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Large-scale visual pretraining has emerged as a crucial component in the
field of computer vision, enabling the development of advanced visual
recognition models. This thesis highlights the significance of both super-
vised and unsupervised pretraining methods, improving their learning
frameworks and objective functions.

The thesis explores the limitations of previous approaches, which ei-
ther rely on single-instance-positive sample pairs or prototype-positive
clustering, overlooking the relative nature of positive and negative con-
cepts in the real world. To address these limitations, a novel technique
called Relative Contrastive Loss (RCL) is proposed, which leverages rel-
atively positive/negative pairs to learn feature representations that en-
compass more real-world semantic variations while respecting positive-
negative relativeness.

Furthermore, this thesis presents UniVCL (Unified Visual Contrastive
Learning), a unified framework for existing unsupervised visual con-
trastive learning methods. We discover that different designs of predic-
tors can be treated as the special formulations of a graph neural net-
work. Therefore, our UniVCL adopts a graph convolutional network
(GCN) layer as the predictor layer, showcasing two major advantages in
unsupervised object recognition. Firstly, through comprehensive experi-
ments, the critical importance of neighborhood aggregation in the GCN



predictor is revealed, shedding light on the significance of this compo-
nent in existing methods. Secondly, by viewing the predictor from a
graph perspective, the integration of graph representation learning aug-
mentations enhances unsupervised object recognition accuracy.

The classical pipeline of pretrain-finetune in visual learning is re-
visited, particularly in the context of unsupervised pretraining methods
exhibiting superior transfer performance compared to supervised coun-
terparts. This thesis presents a new perspective on the transferability
gap between unsupervised and supervised pretraining, focusing on the
multilayer perceptron (MLP) projector. Through extensive analysis, it
is discovered that the MLP projector plays a key role in enhancing the
transferability of unsupervised pretraining methods. Based on this find-
ing, an MLP projector is incorporated before the classifier in supervised
pretraining, resulting in reduced feature distribution distance, increased
retention of intra-class variation, and decreased feature redundancy.

Finally, this thesis acknowledges the importance of human-centric
perceptions in diverse industrial applications such as surveillance, au-
tonomous driving, and the metaverse. To address the need for a general
pretrain model for versatile human-centric downstream tasks, the the-
sis proposes HumanBench, a comprehensive benchmark consisting of 19
datasets across six diverse downstream tasks. Various pretraining meth-
ods are evaluated on this benchmark to assess their generalization abil-
ities. Additionally, a novel pretraining method called PATH (Projector
Assisted Hierarchical pretraining) is introduced to learn coarse-grained
and fine-grained knowledge in human bodies.

The findings in this thesis confirm the effectiveness of the proposed
methods in enhancing the practicality and performance of large-scale vi-
sual pretraining. Through rigorous testing on diverse datasets, the rela-
tive contrastive loss, unified contrastive learning framework combining
visual and graph unsupervised pretraining, and supervised pretraining
with MLP projectors have consistently yielded impressive results. These
outcomes provide compelling evidence for the efficacy of the proposed
methods in improving the design and training process of large-scale vi-
sual pretraining.
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Chapter 1

Introduction

The opening of this chapter introduces the techniques for the design and
training of neural networks that will be addressed in this thesis. We
then highlight the key challenges in the field, motivations behind these
challenges, as well as the efficient solutions contributed in this thesis to
tackle these challenges. We conclude by outlining the organization of the
remainder of this thesis.

1.1 Background

Following the revolutionary recognition performance of AlexNet [124]
in the ImageNet competition [45], the field of artificial intelligence has
seen significant advancements. Numerous representative deep neural
networks have been proposed, including but not limited to VGG [207],
ResNet [90], Inception [218], and LSTM [97]. Researchers typically gather
and annotate task-specific samples and train their models on extensive
datasets such as ImageNet for computer vision and Glove [184] and
Skip-thought vectors [116] for natural language processing. This ap-
proach enables the resolution of many tasks end-to-end, circumventing
the need for traditional handcrafted features and providing solutions for
object detection [149, 55, 29], segmentation [89, 221, 214], and recogni-
tion [301, 229, 220] among others. The detailed process is summarized
as "Traditional Development of Vision Algorithms" in Fig. 1.1. However,
the way of developing algorithms in vision tasks suffer from two signif-
icant drawbacks. First, researchers are requied to train one model for
every specific vision task, limiting the fast and convenient deployment
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when we need to tackle a set of vision tasks. Second, the performance of
every vision tasks is largely limited to the number of data collected for
the exact task, unable to benefit from data and annotations collected for
other tasks.

In recent years, there has been a notable shift in research to address
this issue. This shift has emphasized the use of self-supervised or su-
pervised pretraining on vast quantities of data, such as images or text,
which is then fine-tuned for specific tasks. Rather than relying solely on
task-specific annotations, the pretraining stage of this framework takes
advantage of as many images as possible, with varied or even no anno-
tations. The fine-tuning stage is dedicated to effectively adapting these
pretrained models to perform specific downstream tasks, utilizing only a
minimal amount of downstream data. This revamped pretrain-finetune
approach has several key benefits. First, the pretrained model can ad-
dress the diverse tasks by freezing the pretrained backbone and fine-
tuning the task heads. Second, the performance of each downstream
task can be enhanced, as the pretrained model absorbs knowledge from
a large and potentially diverse pool of annotated data. Lastly, models
for different downstream tasks can be efficiently adapted from the pre-
trained model at a low computational cost and with minimal need for
task-specific annotated data.

1.2 Statement of Large-scale Pretraining

Large-scale Pretraining is a field of study that trains deep neural net-
works on massive datasets of labeled or unlabeled images, allowing them
to learn intricate visual features, patterns, and representations. These
models, often referred to as vision models or pretrained visual encoders,
have the capacity to comprehend and extract meaningful information
from images, enabling them to perform a wide range of tasks, including
image classification, object detection, semantic segmentation, and im-
age generation. Therefore, the pretrained visual encoders are expected
to be able to improve the performance of various downstream tasks af-
ter efficient adaptation. According to whether labels are utilized in the
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Large-scale 
Pretraining

Supervised Pretraining

Unsupervised Pretraining

Data Learning Pipeline
(Chapter 6, 7)

Manual Annotation

Supervision

Data Learning Pipeline
(Chapter 4)

Supervision
(Chapter 5)Pretext Task

Data

Figure 1.2: A schematic illustration of large-scale pretraining, including
unsupervised pretraining and supervised pretraining.

pretraining, the large-scale pretraining can be generally divided into su-
pervised pretraining and unsupervised pretraining.

Supervised Learning. Supervised pretraining is commonly performed
using large-scale labeled datasets, such as ImageNet or COCO, which
contain millions of annotated images across various object categories
and scenes. By training on such datasets, the network can learn to cap-
ture a wide range of visual features, object shapes, textures, and spa-
tial relationships. After the supervised pretraining phase, the network
can be fine-tuned on a smaller labeled dataset specific to the target task,
which might have different classes or categories. Fine-tuning involves
updating the network’s parameters using the labeled data from the tar-
get task, allowing it to specialize and adapt its knowledge to the specific
visual recognition or analysis task at hand.

Unsupervised Pretraining. Unsupervised pretraining in computer vi-
sion refers to the process of training a deep neural network on a large
dataset of unlabeled or weakly labeled images without explicit super-
vision or ground truth annotations. Instead of relying on labeled data,
unsupervised pretraining aims to learn meaningful representations or
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features from the visual data by uncovering underlying structure or pat-
terns. After pretrained in an unsupervised manner, the models are ex-
pected to achieve improved performances after adapting to various down-
stream tasks.

1.3 Challenges, Motivations and Contributions

Despite advancements in large-scale pretraining, there are still numer-
ous challenges that must be addressed to make the development of large-
scale pretraining more effective. In this thesis, we will foucs on key chal-
lenges that are critical to developing large-scale pretraining methods, in-
cluding unsupervised pretraining and supervised pretraining methods.
Unsupervised pretraining and supervised pretraining are two popular
frameworks for visual pretraining. Unsupervised pretraining does not
use manual annotations but relies on well-designed proxy tasks to learn
general knowledge from images. In contrast, supervised pretraining
leverages manual annotations or pseudo-labels to learn general infor-
mation from images. In particular, supervised pretraining can be further
categorized into single task supervised pretraining and multitask super-
vised pretraining.

1.3.1 Unsupervised Pretraining

Unsupervised pretraining aims at learning general information from im-
ages without using any labels. A popular framework for unsupervised
learning is contrastive learning. Contrastive learning aims to minimize
the distance of different views of the same sample and maximize the
distance of the representations of different samples. Through this learn-
ing framework, the representation distance between two semantically
similar images will be smaller than between two semantically different
images.

The first challenge entails devising an enhanced objective function
within the existing contrastive learning framework. Contrastive learn-
ing [101, 87, 35, 37, 31, 259, 318, 80, 285, 36] optimizes deep networks by
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simultaneously reducing the distance between representations of posi-
tive pairs and increasing the distance between representations of nega-
tive pairs in the latent feature space. Conventionally, positive and neg-
ative samples in contrastive loss are categorized based on different aug-
mentations of the same image or samples with the same pseudo-labels
using clustering [22] as positive samples [87]. In contrast, humans pos-
sess the ability to recognize relative similarities rather than categorically
constructing positive and negative pairs, as demonstrated by Carl Lin-
naeus, a Swedish botanist, in his hierarchical description of biological
organisms under seven levels: Kingdom, Phylum, Class, Order, Fam-
ily, Genus, and Species, forming the current Linnaean taxonomy sys-
tem [58]. Notably, prevalent computer vision benchmarks such as Ima-
geNet [45], iNat21 [233], and Places365 [309] also follow the concept of
positive-negative relativeness by incorporating hierarchical labels. For
instance, within ImageNet, both trimarans and boats fall under the broader
category of sailing vessels and vehicles. However, when distinguishing
between different types of sailing vessels, trimarans and boats represent
distinct classes. To account for the relative nature of human recognition,
we propose the Relative Contrastive Loss, which introduces a set of se-
mantic criteria to partially determine the positive or negative nature of
a given sample pair. This approach captures real-world instance varia-
tions within a class in a relative manner. An image pair that meets more
semantic criteria will be assigned as higher relative postiveness. Con-
sequently, our relative contrastive loss pulls the features of image pairs
with higher postiveness closer together compared to those with lower
postiveness.

The second challenge entails demystifying the real effectiveness of
each components among diversed unsupervised learning methods based
on contrastive learning and designing an improved learning framework
for unsupervised pretraining. Current contrastive-based SSL methods
employ a Siamese architecture comprising two branches: an online branch
and a target branch. Each branch consists of a backbone, a projector
layer, and an optional predictor layer. While the backbone and pro-
jector layer processes are similar across these methods, significant dif-
ferences exist in their predictor layer designs. For example, self-loop
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operation in BYOL [80] and neighborhood aggregation in NNCL [56].
To elucidate the impact of these projectors on unsupervised learning
performance, we begin by developing a comprehensive framework that
unifies various projector designs by using a Graph Convolutional Net-
work [310, 260, 199] (GCN) as the projector layer, since the graph neural
network can both model self-loop operation and neighborhood aggre-
gation simultaneously. Subsequently, we conduct thorough and unbi-
ased experiments to evaluate the effectiveness of each component rig-
orously. Our meticulous experiments yield three noteworthy observa-
tions. Firstly, the inclusion of a neighborhood aggregation term in the
GCN layer significantly enhances linear evaluation performance. Sec-
ondly, the choice of activation function noticeably influences linear eval-
uation performance. Lastly, if the other components of the GCN layer are
well-designed, the performance difference between different non-linear
activation functions is relatively small, indicating that the selection of a
non-linear activation function is a less crucial factor. With this graph-
based unified framework, we establish a connection between vision un-
supervised pretraining and graph unsupervised pretraining, which is an
active area of research in unsupervised pretraining. Remarkably, we dis-
cover that the pretext tasks and data augmentations utilized in graph
unsupervised pretraining are also effective for vision unsupervised pre-
training.

1.3.2 Supervised Pretraining

Supervised Pretraining [64, 250, 168] is commonly performed on vari-
ous large-scale labeled datasets under a multitask learning framework.
The challenges of the supervised pretraining lies in two aspects. The
first is to bridge the generalization gap between supervised pertraining
and unsupervised pretraining because supervised pretraining is longly
argued for worse generalization ability than unsupervised pretraining.
The other critical challenge for supervsied pretraining lies in the task
conflicts when pretraining the network under the multitask learning frame-
work [27, 164, 294, 183].
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To bridge the generalization ability gap between unsupervised pre-
training and supervised pretraining, we revisit the structural designs of
both supervised pretraining and unsupervised pretraining and discov-
ered that the projector layer before the objective function, which is usu-
ally a simple MLP module, is the key for the difference between unsuper-
vised pretraining and supervised pretraining. Based on our findings, we
propose a new supervised pretraining framework (SL-MLP) by adding
an MLP projector before the objecive function in the supervised pretrain-
ing method. Extensive experimental results confirm that the newly pro-
posed supervised learning can consistently improve the transferability
of the model when adapting the model to various downstream tasks.

To address the challenge of significant task conflicts arising from
diverse datasets with varying annotations in multitask learning, we in-
troduce an extension of SL-MLP, called Projector AssisTed Hierarchical
Pre-training (PATH), within the multitask learning framework. Draw-
ing inspiration from SL-MLP [250], which emphasizes the inclusion of an
MLP projector before the task head to enhance supervised pretraining’s
generalization ability, we propose PATH as a projector-assisted pretrain-
ing approach that employs hierarchical weight sharing to address the
task conflicts associated with diverse annotations in supervised pretrain-
ing. In this method, the backbone weights are shared across all datasets,
while the projector weights are shared only among datasets of the same
tasks. Additionally, the head weights are shared exclusively within a
single dataset, creating a hierarchical weight-sharing structure. Dur-
ing the pretraining stage, we incorporate task-specific projectors before
the dataset heads, but discard them when evaluating models on down-
stream tasks. Leveraging the hierarchical weight-sharing strategy, our
pretraining method guides the backbone to learn from a shared knowl-
edge pool, directs the projector to focus on task-specific knowledge, and
enables the head to concentrate on the dataset’s specific annotation and
data distribution. Our extensive experiments, conducted on a large-
scale multitask training framework utilizing a self-supervised pretrained
backbone, demonstrate that PATH can serve as a powerful and efficient
alternative to employing multiple tailored models for general human-
centric tasks.
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1.3.3 Summary

This thesis investigates the methods to address main challenges in the
framework and objective function of visual pretraining, including: (1)
designing a better relative contrastive loss to capture the relative seman-
tic similarity of any image pair, (2) analyzing the key components in con-
trastive learning unsupervised framework and relating visual unsuper-
vised pretraining and graph unsupervised pretraining, (3) demystifying
and closing the transferaiblity gap between unsupervised pretraining
and supervised pretraining, and (4) developing the efficient and unified
multi-task model that can handle and benefit from large-scale multitask
learning. Our major contributions include a new relative contrastive
loss, a unified learning framework of visual contrastive learning and
graph contratsive learning for unsupervised pertraining, an investiga-
tion of the transferability gap between supervised and unsupervised pre-
training framework and a new multitask supervised pretraining frame-
work to effecively tackle task conflicts. Our extensive and rigorous ex-
periemnts demonstrate the effectiveness of the proposed methods in im-
proving performance of large-scale pretraining on image datasets.

1.4 Thesis Outline

This thesis seeks to explore the challenges found in current methods of
large-scale visual pre-training, while also introducing innovative solu-
tions to these problems. The structure of this thesis is outlined over seven
chapters. Chapter 1 offers a broad introduction to the subject of large-
scale visual pre-training, while Chapter 2 delves into a comprehensive
review of existing literature on the topic. The following chapters, from 3
to 6, introduce four distinct methods aimed at enhancing large-scale pre-
training and venturing into novel research areas. Chapter 7 encapsulates
a summary and conclusion of the proposed methods.

Chapter 2. Literature Review. In this chapter, we provide an in-depth
review of the background information relevant to this thesis, including
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learning pipelines and objective function for unsupervised learning, su-
pervised multitask learning and task adaptation techniques that are cru-
cial for large-scale visual pretraining. This information will help readers
better understand the subsequent chapters.

Chapter 3. Improved Unsupervised Pretraining by Relative Contrastive
Loss. In this chapter, we present a relative contrastive loss, the first
method respecting the relative nature of positive/negative concepts in
the real world. Motivated by the ability of humans in recognizing rel-
atively positive/negative samples, we propose the Relative Contrastive
Loss (RCL) to learn feature representation from relatively positive/negative
pairs, which not only learns more real world semantic variations than the
single-instance-positive methods but also respects positive-negative rel-
ativeness compared with absolute prototype-positive methods. The pro-
posed RCL improves the linear evaluation for MoCo v3 on ImageNet.

Chapter 4. Unified Unsupervised Pretraining Pipeline and Improved
Data Augmentation from a Graph Perspective. In this chapter, we
propose to Unify existing unsupervised Visual Contrastive Learning meth-
ods by using a GCN layer as the predictor layer (UniVCL), which de-
serves two merits. First, by treating different designs of predictors in
the existing methods as its special cases, our fair and comprehensive ex-
periments reveal the critical importance of neighborhood aggregation in
the GCN predictor. Second, by viewing the predictor from the graph
perspective, we can bridge the vision self-supervised learning with the
graph representation learning area, which facilitates us to introduce the
augmentations from the graph representation learning to unsupervised
object recognition and further improves the unsupervised object recogni-
tion accuracy. Extensive experiments on linear evaluation and the semi-
supervised learning tasks demonstrate the effectiveness of UniVCL and
the introduced graph augmentations.

Chapter 5. Improved Transferability of Supervised Pretraining from
an MLP Perspective. In this chapter, we revisit the difference in trans-
ferability between unsupervised and supervised pretraining from the
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standpoint of a multilayer perceptron (MLP). We identify the MLP pro-
jector as a crucial component for better transferability in unsupervised
pretraining methods. To bridge the transferability gap, we introduce
an MLP projector before the classifier in supervised pretraining, result-
ing in improved intra-class variation of visual features, reduced distri-
bution distance between pretraining and evaluation datasets, and de-
creased feature redundancy. Experiments reveal that implementing an
MLP projector can significantly enhance the transferability of supervised
pretraining, achieving a +7.2% increase in top-1 accuracy on concept
generalization tasks, a +5.8% rise in top-1 accuracy for linear evaluation
on 12-domain classification tasks, and a +0.8% gain in Average Precision
(AP) on the COCO object detection task. This development makes su-
pervised pretraining comparable or even superior to unsupervised pre-
training.

Chapter 6. Improved Extreme Multitask Supervised Pretraning for
Human-Centric Perception. In this chapter, we propose to alleviate the
significant task conflicts for pretraining various human-centric tasks in
a multitask supervised manner. To learn both coarse-grained and fine-
grained knowledge in human bodies, we further propose a Projector
AssisTed Hierarchical pretraining method (PATH) to learn diverse knowl-
edge at different granularity levels. Comprehensive evaluations on Hu-
manBench show that our PATH achieves new state-of-the-art results on
17 downstream datasets and on-par results on the other 2 datasets.

Chapter 7. Conclusion and Future Work. In this chapter, we summa-
rize all contributions and propose promising research directions in the
future based on my research in this thesis.
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Chapter 2

Literature Review

2.1 Large-scale Visual Unsupervised Pretraining

2.1.1 Contrastive based Unsupervised Pretraining

Single-instance-positive Methods Instead of designing new pre-text
tasks [48, 289, 178, 179, 22], recent unsupervised learning methods are
developed upon contrastive learning, which tries to pull the represen-
tations of different augmented views of the same sample/instance close
and push representations of different instances away [31, 101, 87, 35, 56,
38, 109, 83]. Contrastive methods require to define positive pairs and
negative pairs in an absolute way, which violates the relativeness of hu-
man recognition. This issue of previous contrastive methods strongly
motivates the need for relative-contrastive approaches that can reflect
the nature of relativeness when human recognize objects. We achieve
this goal by introducing a new relative contrastive loss. Instead of defin-
ing positive and negative pairs according to one absolute criterion, we
assign a sample pair positive or negative by a set of different criteria to
mimic the relative distinguish ability.

Clustering-based Methods. Instead of viewing each sample as an in-
dependent class, clustering-based methods group samples into clusters [22,
24, 287, 318]. Along this line, DeepCluster [22] leverages k-means assign-
ments of prior representations as pseudo-labels for the new representa-
tions. SwAV [24] learns the clusters online through the Sinkhorm-Knopp
transform [118, 28]. Our method is also related to these clustering-based
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methods in that we instantiate our relative contrastive loss with an on-
line hierarchical clustering. [23] leverages the hierarchical clustering to
tackle non-curated data [224], instead of tackling curated data, i.e., ImageNet-
1K, in our relative contrastive loss. However, these clustering-based
methods define positive and negative pairs explicitly. In our method,
a pair of samples can be partially positive, respecting the relativeness of
similarity between a pair of samples.

Neighborhood-based Methods. Neighborhood-based methods stand
the recent states-of-the-art methods in unsupervised learning. NNCLR [56]
replaces one of the views in single-instance-positive methods with its
nearest neighbor in the feature space as the positive sample. MSF [209]
makes a further step by using the k nearest neighbors in the feature space
as the positive samples. Neighborhood-based methods perform better
than single-instance-positive methods because they can capture more
class-invariances that cannot be defined by augmentations and better
than clustering methods because the query and the positive samples are
more likely to belong to the same class. Our work also consider neigh-
bors, but in a relative way.

2.1.2 Reconstruction based Unsupervised Pretraining

Inspired by BERT [47]’s Masked Language Modeling, Masked Image
Modeling (MIM) has gained popularity as a pretext task for visual rep-
resentation learning [7, 11, 86]. MIM aims to reconstruct masked tokens
from a corrupted input. Current MIM approaches can be categorized
into two groups based on their reconstruction targets. SimMIM [268]
suggests that raw pixel values of randomly masked patches are effec-
tive reconstruction targets, and pretraining can be accomplished with a
lightweight prediction head. In contrast, MAE [86] utilizes only the vis-
ible patches as input to the encoder, with mask tokens added between
the encoder and decoder. This asymmetric design significantly reduces
the computation overhead of the encoder. To further enhance the fea-
ture extraction capability of the encoder, CAE [34] explicitly separates
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the encoder and decoder by introducing a feature alignment module be-
tween them. Jean-Baptiste et al. [4] propose learning representations by
reconstructing original videos from synthetically mixed ones. Instead of
manually constructing the reconstruction target, the use of a network to
generate the reconstruction target has been widely employed. In such
cases, an image tokenizer is utilized to convert an image into visual to-
kens. BEiT adopts a pretrained discrete VAE (dVAE) [191, 195] as the tok-
enizer, but the original MSE loss in dVAE is inadequate for enforcing the
tokenizer to capture high-level semantics. PeCo [51] proposes applying
perceptual similarity loss during dVAE training to drive the tokenizer to
generate better semantic visual tokens, thereby enhancing pretraining.
Furthermore, the offline pretrained tokenizer in BEiT limits the model’s
adaptability. To address this issue, iBOT [311] suggests using an online
tokenizer to generate the visual tokens. Concurrent works explore the
use of MAE on hierarchical Vision Transformers. UM-MAE [139] pro-
poses a new masking strategy to adapt MAE for pretraining pyramid-
based ViTs (e.g., PVT [245], Swin [160]). GreenMIM [104] also adapts
MAE for hierarchical architectures, utilizing an optimal grouping algo-
rithm to partition local windows into equal-sized groups.

2.2 Large-scale Graph Unsupervised Learning

Recent years witness the development of deep learning on graphs [279,
157, 102, 240, 115], since the graph-structured is ubiquitous in numer-
ous domains, including e-commence [143], traffic [261], and knowledge
base [155]. The biggest challenge of self-supervised learning on graphs
lies in learning the topology information in the existing network. Con-
trastive learning methods are also cornerstones for self-supervised learn-
ing on graphs [215, 211, 239, 21, 193]. In particular, the contrastive loss
uses two different augmented views of the same graph as the positive
samples to maximize their mutual information. Typical augmentation
methods include Node Feature Masking [102, 317], Edge Modification [103,
278], and Graph Diffusion [117, 85]. However, self-supervised Learning
on graph has not been investigated for unsupervised object recognition.
In this thesis, by incorporating GCN layers as the predictor in the deep
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models for object recognition, we can introduce and verify the effective-
ness of graph augmentations that are widely adopted in the graph self-
supervised learning on the unsupervised object recognition.

2.3 Large-scale Visual Supervised Pretraining

2.3.1 Transferability Gap between Supervised Pretrain-

ing and Unsupervised Pretraining

Supervised ImageNet pretraining, which combines the ImageNet dataset [45]
with deep neural networks [124], has demonstrated the ability to learn
generic representations that benefit various applications, including high-
level detection [76, 200], segmentation [162], low-level texture synthe-
sis [69], and style transfer [70]. Remarkably, ImageNet pretraining has
shown excellent performance even in domains with significant domain
gaps, such as medical imaging [174] and depth estimation [152]. Ex-
tensive research has been conducted to investigate the transferability of
ImageNet pretrained networks [3, 8]. Studies have also quantified the
transferability across different layers of neural networks for image classi-
fication [275], revealing that reducing the dataset size has only a modest
impact on transfer learning using AlexNet [105]. Furthermore, a corre-
lation has been observed between ImageNet classification accuracy and
transfer performance [121], and the benefits of ImageNet pretraining be-
come marginal when the target task has sufficient data [88].

In addition to ImageNet transfer, efforts have been made to under-
stand the structures and relationships between tasks in general trans-
fer learning [205, 206]. Taskonomy [284] constructs a relation graph en-
compassing 22 visual tasks and systematically explores task similarities.
Task cooperation and competition have been quantitatively measured
in [210] to enhance transfer learning. Negative transfer has been ob-
served in cases of task misalignment [251], and the number of shared
layers among tasks depends on their similarity [234]. Alternative meth-
ods have also been proposed to measure task structure and similarity in
other works [57, 231].
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While existing studies predominantly focus on supervised pretrain-
ing for transfer learning, our research centers on analyzing transfer learn-
ing based on unsupervised pretraining, particularly contrastive learning
with the instance discrimination task [54, 259, 87, 31]. Over the years,
significant progress has been made in the research community regard-
ing self-supervised learning [48, 49, 289, 75, 74] and contrastive learn-
ing [181, 318, 226, 94, 298], narrowing the performance gap with su-
pervised learning for ImageNet classification. Recent works [79, 119,
23] have attempted to scale unsupervised learning to uncurated data
beyond ImageNet. Furthermore, several studies on contrastive learn-
ing [87, 171] report superior transfer results compared to supervised
counterparts for downstream tasks like detection, segmentation, and pose
estimation. However, the reasons behind the improved transfer learning
performance achieved through contrastive pretraining are still not well
understood.

2.3.2 MLP in unsupervised learning methods

Adding a multilayer perceptron (MLP) projector after the encoder was
first introduced in SimCLR [32] and followed by recent unsupervised
learning frameworks [35, 80, 24, 267, 36, 33]. SimCLR claims that the
MLP can reduce the loss of information caused by the contrastive loss,
and various works [32, 35] have verified that the MLP projector can en-
hance the discriminative ability of unsupervised models on the unsuper-
vised image classification task, where unsupervised training and evalua-
tion are conducted on the same dataset, e.g., ImageNet-1K. However, the
relation between the MLP and the transferability of unsupervised learn-
ing methods is under-explored. in this thesis, we reveal that the MLP
projector is also important for the desirable transferability of unsuper-
vised learning.

2.3.3 MLP in supervised learning methods

The typical supervised learning method only uses the cross-entropy loss
and shows inferior performance on various transfer tasks than recent
unsupervised learning methods. Inspired by [87, 24, 264, 56], recent
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researches [112, 108] introduced the contrastive loss equipped with an
MLP projector into supervised learning to improve its transferability.
Nonetheless, those works ignored the ablation on the MLP projector and
attributed the better transfer performance to the contrastive mechanism
in the loss. in this thesis, we propose that the MLP projector is impor-
tant for the improved transferability of recent supervised learning meth-
ods [112, 108], and further provide some empirical and theoretical anal-
ysis to justify its importance.

2.4 Multitask Supervised Pretraining

Multi-task pretraining has garnered significant attention within the re-
search community [156, 27, 16, 192, 81, 302, 248, 313]. A prevalent ap-
proach in multi-task pretraining involves the sharing of hidden layers
from a backbone model across different tasks, commonly referred to
as "hard-sharing" in the literature. However, it has been observed that
such sharing is not always advantageous and often leads to performance
degradation [281, 274, 252, 81]. To address this challenge, several lines of
research have emerged, each proposing different solutions.

One approach is the utilization of a split architecture with paral-
lel backbones for individual tasks [172, 156, 68]. For instance, Misra
et al. [172] introduced a cross-stitch module that intelligently combines
task-specific networks, obviating the need for exhaustive search through
numerous architectures.

The second line of work focuses on optimizing the pretraining pro-
cess itself [281, 274, 252, 138]. For instance, Yu et al.[281] mitigate gra-
dient interference by directly modifying the gradients using a technique
known as "gradient surgery." Wang et al.[252] address interference by
de-conflicting gradients through projection. Li et al. [138, 144] employ
distillation to mitigate interference, although their approaches are con-
strained to retrained settings, specifically either single-task multi-source
or single-source multi-task scenarios.
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Another direction of research aims to develop systematic techniques
for determining which tasks should be jointly trained in a multi-task
neural network to avoid harmful conflicts between unrelated tasks [65,
12, 14, 125, 1]. While these methods focus on improving the individ-
ual task performances through multi-task learning, they do not explic-
itly consider the transfer performance on downstream tasks. In a re-
lated study, Polyvit [147] applies a vision transformer to multiple modal-
ities, achieving impressive performance. However, it solely addresses
the classification task for the image modality and relies on a simplis-
tic hard-sharing approach, leaving the challenges of multi-task learning
unresolved. Another recent work by Ghiasi et al. [73] adopts a semi-
supervised learning approach and constructs cross-task pseudo-labels
with task-specific teachers, creating a comprehensive multi-task dataset
for pre-training. Nevertheless, this work only considers the single-source
setting, and its student training still adheres to a hard-sharing regime.
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Chapter 3

Improved Unsupervised
Pretraining by Relative
Contrastive Loss

3.1 Introduction

The emerging developments in the field of visual representation learn-
ing have underscored the superior capabilities of unsupervised learn-
ing, also denoted as self-supervised learning in certain studies [31, 87,
259]. These methodologies enable the understanding of visual represen-
tations without necessitating manual annotations [2, 186, 48, 113, 127,
288, 267, 220]. Contrastive learning, which lies at the core of recent
unsupervised learning techniques, simultaneously optimizes deep net-
works by minimizing the distance between representations of positive
pairs and enlarging the distance between negative pairs in the latent fea-
ture space [101, 87, 35, 37, 31, 259, 318, 80, 285, 36].

One of the pivotal aspects of contrastive learning methods is the con-
struction of positive and negative pairs. Single-instance-positive meth-
ods such as MoCo [87, 35], SimCLR [31, 33], and BYOL [80], utilize ran-
dom image augmentations to derive different views of the same sample
as positive pairs, optionally considering the augmentations of other sam-
ples as negative pairs. Yet, such augmentations fail to provide positive
pairs with natural intra-class variances. Clustering-based methods [24,
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Figure 3.1: Motivation of the Relative Contrastive Loss. Left: Blue, pur-
ple and, orange rectangles denote vehicles, sailing vessels, and trimaran,
respectively. The concepts of vehicles, sailing vessels, and trimarans
show that the concepts of two images belonging to the same category
depend on the level of hyponymy, motivating us to conduct relative con-
trastive learning in this chapter. Right: Any image pair in relative con-
trastive loss is determined positive or negative by multiple criteria.

22] and neighborhood-based methods [56, 209] mitigate these shortcom-
ings by employing prototypes of pseudo-classes generated by cluster-
ing or k-nearest neighbors in the feature space as the positive samples.
Nevertheless, these methods absolutely delineate positive and negative
pairs, disregarding the relative nature of these concepts.

Contrasting previous self-supervised learning methods which di-
chotomously construct positive and negative pairs, human beings ex-
hibit an ability to discern relative similarities. The Linnaean taxonomy
system, developed by Swedish botanist Carl Linnaeus, elucidates the
relative similarity of biological organisms across seven hierarchies [58].
Similarly, renowned benchmarks in computer vision such as ImageNet [45],
iNat21 [233], and Places365 [309], respect the relative positiveness-negativeness
and encompass hierarchical labels.



3.2. Background: Contrastive Learning 23

In response to this, the present study proposes a ground-breaking
method for self-supervised learning that accounts for the inherent rela-
tivity in human recognition. The authors introduce a relative contrastive
loss, which recognizes a sample pair as partially positive and negative
based on a set of semantic criteria to capture real-world instance varia-
tion in a relative manner (Fig. 3.1(right)). This method involves inputting
two images (query and key) into an encoder and momentum encoder
to extract their corresponding features. The relatively positive-negative
relations among these features are then determined by a set of criteria
instantiated by hierarchical clustering, with each level in the clustering
considered as a specific criterion. The proposed relative contrastive loss
utilizes the query feature, the key feature, and their relatively positive-
negative relations to supervise the training process.

The central contributions of this study are two-pronged. First, the
authors introduce the innovative concept of relative contrastive loss for
self-supervised learning. This concept represents a fresh approach to ad-
dressing the challenge of recognizing real-world instance variation. Sec-
ond, they devise a framework incorporating online hierarchical cluster-
ing to instantiate this novel concept. The effectiveness of the proposed
method is substantiated through a series of rigorous experiments. For
instance, during ImageNet linear evaluation, the proposed method sig-
nificantly enhances the top-1 accuracy of ResNet-50 by a gain of +2.0%
(73.8% → 75.8%) compared with MoCov3. Furthermore, the experi-
mental results underscore the efficacy of the proposed method for semi-
supervised classification, object detection, and instance segmentation.
This research thus adds a new dimension to the existing methodologies
in self-supervised learning, opening avenues for a more nuanced under-
standing of visual representation learning.

3.2 Background: Contrastive Learning

Given an input image x, two different augmentation parameters are em-
ployed to get two different images/views: image v and image v′ for
the query and the key branch, which output q = P(Q(v, θ), θp) and
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Figure 3.2: The pipeline of relative contrastive learning. In the key
branch, the feature ẑ′ after projection is used to search the relative keys
z′from the support queue by hierarchical clustering. For the feature z af-
ter projection in the query branch, we feed it into criterion-specific pro-
jectors to generate multiple predictions {qM1 , qM2 , ..., qMH}. Multiple
predictions, z and z′ are then fed into the relative contrastive loss LRCL.

z′ = K(v′, ξ), respectively. Here, Q and K respectively denote feature
transformations parameterized by θ and ξ. P is an optional predic-
tion [36, 80, 186] of z = Q(v, θ) implemented by MLP. The contrastive
loss is presented in InfoNCE [96], i.e.,

Lctr(x, θ) = − log

[
exp (q⊤z′)/τ

exp (q⊤z′/τ) + ∑K
k=1 exp (q⊤sk/τ)

]
, (3.1)

where S = {sk|k ∈ [1, K]} is a support queue storing negative features
and τ = 0.1 is the temperature. Contrastive loss pulls the features of the
query-key pair (q, z′) together and pushes features of the query-negative
pairs (q, sk) apart.
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3.3 Method

We are interested in defining a query-key pair (q, z′) positive or negative
relatively. Therefore we propose a relative contrastive loss and present
an instantiation by online hierarchical clustering method to achieve it.
Specifically, we generate a set of semantic criteriaM = {M1,M2, ...,MH}
(H denotes the number of criteria) to define (q, z′) positive or negative
by online hierarchical clustering (Sec. 3.3.3), and then compute our rela-
tive contrastive loss (Sec. 3.3.1). This loss (defined in Eq. 3.2) is obtained
by aggregating the vanilla contrastive losses in Eq. 3.1 with (q, z′) de-
fined as positive or negative by every semantic criterionMi inM.

Overview. As shown in Fig. 6.1, the relative contrastive learning has
the following steps.

Step 1: Image x to features z and ẑ′. Specifically, given two different
views (v, v′) of an image x, their projections can be computed by z =

Q(v, θ) and ẑ′ = K(v′, ξ). Following [87, 80], the query branchQ(∗, θ) is
a deep model updated by backward propagation, while the key branch
K(∗, ξ) is the same deep model as the query branch but with parameters
obtained from the moving average of Q(∗, θ).

Step 2: Key-branch features ẑ′ to retrieved features z′. On the key branch,
we retrieve key features z′ from the support queue S with multiple crite-
riaM implemented by hierarchical clustering (Sec. 3.3.3). On the query
branch, similar to [80, 36], we add criterion-specific predictors {P1,P2, ...,PH}
on z to get {qM1 , qM2 , ..., qMH}.

Step 3: Backpropagation using the relative contrastive loss. The retrieved
feature z′, multiple predictions {qM1 , qM2 , ..., qMH}, and whether (z, z′)
is positive or negative according to semantic criteria M (designed by
online hierarchical clustering in Sec. 3.3.3) are then fed into the relative
contrastive loss (Eq. 3.2).
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3.3.1 Relative Contrastive Loss

In conventional contrastive learning, the positive-negative pairs are de-
fined absolutely, i.e., only augmentations of the same image are consid-
ered as positive pairs. Motivated by the relative recognition ability of
human beings, we introduce a relative contrastive loss to explore the po-
tential of relative positive samples defined in diverse standards.

Semantic Criteria for Assigning Labels. For a set of semantic crite-
ria {M1,M2, ...,MH}, relative contrastive loss determines any given
query-key pair (z, z′) as positive or negative based on the criteria Mi

for i = 1, . . . , H. Denote Yi(z) and Yi(z′) respectively as the labels of
z and z′ generated using criterionMi. The query-key pair (z, z′) is de-
fined positive under Mi if Yi(z) = Yi(z′), and negative under Mi if
Yi(z) ̸= Yi(z′). Different from the vanilla contrastive loss in Eq. 3.1,
where z and z′ are generated by different views of the same sample and
naturally a positive pair, the z and z′ in the relative contrastive loss can
be generated by different samples and are considered positive or neg-
ative relatively. As an example in Fig. 3.1, the bicycle and the sailing
ship have the same label when the semantic criterion is whether they are
vehicles. Still, they have different labels when the semantic criterion is
whether they are sailing vessels.

With the semantic criteria and their corresponding labels defined
above, the relative contrastive loss is defined as

LRCL

(
z, z′, θ; {Mi}H

i=1

)
=

H

∑
i=1

αiL(z, z′, θ;Mi), (3.2)

where αi is trade-off parameter among different criteria. αi = 1/H in
our implementation. Loss L(z, z′, θ;Mi) in Eq. 3.2 for criterionMi can
be defined as

L(z, z′, θ;Mi)

= − log

[
I [Yi(z) = Yi(z′)] · exp (q⊤Mi

z′/τ) + I [Yi(z) ̸= Yi(z′)]

exp (q⊤Mi
z′/τ) + ∑K

k=1 exp (q⊤Mi
sk/τ)

]
,

(3.3)
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Figure 3.3: Analysis of the relative contrastive loss with multiple criteria.
Both P(z′|q) and Pc represent the probability that z′ and q have the same
label. The difference is that P(z′|q) is based on the cosine similarity of z′

and q, and Pc is based on the set of defined semantic criteria. Whether
to pull (q, z) together or push (q, z) apart is determined by P(z′|q)−Pc.
If P(z′|q)−Pc < 0, (q, z) should be pulled together. If P(z′|q)−Pc > 0,
(q, z) should be pushed apart.

where z = Q(v, θ), z′ = K(v′, ξ), sk is the feature in the support queue
S , K is the size of S and I(x) is an indication function, I(x) = 1 when x
is true, while I(x) = 0 when x is false. qMi = P(z, θi

p) is the output of
the criterion-specific predictor P(∗, θi

p) for the query projection z, which
is explained in the following.

Criterion-specific Predictor. Inspired by BYOL [80] and Simsiam [36],
the predictor layer aims to predict the expectation of the projection z un-
der a specific transformation. Therefore, we propose to use the multiple
criterion-specific predictors, each of which is to estimate the expectation
of z under its corresponding semantic criterion. Specifically, we add H
MLPs, forming predictors {P(∗, θ1

p), P(∗, θ2
p), ..., P(∗, θH

p )} after the pro-
jectors in the query branch.

3.3.2 Analysis of Relative Contrastive Loss

In this section, we mathematically illustrate how relative contrastive loss
supervises the feature distance between a query-key sample pair. We
will show the feature distance of a image pair with higher possibility of
being positive should be smaller than that with lower possibility of being
positive.



28
Chapter 3. Improved Unsupervised Pretraining by Relative

Contrastive Loss

We derive the gradient of our relative contrastive loss. The gradient
of
L(z, z′, θ;Mi) in Eq. 3.3 is

∂L(z, z′, θ;Mi)

∂z
=

∂qMi

∂z
∂L(z, z′, θ;Mi)

∂qMi

=
(
P
(
z′|qMi

)
−I
[
Yi(z) = Yi(z′)

]) ∂qMi

∂z
z′

τ

+
K

∑
k=1

∂qMi

∂z
P
(
sk|qMi

) sk
τ

,

(3.4)

where

P
(
z′|qMi

)
=

exp (q⊤Mi
z′/τ)

exp (q⊤Mi
z′/τ) + ∑K

k=1 exp (q⊤Mi
sk/τ)

, (3.5)

P
(
sk|qMi

)
=

exp (q⊤Mi
sk/τ)

exp (q⊤Mi
z′)/τ) + ∑K

k=1 exp (q⊤Mi
sk/τ)

. (3.6)

The P
(
z′|qMi

)
and P

(
sk|qMi

)
above are the conditional probabilities of

assigning the query prediction qMi to the label of projection z′ and the
label of negative samples sk. We skip the analysis to the query-negative
pair (z, sk) and focus on analyzing the dynamics between a uery-key
pair (z, z′). Therefore, we drop the terms (qMi , sk) in Eq. 3.4. When the
gradient above for L is considered for the loss LRCL defined in Eq. 3.2, z
is optimized by gradient descent with the learning rate γ as

z← z− γ

τ

H

∑
i=1

αi
∂qMi

∂z
(
P(z′|qMi)− I

[
Yi(z) = Yi(z′)

])
︸ ︷︷ ︸

η

z′.
(3.7)

When η > 0, z and z′ will be pushed apart, and when η < 0, z and z′

will be pulled together. Following [230], we assume that
∂qMi

∂z is positive
definite. Because γ, τ and αi are positive, we define

η′ =
H

∑
i=1

(
P(z′|qMi)− I

[
Yi(z) = Yi(z′)

])
, (3.8)
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which is the only term that determines the sign of η.

In the following, we focus on η′ for analyzing the dynamics of rela-
tive contrastive loss on network optimization in Eq. 3.7. We will reveal
that the relativeness of positive-negative samples is based on 1) the prob-
ability P(z′|qMi) of assigning the query prediction qMi to the label of
projection z′, and 2) the constructed criteria that determines the labeling
function Yi(·).

Single Criterion. When there is only one criterion for determining query-
key pairs positive or negative, i.e., η′ =

(
P(z′|qM1)− I [Y1(z) = Y1(z′)]

)
,

our method collapses to the typical contrastive loss which pulls positive
pairs close (I[Y1(z)=Y1(z′)] = 1, η′<0) and pushes negative pairs apart
(I [Y1(z) = Y1(z′)] = 0 and η′>0).

Multiple Criteria. When there are multiple criteria, to facilitate analy-
sis, we assume the criterion-specific predictors are identical Pi = P , i ≤
H and thus predictions qMi = q, i ≤ H are the same. With these as-
sumptions, Eq. 3.8 is modified as

η′ = H(P(z′|q)−Pc), (3.9)

where Pc = ∑H
i=1 I [Yi(z) = Yi(z′)] /H is possibility of (z, z′) being la-

beled by the H criteria as positive pair. We show the difference between
the probability Pc define by the criteria and the probability P(z′|q) esti-
mated from the model, i.e., P(z′|q)−Pc, will adaptively determine the
relative decision of pushing or pulling. We use three different cases for il-
lustration (Fig. 3.3). (1) P(z′|q) = 0.50 and Pc = 0.66; (2) P(z′|q) = 0.75
and Pc = 0.66; (3) P(z′|q) = 0.50 and Pc = 0.05. In case (1), Pc is
large, i.e. most of the criteria label two samples as belonging to the same
class. But P(z′|q) = 0.5, i.e. the probability estimated from the learned
features for z and z′ belonging to the same class is not so high.

In this case, because the term η′ = H(P(z′|q)−Pc) is negative, gra-
dient descent will pull z towards z′. In case (2), since η′ = H(P(z′|q)−
Pc) > 0, the loss will pull z and z′ together. Comparing cases (1) and (2),
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the loss changes its behavior from pushing samples away to pulling to-
gether because of the change of P(z′|q). Cases (1) and (3) have the same
estimated probability P(z′|q). In case (3), most of the criteria label the
two samples as not belonging to the same class, i.e. Pc = 0.05, and the
loss will push z and z′ away. Comparing cases (1) and (3), if the probabil-
ity Pc defined by the criteria changes from high to low, the loss changes
its behavior from pulling feature close to pushing features away.

3.3.3 Criteria Generation

We introduce an implementation of the semantic criteriaM1:H ={M1,M2, ...,MH}
used in the relative contrastive loss, where Mh is used for defining a
query-key pair (z, z′) to be positive or negative. The criteria are imple-
mented by online hierarchical clustering, which constrains the relative-
ness among different criteria with a hierarchy relationship, i.e., M1 ⊂
M2 ⊂ ... ⊂ MH (if Yh(x) = Yh(x′), then Yj(x) = Yj(x′), ∀j > h). At
hierarchical clustering level h, a query-key pair (x, x′) in the same cluster
are consider to be positive pair, i.e., Yh(x) = Yh(x′). Inspired by [307],
the implementation of hierarchical clustering is required to conform with
the following property.

Online Cluster Refinement Stage. Initial clusters are not accurate due
to the poor representations, and therefore need to be progressively ad-
justed along with the feature optimization. As illustrated in Fig. 3.4, for
each training iteration t, the cluster refinement is conducted from the
bottom to the top level, where a cluster contains the most samples. We
take i-th cluster Ch+1

i at (h+1)-th level to elaborate the process of cluster
split and merge.

Cluster Split. Cluster split aims to divide a cluster Ch+1
i into several smaller

but more accurate clusters. To conform with the cluster preserve prop-
erty, the basic units considered for splitting Ch+1

i are clusters in h-level
whose samples all belong to Ch+1

i , i.e, U h+1
i = {Ch

j |Ch
j ⊂ C

h+1
i , j = 1, . . . , kh},

where kh is the number of clusters in Hh. Each unit in U h+1
i is a cluster.

When splitting Ch+1
i into m smaller clusters (m < kh), m most dissimilar
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Figure 3.4: Online hierarchical clustering. The label refinement at (h+1)-
th level from the t-th to the (t+1)-th iteration is constrained by labels at
h-th level and (h+2)-th level. The clusters at the h-th level are the basic
units for cluster split at the (h+1)-th level, and the clusters at the (h+2)-
th level provides a boarder to identify clusters at the (h+1)-th level that
may be merged.

split units in U h+1
i are selected using the density peak selection algo-

rithm [194] as the prototype of m different clusters, each of which con-
tains one selected unit. The remaining units in Ui are merged to the m
clusters according to their nearest prototype or label propagation [159].
With this procedure, cluster Ch+1

i is split into a set containing m divided
clusters, denoted by Dh+1

i = {D′h+1
i,j }

m
j=1.

Cluster Merge. Cluster merge aims to merge the divided clusters Dh+1
i

and clusters at level h+1 if they are highly possible to one cluster. To
conform with the cluster preserve property, we can only try to merge
the clusters belonging to the same cluster Ch+2

pa(i) at the (h+2)-th level,

where Ch+2
pa(i) ⊃ C

h+1
i (clusters circled by the merge boarder in Fig. 3.4).

Therefore, we construct a set of clusters that may be merged as Vh+1
i ={⋃

j Ch+1
pa(j)=pa(i)

}⋃Dh+1
i , and all elements in Vh+1

i belong to the same

cluster Ch+2
pa(i). As shown in Fig. 3.4(Cluster merge), to merge clusters in

Vh+1
i , we compute the possibility of two clusters belonging to the same
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class, i.e., according to the distance of cluster centers or label propaga-
tion [96] (in Appendix C). Clusters whose possibilities of belonging to
the same cluster are larger than a hyper-parameter σm will be merged.

3.4 Experiment

3.4.1 Implementation Details

Architecture. Our architecture is similar to MoCo-v2 and MoCo-v3.
Compared with MoCo-v2, we use the symmetric loss proposed in BYOL [80]
and add predictors after the projector in the query branch. Compared
with MoCo-v3, we construct a negative queue as MoCo-v2. Specifi-
cally, we use ResNet-50 as our encoder following the common imple-
mentations in self-supervised learning literature. We spatially average
the output of ResNet-50 which makes the output of the encoder a 2048-
dimensional embedding. The projection MLP comprises 3 fully con-
nected layers with output sizes [2048, 2048, d], where d is the feature di-
mension applied in the loss, d = 256 if not specified. The projection MLP
is fc-BN-ReLU for the first two MLP layers, and fc-BN for the last MLP
layer. The architecture of the MLP predictor is 2 fully-connected layers of
output size [4096, d], which can be formulated as f c2(ReLU(BN( f c1))).

Training. For fair comparison, we train our relative contrastive learn-
ing method on the ImageNet2012 dataset [45] which contains 1,281,167
images without using any annotation or class label. In the training stage,
we train for 200, 400 and 800 epochs with a warm-up of 10 epochs and
cosine annealing schedule using the LARS optimizer [276] by the relative
contrastive loss Eq. 3.2. The base learning rate is set to 0.3. Weight decay
of 10−6 is applied during training. As is common practice, we do not
use weight decay on the bias. The training settings above are the same
as BYOL. We also use the same data augmentation scheme as BYOL. We
set temperature τ for loss computation in Eq. 3.2 to 0.1.
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Method ImageNet 1% ImageNet 10%

Top1 Top5 Top1 Top5

Supervised baseline [286] 25.4 48.4 56.4 80.4

Pseudo label [128] - - 51.6 82.4
UDA [266] - - 68.8† 88.5†
FixMatch [208] - - 71.5† 89.1†
MPL [185] - 73.5† - -

InstDisc [259] - 39.2 - 77.4
PCL [132] - 75.6 - 86.2
SimCLR [31] 48.3 75.5 65.6 87.8
BYOL [80] 53.2 78.4 68.8 89.0
SwAV (multicrop) [24] 53.9 78.5 70.2 89.9
Barlow Twins [285] 55.0 79.2 69.7 89.3
NNCLR [56] 56.4 80.7 69.8 89.3
RCL (Ours) 57.2 81.0 70.3 89.9

Table 3.2: Comparison with the state-of-the-art methods for semi-supervised learn-
ing. Pseudo Label, UDA, FixMatch and MPL are semi-supervised learning methods.
† denotes using random augment [43]. We use the same subset as in SwAV.

3.4.2 Comparison with State-of-the-art Methods

Linear Evaluations. Following the standard linear evaluation proto-
col [259, 318, 87, 35], we train a linear classifier for 90 epochs on the
frozen 2048-dimensional embeddings from the ResNet-50 encoder using
LARS [276] with cosine annealed learning rate of 1 with Nesterov mo-
mentum of 0.9 and batch size of 4096. Comparison with state-of-the-art
methods is presented in Tab. 3.1. Firstly, our proposed RCL performs
better than other state-of-the-art methods using a ResNet-50 encoder
without multi-crop augmentations. Specifically, RCL improves MoCo
v2 by 4.7% and MoCo v3 by 2.0%, which generates positive samples by
implementing a different augmentation on the query image. Further-
more, our method is better than InfoMin Aug., which carefully designs
the “good view” in the contrastive learning for providing positive sam-
ples by 2.8%. The significant improvements empirically verifies one of
our motivations: manually designed augmentations cannot cover the vi-
sual variations in a semantic class. Compared with other state-of-the-art
methods, our method also achieves higher performance than BYOL by
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1.5%. Clustering-based methods, e.g., SwAV [24], and nearest-neighbor-
based methods go beyond single positives. Clustering-based methods uti-
lize cluster prototypes as positive samples. However, our method also
achieves 4.0% improvement without multi-crop augmentation. SwAV
leverages an online clustering algorithm and uses only its cluster centers
as its positives, which ignores the relative proximity built by our rela-
tive contrastive loss. NNCLR [56] is the recent state-of-the-art method,
which utilizes the nearest neighbor as the positive sample. Our method
is better than NNCLR at 200 epochs are comparable at 800 epochs be-
cause NNCLR defines positive samples without relativeness. Further-
more, our RCL can be the same as NNCLR when we set only one crite-
rion and only cluster the nearest neighbor. We also compare our method
with existing methods in various epochs, presented in Fig 3.5 (a). Our
method performs better than SimCLR, Simsiam, MoCo-v3 and BYOL for
200, 400, and 800 epochs.

Semi-Supervised Learning Evaluations. To further evaluate the effec-
tiveness of the learned features, we conduct experiments in a semi-supervised
setting on ImageNet following the standard evaluation protocol [33, 31],
thus fine-tuning the whole base network on 1% or 10% ImageNet data
with labels without regularization after unsupervised pre-training. The
experimental results are presented in Tab. 3.2. Firstly, our method out-
performs all the compared self-supervised learning methods with the
semi-supervised learning setting on ImageNet 1% subset, even when
compared with the SwAV method with strong multi-crop augmentation
(our RCL does not use multi-crop augmentation). Second, in the Im-
ageNet 10% setting, our method still results better than most popular
self-supervised learning methods, such as SimCLR, BYOL, Barlow Twins
and NNCLR. The results indicate the good generalization ability of the
features learned by our relative contrastive loss.

Transfer to Detection and Segmentation Tasks In this section, we pro-
vide the detection and segmentation results1, when we transfer our model

1These experiments are not the improved version of the method RCL, just the gen-
eralization ability evaluation of the method.
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Method Object Detection Instance Segmentation

AP-all bb AP-50 bb AP mk AP-50 mk

Supervised 38.2 58.2 33.3 54.7
MoCo v2 39.3 58.9 34.4 55.8
SwAV 37.9 57.6 33.1 54.2
Simsiam 39.2 59.3 34.4 56.0
Barlow Twins 39.2 59.0 34.3 56.0
RCL 39.3 59.1 34.3 56.1

Table 3.3: Transfer learning from ImageNet with standard ResNet50 to
COCO object detection and instance segmentation. All methods are eval-
uated on the test-dev dataset. bb: bounding box. mk: segmentation
mask.

to detection and segmentation tasks. We strictly follow the evaluation
protocol in MOCO [87]. Specifically, we do not freeze the batch normal-
ization layer, and finetune the whole network by the COCO training set.
We report the results on the COCO evaluation dataset in Table 3.3.

3.4.3 Ablation Study

Default Settings. The size of the support set S is set to be 1.5× 216 and
the batch size of our algorithm is 4096. We train for 200 epochs with
a warm-up of 10 epochs. The learning rate is 0.3, and we leverage the
cosine annealing schedule using the LARS optimizer [276]. The results
in this section are tested by linear evaluations on ImageNet.

Different Clustering Methods. To illustrate the effectiveness of our
online hierarchical clustering method, we compare it with K-means and
DBSCAN. Because both K-means and DBSCAN are offline clustering
methods, we extract the features of all images in ImageNet-1K, and con-
duct clustering on these features before each epoch. For K-means, we
set the number of clusters to (250000, 500000, 1000000), where we verify
there are about 73.88% samples that conform to the hierarchy in Sec. 3.3.3.
For DBSCAN, we keep the minimum number of samples within r to 4,
and select r = 0.8, 0.7, 0.6 to construct hierarchical label banks, leading to
97.3% samples conforming the hierarchy. As shown in Tab. 3.5, we can
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No. #Predictors #Hierarchies Top1

1 1 1 70.2
2 1 2 71.3
3 1 3 71.8
4 1 4 71.4
5 3 3 72.6

Table 3.4: Ablation studies on multiple predictions and the number of
levels in the hierarchical clustering. #Predictors: number of criterion-
specific predictors. #Hierarchies: number of levels in the hierarchical
clustering.

see that K-means improves the NNCLR by 1.1%, which verifies the effec-
tiveness of relativeness. DBSCAN is better than K-means, which verifies
the effectiveness of the hierarchical labels. Our online hierarchical clus-
tering is better than above methods, because it can refine labels along
with network optimization, which avoids the problem that label refine-
ment is slower than network optimization when using offline clustering.
Our online hierarchical clustering is faster than offline clustering algo-
rithms, e.g., K-means and DBSCAN, because it only deals with samples
in the current mini-batch while K-means and DBSCAN needs to operate
on the whole dataset. Compared with NNCLR, our method is about 18%
slower but shows better performance on 200 epochs setting.

Number of Levels in Online Hierarchical Clustering. To assess the
effectiveness of relativeness, we ablate on a different number of levels in
the hierarchical label bank. As illustrated in Tab. 3.4, the top-1 accuracy
improves from 70.2% to 71.3% by 1.1% when we change the number of
levels, which indicates the adding relativeness can benefit the contrastive
learning in self-supervised image classification tasks. When we continue
to increase the number of levels, we can see the top-1 accuracy improves
by 0.5% from 2 levels to 3 levels but will decrease to 71.4% when we
change 3 levels to 4 levels. This phenomenon motivates us to design
more appropriate criteria for future work when implementing relative
contrastive loss in the feature.
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Method Hierarchy Online Top1 Time / Ep

No (NNCLR [56]) x x 70.7 659s
K-means low x 71.8 1056s
DBSCAN high x 72.3 986s

Online Hierarchical Clustering ✓ ✓ 72.6 776s

Table 3.5: Ablation studies on different clustering methods. Mixed pre-
cision time for training 1 epoch using 64 GeForce GTX 1080 Tis with 64
samples in each GPU is reported.

Multiple Predictors. Multiple predictors are used to predict the multi-
ple projection expectations {ET1(zθ), ET2(zθ), ..., ETH(zθ)} based on the
various image transformations that wilBl not change the label under dif-
ferent criteria. When implementing a single predictor after the projec-
tion, we actually impose to predict the expectation of the projection re-
gardless of the semantic criterion. When using multiple predictors, we
impose each predictor to predict the projection expectation based on the
image transformation that will not change the label under a specific cri-
terion. Comparing Exp. 3 and Exp. 5 in Tab. 3.4, we can conclude that
multiple predictors can outperform single predictor by 0.7%.

Size of Support Queue. Similar with MoCo that utilizes a memory
bank to store the representations of other samples, our method has a sup-
port queue to provide diverse image variations. We evaluate the perfor-
mance of our method with different support queue size in Fig. 3.5(b). As
can be observed, when the size of the support queue increases to 98304,
the performance of our method also improves, reflecting the importance
of using more diverse variation as positive samples. Specifically, increas-
ing the size from 65536 to 98304 leads to 0.36% top-1 accuracy improve-
ment. However, further increasing the size of the support queue does
not provide further improvement.

Sensitivity to Augmentations. Previous methods leverage the manu-
ally designed augmentations to model the visual variation between a
semantic class, and therefore augmentations are very critical to their
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σm num of clusters (H=3) linear evalutaion

0.10 32 15.4
0.30 565 37.2
0.40 2752 43.2
0.50 5253 64.3
0.55 8795 70.9
0.60 9321 72.6
0.70 23246 72.3
0.80 38842 72.2
0.90 89642 71.5

Table 3.6: Sensitivity of Cluster Merge Threshold σm

self-supervised learning methods. In contrast, we utilize similar sam-
ples/images in the dataset to be positive samples. As illustrated in Fig. 3.5(c),
Our proposed RCL is much less sensitive to image augmentations when
compared with SimCLR and BYOL.

Sensitivity of the Cluster Merge Threshold σm. The cluster merge thresh-
old is a hyper-parameter and determines when two clusters can be merged.
In this part, we analysis the influence of σm to the model’s performance
under the linear evaluation setting. To ease the hyper-parameter tuning
process, we simply set the merge threshold the same throughout all lev-
els in the hierarchical clustering. As can be observed in Table 3.6, when
σm is small, there are only a few clusters in the last level and the linear
classification results are very bad. We attribute the failure to too many
samples wrongly grouped in same cluster. Even when we set σm = 0.4
(the number of clusters equal to 2752), when linear evaluation results are
still poor, which indicates the large number of noisy labels in the hierar-
chical label bank. The model achieves best performance when setting σm

to 0.6, which leads to a moderate cluster size compared to σm = 0.1 and
σm = 0.9. The results demonstrate that it is important to make a good
balance between learning more diverse semantic variance and maintain
suitable discriminative ability. Besides, we also observe that the accu-
racy change is small when the threshold σm is larger than 0.55, showing
that the model is not sensitive to the value of σm when it is large enough.
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No. #Predictors #Hierarchies LP Acc

1 1 1 Yes 70.2
2 1 2 Yes 71.3
3 1 2 No 68.5
4 1 3 Yes 71.8
5 1 3 No 65.5
6 1 4 Yes 71.4
7 1 4 No 67.8
8 3 3 Yes 72.6

Table 3.7: The effectiveness of using label propagation and number of
hierarchies.

Clusters with Different Epochs. To explore how the number of clus-
ters changes with the increase of training epochs, we depict the number
of clusters in the support set S with different training epochs in Fig-
ure 3.6. We find the number of clusters decreases consistently during
the network training, which demonstrates that the network can learn
semantic knowledge from the dataset. Besides, with the increase of hi-
erarchical level, the number of clusters decrease, which obeys the cluster
preserve property of the hierarchical label. To further understand the pro-
cess of hierarchical clustering, we illustrate the clustering results of the
support set S in Figure 3.7. As shown in the figure, positive samples
at lower hierarchical level (e.g. H = 1) are more similar to each other,
while positive samples at higher hierarchical level (e.g. H = 3) are more
dissimilar to each other visually and semantically. For example, at epoch
200, the H = 1 positives share the same color, shape, and semantic mean-
ing (mushroom) with query image, but the H = 3 positives only share
the similar shape with the query image but have different colors and
possibly different semantic meanings (mushroom v.s. rockets). With the
increase of training epochs, samples in the same hierarchical level are
more similar to each other visually and semantically, because the CNN
features are learned better..
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Number of Classes with Different Epochs

Level1 Level2 Level3

query image

Epoch 30

Epoch 100

Epoch 200

H=1 positives H=2 positives H=3 positives

Figure 3.6: Left: Number of classes with different epochs. Blue line,
orange line and gray denote the number of clusters in the hierarchical
label bank at H = 1, H = 2 and H = 3, respectively. Right: Visu-
alization of positives samples at different levels in the hierarchical la-
bel bank. Comparing with images in the hierarchical label at different
epochs (epoch=30, 100, 200), the samples in the hierarchical label bank
at all levels are becoming more and more visually similar with the query
image. When we focus on the samples in only one epoch, we find that
with the increase of level of the hierarchical label bank, the number of
images increases, the images are less visually similar to the query image
than those in the hierarchical label bank at relative low levels. Specif-
ically, we find H = 1, 2 positives are more similar to the query image
than H = 3 positives.
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3.5 Limitations and Conclusions

In this chapter, we propose a new relative contrastive loss for unsuper-
vised learning. Different from the typical contrastive loss that defines
a query-key pair to be positive or negative, relative contrastive loss can
treat a query-key pair relatively positive, which is measured by a set of
semantic criteria. An online hierarchical clustering in our method instan-
tiates the semantic criteria. Representations learned by the relative con-
trastive loss can capture diverse semantic criteria motivated by human
recognition and better fit the relationship among samples. Extensive re-
sults on self-supervised learning, semi-supervised learning, and transfer
learning settings show the effectiveness of our relative contrastive loss.
While our relative loss primarily benefits from multiple criteria, the op-
timal criteria design is still under-explored.
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Chapter 4

Unified Unsupervised
Pretraining Pipeline and
Improved Data Augmentation
from a Graph Perspective

4.1 Introduction

Self-supervised learning (SSL) has recently been a focal point of research
within the computer vision discipline, with an array of pertinent studies
emerging in this sphere [2, 186, 48, 113, 127, 288, 267, 253]. One par-
ticular framework that has emerged as central to modern unsupervised
learning methodologies is contrastive learning [101, 87, 35, 37, 31, 259,
318, 80, 285, 36]. It aims to minimize the distance between augmented
views of the same image (positive samples) while maximizing distance
between different images (negative samples), offering a compelling po-
tential to elicit robust visual representations that rival those obtained via
supervised learning. Moreover, this approach has proven superior per-
formance in various visual tasks when models are pretrained without
labels.

Recent contrastive SSL methodologies typically employ a Siamese
architecture bifurcated into online and target branches. Each branch
comprises a backbone, a projector layer, and optionally, a predictor layer.
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Although there is a degree of uniformity across the backbone and projec-
tor layer processes in these works, there are pronounced discrepancies in
their predictor layer designs, as depicted in Fig. 4.1(a-d).

In essence, four types of predictor layers have been identified: 1)
SimCLR [31], MOCOv1 [87], MOCOv2 [35], which do not apply any op-
eration post the projector layer, thereby being mathematically analogous
to an identity layer as the predictor; 2) BYOL [80], SimSiam [36], and
MOCOv3 [37], which utilize an MLP predictor on the online branch; 3)
DINO [25], SEED [62], and TWIST [241] leverage a softmax layer on both
online and target branches; and 4) cutting-edge methodologies such as
NNCLR [56] and MSF [120] engage a K-nearest neighbor layer on the
target branch for contrastive learning. Although these designs appear
vastly dissimilar in their representational learning approaches, they can
potentially be consolidated into a unified framework with the aid of
graph neural network-based modifications to predictor design.

In light of these observations, we propose the Unified Vision Contrastive
Learning (UniVCL) framework. This model comprehensively represents
the four types of contrastive-based SSL methodologies identified above,
as seen from a graph-centric perspective. The projected feature and its
K nearest neighbors in the feature space are modeled as graph nodes
in our framework. The Graph Convolution Network (GCN) layer [114,
236, 269], with its self-loop term and neighborhood aggregation term,
can formulate diverse predictor designs as its specialized variant (refer
to the second row of Fig. 4.1). The identity mapping, the MLP layer,
and the softmax layer can be construed as the self-loop term, differing
only in activation functions. In contrast, the K-nearest neighbor retrieval
corresponds to the neighborhood aggregation term in the GCN layer.
From this perspective, we comprehensively evaluate different predic-
tor designs in extant methods, maintaining the same learning schedules,
data augmentations, and objective functions. Our meticulous and eq-
uitable experiments yield three notable observations. First, the neigh-
borhood aggregation term in the GCN layer significantly enhances lin-
ear evaluation performance by +2.1%. Second, the activation function
substantially influences linear evaluation performance, with non-linear
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activation functions resulting in approximately +0.4% performance gain
over identity activation functions. Lastly, the performance variance be-
tween different non-linear activation functions is negligible, given that
the other components of the GCN layer are well-engineered, suggest-
ing that the selection of the non-linear activation function is a relatively
insignificant factor.

Further, this graph-centric unified framework facilitates a link be-
tween vision SSL and graph SSL, the latter being another active research
area in SSL. This connection enables the exploration of the efficiency of
various pretext tasks in graph SSL for vision SSL. Specifically, the novel
data augmentation technique, namely, graph augmentation, proven ef-
fective in graph SSL, can be extended to vision SSL. Graph augmenta-
tion introduces feature variations in accordance with the graph struc-
ture, thereby regulating network optimization. Our investigation on
ImageNet-1K reveals that graph augmentation employing message pass-
ing throughout the network can bolster the efficiency of self-supervised
learning methods in image classification by +0.9%. Our comprehensive
analysis, employing the purity metric [120], confirms that these augmen-
tations introduce edge noise in the GCN predictor, consequently direct-
ing the encoder towards learning more robust image features.

In summation, our contributions can be categorized into three seg-
ments: (1) We introduce a general framework (UniVCL) to amalgamate
recent leading contrastive learning methodologies in the domain of vi-
sion SSL. (2) Through detailed and impartial experimental comparisons,
we underline the significance of the neighborhood aggregation term and
the non-linear activation function of the GCN layer in the UniVCL frame-
work. (3) Capitalizing on the graph design of UniVCL, we establish
a connection between vision SSL and graph SSL and introduce typical
graph augmentations into self-supervised image classification, a strategy
empirically validated to augment linear evaluation and semi-supervised
learning performances.
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Figure 4.2: The framework of UniVCL. It includes four steps. First,
Given an image x, two augmented views v1 and v are generated. Then
the features z1 and z2 are extracted by encoder Q(∗, θ) and Q(∗, θ′), re-
spectively. Second, we retrieve the K nearest neighborhood samples of
z1 and z2 from the support queue S , forming graph G(z1) and G(z2) re-
spectively. Then, we implement the graph augmentation on G(z1) and
G(z2), generating augmented graphs G̃(z1) and G̃(z2). Third, we input
the augmented graph into the GCN predictor layer, generating the pre-
dicted features q1 and q2. Last, we compute the alignment loss based
on q1 and q2. The encoder denotes both the backbone network and the
projector layer.
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4.2 UniVCL

We are interested in using the Graph Convolution Network (GCN) to
unify different predictor designs in different methods. Specifically, we
maintain a support queue S = {si|i ∈ [1, · · · , m]} ∈ Rm×d in the same
way as [56], where m is the size of the support queue, and d is the feature
dimension. We only use embeddings from the target view to update
the support set. As shown in Fig. 4.2, our proposed UniVCL has the
following steps.

Step1: Transform Image to Features. Specifically, given two different
augmented views (v1, v2) of an image x, the features of two views can
be computed by z1 = Q(v1, θ) and z2 = Q(v2, θ′), respectively. Follow-
ing [87, 80, 35, 37], the online branchQ(∗, θ) is a neural network updated
by backward propagation, while the target branch Q(∗, θ′) is a network
with the same architecture as the online branch but with parameters ob-
tained from the moving average of Q(∗, θ).

Step2: Graph Construction and Augmentation (Sec. 4.2.3). Give z1 and
z2 from Step 1, we respectively construct the fully connected graph G(z1)

and G(z2), where nodes in G(z1) and G(z2) are K nearest neighbors of
z1 and z2 in support queue S , respectively. Then we implement typi-
cal graph augmentations (Sec. 4.2.3) to generate the augmented graphs
G̃(z1) and G̃(z2).

Step 3: GCN Predictor (Sec. 4.2.1). The augmented graphs G̃(z1)

and G̃(z2) are respectively transformed to prediction features q1 and q2

through GCN predictors P(∗, ξ) and P ′(∗, ξ ′).

Step 4: Backward propagation using the alignment loss. Given the pre-
diction features q1 and q2, the parameters θ in Q(∗, θ) and the parame-
ters ξ, ξ ′ in P(∗, ξ), P ′(∗, ξ ′) are learned by using alignment loss. In our
design, the alignment loss is implemented as the contrastive, i.e.,

L = − log
exp(q⊤1 q2)

exp(q⊤1 q2) + ∑m
i=1 exp(q⊤1 si)

, (4.1)

where si is the feature stored in the support queue S .
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4.2.1 General Predictor Layers as GCNs

Since UniVCL appends the GCN predictor after the encoder Q and Q′,
we only analyze the GCN predictor P on the online branch. All analysis
below is applicable to the GCN predictor P ′ on the target branch.

Given the feature z1 obtained by Q, the input of the GCN layer is
defined as

G(z1) = (z1,N1(z1),N2(z1), ...,NK(z1)) (4.2)

where K is the number of samples retrieved from S , and Ni(z1) denotes
the features of the i-th nearest neighbor in the support queue S . The
GCN predictor q1 = P(G(z1)) can be represented as a stack of graph
convolution layers Fl, where l is the layer index, i.e., P(G(z1), θ) =

FL(FL−1 · · · (F2(F1(G(z1))))), where L is the number of stacked GCN
layers. Here, Fl is presented as

Fl+1 = Fl(Fl) = σl( WlAFl︸ ︷︷ ︸
neighborhood aggregation

+ W′lFl︸ ︷︷ ︸
self-loop

), (4.3)

where the affinities A = {ai,j} ∈ R(K+1)×(K+1), 0 ≤ i, j ≤ K are defined
as

ai,j =

{
Ni(z1)

⊤Nj(z1), i ̸= j,

0, i = j,
(4.4)

where ei,j is the affinity betweenNi(z1) andNj(z1), and we denoteN0(z1) =

z1.

4.2.2 Unifying Unsupervised Contrastive Learning

As UniGrad [222] has explored the equivalence of different objective
functions in the existing methods both theoretically and experimentally,
we focus on the predictor designs among these different self-supervised
learning methods.

As shown in Tab. 4.1 and Fig. 4.1(a-d), the predictor designs of differ-
ent self-supervised learning methods can be categorized into four types:
the identity predictor, the MLP predictor, the Softmax predictor, and the
nearest neighbor predictor. Based on the the formal formulation of a
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Method Venue Type Online Branch Target Branch

MOCOv2 Arxiv’21 a identity identity
SimCLR ICML’20 a identity identity
Barlow Twins ICML’21 a identity identity
MOCOv3 ICCV’21 b MLP identity
BYOL NeurIPS’20 b MLP identity
SimSiam CVPR’21 b MLP identity
DINO ICCV’21 c softmax softmax
SEED ICLR’21 c softmax softmax
TWIST Arxiv’21 c softmax softmax
NNCLR ICCV’21 d MLP K nearest
MSF ICCV’21 d MLP K nearest

Table 4.1: The implementation of predictor layer the existing self-
supervised learning methods. We omit the comparison of objective func-
tions in different methods because they are not the focus in this chapter.
The type number here denotes one of the four types described in Sec. 6.1
and Fig. 4.1(a-d).

graph convolution layer in Eq. 4.3, Tab. 4.2 shows that these different de-
signs are special cases of Eq. 4.3. The detailed derivation for Tab. 4.2 is
presented below.

The Identity Predictor (Fig. 4.1(a)). SimCLR [31] and MOCOv2 [35] do
not append an explicit predictor after the projector, which is mathemat-
ically equivalent to appending an identity predictor. In this case, the
predictor can be formulated as

Fl+1 = Fl. (4.5)

The formulation above can be obtained by setting σl = I, Wl = 0, W′l =
I in Eq. 4.3 for our unified graph convolution predictor. In this case,
the neighborhood aggregation term is ignored, and the self-loop term is
exactly the identity mapping.

The MLP Predictors (Fig. 4.1(b)). Popular unsupervised learning meth-
ods such as MOCOv3 [37], BYOL [80] and Simsiam [31] use MLP layers
as predictors. The typical MLP is a stack of fc-bn-relu layers (perception
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Method
activation neighborhood aggregation self-loop

σ existence A W existence W′

Identity I x - 0 ✓ I
Percepton ReLU(BN) x - 0 ✓ train
fc I x - 0 ✓ train
softmax Softmax x - 0 ✓ I
nearest neigh. I ✓ 1 I x 0

Table 4.2: Illustrate the simplification to different predictor layers based
the formal formulation of Graph Convolution predictor in Eq. 4.3.

layer), where fc-bn-relu layer can be formulated as

Fl+1 = ReLU(BN(W′lFl)). (4.6)

The fc-relu-bn above can be obtained by setting σl = ReLU(BN) in Eq. 4.3.
In this case, the neighborhood aggregation term is also ignored and only
the self-loop term is presented. Some unsupervised learning methods
such as MOCOv3, BYOL and Simsiam uses the fully-connected layer as
the last layer in the constructed MLP predictor, which can be obtained
by setting the activation function as the identity matrix, i.e., σl = I.

The Softmax Predictors (Fig. 4.1(c)). DINO presents a softmax predic-
tor to obtain the logits for the following KL-divergence loss. The softmax
operation can be presented as

Fl+1 = Softmax(W′lFl). (4.7)

The softmax predictor above can be achieved by setting σl = Softmax for
the graph convolution predictor (Eq. 4.3). In this case, the neighborhood
aggregation term is ignored and only the self-loop term is presented.

The K Nearest Neighbors Predictors (Fig. 4.1(d)). Recent states-of-the-
art methods treats the sample and its K nearest neighbors in the feature
space as the positive samples. Given Fl = (f0

l , f1
l , ..., fK

l ). The K nearest
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neighbor predictor can be presented as

fi
l+1 =

1
K
(N1(fi

l) +N2(fi
l) + ... +NK(fi

l))

=
1
K
(0, 1, 1, ..., 1)⊤(fi

l,N1(fi
l),N2(fi

l), ...,NK(fi
l))

=
1
K
(0, 1, 1, ..., 1)⊤(f0

l , f1
l , ..., fK

l )

=
1
K
(0, 1, 1, ..., 1)⊤Fl.

(4.8)

Therefore, the output of the l-th GCN predictor can be formulated as

Fl+1 =
1
K
(0, 1, 1, ..., 1)⊤(f1

l+1, f2
l+1, ..., fK

l+1) =
1
K
(0, 1, 1, ..., 1)⊤Fl+1. (4.9)

Compared with typical graph convolution layer (Eq. 4.3), the K-nearest-
neighbor layer can be obtained by setting σl = I and the affinity matrix
A = 1

K (0, 1, 1, ..., 1)⊤ ∈ R(K+1)×(K+1). In this case, only neighborhood
aggregation term is considered and the self-loop term is ignored.

4.2.3 Graph Augmentations for Unsupervised Visual Learn-

ing

To better take advantage of pretext tasks in graph contrastive learning,
the proposed GCN predictor layer leverages an augmented graph G̃(z1)

as the input [193, 316, 21, 239]. Given an input graph G(z) defined by
Eq. 4.2, we implement the typical graph augmentations in self-supervised
graph contrastive learning on G(z1), achieving G̃(z1) = (Ṽ , Ã) = (t(V), s(A)),
where t and s are augmentations on the node features V and affinities A,
respectively. After graph augmentation, we will change the input node
features and affinity as Ṽ and Ã in Eq. 4.3 as the input of the GCN pre-
dictor.

Node feature masking (NFM). As shown in Fig. 4.3, Node Feature
Masking (NFM) randomly masks the features of a portion of nodes within
G(z). In particular, we can completely mask seleceted feature vectors
with zeros, or partially mask a number of selected feature channels with
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NFM GDEMOriginal Graph 𝓖(𝐳)

Node features Masked Node features Masked Edges Edge Generated by Graph Diffusion

Figure 4.3: Graph augmentations. There are three typical graph aug-
mentations, i.e., node feature masking (NFM), edge modification (EM),
and graph diffusion (GD).

zeros. This operation can be formulated as

Ṽ = t(V) = M f ◦ V , Ã = s(A) = A, (4.10)

where M f is the feature masking matrix with the same shape of V , and
◦ denotes the Hadamard (element-wise) product. The elements in M f

are initialized to one and masking entries are 30% randomly assigned to
zero.

Edge modification (EM). Edge modification (EM) randomly drops the
affinities, which means setting the affinities to zeros. This process is for-
mulated as

Ṽ = t(V) = V , Ã = s(A) = Me ◦A, (4.11)

where Me is the edge dropping matrix, and ◦ denotes the Hadamard
product.

Graph diffusion (GD). Graph diffusion is also a type of affinity aug-
mentations, which injects the global affinity information to the given
affinity by recomputing the affinity with diffusion operations. The over-
all diffusion operation can be formulated as

Ṽ = t(V) = V , Ã = s(A) =
∞

∑
n=0

ΘnTn, (4.12)
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where Θn and T are weighing coefficient and transition matrix, respec-
tively. The diffusion above have two common instantiations: heat diffu-
sion [117, 223] and PPR diffusion [52, 67]. The heat diffusion formulates
Θn =

exp(−η)tn

n! , and T = AD−1, achieving Ã = exp(ηAD−1 − η)A,
where A is the affinity matrix, D is the diagonal degree matrix, η ∈ (0, 1)
is the diffusion time. The PPR diffusion formulates Θn = γ(1 − γ)n,
and T = D−1/2AD−1/2, achieving Ã = γ(I− (1− γ)D−1/2AD−1/2)A,
where γ ∈ (0, 1) is the teleport probability in random walk.

4.3 Experiment

4.3.1 Implementation Details

Architecture. Our architecture is similar to MOCOv2. Specifically, we
use ResNet-50 as our backbone following the common implementations
in the self-supervised literature. We spatially average pool the output of
ResNet-50 which makes the output of the feature transformation a 2048-
dimensional embedding. The projection layer is composed of 3 fully con-
nected layers having output sizes [2048, 4096, d], where d is the feature
dimension applied in the loss and d = 2048 if not specified. Besides,
batch normalization and ReLU activation function is employed in the
projection layer following other SSL works [37, 36, 80]. The architecture
of the predictor is the GCN layers, which is formulated in Eq. 4.3.

Training. For a fair comparison, we train our method on the ImageNet2012
dataset, which contains 1,281,167 images without using any annotation
or class labels. In the training stage, we train for 200 and 800 epochs with
a warm-up of 10 epochs and cosine annealing schedule using the LARS
optimizer. The base learning rate is set to 0.3. Weight decay of 10−6 is
applied during training. As is common practice, we do not use weight
decay on the bias. The training details above are the same as MOCOv2.
We also use the basic data augmentation scheme (i.e., random crop, color
jittering) as MOCOv2 and do not include the multi-crop strategy [24] for
a fair comparison with the most majority of works.
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drop probability NFM EM

0 71.9 71.9
0.1 72.1 72.0
0.3 72.1 72.2
0.5 71.3 71.7
0.7 70.1 70.5

Table 4.3: Ablation study of node feature masking and edge modifica-
tion with different drop probabilities.

4.3.2 Ablation study

Exploring the critical factors in GCN predictor. Previous self-supervised
learning methods have different predictor designs in activation func-
tions, and the using of neighborhood aggregation. For example, MO-
COv2 [35] and SimCLR [31, 33] uses the linear activation, MOCOv3 [37]
and BYOL [80] use the ReLU(BN) as the activation function in the on-
line branch, DINO [25] uses Softmax layer as the activation function.
Furthermore, the recent state-of-the-art methods, i.e., MSF and NNCLR,
retrieve the nearest neighbors in the feature space in the target branch,
which can be mathematically viewed as the neighborhood aggregation
as analyzed in Tab. 4.1. To strictly ablate the importance of different
components in the GCN predictor layer, we keep the batch size, objec-
tive function, learning rate schedule, optimizer exactly the same, and
then train the ImageNet-1K for 200 epochs. For the MLP predictor, we
stack three GCN layers as the common practice with ReLU(BN) being its
activation function except the last GCN layer.

Effectiveness of activation function σ. We have three findings from Tab. 4.4.
First, comparing Exp. (a) and Exp. (b,e), we can see that with a learn-
able transformation matrix W′, the non-linear activation is better than
the identity activation by about +0.9%, which is consistent with the find-
ing in MOCOv3 [37]. Second, the trainable transformation W′ plays an
important role when the activation function is ReLU(BN), but plays an
unimportant role when the activation function is Softmax and Identity
mapping. We consider the difference may result from the information
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Figure 4.5: Top-5 neighbor purity evolution by graph augmentations.

Method online branch target branch Linear eval

Exp. (i) No No 72.2
Exp. (j) No Heat Diffusion 72.6
Exp. (k) No PPR Diffusion 72.8
Exp. (l) Heat Diffusion Heat Diffusion 72.4

Exp. (m) PPR Diffusion PPR Diffusion 72.5
Exp. (n) Heat Diffusion PPR Diffusion 72.9
Exp. (o) PPR Diffusion Heat Diffusion 72.8

Table 4.4: Ablation study of different graph diffusion methods on the
online and target branches.
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loss of ReLU. Third, comparing Exp. (b) and Exp. (e), we find the per-
formance between the GCN layer with different activation functions are
quite small if other components are well-designed, which indicates the
activation function is a less important factor.

Effectiveness of neighborhood aggregation. Different from self-supervised learn-
ing methods that do not use supervision from other samples, neighbor-
hood based methods uses K nearest neighbors as their positive samples.
This can be achieved by using the neighborhood aggregation term in
Eq. 4.3 in GCN predictor. As shown in Tab. 4.4, we have three find-
ings. First, the linear evaluation performances of using neighboring in-
formation on the target branch are significantly higher than those self-
supervised learning methods by a considerable 2.1% gain by comparing
Exp. (b) and Exp. (f) . Second, comparing Exp. (f) and Exp. (g), we can
see adding the self-loop term in the target branch can only boost the per-
formance by 0.4%. Third, when adding the neighborhood aggregation
and self-loop term in both online branch and the target branch, the per-
formance can be further improved by 0.1%, which is not significant by
comparing Exp. (g) and Exp. (h).

Evaluating graph augmentation in unsupervised image classification.
Owing to the GCN predictor, we can naturally bridge the vision SSL with
graph SSL, which benefit us to introduce the graph augmentations on the
constructed graph G(z) before the GCN predictor. Refer to Tab. 4.4, we
use the Exp (h) as the baseline (using a GCN predictor in both online
branch and target branch) in this part and extend it with diverse graph
augmentations. Specifically, we explore the effectiveness of three com-
mon graph augmentations in the following.

Node feature masking (NFM) and Edge masking (EM). According to the mech-
anism of NFM and EM described in [157], we randomly remove the node
features or edges in both G(z) and G(z′) with different drop probabili-
ties. As shown in Tab. 4.3, the performance first increases from 71.9 to
72.1 with NFM and 72.2 with EM, respectively, when we increase the
dropping probability from 0 to 0.3. Further increasing the drop proba-
bility (e.g., to 0.7) will harm the performance. The results demonstrate
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that both node and edge masking graph augmentations are beneficial for
vision SSL with a proper drop probability.

Graph diffusion (GD). The graph diffusion propagates the global informa-
tion in the graph to affinities by diffusion. Based on the results about
masking-based augmentations, we further integrate the diffusion-based
augmentations with EM (drop probability is 0.3) and explore the in-
fluence of heat diffusion and PPR diffusion on both online and target
branches.

The experimental results are presented in Tab. 4.4. We can observe
that using graph diffusion to incorporate the graph information can sig-
nificantly improve the the performance baseline by 0.9%. In detail, both
heat diffusion and PPR diffusion can benefit vision SSL above the EM
augmentation. Besides, using graph diffusion in both branches is more
powerful than only using the diffusion in the target branch.

Analysis. In this section, we explain why the graph diffusion operation
can improve the unsupervised learning performance empirically. We
find the graph diffusion operation can correct the affinity of some visu-
ally different but semantically same samples in G(z). To better illustrate
this, we utilize the setting in Exp.(e). Inspired by [209], we compare the
top-5 purity in different epochs between the original 10-nearest graph
G(z2) and the 10-nearest augmented graph G̃(z2). The purity for a sin-
gle feature z is the percentage of N1 to NK in the top-K nearest neigh-
bors which have the same class as z. Final purity is calculated by aver-
aging the purities of all samples. The results are presented in Fig. 4.5.
We find the purity of top-5 nearest neighbor in the augmented graph is
higher than that in the original graph. By using affinity as the aggrega-
tion weight in GCN layer, we can conclude that the features can be ag-
gregated with more accurate neighbors by using graph augmentations
and therefore provided better target predictions for the online branch to
learn.
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Method Architecture epochs Top1 Top5

ODC [287] ResNet-50 100 57.6 -
InstDisc [259] ResNet-50 200 58.5 -
LocalAgg [318] ResNet-50 200 58.8 -
MOCOv2 [35] ResNet-50 200 68.6 -
MSF [209] ResNet-50 200 71.4 -
MSF w/s [209] ResNet-50 200 72.4 -
CPC v2 [93] ResNet-50 200 63.8 85.3
DINO [93] VIT-S/16 300 72.5 -
CMC [227] ResNet-50 240 66.2 87.0
Adco [186] ResNet-50 200 68.6 -
NNCLR [56] ResNet-50 200 70.7 -
UniVCL ResNet-50 200 72.9 -
PIRL [171] ResNet-50 800 63.6 -
MOCOv2 [35] ResNet-50 800 71.1 -
SimSiam [36] ResNet-50 800 71.3 90.7
SimCLR [31] ResNet-50 800 69.3 89.0
SwAV [24] ResNet-50 800 71.8 -
InfoMin Aug. [228] ResNet-50 800 73.0 91.1
BYOL [80] ResNet-50 1000 74.3 91.6
Adco [186] ResNet-50 800 72.8 -
Barlow Twins [285] ResNet-50 1000 73.2 91.0
MoCov3 [37] ResNet-50 800 73.8 -
NNCLR [56] ResNet-50 800 75.4 92.4
UniVCL ResNet-50 800 75.7 93.1

Table 4.5: Comparison with other self-supervised learning methods un-
der the linear evaluation protocol [87] on ImageNet. We omit the result
for SwAV with multi-crop for fair comparion with other methods.
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Method ImageNet 1% ImageNet 10%

Top1 Top5 Top1 Top5

Supervised [286] 25.4 48.4 56.4 80.4

Pseudo label [128] - - 51.6 82.4
UDA [266] - - 68.8† 88.5†
FixMatch [208] - - 71.5† 89.1†
MPL [185] - 73.5† - -

InstDisc [259] - 39.2 - 77.4
PIRL [171] - 57.2 - 83.8
PCL [132] - 75.6 - 86.2
SimCLR [31] 48.3 75.5 65.6 87.8
BYOL [80] 53.2 78.4 68.8 89.0
SwAV(multicrop) [24] 53.9 78.5 70.2 89.9
Barlow Twins [285] 55.0 79.2 69.7 89.3
NNCLR 56.4 80.7 69.8 89.3
UniVCL 58.6 81.8 71.8 91.4

Table 4.6: Comparison with the state-of-the-art methods for semi-supervised learn-
ing. Pseudo Label, UDA, FixMatch and MPL are semi-supervised learning methods.
† denotes using random augment [43]. We follow the exact data split in SwAV [24].

4.3.3 Comparison with State-of-the-art Methods

In this section, we utilize the optimal hyperparameters explored in the
previous sections. Specifically, we apply the edge masking, followed
by heat diffusion on the online brach and PPR diffusion on the target
branch. For GCN predictor, we apply the setting in Exp. (h), where we
add a GCN predictor in both online branch and target branch, and the
parameters of GCN layers in the target branch are updated from the on-
line branch in a momentum update manner.

Linear evaluations Following the standard linear evaluation protocol [259,
318, 87, 35], we train a linear classifier for 90 epochs on the frozen 2048-
dimensional embeddings from the ResNet-50 encoder using LARS [276]
with cosine annealed learning rate of 1 with Nesterov momentum of 0.9
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and batch size of 4096. Comparison with state-of-the-art methods is pre-
sented in Tab. 4.5. Firstly, UniVCL achieves better performance com-
pared to the state-of-the-art methods, using a ResNet-50 backbone with-
out multi-crops augmentations. In 200 epochs training setting, UniVCL
improves MOCOv2 by 4.5%, which uses the identity layer in both on-
line branch and target branch. UniVCL still improves the DINO by 0.6%
although standard DINO [25] leverages more powerful backbone (VIT-
S/16) and more training epochs (300 epochs). The significant improve-
ments by UniVCL verifies the significance of our GCN predictor in the
unsupervised vision contrastive learning. Secondly, MSF and NNCLR
also leverage the neighboring information, but not in a GCN way. The
results of our UniVCL is also higher than MSF and NNCLR [56] by 0.7%
and 2.4%, respectively, because of grpah formulation and the introduc-
ing of graph augmentations from the graph SSL domain with negligible
additional computational cost (less than 2%).

Semi-Supervised Learning Evaluations. We conduct experiments in a
semi-supervised setting on ImageNet following the standard evaluation
protocol [33, 31], which fine-tunes the whole base network on 1% or 10%
labeled ImageNet data without regularization after unsupervised pre-
training. The experimental results are presented in Tab. 4.6.

4.3.4 Transfer to 12 cross-domain classification tasks

In this section, we provide the comparison of our UniVCL with other
state-of-the-art methods when we transfer our model to 12 cross-domain
classification tasks. Specifically, we follow the setup in BYOL [80]. The
datasets for classification task include Food101 [18], CIFAR10 [123], CI-
FAR100 [123], Birdsnap [15], SUN397 [263], Cars [122], Aircraft [167],
VOC2007 [60], DTD [41], Pet2 [182], Caltech-101 [63], and Flowers [80].
Specifically, we freeze the backbone of our pretrained models, and train
a classifier on the training set of the datasets mentioned above. We test
our models on the testing set of the corresponding dataset. We present
these results in Table 4.7.
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As shown in Table 4.7, the transfer results of our method is better
than the recent state-of-the-art methods. Specifically, our method is bet-
ter than other state-of-the-art methods on some fine-grained classfica-
tion datasets, e.g., Food101 [18], Birdsnap [15], Cars [122], Aircraft [167],
Pets [182] and Flowers [80]. We consider that the reason is that we lever-
age the neighboring information by the GCN layer, which could exploit
the fine-grained information that exist in the ImageNet-1K. For those
datasets that have a large domain gap with the ImageNet-1K, i.e., SUN,
our method can not help improve the generalization ability. Considering
most of the images in ImageNet-1K are object-centric, the scene under-
standing tasks in SUN can not benefit a lot the self-supervised pretrain-
ing from ImageNet-1K.

4.4 Conclusions and Discussions

In this chapter, we unify the recent state-of-the-art methods in our pro-
posed UniVCL. Specifically, we propose the GCN predictor to unify the
diverse structural designs of predictor layers in various self-supervised
learning methods. Then, fairly and comprehensively experiments are
conducted to explore the critical factors in the GCN predictor, revealing
the key point of a good predictor is to aggregate neighboring information
in the feature space. Owing to the graph perspective, we further verify
the effectiveness of graph augmentations in the vision contrastive learn-
ing. In the future, we will extend UniVCL from two perspectives, 1) fur-
ther link the graph self-supervised learning and vision self-supervised
learning by exploring other non-contrastive frameworks with graph self-
supervised learning, such as reconstruction, attribute prediction, and 2)
validating the effectiveness on other vision tasks, e.g., detection, segmen-
tation.



67

Chapter 5

Improved Transferability of
Supervised Pretraining from an
MLP Perspective

5.1 Introduction

While Supervised Learning with the cross-entropy loss1 (SL) were the de
facto pretraining paradigm in computer vision for a long period, recent
unsupervised learning methods [32, 35, 87, 33, 80, 285, 36, 30, 25, 56, 267]
show better transfer learning performance on various visual tasks [80,
108, 299].

This raised the question of why unsupervised pretraining surpasses
supervised pretraining even though supervised pretraining uses anno-
tations with rich semantic information.

Several works have attempted to explain the better transferability of
unsupervised pretraining than supervised pretraining by the following
two reasons: (1) Learning without semantic information in annotations [59,
254, 299, 198], which makes the backbone less-overfitted to semantic la-
bels to preserve instance-specific information which may be useful in
transfer tasks, and (2) Special design of the contrastive loss [299, 108, 112],
which helps the learned features to contain more low/mid-level infor-
mation for effective transfer to downstream tasks. From the supervision

1In the chapter, we specifically use the notation “SL” to indicate the conventional
supervised learning with the cross-entropy loss.
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and loss design perspective, these works provide intuitive explanations
for better transferability.

This chapter sheds new light on understanding transferability by
considering the multilayer perception (MLP) projector. While previous
works [32, 80, 35] verified its effectiveness on the unsupervised image
classification task: unsupervised training and evaluating the model on
the same ImagNet-1K dataset, they did not explore its effectiveness on
transfer tasks thoroughly and rigorously. It is not straightforward to ex-
tend the effectiveness of MLP on the unsupervised image classification
task to downstream tasks if not supported by rigorous experiments or
theoretical analysis, because the performance on the pretraining task is
not always predictive of the performance on transfer tasks when there
exists a large semantic gap [59, 190, 244]. To our best knowledge, we are
the first to identify the MLP projector as the core factor for transferability
with deep empirical and theoretical analysis. With this new viewpoint,
we find that a simple yet effective method, adding an MLP projector,
can promote the transferability of the conventional supervised pretrain-
ing methods with the cross-entropy loss (SL) to be comparable or even
better than representative unsupervised pretraining methods.

Specifically, we use the concept generalization task [198] on ImageNet-
1K, where the pretraining and the evaluation datasets have a large se-
mantic distance, as a probe to analyze the transferability of different
models. Our experimental results and corresponding analysis indicate
that the MLP projector in unsupervised pretraining methods is impor-
tant for their better transferability. Motivated by this observation, we
insert an MLP projector before the classifier in SL, forming SL-MLP. The
added MLP can improve the transferability of supervised pretraining,
making supervised pretraining comparable or even better than unsuper-
vised pretraining. Experimental results on SL and SL-MLP show three
interesting findings: 1) The added MLP preserves the intra-class varia-
tion on the pretraining dataset. 2) The added MLP decreases the feature
distribution distance between the pretraining and the evaluation dataset;
3) The added MLP decreases the feature redundancy in the pretraining
dataset. We also provide a theoretical analysis of how the preserved
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intra-class variation and the decreased feature distribution distance im-
prove the performance on the target dataset by adding an MLP projector.

Extensive experimental results confirm that adding an MLP projec-
tor into the supervised pretraining method (SL) can consistently improve
the transferability of the model on various downstream tasks. Specifi-
cally, on the concept generalization task [198], SL-MLP boosts the top-1
accuracy compared to SL (55.9%→63.1%) by +7.2%. It also achieves bet-
ter performance (64.1%) than Byol (62.3%) by +1.8% on the 300-epochs
pretraining setting. In classification tasks on 12 cross-domain datasets [108],
SL-MLP improves SL by +5.8% accuracy on average. Moreover, SL-
MLP shows better transferability than SL on COCO object detection [149]
by +0.8% AP. These improvements brought by the MLP projector can
largely bridge the transferability gap between supervised and unsuper-
vised pretraining as detailed in Sec. 5.4.2.

The main contributions described in this chapter are three-fold. (1)
We reveal that the MLP projector is the main factor for the transferability
gap between existing unsupervised and supervised learning methods.
(2) We empirically demonstrate that, by adding an MLP projector, su-
pervised pretraining methods can have comparable or even better trans-
ferability than representative unsupervised pretraining methods. (3) We
theoretically prove that the MLP projector can improve the transferabil-
ity of pretrained models by preserving intra-class feature variation.

5.2 Transferability Analysis of the Unsupervised

and Supervised Pretraining Methods

5.2.1 The Concept Generalization Task

We use the concept generalization task [198] to analyze the transferabil-
ity gap between the unsupervised and supervised pretraining methods.
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Data preparation. Sariyildiz et al.[198] evaluated the transferability
of methods when the pretraining and evaluation dataset have seman-
tic distance. Their experimental results show that larger semantic dis-
tance will lead to more accuracy differences among different pretraining
methods. Therefore, we enlarge the semantic gap between the pretrain-
ing and the evaluation dataset to help us compare different pretraining
methods. Sariyildiz et al.[198] use the hierarchy in WordNet [170] and
divide ImageNet-21K [45] into six class-exclusive datasets with different
semantic distance – one for pretraining, and others for evaluation. With-
out loss of generality, we construct a smaller pretraining dataset (pre-D)
and evaluation dataset (eval-D) based on ImageNet-1K [196] to reduce
the experimental burden. Pre-D contains 652 classes mostly of organ-
isms, and eval-D contains the other 348 classes of instrumentality.

Transferability evaluation. Following [198], to assess the transferabil-
ity, we freeze all parameters in the pretrained backbone 2, and finetune
the classifier with the ImageNet-1K training samples in eval-D for re-
porting top-1 accuracy on ImageNet-1K validation samples in eval-D.

5.2.2 Stage-wise Evaluation on Existing Methods

Motivated by works [299, 108], we make a more thorough stage-wise in-
vestigation of the conventional supervised pretraining method (SL) and
the existing representative unsupervised pretraining methods (Mocov1,
Mocov2, Byol) by evaluating the transferability of intermediate feature
maps (Fig. 5.1). After pretraining the model on pre-D, we freeze all
model parameters and use the extracted intermediate feature maps of
images in eval-D to finetune a stage-wise classifier for a stage-wise lin-
ear evaluation.

The evaluation results of these existing methods are depicted in Fig. 5.2
(underlined on the legend). Our stage-wise evaluation shows two new

2All experiments in Sec. 5.2 and Sec. 5.3 are conducted with ResNet50.
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Figure 5.1: Schematic illustration of stage-wise evaluation. We flatten in-
termediate feature maps from different stages and then use them to train
stage-wise classifiers. Top-1 accuracy is reported by evaluating images
in eval-D with the stage-wise classifiers.

findings that existing works have not reported. First, on stage-wise eval-
uation from stage 1 to stage 4, SL is consistently higher than Byol, Mo-
cov1, and Mocov2, which suggests that the semantic information in an-
notations can benefit the transferability of low/middle-level feature maps.
Second, on stage-wise evaluation from stage 4 to stage 5, the perfor-
mance of Byol and Mocov2 still increase while SL and Mocov1 have a
transferability drop. By carefully inspecting these methods, we notice
an architectural difference between SL, Mocov1, Mocov2, and Byol after
stage 5: An MLP projector is inserted after stage 5 in Byol and Mocov2,
which does not exist in SL and Mocov1. Such difference, together with
the experimental results in Fig. 5.2, leads to a new hypothesis that the
MLP projector might be the core factor of the desirable transferability of
unsupervised pretraining.

5.2.3 MLP Improves the Transferability of Unsupervised

Pretraining Methods

To confirm our hypothesis of the effectiveness on unsupervised pretrain-
ing methods, we ablate the MLP projectors on existing unsupervised



72
Chapter 5. Improved Transferability of Supervised Pretraining from an

MLP Perspective

Figure 5.2: Top-1 accuracy of stage-wise evaluation. All methods use
ResNet50 as their backbones and are trained by 300 epochs with the set-
ting in the original papers. The results of linear evaluation of layer4-
pooled-features (see Fig. 5.1) are reported in the legend.

methods, 3 using stage-wise evaluation. Specifically, we remove the MLP
projector in Byol and Mocov2 as Byol w/o MLP and Mocov2 w/o MLP,
and add an MLP projector in Mocov1 as Mocov1 w/ MLP. The stage-
wise evaluation results of these ablations are summarized in Fig. 5.2. We
use solid lines for methods with an MLP projector and dash lines for
those that do not have.

These ablation results offer us two observations. First, when evalu-
ating the layer4-pooled-features (depicted in the legend), unsupervised
learning methods with an MLP projector achieve better transferability
than their variants without the MLP projector, e.g., Byol, Mocov1 w/
MLP, Mocov2 achieve higher accuracy than Byol w/o MLP, Mocov1, and
Mocov2 w/o MLP by +23.3%, +5.1% and +3.7%, respectively. Second,
on stage-wise evaluation from stage 4 to stage 5, the MLP projector can
help unsupervised learning methods without the MLP projector to avoid
the transferability drop. These consistent improvements by adding an

3We do not directly compare Mocov1 with Mocov2 because Mocov2 has more aug-
mentations and a different learning rate schedule.
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MLP projector empirically show that the MLP projector is important for
the transferability of unsupervised pretraining. While there might exist
some other non-linear structures that can boost the transferability, we
only explore from an MLP perspective in this chapter because of its sim-
plicity and demonstrated effectiveness.

5.3 MLP Can Enhance Supervised Pretraining

5.3.1 SL-MLP: Adding an MLP Projector to SL

Motivated by the empirical results in Sec. 5.2, an interesting question is
whether the MLP projector can also promote the transferability of su-
pervised pretraining? We attempt to insert an MLP projector before the
classifier on SL for better transferability. We denote this supervised pre-
training method as SL-MLP (see Fig. 5.3 for their comparison). Specif-
ically, SL-MLP includes a feature extractor f (·), an MLP projector g(·),
and a classifier W. Given an input image x, the feature extractor outputs
a feature f = f (x). For example, f (x) transforms an image x to a 2048
dimensional feature f when using the ResNet-50 backbone. The MLP
projector maps f into a projection vector g = g(f). Following Byol, the
MLP projector consists of two fully connected layers, a batch normaliza-
tion layer, and a ReLU layer, which can be mathematically formulated
as g(f) = f c2(ReLU(BN( f c1(f)))) ∈ RDg , where f c1 and f c2 are fully
connected layers, the hidden feature dimension in the MLP projector is
4096, and Dg is 256. Given the label denoted by y for image x, the objec-
tive function for SL-MLP can be formulated as

L(x) = CE(W · g( f (x)), y), (5.1)

where CE(·) is the cross-entropy loss. Same as SL, only the learned fea-
ture extractor f (·) is utilized in downstream transfer tasks after super-
vised pretraining.



74
Chapter 5. Improved Transferability of Supervised Pretraining from an

MLP Perspective
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Figure 5.3: The difference between SL and SL-MLP. Our SL-MLP adds
an MLP before the classifier compared to SL. Only the encoders in both
methods are utilized for downstream tasks.

(i) SL (v) Byol w/o MLP(iii) SupCon w/o MLP

(ii) SL-MLP (iv) SupCon (vi) Byol

Figure 5.4: Visualization of different methods with 10 randomly selected
classes on pre-D. Different colors denote different classes. Features ex-
tracted by pretrained models without an MLP projector (top row) have
less intra-class variation than those extracted by pretrained models with
an MLP projector (bottom row).
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(i) SL (ii) SL-MLP (iii) Byol

Figure 5.5: Visualization of Feature Mixtureness between pre-D and
eval-D. Cold colors denote features from 5 classes randomly selected
from pre-D, and warm colors denote features from 5 classes randomly
selected from eval-D.
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Figure 5.6: (a) Stage-wise evaluation on eval-D. (b) Linear evaluation ac-
curacy on eval-D. (c) Discriminative ratio of features on pre-D. Following
[88, 80], we pretrain SL, SL-MLP, and Byol for 300 epochs.
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Figure 5.7: (a) Feature Mixtureness between pre-D and eval-D. (b) Re-
dundancy R of pretrained features during different epochs. Following
[88, 80], we pretrain SL, SL-MLP, and Byol for 300 epochs.
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Method EP Top-1(↑) R(↓)
SL 100 55.9 0.078
SL-MLP 100 63.1 0.035

SL 300 54.4 0.087
SL-MLP 300 64.1 0.034

Byol w/o MLP 300 39.0 0.247
Byol 300 62.3 0.037

Mocov1 300 54.1 0.069
Mocov1 w/ MLP 300 59.2 0.058

Table 5.1: Redundancy R of pretrained features. Methods with an MLP
obtain lower channel redundancy and transfer better.

5.3.2 Empirical Findings of MLP in SL-MLP

MLP projector avoids transferability drop at stage 5 in supervised pre-
training. We conduct stage-wise evaluation as Sec. 5.2.2 again to see
whether the transferability drop from stage 4 to stage 5 exists in SL-MLP.
In Fig. 5.6(a), the transferability of SL-MLP continuously increases from
stage 1 to 5, avoiding a decrease at stage 5 as SL. Besides, we observe that
the transferability of SL-MLP is higher than that of Byol from stage 1 to
4, indicating that annotations benefit the transferability of intermediate
feature maps.

MLP projector enlarges the intra-class variation of features. Accord-
ing to [299, 108], features with large intra-class variation can preserve
more instance discriminative information, which is beneficial for trans-
fer learning. We reveal that adding an MLP projector also can enlarge the
intra-class variation. We compare two supervised pretraining methods,
i.e., SL, SupCon [112], and one unsupervised pretraining method, i.e.,
Byol, with their variants with/without MLP. Qualitatively, we visualize
their features learned on pre-D by t-SNE in Fig. 5.4. The intra-class varia-
tion of features from SL-MLP, SupCon, and Byol are larger than that from
SL, SupCon w/o MLP, and Byol w/o MLP, respectively. Quantitatively,
following LDA [10], we utilize a discriminative ratio ϕ(Ipre) to measure



5.3. MLP Can Enhance Supervised Pretraining 77

intra-class variation on pre-D, where Ipre denotes pre-D (mathematically
defined in Sec. 5.3.3). Smaller discriminative ratio ϕ usually means larger
intra-class variation4. Comparing Fig. 5.6(c) with Fig. 5.6(b), we can see
Byol and SL-MLP have smaller ϕ(Ipre) but higher accuracy on eval-D
than SL, which shows larger intra-class variation can benefit transferabil-
ity. Furthermore, when inspecting SL only, we can see a process where
the accuracy on eval-D first rises and then descends (after 210 epochs)
along with ϕ(Ipre) increasing. This phenomenon can be theoretically ex-
plained in Sec. 5.3.3. We additionally provide the visualization of intra-
class variation on different pretraining epochs in Appendix D.

MLP projector reduces feature distribution distance between pre-D
and eval-D. According to [17, 153], decreasing the feature distribution
distance between pre-D and eval-D in the representation space can ben-
efit transfer learning. Intuitively, the distribution distance between two
sets of features is small when features are well mixed (visualization pro-
vided in Appendix D.1). Therefore, we compare the mixtureness of fea-
tures in pre-D and eval-D to indicate the feature distribution distance
between SL and SL-MLP. Graphically, we visualize features from pre-D
and eval-D by t-SNE in Fig. 5.5. We observe that features from pre-D
and eval-D are more mixed comparing SL and SL-MLP, indicating that
MLP projector can mitigate the distribution distance between pre-D and
eval-D. Quantitatively, we define Feature Mixtureness Π in the feature
space as

Π = 1− 1
C

C

∑
i=1

∣∣∣∣∣ topeval
k (i)
k

− Ceval

C

∣∣∣∣∣ , (5.2)

where C = 1000 is total number of classes in ImageNet-1K, Ceval rep-
resents the number of classes in eval-D, and topeval

k (i) represents the
number of classes in eval-D found by top k neighbors search of any
class i ∈ C. Since the percentage of finding a sample from eval-D in
k nearest neighbors is Ceval/C when pre-D and eval-D are uniformly
mixed, Feature Mixtureness measures the similarity of the current and

4Strictly speaking, larger intra-class variation is relative to inter-class distance,
which is theoretically defined as discriminative ratio. We use “intra-class variation”
to be consistent with previous work [108, 299].



78
Chapter 5. Improved Transferability of Supervised Pretraining from an

MLP Perspective

the uniformly mixed distribution between pre-D and eval-D in the fea-
ture space. We examine Feature Mixtureness of SL, SL-MLP, and Byol
during different pretraining epochs in Fig. 5.7(a). Feature Mixtureness of
SL gradually decreases, which indicates that SL will enlarge the distribu-
tion difference between pre-D and eval-D. In contrast, SL-MLP and Byol
show consistently high Feature Mixtureness, indicating that the MLP
projector can reduce the distribution distance between pre-D and eval-D.
We visualize the evolution of Feature Mixtureness in Appendix D.2.2.

MLP projector reduces feature redundancy. Inspired by [285], high
channel redundancy limits the capability of feature expression in deep
learning. Mathematically, we compute Pearson correlation coefficient
among feature channels to evaluate feature redundancyR, i.e,

R =
1
d2

d

∑
i=1

d

∑
j=1
|ρ(i, j)|, ρ(i, j)=

∑N
n=1 fn,i · fn,j√

∑N
n=1 ||fn,i||2

√
∑N

n=1 ||fn,j||2
(5.3)

where d = 2048 is the feature dimension, ρ(i, j) is Pearson correlation
coefficient of feature channel i and j. As shown in Fig. 5.7(b), SL-MLP
has lower feature redundancy than SL, which indicates that the MLP
projector can reduce feature redundancy. In Tab. 5.1, we further confirm
that the MLP projector can reduce the feature redundancy and thus in-
crease the accuracy on eval-D by ablating the MLP projector on various
pretraining methods.

5.3.3 Theoretical Analysis for Empirical Findings

In this section, we provide a theoretical analysis to reveal that: 1) max-
imizing the discriminative ratio ϕ(Ipre) of a model on the pretraining
dataset above a certain threshold will lead to a transferability descrease
(shown by blue/green lines in Fig. 5.8); 2) the threshold is smaller when
the semantic gap between the pretraining and evalutaion dataset is larger
(tl < ts in Fig. 5.8).
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Figure 5.8: Insights for transferability. ϕ(Ipre) and ϕ(Ieval) are the dis-
criminative ratios (Eq. 5.4) on the pretraining and evalution datasets.
Higher ϕ(Ieval) indicates better model transferability. Green and Blue
line show the performance curve on the evaluation dataset with small
and large semantic gap, respectively.

Mathematically, the discriminative ratio ϕ(I) on the dataset I can be
defined by LDA [10] as

ϕ(I) = Dinter(I)/Dintra(I), (5.4)

where Dinter(I) = 1
C(C−1) ∑C

j=1 ∑C
k=1,k ̸=j ||µ(Ij)−µ(Ik)||2 is the inter-class

distance, Dintra(I) = 1
C ∑C

j=1(
1
|Ij| ∑(xi,yi)∈Ij

||fi − µ(Ij)||2) is the intra-class

distance, and C is the number of classes. µ(Ij) = 1
Ij

∑(xi,yi)∈Ij
fi is the

center of features in class Ij, and f is the feature in Sec. 5.3.1. Higher
discriminative ratio ϕ indicates higher classification accuracy. Inspired
by [150], we analyze the relation between ϕ(Ipre) and ϕ(Ieval) in Theorem
1.

Theorem 1 Given ϕ1(Ipre) < ϕ2(Ipre), ϕ1(Ieval) > ϕ2(Ieval) when ϕ1(Ipre) >

t, where t is a threshold that is negatively related to the feature distribution dis-
tance.

Insights for the intra-class variation. Theorem 1 reveals that continuously
minimizing the intra-class variation (maximizing the discriminative ra-
tio) on the pretraining dataset will decrease the transferability of the
model when the discriminative ratio ϕ(Ipre) is larger than t. It explains
the observation in Fig. 5.6(b) and Fig. 5.6(c) that training with more than
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210 epochs leads to better performance on pre-D, but a worse transfer-
ability on eval-D. This insight suggests that we should not make the
intra-class variation on the pretraining dataset too small when designing
the objective function or network architecture (adding an MLP projector
is such a design).

Insights for the relation between the feature distribution distance and threshold
t. When the feature distribution distance between the pretraining and
evaluation dataset is large, the threshold t is small, in which case it is eas-
ier to have the undesirable effect of increasing the discriminative ratio
ϕ(Ipre) on pre-D leading to decreasing the discriminative ratio ϕ(Ieval)

on eval-D (and thus the accuracy on the evaluation data). This insight
suggests that we should maintain more intra-class variation on the pre-
training dataset when transferring the model to a target dataset which
has a larger semantic distance from the pretraining dataset.

5.3.4 Proof of Theorem 1

Denote the pretrained feature extractor with the parameters ` as f (·; `).
The softmax function is built upon the feature representation of the back-
bone fi = f (xi; θ) ∈ RD, where xi is an image, and D is the dimension of
features. We compute the class center µ(Ij) for class j as the mean of the
feature embeddings as

µ(Ij) =
1
Ij

∑
(xi,yi)∈Ij

fi, (5.5)

where Ij denotes the images in the j-th class. Then we define the inter-
class distance Dinter(I), and intra-class distance Dintra(I) on a datatset
with C classes as

Dinter(I) =
1

C(C− 1)

C

∑
j=1

C

∑
k=1,k ̸=j

||µ(Ij)− µ(Ik)||2, (5.6)

Dintra(I) =
1
C

C

∑
j=1

(
1
|Ij| ∑

(xi,yi)∈Ij

||fi − µ(Ij)||2). (5.7)
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Substituting Eq. 5.5 into Eq. 5.6 and Eq. 5.7, we have

Dinter(I) =
1

C(C− 1)

C

∑
j=1

C

∑
k=1,k ̸=j

 1
2|Ij||Ik| ∑

(xi,yi)∈Ij

∑
(xl ,yl)∈Ik

||fi − fl||2
 ,

(5.8)

Dintra(I) =
1
C

C

∑
j=1

 1
2|Ij|2 ∑

(xi,yi)∈Ij

∑
(xl ,yl)∈Ij

||fi − fl||2
 . (5.9)

Taking expectation to Eq. 5.8 and Eq. 5.9, for any pair of data (xi, yi), (xl, yl) ∈
I, we have

E(||fi − fl||2) =

2Dintra(I), yi = yl

2Dinter(I), yi ̸= yl

. (5.10)

For ease of analysis, we denote Ipre, Ieval as pre-D and eval-D, respec-
tively. For any pair of data (x′i, y′i), (x

′
l, y′l) ∈ Ieval in eval-D in the same

class, i.e., y′i = y′l, we have

Dintra(Ieval) =
1
2

E
(
||f′i − f′l||2

)
=

1
2

E [P(yi = yl)2Dintra(Ipre) + P(yi ̸= yl)2Dinter(Ipre)]

= PDintra(Ipre) + (1− P)Dinter(Ipre),

(5.11)

where yi is the label of an image xi assigned by the classifier trained on
pre-D, and f′ = f (x′, `). Here, P represents the possibility that a pair of
images in eval-D that belong to the same class is classified into the same
classes in pre-D.

We denote ψ(ϕ−1(Ipre)) = Dinter(Ieval)/Dinter(Ipre) as the ratio of
the model’s inter-class distance on eval-D and the model’s inter-class dis-
tance on pre-D. When the model is optimized on pre-D, its discrimina-
tive ratio on pre-D ϕ(Ipre) becomes larger with the increase of Dinter(Ipre)

and the decease of Dintra(Ipre). In most cases, Dinter(Ieval)/Dinter(Ipre) is
a monotonic decreasing function of ϕ(Ipre), and is a monotonic increas-
ing function of ϕ−1(Ipre), which has been empirically proven by [150].
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Mathematically, it can be formulated as

ψ(ϕ−1
2 (Ipre)) > ψ(ϕ−1

1 (Ipre)), if ϕ−1
2 (Ipre) > ϕ−1

1 (Ipre). (5.12)

By substituting Dintra(Ieval) = PDintra(Ipre)+ (1− P)Dinter(Ipre) (Eq. 5.11)
into the discriminative ratio inequality ϕ2(Ieval) < ϕ1(Ieval) given ϕ2(Ipre) >

ϕ1(Ipre), we have

ϕ2(Ieval) < ϕ1(Ieval) (5.13)

⇐⇒
D2

inter(Ieval)

D2
intra(Ieval)

<
D1

inter(Ieval)

D1
intra(Ieval)

(5.14)

⇐⇒
D2

inter(Ieval)

PD2
intra(Ipre) + (1− P)D2

inter(Ipre)
<

D1
inter(Ieval)

PD1
intra(Ipre) + (1− P)D1

inter(Ipre)
,

(5.15)

⇐⇒ P <

D1
inter(Ieval)

D1
inter(Ipre)

− D2
inter(Ieval)

D2
inter(Ipre)

D1
inter(Ieval)

D1
inter(Ipre)

·
(

1− D2
intra(Ipre)

D2
inter(Ipre)

)
− D2

inter(Ieval)

D2
inter(Ipre)

·
(

1− D1
intra(Ipre)

D1
inter(Ipre)

) ,

(5.16)

⇐⇒ P <
ψ(ϕ−1

1 (Ipre))− ψ(ϕ−1
2 (Ipre))

ψ(ϕ−1
1 (Ipre))

(
1− ϕ−1

2 (Ipre)
)
− ψ(ϕ−1

2 (Ipre))
(

1− ϕ−1
1 (Ipre)

) ,

(5.17)

⇐⇒ P <
1

1− ϕ−1
1 (Ipre) +

ϕ−1
2 (Ipre)−ϕ−1

1 (Ipre)

ψ(ϕ−1
2 (Ipre))−ψ(ϕ−1

1 (Ipre))
ψ(ϕ−1

1 (Ipre))
, (5.18)

⇐⇒ P <
1

1− ϕ−1
1 (Ipre) + rψ(ϕ−1

1 (Ipre))
, (5.19)

⇐⇒ rψ(ϕ−1
1 (Ipre))− ϕ−1

1 (Ipre) < P−1 − 1, (5.20)

⇐⇒
dϕ−1

1 (Ipre)

dψ(ϕ−1
1 (Ipre))

ψ(ϕ−1
1 (Ipre))− ϕ−1

1 (Ipre) < P−1−1, (5.21)

⇐⇒ dϕ−1(Ipre)

P−1 − 1 + ϕ−1(Ipre)
<

1
ψ(ϕ−1(Ipre))

dψ(ϕ−1(Ipre)), (5.22)
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where

r =
ϕ−1

2 (Ipre)− ϕ−1
1 (Ipre)

ψ(ϕ−1
2 (Ipre))− ψ(ϕ−1

1 (Ipre))
(5.23)

≈ dϕ−1(Ipre)

dψ(ϕ−1(Ipre))
, when ϕ−1

2 (Ipre)− ϕ−1
1 (Ipre)→ 0. (5.24)

We take integration of Eq. 5.22 as

⇐⇒
∫ ϕ−1(Ipre)

0

dϕ−1(Ipre)

P−1 − 1 + ϕ−1(Ipre)
<
∫ ψ(ϕ−1(Ipre))

ψ(0)

1
ψ(ϕ−1(Ipre))

dψ(ϕ−1(Ipre)),

(5.25)

⇐⇒ ln
[
ϕ−1(Ipre) + P−1 − 1

]
< ln

[
ψ(ϕ−1(Ipre)))

]
+ ln

(
P−1 − 1

ψ(0)

)
,

(5.26)

⇐⇒ ϕ−1(Ipre) + P−1 − 1 < ψ(ϕ−1(Ipre))
P−1 − 1

ψ(0)
, (5.27)

⇐⇒ ϕ−1(Ipre) < 1− P−1 + ψ(ϕ−1(Ipre))
P−1 − 1

ψ(0)
, (5.28)

⇐⇒ ϕ−1(Ipre) < (
ψ(ϕ−1(Ipre))

ψ(0)
− 1)(P−1 − 1) (5.29)

⇐⇒ ϕ(Ipre) > t (5.30)

where the threshold t is defined as

t =
[
(

ψ(ϕ−1(Ipre))

ψ(0)
− 1)(P−1 − 1)

]−1

. (5.31)

According to Formulation 5.12, ψ(ϕ−1(Ipre)) > ψ(0) because ϕ−1(Ipre) >

0. Therefore, ψ(ϕ−1(Ipre))
ψ(0) − 1 > 0, which means that increasing P will lead

to increasing the threshold t.

In the following, we explain how P in Equation 5.11 can be theoreti-
cally computed, and how P negatively relates to the feature distribution
distance briefly.
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Computational Method of P Given a fixed backbone pretrained f (·; `)
on pre-D, we denote the classifier trained by pre-D as W = (w1, w2, ..., wCpre).
The possibility of an image x of the class j in eval-D classified by the clas-
sifier W into the class k in pre-D can be defined as

Pjk =
1
|Ieval

j | ∑
(xi,yi)∈Ieval

j

exp(wk · f (x; `))

∑Cpre

k′=1 exp(wk′ · f (x; `))
, (5.32)

where |Ieval
j | denotes the number of images in the j-th class in eval-D.

Then the probability of a pair of samples in the same class j in eval-D
classified into the same class in eval-D is

Pj =
Cpre

∑
k=1

P2
jk. (5.33)

The average probability of Pj is

P =
1

Ceval

Ceval

∑
j=1

Pj. (5.34)

P is Negatively Related to the Feature Distribution Distance In this
part, we only use two extreme cases to briefly analyze the relation be-
tween P and the feature distribution distance. Specifically, we first de-
duce the upper bound and the lower bound of P. We find that the upper
bound is reached when the feature distribution distance between pre-D
and eval-D is extremely small, and the lower bound is reached when
the feature distribution distance between pre-D and eval-D is extremely
large, which indicates P is negatively related to the feature distribution
distance.
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For the upper bound of P,

P =
1

Ceval

Ceval

∑
j=1

Pj (5.35)

=
1

Ceval

Ceval

∑
j=1

Cpre

∑
k=1

P2
jk (5.36)

≤ 1
Ceval

Ceval

∑
j=1

(
Cpre

∑
k=1

Pjk

)2

(5.37)

=
1

Ceval

Ceval

∑
j=1

1 (5.38)

= 1, (5.39)

where Inequality 5.37 is derived by Cauchy Schwarz Inequality [256],
and if and only if Pjk = 1 and Pjk′ = 0 for ∀k′ ̸= k, P reaches its upper
bound 1.

For the lower bound of P,

P =
1

Ceval

Ceval

∑
j=1

Pj (5.40)

=
1

Ceval

Ceval

∑
j=1

Cpre

∑
k=1

P2
jk (5.41)

≥ 1
Ceval

Ceval

∑
j=1

1
Cpre

(
Cpre

∑
k=1

Pjk

)2

(5.42)

=
1

Ceval

Ceval

∑
j=1

1
Cpre (5.43)

=
1

Cpre , (5.44)

where Inequality 5.42 is derived by Fundamental Inequality [13], and if
and only if Pjk =

1
Cpre for ∀k ∈ [1, Cpre], P reaches its lower bound 1

Cpre .

Analysis on Small Feature Distribution Distance between pre-D and eval-D. When
pre-D and eval-D have small feature distribution distance, a pair of two
images (xm, y′m) and (xn, y′n) belong to the same class j in eval-D, i.e.,
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y′m = y′n will be classified to the same class k in pre-D when classified by
W with high confidence. That is, only Pjk will have high confidence close
to 1 and Pjk′ , ∀k′ ̸= k will be close to 0, which is similar to the condition
when P reaches its upper bound.

Analysis on Large Feature Distribution Distance between pre-D and eval-D. When
pre-D and eval-D have large feature distribution distance, a pair of two
images (xm, y′m) and (xn, y′n) belong to the same class in eval-D, i.e., y′m =

y′n will be randomly classified to the classes in pre-D using W. Mathe-
matically, Pjk ≈ 1

Cpre , which is similar to the condition when P reaches its
lower bound.

Based on the analysis above, we can conclude that P is negatively
related to feature distribution distance, and larger P often means less
feature distribution distance.

5.4 Experiment

5.4.1 Experimental Setup

Datasets . For backbone analysis, we keep using the concept general-
ization setting described in Sec. 5.2.1. For generalization to other classi-
fication tasks, we follow the setup in [108], which pretrains the models
on the whole ImageNet-1K dataset and then evaluates the transferability
on 12 classification datasets [247, 173, 180, 41, 92, 225, 126, 39, 243, 176,
177, 42] from different domains. Furthermore, the COCO [149] dataset
is used to evaluate the performance of SL-MLP pretrained by ImageNet-
1K [196] on object detection task.

Details . For SL and SL-MLP pretraining, the cross-entropy is deployed
as the loss function. The MLP projector deployed in SL-MLP is described
in Sec. 5.3.1. Following [90], we use the SGD optimizer with a cosine de-
cay learning rate of 0.4 to optimize SL and SL-MLP, and set the batch
size to 1024. Byol is used as a representative method for comparisons
in backbone analysis and object detection. Following [80], we use LARS
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Method Architecture Labels MLP Epochs Top-1(↑)

SL ResNet50 ✓ 100 55.9
SL-MLP ResNet50 ✓ ✓ 100 63.1
Byol ResNet50 ✓ 300 62.3
SL ResNet50 ✓ 300 54.4
SL-MLP ResNet50 ✓ ✓ 300 64.1

SL ResNet34 ✓ 100 50.1
SL-MLP ResNet34 ✓ ✓ 100 55.0
Byol ResNet34 ✓ 300 54.8
SL ResNet34 ✓ 300 50.2
SL-MLP ResNet34 ✓ ✓ 300 55.8

SL ResNet101 ✓ 100 56.0
SL-MLP ResNet101 ✓ ✓ 100 63.6
SL ResNet101 ✓ 300 53.9
SL-MLP ResNet101 ✓ ✓ 300 64.7

SL MobileNetv2(s=1.4) ✓ 200 54.5
SL-MLP MobileNetv2(s=1.4) ✓ ✓ 200 61.5

SL EfficientNetb2 ✓ 100 57.6
SL-MLP EfficientNetb2 ✓ ✓ 100 64.2

Table 5.2: Concept generalization task. We report Top-1 accuracy on eval-D of
SL-MLP, Byol, and SL on various backbones. SL-MLP and Byol share the same
MLP projector.

optimizer [277] with a cosine decay learning rate schedule and a warm-
up of 10 epochs to pretrain the network. The initial learning rate is set
to 4.8. We set the batch size to 4096 and the initial exponential moving
average parameter τ to 0.99. Except for the backbone analysis, we use
ResNet50 as the default backbone.

5.4.2 Experimental Results

Generalize to unseen concepts with diverse backbones. We verify the
effectiveness of the added MLP projector on SL using concept generaliza-
tion task with different backbones. Following evaluation method men-
tioned in Sec. 5.2.1, we train a linear classifier with the frozen back-
bone for 100 epochs, and report the top-1 accuracy on eval-D in Tab. 5.2.
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Method Sup. Unsup. Epoch
object detection

AP AP50 AP75

SL ✓ 100 38.9 59.6 42.7
SL-MLP ✓ 100 39.7 60.4 43.1
InsDis† [259] ✓ 200 37.4 57.6 40.6
PIRL† [171] ✓ 200 37.5 57.6 41.0
SwAV† [24] ✓ 200 38.5 60.4 41.4
Mocov2† [35] ✓ 200 38.9 59.4 42.4
Byol [80] ✓ 300 39.4 60.4 43.2
SL-MLP ✓ 300 40.7 61.8 44.2

Table 5.3: Object detection results. All methods are pretrained on ImagNet-
1K, then finetuned on COCO using Mask-RCNN (R50-FPN) based on Detec-
tron2 [258]. Sup. and Unsup. are short for supervised learning and unsuper-
vised learning, respectively. Results of methods† are from [264].

Firstly, SL-MLP obtains better performance than SL among different back-
bones. Specifically, with ResNet50, SL-MLP improves SL to 63.1 (+7.2%)
when we pretrain the model by only 100 epochs, which bridges the per-
formance gap between SL and Byol. In 300 epochs setting, SL has a
transferability drop compared to 100 epochs setting (55.9%→54.4%), but
the transferability of SL-MLP continue to increase (63.1%→64.1%). Sec-
ondly, SL-MLP (64.1%) performs better than Byol (62.3%) when both are
trained by 300 epochs. Experimental results in Tab. 5.2 also confirm
that SL-MLP can consistently improve the transferability of SL on var-
ious backbones, e.g., ResNet101 [90], MobileNetv2[197], and Efficient-
Netb2 [219].

Generalize to other classification tasks. To evaluate if the added MLP
can help SL to transfer better on cross-domain tasks, following [108],
we pretrain the model on ImageNet-1K, and evaluate the transferabil-
ity on 12 classification datasets from different domains. As illustrated in
Tab. 5.4, supervised pretraining methods with the MLP projector, i.e., SL-
MLP and SupCon, outperform their no MLP counterparts, i.e., SL and
SupCon w/o MLP on linear evaluation, by 5.79%, 13.71% on the aver-
aged Top-1 accuracy, respectively. Consistent results can be observed
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Exp
Components

+Params Top-1Input FC BN ReLU Output FC

(a) / 55.9
(b) ✓ 4.196M 56.6
(c) ✓ ✓ ✓ 8.395M 61.0
(d) ✓ ✓ ✓ 8.391M 60.1
(e) ✓ ✓ 0.004M 60.5

SL-MLP ✓ ✓ ✓ ✓ 8.395M 62.5

Table 5.5: Empirical analysis of architectural design of the MLP projec-
tor. We incrementally add different components to the MLP projector.
We pretrain models over 100 epochs and set the output dimension to
2048. Top-1 accuracy on eval-D is reported.

on finetuning and few-shot learning settings. Besides, by comparing
SupCon, SL-MLP and SupCon w/o MLP, SL, we conclude that the MLP
projector instead of the contrastive loss plays the key role in increasing
transferability. Our conclusion contrasts with previous works [299, 108]
because they ignore the MLP projector before the contrastive loss.

Generalize to object detection. We assess the transferability improve-
ment by the MLP projector on COCO object detection task. We follow
the settings in [87] to finetune the whole network with 1× schedule. In
Tab. 5.3, we report results using Mask-RCNN (R50-FPN). When both are
pretrained over 100 epochs, SL-MLP performs better than SL (without
MLP) on object detection by +0.8 AP. If MLP is used by both super-
vised and unsupervised pretraining, SL-MLP pretrained by 100 epochs
achieves better performance than unsupervised pretraining (e.g., SwAV
and Mocov2) which are pretrained with 200 epochs. When both pre-
trained over 300 epochs, SL-MLP shows better performance than Byol
with +1.3 AP.

5.4.3 Ablation Study

Effectiveness of different components in MLP. In this part, we inves-
tigate the influence of different components in the MLP projector. We set
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Figure 5.9: (Left to right) (a) Top-1 accuracy with different pretraining
epochs and number of MLP projectors. (b) Top-1 accuracy with different
batch sizes shows that SL-MLP has more robust transferability to small
batch sizes. (c) Top-1 accuracy with different pretraining augmentations
shows SL-MLP is robust to augmentations.

the hidden units and output dimension of MLP to be 2048 to retain the
dimension of output features the same as SL. Variants are constructed by
adding the components incrementally: (a) no MLP projector; (b) only In-
put FC; (c) Input FC+BN+output FC; (d) Input FC+ReLU+output FC; (e)
BN+ReLU. All experiments are pretrained on pre-D over 100 epochs. As
shown in Tab. 5.5, SL-MLP achieves the best accuracy among all variants.
Besides, we also observe an interesting phenomenon on Tab. 5.5(e) that
only inserting a lightweight BN-ReLU also achieves good transfer per-
formance. As this is not our main focus, we will investigate it in future
works.

Epochs and layers. Fig. 5.9(a) shows that adding one MLP projector
achieves the optimal transferability. In addition, larger pretraining epochs
benefit the transferability of SL-MLP when one MLP projector is added,
but it has little influence when more MLP projectors are used.

SL-MLP is less sensitive to batch size. Most unsupervised methods
depend on big mini-batches to train a representation with strong trans-
ferability. To investigate the sensitivity of SL-MLP to batch size, we do
experiments with batch size from 256 to 4096 for Byol and to 1024 for
SL-MLP over 300 epochs. As shown in Fig. 5.9(b), the transferability of
Byol drops when the batch size decreases. In contrast, the transferability
of SL-MLP retains when batch size changes.
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SL-MLP is less sensitive to augmentation. Unsupervised methods ben-
efit from a broader space of colors and more intensive augmentations
during pretraining, which always lead to undesirable degradation when
some augmentations are missing. Supervised models trained merely
with horizontal flipping may perform well [299]. We set Byol’s aug-
mentations as a baseline setting for both SL-MLP and Byol. We then
compare the robustness on augmentation between SL-MLP and Byol by
removing augmentation step by step. Experiments of SL-MLP and Byol
are all constructed on their default condition with only augmentations
changed. The results are illustrated on Fig. 5.9(c). We find that SL-MLP
inherits the robustness of SL and shows a little accuracy drop with sim-
ple augmentations.

5.5 Limitations and Conclusions

This chapter studies the transferability gap between supervised and un-
supervised pretraining. Based on empirical results, we identify that the
MLP projector is a key factor for the good transferability of unsuper-
vised pretraining methods. Adding an MLP projector into supervised
pretraining methods closes the gap between supervised and unsuper-
vised pretraining and even makes supervised pretraining better. Our
finding is confirmed with extensive experiments on diverse backbone
networks and various downstream tasks, including the concept gener-
alization tasks, cross-domain image classifications, and objection detec-
tion. While the MLP is a simple design for better transferability, some
straightforward designs might exist on the objective function, which we
leave for future work.
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Chapter 6

Improved Extreme Multitask
Supervised Pretraning for
Human-Centric Perception

6.1 Introduction

Human-centric perception has been a long-standing pursuit for com-
puter vision and machine learning communities. It encompasses mas-
sive research tasks and applications including person ReID in surveil-
lance [307, 72, 165, 71, 280], human parsing and pose estimation in the
metaverse [270, 232, 262, 141, 140, 166], and pedestrian detection in au-
tonomous driving [40, 148, 249]. Although significant progress has been
made, most existing human-centric studies and pipelines are task-specific
for better performances, leading to huge costs in representation/network
design, pretraining, parameter-tuning, and annotations. To promote real-
world deployment, we ask: whether a general human-centric pretraining
model can be developed that can benefit diverse human-centric tasks and be effi-
ciently adapted to downstream tasks?

Intuitively, we argue that pretraining such general human-centric
models is possible for two reasons. First, there are obvious correlations
among different human-centric tasks. For example, both human pars-
ing and pose estimation predict the fine-grained parts of human bod-
ies [145, 98] with differences in annotation granularities. Thus, the anno-
tations in one human-centric task may benefit other human-centric tasks
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when trained together. Second, recent achievements in foundation mod-
els [235, 47, 188, 189, 20, 129] have shown that large-scale deep neural
networks (e.g., transformers [53]) have the flexibility to handle diverse
input modalities and the capacity to deal with different tasks. For ex-
ample, Uni-Percevier [314] and BEITv3 [246] are applicable to multiple
vision and language tasks.

Despite the opportunities of processing multiple human-centric tasks
with one pretraining model, there are two obstacles for developing gen-
eral human-centric pretraining models. First, although there are many
benchmarks for every single human-centric task, there is still no bench-
mark to fairly and comprehensively compare various pretraining meth-
ods on a common ground for a broad range of human-centric tasks, data
distributions, and application scenarios. Second, different from most ex-
isting general foundation models trained by unified global vision-language
consistencies, pretraining human-centric models are required to learn
both global (e.g., person ReID and pedestrian detection) and fine-grained
semantic features (e.g., pose estimation and human parsing) of human
bodies from diverse annotation granularity simultaneously.

In this chapter, we first build a benchmark, called HumanBench,
based on existing datasets to enable pretraining and evaluating human-
centric representations that can be generalized to various downstream
tasks. HumanBench has two appealing properties. (1) Diversity. The
images in our HumanBench include diverse image properties, ranging
from person-centric cropped images to scene images with crowd pedes-
trians, ranging from indoor scenes to outdoor scenes (Fig. 6.1(a)), and
from surveillance to metaverse. (2) Comprehensiveness. Humanbench
covers comprehensive image-based human-centric tasks in both pretrain-
ing datasets and downstream tasks (Fig. 6.1(b)). For pretraining, we
include 11 million images from 37 datasets across five representative
human-centric tasks, i.e., person ReID, pose estimation, human parsing,
pedestrian attribute recognition, and pedestrian detection. For evalua-
tion, HumanBench evaluates the generalization abilities on 12 pretrain-
ing datasets, 6 unseen datasets of pretraining tasks, and 2 datasets out
of pretraining tasks, ranging from global prediction, i.e., ReID, to local
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prediction, i.e., human parsing and pose estimation. Results on our Hu-
manBench (Fig. 6.1(c)) lead to two interesting findings. First, compared
with datasets with natural images for general pretrained models, Hu-
manBench is more effective for human-centric perception tasks. Second,
as human-centric pretraining requires to learn features of diverse gran-
ularity, supervised pretraining methods with proper designs can learn
from diverse annotations in HumanBench and perform better than the
existing unsupervised pretraining methods, for which details will be
shown in Sec. 6.4.3.

Based on HumanBench, we further investigate how to learn a bet-
ter human-centric supervised pretraining model from diverse datasets
with various annotations. However, naive multitask pretraining may
easily suffer from the task conflicts [151, 282] or overfitting to pretrained
annotations [198, 300], losing the desirable generalization ability of pre-
training. Inspired by [250], which suggests adding an MLP projector
before the task head can significantly enhance the generalization ability
of supervised pretraining, we propose Projector AssisTed Hierarchical
Pre-training (PATH), a projector assisted pretraining method with hi-
erarchical weight sharing to tackle the task conflicts of supervised pre-
training from diverse annotations. Specifically, the weights of backbones
are shared among all datasets, and the weights of projectors are shared
only for datasets of the same tasks, while the weights of the heads are
shared only for a single dataset – forming a hierarchical weight-sharing
structure. During the pretraining stage, we insert the task-specific pro-
jectors before dataset heads but discard them when evaluating models
on downstream tasks. With the hierarchical weight-sharing strategy, our
pretraining method enforces the backbone to learn the shared knowl-
edge pool, the projector to attend to the task-specific knowledge, and the
head to focus on the dataset with specific annotation and data distribu-
tion.

In summary, our contributions are two folds: (1) we build Human-
Bench, a large-scale dataset for human-centric pretraining including di-
verse images and comprehensive evaluations. (2) To tackle the diversity
of input images and annotations of various human-centric datasets, we
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propose PATH, a projector-assisted hierarchical weight-sharing method
for pretraining the general human-centric representations. We achieve
state-of-the-art results by PATH on 15 datasets throughout 6 downstream
tasks (Fig. 6.1(c)), on-par results on 2 datasets, and slightly lower results
on 2 datasets on HumanBench when using ViT-Base. Experiments with
ViT-Large backbone show that our method can further achieve consider-
able gains over ViT-Base, achieving another 2 new state-of-the-art results
and showing the promising scalability of our method. We hope our work
can shed light on future research on pretraining human-centric represen-
tations, such as unified structures.

6.2 HumanBench

6.2.1 Pretraining Datasets

According to biologists [44], nonverbal communication in daily life in-
cludes identity, visual appearance, and posture information. Following
this domain knowledge, we select person ReID as the identification task,
pedestrian attribute recognition, pedestrian detection, human parsing as
the visual appearance task, and pose estimation as the posture task in
HumanBench. 37 datasets containing 11,019,187 images 1 are collected
for pretraining. Tab. ?? presents the number of datasets and images in
each task. For the selected datasets, we leverage their original annota-
tions except for the noisy labeled person ReID dataset, i.e., LUPerson-
NL. In LUPerson-NL, we observe that identities with relatively few im-
ages are accurate. Therefore, we only select the identities that contain 15
to 200 images in LUPerson-NL, corresponding to 151,595 identities and
5,178,420 images.

To ensure no data leakage and small information redundancy, we
further de-duplicate the pretraining dataset from two aspects. First, we

1Full list of these 37 datasets are given in Appendix F.
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remove all potential duplicates from pretraining datasets that may ap-
pear in the evaluation datasets (detailed in Sec. 6.2.2) to enable a mean-
ingful evaluation of generalization. Specifically, we first utilize the Dif-
ference Hash [217] to calculate the hash code of images in the evalua-
tion datasets and pretraining datasets. Then, we delete the images in the
pretraining datasets that have the same hash code as any image in the
evaluation datasets. Second, some images come from some video-based
datasets, e.g., AIST++ [133] and UppenAction [292], which contain large
information redundancy between consecutive frames. In this case, we
select only one image from every 8 consecutive frames to reduce redun-
dancy.

6.2.2 Evaluation Scenarios and Protocols

Evaluation Scenarios. Our benchmark comprehensively quantifies the
generalization ability of human-centric representation on 6 human-centric
tasks from 19 datasets. Specifically, we establish three evaluation scenar-
ios for HumanBench: (1) in-dataset evaluation: we select 12 representative
datasets whose training subsets are allocated to the pretraining dataset
and evaluation subsets assigned to the evaluation dataset to evaluate
the performance of a general pretrained model on diverse seen datasets
(meaning similar data distribution for training and evaluation). (2) out-
of-dataset evaluation: we select 5 datasets that do not appear in pretrain-
ing but belong to the seen task for evaluating the ability of the pretrained
model on unseen datasets (meaning potentially different data distribu-
tion for training and evaluation). (3) unseen-task evaluation: we further
add 2 datasets for crowd counting to evaluate the generalization ability
to unseen tasks. More detailed distributions of these evaluation datasets
are presented in Tab. 6.2.

Evaluation Protocols. For each evaluation scenario, we expect a good
representation can generalize to specific human-centric tasks without
updating the feature extractor or being a good starting point when adapted
to any specific human-centric tasks by finetuning. Therefore, we present
three evaluation protocols for the experiments in Sec. 6.4.
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Figure 6.1: Overview of our proposed pretraining method, PATH. Im-
ages from various datasets are fed into the same backbone to extract the
general features, and then the task-specific projector attends to the task-
specific features from the general features. The dataset-specific head is
imposed to predict dataset-specific results, which are fed into the loss
function for training.

Full Finetuning. Full Finetuning evaluates the generalization ability when
pretraining models serve as training starting points. In this case, we
load the pretrained backbone and finetune all layers by supervision from
downstream tasks.

Head Finetuning. Head Finetuning is very similar to linear probing [87] in
self-supervised learning on natural image classification. It evaluates the
generalization ability of pretrained models without updating. Therefore,
we keep the pretrained backbone frozen and learn simple task heads for
downstream datasets.

Partial Finetuning. Partial Fintuning is a setting between head finetun-
ing and full finetuning [86], which finetunes the last several layers while
freezing the others. This evaluation protocol can take advantage of both
full finetuning and head finetuning, i.e., it can efficiently evaluate the
opportunity of pursuing strong but non-linear features.
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6.3 Methodology

We now introduce our proposed projector-assisted pretraining method
(PATH) with hierarchical weight sharing. Our method is motivated by [250],
which reveals that inserting an MLP projector before the objective func-
tion can significantly increase the generalization ability of supervised
pretraining. To avoid task conflicts among various tasks, we improve
this method by inserting task-specific projectors between the backbone
and the head of every dataset and designing a new hierarchical weight-
sharing strategy. Concretely, the projectors are very lightweight modules
composed of attention and gating modules (Sec. 6.3.2). The hierarchi-
cal weight-sharing strategy enforces that parameters of backbone, pro-
jectors, and heads are shared among all datasets across different tasks,
shared among datasets in the same task, and not shared, respectively
(Sec. 6.3.1). As such, we expect the backbone to learn general repre-
sentations of all human-centric tasks, the projector to attend to the task-
specific features from the general representations, and the head to super-
vise the network optimization by the annotations of every dataset. To
evaluate the generalization ability of the pretrained backbone, we dis-
card the projectors and heads, using the backbone only.

6.3.1 Hierarchical Weight Sharing

We design a hierarchical weight-sharing strategy to reduce task conflicts
among various annotations. Specifically, our model consists of three
components: a single backbone shared by all datasets, T task-specific
projectors shared by all datasets in the same task, and N dataset-specific
heads that are not shared, where N = N1+N2+...+NT is the number of
datasets in the pretraining dataset and Nt is the number of datasets in
the t-th task.

Backbone. The backbone F is implemented by a plain vision trans-
former [53] in the experiments. The parameters of the backbone are
shared by all datasets regardless of tasks.
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Task-specific projector. Each task-specific projector P t consists of sets
of attention modules and gating modules, which link with the backbone
F , where t ≤ T and T is the number of tasks. Since the parameters of
the task-specific projector are shared among the datasets with the same
task, the attention modules in the task-specific network can be consid-
ered as selecting features from the shared backbone network, whilst the
shared backbone network learns a compact global feature pool across all
datasets.

Dataset-specific head. To tackle the possible data distribution shift in
different datasets, we still preserve the dataset-specific head Ht

j , whose
parameters are not shared. Here,Ht

j is the j-th dataset in the t-th task.

Figure 6.1 shows a detailed visualization of our PATH. The detailed
pipeline is described as follows.

Step1: Extract the general features of images in the pretraining dataset.
Given an image x sampled from Dt

j which is the j-th dataset in the t-th
task in the pretraining dataset, extract the intermediate and final feature
maps F by the backbone, which will be fed into the projectors.

Step2: Attend the task-specific features by the task-specific projector (Sec. 6.3.2).
Given the feature maps F from the backbone, we attend the task-specific
features p = P t(F) by the t-th task-specific projector.

Step3: Calculate the activations by dataset-specific heads, losses by the ac-
tivations, and optimize the parameters of the backbone, the projector, and the
head simultaneously by backward propagation (Sec. 6.3.3).

During the evaluation stage, we discard the projectors and evalu-
ate the generalization ability of the backbone F using the protocols in
Sec. 6.2.2.

6.3.2 Design of Task-specific Projector

The task-specific projector is designed to attend to task-specific features
from backbone outputs, by applying an alternating chain of the attention
module and gating module to the features in the shared backbone. Given
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an image x sampled from the j-th dataset in the t-th task, i.e., Dt
j and its

intermediate feature maps fl in the l-th transformer block, we leverage
a squeeze-and-excitation layer [100] to implement the channel attention
and a self-attention module [235] to implement spatial attention to gen-
erate the attended feature maps zl. Mathematically, zl = At(E t(fl)),
whereAt and E t respectively denote standard self-attention blocks [235]
and squeeze-and-excitation blocks [100] for the t-th task.

To effectively aggregate features from different backbone layers, we
design a gating module to dynamically aggregate features from different
layers. Specifically, given the feature map zl after the attention module
and the gated feature maps pl−1 in the (l − 1)-th layer, the gating func-
tion aggregates features as follows:

pl = µlzl + (1− µl)pl−1, (6.1)

where p1 = z1, µl = σ(αl/T) is a gate parameterized with a learnable
zero-initilalized scalar αi and temperature T(=0.1), and σ is the sigmoid
function. By iteratively computing Eq. 6.1 from l = 1 to L, we generate
the final feature maps i.e., p = pL for the dataset head.

6.3.3 Dataset-specific Head and Objective Functions

Dataset-specific heads aim at transforming task-specific features into ac-
tivations for computing losses of every dataset. In general multi-dataset
learning with N datasets, the features Pi after the projector of all images
Xi and labels Yi, i = 1, 2, ..., N in i-th dataset, the objective function is
defined as L = ∑N

i=1 λiLi(Zi, Yi), where Zi is the activation generated
by the dataset-specific head. This is the linear combination of dataset-
specific losses Li with task weightings λi. In this chapter, we follow
some basic head and loss function designs of all pretraining tasks we
include. Specifically, we follow the head and loss function designs in
VitPose [270] for pose estimation, in TransReID [91] for person ReID, in
Segformer [265] for human parsing, in Anchor Detr [249] for pedestrian
detection, in Label2Label [136] for pedestrian attribute recognition, and
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in DR.VIC [82] for crowd counting. More details of these head and loss
designs will be elaborated on below.

Person ReID

Task Head. Following [165], the task head of person ReID is a Synchro-
nized BatchNorm [106]. Mathematically, the activation Zt

j is defined as

Zt
j = BatchNorm(Pt

j). (6.2)

Objective Function. We use the triplet loss [95] and cross-entropy [296]
to supervise the ReID task. Mathematically,

Lreid =
T

∑
t=1

Nt

∑
j=1
Lce(Zt

j, Yt
j) +

T

∑
t=1

Nt

∑
j=1
Ltriplet(Zt

j), (6.3)

where Lce is the cross-entropy loss, Yt
j is the labels and Nt

j is the number
of images in Dt

j . The triplet loss enlarges the distance between negative
pairs and minimizes the distance between positive pairs, which can be
mathematically defined as

Ltriplet = [dp − dn + α]+, (6.4)

where dp and dn are feature distances of positive and negative pairs. α is
the margin of triple loss, and [·] equals max(·, 0).

Pose Estimation

Task Head. Following [270], the task head is lightweight, processes the
features after the task-specific features, and localizes the keypoints. We
use the structure of classic decoders in [270], which consists of two de-
convolution blocks, each of which contains one deconvolution layer fol-
lowed by layer normalization and ReLU. Following the common setting
of previous methods in pose estimation, each block upsamples the fea-
ture maps by 2 times. Mathematically, the activation (the localization
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heatmaps) can be defined as

Zt
j = Conv1×1(Deconv(Deconv(Pt

j))), (6.5)

where Zt
j ∈ R

H
4 ×

W
4 ×Nk , H is the height of the image, W is the width of

the image, and Nk is the number of keypoints.

Objective Function. We leverage the mean square error (MSE) for pose
estimation, i.e.,

Lpose =
T

∑
t=1

Nt

∑
j=1

MSE(Zt
j, Yt

j), (6.6)

where Yt
j is the ground-truth heatmap of keypoints.

Human Parsing

Task Head. We follow the naive head design of [306] for human pars-
ing. Specifically, the naive head first projects the features after the task-
specific projectors to the dimension of category number (e.g., 20 in LIP [145]).
For this, we adopt a simple 2-layer network with architecture: 1 × 1
Conv+LayerNorm+ReLU+1 × 1Conv. After that, we simply bilinearly
upsample the output to the full image resolution, followed by a classifi-
cation layer with pixel-wise cross-entropy loss. Mathematically, the task
head can be defined as

Z′tj = Conv1×1(LayerNorm(ReLU(Conv1×1(Pt
j)))), (6.7)

Zt
j = Upsample(Z′tj ), (6.8)

where Zt
j is upsampled to the size of input images.

Objective Function. Following common implementations in [283], we
use the cross-entropy loss to supervise the human parsing. Specifically,
the objective function can be defined as

Lparsing =
T

∑
t=1

Nt

∑
j=1

CE(Zt
j, Yt

j), (6.9)
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where Yt
j ∈ RH×W×Nc is the annotation map whose elements represent

the label of the pixel.

Pedestrian Attribute Recognition

Task Head. Following the common implementations in [136], we only
use a fully-connected layer followed by a sigmoid function to project the
feature to the activation, which can be mathematically defined as

Zt
j = Sigmoid(FC(Yt

j)), (6.10)

where Zt
j ∈ RN×Nc Fc is a fully-connected layer, and Nc is the number of

attributes in the dataset.

Objective Function. Our objective function is the binary cross-entropy
loss between the activation and the ground-truth label, which can be
mathematically defined as

Lattribute =
T

∑
t=1

Nt

∑
j=1

BCE(Zt
j, Yt

j). (6.11)

Pedestrian Detection

Task Head. Following Anchor Detr [249], the task head consists of 9
transformer decoder layers, i.e., D = {D1,D2, ...,D9}. The every trans-
former decoder layer Di includes a cross-attention layer, a self-attention
layer, and a feedforward network. Therefore, features processed by the
decoder Dl are defined as

Pl = Dl(Qt
l−1, Qt

p, Pt
j, Pp), (6.12)

where Pp = proj(AP), proj is a linear projection, and AP is the coor-
dinates of all tokens in the task-specific feature Pt

j. Similarly, Qt
p =

proj(AQ) refers to a linear projection of the coordinates of learnable an-
chor points initialized with a uniform distribution following [249].
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Counting Head
Upsample(scale_factor=2)

Conv{k=(3,3),c=64,s=1}-BN-ReLU
Conv{k=(3,3),c=32,s=1}-BN-ReLU

Upsample(scale_factor=2)
Conv{k=(3,3),c=16,s=1}-BN-ReLU

Conv{k=(3,3),c=1,s=1}-ReLU

Table 6.3: Detailed architecture of counting head.

Objective Function. Given the features PL after the decoder, we use
the classification loss, GIoU loss and bounding box loss to supervise the
pedestrian detection, i.e.,

Lpeddet =λclsLcls(Zcls, Ycls) + λiouLiou(Zbbox, Ybbox)

+ λL1LL1(Zbbox, Ybbox),
(6.13)

where Lcls is the classificatin loss, λiou is the GIoU loss, λL1 is L1 loss
of the bounding boxes, and Ycls, Ybbox are annotations of classes and
bounding boxes. Here, Zcls = fcls(PL), Zbbox = fbbox(PL) are linearly
projections of PL, fcls and fbbox are two fully connected layers.

Crowd Counting

Task Head. Table 6.3 details the configurations of counting head for
regressing the density map. In this table, “Conv{k(3,3),c64,s1}-BN-R”
represents the convolutional operation with kernel size of 3× 3, output
channels of 64, and stride size of 1. The “BN” and “ReLU” mean that
the Batch Normalization and ReLU layer are added to this convolutional
layer. Specifically, we denote the task head of counting using layers in
Table 6.3 asHcount, i.e.,

Zt
j = Hcount(Pt

j). (6.14)

Objective Function. We leverage the MSE between the activation and
the ground-truth heatmap to supervise the learning of crowd counting,
i.e.,

Lcounting = MSE(Zt
j, Yt

j), (6.15)
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where Yt
j is the ground-truth heatmap of crowd counting.

6.3.4 Technical Details

Replacing all Batchnorm with Layernorm in pose and parsing decoders.
Generally, the original feature normalization method in pose estimation
and human parsing tasks is batch normalization with CNN backbone,
which renders the model to learn powerful feature distribution from
the statistics of batch inputs when trained on a single domain. How-
ever, in HumanBench, each task has different datasets, which may have
domain gaps, resulting in inaccurate normalization statistics when the
dataset-specific head is fed with features from the task-share projector.
To reduce the inaccurate statistics, we replace the Normalization method
from BatchNorm[106] to LayerNorm[9] and experimentally find that it
can improve feature representation.

Sharing Positional Embedding among All Datasets. In HumanBench,
the input image size of different tasks varies largely, resulting in dif-
ferent numbers of patch embeddings and positional embeddings after
projecting an image to patch embedding. As a result, different tasks
cannot share positional embeddings when the model is trained in a dis-
tributed manner. To tackle this problem, we parameterize positional em-
beddings as 224×224 in all tasks and interpolate their size according to
each dataset’s actual input image size during the pretraining stage.

6.4 Experiment

6.4.1 Experimental Setup

The backbone used for experiments is the plain ViT-base. It has 12 trans-
former blocks with the dimension of patch embedding 768 and 12 atten-
tion heads. In the pre-train stage, each GPU is responsible for one dataset
independently for training in a distributed manner. We use Adafac-
tor [202] optimizer with base learning rate of 5e-4 and weight decay of
0.05. We linearly warmup the learning rate from 1e-7 to 5e-4 for the first
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1500 iteration steps. Step learning rate decay of 0.5 is used in 50%, 75%,
95% iterations. For the ViT-Base encoder, we set a layer-wise learning
rate decay of 0.75 for 12 transformer blocks and the model is trained for
80k iterations.

6.4.2 Experimental Results

As detailed in Sec. 6.2.2, we implement in-dataset evaluation, out-of-
dataset evaluation, and unseen-task evaluation on HumanBench. Both
in-dataset evaluation and out-of-dataset evaluation include 5 human-
centric tasks, i.e., person ReID, pose estimation, human parsing, pedes-
trian attribute recognition, and pedestrian detection. The unseen down-
stream task which is not in the pretraining tasks, i.e, crowd counting,
evaluates the generalization ability to unseen tasks. The compared meth-
ods are the state-of-the-art methods of each task and two popular pre-
training models, i.e., MAE [86] and CLIP [187]. MAE is a newly proposed
vision self-supervised pretraining method. Pretrained on ImageNet-1K,
MAE achieves excellent results for many visual tasks. CLIP learns generic
and transferable representations from a dataset of 400 million (image,
text) pairs. We summarize our experimental results with 3 evaluation
scenarios and 3 evaluation protocols in Tab. 6.4.

In-dataset Evaluation. In-dataset evaluation quantifies the ability of
the pretraining method when it is evaluated on the data with similar data
distribution and pretrained tasks. As shown in Tab. 6.4, compared with
SoTA methods used in different papers for their specific tasks, our Hu-
manBench with full finetuning achieves better performance on 8 datasets.
Specifically, for human parsing, we improve the current state-of-the-art
results by +2.5% mIOU, +1.1% mIOU and +1.2% mIOU on Human3.6M,
LIP and CIHP, respectively. We also improve the person ReID by +4.9%
mAP on CUHK03 datasets. We notice our results are lower than PASS [315]
on Market1501 and MSMT, probably because PASS uses techniques, i.e.,
part models [242, 216], that are time-consuming (120 hours using 8 A100
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GPUs) but specifically effective for ReID. Besides, we improve pose es-
timation by +3.0% AP, -1.2% MR−2(↓) on AIC and Human3.6m, respec-
tively. Furthermore, we improve pedestrian attribute recognition +1.5%
mA and +0.2% mA on PA-100K and RAPv2 datasets, respectively.

To evaluate the generalization of different methods when all back-
bone parameters or most of the backbone parameters are frozen, we fur-
ther evaluate our HumanBench with head finetuning and partial fine-
tuning with 100% of the downstream data. We observe that our method
with only head finetuning can be on par with and even surpasses the So-
TAs in 12 seen datasets, such as -1.2% heavy occluded MR−2(↓) +1.6%
mIOU on Human3.6m pose estimation and human parsing tasks. Our
HumanBench with partial finetuning performs better than full finetun-
ing in 2 Pedestrian Attribute Recognition datasets (PA-100K and RapV2)
of 12 seen datasets, possibly because these two datasets have fewer data.

We also use ViT-Large to verify the model scalability of our method
PATH on HumanBench in Tab. 6.4. Results show that the results with a
large backbone under partial finetuning can further achieve considerable
gains over the best ViT-Base results, showing the promising scalability of
our proposed pretraining method PATH on HumanBench.

Out-of-dataset Evaluation. To quantify the generalization ability of pre-
trained models on tasks with potentially different data distribution but
the same task in the pretraining dataset, we implement out-of-dataset
evaluations on 5 datasets, i.e., ATR, SenseReID, Caltech, MPII, PETA,
one dataset for each pretraining task. As shown in Tab. 6.4, our pre-
training method PATH performs better than previous methods in 4 of
5 unseen datasets and comparable in the remaining one. To be concrete,
our method improves by +0.1%pACC, +4.4%Top1 accuracy, -0.5% heavy
occluded MR−2(↓) and +2.7% mA on ATR (human parsing), SenseReID
(person ReID), Caltech (pedestrian detection) and PETA datasets (pedes-
trian attribute recognition), respectively.

These significant and consistent performance gains across different
datasets verify the generalization ability of our pretrained model to tasks
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with potentially different data distributions. We also observe the re-
sults when we only finetune the last two layers are already on par or
even better than the results by full finetuning. Especially, the results of
SenseReID, Caltech and PETA by partial finetuing are better than that of
full finetuning by +0.5%Top1 accuracy, -1.8%heavy occluded MR−2(↓)
and +1.8%mA, showing the good generalization of our pretrained mod-
els and its easy deployment in the real world. Similar to the results in
the out-of-dataset evaluation, partial finetuing performs better than full
finetuning when the dataset is small in Caltech (4250 images) and PETA
(9500 images). Therefore, partial finetuning can be a choice when the
downstream dataset has few samples.

Unseen-task Evaluations. To evaluate the generalization ability to un-
seen tasks, we construct an unseen task evaluation, in which the task is
not involved in the pretraining tasks, i.e, crowd counting. As presented
in Tab. 6.4, our pretrained model achieves significant performance gains
than the MAE pretrained model by -10.4% MSE(↓) and -4.7% MSE(↓).
Our HumanBench improves previous SoTAs that are specially designed
for crowd counting by -2.6% MSE(↓) and -0.2% MSE(↓) on ShTech PartA
and PartB datasets, respectively. These consistent improvements vali-
date the generalization ability of our learned representations.

Comparsion with MAE and CLIP Models. We also compare our pre-
trained method with other popular pretrained models, i.e., MAE and
CLIP, on our proposed HumanBench. In Tab. 6.4, we find our pretrain-
ing method performs considerably better than CLIP and MAE under the
full finetuning evaluation protocol on all tasks. Interestingly, the per-
formance of CLIP2 is lower than MAE, which shows that more data
on natural images and languages may not naturally benefit a variety of
human-centric tasks, which empirically validates the importance of our
HumanBench for further research on human-centric pretraining.

2We carefully tune the learning rate, drop path rate, and weight decay of CLIP pre-
trained ViT-B and report the best results we have ever achieved.
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(a) (b) (c) (d)

Shared Pos. Embedding ✓
Projector Share Type A S T T

Detection Caltech † 60.6 57.5 60.2 60.9

Attribute PA100K 84.4 84.6 84.6 84.4
PETA 87.6 87.2 87.9 87.5

Pose MPII 92.0 92.4 92.5 92.4

Parsing LIP 59.7 59.7 60.5 61.0

ReID Market1501 86.2 86.5 87.1 87.6
MSMT 65.8 66.0 66.1 66.8

On average 76.6 76.3 76.9 77.2

Table 6.5: Ablation results. "A", "S", and "T" respectively denote all
shared, specific, and task-shared projectors. † indicates the results are
reported as 1-heavy occluded MR−2 for averaging.

6.4.3 Ablation Study

Due to the significant computation cost with the large-scale full datasets,
as summarized in Table 1 in Appendix F, we sample a subset contain-
ing a similar number of images as ImageNet-1K (∼ 1.28 M) from the
full training set. We pretrain our models on this subset to verify the ef-
fectiveness of our designs by default in this section, and implement 4
in-dataset evaluations (PA-100K, LIP, Market1501, MSMT) and 3 out-of-
dataset evaluations (Caltech, PETA, MPII) full dataset finetuning.

Effectiveness of hierarchical weight sharing. To verify the effective-
ness of our hierarchical weight sharing, we adapt the three projector
share strategies: (1) all shared projector (A): sharing the projector pa-
rameters across all the tasks and datasets (Table 6.5 (a) ); (2) task-shared
projector (T): sharing the projector parameters across all datasets in a
single task, while maintaining an independent projector for each task
(Table 6.5 (c) ); and (3) specific projector (S): maintaining an indepen-
dent projector for each dataset (Table 6.5 (b) ). The results show that the
task-shared projector is better than the other two. We speculate that the
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Pretraining data ImageNet-1K Our subset

Method MAE MAE MOCOv3 Ours

Detection Caltech † 51.9 58.2 57.5 60.9

Attribute PA100K 82.3 83.5 82.9 84.4
PETA 84.6 85.3 84.3 87.5

Pose MPII 90.1 91.3 90.4 92.4

Parsing LIP 57.2 60.1 58.6 61.0

ReID Market1501 79.2 84.6 86.8 87.6
MSMT 51.5 64.5 67.2 66.8

On average 71.0 75.4 75.4 77.2

Table 6.6: Comparison with self-supervised pretraining methods on Im-
ageNet and the subset of our HumanBench. † indicates the results are
repoted as 1-heavy occluded MR−2 for averaging.

projector is the core component to map the general human-centric fea-
tures to task-specific features. Therefore, all datasets in the same task are
supposed to share the same mapping functionality while different tasks
should operate differently due to the existing task gaps.

Effectiveness of shared positional embedding. Experiments (c) and
(d) in Tab. 6.5 ablate whether positional embeddings are shared or not
across the different tasks. The results show that shared positional em-
bedding helps to learn general human-centric representations and leads
to +0.3% improvement on average when the five tasks are considered.
Since the backbone is shared, we conjecture that independent positional
embedding would cause inconsistency between different tasks, create
barriers in learning shared backbone across tasks, and result in difficul-
ties in learning the model.

Comparison with self-supervised pretraining methods. As shown in
Table 6.6, we first ablate the effectiveness of our dataset on downstream
tasks. With almost the same number of images, the MAE pretrained
on our subset for 800 epochs surpasses ImageNet pretrained MAE by
+4.4%, which shows that by combining the diverse human-centric data
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across various human-centric tasks, our dataset is more suitable to learn
human-centric features. Second, pretrained on our subset, our super-
vised pretraining method, i.e. PATH, performs better than both MAE
(800 epochs) and MOCOv3 (800 epochs) by +1.8%. Different from MAE
and MOCOv3 which ignore the general properties of the human body
and the potential association between the data in different tasks, our
PATH is designed to capture the potential complementary knowledge
between different tasks, leading to learning more general human-centric
representations to improve the performance on various human-centric
tasks.

6.5 Conclusion

In this chapter, we investigate the opportunities and challenges in pre-
training on various human-centric tasks and propose a new Human-
Bench with the existing publicly available datasets. Based on Human-
Bench, we design a projector-assisted pretraining with hierarchical weight
sharing (PATH) to learn human-centric information from annotations
with different granularities. We hope our HumanBench can facilitate fu-
ture works such as unified network structure design and multi-task/ su-
pervised/ self-supervised learning methods on a broad variety of human-
centric tasks.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The field of large-scale visual pretraining witnessed significant progress
in recent years. However, there are still a number of obstacles that need
to be overcome to make the development of visual large-scale pretrain-
ing more effective. Given the growing interest in developing large foun-
dation models, it is crucial to address these challenges. In this thesis, we
make a focused effort to tackle three of the most pressing challenges in
this field, and proposed novel solutions. Our major contributions can be
summarized as follows:

• Relative Contrastive Loss (RCL): Chapter 3 introduces a relative
contrastive loss for unsupervised learning that treats query-key
pairs as relatively positive based on semantic criteria derived from
online hierarchical clustering. The representations learned with
this loss capture diverse semantic criteria, improving sample rela-
tionships. Extensive results across self-supervised, semi-supervised,
and transfer learning settings demonstrate the effectiveness of the
proposed loss, although optimal criteria design is yet to be ex-
plored.

• Unified Visual Contrastive Learning (VCL): Chapter 4 presents
UniVCL, a unifying framework that combines state-of-the-art meth-
ods. The GCN predictor is introduced to unify predictor layer de-
signs in self-supervised learning methods, emphasizing the impor-
tance of aggregating neighboring information in the feature space.
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The effectiveness of graph augmentations in vision contrastive learn-
ing is confirmed. Future work includes exploring non-contrastive
frameworks with graph self-supervised learning and validating ef-
fectiveness in other vision tasks.

• Improved Supervised Pretraining by adding an MLP projector
(SL-MLP): Chapter 5 studies the transferability gap between su-
pervised and unsupervised pretraining, finding that the MLP pro-
jector is crucial for good transferability. Adding an MLP projector
to supervised pretraining narrows the gap and improves perfor-
mance. Extensive experiments on diverse networks and tasks sup-
port this finding, while future work could explore other straight-
forward designs in the objective function.

• Supervised Pretraining with Hierarchical Weight Sharing (PATH):
Chapter 6 investigates pretraining on human-centric tasks and in-
troduces HumanBench, a benchmark dataset. The proposed PATH
method utilizes hierarchical weight sharing to learn human-centric
information from annotations of different granularities. Human-
Bench aims to facilitate research in network structure design and
multi-task learning for various human-centric tasks.

By conducting thorough experiments and analysis, we have pro-
vided compelling evidence of the efficacy of our proposed methods in
tackling the challenges associated with neural network design and train-
ing. These contributions establish a solid groundwork for future research
in this area and contribute to the advancement of state-of-the-art tech-
niques in neural network design and training.

7.2 Limitations of current visual pretraining

While this thesis aims at designing visual pretraining, they still have the
following challenges when deployed in the real world:

• Dataset Bias: Visual pretraining methods heavily rely on large-
scale datasets, which often suffer from biases in terms of demo-
graphics, representation, and environmental factors. This can lead
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to biased models and poor generalization in real-world scenarios.

• Lack of Domain Adaptation: Pretrained models may not general-
ize well to new domains or environments that differ significantly
from the training data. The models may fail to capture important
nuances and variations present in real-world data.

• Limited Robustness: Pretrained models are susceptible to pertur-
bations and adversarial attacks. They may fail to perform reliably
when faced with real-world challenges such as occlusions, varying
lighting conditions, or image distortions.

• Lack of Fine-grained Control: Visual pretraining methods often
focus on general object recognition and may not provide fine-grained
control over specific tasks or attributes required in real-world ap-
plications. Fine-tuning or additional training may be necessary to
achieve desired performance.

• Computational Resources: Training large-scale visual models re-
quires substantial computational resources, limiting their accessi-
bility and scalability in real-world deployment scenarios, especially
in resource-constrained environments.

• Lack of Interpretability: Pretrained models often lack interpretabil-
ity, making it challenging to understand their decision-making pro-
cess or diagnose potential errors or biases, which is crucial for real-
world applications where transparency and trust are important.

Addressing these limitations is crucial to ensure the reliable and ef-
fective deployment of visual pretraining methods in real-world scenar-
ios.

7.3 Future Work

The research presented in this thesis opens up several avenues for future
work. In the following, we outline some of the most promising directions
for future research.
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• Relative Contrastive Loss by Improved Clustering. The perfor-
mance of unsupervised pretraining largely relies on the accuracy
of clustering. Further investigation into the better clustering algo-
rithms could continuously achieve improved performance on un-
supervised pertraining.

• Investigation of MLP Projector in Different Domains. Extending
the analysis of the Multilayer Perceptron (MLP) projector’s impact
on transferability, future work can focus on evaluating its effective-
ness in various domains beyond image classification. Investigating
its performance in tasks such as object detection, semantic segmen-
tation, or video understanding can provide a comprehensive un-
derstanding of the MLP projector’s role in improving transferabil-
ity across different visual tasks.

• Multitask Pretraining Methods for a Wider Range of Human-
Centric Tasks. While the current version of PATH encompasses
five human-centric tasks, there are several additional tasks that re-
main unaddressed, including action recognition, 3D human recon-
struction, and crowd counting, among others. The development
of the next iteration of UniHCP to incorporate these tasks would
represent a noteworthy advancement towards achieving compre-
hensive human-centric perception.

To conclude, the outcomes presented in this thesis provide valuable
insights into neural network design and training, opening up exciting
possibilities for further advancements. As we strive for practical and
efficient approaches in large-scale visual pretraining, we foresee the ex-
pansion of this field enabling progress in artificial intelligence and con-
tributing to a brighter future for everyone.
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Appendix A

Mathematical Analysis of
Relative Contrastive Loss

A.1 Detailed Mathmatical Analysis of Relative

Contrastive Loss

We start by denoting two different images x and x′. Given a criteria
Mi, we define their label as Yi(x) and Yi(x′), respectively. Inspired by
BYOL [80] and Simsiam [36], the predictor layer aims to predict the ex-
pectation of projections z under transformation Ti, i.e., ETi(z), where Ti

is semantic-invariant onMi, i.e., Yi(Ti(x)) = Yi(x).

To analyze the formulation of our relative contrastive loss given two
images x and x′, we start with its individual component in Eq. (2) of the
main paper, i.e.,

LRCL

(
x, x′, θ; {Mi}H

i=1

)
=

H

∑
i=1

αiL(x, x′, θ;Mi), (A.1)

where αi is the trade-off parameter among different criteria. The loss
L(x, x′, θ;Mi) for criterionMi can be defined as

L(x, x′, θ;Mi) = − log

[
I [Yi(z) = Yi(z′)]× exp (q⊤Mi

z′/τ) + I [Yi(z) ̸= Yi(z′)]

exp (q⊤Mi
z′/τ) + ∑K

k=1 exp (q⊤Mi
sk/τ)

]
.

(A.2)
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When Yi(z) = Yi(z′),

L+(x, x′, θ;Mi) = − log

[
exp (q⊤Mi

z′/τ)

exp (q⊤Mi
z′/τ) + ∑K

k=1 exp (q⊤Mi
sk/τ)

]
,

(A.3)
which pulls the query predictions qMi and projection z′ together.

When Yi(z) ̸= Yi(z′),

L−(x, x′, θ;Mi) = − log

[
1

exp (q⊤Mi
z′/τ) + ∑K

k=1 exp (q⊤Mi
sk/τ)

]
,

(A.4)
which pushs the query predictions qMi and projection z′ apart.

Given a query-key pair (z, z′) and a set of semantic criteria {M1,M2, ...,MH},
if Yi(z) ̸= Yi(z′) for i < h and Yi(z) = Yi(z′) for i ≥ h, the relative con-
trastive loss becomes

LRCL

(
x, x′, θ; {Mi}H

i=1

)
=

h−1

∑
i=1

αiL−(x, x′, θ;Mi)+
H

∑
i=h

αiL+(x, x′, θ;Mi),

(A.5)
where the positive-negative relation of (z, z′) is relative and depends on
the particular semantic criterionMi.

A.2 Derivative of Gradients of Relative Contrastive

Loss

We calculate the gradient of relative contrastive lossL+(x, x′, θ;Mi) when
Yi(x) = Yi(x′) and L−(x, x′, θ;Mi) when Yi(x) ̸= Yi(x′), respectively.
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Specifically,

∂L+(x, x′, θ;Mi)

∂z
= − ∂

∂z

[
q⊤Mi

z′

τ
− log

[
exp (q⊤Mi

z′/τ) +
K

∑
k=1

exp (q⊤Mi
sk/τ)

]]

= −
∂qMi

∂z
z′

τ
+

exp (q⊤Mi
z′/τ)

∂qMi
∂z

z′
τ + ∑K

k=1 exp (q⊤Mi
sk/τ)

∂qMi
∂z

sk
τ

exp (q⊤Mi
z′/τ) + ∑K

k=1 exp (q⊤Mi
sk/τ)

,

∂L−(x, x′, θ;Mi)

∂z
= − ∂

∂z

[
− log

[
exp (q⊤Mi

z′/τ) +
K

∑
k=1

exp (q⊤Mi
sk/τ)

]]

=
exp (q⊤Mi

z′/τ)
∂qMi

∂z
z′
τ + ∑K

k=1 exp (q⊤Mi
sk/τ)

∂qMi
∂z

sk
τ

exp (q⊤Mi
z′/τ) + ∑K

k=1 exp (q⊤Mi
sk/τ)

.

(A.6)
Denote

P
(
z′|qMi

)
=

exp (q⊤Mi
z′/τ)

exp (q⊤Mi
z′/τ) + ∑K

k=1 exp (q⊤Mi
sk/τ)

, (A.7)

P
(
sk|qMi

)
=

exp (q⊤Mi
sk/τ)

exp (q⊤Mi
z′)/τ) + ∑K

k=1 exp (q⊤Mi
sk/τ)

, (A.8)

where P
(
z′|qMi

)
and P

(
sk|qMi

)
are always non-negative and P

(
z′|qMi

)
+

∑K
k=1 P

(
sk|qMi

)
= 1. Therefore, P

(
z′|qMi

)
can viewed as a valid prob-

ability of assigning the query prediction qMi to the label of projection z′

and the label of negative samples sk, respectively.

After substituting Eq. A.7 and Eq. A.8 into Eq. A.6, we get

∂L+(x, x′, θ;Mi)

∂z
=
[
P
(
z′|qMi

)
− 1
] ∂qMi

∂z
z′

τ
+

K

∑
k=1

∂qMi

∂z
P
(
sk|qMi

) sk
τ

,

∂L−(x, x′, θ;Mi)

∂z
=
[
P
(
z′|qMi

)] ∂qMi

∂z
z′

τ
+

K

∑
k=1

∂qMi

∂z
P
(
sk|qMi

) sk
τ

.

(A.9)
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Then ,we get the gradient of L(x, x′, θ;Mi) in Eq. A.2 as Eq. 4 in the
main text, i.e.,

∂L(x, x′, θ;Mi)

∂z
=

∂qMi

∂z
∂L(x, x′, θ;Mi)

∂qMi

=
[
P
(
z′|qMi

)
− I

[
Yi(z) = Yi(z′)

]] ∂qMi

∂z
z′

τ
+

K

∑
k=1

∂qMi

∂z
P
(
sk|qMi

) sk
τ

.

(A.10)

Finally, the gradient of relative contrastive loss LRCL is (discard neg-
ative samples {sk}K

k=1 in the support set S)

∂LRCL

∂z
=

H

∑
i=1

αi
∂qMi

∂z
(
P(z′|qMi)− I

[
Yi(z) = Yi(z′)

]) z′

τ
. (A.11)
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Appendix B

Visualization of Relative
Contrastive Loss

The relative contrastive loss considers the positive-negative relation de-
pending on a set of criteria M = {M1,M2, ...,MH}. According to
Eq. A.11, we define the attractor A(z, z′) and repellor R(z, z′) to de-
scribe the relativeness between the features of a given query-key pair
(z, z′). Without the loss of generality, we add only one predictor P(∗, θp)

instead of multiple predictors {P(∗, θi
p)}H

i=1 after query projection in our
experiments for visualization, and set the weight αi =

1
H . The number

of criteria H is set to be 3. For ease of our visualization, we only visu-
alize the pull-push dynamics between query prediction q and the key
projection z′, i.e.,

∂LRCL

∂q
=

H

∑
i=1

αi
(
P(z′|qMi)− I

[
Yi(z) = Yi(z′)

]) z′

τ
, (B.1)

Concretely, the attractor A(q, z′) and the repellor R(q, z′) can be
defined as

A(q, z′) =
H

∑
i=1

αiP(z′|qMi) (B.2)

R(q, z′) =
H

∑
i=1

αiI
[
Yi(z) = Yi(z′)

]
(B.3)

Figure B.1(a) shows a query image (the first image in the column
and row), two images that share the same label with the query image
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𝒟 𝐪, 𝐳! = 𝒜 𝐪, 𝐳! −ℛ 𝐪, 𝐳! , 𝒰 𝐪, 𝐳! = 𝐬𝐢𝐠𝐧 𝒟 𝐪, 𝐳!

(a) Attractor Map 𝒜(𝐪, 𝐳′) (b) Repellor Map ℛ(𝐪, 𝐳′)

(c) Dynamical Map 𝒟 𝐪, 𝐳! (d) Pull (1) or Push (0) Map 𝒰(𝐪, 𝐳′)

Figure B.1: Visualization of relative contrastive loss. (a) Attractor Map
A(q, z′) in Eq. B.2: Attractive map denotes the attractive force of rel-
ative contrastive loss that pulls query-key pair (q, z′) together. (b) Re-
pellor Map R(q, z′) in Eq. B.3: Repellor map denotes the repulsive force
of relative contrastive loss that pushes query-key pair (q, z′) apart. (c)
Dynamical Map D(q, z′) = A(q, z′) − R(q, z′): the difference of the
attractor map and the repellor map. Positive value means the query-
key pair (q, z′) should be pulled together, the negative value means
the query-key pair (q, z′) should be pushed apart. The absolute value
of dynamical map means the strength of force. (d) Pull or Push Map
U (q, z′) = sign (D(q, z′)): Pull or Push map denotes the final attractive
or repulsive force between a query-key pair (q, z′). 0 denotes pushing
two features apart and 1 denotes pulling two feature together.
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in the hierarchical label bank at all levels h = 1, 2, 3, three images that
share the same label in the hierarchical label bank at level h = 2, 3, two
images that only share the same label in hierarchical label bank at level
h = 3, and two images that are not labeled the same with query image
in the hierarchical label bank at any level. The results in Figure B.1(c)
show that the final decision on pull (greater than 0) and push (smaller
than 0) is continuous, different from the designs in [87, 33, 56, 31, 80],
that are discrete. Besides, the continuous values reflect relative semantic
and visual similarities among samples.
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Appendix C

Label Propagation in Relative
Contrastive Loss

Label Propagation [159] is a widely-adopted method of computing the
possibility that two samples/clusters belong to the same class. Given n
units U = {Ui}n

i=1, i.e., clusters or samples to be split/merged, we first
estimate its pairwise similarities by the dot product of the unit proto-
types U = (u1, u2, ..., un), i.e., features for single images or cluster feature
centers. Mathematically, it can be formulated as

A = U⊤U. (C.1)

Following [159], we can obtain the normalized affinity matrix Â by

Â = D−1/2AD1/2, (C.2)

where D is a diagonal matrix with elements Dii = ∑n
j=1 Aij. We denote

the predicted probabilities of samples/clusters as Pt = (pt
1, pt

2, ..., pt
n) ∈

Rn×k after t-th propagation (defined in Eq. C.4), where k is the number
of classes (clusters) that n units may belong to, pt

∗ = (pt
∗,1, pt

∗,2, ..., pt
∗,k)

and pt
∗,k′ denotes the probability of the sample belong to the k′-th class.

For the i-th unit, we would like to propagate the class predictions from
other units j as

pt+1
i = γ ∑

j ̸=i
Âijpt

j + (1− γ)p0
i = γÂiPt + (1− γ)p0

i , (C.3)
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where γ is a propagation strength parameter, P0 = (p0
1, p0

2, ..., p0
n), p0

i is
the initial label prediction of the i-th unit that we will specifically define
in the following cluster split and cluster merge.

Intuitively, if the i-th sample and the j-th sample are similar with
a high affinity Â(i, j), the prediction pt

j of the jth sample would have a
larger weight to be propagated to the prediction pt+1

i of the i-th sam-
ple. Propagating the predictions between all samples in parallel can be
formulated as

Pt+1 = γÂPt + (1− γ)P0, (C.4)

which is an iterative algorithm. The closed solution P∞ after conducting
Eq. C.4 for multiple times until convergence is

P∞ = (I− γÂ)−1P0. (C.5)

For each unit to be split or merged, we estimate its class prediction p∞
i =

(p∞
i,0, p∞

i,1, ..., p∞
i,k) by propagating the neighboring information with Eq. C.5,

which is used to merge the i-th unit to j-th cluster when p∞
i,j > σm. Here

σm is the manually designed threshold for cluster merge.

Initialize P0 in Cluster Split. As described in Cluster Split part in Sec. 4.3
in the main text, we split a cluster Ch+1

i into m clusters, and uses the
clusters at h-th level at its split units, i.e., U h+1

i = {Ch
j |Ch

j ⊂ C
h+1
i , j =

1, 2, ..., kh}, where kh is the number of clusters at h-th level. We re-denote
U h+1

i = {O1,O2, ...,On}, where n = |U h+1
i |. We first select m the most

dissimilar split units in U h+1
i as the prototypes of each class. Then, we

initialize (p0
jk) as 1 if Oj is selected as the prototype of the k-th class, and

as 0 otherwise, i.e.,

p0
jk =

{
1, if Oj is selected as the prototype of the k-th class,
0, otherwise,

(C.6)

Initialize P0 in Cluster Merge. We treat every cluster in the merge units
Vh+1

i in Sec. 4.3 Cluster merge in the main text as an individual class, and
then use label propagation to determine to merge two clusters if their
prediction belonging to the same class is larger than σm. Specifically, we
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initialize P0 as
P0 = In′×n′ , (C.7)

where n′ = |Vh+1
i | is number of merge units in Vh+1

i .

Effectiveness of Label Propagation. Label propagation serves as a cor-
nerstone in cluster split and cluster merge for estimating the possibility
that two samples/clusters labeled the same. To evaluate the effective-
ness of label propagation in hierarchical clustering, we replace the label
propagation by typical implementation, i.e., feature similarity, in hierar-
chical clustering to justify whether two units belong to the same class.
Average linkage based hierarchical clustering [175] determines merge
and split by pairwise similarity only, thus can not consider the neighbor-
ing information in the data distribution. The detailed implementation
of hierarchical clustering by average linkage is specifically described in
supplementary materials. Comparing Exp. 2 with Exp. 3 and comparing
Exp. 4 with Exp. 5 in S-Table 3.4, we find the accuracy with label prop-
agation is about 6% higher than that clustered by average linkage if we
set the hierarchy of clustering to 3. Comparing Exp 3, 5 and Exp 1, 2, 4 in
S-Table 3.4, we find different trends when implementing the label prop-
agation and average linkage, i.e., the accuracy increases as the number
of hierarchies increases for label propagation (Exp 1, 2, 4) but obviously
drops for average linkage (Exp 3, 5). We attribute this to the failure of
average linkage based clustering, and therefore the criteria by hierarchi-
cal clustering with label propagation determine query-key pair positive
and negative incorrectly. This analysis shows the potential of designing
more appropriate criteria as the future work when implementing relative
contrastive loss in the feature.
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Appendix D

Visualization of Feature Mixture
and Feature Distribution

D.1 Visualization of Feature Mixtureness

We provide an intuitive understanding of the relation between Feature
Mixtureness and the feature distribution distance by manually generat-
ing two sets of features with different distribution distance. We use red
and blue to represent class centers from pre-D and eval-D, respectively.
The visualization results are illustrated in Fig. D.1. From (a) to (c), when
the distribution distance between pre-D and eval-D increases, Feature
Mixtureness decreases accordingly. When we fix the variance of features
in pre-D and gradually enlarge the variance of features in eval-D (from
(d) to (f)), Feature Mixtureness will decrease as well. Based on the obser-
vations above, we conclude that our Feature Mixtureness can empirically
measure the feature distribution distance between pre-D and eval-D.

D.2 Visualization of Feature Distribution

In this section, we provide an illustration to establish an intuition about
how intra-class variation and Feature Mixtureness evolve during differ-
ent pretraining epochs.
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(a) (b) (c)

(d) (e) (f)

Figure D.1: Visualization of Feature Mixtureness with different manually gen-
erated feature distribution. Red and blue represent pre-D and eval-D class cen-
ters, respectively.

D.2.1 Intra-class Variation on pre-D

We visualize the feature distribution using samples from 10 randomly
selected classes in pre-D in Fig. D.2 to illustrate the evaluation results
of the intra-class variation on pre-D. Different colors represent different
classes. In SL, the intra-class variation will continuously decrease to a
small value with more training epochs. In contrast, the intra-class vari-
ance of SL-MLP and Byol retains even though we pretrain the networks
at large pretraining epochs. This visualization graphically validates that
the MLP projector can enlarge the intra-class variation of features in pre-
D.

D.2.2 Feature Mixtureness between pre-D and eval-D

We randomly select features from 5 classes in pre-D and 5 classes in eval-
D, and then visualize them by t-SNE in Fig. D.3. Cold colors represent
features from pre-D and warm colors represent features from eval-D. At
the early pretraining stage, all methods show high Feature Mixtureness
as they cannot well classify images in pre-D. When the training epoch is
becoming larger, SL shows lower Feature Mixtureness, which indicates
a larger feature distribution distance between pre-D and eval-D. Instead,
SL-MLP and Byol remain large Feature Mixtureness when the training
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epoch is becoming larger, which shows that the feature distribution dis-
tance between pre-D and eval-D is not enlarged by Byol and SL-MLP.
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Appendix E

More Investigation of the
Influences of MLP on
Transferability

In this section, we provide the detailed analysis about how each com-
ponent of the MLP projector influences the intra-class variation (repre-
sented by discriminative ratio ϕpre) on pre-D, Feature Mixtureness Π be-
tween pre-D and eval-D, and feature redundancyR. Based on SL which
does not include MLP, we ablate the structure of the MLP projector by
adding the input fully connected layer, the output fully connected layer,
the batch normalization layer and the ReLU layer incrementally. The in-
put fully connected layer and the output fully connected layer are both
set to have hidden units of 2048 and output dimensions of 2048 to keep
same output feature dimensions as SL. All experiments are pretrained
over 100 epochs. Testing results of the discriminative ratio on pre-D, Fea-
ture Mixtureness Π and feature redundancyR are illustrated in Tab. E.1.

E.1 Visualization of intra-class variation

We randomly select features from 10 classes in pre-D and visualize their
intra-class variation in Fig. E.1. Different colors denote features from
different classes. We specify the components in the MLP projector below
each visualization image. Comparing (a) with (b), we can see that adding
a fully connected layer can slightly enlarge intra-class variation, which



140
Appendix E. More Investigation of the Influences of MLP on

Transferability

(a) SL (b) 1fc (c) 2fc + BN

(d) 2fc + relu (e) BN + relu SL-MLP

Figure E.1: Visualization of intra-class variation by different compo-
nents. We randomly select 10 classes in pre-D. Different colors denote
different classes. Comparing (a) wth (b), we can see the fully-connected
layer can slightly help enlarge the intra-class variation. Comparing (a-b)
and (d-e), we can observe the batch normalization layer and the ReLU
layer can significantly enlarge the intra-class variation in the feature
space. In general, all components in the MLP layer is beneficial to en-
large intra-class variation, which proves their effectiveness in enhancing
transferaiblity of pretraining models.

indicates that linear transformation helps transferability marginally. In-
stead, comparing (a-b) with (c-e), we can observe that the batch normal-
ization layer and the ReLU layer are important components in the MLP
projector, which can significantly enlarge the intra-class variation in the
feature space of pre-D. In general, comparing SL-MLP with (a-e), we can
conclude that all components in MLP projector help enlarge the intra-
class variation of features in pre-D while the batch normalization layer
and the ReLU layer play the most important roles.

E.2 Visualization of Feature Mixtureness

We randomly select features from 5 classes in pre-D and 5 classes in eval-
D to visualize Feature Mixtureness with different MLP components. The
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(a) SL (b) 1fc (c) 2fc+BN

(e) BN+relu(d) 2fc+relu SL-MLP

Figure E.2: Visualization of Feature Mixtureness of features pretrained
by different MLP components. Different colors denote different classes.
Points with cold colors denote the features from pre-D, and points with
warm colors denote the features from eval-D. Comparing (c-d) with (a-
b), we can see that adding BN and ReLU can increase Feature Mixture-
ness between pre-D and eval-D. Comparing (e) with (a-d), we can con-
clude that BN and ReLU play the main roles in the MLP projector as (e)
shows larger Feature Mixtureness. An MLP projector with all compo-
nents achieves the largest Feature Mixtureness.
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Transferability

results are summarized in Fig. E.2. The features with cold colors come
from pre-D, the features with warm colors come from eval-D. Compar-
ing (a) and (b), we can see adding a fully connected layer can hardly
increase Feature Mixtureness between pre-D and eval-D. Comparing (c-
d) with (b), we can conclude that the batch normalization layer and the
ReLU layer can increase Feature Mixtureness between pre-D and eval-D.
Comparing (b-d) with (e), we can summarize that the batch normaliza-
tion and the ReLU layer are the most important components. A batch
normalization layer with a ReLU layer can significantly increase Feature
Mixtureness between pre-D and eval-D, which has already been similar
to Feature Mixtureness when the MLP projector has the complete archi-
tectural.

E.3 Quantitative Analyse of MLP components

With the discriminative ratio ϕpre, Feature Mixtureness Π and feature
redundancy R defined in main text Sec. 4.2, we quantitatively exam-
ine the effect of different components in the MLP projector. The results
are presented in Tab. E.1. Firstly, the fully connected layer has little in-
fluence on three metrics. Comparing (a) and (b), when adding a fully
connected layer, the model shows slight improvement on Feature Mix-
tureness and feature redundancy, and slight decrease of the discrimi-
native ratio on pre-D. Second, non-linear layer brings considerable im-
provements. Comparing (b) to (d), we can summarize that incremen-
tally adding a ReLU, a batch normalization layer can increase Feature
Mixtureness, reduce discriminative ratio, which could improve transfer-
ability of the pretrained model. Specifically, the ReLU layer brings a lit-
tle improvement on feature redundancy. Comparing (a,b) with (c,e), we
can conclude that BN not only reduces the discriminative ratio on pre-D,
but also increases Feature Mixtureness. BN has a significant influence
on future redundancy, which reduces feature redundancy by 50% (from
0.0671 to 0.0369). Last but not least, the combination of all components
achieves the best transferability with the lowest feature redundancy, the
highest Feature Mixtureness and a relatively large intra-class variation.
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Appendix F

More Details of HumanBench

In the main text, we briefly introduce the number of images and tasks
in the pretraining dataset of HumanBench. To evaluate HumanBench,
we introduce the evaluation scenario and protocols. In this section, we
present detailed information on the pretraining dataset and evaluation
dataset and discuss the ethical issues of these datasets.

F.1 Dataset Statistics of HumanBench

HumanBench collects 37 publicly available datasets of 5 human-centric
tasks, including person ReID, human parsing, pose estimation, pedes-
trian detection, and pedestrian attribute. More details can be seen in
Table F.1. The existing distribution of datasets includes large numbers
of human-centric cropped images in ReID, video frames in person pose
estimation, and human parsing. In particular, we select a single frame
from every 8 video frames to avoid information reduction. Except for
using training images in all datasets, we also use all/partial test images
in some datasets. Specifically, for the person Reid task, we use all test im-
ages in LaST and partial test images in the PRCC dataset; for the human
parsing task, we only use train images and publicly released images in
DeepFashion(∼half of the dataset reported in [161]). For the pedestrian
detection dataset, we remove the images in which there is no person. For
the pose estimation datasets, we only use train images. We only use par-
tial test images in the UAV-Human dataset for the pedestrian attribute
recognition dataset and do not contain test images in other pedestrian
attribute recognition datasets. All the images in the pretraining dataset
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have been de-duplicated with the testing datasets to be a meaningful
benchmark of our HumanBench.

F.2 Discussion of Ethical Issues

The usage of HumanBench might bring several risks, such as privacy,
and problematic content. We discuss these risks and their mitigation
strategies as follows.

Copyright. All images in this paper and dataset are collected by pub-
licly available. We claim the dataset:

• Copy and redistribute the material in any medium or format.

• Remix, transform and build on the material for any commercial
purpose.

Referring to OmniBenchmark [295], MS-COCO [149], Kinetics-700 [26],
we only present the lists of URLs and their corresponding metainforma-
tion to our HumanBench.

F.3 Details of HumanBench-Subset

Due to the high computational cost when we pretrain the model on the
full dataset, we select 17 subsets from 37 full datasets for ablation study,
which contains 1,270,186 images as a similar number with ImageNet-
1K(∼1.28M). Table F.1 summarizes the statistics of the HumanBench-
Subset. For the person ReID task, we select widely-used Market1501 and
CUHK03 datasets and the clothes-changing ReID dataset PRCC, form-
ing 38,197 images. We select widely used Human3.6M, LIP, CIHP, VIP
datasets, and one clothes parsing dataset, i.e., ModaNet, with 192,124 im-
ages for the human parsing task. We select widely-used COCO, AIC, and
PoseTrack datasets with 748,812 images for the pose estimation task. For
the attribute task, we select PA-100K, RAPv2, and Market1501-Attribute
datasets with a total of 170,879. Due to the significant resource cost, we
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only selected one widely used dataset CrowdHuman for the pedestrian
detection task.
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Appendix G

Detailed Implementations of
PATH

During pretraining, we collect in total of 39 datasets from person ReID,
human parsing, pose estimation, pedestrian attribute recognition, and
pedestrian detection. To pretrain the model in a distributed manner, we
only train a dataset in each GPU. We pretrain our model using 64 V100-
32G GPUs. In the following, we present the task-agnostic parameters
and task-specific parameters.

G.1 Task-agnostic Hyperparameters

Table G.1 illustrates the learning hyper-parameters utilized in our pre-
training stage. Specifically, we train our model for 80000 iterations in
total. During pretraining, we use STEP learning rate decay strategy
with a warm-up from 1e−7 to 5e−4 during 1500 iterations. we multiply
the learning rate 5e−4 by 0.5, 0.2 and 0.1 at the 40000-th, 60000-th and
76000-th iteration, respectively. The backbone multiplier and the posi-
tional multiplier are the ratios of the actual learning rate of the backbone
and the positional embedding, respectively, which are all set as 1.0.

G.2 Task-specific Hyperparameters

Table G.2 presents the task-specific hyper-parameters of each dataset,
including batch size per GPU, the number of GPUs, sample weights,
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lr_schedule

type Step
base_lr 1.00E-07
warmup_steps 1500
warmup_lr 5.00E-04
lr_mults [0.5, 0.2, 0.1]
lr_steps [40000, 60000, 76000]
max_iter 80000
backbone_multiplier 1.0
pos_embed_multiplier 1.0

optimizer

type Adafactor_dev
beta1 0.9
clip_beta2 0.999
clip_threshold 0.5
decay_rate -0.8
scale_parameter FALSE
relative_step FALSE
weight_decay 0.05

layer_decay
num_layers 12
layer_decay_rate 0.75

Table G.1: Detailed description of task-agnostic hyper-parameters in the
pretraining stage.

and loss weights. Specifically, the dataset weights are related to sample
weights and the number of GPUs:

loss weight = sample weight× images per GPU× number of GPUs. (G.1)

The loss weights of the pose estimation are larger than other tasks be-
cause the loss functions used in pose estimation are MSE loss between
the predicted heatmaps of keypoints and the heatmaps of the ground
truth whose value is very small. For tasks other than pose estimation,
the difference between different datasets among different tasks are rela-
tively small.

G.3 Data Augmentation

We apply augmentation techniques to human-centric images, ranging
from scene images in pedestrian detection to cropped images in person
ReID. Here, we list the augmentations below for different tasks.
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Person ReID. For person ReID, we use the same augmentation as in [165].
Specifically, we use the random horizontal flip and random erasing for
pretraining. Finally, we resize the input image to size 256×128.

Pose Estimation. For pose estimation, we use the same augmentation
as ViTPose[270]. Specifically, we use random horizontal flip, half-body
transform, and random scale rotation for pretraining. Finally, we resize
the input image to size 256×192.

Human Parsing. For human parsing, we use the same augmentation
as in [77]. Specifically, we use random crop, random image rotation, and
photometric distortion augmentation for pretraining. Particularly, for
the human parsing dataset, we also use horizontal random flip augmen-
tation, e.g., Human3.6M, LIP, CIHP, LIP, VIP. Finally, we resize the input
image to size 480×480.

Pedestrian Attribute Recognition. For pedestrian attribute recognition,
we use the same augmentation as in [136]. Specifically, we use random
crop and random horizontal flip augmentation for pretraining. Finally,
we resize the input image to size 256×192.

Pedestrian Detection. For pedestrian detection, we use the same aug-
mentation as in [303]. Specifically, we use random horizontal flips and
random crop augmentation for pretraining. Finally, we random resize
the input image with the longest side bound of 1333 and the shortest
side bound of 800 while keeping the height and width ratio.

Crowd Counting. For the crowd counting dataset, we use random hor-
izontal flip, random scaling (0.5×∼ 2×), and random cropping augmen-
tation for pretraining.
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G.4 Details of Implementations in Evaluation

For full finetuning, we carefully tune the learning rate {1e−3, 5e−4, 1e−4},
the weight decay {0.05, 0.1, 0.3}, drop path rate {0.1, 0.3, 0.5}, the back-
bone multiplier {0.1, 0.3, 0.5}, and report the best performance. We will
provide the exact hyperparameters in our released repository after ac-
ceptance. For head finetuning and partial finetuning, we specifically set
the weight decay as 0, which empirically proved very important in our
experiments.
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Appendix H

Visualization of Task-Specific
Features

To visualize the features attended by the task-specific projectors, we plot
the heatmap of L2-normalization of the channels of the attended fea-
tures. The red color in Figure H.1, H.2, H.3 show the important re-
gion, which leads to three conclusions. First, the highlighted regions
in the pose estimation and the human parsing locates at the joints of
human bodies, which shows that these two tasks are very similar. Sec-
ond, the heatmap for pedestrian detection includes the whole person,
which is consistent with the goal of pedestrian detection to detect all peo-
ple. Third, for the pedestrian attribute recognition, we can see that the
heatmap highlights the attributes, e.g., gloves, bags. These highlighted
regions instead of the whole body are also consistent with the goal of
pedestrian attribute recognition to recognize attributes.
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Figure H.1: Visualization of features after the task-specific projectors.
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Figure H.2: Visualization of features after the task-specific projectors.



158 Appendix H. Visualization of Task-Specific Features

Figure H.3: Visualization of features after the task-specific projectors.
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