine wildlife surveys to date have predominantly employed visual (RGB) sensors. 

However, there is a need to evaluate the role of multispectral sensors, including the near 

infrared (NIR) band (700 – 1,500 nm wavelength), for potential to mitigate the effects of 

sun glint contamination.  Sun glint causes high brightness in visual images, reduces the 

signal-to-noise ratio, and reduces the accuracy of remotely sensed observation data 

(Muslim et al., 2019). Influenced by sun position, viewing angle and sea surface state (Kay 

et al., 2009), the effects of sun glint can be avoided by selectively choosing to survey in 

the early morning or later afternoon. Whilst this can be effective for static objects, 

including the mapping of nearshore benthos, this is not always feasible for moving and 

wide-ranging marine vertebrates. In the absence of flexibility in survey timing, there are 

robust methods to remove sun glint contamination from multispectral images (Hedley et 

al., 2005; Martin et al., 2016). Whilst these techniques are effective for multi-spectral 

images containing a NIR band, they are not suitable for images containing only red, green 

and blue (RGB) bands. Additionally, Colefax et al. (2021) found NIR bands effective for 

detecting submerged fauna in highly turbid conditions. As multispectral sensors become 

smaller, lighter, and more affordable there is a need to test the benefits of removing the 

effects of sun glint to enhance whale detection, particularly in UAV surveys. However, to 

date, most of this research has been in clearer coastal waters (Colefax et al., 2021) and 

further investigation is required on how the water body characteristics (Colefax et al., 

2018), for example turbidity, and whale depth would influence these results.  

In this thesis the thermal infrared imaging from nadir, oblique, and near-horizontal 

angles was demonstrated. There is a need to further explore how the angles at which 

thermal imaging is captured will influence the detection of thermal signatures. For 

example, Horton et al. (2017) found capturing thermal images from a near-horizontal 

platform resulted in  similar thermal brightness anomalies for humpback whale blows 

and their bodies on the surface, at two locations that had a 16°C difference in sea surface 

temperature. This was attributed to emissivity effects. Due to lower levels of background 

emissivity captured from near-horizontal platforms they are considered more effective 

in detecting whale exhalations than sensors capturing at a nadir angle (Churnside et al., 

2009). Depending on the angle of capture, emissivity associated with rough ocean water 

could mask whale cues, but this physical property can also be advantageous for detecting 

thermal signatures at a distance on oblique angles from a UAV (demonstrated in Chapter 
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4).  Understanding how the angle of the thermal sensor will influence whale detectability 

is particularly important during UAV surveys if the sensor is on a rotating gimbal.  

6.3   CONCLUSION 

This thesis provided the first scientific survey of humpback whales in Jervis Bay and 

demonstrated resting and nurturing behaviours by mother-calf groups within the Bay. 

Jervis Bay is a multi-use marine park, supporting a breadth of activities. The temporal 

and geographical overlap of these activities within Jervis Bay highlights the need for 

effective monitoring and management.  This research established the benefits of using 

multiple survey methods to observe movement patterns. Combining land-based surveys, 

boat-based surveys, and UAV methods allowed validation across different data sets 

providing evidence of low energy expenditure, or resting behaviour, within Jervis Bay.  

Finally, these research findings highlight the need to understand and monitor for 

potential impacts of increased anthropogenic activity and development of our oceans, 

including offshore mining, shipping, and naval operations, and consequently the need for 

novel, accurate and resource effective whale detection methods.  
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Ultra-high spatial resolution sensors made available by advancements in the miniaturization of instruments

deployable on uncrewed aerial vehicle (UAVs),1 present new and innovative opportunities for remote detection of

marine wildlife. The spatio-temporal resolution and survey responsiveness afforded by these low-cost platforms

enables the collection of data that can provide insights on the spatio-temporal dynamics of individual marine animals

at close range (Anderson & Gaston, 2013). In the last decade there has been an increase in marine studies utilizing

UAVs (Schofield et al., 2019), which allows for novel insights on the abundance (Hodgson et al., 2017), behavior

(Fiori et al., 2020; Torres et al., 2018), and body condition (Christiansen et al., 2016; Hodgson et al., 2020) of marine

wildlife. Importantly, UAV-based image capture has the potential to increase the duration of visible observation

through detection of animals below the water surface (Torres et al., 2018). This has significant ramifications for the

study of mother-calf humpback whale groups that rest in shallow protected embayments (Bruce et al., 2014;

McCulloch et al., 2021), spending high proportions of time resting at depths of <5 m (Bejder et al., 2019; Iwata

et al., 2021). However, the use of remotely sensed data in coastal environments is challenged by the optical complex-

ity of the water column (Figure 1). Research until now has focused primarily on image detection based on the visual

spectrum with limited evaluation of conventional remote sensing methods for enhancing observation of whales.

Processing techniques are commonly used in remote sensing research to enhance or enable the detection of under-

water features, including benthic habitat (Hedley et al., 2016; Mumby et al., 1998; Zoffoli et al., 2014). Similar tech-

niques, including water column correction, can be applied to UAV-captured images to enhance visibility of animals

below the water surface, which may be missed in manual counts or automated deep-learning based classifications
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(Gray et al., 2019). This paper presents remote sensing-based methods for enhancing UAV-acquired visual image

data to improve the contrast of whales on the water surface and submerged near the surface. Application of these

methods has the potential to reduce perception error (Colefax et al., 2018) and subsequently improve detection

rates. The Jervis Bay Marine Park study site on the eastern Australian coastline is frequented by humpback whale

(Megaptera novaeangliae) mother-calf groups during the southern migration from the breeding grounds (Bruce

et al., 2014; Jones, 2019).

The visible RGB imaging capabilities of sensors for detecting whales were evaluated using a DJI Mavic 2 Enter-

prise Dual (M2ED) launched from a small boat in Jervis Bay. Following a confirmed whale sighting, the whale's

behavior and direction of travel were observed for 5 min from the boat at a distance >300 m before an approach

was made to a distance >100 m from the whale. The UAV was launched to an initial altitude of 55 m to provide suffi-

cient sensor field of view for whale identification and lowered to ≥25 m once whale(s) were visible on the controller

screen. The boat remained at a distance >100 m from the whales during the flights to provide a visual line of sight to

the UAV and facilitate positioning over the whales. Still images and videos were captured throughout each flight.

Lyzenga's water column correction (Lyzenga, 1981) as modified by Mumby et al. (1998) and Hamylton (2011)

was applied to three UAV images containing humpback whales (steps summarized in Figure 2). To enhance the spec-

tral signature of the whale, radiance values were taken from transects along and across the whale's body surface to

account for the fusiform shape of the whale (Step 3, Figure 2). This method, suitable for high clarity water, produces

a depth-invariant band based on each pair of spectral (wavelength) bands (Mumby et al., 1998). This generated three

depth invariant bands from the available spectral band pairs (red/green, red/blue, green/blue). To allow for compari-

son between the original image and processed images, all pixels were converted into Z-scores (Z = [pixel value �
mean]/standard deviation), enabling detection of anomalies. The performance of the applied image processing

methods was assessed visually (Figure 3), and quantitively by evaluating the mean Z-score values (Table 1) extracted

across the whale's surface for the original RGB images and the three resulting band pairs.

F IGURE 1 Diagram illustrating the various processes contributing to complexities in surveying large marine
species from a UAV platform. Created with BioRender (https://biorender.com/).

2 JONES ET AL.
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Application of Lyzenga's water column correction enhanced the contrast and edge definition between whales

and surrounding water in the three UAV-captured images presented here. For whales on or just below the surface,

the red/green and red/blue depth-invariant band pairs were the most effective band pair combination for enhancing

contrast between the whale and surrounding waters, both visually (Figure 3A and C) and resulting in the highest

anomaly values (Table 1). The effectiveness of the red band for animals on or near the surface is consistent with find-

ings from Colefax et al. (2021), who demonstrated the red band produced the greatest spectral contrast for detecting

dolphins, sharks, and other marine fauna from a UAV. At increasing depths, the green/blue band pair produced a

stronger visual contrast and highest anomaly result (Figure 3B; Table 1) owing to the red waveband becoming atten-

uated at greater depth.

The depth of the target animal(s) will influence the optimal band pairing and subsequent object enhancement

within the image. The red band (610–700 nm), and other bands with wavelengths approaching the red end of the

spectrum (e.g., red edge and near infrared), will become fully attenuated around 2–3 m depth (Hamylton, 2011;

Mishra et al., 2005). Thus, the effectiveness of band pairs using the red band will be substantially reduced at this

depth. However, in turbid waters, where sightability below the surface is limited, longer wavelength bands may be

optimal for increasing the contrast of animals just below the surface (Colefax et al., 2021). Image enhancement

methods for improving whale detection rates even in optically shallow waters (<2–3 m) has important implications

for studies reliant on whale visibility, such as estimating abundance (e.g., Hodgson et al., 2017). This is key for

research conducted on breeding/resting grounds, with lactating females and their calves spending over 50% of time

within 3 m of the surface (Bejder et al., 2019).

The methods presented here have the potential to increase the confidence of machine learning and automated

detection models. Machine learning techniques for automated detection of whales are increasingly being applied to

UAV-collected data sets providing an efficient way to process large amounts of data. Studies using machine learning

to detect individual animals or plants rely on the detection of target objects against mostly homogenous backgrounds

which typically rely on a clear contrast to reliably discriminate animals from their surrounding environment

(Laliberte & Ripple, 2003). The use of machine learning for detecting marine vertebrates is further complicated by

F IGURE 2 Overview of processing steps applied in the depth invariant analysis. In Step 3, the yellow transect
outlines where the radiance values were extracted for inclusion in the correction. The correction process resulted in
three depth-invariant band pairs. These images were then converted into Z-scores and transects (black dotted line,
Step 4) were extracted along the length of the whale to determine average values for each image.

ENHANCING UAV IMAGES OF SUBMERGED WHALES 3
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coloration similarities between some species and the surrounding water (e.g., blue whales; Gray et al., 2019) and non-

uniform backgrounds that are subject to varying environmental conditions. In ecological studies, object-based image

analysis (OBIA) is the most commonly used machine learning method (Dujon & Schofield, 2019). It provides versatil-

ity for detecting objects in varied backgrounds with confounding features, objects that vary in size and shape, and

may be sparsely distributed in the image data set (Chabot et al., 2018), making it ideal for abundance and distribution

F IGURE 3 Results of depth-invariant processing for three UAV images. (A) Shows a partially submerged
humpback whale mother and calf at the surface, (B) shows the same mother calf group now fully submerged, taken
5 s after Image A, and (C) shows a submerged humpback whale calf. The four panels, from top to bottom present:
the raw red, green, and blue (RGB) images, depth-invariant red/green band pairs, depth-invariant red/blue band
pairs, depth-invariant green/blue band pairs.

TABLE 1 Mean Z-scores extracted across the whales in the three images from Figure 3, presenting results from
the RGB image and three depth-invariant band pairs. The results from the RGB image are presented as individual
red, green, and blue bands. The highest value for each image is shown in bold.

Mean Z-scores
Image A Image B Image C

Red 1.00 0.85 0.40

Green �0.28 0.90 0.07

Blue �0.45 0.54 �0.08

Red/green 2.21 0.67 1.85

Red/blue 2.11 1.05 1.88

Green/blue 0.32 1.64 1.25

4 JONES ET AL.
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studies. Importantly, even with increased flexibility over other machine learning methods, OBIA is still reliant on the

object(s) of interest in the image being localized from surrounding pixels through a local brightness contrast, either as

a relatively brighter or relatively darker group of image pixels (Groom et al., 2013). For whale detection, increasing

the anomaly (Z-score) of the whale object, as demonstrated here, could potentially improve OBIA-derived results

and increase detection availability.

Here we have demonstrated that water column correction techniques can enhance the visual outline and anomaly

signal over the body of whales on the surface and submerged at shallow depths. However, we recognize constraints

associated with the limited spectral resolution provided when working with three bands (i.e., red, green, and blue)

within the visible range (wavelength 400–700 nm). Employing multispectral or hyperspectral sensors and customizing

or selecting bands configured to focus on wavelength bands optimal for the spectral characteristics of the water body,

such as the coastal band (Fretwell et al., 2014), and target species may further reduce perception bias and subsequently

improve animal availability at depth compared to standard RGB sensors (Colefax et al., 2018). Additionally, obtaining a

larger image data set is critical for understanding the effectiveness of depth invariant indices derived from possible

band pairs, and whether these differ with the whale depth and environmental factors (e.g., turbidity). Ultimately, an

understanding of the role of water column attenuation correction is critical for accurate detection of whales and is par-

ticularly relevant with the increasing use of low-cost UAV platforms and machine learning techniques for achieving

estimates of population abundance and monitoring movement patterns of marine wildlife in shallow coastal habitats.
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APPENDIX B | SUMMARY OF FIELDWORK EFFORT 

Table B.1. Summary of land survey effort and sightings of humpback whale groups 

observed within Jervis Bay and offshore in 2018, 2019, and 2021 

Land surveys 

Date Survey 
start 
time 

Survey end 
time 

No. whale 
groups 

observed inside 
Jervis Bay 

No. whale 
groups 

observed 
offshore 

27/09/2018 0800 1715 2 29 

28/09/2018 1130 1700 0 20 

29/09/2018 
    

30/09/2018 0800 1700 3 25 

01/10/2018 0800 1700 17 87 

02/10/2018 0800 1700 4 10 

03/10/2018 0800 1240 3 13 

04/10/2018 
    

05/10/2018 
    

06/10/2018 0800 1715 4 61 

07/10/2018 
  

0 0 

08/10/2018 0900 1725 2 19 

09/10/2018 0810 1700 3 50 

10/10/2018 
    

11/10/2018 0800 1230 2 23 

12/10/2018 0800 1700 5 43 

13/10/2018 0800 1700 3 60 

14/10/2018 0800 1700 7 28 

15/10/2018 
    

16/10/2018 0805 1700 8 19 

17/10/2018 0800 1700 6 12 

18/10/2018 0800 1700 12 29 

19/10/2018 0800 1700 9 24 

20/10/2018 0800 1700 20 21 

21/10/2018 0800 1700 5 28 

22/10/2018 0800 1700 15 39 

23/10/2018 0800 1700 9 23 

24/10/2018 0800 1700 6 6 

25/10/2018 0800 1700 11 20 

30/09/2019 0840 1430 0 15 

01/10/2019 0800 1700 0 50 

02/10/2019 0900 1700 0 14 

03/10/2019 0800 1700 8 23 

04/10/2019 0800 1700 15 19 

05/10/2019 0800 1700 2 9 
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06/10/2019 0800 1000 3 3 

07/10/2019 0800 1700 4 5 

08/10/2019 0800 0915 0 0 

09/10/2019 
    

10/10/2019 0800 1700 3 15 

11/10/2019 
    

12/10/2019 1330 1700 0 3 

13/10/2019 0800 1730 2 30 

14/10/2019 0800 1700 3 16 

15/10/2019 0800 1700 4 22 

16/10/2019 0800 1700 6 6 

17/10/2019 0800 1115 4 9 

18/10/2019 0800 1700 3 11 

19/10/2019 0800 1700 2 14 

20/10/2019 0800 1800 7 19 

21/10/2019 0800 1715 3 19 

22/10/2019 0830 1700 6 12 

23/10/2019 0800 1700 19 19 

24/10/2019 0800 1700 2 8 

25/10/2019 0900 1730 7 10 

26/10/2019 0800 0830 0 4 

27/10/2019 0800 1820 1 9 

28/10/2019 0800 1700 1 4 

29/10/2019 0800 1700 5 4 

30/10/2019 0800 1700 2 1 

31/10/2019 0800 1200 1 0 

01/11/2019 
    

02/11/2019 0820 1110 1 0 

03/11/2019 0745 1700 5 6 

04/11/2019 0800 1600 3 0 

05/11/2019 
    

06/11/2019 0800 1700 1 1 

06/10/2021 0900 1500 6 4 

07/10/2021 0900 1400 5 6 

08/10/2021 0900 1500 3 19 

09/10/2021 0900 1500 2 16 

10/10/2021 
    

11/10/2021 
    

12/10/2021 0900 1500 3 11 

13/10/2021 0900 1500 3 11 

14/10/2021 
    

15/10/2021 
    

16/10/2021 
    

17/10/2021 0900 1500 2 13 
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18/10/2021 0900 1500 10 7 

19/10/2021 
    

20/10/2021 
    

21/10/2021 0900 1500 2 2 

22/10/2021 0900 1500 4 6 

23/10/2021 0800 1115 2 1 

24/10/2021 
    

25/10/2021 0900 1500 4 3 

26/10/2021 0800 1500 0 9 

27/10/2021 0900 1500 1 4 

 

Table B.2. Summary of UAV survey effort of humpback whale groups in Jervis Bay in 

2019 and 2021 

UAV model Date Flight time 
start 

Time of flight 
(min.sec) 

M
at

ri
ce

 6
0

0
 P

ro
 

20/10/2019 1454 21.56 

20/10/2019 1720 16.52 

20/10/2019 1750 5.02 

27/10/2019 1100 4.54 

27/10/2019 1112 9.41 

27/10/2019 1418 5.23 

27/10/2019 1425 9.34 

27/10/2019 1810 15.23 

M
av

ic
 2

 E
n

te
rp

ri
se

 
D

u
al

 

31/10/2019 809 7.43 

31/10/2019 818 3.1 

31/10/2019 820 6.17 

31/10/2019 829 8.31 

3/11/2019 817 5.52 

3/11/2019 833 14.01 

3/11/2019 1107 1.5 

3/11/2019 1110 3.38 

M
av

ic
 2

 E
n

te
rp

ri
se

 A
d

va
n

ce
d

 23/10/2021 811 8.2 

23/10/2021 824 1.31 

23/10/2021 836 4.51 

23/10/2021 838 1.47 

23/10/2021 840 1.5 

23/10/2021 845 4.51 

23/10/2021 846 1.16 

23/10/2021 847 1.23 

23/10/2021 900 1.29 

23/10/2021 902 8.11 

23/10/2021 917 3.08 
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23/10/2021 1208 3.27 

23/10/2021 1445 10.41 

28/10/2021 1004 2.13 

28/10/2021 1030 1.58 

28/10/2021 1033 3.46 

28/10/2021 1040 3.02 

28/10/2021 1045 0.15 

28/10/2021 1106 3.14 

28/10/2021 1111 9.34 

28/10/2021 1125 9.00 

 

Table B.3. Summary of survey effort capturing Indo-Pacific bottlenose dolphins in 

Jervis Bay using thermal imagers in 2021 

Date Imager Survey period  Duration of footage 
containing 

dolphins (min.sec) 

18/02/2021 FLIR Boson 1103 - 1139 14.19 

01/04/2021 FLIR Boson 950 - 1340 19.47 

01/04/2021 FLIR Tau 2 950 - 1340 1.15 

01/04/2021 FLIR 
x8400sc 

950 - 1340 13.11 

 




