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ABSTRACT

Humpback whale populations that migrate along Australian coastlines each year have
rapidly increased in population size since modern whaling. This population growth has
been associated with increased presence and activity of humpback whales in coastal
embayments along the Australian coastlines, particularly mother-calf groups who use the
sheltered waters to conserve energy. However, growing numbers in nearshore areas also
increases the potential for disturbance from Defence, recreational and commercial
activities. The disturbance of resting mothers and calves may have longer term
implications for calf growth during key development stages. Jervis Bay is a coastal
embayment in which increased numbers of mother-calf groups have been observed in
the last two decades and is also an area of significant anthropogenic activity. This thesis
aims to assess the significance of Jervis Bay to humpback whale groups using novel
survey methods. The movement patterns in the Bay are characterised and compared
with that observed for humpback whales migrating south offshore. During the peak
timing for humpback whales passing Jervis Bay in 2018, 2019, and 2021, land-based,
boat-based, and unoccupied aerial vehicle (UAV) survey methods were conducted.
Results showed that a disproportionately high percentage of groups entering the Bay
contained a calf and that travel of mother-calf groups in the Bay was significantly slower
and less directed than movements of these groups offshore. Resting and nurturing
behaviour was observed in aerial footage. These findings support the argument for
identifying Jervis Bay as a resting ground for mother-calf humpback whale groups of the
east Australia (substock E1) population. With improved understanding of their behaviour
and movement in the Bay, there is a need to monitor and manage increased

anthropogenic activities during the southern migration season.

Post-processing methods and thermal infrared sensors to improve current whale
detection methods were evaluated. Detection of marine animals using UAV-captured
images is impacted by attenuation of visible light as it passes through the water column.
Correction methods, used widely in remote sensing studies to enhance the detection of
underwater substrate and benthic habitats, can be applied to improve the detection of
submerged animals. A modified version of Lyzenga’s water column correction was

applied to UAV images over humpback whale groups. Using RGB sensors, commonly used
\%



in marine wildlife surveys, the performance of three depth-invariant band pairs (i.e.,
red/green, red/blue, green/blue) were examined for improving visibility, contrast, and
edge definition. Findings demonstrate the optimal band pair combination will be

dependent on the depth of the whale.

Thermal infrared images can enhance the contrast between a whale and their surrounds,
particularly in low light conditions, to improve detection rates. The whale detection
capabilities of three UAV-mounted sensors with synchronous visual and thermal capture
were reviewed. Thermal sensor resolution had a significant impact on the detection of
the direct whale cues (i.e. the body on the surface), with only the higher resolution
sensors detecting a contrast. However, the lowest resolution sensor was able to detect
the thermal gradient of a whale’s footprint on the surface after the whales were observed
in visual images. Although these sensors were not a viable option to replace visual
sensors for whale detection, they can be used in simultaneous data capture to enhance

whale detection rates and extend the availability of observation time.

Unlike thermal detection from a UAV, thermal detection systems from near-horizontal
platforms (i.e., ship or shore) can provide continuous observation. Methods for improving
thermal imaging systems for round-the-clock detection of cetaceans were investigated. A
field study to assess the thermal capabilities of three different sensors for detecting
bottlenose dolphins was conducted to review the influence of sensor resolution, detector
temperature, and spectral range on detection rates. Cetacean cues at distances ~ 1km
were clearly detected from a very high resolution (1280 x 1024) cryogenically cooled

sensor in calm, clear conditions.

Jervis Bay, a semi-enclosed embayment, provides a resting ground for humpback whale
mother-calf groups on the southern migration pathway. Critical resting and nurturing
behaviours were observed prior to their 3,500 km migration to the Antarctic feeding
grounds. Recognition of the importance of key marine habitats for migrating cetacean
species highlights the need to understand and monitor for the potential impacts of
increased anthropogenic activity and development of our oceans, including offshore

mining, shipping, and naval operations. Emergent sensor technology and remote sensing
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approaches can provide novel, accurate and resource effective methods for cetacean

monitoring.
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THESIS INTRODUCTION

1.1 HUMPBACK WHALE MIGRATION PATTERNS

The humpback whale (Megaptera novaeangliae) is a cosmopolitan species, found in all
oceans of the world. These whales undertake one of the most extensive mammalian
annual migrations between high-latitude summer feeding areas and low-latitude winter
breeding and calving areas (Dawbin, 1966; Rasmussen et al., 2007; Stevick et al., 2011).
The International Whaling Commission (IWC) currently recognises seven breeding
stocks (IWC, 1998) (A - G; Figure 1). They are classified according to their distributions
in winter breeding areas: (A) east coast of South America; (B) west coast of Africa; (C)
east coast of South Africa, Africa and western Indian ocean; (D) west coast of Australia;
(E) east coast of Australia and western Pacific Ocean; (F) south central Pacific Ocean; and
(G) west coast of South America. All seven breeding stocks, excluding the isolated Arabian
Sea Population (known as 'Group X'; Mikhalev, 1997; Pomilla et al., 2014), with each
stock undertaking well-documented seasonal migrations (Dawbin, 1966). The Northern
and Southern Hemisphere populations remain mostly distinct, although some gene flow

between populations has been identified (Baker et al., 1994; Schmitt et al., 2014).
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Figure 1. Geographic distribution of humpback whale populations globally illustrating
IWC stock structure. Migration from high latitude feeding grounds (empty ellipses) to low
latitude breeding grounds (filled ellipses) and known (solid line) and assumed (broken
line) migration paths are shown. Area’s I - VI denote Antarctic feeding areas (Donovan,

1991). Figure taken from Olavarria (2008).

The timing of both the northbound and southbound migrations are temporally staggered
by age, sex, and reproductive status. The first whales to migrate from the feeding to the
breeding grounds are yearlings and lactating females, followed by immature whales,
mature males and resting females (Chittleborough, 1965; Dawbin, 1966). This pattern is
mirrored for the southern migration. Non-lactating females are the first to leave the
breeding grounds, followed by immature males and females, mature males, and finally
lactating females with their newly born calves (Dawbin, 1966; Craig et al., 2003; Franklin,
2012).

During the migration, there is distinct temporal and geographic separation of breeding,
feeding, and resting activities. From late autumn the humpback whales migrate to low
latitudes where they predominantly engage in breeding and calving during the winter

and early spring months before migrating south to the feeding grounds (Chittleborough,
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1965). The extensive migration is likely driven by the warmer waters of the breeding
grounds, providing calves an environment in which to conserve energy and prioritise
growth and development (Clapham, 2001; Rasmussen et al., 2007). Feeding is largely
absent during the migration and time spent on the breeding grounds, with whales relying
on stored energy reserves acquired on the seasonal feeding grounds. However,
supplemental feeding has been observed off south-east Australia (Owen et al., 2015;
Pirotta et al., 2021), South Africa (Barendse et al., 2010; Findlay et al., 2017), and South
America (Pinto de sa Alves et al., 2009).

During the southbound migration, lactating females and nursing calves have shown a
preference for resting in calm, sheltered waters (Franklin etal., 2011; Bejder etal., 2019).
This behaviour is considered beneficial for mothers who can reduce their energy
consumption during lactation, by avoiding the open oceanographic conditions, and
consequently provide greater maternal energetic investment (milk transfer) to their
nursing calf (Bejder et al., 2019). Christiansen et al. (2016) used UAV-captured aerial
images to determine lactating mothers in better body condition (greater width and girth)
produced calves in better body condition. They proposed that during gestation and
lactation, females in poor condition will prioritise their own body condition over that of
their calf. Increased energetic investment results in larger calves that will be stronger,
faster, and more resilient to environmental variations, such as reduced food supply
(Christiansen et al., 2016; Christiansen et al.,, 2018). This has direct implications for a

successful migration returning to nutrient rich colder polar feeding grounds.

In Australian waters, resting behaviour has been observed on the migratory corridor
(Noad & Cato, 2007), but previous research has focused more on large open embayments
south of the breeding grounds. Two well researched sites are Hervey Bay on the east coast
(Corkeron etal., 1994; Chaloupka et al., 1999; Franklin et al., 2011; Stack et al., 2019), and
Exmouth Gulf on the west coast (Bejder et al., 2019; Ejrnaes & Sprogis, 2021; Sprogis &
Waddell, 2022). High proportions of mother-calf groups have also been observed in Jervis
Bay, towards the southern end of east coast of Australia (Bruce et al., 2014) which differs

from these other sites as it is a semi-enclosed embayment.



Humpback whales are the most extensively studied whale species, particularly in relation
to population structure, distribution, and migratory movements. In the Northern
Hemisphere, research has been concentrated on their breeding grounds where water is
typically calm and relatively shallow, such as off Hawaii (Herman et al., 2011; Cartwright
et al, 2012; Craig et al, 2014). This is likely because most humpback whales in the
Northern Hemisphere migrate across deep open oceans that are difficult to access,
limiting research on these animals. In the Southern Hemisphere, a significant proportion
of the migrations occur in predominantly coastal waters before the oceanic section south
of the continents. Substock populations D and E1 migrate along the continental shelf
along west and east coast of Australia, respectively (Figure 1). This provides an
opportunity to research these population mid-migration, and obtain a sound
understanding of their distributions, migratory corridors and timings, and apparent rates
of population growth (Paterson et al., 1994; Corkeron & Brown, 1995; Jenner et al., 2001;
Salgado Kent etal,, 2012; Noad et al,, 2019).

1.2 CONSERVATION STATUS OF HUMPBACK WHALES IN

AUSTRALIAN WATERS
Modern whaling began in Australian waters in 1912 (Chittleborough, 1965). This and

substantial unreported Soviet whaling in the Southern Ocean substantial reduced
population numbers. When whaling ceased in 1963, populations were thought to be as
low as 3.5-5% of pre-whaling numbers (Bannister & Hedley, 2001). Numbers on the east
coast may have been as few as 100 (Paterson et al., 1994) and less than 300 on the west
coast (Bannister & Hedley, 2001). Despite this, populations on both coasts have made
remarkable recovery, increasing at rates of about 11.0% (95% confidence interval (CI)
10.6-11.3%) from 1984 - 2015 for the east coast, with no evidence this rate is slowing
down (Salgado Kent et al., 2012; Noad et al., 2019). The most recent population estimate
of the east coast population by Noad et al. (2019), who conducted land surveys in 2007,
2010 and 2015, predicted the absolute abundance and rate of recovery of this population
to be 24,545 (95% CI 21,631 - 27,851). The west coast, population estimates ranged from
26,100 (95% CI1 20,152 - 33,272) from Salgado Kent et al. (2012) who used aerial surveys
to 34,290 (95% CI 27,350 - 53,50) Hedley et al. (2020), who used aerial and land surveys.

Both studies acknowledged potential data limitations, including a limited number of

4



samples, not accounting for perception bias, and restricted view from land surveys.

In Australia, the Environmental Protection and Biodiversity Conservation (EPBC) Act
1999 is the primary legislation protecting humpback whales. The EPBC Act protects all
cetaceans within the Australian Whale Sanctuary that encompasses all Commonwealth
waters, from the state limit (three nautical miles) to the Australian Exclusive Economic
Zone boundary (200 nautical miles). In February 2022, the Threatened Species Scientific
Committee removed humpback whales as a vulnerable species from Australia’s EPBC Act
list of threatened species, resulting from strong population recovery and no current
threats to prevent population growth. They are still protected under the EPBC Acts as a
listed Migratory Species and under EPBC Act Division 3, where it is an offence to interfere
with a cetacean. In New South Wales, humpback whales are protected by the Biodiversity
Conservation Regulation 2017 (Division 2.1). Any activity within Australian waters that
is likely to have an impact on a humpback whale requires government approval and
permits. In 2018, humpback whale populations globally, except for the endangered
Arabian Sea population, had their status changed from ‘vulnerable’ to least ‘least concern’

on the International Union for Conservation of Nature (IUCN) Red List.

1.3 STUDY AREA

Fieldwork for this thesis was undertaken in Jervis Bay (35° 07’ S, 150° 42’ E), a semi-
enclosed embayment situated along the New South Wales (NSW) coastline (Figure 2).
Jervis Bay is roughly 3,500 km north of Antarctic feeding grounds and 1,500 km south of
the breeding and calving grounds for the E1 population, in the waters of the Great Barrier
Reef (Smith et al., 2012). In addition to a migratory humpback whale population, a
population of resident Indo-Pacific bottlenose dolphins (Tursiops aduncus) inhabit Jervis

Bay (Moller et al., 2002).

Humpback whales were abundant in Jervis Bay during the migration season prior to
industrial whaling and whaling operations commenced in the Bay during 1912 - 1913
(Dakin, 1938). Over the last two decades, citizen science data and opportunistic sightings
have highlighted increased sighting of mother-calf groups in Jervis Bay, highlighting the
area as potential resting ground (Sheehan & Blewitt, 2013; Bruce et al., 2014). Jervis Bay
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encompasses the multiple-use Jervis Bay Marine Park, waters of the Booderee National
Park and part of the East Australian Defence Exercise Area, an important naval training
site. Within the Bay, there is significant naval activity, commercial whale watching,
recreational boating and fishing. Since 2019 two commercial dive operators have
acquired permits to operate swim-with-activities. The strong recovery of the E1
population, has increased the potential for spatio-temporal overlap with anthropogenic

activities.

Compared to other identified resting areas, Jervis Bay is geomorphologically distinct. The
relatively narrow entrance to the Bay (3.7 km) runs northeast-southwest, parallel to the
migration, compared to that of the entrances of Hervey Bay (70 km) and Exmouth Gulf
(50 km) that run west-east, facing the migration. The southbound migration closely
follows the Australian coastline (Paterson & Paterson, 1989; Gales et al,, 2010), requiring
whales to change their direction of travel to enter Jervis Bay. Furthermore, the elevation
of the Point Perpendicular headland (75 m), at the northern end of Jervis Bay provides an
optimal vantage point to track whales entering the Bay, their movements in the Bay and

allows for a comparison with whales migrating south offshore (within 10km).
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Figure 2. Jervis Bay study site illustrating the zoning of the Jervis Bay Marine Park and

Booderee National Park

1.4 NOVEL METHODS FOR MONITORING WHALE MOVEMENTS

Highly mobile cetacean species are notoriously difficult to study as they spend large
periods of time underwater, surface for short periods, have unpredictable movement
patterns, and are often found in remote habitats that extend over large areas. Cetacean
survey methods traditionally involve obtaining counts of whales from land-based vantage
points, piloted aerial surveys or boat surveys (Eberhardt et al., 1979). These methods can
be very labour intensive, involving long hours of recording, and as whales’ range over
large geographic areas, these survey methods can be costly and inefficient. These
methods are also subject to visibility biases, which includes both availability bias, when
an animal is present in the study area but not available to the observer (e.g., submerged),

and perception bias, where an animal is available for detection but missed by observers
7



or an automated detection algorithm (Marsh & Sinclair, 1989; Brack et al., 2018).

The past decade has seen an emergence of new and innovative methods for surveying
cetacean species, particularly remote aerial methods providing large spatial coverage
without the risks associated with piloted surveys. The use of sub-metre very high
resolution (VHR) satellites for whale detection have been proposed and demonstrated as
a relatively cost-effective method, for one-off abundance counts in surveying relatively
large areas (Fretwell et al., 2014; Cubaynes et al., 2018; Guirado et al., 2019). However,
these methods are only useful if the timing of data collection is not critical. Additionally,
satellites cannot provide imagery at the temporal and spatial scales required to explore
whale movements or behaviour, and many satellite systems are subject to atmospheric
and weather effects (e.g., cloud contamination, Johnston, 2019). Importantly, species can
still be difficult to detect, and detection probabilities remain unknown (Fretwell et al.,

2014; Cubaynes et al., 2018).

Unoccupied aerial vehicles (UAVs), commonly referred to as drones, provide a cost-
effective, unobtrusive solution with flexibility unlike other survey approaches, including
land- or boat-based methods or other aerial surveys. Larger, fixed-wing models have been
used for transect surveys (Hodgson et al., 2013) and demonstrated to have detection
probabilities for humpback whales within the range of piloted aerial surveys (Hodgson
etal, 2017). Smaller UAV models, such as quadcopters, are particularly beneficial as they
can be flown opportunistically (Horton et al, 2019), launched from small boats
(Christiansen et al, 2016), and hover over target animal(s). This is particularly

advantageous for marine research when surveying vagile and often elusive animals.

In the last decade there has been an increase in marine studies utilizing UAVs (Schofield
et al.,, 2019), which allows for novel insights on the abundance (Hodgson et al., 2017),
behaviour (Torres et al., 2018; Fiori et al,, 2019), and body condition (Christiansen et al.,
2016; Hodgson et al,, 2020) of marine wildlife. The potential of UAVs for behavioural
studies has been recognised (Nowacek et al., 2016), although research to date has been
somewhat limited (Schofield et al, 2019). Continuous, unbiased observations are

required to study animal behaviour and boat-based surveys are restricted to horizontally



observing a snapshot of the animals’ behaviour at the surface. Torres et al. (2018)
demonstrated that UAVs provided three times more observational capacity than boat-
based observations when surveying gray whales (Eschrichtius robustus), finding UAVs
provided longer observation of all primary behaviour states (travelling, foraging,
socializing, and rest) and documented fine-scale foraging and social behaviour. Similarly,
Fiori et al. (2019) found socializing and nurturing behaviours of humpback whales on a
calving ground in Tonga were significantly underrepresented in boat-based observations
compared to UAV-based data. Currently the main limitation is the restricted flight time of
small UAV models (e.g., 30 minutes for the Phantom 4). However, rapid advancements in
UAV platform technology resulting in increased flight times will likely improve their

flexibility for marine surveys in the near future (Nowacek et al., 2016).

1.4.1 Sensors
While UAV surveys to date have primarily focused on the visual red-green-blue (RGB)

spectrum for detection of marine wildlife, advances in the miniaturisation of payloads
provide flexibility for mounting alternative sensors, including thermal infrared (TIR),
multispectral (four or more bands), and hyperspectral (30 to hundreds of narrow bands),
onto many UAV models. These sensors have the potential to overcome limitations
encountered with traditional RGB imagery where animal detection is subject to light
levels and requires clear contrast between an animal and their surrounds (Hinke et al.,
2022). The effectiveness of thermal sensors for discriminating animals in low-light
conditions has been well established in terrestrial environments, for example, the night-
time detection of arboreal mammals (Kays et al., 2018; Witt et al., 2020; McCarthy et al.,
2022). Thermal sensors for detecting cetaceans are limited to detecting animals on the
surface, as infrared waves are rapidly attenuated in water. Previous research from UAV-
mounted thermal sensors has focused on detection of cetacean footprints, where sub-
surface fluke strokes result in a cold anomaly on the surface (Churnside et al., 2009;
Florko et al, 2021; Lonati et al, 2022), and whale health through biometric
measurements (Horton et al,, 2019). From near-horizontal platforms (e.g., off a vessel)
thermal infrared imaging has been used to detect the warm exhalations of cetacean in the

distance (Zitterbart et al.,, 2013; Smith et al.,, 2020; Zitterbart et al., 2020).

Multispectral and hyperspectral sensors have the potential to be particularly beneficial
9



in marine environments as wavelengths can be selected to improve detection of
submerged objects. Colefax et al. (2021) used a UAV fitted with a hyperspectral sensor
(400 - 1000nm) to identify the optimal wavelengths for detecting submerged marine
fauna, finding the key wavelengths to be 474 - 594 nm provided the greatest contrast.
Similarly, Fretwell et al. (2014) identified wavelengths of 400-450 nm (coastal band)
from a VHR multispectral satellite image to be optimal for detecting southern right
whales (Eubalaena australis), due to increased water penetration. Detection of
submerged objects using optical remote sensing from satellites and UAVs is also subject
to sun glint contamination which is present in an image when the solar irradiance is
reflected directly toward the sensor (specular reflectance) due to the relative orientation
of the water surface. Sun glint causes high brightness in images, reduces the signal-to-
noise ratio, and reduces the accuracy of remotely sensed observation data (Muslim et al.,
2019). Sun glint is influenced by sun position, viewing angle and sea surface state (Kay et
al., 2009). The effects of sun glint can be avoided by selectively choosing to survey in the
early morning or later afternoon. Whilst this can be effective for static objects, including
the mapping of nearshore benthos, this is not always feasible for moving and wide-
ranging marine vertebrates. In the absence of flexibility in survey timing, there are robust
methods to remove sun glint contamination from multispectral images (Hedley et al,,
2005; Martin et al., 2016). Whilst these techniques are effective for multi-spectral images
containing a NIR band, they are not suitable for images containing only red, green and
blue bands. This limits the use of sun glint removal techniques for most off-the-shelf
UAVs, fitted with RGB cameras, commonly used in wildlife studies (Anderson & Gaston,

2013).

1.5 THESIS AIMS AND OVERVIEW

The broader objective of this research is to evaluate multiple methods for optimising the
detection of whales and to characterise the movement patterns of humpback whales

during the southern migration (Figure 3).

Chapter 2 provides the first comprehensive analysis of the behaviour and movement
parameters of mother-calf humpback whale groups in Jervis Bay. These movement

patterns, including speed and linearity, are compared with whales travelling south on the
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main migratory pathway. This is achieved using predominantly traditional survey
techniques, including land-based theodolite surveys and boat-based photo-identification
methods. Additionally, UAV surveys are employed to provide insight on fine-scale

behaviour in Jervis Bay, particularly resting and nurturing behaviour.

Chapters 3 and 4 investigate different methods to overcome limitations commonly
encountered in aerial surveys, particularly perception bias. Chapter 3 presents a modified
water column correction for enhancing UAV-acquired visual image data to improve the
contrast of whales on the water surface and submerged near the surface. A modified
version of Chapter 3 is published in Marine Mammal Science (Jones et al., 2022). Chapter
4 evaluates the effectiveness of thermal sensors for detecting direct and indirect whale
cues on the surface through comparison of simultaneous acquired UAV thermal and
visual image data. This chapter also considers trade-offs between different UAV-borne
thermal sensors for optimising whale detections taken at oblique or nadir angles,

including sensor resolution, radiometric capability, and model size.

Chapter 5 evaluates how thermal infrared sensor configuration will influence cetacean
detection rates from near-horizontal ship and shore platforms for cetacean mitigation
from human activities. In this chapter the capabilities of three thermal that differ in
sensitivity, resolution, spectral range, and detector temperature, for discriminating
bottlenose dolphin from surrounding waters are assessed. The current state of
knowledge on the use of thermal imaging for the long-range detection of cetaceans from
ship and shore systems is reviewed to provide a detailed understanding of how the
characteristics of cetacean cues and environmental conditions will influence automated

detection methods.

Chapter 6 provides a general discussion and synthesis of the key research findings. Future

research priorities and conservation implications of this research are presented.
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Figure 3. Overview of methods used in each data chapter. All images were taken during

fieldwork in Jervis Bay. Created with BioRender.com.
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Characterising resting patterns
of mother-calf humpback whale
groups in a semi-enclosed
embayment along the Australian
east coast migration pathway

Alexandra Jones'?*“, Eleanor Bruce? & Douglas H. Cato'?

On migration from low latitude breeding grounds to high latitude feeding grounds, humpback whale
mothers and calves spend time resting in coastal embayments. Unlike other areas where resting has
been documented, Jervis Bay, on Australia’s east coast, is remote from both breeding and feeding
grounds, and provides a unique opportunity to compare resting behaviour observed within a semi-
enclosed embayment to observations offshore. Land-based, and UAV surveys were conducted in
Jervis Bay in 2018, 2019, and 2021. We show that (i) a disproportionately high percentage of groups
with a calf enter Jervis Bay during the southbound migration, (ii) travelling speeds are significantly
slower in the Bay compared to offshore, indicating resting behaviour, and (iii) aerial observations
highlight resting and nurturing behaviour. Subsequently, we conclude that Jervis Bay is an important
area for resting mother-calf humpback whale groups. Comparison with reports of resting behaviour
during migration in areas nearer the breeding grounds shows commonalities that characterise
resting behaviour in mothers and calves. This characterisation will allow improved monitoring

and management of humpback whales in nearshore embayments during a critical stage of calf
development, particularly those with increased anthropogenic activities.

Humpback whales (Megaptera novaeangliae) undertake one of the most extensive mammalian annual migrations
between high-latitude summer feeding areas and low-latitude winter breeding and calving areas !>. This migra-
tion may be driven by the energetic benefits provided by the warm waters of breeding grounds that allow calves
to conserve energy, leading to increased growth, development, and potentially future reproductive success >*.
Travelling to warmer waters for whales to molt their skin has also been proposed as a factor potentially driving
the migration®. During the migration, distinct temporal, and geographic separation of activities, namely breed-
ing/calving, resting, and feeding, is linked to functional adaptations in resource availability ”. Humpback whales
migrate along both the east and west coasts of Australia, to and from breeding grounds in the warm sheltered
waters within the Great Barrier Reef on the east coast (International Whaling Commission (IWC) designated
substock E1) ® and on the North West Shelf on the west coast (substock D) ®. Whales are present inside the Great
Barrier Reef from June to September ®. From here, the population migrates, ~ 5000 km south along a narrow
migratory pathway  along the east Australian coastline to the nutrient rich Antarctic summer feeding grounds
(IWC Antarctic Management Areas IV, V and VI). During the southbound migration females and their calves
have been observed to rest in large open bays near the breeding grounds. Hervey Bay on the east coast 11> and
Exmouth Gulf on the west coast '>!*. Resting has also been observed in open oceanic waters off Peregian Beach
15 on the east coast, however it is generally considered that mothers and calves prefer to rest in relatively shallow,
calm waters or protected embayments *°. It has been proposed that these sheltered waters provide protection
from rough seas, predators and conspecifics 1”7 and the calm surface conditions reduce energy consumption of
lactating mothers and nursing calves '®.

The E1 subpopulation size was substantially reduced by commercial whaling, both from stations on the east
Australian coast" and from Soviet Union whaling ships in the Southern Ocean®. Whaling of this subpopulation
ceased off the east coast in 1962 and in the Southern Ocean in 1968, but by then the population had been reduced
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to possibly as low as 100 individuals'. Since then there has been a substantial recovery of this subpopulation.
Population size was estimated to be about 25,500 in 2015, increasing at about 11% per annum . The strong
recovery of substock E1, has seen increased observations of humpback whales in coastal embayments along the
southern migration pathway, including Hervey Bay, Queensland (QLD) *-'2 and Jervis Bay, New South Wales
(NSW) 2,

Jervis Bay is a semi-enclosed embayment encompassing the multiple-use Jervis Bay Marine Park, waters of the
Booderee National Park and part of the East Australian Defence Exercise Area, an important naval training site.
In 1998, the area was declared a marine park by the NSW government based on its unique geology and oceanog-
raphy, diverse habitats and ecosystems, and abundant flora and fauna. Humpback whales were abundant in Jervis
Bay during the migration season prior to industrial whaling ?*. Citizen science data collected from a commercial
whale watching platform between 2007 and 2010 demonstrated the prevalence of mother-calf groups within the
Bay from September to November corresponding to the southern migration 22. Whales, predominantly groups
with calves, come into the Bay on the southbound migration thus geographically separating groups in the Bay
from those migrating south, allowing for direct comparison of behaviour. Unlike other areas where resting has
been documented previously, Jervis Bay is further from the recognised breeding grounds (~ 1500 km) almost one
third of the way to the Antarctic feeding grounds which are ~ 3500 km further south. Although opportunistic
feeding by sub-adult humpback whales has been observed at Eden, NSW %, ~ 230 km south of Jervis Bay, this
is linked to variable nutrient-rich upwelling events associated with the East Australian Current (EAC) and is
unlikely to provide a consistent feeding area for energy intake by lactating mothers.

Previous studies have examined humpback whale movement trends and aggregations in breeding/resting
grounds * and potential resting areas within migratory corridors '>!?, but there has been no systematic surveys
of humpback whale usage patterns in semi-enclosed coastal embayments located at remote distances from breed-
ing and feeding grounds. Off Australia, humpback whales follow the coastline during the migration ***’. Due
to the geomorphic configuration of Jervis Bay, access requires humpback whales to divert from the migration
direction. Whales will enter Exmouth Gulf and Hervey Bay without needing to change their course of direction.
However, whales will travel south past Jervis Bay in a southwest direction and to enter the Bay need to travel
in a northwest direction. Jervis Bay has a much narrower entrance (3.7 km) which runs almost parallel to the
migration compared with entrances of 70 km for Hervey Bay and 50 km for Exmouth Gulf, both of which run
east to west and face the oncoming migration.

Resting opportunities involving low energetic expenditure are likely critical for minimising the rate of decline
in body condition of lactating females '* and optimising calf growth during key development stages which may
have implications for individual reproductive success in adulthood . Additionally, in baleen whales calf growth is
directly related to maternal energetic investment (milk transfer). Females with better body condition will produce
larger calves who are stronger, faster and more resilient to environmental fluctuations (e.g., food shortages) 2%
This has direct implications for surviving the migration back to colder polar feeding grounds.

Sheltered waters along the migration pathway, as in Jervis Bay, may facilitate nursing and energy conserva-
tion allowing calves to allocate energy to growth rather than movement *. The fine-scale neonate humpback
whale suckling behaviour of eight calves were quantified in Exmouth Gulf, Western Australia, and showed calves
suckling 20.7 +7% of the total tagging time during which mothers were resting on the surface or submerged
1330 Furthermore, these studies demonstrated that lactating mothers and their calves spent considerable time
resting (~35%).

Jervis Bay is an area of significant naval, commercial, and recreational activity. Two commercial whale watch-
ing companies operate in the Bay and since 2019, permits have been approved for two commercial dive operators
to offer swim-with-whale activities. Thus, with increasing numbers of resting whales, there is increasing poten-
tial for spatio-temporal overlap with anthropogenic activities which may impact on the energy conservation of
lactating mothers and their calves.

Understanding how humpback whales use Jervis Bay is critical for guiding policy and management decisions
regarding commercial, military, and recreational use of this area. This paper presents a characterisation of the
behaviour of mother-calf groups resting in a semi-enclosed embayment, remote from the breeding grounds,
where there is clear separation from the whales travelling past the bay on the migration. We compare results with
observations in other areas in which humpback whales have been observed resting along the migration pathway
to identify the characteristics of resting behaviour. The specific objectives were to: (i) determine the composi-
tion of humpback whale groups entering Jervis Bay during the southern migration using systematic surveys; (ii)
compare the movement patterns of mother-calf groups, including speed and linearity, in Jervis Bay with whales
travelling south on the main migratory pathway; (iii) quantify the behavioural states most frequently observed
in the Bay; (iv) compare the results with those from other areas to determine general characteristics of resting
behaviour. Land-based theodolite surveys and unoccupied aerial vehicles (UAVs) were employed during 2018,
2019 and 2021 to meet these objectives.

Results

Land-based theodolite surveys were conducted on 23 (72%) of the scheduled survey days between 24 September
and 25 October 2018, on 34 (89%) of the scheduled survey days between 30 September and 6 November 2019,
and 14 (64%) of the scheduled surveys days between 6 and 27 October 2021.

Group size and composition. A total of 609 humpback whales in 326 groups were observed entering/
leaving, or within, Jervis Bay and 1955 humpback whales in 1181 groups, were observed travelling southwest
past Point Perpendicular without entering the Bay. Humpback whale groups observed entering/leaving or
within Jervis Bay, ranged in size from one to four whales (mean+SD=1.9+0.7). Mother-calf pairs were the
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most frequently observed group composition (72%) followed by non-calf groups (15%), and mother-calf-escort
groups (13%). Overall, 84% of groups that entered the Bay contained at least one calf. A total of 1181 groups were
observed bypassing Jervis Bay, 22% of these groups contained a calf. A total of 507 groups containing a calf were
observed, 247 of these (49%) entered/left Jervis Bay.

Three or more reliable fixes were obtained for 477 humpback whale groups. Of these, 158 groups were tracked
entering/leaving, or within, Jervis Bay. Of these, 31 remained in the inshore area during observations (category
1), 57 groups entered/left the inshore area from offshore or the mouth of the Bay (category 2), and 70 groups
entered/left the Bay but did not enter the inshore area (category 3). 319 groups were tracked offshore but did
not enter the Bay. Groups were tracked on average for 44.3 min +45.9 (SD), the shortest track lasting for 10 min
and the longest 247 min.

Speed and linearity of movement. Mother-calf pairs tracked in the inshore area only (category 1), had
significantly slower average track speeds (Mann-Whitney U=247, Z=-5.015, p<0.001, 2-tailed), average net
speeds (Mann-Whitney U=95, Z=-6.309, p <0.001, 2-tailed), and lower linearity measurements (Mann-Whit-
ney U=86, Z=-6.386, p<0.001, 2-tailed) compared to mother-calf pairs migrating south offshore (category 4).
The comparison of movement parameters for the four track categories are summarised in Table 1.

Assessment of the proportion of mother-calf pairs travelling in almost straight lines, displaying “strong”
linearity > 0.95%, showed that 39% of groups entering/leaving, or within, the Bay displayed strong linearity com-
pared to 68.2% of groups travelling offshore. For groups that entered Jervis Bay, 30.1% had a linearity score below
0.5, suggesting meandering behaviour, compared to 3.5% of groups that did not enter the Bay. Of the groups
that were tracked only in the inshore area (category 1), one (<5%) had a linearity > 0.95 while 52% were <0.5.

Mother-calf pair groups spent considerably more time travelling at speeds < 1 km/h, indicating resting or
drifting behaviour °, within Jervis Bay compared to groups offshore (Fig. 1). Categories 1 and 3 demonstrated
a clear preference (>30% of the time) for travelling at speeds <1 km/h. Whales in category 2 spent 48.7% of the
time travelling at speeds 2—-4 km/h. Offshore (category 4), whales showed a peak distribution of travelling at
speeds 3.01-4 km/h (24.6% of the time). Offshore calf groups spent 3.2% of the time travelling at speeds <1 km/h.

Track category

1 2 3 4
Sample size 25 38 51 76
Average track speed +SD (km/h) 24+1.3 35+1.3 33+1.3 46+1.8
Average net speed +SD (km/ h) 1.1£0.9 2.7+1.6 29+1.4 43+1.7
Average linearity + SD 0.5+0.3 0.6+0.3 0.8+£0.3 0.9+0.2

Table 1. Summary of movement paraments of mother-calf humpback whale pairs with averages + standard
deviation (SD) using data pooled from land surveys conducted from the Point Perpendicular Lighthouse in
2018, 2019, and 2021. Track categories represented groups that were tracked; (1) entirely within the inshore
area, (2) from offshore/mouth of Jervis Bay into the inshore area, (3) entering/leaving the entrance of the Bay,
(4) offshore. “Track speed” is the sum of the distances between consecutive fixes for a track divided by the sum
of times between fixes. “Net speed” is the linear distance between the first and last fixes of a track divided by
the total time. “Linearity” is track distance divided by net distance.

M Category 1 Category 2 Category 3 Category 4
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Figure 1. Frequency distributions of the percentage of time spent in speed classes grouped in bins of 1 km/h for
mother-calf groups. Data taken from individual leg speeds (n=1364). Bins from>7 to 16 km /h were grouped
given the low proportion of time spent at these speeds. Track categories represented groups that were tracked;
(1) entirely within the inshore area, (2) from offshore/mouth of Jervis Bay into the inshore area, (3) entering/
leaving the entrance of the Bay, (4) offshore.
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UAV behaviour observations. UAV flights were conducted over four days during 2019 and 2021 (sum-
marised in Table 2). The behaviour of six mother-calf groups were observed from UAV surveys (five mother-calf
pair groups and one mother-calf-escort group) (Fig. 2).

Resting was the most observed behavioural state over the four days of flights (29% for both mother and calf
resting, 9% when mother was resting and calf was active). This was followed by nurturing behaviour (29%),
travelling (19%), socialising (10%), and surface-active behaviour (5%). 55% of the time spent ‘travelling’ were
whales observed leaving the Bay. During 39% of observations, whales were completely submerged. All UAV
flights were conducted in the inshore area.

Discussion

This study used two complementary survey methods to provide detailed observations of humpback whales (E1
east coast population) in Jervis Bay, a site remote from the breeding grounds, during the southern migration
during 2018, 2019, and 2021. The combination of (i) a high proportion of groups entering/leaving Jervis Bay
containing a calf, (ii) a high proportion of time observed resting and (iii) aerial observations of resting and
nurturing behaviour indicate that the area is a resting ground for mother-calf groups.

Over the observation period, 84% of humpback whale groups within Jervis Bay contained a calf. Of all groups
that entered or left the inshore area (track categories 1 and 2), 92% contained a calf. Such a high proportion of
groups with calves has not been observed elsewhere. Observing a high proportion of mother-calf groups towards
the end of the southern migration is not unexpected. The migratory timing of humpback whales leaving the
breeding and calving grounds is temporally staggered. Non-lactating females are the first to leave the breed-
ing grounds, followed by immature males and females, mature males, and finally lactating females with their
newly born calves ''*2, However, the proportion of groups within Jervis Bay containing a calf is considerably
higher than other Australian areas where resting has been observed at equivalent seasonal timing. In Hervey
Bay, Queensland, a peak occurrence of 40% of groups containing a calf was recorded from early August to mid-
October '°. Similarly, the Exmouth Gulf, Western Australia, had an average of 41% for humpback whale groups
containing a calf, peaking at 61% in mid-October **. Off Peregian Beach, Queensland, the proportion of calf

31 Oct | 0805-0829 24 3
2019 A: 10 DJI Mavic 2 enterprise dual
3 Nov 0715-1111 23
B:5
230 08011-0917 43 A3
ct = . .
2021 B6 DJI Mavic 2 enterprise
advanced
28 Oct | 1004-1316 33 33

Table 2. Summary of UAV flights conducted in 2019 and 2021. Dates where two groups were recorded denote

an A and B group.
H Travelling M & C resting M resting, C active
B M & C surface-active M Socialising ® Nurturing

Time spent in each behavioural state (%)
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Figure 2. The proportion of time spent in behavioural states for six mother-calf humpback whale groups in
Jervis Bay based on UAV aerial observations (left). M and C denote mother and calf, respectively. Humpback
whales captured within Jervis Bay displaying: (A) resting, (B) nurturing, and (C) socialising behaviours (right).
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groups was 24% of all migrating groups over a similar time period '*. These calculations were taken of whales
on the migratory corridor, indicating this is typical for whales oftshore. Thus, the observations in Exmouth Gulf
and Hervey Bay have a higher concentration than expected for the migration as a whole. Calf groups were about
22% of all groups passing Jervis Bay, similar to the proportion observed off Peregian Beach.

Mother-calf pairs inshore Jervis Bay (category 1) spent ~ 35% of the time resting at speeds < 1 km/h, consist-
ent with 38% resting observed during UAV surveys (29% for mother and calf resting, 9% when mother was
resting and calf was active). This is comparable with the 35% of time resting in Exmouth Gulf which was deter-
mined based on acceleration data from DTAGs ', recognising that the different methods limit the accuracy of
comparison. Aerial surveys over the Hawaiian breeding grounds observed that 26% of mother-calf pairs were
resting **. During the predominantly southbound migration off Peregian Beach, calf groups were observed to
be drifting at < 1 km/h, apparently resting 16% of the time whereas non-calf groups drifted for 5.5% of the time
15, Results off Peregian Beach highlight resting behaviour in exposed oceanic waters, however, high proportions
of mother-calf groups in embayments suggests these waters are preferred. Resting in exposed oceanic waters is
likely during migrations when whales are moving from breeding areas (e.g., Hawaii or the South Pacific Islands)
to feeding grounds in open waters rather than along coastlines.

The semi-enclosed embayment of Jervis Bay, with an irregular ellipsoidal shape, provides a distinct geomor-
phic setting along the eastern Australian coastline. A continuous stretch of ocean cliffs that form the coastal
pathway between Beecroft Head and Cape St George is breached by the relatively narrow entrance of the bay
(3.7 km). This discontinuity in the coastline is parallel to the south westerly direction of the migration and
requires whales to detour from the main migratory pathway to move into the Bay. Although wind waves are
generated across the surface of the bay, ocean swell (from the Tasman Sea and Southern Pacific Ocean) that pass
through the entrance are increasingly refracted by a gently shelving bathymetry **. The entrances to Hervey Bay
and the Exmouth Gulf are oriented east-west facing towards the migrating whales and span close to 70 km and
50 km, respectively, each with a total area of ~4000 km?, so that whales of all group compositions are likely to
move into these bays as they move south. This is consistent with the lower proportion of calf group observations
in these locations than in Jervis Bay. The importance of Jervis Bay as an area for resting is further highlighted
when considering the vast distances between both breeding (~ 1500 km) and feeding grounds (~ 3500 km).

Humpback whale mother-calf pairs in Jervis Bay travel at slower speeds, with less directed movements com-
pared to groups travelling offshore on the southern migration. Travel speed and directional, linear movements
offshore were as expected and consistent with other research along the Australian coast 1527 Slow, non-linear
movements, as observed by lactating females and their calves in Jervis Bay, suggest low energy expenditure and
resting by these groups.

Resting implies saving of energy. For marine mammals, the rate of energy expended by travelling to overcome
the drag resistance of water theoretically increases as the 3™ power of their speed*®. Total energy expenditure also
includes the basal metabolic rate and factors involved in thermal regulation. Measurements of energy expenditure
rate as a function of speed for a range of small marine mammal species generally show a gradual increase above
the basal metabolic rate at the lowest speeds ***”*°. With increasing speed, the energy expenditure increases
at a progressively faster rate as the effect of travelling becomes more dominant. Hind and Gurney * provide a
comprehensive model of the metabolic cost of swimming in marine homeotherms in which the basal metabolic
rate dominates at very low speeds and the energy to overcome drag resistance dominates at high speeds, con-
sistent with measurements. In this model, part of the basal metabolic rate at rest includes the generation of heat
required to maintain thermal equilibrium of the body core if heat is lost to the surrounding colder water. Heat
generated by travelling can to some extent compensate for this heat loss thus reducing the net additional energy
expenditure during travel at low speeds. The result is that the increase in energy with speed from rest is more
gradual than without this compensation, up to a speed where the heat from travelling exceeds that needed to
compensate for heat loss to the water.

However, this effect may not be significant for large whales in warm waters, such as those in ** and outside
Jervis Bay where temperatures are typically 18-19 °C during the southbound migration. Modelling of thermal
processes in marine mammals “°-*2 has shown that large whales may need to dissipate excess heat in warm waters,
especially when travelling, and that blood circulation through flippers, fins and flukes is important in dissipation.
Energy saving through reduced speed may therefore be more for humpback whales in warm water than expected
from the measurements for small marine mammals because there is not the need to generate heat at low speeds
to compensate for heat loss to the water, as in the model of Hind and Gurney. With their rapid growth, calves
have higher metabolic rates per kilogram of body mass than conspecific adults and higher than for adults of
similar size from other smaller species*’ so measurements of smaller marine mammal adults are not applicable,
even if of similar size. There appear to be no measurements of the dependence of energy expenditure on speed
for large whales in warm waters, or the data required to evaluate the model of Hind and Gurney to clarify this.
However, it seems likely that there is considerable saving of energy by the significant reduction in speed and
the high proportion of time spent with little movement by humpback whale mothers and calves in Jervis Bay
compared to similar groups travelling offshore.

Respiration rate has been also be used to estimate energy expenditure in large whales '**3. However, this
assumes that expiration and inspiration gas exchange (tidal volume) is constant irrespective of speed or the rate
of energy consumption. This is not supported by gas flow measurements at low speeds which found significant
variation in tidal volume as flow rate of the blow as well as the duration varied and blows were observed to be
weaker and more difficult to observe as the whales rested*. Hence respiration rates are likely to overestimate
energy expenditure at low speeds and resting, leading to an underestimate of the dependence of energy expendi-
ture on speed. In Jervis Bay, we found that blows from whales were often too weak to be reliably counted from
the observation site, especially for calves and for longer distances, thus respiration rates were not measured. In
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studies off Peregian Beach, theodolite observations were found to underestimate respiration rates of migrating
humpback whales compared with boat observation, especially the smaller blows from calves .

Bejder et al. * found that respiration rates of humpback whale mothers and calves in Exmouth Gulf were
significantly less than for foraging whales off Greenland, based on aural detection of blows recorded on tags
affixed to whales by suction cups. If respiration rate tends to overestimate energy expenditure at low speeds, the
difference in energy expenditure between resting and foraging would be even more pronounced.

UAYV surveys were conducted to observe fine-scale behaviour of humpback whales in Jervis Bay and comple-
ment movement parameters calculated using land-based theodolite data. Clear resting and nurturing behaviour
was evident. In addition to the energetic advantages afforded by resting behaviour, as discussed above, maternal
behaviour, including nursing and back riding, is linked to calf survival *°. Back-riding is particularly beneficial for
younger calves by helping calves to stay afloat right after birth and facilitating protection from predators during
developmental stages 2**. Close proximity between mother and calf provides several advantages, including close
access to milk, saving on energetic costs of travelling, reducing the need for loud acoustic communication which
may attract predators **¥’. Few observations of surface-active behaviours in the UAV surveys further support
minimisation of energy expenditure by mother-calf groups during their time in Jervis Bay.

UAVs provide a superior platform to visualise more subtle social and nurturing behaviours, as well as behav-
iours immediately below the surface, when compared to oblique methods from land or on a vessel which under-
estimate these activities %. In our UAV surveys, whales were submerged for 39% of observations. Compared to
boat-based observations, UAV's provide three times more observational capacity for the same time period *.
Additionally, UAV observation methods improve reliability of assigned behavioural states as video footage can
be examined multiple times, by multiple researchers post-flight **. The authors recognise the limitations associ-
ated with the restricted data available from four flights coordinated during periods of COVID related travel and
fieldwork restrictions. However, these flights provided insights on nurturing and resting behaviour of submerged
whales, that would not have been distinguishable from land or boat surveys.

This study confirms the role of Jervis Bay as a resting ground for mother-calf pairs from the east Australian
humpback whale population as suggested by Bruce et al. ?2. It also provides information that, when combined
with other studies in the literature, allows a characterisation of resting behaviour that could be applied gener-
ally. Unlike other seasonally significant habitats for humpback whales, such as breeding and feeding grounds,
requirements for an area to be considered a resting ground is less established in the literature. Jervis Bay meets
the requirements of a resting ground as defined in other research studies in that it is an enclosed coastal area
which provides shelter from open oceanographic conditions ** where whales are not actively travelling and
making up distance on their migration ®. We argue that these definitions are inadequate and not inclusive of all
conditions and behaviours in which resting has been observed. Within the literature, it is accepted that resting
behaviour involves whales near or on the surface displaying little activity other than breathing, also known as
logging behaviour, but may also include calf back riding **>. Humpback whale mother-calf groups have been
observed resting in exposed oceanic waters on the migration path ', so resting is not confined to sheltered
waters. An approach for improving the definition and characterisation of an area as a resting ground would be to
conduct systematic surveys to quantify movements and observe behaviours over a significant proportion of the
migration for more than one migration season. These could be directed towards open ocean areas to improve our
knowledge of resting in non-enclosed and unsheltered waters. In this study we have demonstrated the benefits
of using multiple survey methods to establish resting behaviour. This allowed validation across different data
sets and showed the degree of complementarity between trends in the travel speed, linearity of movement and
aerial UAV observations.

Resting mother-calf groups in Jervis Bay, and other sheltered waters, are especially vulnerable to human
disturbances as they move at slow speeds and spend high proportions of time resting stationary at or near the
surface 1°. Despite being protected within the Jervis Bay Marine Park and Booderee National Park, mother-calf
groups are temporally and geographically coincident with naval, recreational, and commercial activities during
October, the peak time for their presence in Jervis Bay. Commercial whale watching and recently introduced
swim-with-whale activities are also focused on observing these animals at close distances. This highlights the
need to monitor and manage potential impacts of these activities during an important stage for calves undertak-
ing their first southern migration.

Materials and methods

Field surveys. Fieldwork was undertaken in Jervis Bay (35°07'S, 150°42'E; Figs. 3 and 4), a semi-closed
embayment on the NSW coastline, 115 km? in area with an average depth of 15-20 m (maximum depth 40 m).
Fieldwork was completed over three annual seasons; 24 September to 5 October, 2018; 30 September to 6 Novem-
ber, 2019; 4 October to 31 October, 2021. Restrictions resulting from the COVID-19 pandemic prohibited field-
work in 2020. Survey timing and duration was based on the peak southern migration of humpback whales in
the Jervis Bay area ?2. Two survey methods were employed; daily land surveys and UAV surveys (summarised in
Table 3). During all survey methods no signs of disturbance, as outlined in the scientific permits, were observed.

Theodolite tracking. Point Perpendicular headland (75 m elevation), at the entrance of Jervis Bay, pro-
vided an optimal vantage point to observe whales entering or bypassing the Bay (Fig. 4). Operating from the
Point Perpendicular Lighthouse upper balcony (~ 93 m above sea level), trained observers worked in teams of
3-4 on 2.5 h shift rotation with 1-2 dedicated spotters, 1 theodolite operator and 1 data entry operator, dur-
ing daylight survey hours (Table 2). Spotters scanned the ocean and the Bay using the naked eye and 7 x50
magnitude binoculars. Sighted whales were tracked using a theodolite (TC1105) connected directly to a laptop
with custom software, VADAR® Version 2.0%, which determined the whale position using the horizontal angle
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Figure 3. (A) Locations of documented aggregations for humpback whales migrating along the east and west
coasts of Australia. A comparison of three areas where humpback whale resting has been observed off Australia
is illustrated in (B-D). Figure created using ArcGIS Pro (v 2.9).

(bearing) and the vertical angle to the whale to calculate the distance, as in previous experiments off Peregian
Beach >, If<5 whale groups were in the study area, all groups were tracked. For>5 groups, groups within,
entering, or leaving the Bay were prioritised. Consequently, to the best of our knowledge, most of the groups
west of the entrance line (Fig. 4) were tracked. For groups offshore, we acknowledge some groups would have
been missed.

Theodolite tracking was limited to whale groups within 10 km, the distance of sufficient visibility under good
survey conditions (clear and calm). For a small area of the Bay (~ 2.8 km?), directly under the Point Perpendicular
cliffs and behind (north of) Honeymoon Bay, observations were obscured by land (Fig. 4).

A whale group was defined as either a lone whale or multiple individuals (usually two or three) within 100 m
of each other and surfacing at similar times. Following sighting, the group position was tracked at every surfacing
event until they left the study area, travelled south offshore past Bowen Island, or were no longer detected. The
group composition (e.g. lone adult; mother and calf (MC); mother, calf and escort (MCE)) was recorded for all
sighted groups. A calf was defined as a whale of less than 70% the length of the accompanying whale, presum-
ably its mother, with whom it maintained a close and constant association *. Groups that merged or split were
not included in the analysis.
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Figure 4. (A) Jervis Bay study site illustrating observation areas and example tracks to demonstrate movement
from each category. (B) The 10 km observation extent from the Point Perpendicular Lighthouse. (C) The zoning
and extent of the Jervis Bay Marine Park (JBMP) and the extent of the waters of the Booderee National Park.
Figure created using ArcGIS Pro (v 2.9).

2018 2019 2021
Survey hours | 0800-1700 0800-1700 0900-1500
Land surveys
Dates 28 Sept-5 Oct | 30 Sept-6 Nov | 4-31 Oct
UAV surveys Dates N/A 31 Oct, 3 Nov 23,28 Oct

Table 3. Summary of field methods conducted during the 2018, 2019, 2021 southern migration seasons.

Sectioning of observation area, group composition and movement analysis. The observation
area was divided into three sections (Fig. 4): (a) inshore Jervis Bay: the area west of the line from Bowen Island to
Longnose Point, (b) the entrance of Jervis Bay: the area between the entrance line (west of the line from Bowen
Island to Point Perpendicular) and area (a), and (c) offshore: all areas seaward of the line from Bowen Island
to Point Perpendicular. The boundary of area (a) was derived using seabed exposure models ® as a proxy for
protection from ocean swell.

For the movement analysis, whale groups were assigned to four categories based on their tracked movements
during the period of observation: category (1) groups whose tracks remained entirely within the inshore area,
category (2) groups that were tracked from offshore or the mouth into the inshore area (including both tracks
entering or leaving the inshore area), category (3) groups that entered or left the entrance without entering the
inshore area, and category (4) groups that were tracked entirely offshore. The proportion of groups within the
Bay were recorded and categorised by their composition.

Comparative analysis of whale movement patterns for the four categories was performed on time-enabled
data points in ArcGIS Pro (version 2.9). Only tracks containing > 3 reliable theodolite position fixes and tracked
for a total of duration > 10 min were included in the data sample. Track distance (m), duration (s), and speed
(km/h) were calculated using ArcGIS Pro Motion Statistics.

The distance between any two consecutive fix positions is referred to as a leg. For each track the following
parameters were calculated:

(a) Legspeed: the speed of each individual leg.
(b) Track speed: the swimming speed along a track calculated by summing the leg distances for entire track
and dividing by the sum of the leg durations.
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Both mother and calf resting

Mother and calf are motionless and horizontal at, or just below, the water’s surface, surfacing only
to breathe

Mother resting, calf active

Mother is motionless and horizontal at, or just below, the water’s surface, surfacing only to breathe. The
calf is displaying surface-active behaviours, including rolling, breaching, spy hopping, pectoral fin or head

slapping

Travelling

Mother and calf are travelling from location to location with persistent, directional movement, covering
noticeable distances

Surface-Active

Mother and calf are causing displacement of water at the surface by rolling, breaching, spy hopping, pecto-
ral fin or head slapping. Behaviours in quick succession (< 1 min) but not necessarily simultaneous

Socialising

A whale mother or her calf are actively chasing or circling around the other whale

Nurturing

A whale mother and her calf are rubbing or touching; this includes mother lifting the calf with its rostrum.
Suckling may be observed

Table 4. Definitions of behavioural states of humpback whale groups modified from Fiori et al.&’.

(c) Net speed: the straight line speed calculated by dividing the linear distance between the first and last posi-
tion fixes in a track by the travel time between them (i.e. total duration of track);

(d) Linearity: a form of migration index, calculated by dividing the net distance covered over a track (i.e. the
linear distance between the first and last fixes) by its cumulative distance (the sum of all leg distances).
Linearity values range between 0 and 1, with values close to 1 representing a straight track-line, and values
close to 0 indicating no constant direction.

Mann-Whitney-U tests were performed to compare the three movement parameters between mother-calf
pairs in the inshore waters of Jervis Bay (category 1) and mother-calf pairs travelling south offshore (category
4). Mother-calf escort groups were excluded from these comparisons because the sample size in the bay/inshore
was too small. Movement parameters from these two geographical areas could be assumed to be statistically
independent which may not be the case for groups in categories 2 or 3. Non-parametric statistics do not assume
normal data distribution and are less sensitive to unequal sample sizes ®.

UAV surveys. UAV surveys were conducted using a DJI Mavic 2 Enterprise Dual (M2ED) in 2019, and a
DJI Mavic 2 Enterprise Advanced (M2EA) in 2021. At the time of survey these were the most suitable light-
weight UAV models available for launch and recovery on a small research boat. Following a confirmed whale
sighting, whale’s behaviour and travel direction were observed for five minutes from a distance > 300 m at idle
speed before the whales were approached whilst maintaining > 100 m distance. During flights the boat remained
at this distance to provide a clear line of sight to the UAV and facilitate vertical positioning over the whales. The
UAV was operated by the University of Sydney Chief UAV Pilot in accordance with Australian Civil Aviation
Safety Authority regulations. A field researcher deployed and recovered the UAV by hand, assisted by a custom-
ised platform at the rear of the boat. An initial launch altitude of 55 m provided sensor field of view for whale
detection within the video frame. The UAV pilot monitored the live video feed and once the whales were visible
lowered to>25 m altitude. Video footage was captured at continuous 2-3 min intervals until the whales were
no longer visible or travelling to a new location with direct movements or until 20% of the battery remained.

Jervis Bay is a restricted airspace and UAV flights are only approved during non-military use this confined
the survey window to weekends and specified <2 h time blocks on weekdays approved at short notice.

UAV data analysis. Post-capture UAV video analysis of behavioural states followed methods outlined by
Fiori et al. *,. Six mutually exclusive and cumulatively inclusive behavioural states were defined to describe
whale group behaviour during each encounter: both mother and calf resting, mother resting whilst calf is active,
travelling, surface-active, socialising, and nurturing (Table 4). Only behaviours observed were included in the
analysis.

Behavioural states were recorded at one-minute sampling intervals and assumed to remain constant between
observations *. If whales were last observed diving, travelling was the behavioural state allocated until the whales
were resighted ¢’. The proportion of time that whales were fully submerged in the footage was also calculated.

Ethics and permit statement.  Fieldwork activities were compliant with guidelines and regulatory
requirements under permits authorization by the University of Sydney Animal Ethic Committee (permit
2019/1592), the Department of Primary Industries Marine Parks (permit MEAA19/179) and the Department of
Planning, Industry and Environment, New South Wales (SL102287). Compliant with the Australian Civil Avia-
tion Authority (CASA) all UAV flights were within visual line of sight. UAV flight approval within the Restricted
Airspaces (R421A Nowra and R452 Beecroft Head) overlapping the Jervis Bay study site was obtained from the
Australian Department of Defence.

Data availability
All datasets collected and analysed during the current study are available from the corresponding author on
reasonable request.
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ENHANCING UAV IMAGES TO IMPROVE THE
OBSERVATION OF SUBMERGED WHALES USING A
WATER COLUMN CORRECTION METHOD

3.1 INTRODUCTION

Ultra-high spatial resolution sensors made available by advancements in the
miniaturization of instruments deployable on unoccupied aerial vehicle (UAVs)?, present
new and innovative opportunities for remote detection of marine wildlife. The spatio-
temporal resolution and survey responsiveness afforded by these low-cost platforms
enables the collection of data that can provide insights on the spatio-temporal dynamics
of individual marine animals at close range (Anderson & Gaston, 2013). In the last decade
there has been an increase in marine studies utilizing UAVs (Schofield et al., 2019), which
allows for novel insights on the abundance (Hodgson et al., 2017), behaviour (Torres et
al,, 2018; Fiori et al,, 2019), and body condition (Christiansen et al., 2016; Hodgson et al,,
2020) of marine wildlife. Importantly, UAV-based image capture has the potential to
increase the duration of visible observation through detection of animals below the water
surface (Torres et al., 2018). This has significant ramifications for the study of mother-
calf humpback whale groups that rest in shallow protected embayments (Bruce et al.,
2014; McCulloch et al., 2021), spending high proportions of time resting at depths of less
than 5 m (Bejder et al., 2019; Iwata et al., 2021). However, the use of remotely sensed
data in coastal environments is challenged by the optical complexity of the water column

(Figure 1).

Environmental conditions (e.g. sun glint, water turbidity and sea state) associated with
UAV-captured images are well recognized as limiting factors impacting detection rates
(Aniceto et al,, 2018; Colefax et al., 2018). Processing techniques are commonly used in
remote sensing research to enhance or enable the detection of underwater features,
including benthic habitat (Mumby et al., 1998; Zoffoli et al., 2014; Hedley et al., 2016).

Similar techniques, including water column correction, can be applied to UAV-captured

2 Also commonly referred to as drones, unmanned, uncrewed aerial vehicles, or remotely piloted aircraft system.
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images to enhance visibility of animals below the water surface, which may be missed in
manual counts or automated deep-learning based classifications (Gray et al., 2019). This
chapter presents remote sensing-based methods for enhancing UAV-acquired visual
image data to improve the contrast of whales on the water surface and submerged near
the surface. Application of these methods has the potential to compensate for perception
bias (when an animal is present but missed by the observer) which is influenced by
environmental conditions (e.g., contrast between an animal and their environment)
(Brack et al., 2018). By removing complexities in the water column, through a water
column correction technique, there is potential to improve rates of detection. Image
correction is demonstrated using UAV data captured over the Jervis Bay Marine Park, a
case study site on the eastern Australian coastline that is frequented by humpback whale
(Megaptera novaeangliae) mother-calf groups during the southern migration from the

breeding grounds (Bruce et al,, 2014; Jones, 2019).

3.1.1 Background: Water Column Correction

Remote sensing measurements of submerged features are impacted by variations below
the water surface including depth, water quality and variations in bottom substrate
(Figure 1, Holden & LeDrew, 2002). The overlying water column significantly affects the
remotely sensed signal of an object or substrate due to the optical attenuation (scattering
and absorption) of light as it passes through water. Differential attenuation of light in the
water column results in a decreased ability to discriminate between underwater objects
(Hamylton, 2011). Water column correction techniques remove much of the depth-
induced variation in spectral data and may improve discrimination of submerged objects.
Importantly, the decay of the radiance within the water column caused by absorption and
scattering is wavelength dependent and the spectral bands (radiometric channels) of the
sensor will influence the effectiveness of correction methods for improving
discrimination of submerged objects. The most widely used water column correction is
that proposed by Lyzenga (1978, 1981), based on the assumptions that: 1) depth plays a
significant role in changing the reflected radiance of an object, and 2) that water quality
is constant over the image (Manessa et al., 2016). This method, suitable for high clarity
water, produces a depth-invariant bottom index by ratioing the radiance values of each
pair of spectral (wavelength) bands. Visual (RGB) sensors with an RGB array filter, most

commonly found on UAVs, are limited to three possible band pairs (i.e. red/green,
35



red/blue, green/blue) which are limited in providing optimal band ratios for detailed
outputs (Hamylton, 2011). However, due to higher cost and payload requirements of
multispectral sensors, to date many UAV-based marine wildlife surveys have used RGB
sensors integrated on standard small payload rotary UAVs (e.g. DJI Phantom models;
Torres et al,, 2018; Fiori et al., 2020) or fixed wing platforms (e.g. ScanEagle; Hodgson et
al,, 2017).
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Figure 2. Diagram illustrating the various processes contributing to complexities in
surveying large marine species from a UAV platform. Created with BioRender

(https://biorender.com/).

3.2 METHODS

3.2.1 UAV data capture

All fieldwork was conducted in Jervis Bay (see Section 4.3 for detailed site description).

Jervis Bay is a restricted airspace and UAV flights are only approved during times the
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airspace was not in military use. This restricted the window of survey opportunity to
weekends and specified one-two hour time blocks during weekdays often approved at
short notice. Surveys were conducted when there was no rain, visibility was >5 km with

clear skies, and sea state at or below Beaufort force 2.

The visible RGB imaging capabilities of sensors for detecting whales were evaluated using
a DJI Mavic 2 Enterprise Dual (M2ED). This was the most suitable light-weight UAV option
available for launch and recovery on a small research vessel. The Bay was visually
scanned by researchers on the vessel. Following a confirmed whale sighting, the whale’s
behaviour and direction of travel were observed for five minutes from the vessel at a

distance >300 m before an approach was made to a distance >100 m from the whale.

The UAV was launched and landed using a portable wooden platform at the stern of the
boat. The initial launch altitude was 55 m to provide sufficient sensor field of view for
identifying the whale. The UAV pilot viewed the live feed (visible mode) throughout the
flight and lowered the altitude to = 25 m once the whales were visible on the controller
screen. As soon as whales were no longer visible in the live feed, the UAV was raised to
an altitude >50 m. The vessel remained at a distance >100 m from the whales during the
flights to provide a clear line of sight to the UAV and facilitate positioning over the whales.

Still images and videos were captured throughout the flight and GPS timestamped.

3.2.2 Water column correction

The spectral signal of the whale in contrast to the surrounding waters was enhanced by
using Lyzenga’s water column correction model for clear water environments (Lyzenga,
1981), as modified by Mumby et al. (1998) and Hamylton (2011). Three images taken
from the M2ED, containing two different mother-calf groups at different depths were
used to assess the water column correction. This included both still images and images

extracted from video footage. All processing steps were performed in ENVI™ 5.5.3.

To remove light scattering and absorption effects within the atmosphere and water
column, the following algorithm was used to calculate a depth-invariant index:
Xi=1In (L) (1)

where L;is the radiance in band i and
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where ki is the irradiance attenuation coefficient of the water in band i, g;; is the variance
of Xiin band i and o;; is the covariance between bands i and j. The depth invariant bands

between bands i and j are then calculated as:

depth invariant band;; = In(L;) — [(g) in(L;) ] (3)
]

The model generates a single depth invariant band from each pair of spectral bands
within the image. This image-based correction method assumes the reflectance of an
object is a function of water depth and that water quality is constant across the area of
interest. In this study, it could be assumed that there was no variability in the water
optical properties across the small area of interest confined to the region immediately
adjacent to the whale. In this correction, depth in each pixel is constant for all bands and

thus attempts to linearise the relation between two bands i and j and water depth.

The following steps outline the process for a single image (illustrated in Figure 2). Firsta
natural logarithm was applied to the raw RGB image. The next correction step was to
select the pixel samples across the whale. The focus here was to reduce the effects of
depth between the whale and ocean surface. Thus, radiance values were taken from the
whale’s body surface along transects. Subsequently, a polyline region of interest (ROI)
was traced along the centerline of the whale’s body, down the center of each tail fluke,
and across the widest part of the body between the dorsal and pectoral fins. This ROl was
used to calculate radiance values and thus ensured inclusion of body surface pixels at
different depths accounting for the characteristic fusiform shape of the whale’s body. The
covariance values across the ROI for each RGB band were determined and depth invariant
indices were calculated for all three band pairs (i.e. red/green, red/blue, green/blue)
using equation 3 above. Subsequently, the three processed images were converted back

to base values using an exponential function.

To compare the pixel values between the original image and processed images, all pixels
were converted into Z-scores (equation 4) enabling detection of anomalies, for all four

images used (RGB image and three band pairs).
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[pixel value—mean]

Z= (4)

standard deviation

The performance of the applied image processing methods was assessed visually, and
quantitively by evaluating the mean Z-score values extracted across the whale’s surface,
for the original RGB images and the three resulting band pairs. Additionally, a horizontal

profile was taken across the original RGB images and the three band pairs.

1. UAV-captured RGB image 2. Log transformed RGB image

3 -. »

Figure 3. Overview of processing steps applied in the depth invariant analysis. In Step 3,
the yellow transect outlines where the radiance values were extracted for inclusion in the
correction. The correction process resulted in three depth-invariant band pairs. These
images were then converted into Z-scores. Transects (black dotted line, Step 4) were
extracted along the length of the whale to determine average values for each image and

horizontal profiles were taken along the whales in the image (Step 5).

3.3 RESULTS

In Figure 3, the calf’s body is predominantly on the surface, whilst the mother’s body is
predominantly submerged, with the mother’s rostrum at the deepest point. The
red/green band pair provided the highest Z-scores both across the whale (Table 1) and
the highest peak when comparing the whale to surrounding water, as demonstrated in
the horizontal profiles (Figure 3G). This improved contrast is evident in the visual results
(Figure 3B). These results were followed closely by the improved contrast provided by
the red/blue band pair (Table 1, Figure 3C, H). Across the whale, the green band provided

the least deviation from the mean (mean Z=-0.28).
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Figure 4. A) RGB image, B-D) visual results of depth invariant images derived from band
pairs red/green (B), red/blue (C), green/blue (D), E) RGB image demonstrating where
the horizontal transects were taken, F-I) horizontal profiles of the individual bands within

the RGB image (F) and processed band pairs red/green (G), red/blue (H), green/blue (I)

The image in Figure 4 was captured five seconds after the image in Figure 5 and shows
both the mother and calf submerged. The mother is noticeably deeper in the water
column compared with the image in Figure 3, and the green/blue band pair demonstrated
the best overall contrast between the mother whale and her surrounds (mean Z-score
across whale = 1.64). This is supported by the visual result illustrating the clear outline
of the whales submerged below the water surface (Figure 4D). In contrast, the horizontal
profiles demonstrate the red/green and red/blue band pairs provide the greatest

contrast with surrounding waters (Figure 4G-H). The green/blue band pair (Figure 4I)
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still provides a greater contrast compared to the RGB image (Figure 4F). The influence of

sun glint is evident in this image, particularly in the top left corner.

Red/blue

Green/blue

Figure 5. A) RGB image, B-D) visual results of depth invariant images derived from band
pairs red/green (B), red/blue (C), green/blue (D), E) RGB image demonstrating where
the horizontal transects were taken, F-I) horizontal profiles of the individual bands within

the RGB image (F) and processed band pairs red/green (G), red/blue (H), green/blue (I)

Figure 5 also shows a fully submerged whale. The visual results in Figure 6 highlight that
band pairs red/green and red/blue most successfully enhanced the shape (edge
definition) of the submerged whale. This is quantitively supported by the mean Z-scores
across the whale for red/green and red/blue band pairs of 1.85 and 1.88, respectively.

The green/blue band pair had a mean Z-score of 1.25 across the whale. The red, green,
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and blue bands of the RGB image had notably lower mean Z-scores of 0.40, 0.07, and -

0.08, respectively. In the horizontal profiles (Figure 5F-I) there are no obvious peaks that

correspond to the whale in the water. In these profiles the whitewash has been observed

as a more dominant visual feature than the whale object.
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Figure 6. A) RGB image, B-D) visual results of depth invariant images derived from band

pairs red/green (B), red/blue (C), green/blue (D), E) RGB image demonstrating where

the horizontal transects were taken, F-I) horizontal profiles of the individual bands within

the RGB image (F) and processed band pairs red/green (G), red/blue (H), green/blue (I).

42



Table 1. Mean Z-scores extracted along pixel profile lines across the whales in the three
images shown in Figures 3-5, presenting results from the RGB image and three depth
invariant images derived from band pair combinations. The results from the RGB image
are presented as individual red, green, and blue bands. The highest value for each image

is shown in bold.

Mean Z-scores

Figure 3 Figure 4 Figure 5
Red 1.00 0.85 0.40
Green -0.28 0.90 0.07
Blue -0.45 0.54 -0.08
Red/green 2.21 0.67 1.85
Red/blue 2.11 1.05 1.88
Green/blue 0.32 1.64 1.25

3.4 DISCUSSION

The accurate detection of marine vertebrates in aerial images is made complex by
environmental factors, including light attenuation in the water column, white caps and
specular reflection, particularly sun glint (Hodgson et al., 2013). This study demonstrated
a modified version of Lyzenga’s water column correction method has the potential to
improve the detection of humpback whales in UAV-captured RGB imagery. Overall, the
red/green and red/blue band pair ratios were the most effective band pair combination
for enhancing contrast between the whale and surrounding waters in the visual
qualitative results and horizontal profiles. This is consistent with Niroumand-Jadidi et al.
(2018) who applied Lyzenga’s water column correction using an 8-band WorldView-2
satellite image and identified the red/green band pair to be optimal for mapping a
shallow (<1 metre deep) river environment. In the current study, the red/blue band pair
provided comparable results, highlighting the effectiveness of the red band in shallow
and clear waters, for discriminating submerged objects, before it is fully attenuated at
greater depth. The effectiveness of the red band for animals on or near the surface is
consistent with findings from Colefax et al. (2021), who demonstrated the red band
produced the greatest spectral contrast for detecting dolphins, sharks, and other marine
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fauna from a UAV.

At increasing depths, attenuation of light within the red region increases limiting the
value of this waveband. This is demonstrated in this study which showed that images in
which the whale or parts of the whale body were at greater depth (Figure 4) have a
stronger visual green/blue band pair result and the highest Z-score across the whale.
However, the red/green and red/blue band pairs still provided the best detection peaks
in the horizontal profiles. This is likely due to the sun glint noise presentin the green/blue
band pair ratio. The depth of the target animal/s will influence the optimal band pairing
and subsequent object enhancement within the image. The red band (610-700 nm), and
other bands with wavelengths approaching the red end of the spectrum, will become fully
attenuated around 2-3 metres depth (Mishra et al., 2005; Hamylton, 2011). Thus, the
effectiveness of band pairs using the red band will substantially reduce at this depth.
However, in turbid waters, where sightability below the surface is limited, longer
wavelength bands may be optimal for increasing the contrast of animals just below the
surface (Colefax et al, 2021). Image enhancement methods for improving whale
detection rates even in optically shallow waters (<3 metres) has important implications
for studies reliant on accurate detection such as abundance surveys (e.g., Hodgson et al,,
2017). Compensating for water attenuation is also important for research conducted on
breeding/resting grounds, with lactating females and their calves spending over 50% of

time within 3 metres of the surface (Bejder et al.,, 2019).

3.4.1 Conservation Implications

The methods presented here have the potential to increase the confidence of machine
learning and automated detection models. Machine learning techniques for automated
detection of whales are increasingly being applied to UAV-collected data sets providing
an efficient way to process large amounts of data. Between 2004 and 2018, 15% of
ecological studies involving UAVs used machine learning (Dujon & Schofield, 2019).
However, data driven machine learning models require a large-scale archive of ‘ground-
truthed’” images for model training and validation to optimize model accuracy gain.
Studies using machine learning to detect individual animals or plants rely on the
detection of target objects against mostly homogenous backgrounds which provide a

clear contrast to reliably discriminate animals from their environment (Laliberte &
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Ripple, 2003). The use of machine learning for detecting marine vertebrates is further
complicated by colouration similarities between some species and the surrounding water
(e.g. blue whales; Gray et al.,, 2019) and non-uniform backgrounds that are subject to
varying environmental conditions. In ecological studies, object-based image analysis
(OBIA) is a commonly used image segmentation method (Dujon & Schofield, 2019). It
provides versatility for detecting objects in varied backgrounds with confounding
features, objects that vary in size and shape, and may be sparsely distributed in the image
dataset (Chabot et al., 2018), making it ideal for abundance and distribution studies.
Importantly, even with increased flexibility over other methods such as machine learning,
OBIA is still reliant on the object/s of interest in the image being localized from
surrounding pixels through a local brightness contrast, either as a relatively brighter or
relatively darker group of image pixels (Groom et al, 2013). For whale detection,
increasing the anomaly (Z-score) of the whale object, as demonstrated here, could
potentially improve OBIA segmentation and classification results and increase detection

availability.

In all RGB images the contrast between humpback whales, on or near the surface, and
their surroundings can be increased, or at least maintained, using a modified water
column correction. There is a clear value of these methods in improving the detection,
and reducing the perception bias associated with aerial surveys, of resting mother and
calf whale groups who spend significant proportions of time resting less than 5 metres

from the surface (Bejder et al., 2019; Iwata et al., 2021).

Depth is a key limiting factor in the detection of submerged marine animals. Butcher et
al. (2019) found that an increase in depth by 1 metre reduced the odds of detection by
58% when reviewing UAV footage of shark analogues post-capture. At depths greater
than 3.5 metres, the probability of detection was less than 50%. Similarly, Dujon et al.
(2021) used machine learning to detect loggerhead sea turtles (Caretta caretta) in UAV-
captured imagery, finding detection decreased significantly with each metre in depth and
was close to zero at 5 metres. In clear water, their machine learning model detected less
than 40% of turtles at 2 metres depth (Dujon et al., 2021). The correction methods

presented here clearly enhanced the whales’ fluke shape and outline, demonstrated in
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the visual results. The distinctive shape of the fluke could provide an opportunity to train
more sophisticated machine learning models to detect whales using this feature. The
effectiveness of these results will depend on several factors, including the depth of the
whales, their orientation in the water column (i.e., horizontal or vertical), water turbidity
and specular reflection including sun glint. Although resting mother and calf humpback
whale groups were the focus of this study, the methods presented here are applicable to
other marine vertebrate species that are often found in clear, shallow waters, such as

dugongs (Dugong dugon), sea turtles and stingrays.

3.4.2 Limitations of RGB sensors

This study demonstrated that water column correction techniques can enhance the visual
outline and anomaly signal over the body of whales on the surface and submerged at
shallow depths. However, constraints associated with the limited spectral resolution
provided when working with three bands (i.e., red, green, and blue) within the visible
range (wavelength 400-700 nm) are recognised. The higher number of wavelength bands
available in multispectral sensors and hyperspectral sensors provide a greater selection
of band pairs for depth-invariant processing and are demonstrated to improve the
detectability of submerged objects (Colefax et al, 2018). Employing multispectral or
hyperspectral sensors and customising or selecting bands configured to focus on
wavelength bands optimal for the spectral characteristics of the water body, such as the
coastal band (Fretwell etal., 2014), and target species may further reduce perception bias
and subsequently improve animal availability at depth compared to standard RGB
sensors (Colefax et al., 2018). For example, the MicaSense RedEdge-MX Dual Camera
Imaging System has 10 bands, including a coastal blue band for monitoring shallow water
environments (Roman et al,, 2021) and a near infrared band (NIR) allowing for sun glint

correction.

Specular reflectance including sun glint was evident in all water column correction
results presented here. The specular reflection apparent in the visual RGB images shows
as noise in the corrected images and where present there is a noticeable reduction in
contrast between the whale/s and surrounding water (e.g., adjacent to the mother whale
in Figure 4). In coastal UAV surveys, the effects of sun glint can be avoided, or reduced, by

scheduling data capture in the early morning or later afternoon which is a viable option
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for static objects, such as nearshore benthos. However, for moving and wide-ranging
marine vertebrates this is not always feasible. Whilst studies have reported that sun glint
had no significant impact on sighting rates (Hodgson et al., 2013; Butcher et al.,, 2019),
removing the effects of sun glint may further improve the image enhancement methods
demonstrated here and should be considered when designing UAV based marine surveys.
NIR bands are present in most multispectral sensors and can be used to remove sun glint
contamination through post-processing techniques (Hedley et al.,, 2005; Martin et al,,
2016). However, the need for a NIR band limits the use of sun glint removal techniques
for most off-the-shelf UAVs, fitted with an RGB sensor, commonly used in wildlife studies.
Furthermore, there is a trade-off between spectral resolution and UAV cost. For example,
the DJI Phantom 4 (RGB; 1/2.3” CMOS; 12.4 MP) currently retails for one sixth of the price
of the DJI Phantom 4 multispectral with 5 bands: RGB, Red Edge, and NIR (1/2.9” CMOS;

2.12 MP) with a lower sensor resolution.

3.4.3 Future Directions

Obtaining a larger image data set is critical for understanding the effectiveness of depth
invariant indices derived from possible band pairs, and whether these differ with the

whale depth and environmental factors (e.g., turbidity). The irradiance attenuation

coefficients <%) calculated in this study did not vary by more than 0.44 within each band

J

pair, suggesting little variation in a range of conditions. Calculating an optimal index value
for each band pair, with little variation in results, has important ramifications for
automated detection methods by removing the necessity to first identify if a whale is
present in the image. This would involve acquiring images with whales at known depths
achieved through DTAGS (Bejder et al, 2019) for accurate depth measurements.
However, the need to tag individual animals may limit sample size. The use of analogues,
similar to those used in Butcher et al. (2019), would overcome this issue and allow for
controlled depths in range of environmental conditions and flights at range of altitudes.
This would also require an understanding of the similarity between the reflective

signatures of whales and the analogue surface.

Marine wildlife surveys to date have predominantly employed visual (RGB) sensors

which highlights the importance of correction methods suitable for visible images,
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particularly for time series studies using historical data. However, there is a need to
evaluate the role of multispectral sensors, particularly the use of the NIR band, for water
column correction methods focused on the detection of marine wildlife. Methods for
detecting and removing the sun glint from images using data in the NIR waveband (700-
1,500 nm) are well established (Kay et al., 2009). Finally, increasing the number of
potential band pair combinations will provide a greater range of results which may offer

superior enhancement of submerged objects in UAV imagery.

3.5 CONCLUSIONS

An understanding of the role of water column attenuation correction is critical for
accurate detection of whales and is particularly relevant with the increasing use of low-
cost UAV platforms and machine learning techniques for achieving estimates of
population abundance and monitoring movement patterns of marine wildlife in shallow
coastal habitats. Water column correction techniques can enhance the visual outline and
anomaly signal over the body of whales on the surface and submerged at shallow depths.
Finally, the optimal band pair combination will depend on whale depth and therefore it
is not possible to recommend a single band combination for achieving improved overall

detection.
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ASSESSING THE EFFECTIVENESS OF UAV-BORNE
THERMAL IMAGERY FOR WHALE DETECTION

4.1 ABSTRACT

Unoccupied aerial vehicles (UAVs) 3 provide flexibility when surveying vagile, highly
mobile species, such as whales. However, UAV research to date has predominantly
focused on detection with visual (RGB) sensors which are limited by light levels and
require a clear contrast between an animal and its surrounds. Thermal infrared imaging
enables the detection of animals in low light conditions and high water turbidity. Here we
tested the whale detection capabilities of three sensors that allowed for synchronous
visual (RGB) and thermal capture in a sheltered coastal embayment in NSW, Australia.
The results highlight the importance of thermal sensor resolution for improving aerial
detection. The highest resolution sensor (Zenmuse XT2) detected whales on the surface
at distances over 500 m. The lowest resolution sensor (M2ED thermal camera) was
unable to detect whales on the surface, however, could detect the thermal gradient of a
whale’s surface footprints, extending the available time for observation. Thermal images
were often contaminated by sun glint, water surface roughness and angular effects on
emissivity which can impact the discrimination of whale cues. UAV-borne thermal
sensors can be used to complement data captured from visual sensors to enhance whale
detection rates, but preliminary results indicate these sensors are not a viable option to

replace visual sensors for daytime detection in marine environments.

4.2 INTRODUCTION

Growth in humpback whale (Megaptera novaeangliae) populations, particularly in the
Southern Hemisphere (Wedekin et al,, 2017; Noad et al., 2019), is likely to result in
greater potential of whale exposure to vessel disturbances and acoustic energy, especially
from naval and seismic vessels, which may impact on whale health and behaviour long-

term (Dunlop et al.,, 2017). Areas of particular concern are humpback whale resting areas

3 Also commonly referred to as drones, unmanned, uncrewed aerial vehicles, or remotely piloted aircraft system.
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where mothers and calves rest in shallow protected embayments (Bruce et al., 2014;
Bejder et al., 2019). These groups are especially vulnerable to disturbances due to their
slower movements and high proportions of time spent resting in depths of less than 5
metres (Bejder et al., 2019; Iwata et al., 2021). However, whales are intrinsically difficult
to observe and monitor, spending a significant proportion of time submerged, only
surfacing for short periods (Nowacek et al., 2016), and exhibiting wide-ranging and
unpredictable movement patterns (Schofield et al., 2019). These challenges highlight the
need to evaluate the effectiveness of alternative UAV-borne methods for detection of

whales in coastal waters.

Remote sensing methods enable synoptic coverage and high temporal resolution which
are particularly beneficial in ecological surveys. Advancements in micro-UAV platforms
(<5kg) and payloads including Inertial Measurement Units (IMUs), GPS receivers and
image sensors has increased the commercialisation of these platforms (Turner et al.,
2014; Nex et al,, 2022). This has enabled the accessibility of ultra-high resolution remote
sensing image data for marine wildlife surveys using methods that are both less obtrusive
and repeatable over time and space (Anderson & Gaston, 2013; Christie et al., 2016). The
flexibility afforded by UAV surveys is unparalleled by other survey approaches, including
piloted aerial surveys, boat, or land surveys. Whilst larger, fixed-wing models can be used
for transect surveys (Hodgson et al., 2013), smaller models, such as quadcopters, can be
flown opportunistically (Horton et al., 2019) and launched from small boats (Christiansen
etal,, 2016). This is particularly advantageous for marine research when surveying vagile
and often elusive animals. UAVs have enabled detection probabilities within the range of
piloted aerial surveys for humpback whales (Hodgson et al., 2017). However, research
until now has focused primarily on image detection based on the visual spectrum (RGB)

with limited evaluation of thermal sensors for improving detection rates.

Traditional visual (RGB) imagery is subject to animal detection dependent on light levels,
contrast of the target animal with their background habitat, and shadows that may mask
targets (Hinke et al.,, 2022). One useful progression in UAV surveys is the improved
payload capability for multiple passive sensors (e.g. optical RGB and thermal infrared) to

be deployed simultaneously allowing synchronous image capture. Dual visible-thermal
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camera methods have been demonstrated in wetland environments (McKellar et al,,

2021).

Thermal infrared sensors generally provide a lower spatial resolution than many RGB or
RGB-NIR sensors, but provide an alternative to detect animals, in low light conditions or
turbid waters where the animal’s surface temperature is warmer than the surrounding
environment (Hughey et al., 2018; Verfuss et al.,, 2018; Burke et al,, 2019). These sensors
operate in two wavelength bands in the infrared portion of the infrared spectrum: 3-5
pum or mid-wave infrared (MWIR), and 8 - 12 pm or longwave infrared (LWIR). UAV-
deployed thermal imaging systems have been demonstrated to outperform traditional,
ground-based survey methods for the detection of arboreal mammals (Kays et al., 2018;
Witt et al., 2020; McCarthy et al, 2022). Thermal sensing methods have also been
effective for aerial surveys of marine mammal species that come ashore (pinnipeds and
fissipeds) in open habitats, such as rocky substrates (Seymour et al., 2017; Gooday et al.,
2018; Young et al.,, 2019; Christman et al.,, 2022) and snow (Smith et al., 2020). However,
detecting temperature differentials using thermal methods is considerably less effective
in the marine environment where infrared waves are rapidly attenuated by the water
column. Cetacean species present further challenges: the insulative properties of their
specialised blubber layer (Favilla et al., 2022) reduces the thermal contrast between the
animal and surrounds, and the thin layer of water that covers the body when surfacing
can partially or completely mask skin temperature. However, in cetacean surveys,
additional cues are advantageous to thermal infrared detection, including: warm
exhalations or blows (Horton et al.,, 2019), and the cold thermal signature of a cetaceans
footprint where animal movement has disturbed the water column resulting in localised
upwelling of colder water referred to as a thermal footprint (Churnside et al., 2009;
Florko et al,, 2021). Churnside et al. (2009) used a simple hydrodynamic model of the jet,
generated by the upward movement of a humpback whale fluke, as it hits the water
surface and disperses. They modelled the rate of turbulent mixing of the cooler water
with the warmer surface water to estimate the magnitude of temperature change and rate
of signature decay to explain the persistence of this thermal cue. Florko et al. (2021)
found that infrared video complemented visible camera data in the detection of narwhals

(Monodon monoceros) in high latitude waters with the footprint providing an indirect
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indicator of animal presence. Although these methods are still in their infancy, the
thermal detection of thermo-stratified water mixing associated with cetacean fluke

movements has the potential to increase the duration of an animal’s detectability.

This paper aims to: (1) analyse surface water thermal gradients associated with the
presence of humpback whale(s) in temperate coastal waters; (2) review the trade-offs
between three UAV-integrated thermal sensors to assess sensor resolution, radiometric

capability, and the impact of payload size on launch and recovery options.

4.3 METHODS

4.3.1 Study Site

Jervis Bay is a semi-closed embayment situated along the New South Wales (NSW)
coastline, approximately 180 km south of Sydney and approximately 115 km? in area
(Figure 1). Jervis Bay appears to be an important resting ground for substock E1 (East
Australian population) humpback whales on their southern migration from the Great
Barrier Reef to Antarctic feeding grounds. October and November are the peak months of
humpback whales, specifically mothers and calves, entering and resting in Jervis Bay
(Sheehan & Blewitt, 2013; Bruce et al., 2014). During October and November, the average
water temperature in the Bay is ~18°C and ~19°C, respectively. The Point Perpendicular
headland (75 m elevation), at the northern end of Jervis Bay provides an optimal vantage
point to observe whales travelling south and entering or bypassing the Bay. Due to the
combination of reliable whale numbers resting on or near the water surface and calm
weather conditions Jervis Bay is a suitable site for evaluating the use of UAV-borne

sensors for detecting humpback whales.
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Figure 1. A) Study area highlighting the Jervis Bay Marine Park and UAV launch site; B)
The UAV launch site in relation to the Point Perpendicular Lighthouse; C) Aerial image of
launch site taken with UAV landing pad
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4.3.2 UAV data capture

The visible (RGB) and thermal imaging capabilities for detecting humpback whale cues
were evaluated using three UAV platforms: the D]JI Matrice 600 Pro (M600 Pro), the DJI
Mavic 2 Enterprise Dual (M2ED), and the DJI Mavic 2 Enterprise Advanced (M2EA). All
three thermal cameras were uncooled micro-bolometer imaging sensors but differed in

resolution (Table 1).

Jervis Bay is a restricted airspace and UAV flights are only approved during times the
airspace are not in military use. This restricted the window of survey opportunity to
weekends and specified one-two hour time blocks during weekdays often approved at

short notice.

UAV surveys were flown in October 2019 using the M600 Pro (Figure 2, Table 1)
equipped with a DJI infrared Zenmuse XT2 sensor (FLIR® Tau 2 Thermal, radiometric).
The M600 Pro was launched from a portable wooden pad on a flat section of the headland
away from the cliff edge and vegetation in accordance with environment and heritage
permits and fire safety requirements (Figure 1). A headland launch site was chosen to
capture whales travelling into Jervis Bay following the coastline. This behaviour had been
observed in a previous survey (Jones, 2019), and the location was optimal for ensuring
the highest probability of capturing imagery over whales whilst complying with UAV
operational restrictions. This includes the UAV remaining within a one-kilometre radius

from the launch site and within the pilot’s visual line-of-sight.

The UAV was launched once whales were in line of sight from the headland launch site
with the assistance of trained observers surveying from the Point Perpendicular
Lighthouse (130 metres from the launch site). The UAV was flown at an altitude of 100 m
above sea level until whales were spotted by the UAV pilot using the live video feed. The
altitude was then lowered to a height at or above 50 m during the observation leg of the
flight. The FLIR thermal imaging sensor captured video (RGB and thermal infrared) for
the entire flight duration. The remote video feed captured from the FLIR thermal sensor

was used by the operator to maintain real-time sight of the whales.
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Figure 2. The D]I Matrice 600 Pro with mounted D]l infrared Zenmuse XT2 sensor shown

on the launch pad (left) and in flight (right).

To compare the thermal and visible capabilities of small, boat-deployed UAV’s, the M2ED
and M2EA were launched from and landed on a 5.9 metre research boat within Jervis Bay
in 2019 and 2021, respectively (see Table 1 for dates). Both UAV models had an
integrated dual camera and gimbal system and were the most suitable light-weight UAV
options for launching and landing on a small boat. The M2EA was released by D]l in 2020
and provided improved pixel resolution for both thermal and RGB sensors (Table 1). The
Bay was visually scanned by researchers on the vessel. Following a confirmed whale
sighting, the whale’s behaviour and direction of travel were observed for five minutes
from the boat at a distance >300 m before an approach was made to a distance >100 m

from the whale(s).

The UAVs were launched and landed using a portable wooden platform at the stern of the
boat (Figure 3). The initial launch altitude was 55 m to provide sufficient sensor field of
view for identifying the whale. The UAV pilot viewed the live feed (visible mode)
throughout the flight and lowered the altitude to = 25 m once the whales were visible on
the controller screen. As soon as whales were no longer visible in the live feed, the UAV
was raised to an altitude >50 m. The vessel remained at a distance >100 m from the
whales during the flights to provide a clear line of sight to the UAV and facilitate
positioning over the whales. Still images and videos were captured throughout the flight

and GPS location timestamped.
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During all survey days, environmental conditions were favourable for sighting whales.
Surveys were conducted when there was no rain, visibility was >5 km with clear skies,

and sea state at or below Beaufort force 2.

Figure 3. The DJI Mavic 2 Enterprise Dual on the launch pad at the stern of the boat (left)

and in flight (right).
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Table 1. Summary of the survey dates and sensor resolution of the three UAV models,

flown over humpback whales in Jervis Bay.

UAV model

Matrice 600

Pro

Mavic 2
Enterprise

Dual

Mavic 2
Enterprise

Advanced

Sensors Sensor
Resolution

Zenmuse XT2 640x512 @

thermal (7.5-13.5 30Hz

pum), true

radiometric

Zenmuse XT 2 1/1.7" CMOS

visual RGB Effective
Pixels: 12 M

Thermal (8 - 14 160x120

um)

Visual RGB, non 1/2.3” CMOS

radiometric, :

Uncooled VOx Effective

Microbolometer pixels:12 M

Thermal (8 - 14 640x512 @

um) 30Hz

Visual RGB, non 1/2” CMOS,

radiometric, Effective

Uncooled VOx Pixels: 48 M

Microbolometer

4.3.3 Thermal image processing

Thermal

accuracy

Not stated

+ 5%

+2°Cor 2%
(whichever

is greatest)

Dates  No. of flights/total

flown flight duration
(nearest min.)

18 - 20, 8 flights, 104

25-27 minutes

Oct 2019

31 Oct, 8 flights, 47 minutes

3 Nov

2019

23,28 21 flights, 76 minutes

Oct

2021

Thermal videos taken from the DJI infrared Zenmuse XT2 sensor on the D]I Matrice 600

Pro were reviewed using the FLIR Tools® software. The videos were scanned using the

FLIR ‘ironbow’ false colour palette which is effective for quick manual identification of

thermal anomalies. For each video, the temperature scale was adjusted for optimal image
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brightness and contrast to maximise the thermal gradients of small brighter objects (i.e.
whales and boats). Whale cues detected in the thermal video were verified with the RGB
videos and theodolite observations. Thermal videos and images taken from the DJI M2ED
were not radiometric and consequently could not be scaled using FLIR Tools®. Thermal
videos were manually reviewed for the presence of thermal anomalies. In sequences
where anomalies were evident, the corresponding RGB video was reviewed. For both the
thermal and RGB video, the sequences were extracted to static image files at an interval
(e.g., three seconds) determined most appropriate to highlight the movement in the
video. The thermal images taken from the DJI M2EA were analysed using DJI Thermal
Analysis Tools 2.1 ©, compatible with the M2EA. Videos were not recognised by this
software. Although advertised as producing radiometric images, the images and videos
were not recognised as radiance images by FLIR Tools ®. Images were reviewed using
the ‘Iron Red’ false colour palette to highlight nuanced differences in heat signatures and
was the closest match to ‘ironbow’ for comparison with footage from the Zenmuse XT
sensor. Videos from the M2EA were processed following the same methods as videos
from the M2ED. A sample of two images or sequences were selected from each UAV to

demonstrate their respective detection capabilities.

4.3.4 Permit statement

Fieldwork activities were compliant with guidelines and regulatory requirements under
permits authorization by the University of Sydney Animal Ethic Committee (permit
2019/1592), the Department of Primary Industries Marine Parks (permit MEAA19/179)
and the Department of Planning, Industry and Environment, New South Wales
(SL102287). Compliant with the Australian Civil Aviation Authority (CASA) all UAV flights
were within visual line of sight. UAV flight approval within the Restricted Airspaces
(R421A Nowra and R452 Beecroft Head) overlapping the Jervis Bay study site was

obtained from the Australian Department of Defence.

4.4 RESULTS

Whales were detected in the video images taken from both thermal and RGB sensors of
the Zenmuse XT2 (D]I Matrice 600 Pro) (Figure 4). The sea surface temperature (SST)

was ~18°C and atmospheric temperature was ~17.5°C at time of image capture.
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The oblique images in Figure 4A were captured at 1113 AEDT, at an altitude of 92 m,
when the solar azimuth was 41.72 ° and solar elevation was 54.89 °. The visible and
thermal signature of a whale on the surface and boats were detected at a distance of 478
m. The oblique images in Figure 4B were captured at 1821 AEDT, at an altitude of 86 m,
when the solar azimuth was 267.53 ° and solar elevation was 8.71 °. The visible and

thermal footprint of a whale breaching was detected at a distance of 548 m.

Figure 4. Humpback whale detected in RGB (left) and thermal (right) sensors at distances
of A) 478 m and B) 548 m.

In the images captured by the D]I Mavic 2 Enterprise Dual (M2ED) thermal sensor, the
thermal signature of colder water upwelled by the whale fluke when diving (Figure 5) or
swimming (Figure 6) was observed. The SST was ~19°C and atmospheric temperatures
were ~17.5°C and ~21°C at time of image capture for Figures 5 and 6, respectively. In
both figures the whale’s footprints, shown by the smooth surface of the water in the visual
(RGB) images, are captured as a distinct surface temperature gradient in the thermal
images. In Figure 6, the thermal signature of the whale’s footprint was evident after the
visual footprint had dissipated. The thermal signature of a whale on the surface was not

detected in any of the thermal footage taken from the M2ED.
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5 second intervals

Figure 5. A comparison of synchronous thermal (left) and visual (RGB, right) images
taken of a whale’s footprint. The whale’s outline, visible in the top two thermal images,
was enhanced in the FLIR MSX® (Multi-Spectral Dynamic Imaging) product, which adds
visible light details to thermal images. To represent deviation from the mean, the thermal
images are represented as anomalies. The red outline illustrates the extent of the thermal
image within the visual RGB image. M and C denote the mother (M) and calf (C) humpback
whale. Image sequence capture began at 1108 AEDT.
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3 second intervals

Figure 6. A comparison of synchronous thermal (left) and visual (RGB, right) images
taken of a whale’s footprint. To represent deviation from the mean, the thermal images
are represented as anomalies and coloured in ArcGIS. The red outline illustrates the
extend of the thermal image compared to the visual RGB image. C denotes the calf
humpback whale. Image sequence was taken on 3 November 2019. Capture began at
0824 AEDT.

Similarly, the thermal sensor on DJI Mavic 2 Enterprise Advanced (M2EA), was able to
detect the thermal gradient of the whale’s footprint (Figure 7A). In the corresponding
RGB image, the footprint is also evident as a smooth slick on the water surface. The
observed temperature difference between footprint and surrounding water was 1.3°C.
This sensor was also able to detect the thermal signature of whales on the surface (Figure
7B). The calf’s blowhole was the warmest detected feature in the image (23.4°C * 2°C).
The calculated temperature difference between the whale and adjacent water was of
1.3°C. The sea surface temperature was ~18°C and atmospheric temperature was ~18°C

at time of image capture.
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Figure 7. A) A comparison of synchronous thermal (left) and visual (RGB, right) images
taken of a whale’s footprint (A) and mother and calf humpback whale on the surface (B).
A) Images were taken on 28 October 2021 at A) 1035 AEDT, at an altitude of 55 m, and
B) at 1038 AEDT, at an altitude of 42 m. Inset images (i) and (ii) are clipped to illustrate
the formation of the footprint with images (ii) and A taken 8 and 13 seconds after image
(i), respectively. The red outline illustrates the extent of the thermal image compared to
the visual RGB image. The white outline highlights the footprint in the image. M denotes
the mother humpback whale, and C denotes the calf.

4.5 DISCUSSION

UAV thermal sensing methods can be used to detect whales based on thermal signatures
characteristic of both direct (body on the surface) and indirect (footprint) cues. The
efficacy of these methods is influenced by sensor resolution (microbolometer sensitivity)
and focal length, sea state conditions and emissivity effects. Whales were detected in
images acquired from all three UAV-borne thermal sensors but differences in
thermographic accuracy between sensors impacted the types of cues observed. Previous
studies on surface water temperature differentials generated by whale movements have
been restricted to colder waters (Churnside et al., 2009; Florko et al., 2021; Lonati et al,,
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2022). Findings from this study demonstrated the abilty to detect these thermal contrasts

in temperate waters (~19°C SST).

Synchronous capture of thermal and visual (RGB) imagery highlighted the benefits of
utilising thermal imagery to complement visual (RGB) imagery. Direct whale were cues
detected from the higher resolution sensors (Zenmuse XT2 and M2ED), however, these
were limited to detecting whale(s) for brief periods (<5 seconds) when they were
surfacing. This is not comparable with the increased observation capacity of submerged
whales provided by UAV-borne visual (RGB) sensors (Torres et al., 2018). However, our
results highlight the advantage of the thermal detection of indirect cues. The temperature
differential associated with a whale’s footprint persisted beyond the period the whale
was visible at the surface, increasing observation time. Florko et al. (2021) reported that
of 29 narwhals detected using thermal sensors from a piloted aerial survey, 100% left
footprints that were detected in a thermal sensor. This highlights the potential for these
methods to be used to track whale movments. However, the flight altitude (e.g., altitude
of 300 m and 305 m in Churnside et al., 2009 and Florko et al., 2021, respectively) and
continuous flight time afforded by piloted aerial surveys, or fixed wing UAV models
(Hodgson et al.,, 2017), are likely necessary to track movements. In comparison, smaller
UAV models, as flown in this research, have flight times limited ~30 minutes (Table 2).
Even with the benefits of thermal sensors for detection of indirect whale cues, visual
(RGB) sensors are required to provide information on species, size of the whale(s), and

counts of individuals (Florko et al., 2021).

Emisivity defines the efficiency with which an object radiates energy compared to a
blackbody (Handcock et al., 2012). Due to lower levels of background emisivity in data
recorded from thermal sensors operating horizontally from the surface, they have
previously been considered more effective in detecting cetacean blows than sensors
recording on the nadir (Churnside et al., 2009). Ocean surface roughness, refractive index,
and the zenith angle from which the surface is being observed (Masuda et al., 1988) will
influence the noise associated with emissivity in UAV captured thermal imagery.
Depending on the angle of capture, emissivity associated with rough ocean water could
mask whale cues, but this physical property can also be adventagous. We found that

thermal image captured on an oblique geometric angle can generate greater IR signal
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contrast as a whale breaks the water surface due to emissivity effects. An increased view
geometry achieved from an elevated UAV platform can result in stronger thermal

contrast.

The thermal gradient associated with the footprints were still observable after the
footprint had dissipated in the visual images, prolonging the availability of the whale for
detection. The temperature gradient between footprint and surrounding waters was
1.3°C, highlighting the thermal stratification in Jervis Bay, as modelled by Liao and Wang
(2018). Comparing our detection of footprints in temperate waters, with comparable
results in Arctic (Florko et al., 2021) and subarctic waters (Churnside et al., 2009), it is
apparent that absolute temperature does not impact the contrast, however, a
temperature gradient between the surface and subsurface layer is required (Lonati et al,,
2022). Further research is needed to assess how environmental conditions (e.g. sea
surface temperature and sea state) and an animal’s behaviour influence detectability

from an aerial viewpoint.

The distinguishable circular shapes of whale footprints is evident in Figures 6 and 7A and
more so in Churnside et al. (2009) who detected the thermal footprints of north Atlantic
right whales (Eubalaena glacialis) and humpback whales using a thermal infrared camera
mounted on a piloted aircraft. The ability to detect whales using the thermal gradient of
footprints without visual confirmation requires further investigation, however these
results demonstrate a novel use for thermal sensor capabilities and potential for

enhanced machine learning techniques for whale detection.

4.5.1 Thermal sensor comparison

Although simultaneous thermal and visual (RGB) imagery was captured directly above a
humpback whale mother-calf group using both the M2ED and M2EA, the M2ED had
limited capability for detecting thermal signature gradients associated with the presence
of a whale on the water surface. However, both these non-radiometric thermal sensors,
were able to detect thermal footprints (Figures 5, 6, and 7A). The clear advantage of the
Zenmuse XT2 sensor was the long-distance thermal gradient detection capability with
whales detected on the surface at 478 m and a whale breach detected at 548 m (Figure

4). Potential issues in the application of UAV-borne thermal infrared sensors include; the
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distance between the camera and target object, emissivity of the target object, humidity,
temperature of surrounding objects, atmospheric attenuation, sensitivity of the sensor
which can detect thermal radiation from the camera interior, and the non-uniformity
correction (NUC) which offsets temperature change which is affected by wind and sudden
temperature changes (Kelly et al,, 2019). Here we assess the trade-offs between UAV
platform/payload, subsequent launch/landing site options and thermographic accuracy

(Table 2).

In determining an optimal UAV payload and platform for thermal detection of whales,
compromises are reached between price, flexibility in flight mission, thermal sensor
resolution, and radiometric calibration. Sensor sensitivity and accuracy increases with
cost with a significance price difference between the true radiometric thermal Zenmuse
XT2 sensor and the non-radiometrically calibrated inbuilt thermal sensor on the M2ED
(Table 2) which only provides relative temperature differences (Kelly et al., 2019). Cost
and smaller payloads are the only advantage of the non-radiometric thermal sensors over
higher-end radiometric thermal sensors for detecting temperature gradients or
anomalies (Horton et al, 2019). Studies involving accurate recordings of body
temperature will require radiometric calibration, however, for detection purposes
directly above the whale (temperature gradients and anomalies) non-radiometric

thermal data is sufficient.

The advantage of the radiometric Zenmuse XT2 thermal sensor is that it captures
temperature data in every pixel within the image providing accurate relative
measurements of surface temperature. However, the distance between the sensor and
whale target, and atmospheric conditions, may reduce the detectability of the gradient
between the surface temperature of the whale and the background (i.e.,, water and
atmosphere). This study demonstrated that surfacing humpback whales can be detected
on the oblique at distances >500 metres in images acquired from the Zenmuse XT2. The
threshold performance of high-end radiometric thermal sensors for the detection of
whales at distance would need to be systematically assessed both during daylight and
low light conditions to determine their potential detection capability within management

areas that have regulated distances such as whale impact zones.
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The larger payload of the Zenmuse XT2 meant it was unsuited to launch and recovery
from a small research vessel. There were logistical difficulties associated with surveying
fast moving animals from a static point on land. The flexibility of boat launch and recovery
afforded by the M2ZED/M2EA eliminated many of the issues encountered launching a UAV
from land. Once the humpback whales had been located launching the UAV and
positioning it directly above the whales was relatively simple for a trained UAV operator
providing the UAV settings are updated for safe landing on a boat. These will depend on
UAV model but include updating the home point during flight and turning off obstacle
avoidance sensors and landing protection to allow UAV landing on a moving object. It is
necessary to sight the target whales through the visual (RGB) live feed during the flight
(Horton et al.,, 2019), a UAV model that allows for thermal capture using a visible display
mode should be prioritised, as was possible with the M2EA but not the M2ED.

The Zenmuse XT2 sensor on the M600 Pro and the inbuilt thermal sensors on the M2ED
and M2EA have demonstrated that simultaneous thermal image capture from multiple
sensors is possible. Dual sensor UAV payloads eliminate the need for multiple flights to
capture images from different sensors, an issue identified by Horton et al. (2019) when
collecting biometrical thermal data. Surveys involving fast moving animals, such as
whales, that rely on multiple consecutive flight missions to capture data from different
UAV platforms will present logistical constraints due to the likelihood that the target

whale/s will be out of range within a short timeframe.
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Table 2. Summary of the trade-offs between the three UAV platforms and sensors used
in this study. Using the same Zenmuse XT sensor, Horton et al. (2019) detected the

thermal signature of whales on the surface.

images/videos captured were not true radiometric.

*Advertised as radiometric but

Matrice 600 Pro with Mavic 2 Mavic 2
XT2 sensor Enterprise Dual  Enterprise
Advanced
Radiometric Yes No* No*
Price (approx. UAV: $7,500 $4,500 off the $10,000 off the
helf
AUD) Zenmuse XT2: $20,000 shelf She
Multiple payloads  Yes - 6 kg payload No No
capacity
Flight time 18 (with payload) 30 31
(approx. minutes) 35 (no payload)
Dimensions 1668x1518x727 322x242x84 322x242x84
(LxWxH mm)
Max takeoff weight 15.5 1.1 1.1
(kg)
Thermal detection  Yes! No Yes

of whales on the

surface
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4.6 CONCLUSIONS

Here we demonstrated that a high resolution, radiometrically calibrated sensor
(Zenmuse XT2) was able to detect the direct cues of whales above the water surface at
distances > 500 metres. Synchronous visual (RGB) and thermal capture showed that
footprints were detectable in the thermal sensors after they were no longer evident in
the visual RGB sensor images, extending whale observation time. This demonstrated the
thermal footprint of a whale signature could be detected in temperate waters by low
resolution thermal sensors. These results highlight that UAV-borne thermal sensors can
be used to complement data captured from visual sensors to enhance whale detection
rates but are not a viable option to replace visual sensors for daytime detection in marine

environments.
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OPTIMISING THE USE OF THERMAL INFRARED
IMAGERY FOR MITIGATING IMPACTS OF CETACEANS
AND HUMAN INTERACTIONS: A REVIEW AND CASE
STUDY

5.1 ABSTRACT

With increasing potential for anthropogenic impact on cetacean species there is a need to
improve current methods, reliant on visual detection, to increase detection rates.
Thermal imaging systems have been proposed as a solution to provide effective, round
the clock detection of cetaceans. However, there has been limited evaluation of how
thermal sensor configuration may influence detection rates. Here we tested the thermal
capabilities of three sensors that differed in sensor resolution, detector temperature, and
spectral range, for the detection of bottlenose dolphins. Additionally, we present a review
of how cetacean cues and environmental factors will influence the effectiveness of
automated detection systems. All three sensors sufficiently detected dolphins at
distances of ~1km, however, the cooled high resolution sensor provided enhanced clarity
of dolphin cues at greater distances. Six research studies that have used thermal imaging
systems for the detection of whales from ship or shore platforms were identified. These
studies highlighted that current automated detection methods are unable to detect
cetaceans to a species level and high rates of false detections are delaying potential use
for mitigation. There is a need to evaluate the efficiency of innovative thermal sensor

platforms for improved detection rates and low levels of false detections.
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5.2 INTRODUCTION

Expansion of the ‘blue economy’ and associated investment in ocean development and
infrastructure including offshore renewable energy (Dolman et al, 2003), shipping,
commercial fishing (Davies & Brillant, 2019), mining (Thompson et al., 2023), and naval
operations is projected to increase risk of human interactions potentially harmful to
whales. Simultaneously, growth in humpback whale populations globally, particularly in
the Southern Hemisphere (Wedekin etal., 2017; Noad et al,, 2019), could further increase
exposure to vessel disturbances and anthropogenic noise pollution. High levels of
acoustic energy, especially from naval and seismic vessels, have the potential to interfere
with whale behavioural patterns that may influence their longer-term survival (Dolman
& Jasny, 2015). Concern about the potential impacts of marine activities on cetaceans has
led to many nations regulating the conduct of activities to manage the impacts, for
example the Environmental Protection and Biodiversity Act (EPBC, Department of the
Environment, 2008) in Australia. There is a clear need for robust and deployable methods
for improving the detection of whales and other cetaceans in seascapes exposed to

increasing levels of human interaction.

Regulated measures to mitigate the effects of maritime activities producing high noise
levels (e.g., seismic arrays and naval sonar) include the shut-down of acoustic sources
when cetaceans are in exclusion zones based on minimum acceptable distance from the
source. This requires constant observation of marine mammals by observers who
systematically scan the ocean’s surface with the naked eye and binoculars for cetacean
sighting cues, including blows (exhalations), body parts above the ocean’s surface (dorsal
fins or flukes), and easily identified surface behaviours (e.g. pectoral slapping and
breaching). Compton et al. (2008) estimated that MMOs detect 70% of animals in daylight
and optimal survey conditions (clear and calm). However, this survey method is limited
to daylight hours, subject to operator fatigue, and visual sighting rates are reduced in
weather conditions such as fog, rain, high sea states, and glare. Additionally, visual
detection is often subjective, and sightings may be difficult to confirm (Verfuss et al,,
2018). Human based observation methods are also not viable for longer term sources of
disturbance such as pile driving in construction of offshore infrastructure for wind farms.
Existing research has demonstrated the effectiveness of thermal infrared (TIR) imaging

systems for improving visual detection of cetaceans over traditional human observation
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methods (Smith et al,, 2020). Additionally, TIR systems have been proposed as additional
measures to complement speed limit regulations and routing of ships to minimise vessel
strikes (Cates et al,, 2017). However, there has been limited assessment of different

thermal sensor configurations for optimising long-range detection rates of cetaceans.

Thermal imaging sensors capture infrared radiation (heat) emitted from an object
(Sarawade & Charniya, 2018). They are designed to operate in two specific wavelength
bands in the infrared portion of the electromagnetic spectrum: 3-5 um or mid-wave
infrared (MWIR), and 8 - 12 um or longwave infrared (LWIR). Thermal infrared sensors
are effective for detecting animals, notably endothermic mammals, in environments
where the animal’s surface temperature is warmer than the surrounding environment
(Kays etal., 2018; Witczuk et al,, 2018; Witt et al., 2020; McCarthy et al., 2022). Compared
to visual detection by eyesight or visual red-green-blue (RGB) sensors, TIR can
potentially reduce image complexity and improve target detectability, irrespective of
light levels (Hinke et al., 2022). These benefits have been demonstrated in terrestrial
environments where thermal imaging systems have outperformed traditional, ground-
based survey methods for the detection of arboreal mammals (e.g., Witt et al., 2020;
McCarthy et al., 2022). For marine mammal species that come ashore, specifically
pinnipeds and marine fissipeds, thermal methods have also proved effective for detection
from aerial surveys in open habitats, such as rocky substrates (Seymour et al., 2017;
Gooday et al., 2018; Young et al., 2019; Christman et al., 2022) and in snow (Conn et al,,
2021). However, thermal methods are less effective in the marine environment, due to
the rapid attenuation of infrared radiation with depth in the water column. The insulation
capacity of cetacean species also reduces the thermal contrast between the animal and
surrounds, and surfacing animals are covered by a thin layer of water which partially or
completely masks skin temperature. Thermal imaging to detect cetaceans has primarily
focused on detecting their warm exhalations or blows (Zitterbartetal,, 2013; Smith et al,,

2020; Zitterbart et al., 2020).

Previous studies that use TIR systems to detect cetaceans can be grouped into three main
platforms (1) hand-held systems (Horton et al., 2017); (2) aerial methods (Churnside et
al,, 2009; Florko et al., 2021) and; (3) ship- or shore-based systems (Zitterbartetal., 2013;
Sullivan et al, 2020). Although previous studies have compared the detection

performance between visual, acoustic, and thermal imaging methods (Smith et al., 2020),
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there has been limited review of thermal sensor configuration for optimising detection
rates of cetaceans and the implications of improved thermal image quality for automated
detection methods. This requires a detailed understanding of: (i) the characteristics of
cetacean cues (surface exposure and exhalations) that will influence the training of
automated detection models and, (ii) the impact of environmental conditions, including
sea surface temperature, humidity, sea state, wind, and visibility, on detection rates. The
intent of this paper is to provide an evaluation of how TIR sensor configuration will
influence detection rates and the reliability of automated detection models. Here we
review the current literature related to the use of thermal imaging for the long-range
detection of cetaceans and present a case study comparing the capabilities of three
thermal infrared sensors for detecting bottlenose dolphins (Tursiops aduncus). Because
bottlenose dolphins have a smaller thermal signature than most cetaceans this provided
an opportunity to evaluate sensor sensitivity on more challenging smaller sized cetacean

targets.

5.3 METHODS

5.3.1 Literature Review

A quantitative scoping review of academic literature was conducted to synthesise
emerging approaches for detection of cetaceans using thermal sensors, automated
detection, and identify evidence for informing optimal sensor configuration. Original peer
reviewed publications and conference proceedings in the English language were accessed
from electronic database searches the Web of Science (Core Collection) and Google Scholar
February 2021 to February 2023. Keywords used in the searches were ‘thermal imaging’,
‘thermal infrared’, ‘whales’, ‘cetaceans’, ‘automated’, ‘detection’ were applied to search
these databases. Reference lists of articles found in the initial search were also reviewed.
For research focused on whale detection, only studies that detected whales at distances
greater than 500 metres, the minimum required radius for the shut-down zone in many
mitigation guidelines, were included. Studies focused on automated detection were

reviewed separately.

For each publication that matched the above criterion, the specifications of the thermal
imaging system(s), detector type, study location and respective sea surface temperature,
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system height, automated detection capability, species detected, and the maximum
distance of detection were noted. The compiled database of papers was analysed to
identify trends in thermal sensor configuration, artificial intelligence (AI) methods and

impact of environmental conditions.

5.3.2 Field Data Collection

The research platform was the commercial whale watching vessel Dolphin Watch Cruises
(17m length, 5m height above the water line). The detection capabilities of three different
Forward Looking Infrared (FLIR) thermal sensors of varying resolution and detector
types, were assessed on 18 February (mean monthly SST = 22.6°C) and 1 April 2021
(mean monthly SST = 21.3°C) (sensor specifications are shown in Table 1). Survey
conditions were clear and calm on both survey days. The Indo-Pacific bottlenose dolphin
(Tursiops aduncus) in Jervis Bay, on the east coast of Australia was selected as the target
object for sensor comparison due to smaller target size, site accessibility and consistent
presence of a resident population. The FLIR Boson, a low resolution uncooled sensor, and
x8400sc, a very high resolution cooled sensor, were handheld. The x8400sc sensor
remained on the bottom platform (1.6 m) due to weight (> 5kg) and size and the Boson
sensor, connected to a tablet for real time visual monitoring, recorded from the upper
deck (4.2 m). The uncooled FLIR Tau 2 was mounted to the top of the vessel (4.2 m) within
a rotating system (RobotEye) and controlled remotely from inside the boat (Figure 1).
The surveys were not systematic, and the direction and movement of the boat was
determined based on common sighting locations. Once a pod of dolphins was sighted by
trained observers, the three sensors simultaneously focused on the pod. Six videos from
the Boson sensor were captured, and five videos were captured from both the Tau 2 and

x8400sc sensors.
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Table 1. Summary of thermal sensors tested on bottlenose dolphins in Jervis Bay

Imager Detector Type Resolution  Frame rate Spectral Range
FLIR Boson  Uncooled VOx 320x 256 <9 Hz 8 - 14 pm (LWIR)
microbolometer
6.3 mm
(focal
length)
FLIR Tau 2 Uncooled VOx 640x 512 30-60Hz 7.5-13.5 um
microbolometer (LWIR)
FLIR Cooled InSb 1280 x 1024 106 Hz 1.5-51um
x8400sc detector (MWIR)

. T Sy =
PR\

Figure 1. Setup of the Tau 2 integrated into the RobotEye on the top platform of a vessel

operated by Dolphin Watch Cruises

5.3.3 Field Data Analysis

Individual images were extracted from the videos at one frame per second using VLC
media player and grouped by sensor. All processing steps below were performed in

ENVI™ 5.5.3. Videos from the Tau 2 sensor were captured in grey scale, providing a single
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band for analysis. Footage from the Boson and x8400 sensors were captured using a
colour gradient and exported as RGB three band images, and were transformed into a
single, grey-scale band using equation 1 (Stokes, 1996), where R, G, and B represent

bands red, green and blue, respectively.
Ylinear = 0-2126Rlinear + 0-715261inear + 0-072231inear (1)

The greyscale images were used for comparison across each sensor type. The thermal
contrast (anomaly) between the target animal and the surrounding background was
compared between sensors by converting pixels into a Z-Score, using the mean and

standard deviation of all pixels in the image (equation 2).

__ [pixel value—mea ] (2)
" standard deviation

A horizontal profile was extracted across at least one dolphin cue in each image to
quantify the anomaly peak of the target animal(s). For each sensor, four images were
selected to evaluate sensor effectiveness in detecting dolphin targets at different
distances. Given the absence of a true horizon inside Jervis Bay, accurate distance

estimates were not possible.
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5.3 RESULTS

5.3.1 Literature Review

The literature search identified six research studies, published between 1999 and 2020,
using thermal imaging systems for the detection of whales at a distance > 500 m from
ship or shore (summarised in Table 2). Three of the studies utilised the same rotating
system (FIRST-Navy), testing the system both from land and vessel under a range of
environmental conditions, with sea surface temperature (SST) ranging from -1.8°C to
~25°C. The remaining three studies tested systems from land only. All systems detected
whales at distances > 5km using their exhalations. Four of these studies used automated

detection algorithms with varying levels of accuracy (Table 3).
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Table 3. Computer vision methods used in IR-based automatic detection of whales.

Detection and Automation Training/validation Detection Study
classification method data sets accuracy
Combined adaptive Automated 5 video hours 85-90.0% Santhaseelan
thresholding and neural 96 visual detections etal. (2012)
networks
Support vector machine Events 120 validated blow  82% within 5km  Zitterbart et
models. Change in manually signatures (true al. (2013)
contrast in multi-scale, annotated event)
sliding windows used for 1400 non-blow
detection. Classification signatures (false
combined Eigenimage event)
approach and Support-
Vector-Machine model.
Heuristic rule based Automated, Not stated Not stated. Zitterbart et
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5.3.2 Field data

The horizontal profiles extracted from the images captured by each sensor exhibited a
dominant peak in Z-score across all dolphin cues captured at various distances (Figure
2). The maximum Z-score (Z = 10.99; Fig 2i) was caused by sun glint reflection from the
back of the dolphin. This Z-score was substantially higher than any other dolphin cue
profile. Sun glint was present in several images, both visually and on the respective
horizontal profiles (Figures 2a, b, €, i, j). In these images, the dolphins were closer to the
sensor that in other images. At distances further from the sensor, sharper detection peaks
were apparent for all three sensors, demonstrating improved contrast between a dolphin
and the surrounding water. Although, Z-scores did not greatly differ between sensors,
image detail and shape definition of dolphin cues improved with increasing sensor

resolution. This comparison is illustrated in the images nearest to the sensor (Fig 2.3, e,

i).
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Figure 2. Visual results and horizontal profiles of anomaly detections taken from FLIR thermal
sensors: Boson (a-d), TauZ2 (e-h), x8400sc (i-1). Images have been clipped to highlight the location of
the horizontal profile within the image (white dotted line). A break in the line has been left across
the dolphin(s) for easier visualisation. For all except, except i and |, the y column ranges from 0 - 4.
Images i and | had greater peaks, thus their maximum values are shown. Full images are presented
in Figure S1.
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5.4 DISCUSSION

5.4.1 Sensor configuration

The Boson (uncooled low resolution), Tau 2 (uncooled high resolution) and x8400sc
(cooled very high resolution) all detected the thermal signature of bottlenose dolphins
on the water surface. The case study demonstrated that a low-resolution, uncooled
sensor (Boson) will be sufficient for detecting dolphins at a ~1km distance. The small
thermal signature of dolphins provided an opportunity to test sensor sensitivity on a
small target, recognising the thermal signature will differ to that of a larger whale
exhalation cue. The calm sea state conditions at the time of survey also limits the
translation of these results to whale exhalation cues in open ocean conditions. However,
consideration of sensor resolution, detector temperature, and spectral range is important
for improving detection results. Sensor resolution is important when detecting small
objects at significant distances. In our results, there was no clear difference between
detection capabilities of the sensors, however at distances >1km it is expected the sensors
with increased resolution (i.e., x8400sc) will provide greater detection capabilities at
further distances. However, Guazzo et al. (2019) and Sullivan et al. (2020) were able to
detect the exhalations of gray whales at distances > 5km, using an uncooled sensor of 640

x 480 resolution.

A key distinguishing factor of thermal systems is the use of cryogenically cooled sensors,
operating within 60-100 K (-213 to -173°C) range, or uncooled sensors, operating at
ambient temperature. The thermal sensitivity of a cooled sensor typically increases by a
factor of 3 to 5 compared to uncooled sensors, resulting in improved detection
probabilities (Verfuss et al., 2018). Increased image clarity, provided by a cooled sensor,
required for enhanced delineation of cue shape is evident in the x8400 sensor (Fig. 2i-1).
This improved sensitivity is critical for cetacean detection at distance. For example, the
warm thermal signature of a whale blow at a distance >3 km can be as little as four pixels
in an image or video stream for a sensor of 640x480 resolution (Sullivan et al., 2020).
Representation of a cetacean cue by only a small number of image pixels results in a high
proportion of image pixels not contributing to the object of interest. Optimising the
signature response of these pixels is also relevant for improving the accuracy of

automated detection models as discussed further in section 5.4.2. However, cryogenically
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cooled sensors do have disadvantages which include the significantly higher cost, slower
start up times that limits their agility for rapid response, greater fragility in marine field
environments and increased maintenance requirements (every ~10,000 hours of

operation) (Hristov et al., 2008).

The limited range of survey conditions encountered during our field collection restricted
evaluation of the influence of atmospheric conditions, however, these conditions will
have the greatest influence on the choice of MWIR or LWIR systems. MWIR sensor will
perform better in warm, humid climates, and for longer ranges than LWIR. In contrast
LWIR will perform better in cooler atmospheres and if smoke, fog, or haze is present
(Havens & Sharp, 2015). For example, in category II fog and a temperature gradient of
10°C between target and background, FLIR (2013) reported that LWIR sensors will have
a detection range of 2.4km compared to 0.5km for a MWIR system. Havens and Sharp
(2015) propose surveys should be undertaken when atmospheric conditions are
optimised. This is not viable for whale mitigation purposes, however, the climatic and
weather conditions of the location of operations, may influence decisions for the spectral
range of the sensor. Furthermore, the atmospheric conditions alone are not sufficient in
determining detection range. The size of the target, temperature contrast, and spatial
resolution will have an impact. For long range detection, cooled sensors will be more

effective, irrespective of atmospheric conditions or spectral resolution.
5.4.2 Automated detection

Applications in which cetacean detection requires continuous observations, for extended
periods of time (weeks to months), such as monitoring migration movements or
determining cetacean presence within high disturbance zones (windfarm construction
sites and shipping lanes), may rely on automated methods. Automated detection
methods using thermal image input are effective in terrestrial mammal applications, due
to the steep thermal gradient between the target and their surrounds (Seymour et al,,
2017). Previous studies involving automated or semi-automated systems demonstrated
that thermographic imaging provided comparable results with the performance of
human observers using eyesight and binoculars during daylight hours at distances of
several kilometres (Sullivan et al, 2020; Zitterbart et al., 2020). Consistent and

reproduceable temperature anomalies were used to identify quantitative constraints that
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can inform transient temperature anomaly detection algorithms (Sullivan et al., 2020).
However, reliability of automated detection methods is impacted by high false-alarm
rates associated with the thermal detection of other visual stimuli (e.g. white caps, small
vessels and birds), and obstruction by sea spray and large waves when surveying near-
horizontal (Smith et al., 2020). Due to the situational complexity and confounding
variables in thermal images captured at sea, data driven machine learning models with
adequate detection and classification accuracy require a higher standard of thermal
image quality. Sensors with high thermal sensitivity that are cryogenically cooled and /or
have sufficiently large focal length required for detection at distances >1-2km are
expensive and less manoeuvrable. Poor stabilisation of the thermal sensor platform has

been identified as the key determinant for high positive rates (Smith et al., 2020).

A high contrast between an animal and their surroundings is particularly important for
automated methods (Chabot & Francis, 2016; Hollings et al., 2018). This is where thermal
imaging is particularly beneficial, particularly for cetacean species of lighter colouration
that may appear similar in colour to surrounding waters in RGB imagery (Cubaynes et al.,
2018). The clear contrast between a dolphin and surrounding waters is demonstrated in

our results, particularly at greater distances.
5.4.3 Factors influencing detection reliability

The six research studies identified using thermal imaging systems for the horizontal
detection of whales at a distance >500m (Tables 2, 3), provide insight into how
characteristic cetacean cues can influence automated detection models and the impact of

environmental conditions on detection rates.

(i) Blow characteristics

TIR imaging for the detection of marine mammals relies on the thermal contrast between
a marine mammal cue, either their body on the surface or their blow, and the surrounding
colder ocean. These surveys do not require absolute temperature measurements. Whale
blows, observed as bright, transient features, are the most common cue and have been
the focus of studies utilising thermal detection methods (Zitterbart et al., 2013; Guazzo et
al., 2019; Sullivan et al.,, 2020). Consistency in the characteristics of these features have

potential to facilitate the development of automated detection algorithms. For example,
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blow heights will vary in response to species, wind strength, the volume of sea water in
the blow hole at exhalation, the whale’s position relative to the ocean surface when
exhaling, and whale size (i.e. the blow from a calf vs an adult) (Horton et al., 2017). The
growth of a blow is predictable (Santhaseelan et al., 2012) and there will be a linear decay
of detectability with increased distance from sensor. Horton et al. (2017) analysed the
blows of 174 humpback whales surveyed in the Cook Islands and Alaska and found that
all blows reached a maximum blow height in less than 1.2 seconds. The same study
estimated that at 0.4 seconds after exhalation, blow heights ranged from 1 to 3.3 metres,
with an average of 2.2 metres. Using sensor resolution, blow heights and distance
measurements, it is possible to determine how many bright pixels should be present in
the image at a set distance from a blow. Sullivan et al. (2020) used the blow characteristics
of gray whales (Eschrichtius robustus) to train an automated detection system. For
example, if the whale is within one kilometre to the sensor, the blow should comprise 49
pixels in the frame (25 pixels if >1 km, < 2 km etc.) and each blow must persist for at least
0.4 seconds but no longer than six seconds. Blow characteristics will also differ between
species, for example southern right whales (Eubalaena australis) have a distinctive V-
shaped blow, but the capability of thermal sensors and automated systems to

differentiate between species based on blows has not been studied.

(ii)  Environmental conditions

Thermal detection systems over water are subject to environmental conditions, wind, sea
surface temperature, sea state and visibility (sun glint, rain, fog) which can mask whale

cues and impact both visual and thermal detection methods.

Sun glint, or glare, from specular reflection of sunlight off the water surface, visualised as
a bright reflection, can both obscure features and be visually confused with the body of
a whale on the surface (Aradjo et al., 2022) and glint contamination (warm contrast) can
reduce the likelihood of detecting a whale cue. However, thermal images have a narrower
field of glare than visual detectors as the thermal sensor only captures the local contrast
of each frame (Zitterbart et al., 2013). Thermal sensors are typically more effective at

night due to the decrease in reflected radiation from the sun (Verfuss et al., 2018).

Fog and rain can significantly reduce the range of thermal imaging and detection accuracy
as the scattering of light by water droplets diminishes the thermal signal. Zitterbart et al.
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(2020) found that in “hazy or misty conditions”, LWIR thermal sensors still had a greater
detection distance than MMGOs, as infrared radiation can penetrate better than visible
bands. In dense fog conditions, thermal systems and observers will be equally affected
(Beier et al., 2004; Zitterbart et al., 2020). The impact of rain on system performance is
understudied but it is likely to be reduced as thermal infrared imaging cannot penetrate

water.

With increased sea state, an exponential decline in detection probability is expected.
Using visual line-transect surveys, Barlow (2015), determined that detection probability
decreased to 0.6 in Beaufort 6 conditions for humpback whales (Megaptera
novaeangliae). All other species (small and large baleen species, sperm whales Physeter
macrocephalus and delphinids) had lower detection probabilities in the same
environmental conditions. Zitterbart et al. (2020) found that at Beaufort states ~3-4,
detection probabilities started to significantly reduce. Sea state also impacts rates of false
positives. In larger swell, birds and small vessels disappearing behind waves and then
reappearing for a short time period (2-3 seconds), mimics the same thermal pattern of a
whale blow (Zitterbart et al.,, 2020). Floating blocks of ice follow this same pattern
(Zitterbart et al., 2013). Breaking waves and white caps are another key source for false
positives. In automated thermal detection, white caps increase the contrast across an
image, increasing overall noise and thus reducing the signal to noise ratio for whale cues

(Zitterbart et al., 2020).

Although it could be expected that colder sea surface temperature (SST) will provide a
greater temperature contrast, Zitterbart et al. (2020) successfully detected whale cues up
to 10 kilometres in subtropical waters (SST >20°C) off Queensland, Australia, using a
rotating, cooled sensor. Similarly, using a handheld uncooled thermal sensor Horton et al.
(2017), found a constant thermal anomaly of ~3°C warmer for whale blows compared to
the adjacent 8°C and 24°C ocean waters in Alaska and the Cook Islands, respectively.
These warmer water detections demonstrate that the efficacy of thermal imaging

techniques for capturing cetacean exhalations is not restricted to higher latitude waters.
5.4.4 Species Identification

The dynamic movement of thermal anomalies can potentially be used to develop
automated detection models for species identification with sufficiently large visible and
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thermal image datasets to characterise blow velocity and geometry (Horton et al.,, 2017).
However, species-level identification requires high sensitivity and pixel cover which is
limited by distance and direction of image capture. Previous studies demonstrating
automated detection of whale blows at distances up to ~5 km (Table 2) have used
sightings by visual observers to confirm detected species but there has been no attempt
to automate species identification using either visual or thermal images. Machine
learning has been used to discriminate between species relatively successfully for
terrestrial animals of different sizes and body shapes. For example, Ulhaq et al. (2021)
successfully trained an automated detection system to identify rabbits, pigs, and
kangaroos using thermal aerial imagery. However, there are additional logistical
challenges in collecting a sufficient number of verified images (1000+) to train automated
models from animals that are highly mobile and often in remote locations. Furthermore,
species identification based on transient features that are not always characteristic of the
species, e.g. V-shaped humpback whale blow (characteristic for a right whale) (see Fig.
S2 in Zitterbart et al., 2013), adds significant complexity. In addition to variations in
whale blows, environmental conditions (e.g. wind and glare) may alter the appearance of
the blow. Smith et al. (2020) reported that experienced MMOs were only able to identify
~50% of species at distances greater than 500 m, using visual observations.
Retrospective assessment of 1427 thermal cetacean detections demonstrated that only
four could be identified confidently as sperm whales (Smith et al., 2020). Despite the
potential of high resolution thermal sensors for discriminating species cues in low light
conditions, these findings demonstrate current limitations in accurate species

identification beyond 500 m in low light conditions.
5.4.5 Thermal sensor platforms

Due to the sensitivity of thermal sensors, platform stability and design will influence
image quality and is an important consideration when using cryogenically cooled sensors.
In this study, the uncooled Tau 2 sensor was integrated on a RobotEye (developed and
manufactured by Ocular Robotics) a rapidly rotating 360° system that uses an
autonomously-controlled lens-mirror system and point and feeds images to stationary
cameras. The low inertia unit that delivers captured light to an imaging array avoids the
complexity associated with current technology, such as rotating cameras (FIRST-Navy

system from Zitterbart et al. (2013), Smith et al. (2020), and Zitterbart et al. (2020)) or
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multiple fixed cameras (e.g., Sullivan et al., 2020). The system has extremely high
acceleration rates (60,000°/s2), aperture speeds (4,000°/s) and pointing precision
(0.00055°) which allowed clear thermal image capture of dolphins (Tau 2 sensor in
Figure 2). The ability of the RobotEye to automatically zoom in on detected objects
enables maximization of the number of pixels covered by the object for classification as
cetacean or non-cetacean (Figure 3). A high pixel count is essential since even state-of-
the-art artificial intelligence (AI) methods are limited by the quality of the images.
Further research is required to evaluate the efficacy of improved thermal sensor platform

design on detection rates.

Detector with optics
Pixels distributed over a hemisphere

Unused pixels
during event

Autonomous scanning system ~F
High pixel density in field of view

A. Conventional imaging method B. Proposed solution

Figure 3. Comparison of A) conventional methods to scan for whales using an imaging
array that projects pixel values over an entire hemisphere resulting in a low resolved
region where only a few pixels contribute a whale event ultimately reducing detection
accuracy B) robotically controlled automatic zoom within the RobotEye captures a high-
resolution image of the object ensuring every pixel on the detector is maximised for target

identification.

5.4.6 Research limitations

Here we demonstrated that all three thermal sensors were able to detect dolphin cues in
clear and calm survey conditions. Sun glint can be problematic for automated methods
due to decreased noise, and was evident in our results, appearing as a bright anomaly
feature (Verfuss et al., 2018). Although glint is not problematic for night time detections,
it cannot be avoided during the day, and detection for mitigating human activities on
cetaceans may be required at any time of day. Research is needed to investigate the
potential for deep learning methods to assist in improving the discrimination between a
cetacean cue and sun glint (Giles et al,, 2021) to reduce false positives in automated

systems (Smith et al., 2020). Our results were limited in only testing the sensors in clear
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and calm conditions. As outlined above, sensor effectiveness will depend on
environmental conditions and may influence sensor selection (e.g., LWIR vs MWIR,
cooled vs uncooled). In addition to reviewing how sensor resolution, detector
temperature, and spectral range may impact on the detection rate of cetacean cues, we
recognise there are several other factors that would impact sensor effectiveness. These
include, but are not limited to, sensor field of view, thermal sensitivity, and focal length,

however these were outside the scope of this research.

5.5 CONCLUSIONS

An understanding of how thermal sensor configuration will influence cetacean detection
accuracy and the reliability of automated detection methods is critical for optimising
detection rates to mitigate the impacts of anthropogenic interactions, particularly at
night. Here we demonstrated the effectiveness of three thermal sensors for detecting
dolphin cues within one kilometre of the sensor and in calm conditions. We highlighted
how characteristic cetacean cues, particularly whale exhalations, and environmental
factors may help inform automated detection methods. Despite advances in computer
vision detection and classification techniques, current automated systems still have high

levels of false detections, hindering potential use for mitigation.
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GENERAL DISCUSSION

Humpback whale populations that migrate along the Australian east (subpopulation E1)
and west coast (subpopulation D) each year have recovered at a remarkable rate since
modern whaling ceased in 1963 (Noad et al., 2019; Hedley et al, 2020). Larger
populations have been associated with increased numbers of humpbacks in coastal
embayments where there is potential for disturbance from anthropogenic activities. This
highlights the need to understand the importance of coastal areas long the migratory
route and methods for monitoring the movement patterns of humpback whales in multi-
use marine environments. The outcomes of this research were twofold. First, the research
provided key insight into the use of Jervis Bay, on Australia’s east coast, for-mother calf
humpback whale groups and characterised resting patterns and second, the feasibility of

novel methods for optimising whale detection was assessed.

Systematic land-based surveys, boat-based photo identification methods, and UAV
surveys were utilised to provide the first detailed observation of humpback whales in
Jervis Bay (Chapter 2). Unlike other areas where resting behaviour has been observed,
including Hervey Bay, Queensland, (Franklin et al., 2011) and the Exmouth Gulf, Western
Australia, (Bejder et al., 2019; Ejrnees & Sprogis, 2021), Jervis Bay is considerably further
in distance from recognised breeding grounds (~1,500 km) and whales must divert from
the main migratory corridor to enter the Bay. Results demonstrated that of the groups
entering Jervis Bay, a very high proportion contained a calf and these groups travelled at
significantly slower speeds with less directed travel than groups migrating offshore.
Furthermore, UAV surveys enabled clear observation of resting and nurturing behaviour.
Findings from these multiple survey methods indicate that Jervis Bay is a resting ground
for mother-calf groups. This research also highlighted the need to systematically quantify
resting behaviour. Prior to this work, resting behaviour had predominantly been
established through individual methods. This included boat-based surveys that are
limited to observations on the water surface (McCulloch et al., 2021), UAV observations
that are unable to provide continuous observations (Fiori et al., 2019a), or DTAGs that

are able to quantify fine-scale behaviour, but are costly and limited to small sample sizes
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and short windows of observation (average 10 hours in Bejder et al,, 2019). Land surveys
allowed for continuous observation (during daylight hours) and allowed a direct
comparison with whales migrating offshore. This enabled quantitative analysis of the
differences in whale movement inside a sheltered embayment compared with offshore

which has not previously been presented in the literature.

The benefits of traditional survey methods, particularly, land-based surveys for
comprehensive detection and observation of humpback whales during daylight hours
were demonstrated in this research. There has been a rapid increase in the uptake of new
technologies and methodologies, particularly UAVs (Schofield et al., 2019), thermal
sensors that enable round-the-clock detection, and automated detection methods
(Rodofili et al., 2022). There is an immediate need to evaluate other methods that

leverage these emergent technologies to optimise cetacean detection (Chapters 3 - 5).

Environmental conditions (e.g. water turbidity) associated with aerial imagery are
recognised as limiting factors in the detection of submerged objects (Aniceto et al.,, 2018;
Colefax et al., 2018). In Chapter 3 a method for compensating for water attenuation
through simple post-processing of UAV-captured images was applied. Using a modified
version of Lyzenga’s (1978; 1981) water column correction (Mumby et al., 1998;
Hamylton, 2011) image enhancement improved detection of whales on the surface, and
submerged below. The results showed that post-processed band pairs improved the
contrast and definition of the whale in all images compared to the visual red-green-blue
(RGB) images. Increasing the contrast between the whale and surrounding waters,
demonstrated the potential for increasing the confidence of machine learning and
automated detection methods that are reliant on a clear contrast between an animal and

their surrounds (Laliberte & Ripple, 2003).

Although RGB imagery is most commonly used for animal detection, it is subject to light
levels, contrast of the target animal compared to their environment, and shadows that
may mask targets (Hinke et al., 2022). In Chapter 4 the effectiveness of UAV-borne
thermal sensors to improve whale detection methods was assessed by testing three UAV
platforms with synchronous capture capability. The higher resolution thermal sensors
(640 x 512) detected both direct (e.g., body on the surface) and indirect (e.g., footprint)
thermal whale cues from nadir and oblique angles. Previous studies have identified

surface water temperature differentials for indirect thermal cues in colder waters
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(Churnside et al., 2009; Florko et al., 2021; Lonati et al.,, 2022). However, the results
presented here highlighted that a thermal contrast can be observed between a whale
footprint and surrounding temperate waters (SST ~19°). Synchronous capture also
showed that footprints were detectable in the thermal sensors after they were no longer
evident in the visual RGB sensor images. Importantly, these results established that
although thermal sensors are not a viable option to replace visual sensors for the daytime

detection of whales, they complement RGB sensors and extend whale observation time.

Previous research has demonstrated that thermal sensors deployed from horizontal
platforms (i.e., from ship or shore) provide detection rates comparable to visual sightings
during good visibility conditions (Smith et al., 2020). Although, they have been deployed
to improve continuous, round-the-clock detection methods required for regulatory
purposes (e.g., during seismic surveys or naval activity) (Zitterbart et al., 2013; Smith et
al,, 2020), the importance of thermal sensor properties have received limited attention in
the literature. In Chapter 5 the current state of knowledge was reviewed and the
detection capabilities of three sensors were tested. Each sensor differed in sensor
resolution, detector temperature, and spectral range to increase understanding of how
thermal sensor configuration, cetacean cues, and environmental conditions will influence
animal detection and the reliability of automated detection models. Although these field
results applied to clear, calm conditions that cannot translate directly to open ocean
conditions, the highest resolution cooled sensors demonstrated improved enhanced
clarity of dolphin cues at distances of ~ 1km. The rapid rotating RobotEye system, that
can be trained to automatically zoom into objects of interest (acceleration rates of
60,000°/s2), such as cetacean cues, was proposed to improve current limitations in

existing automated thermal detection systems.
6.1 MANAGEMENT IMPLICATIONS

The humpback whale groups using Jervis Bay on their southern migration are
disproportionately mother-calf groups which were observed demonstrating resting and
nurturing behaviour. The peak time for mother-calf groups in the Bay from late
September to early November, coincides with both naval activity and commercial whale
watching and recently introduced swim-with-whale activities that rely on close

encounters with these animals. The importance of this stage for calves undertaking their
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first southern migration highlights the need to monitor and manage the potential impacts

of these activities.

The potentially invasive nature of swim-with-whale activities are of particular concern
from a management perspective, not only for the wellbeing of the whales but also
participants swimming. Due to their reliable seasonal occurrence and preference for
calm, shallow waters, humpback whales are the most common large cetacean species
targeted for swim-with-whale tourism. There is increasing evidence to highlight short-
term behavioural effects associated with these activities. Fiori et al. (2020) used UAV
methods to assess humpback whale response to swim-with activities in Tonga,
demonstrating that for groups with a calf, surface-active behaviours reduced significantly
in the presence of swimmers. Additionally, nurturing behaviour decreased almost five-
fold and the time spent travelling almost doubled compared to behaviour in the absence
of swimmers. Similarly, southern right southern right whales (Eubalaena australis) were
found to significantly reduce their resting and socialising behaviours, whilst increasing
travel in the presence of swimmers (Lundquist et al., 2013). Although not as invasive as
swim-with activities, commercial whale watching activities still have the potential for
disturbance. Sprogis et al. (2023) used UAV methods to find a significant reduction in
resting of southern right whale mothers and calves during whale watching activities off
the South Australian coastline. However, they found no significant effect on maternal
swim speed, nursing rate or respiration rate, at the 300 m regulation distance.
Disturbance to resting behaviour can have significant energetic costs to the calf if they
are required to allocate energy to travelling. Additionally, the energy reserves of lactating
females may decrease if whales are required to increase their travel speed or add distance
to their migration, resulting in reduced calf growth (Braithwaite et al., 2015). Larger calf
size provides the calf an energetic advantage during the subsequent migration and

increases the probability of surviving a predation attempt (Videsen etal., 2017).

In Jervis Bay swimming with a whale group is prohibited if a calf is present, under
requirements of the Australian National Guidelines for Whale and Dolphin Watching
2017. However, enforcing these activities is difficult and resource intensive. Sprogis et al.
(2017) observed nine whale watching vessels that participated in swim-with-whale
activities within the Ningaloo Marine Park, Western Australia, and reviewed the

effectiveness of regulations. Overall, swimmers were placed in the water with calves
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during 19.6% of observations. Low levels of compliance appear to be frequently
observed for swim-with-whale activities involving humpback whales elsewhere (Tonga;
Fiori et al,, 2019b; Reunion Island; Hoarau et al., 2020). Sprogis et al. (2017) highlighted
that the initial definition of a “calf” as “half the length or less of adult individuals of its
species” was inadequate for encompassing all year-of-young calves. However, they still
observed non-compliance during 33% of observations following a revised definition of “a
young whale, paler in colour than adults of its species and/or less than 8 metres in length
and/or less than two thirds of the adult it is in association with”. Commercial operator
confusion over the definition of a calf and ability to distinguish a calf from a juvenile
highlight that to provide adequate protection for calves during their first migration,

swim-with-activities should not be permitted during the southern migration.

The importance of Jervis Bay as a nursing/resting area for fasting, lactating females and
their calves, underscores the need to minimise disturbance from naval, commercial
whale-watching and swim-with-whale activities. Given the high likelihood of a calf being
present in all observed whale groups during October, management regulations, such as
enforcing the 300 m caution zone within which vessels must not enter should be

prioritised.
6.2 FUTURE RESEARCH DIRECTIONS

This research provided a comprehensive analysis of the movement patterns of mother-
calf humpback whales in Jervis Bay compared to whales migrating offshore. However,
there is a need for longitudinal research to further explore residency time and site
fidelity. Photo-identification methods in Jervis Bay were limited to two consecutive field
seasons in 2018 and 2019, due to COVID-19 lockdown and social distancing restrictions
in 2020 and 2021, respectively, prohibiting opportunity for data capture during
successive migrations to investigate potential for maternal site fidelity. Sheehan and
Blewitt (2013) demonstrated on one occasion that a mother entered the Bay two years
apart with two different calves. Additional dedicated photo-identification methods are
required to accurately determine extended residency in the Bay (beyond 1-2 days).
Sheehan and Blewitt (2013) observed one mother-calf group stayed in the Bay for eight
days. Understanding residency time and site fidelity is particularly important when
assessing the impact of anthropogenic activity in the Bay and will help inform

management decisions, particularly regarding commercial whale interactions.
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Marine wildlife surveys to date have predominantly employed visual (RGB) sensors.
However, there is a need to evaluate the role of multispectral sensors, including the near
infrared (NIR) band (700 - 1,500 nm wavelength), for potential to mitigate the effects of
sun glint contamination. Sun glint causes high brightness in visual images, reduces the
signal-to-noise ratio, and reduces the accuracy of remotely sensed observation data
(Muslim et al., 2019). Influenced by sun position, viewing angle and sea surface state (Kay
et al,, 2009), the effects of sun glint can be avoided by selectively choosing to survey in
the early morning or later afternoon. Whilst this can be effective for static objects,
including the mapping of nearshore benthos, this is not always feasible for moving and
wide-ranging marine vertebrates. In the absence of flexibility in survey timing, there are
robust methods to remove sun glint contamination from multispectral images (Hedley et
al.,, 2005; Martin et al.,, 2016). Whilst these techniques are effective for multi-spectral
images containing a NIR band, they are not suitable for images containing only red, green
and blue (RGB) bands. Additionally, Colefax et al. (2021) found NIR bands effective for
detecting submerged fauna in highly turbid conditions. As multispectral sensors become
smaller, lighter, and more affordable there is a need to test the benefits of removing the
effects of sun glint to enhance whale detection, particularly in UAV surveys. However, to
date, most of this research has been in clearer coastal waters (Colefax et al., 2021) and
further investigation is required on how the water body characteristics (Colefax et al.,

2018), for example turbidity, and whale depth would influence these results.

In this thesis the thermal infrared imaging from nadir, oblique, and near-horizontal
angles was demonstrated. There is a need to further explore how the angles at which
thermal imaging is captured will influence the detection of thermal signatures. For
example, Horton et al. (2017) found capturing thermal images from a near-horizontal
platform resulted in similar thermal brightness anomalies for humpback whale blows
and their bodies on the surface, at two locations that had a 16°C difference in sea surface
temperature. This was attributed to emissivity effects. Due to lower levels of background
emissivity captured from near-horizontal platforms they are considered more effective
in detecting whale exhalations than sensors capturing at a nadir angle (Churnside et al.,,
2009). Depending on the angle of capture, emissivity associated with rough ocean water
could mask whale cues, but this physical property can also be advantageous for detecting

thermal signatures at a distance on oblique angles from a UAV (demonstrated in Chapter
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4). Understanding how the angle of the thermal sensor will influence whale detectability

is particularly important during UAV surveys if the sensor is on a rotating gimbal.
6.3 CONCLUSION

This thesis provided the first scientific survey of humpback whales in Jervis Bay and
demonstrated resting and nurturing behaviours by mother-calf groups within the Bay.
Jervis Bay is a multi-use marine park, supporting a breadth of activities. The temporal
and geographical overlap of these activities within Jervis Bay highlights the need for
effective monitoring and management. This research established the benefits of using
multiple survey methods to observe movement patterns. Combining land-based surveys,
boat-based surveys, and UAV methods allowed validation across different data sets
providing evidence of low energy expenditure, or resting behaviour, within Jervis Bay.
Finally, these research findings highlight the need to understand and monitor for
potential impacts of increased anthropogenic activity and development of our oceans,
including offshore mining, shipping, and naval operations, and consequently the need for

novel, accurate and resource effective whale detection methods.
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Ultra-high spatial resolution sensors made available by advancements in the miniaturization of instruments
deployable on uncrewed aerial vehicle (UAVs),! present new and innovative opportunities for remote detection of
marine wildlife. The spatio-temporal resolution and survey responsiveness afforded by these low-cost platforms
enables the collection of data that can provide insights on the spatio-temporal dynamics of individual marine animals
at close range (Anderson & Gaston, 2013). In the last decade there has been an increase in marine studies utilizing
UAVs (Schofield et al., 2019), which allows for novel insights on the abundance (Hodgson et al., 2017), behavior
(Fiori et al., 2020; Torres et al., 2018), and body condition (Christiansen et al., 2016; Hodgson et al., 2020) of marine
wildlife. Importantly, UAV-based image capture has the potential to increase the duration of visible observation
through detection of animals below the water surface (Torres et al., 2018). This has significant ramifications for the
study of mother-calf humpback whale groups that rest in shallow protected embayments (Bruce et al., 2014;
McCulloch et al., 2021), spending high proportions of time resting at depths of <5 m (Bejder et al., 2019; Iwata
et al., 2021). However, the use of remotely sensed data in coastal environments is challenged by the optical complex-
ity of the water column (Figure 1). Research until now has focused primarily on image detection based on the visual
spectrum with limited evaluation of conventional remote sensing methods for enhancing observation of whales.
Processing techniques are commonly used in remote sensing research to enhance or enable the detection of under-
water features, including benthic habitat (Hedley et al., 2016; Mumby et al., 1998; Zoffoli et al., 2014). Similar tech-
nigues, including water column correction, can be applied to UAV-captured images to enhance visibility of animals

below the water surface, which may be missed in manual counts or automated deep-learning based classifications
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FIGURE 1 Diagram illustrating the various processes contributing to complexities in surveying large marine
species from a UAV platform. Created with BioRender (https://biorender.com/).

(Gray et al., 2019). This paper presents remote sensing-based methods for enhancing UAV-acquired visual image
data to improve the contrast of whales on the water surface and submerged near the surface. Application of these
methods has the potential to reduce perception error (Colefax et al., 2018) and subsequently improve detection
rates. The Jervis Bay Marine Park study site on the eastern Australian coastline is frequented by humpback whale
(Megaptera novaeangliae) mother-calf groups during the southern migration from the breeding grounds (Bruce
et al., 2014; Jones, 2019).

The visible RGB imaging capabilities of sensors for detecting whales were evaluated using a DJI Mavic 2 Enter-
prise Dual (M2ED) launched from a small boat in Jervis Bay. Following a confirmed whale sighting, the whale's
behavior and direction of travel were observed for 5 min from the boat at a distance >300 m before an approach
was made to a distance >100 m from the whale. The UAV was launched to an initial altitude of 55 m to provide suffi-
cient sensor field of view for whale identification and lowered to 225 m once whale(s) were visible on the controller
screen. The boat remained at a distance >100 m from the whales during the flights to provide a visual line of sight to
the UAV and facilitate positioning over the whales. Still images and videos were captured throughout each flight.

Lyzenga's water column correction (Lyzenga, 1981) as modified by Mumby et al. (1998) and Hamylton (2011)
was applied to three UAV images containing humpback whales (steps summarized in Figure 2). To enhance the spec-
tral signature of the whale, radiance values were taken from transects along and across the whale's body surface to
account for the fusiform shape of the whale (Step 3, Figure 2). This method, suitable for high clarity water, produces
a depth-invariant band based on each pair of spectral (wavelength) bands (Mumby et al., 1998). This generated three
depth invariant bands from the available spectral band pairs (red/green, red/blue, green/blue). To allow for compari-
son between the original image and processed images, all pixels were converted into Z-scores (Z = [pixel value —
mean]/standard deviation), enabling detection of anomalies. The performance of the applied image processing
methods was assessed visually (Figure 3), and quantitively by evaluating the mean Z-score values (Table 1) extracted

across the whale's surface for the original RGB images and the three resulting band pairs.
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1. UAV-captured RGB image 2. Log transformed RGB image

FIGURE 2 Overview of processing steps applied in the depth invariant analysis. In Step 3, the yellow transect
outlines where the radiance values were extracted for inclusion in the correction. The correction process resulted in
three depth-invariant band pairs. These images were then converted into Z-scores and transects (black dotted line,
Step 4) were extracted along the length of the whale to determine average values for each image.

Application of Lyzenga's water column correction enhanced the contrast and edge definition between whales
and surrounding water in the three UAV-captured images presented here. For whales on or just below the surface,
the red/green and red/blue depth-invariant band pairs were the most effective band pair combination for enhancing
contrast between the whale and surrounding waters, both visually (Figure 3A and C) and resulting in the highest
anomaly values (Table 1). The effectiveness of the red band for animals on or near the surface is consistent with find-
ings from Colefax et al. (2021), who demonstrated the red band produced the greatest spectral contrast for detecting
dolphins, sharks, and other marine fauna from a UAV. At increasing depths, the green/blue band pair produced a
stronger visual contrast and highest anomaly result (Figure 3B; Table 1) owing to the red waveband becoming atten-
uated at greater depth.

The depth of the target animal(s) will influence the optimal band pairing and subsequent object enhancement
within the image. The red band (610-700 nm), and other bands with wavelengths approaching the red end of the
spectrum (e.g., red edge and near infrared), will become fully attenuated around 2-3 m depth (Hamylton, 2011;
Mishra et al., 2005). Thus, the effectiveness of band pairs using the red band will be substantially reduced at this
depth. However, in turbid waters, where sightability below the surface is limited, longer wavelength bands may be
optimal for increasing the contrast of animals just below the surface (Colefax et al., 2021). Image enhancement
methods for improving whale detection rates even in optically shallow waters (<2-3 m) has important implications
for studies reliant on whale visibility, such as estimating abundance (e.g., Hodgson et al., 2017). This is key for
research conducted on breeding/resting grounds, with lactating females and their calves spending over 50% of time
within 3 m of the surface (Bejder et al., 2019).

The methods presented here have the potential to increase the confidence of machine learning and automated
detection models. Machine learning techniques for automated detection of whales are increasingly being applied to
UAV-collected data sets providing an efficient way to process large amounts of data. Studies using machine learning
to detect individual animals or plants rely on the detection of target objects against mostly homogenous backgrounds
which typically rely on a clear contrast to reliably discriminate animals from their surrounding environment

(Laliberte & Ripple, 2003). The use of machine learning for detecting marine vertebrates is further complicated by
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FIGURE 3 Results of depth-invariant processing for three UAV images. (A) Shows a partially submerged
humpback whale mother and calf at the surface, (B) shows the same mother calf group now fully submerged, taken
5 s after Image A, and (C) shows a submerged humpback whale calf. The four panels, from top to bottom present:
the raw red, green, and blue (RGB) images, depth-invariant red/green band pairs, depth-invariant red/blue band
pairs, depth-invariant green/blue band pairs.

TABLE 1 Mean Z-scores extracted across the whales in the three images from Figure 3, presenting results from
the RGB image and three depth-invariant band pairs. The results from the RGB image are presented as individual
red, green, and blue bands. The highest value for each image is shown in bold.

Mean Z-scores

Image A Image B Image C
Red 1.00 0.85 0.40
Green —0.28 0.90 0.07
Blue —0.45 0.54 —0.08
Red/green 221 0.67 1.85
Red/blue 211 1.05 1.88
Green/blue 0.32 1.64 1.25

coloration similarities between some species and the surrounding water (e.g., blue whales; Gray et al., 2019) and non-
uniform backgrounds that are subject to varying environmental conditions. In ecological studies, object-based image
analysis (OBIA) is the most commonly used machine learning method (Dujon & Schofield, 2019). It provides versatil-
ity for detecting objects in varied backgrounds with confounding features, objects that vary in size and shape, and
may be sparsely distributed in the image data set (Chabot et al., 2018), making it ideal for abundance and distribution
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studies. Importantly, even with increased flexibility over other machine learning methods, OBIA is still reliant on the
object(s) of interest in the image being localized from surrounding pixels through a local brightness contrast, either as
a relatively brighter or relatively darker group of image pixels (Groom et al., 2013). For whale detection, increasing
the anomaly (Z-score) of the whale object, as demonstrated here, could potentially improve OBIA-derived results
and increase detection availability.

Here we have demonstrated that water column correction techniques can enhance the visual outline and anomaly
signal over the body of whales on the surface and submerged at shallow depths. However, we recognize constraints
associated with the limited spectral resolution provided when working with three bands (i.e., red, green, and blue)
within the visible range (wavelength 400-700 nm). Employing multispectral or hyperspectral sensors and customizing
or selecting bands configured to focus on wavelength bands optimal for the spectral characteristics of the water body,
such as the coastal band (Fretwell et al., 2014), and target species may further reduce perception bias and subsequently
improve animal availability at depth compared to standard RGB sensors (Colefax et al., 2018). Additionally, obtaining a
larger image data set is critical for understanding the effectiveness of depth invariant indices derived from possible
band pairs, and whether these differ with the whale depth and environmental factors (e.g., turbidity). Ultimately, an
understanding of the role of water column attenuation correction is critical for accurate detection of whales and is par-
ticularly relevant with the increasing use of low-cost UAV platforms and machine learning techniques for achieving

estimates of population abundance and monitoring movement patterns of marine wildlife in shallow coastal habitats.
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APPENDIX B | SUMMARY OF FIELDWORK EFFORT
Table B.1. Summary of land survey effort and sightings of humpback whale groups
observed within Jervis Bay and offshore in 2018, 2019, and 2021

Land surveys

Date Survey  Survey end No. whale No. whale
start time groups groups
time observed inside observed

Jervis Bay offshore

27/09/2018 0800 1715 2 29
28/09/2018 1130 1700 0 20
29/09/2018

30/09/2018 0800 1700 3 25
01/10/2018 0800 1700 17 87
02/10/2018 0800 1700 4 10
03/10/2018 0800 1240 3 13
04/10/2018

05/10/2018

06/10/2018 0800 1715 4 61
07/10/2018 0 0
08/10/2018 0900 1725 2 19
09/10/2018 0810 1700 3 50
10/10/2018

11/10/2018 0800 1230 2 23
12/10/2018 0800 1700 5 43
13/10/2018 0800 1700 3 60
14/10/2018 0800 1700 7 28
15/10/2018

16/10/2018 0805 1700 8 19
17/10/2018 0800 1700 6 12
18/10/2018 0800 1700 12 29
19/10/2018 0800 1700 9 24
20/10/2018 0800 1700 20 21
21/10/2018 0800 1700 5 28
22/10/2018 0800 1700 15 39
23/10/2018 0800 1700 9 23
24/10/2018 0800 1700 6 6
25/10/2018 0800 1700 11 20
30/09/2019 0840 1430 0 15
01/10/2019 0800 1700 0 50
02/10/2019 0900 1700 0 14
03/10/2019 0800 1700 8 23
04/10/2019 0800 1700 15 19
05/10/2019 0800 1700 2 9
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06/10/2019 0800 1000 3 3
07/10/2019 0800 1700 4 5
08/10/2019 0800 0915 0 0
09/10/2019

10/10/2019 0800 1700 3 15
11/10/2019

12/10/2019 1330 1700 0 3
13/10/2019 0800 1730 2 30
14/10/2019 0800 1700 3 16
15/10/2019 0800 1700 4 22
16/10/2019 0800 1700 6 6
17/10/2019 0800 1115 4 9
18/10/2019 0800 1700 3 11
19/10/2019 0800 1700 2 14
20/10/2019 0800 1800 7 19
21/10/2019 0800 1715 3 19
22/10/2019 0830 1700 6 12
23/10/2019 0800 1700 19 19
24/10/2019 0800 1700 2 8
25/10/2019 0900 1730 7 10
26/10/2019 0800 0830 0 4
27/10/2019 0800 1820 1 9
28/10/2019 0800 1700 1 4
29/10/2019 0800 1700 5 4
30/10/2019 0800 1700 2 1
31/10/2019 0800 1200 1 0
01/11/2019

02/11/2019 0820 1110 1 0
03/11/2019 0745 1700 5 6
04/11/2019 0800 1600 3 0
05/11/2019

06/11/2019 0800 1700 1 1
06/10/2021 0900 1500 6 4
07/10/2021 0900 1400 5 6
08/10/2021 0900 1500 3 19
09/10/2021 0900 1500 2 16
10/10/2021

11/10/2021

12/10/2021 0900 1500 3 11
13/10/2021 0900 1500 3 11
14/10/2021

15/10/2021

16/10/2021

17/10/2021 0900 1500 2 13
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18/10/2021 0900 1500 10 7

19/10/2021

20/10/2021

21/10/2021 0900 1500 2 2
22/10/2021 0900 1500 4 6
23/10/2021 0800 1115 2 1
24/10/2021

25/10/2021 0900 1500 4 3
26/10/2021 0800 1500 0 9
27/10/2021 0900 1500 1 4

Table B.2. Summary of UAV survey effort of humpback whale groups in Jervis Bay in
2019 and 2021

UAV model Date Flight time Time of flight
start (min.sec)
20/10/2019 1454 21.56
o 20/10/2019 1720 16.52
& 20/10/2019 1750 5.02
= 27/10/2019 1100 4.54
3 27/10/2019 1112 9.41
= 27/10/2019 1418 5.23
= 27/10/2019 1425 9.34
27/10/2019 1810 15.23
. 31/10/2019 809 7.43
= 31/10/2019 818 3.1
£ 31/10/2019 820 6.17
=i 31/10/2019 829 8.31
= 3/11/2019 817 5.52
2 3/11/2019 833 14.01
Z 3/11/2019 1107 1.5
3/11/2019 1110 3.38
- 23/10/2021 811 8.2
§ 23/10/2021 824 1.31
S 23/10/2021 836 4.51
=2 23/10/2021 838 1.47
3 23/10/2021 840 1.5
& 23/10/2021 845 4.51
z 23/10/2021 846 1.16
= 23/10/2021 847 1.23
2 23/10/2021 900 1.29
§ 23/10/2021 902 8.11
23/10/2021 917 3.08
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23/10/2021 1208 3.27
23/10/2021 1445 10.41
28/10/2021 1004 2.13
28/10/2021 1030 1.58
28/10/2021 1033 3.46
28/10/2021 1040 3.02
28/10/2021 1045 0.15
28/10/2021 1106 3.14
28/10/2021 1111 9.34
28/10/2021 1125 9.00

Table B.3. Summary of survey effort capturing Indo-Pacific bottlenose dolphins in

Jervis Bay using thermal imagers in 2021

Date Imager Survey period  Duration of footage
containing

dolphins (min.sec)
18/02/2021  FLIR Boson 1103 -1139 14.19
01/04/2021  FLIR Boson 950 - 1340 19.47
01/04/2021 FLIR Tau 2 950 - 1340 1.15
01/04/2021 FLIR 950 - 1340 13.11
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