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Abstract

The future for gravitational-wave astronomy is bright, with improvements for existing
ground-based interferometers of the LIGO-Virgo-KAGRA Collaboration (LVK) and new
ground- and space-based interferometers planned for the near future. As a result, there
will imminently be an abundance of data to analyse from these detectors, which will bring
with it the chances to probe new regimes. However, this will also bring with it new
challenges to address, such as the volume of data and need for new analysis techniques.

Leveraging this data hinges on our ability to determine the characteristics of the sources
that produce the observed gravitational-wave signals, and Bayesian inference is the method
of choice. The main algorithms that have been used in these analyses are Markov Chain
Monte Carlo and Nested Sampling. Each have their own advantages and disadvantages.
However, both are computationally expensive when applied to gravitational-wave infer-
ence, typically taking of order days to weeks for shorter signals and up to months for longer
signals, such as those from binary neutron star mergers. Furthermore, the cost of these
analyses increases as additional physics is included, such as higher-order modes, precession
and eccentricity. These factors, combined with the previously mentioned increase in data,
and therefore number of signals, pose a significant challenge. As such, there is a need
for faster and more efficient algorithms for gravitational-wave inference. In this work, we
present novel algorithms that serve as drop-in replacements for existing approaches but
can accelerate inference by an order of magnitude.

Our initial approach is to incorporate machine learning into an existing algorithm,
namely nested sampling, with the aim of accelerating it whilst leaving the underlying al-
gorithm unchanged. To this end, we introduce nessai, a nested sampling algorithm that
includes a novel method for sampling from the likelihood-constrained prior that leverages
normalizing flows, a type of machine learning algorithm. Normalizing flows can approx-
imate the distribution of live points during a nested sampling run, and allow for new
points to be drawn from it. They are also flexible and can learn complex correlations,
thus eliminating the need to use a random walk to propose new samples.

We validate nessai for gravitational-wave inference by analysing a population of simu-
lated binary black holes (BBHs) and demonstrate that it produces statistically consistent
results. We also compare nessai to dynesty, the standard nested sampling algorithm
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used by the LVK, and find that, after some improvements, it is on average ∼ 6 times
more efficient and enables inference in time scales of order 10 hours on a single core. We
also highlight other advantages of nessai, such as the included diagnostics and simple
parallelization of the likelihood evaluation. However, we also find that the rejection sam-
pling step necessary to ensure new samples are distributed according to the prior can be
a significant computational bottleneck.

We then take the opposite approach and design a custom nested sampling algorithm
tailored to normalizing flows, which we call i-nessai. This algorithm is based on impor-
tance nested sampling and incorporates elements from existing variants of nested sampling.
In contrast to the standard algorithm, samples no longer have to be ordered by increas-
ing likelihood nor distributed according to the prior, thus addressing the aforementioned
bottleneck in nessai. Furthermore, the formulation of the evidence allows for it to be up-
dated with batches of samples rather than one-by-one. The algorithm we design is centred
around constructing a meta-proposal that approximates the posterior distribution, which
is achieved by iteratively adding normalizing flows until a stopping criterion is met.

We validate i-nessai on a range of toy test problems which allows us to verify the
algorithm is consistent with both nessai and, when available, the analytic results. We
then repeat a similar analysis to that performed previously, and analyse a population
of simulated BBH signals with i-nessai. The results show that i-nessai produces
consistent results, but is up to 3 times more efficient than nessai and more than an order
of magnitude more efficient (13 times) than dynesty. We also apply i-nessai to a binary
neutron star (BNS) analysis and find that it can yield results in less than 30 minutes
whilst only requiring O(106) likelihood evaluations.

Having developed tools to accelerate parameter estimation, we then apply them to
real data from LVK observing runs. We choose to analyse all 11 events from O1 and
small selection of events from O2 and O3 and find good agreement between our results
and those published by the LVK This demonstrates that nessai can be used to analyse
real gravitational-wave data. However, it also highlights aspects that could be improved
to further accelerate the algorithm, such as how the orbital phase and multimodal like-
lihood surfaces are handled. We also show how i-nessai can be applied to real data,
but ultimately conclude that further work is required to determine if the settings used
are robust. Finally, we consider nessai in the context of next generation ground-based
interferometers and highlight some of the challenges such analyses present.

As a whole, the algorithms introduced in this work pave the way for faster gravitational-
wave inference, offering speed-ups of up to an order of magnitude compared to existing
approaches. Furthermore, they demonstrate how machine learning can be incorporated
into existing analyses to accelerate them, which has the additional benefit of providing
drop-in replacements for existing tools.
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reflects both the origin and the pronunciation more closely”1 whilst recognizing -ise as an
alternative spelling.

1Oxford English Dictionary. Frequently asked questions: Why does the OED spell verbs such as organize
and recognize in this way? https://www.oed.com/page/faqs/Frequently+asked+questions#spell.
Accessed: 2023/06/28.
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Chapter 1

Introduction

This chapter describes gravitational waves and the sources that produce them, how grav-
itational waves are detected, the models used to describe gravitational-wave data and
the current state of gravitational-wave astronomy; focusing predominantly on the setting
of current generation ground-based interferometers. This serves to provide context and
motivation for the work presented in later chapters.

Section 1.1 reviews how gravitational-waves are predicted by Einstein’s general relativ-
ity and their nature. Section 1.2 introduces categories of gravitational-wave sources that
are relevant for current ground-based detectors. Section 1.3 then describes gravitational-
wave detectors, focusing on ground-based interferometers, their response to gravitational-
waves and the existing network of gravitational-wave detectors. Section 1.4 discusses the
data from gravitational-wave detectors is modelled, including specifically how the signals
from compact binary coalescence (CBC) are modelled and the physical parameters the
describe them. Finally, the state of gravitational-wave astronomy and the motivation for
the work presented in this thesis are reviewed in section 1.5.
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CHAPTER 1. INTRODUCTION 2

Gravitational waves were theorized long before they were detected. In 1916, Einstein,
in his theory of General Relativity [3], showed that massive accelerating bodies should
produce wave-like perturbations in spacetime. These would propagate at the speed of
light and could provide information about the sources that produce them and the nature
of gravity. The first evidence for the existence of gravitational waves came in 1974 when
Russell Hulse and Joseph Taylor discovered a binary pulsar system [4]. Driven by Einstein’s
prediction, they tracked the time of arrival of the emission from the system and found that
the decay in the orbital separation was consistent with the loss of energy via the emission
of gravitational waves predicted by general relativity. This provided indirect evidence for
gravitational waves, and they later received the Nobel Prize for this discovery [5].

Almost a hundred years after Einstein first formulated General Relativity, the first
direct detection of gravitational waves was made. On September 15th 2015 the two laser
interferometers of the LIGO-Virgo Collaboration (LVC) detected the perturbations caused
by the gravitational waves emitted by the collision of two black holes 1.3 billion light years
away [6]. This detection marked the start of gravitational-wave astronomy and set the
stage for a new means of understanding the Universe. Since this first detection, the LIGO-
Virgo-KAGRA Collaboration (LVK) has continued to detect gravitational waves and the
total number of confidently detected events now stands at 90 [7–10].

We now introduce gravitational waves, discuss how they interact with matter and the
classes of sources that emit them. From here, we then provide an overview of gravitational-
wave detectors, focused on ground-based interferometers and their response to gravita-
tional waves. We then discuss how to model data from gravitational-wave detectors,
including both the noise and signal components. Finally, the state of gravitational-wave
astronomy is summarized, including some of the key detections and prospects for the
future.

1.1 Gravitational waves

If we assume a nearly flat spacetime, the metric tensor gµν can be written as

gµν = ηµν + hµν (1.1)

where ηµν is the metric in flat Minkowski spacetime with signature (−,+,+,+, ) and
hµν is a small perturbation |hµν | � 0. Our aim is to define the linearized Einstein field
equations and consider the solutions. If instead of the metric perturbation hµν , we consider
the trace-reversed metric perturbation

h̄µν = hµν −
1
2ηµνh, (1.2)
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where h = ηµνhµν is the trace, and choose a specific coordinate system, then the field
equations can be simplified [11, 12]. If we choose the Lorenz gauge, which requires that
the divergence of the trace-reversed metric perturbation be zero, that is

∂h̄µα

∂xµ
= 0, (1.3)

it can be shown that the linearized field equations simplify to

�h̄µν ≡
(
− 1
c2
∂2

∂t2
+∇2

)
h̄µν = −16πG

c2 Tµν , (1.4)

where � is the d’Alembert operator, c is the speed of light in a vacuum, ∇2 is the Laplace
operator, G is the gravitational constant, and Tµν is the stress-energy tensor [11, 12].

However, we are more interested in the propagation of gravitational waves in a vacuum,
i.e. where Tµν = 0 and eq. (1.4) simplifies to

(
− 1
c2
∂2

∂t2
+∇2

)
h̄µν = 0. (1.5)

The simplest solution to this equation is a plane wave of the form

h̄µν = Re [Aµν exp (ikαx
α)] , (1.6)

where Aµν is the polarization tensor, and kα is the wave vector, all of which are con-
stant [11–13]. This describes a wave that travels at the speed of light.

We now consider the degrees of freedom – hµν is symmetric, so it has 10 components and
the Lorenz gauge places four constraints on hµν , thus reducing the degrees-of-freedom to
six. However, we can reduce the degrees-of-freedom further by introducing an infinitesimal
coordinate transform: xµ → xµ + ξµ with �ξµ = 0 [11–13]. This reduces the degrees
of freedom to two and implies that h̄µν is traceless, so h̄µν = hµν , and is also transverse
(h̄0ν = 0). This is referred to as the Transverse-Traceless gauge (TT gauge) and the metric
in this gauge is written as hTT

ij , where ij is used to refer to only the spatial components
since h̄0ν = 0, i.e. it is constant in time.

If we consider eq. (1.6) in the TT gauge and define the direction of propagation to
be the z = x(3)-direction, then the wave vector will be kα = (−ω, 0, 0, ω) and the only
non-zero elements of the polarization tensor will be A11 = −A22 ≡ a and A12 = A21 ≡ b.
The wave can be written in the TT gauge as

hTT
ij =


a b 0
b −a 0
0 0 0

 exp
[−iω
c

(t− z)
]
, (1.7)
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where a and b are two amplitude terms. If we introduce two separate polarization tensors

e+ =
{
e+

ij

}
=


1 0 0
0 −1 0
0 0 0

 , (1.8)

and

e× =
{
e×

ij

}
=


0 1 0
1 0 0
0 0 0

 , (1.9)

which are known as the plus and cross polarizations and are related by a π/2 rotation
about the z-axis, we can then define

h+ = a exp
[−iω
c

(t− z)
]
, (1.10)

h× = b exp
[−iω
c

(t− z)
]
, (1.11)

which allows us to rewrite eq. (1.7) as

hTT
ij = h+e

+
ij + h×e

×
ij. (1.12)

The relevance of this formulation will become apparent when we consider how the metric
perturbation interacts with test masses. We can equally introduce other polarizations, such
as circular or elliptical polarizations, that are better suited to different applications [14].

We now consider the physical effect of a gravitational wave in the TT gauge on a set
of particles. The gravitational wave will stretch the coordinate frame itself, so we cannot
directly measure the change in the positions of the particles. Instead, to observe the effect
of a gravitational wave, we should consider the proper distance, ds2 = gµνdx

µdxν , which
in the TT gauge we can write as

ds2 = −c2dt2 + (δij + hTT
ij )dxidxj (1.13)

where δij is the Kronecker delta. We can visualize the effect of a gravitational wave
propagating in the z-direction by considering the change in proper distance between a
series of particles (or test masses) arranged in a ring in the transverse plane (x–y plane).
Figure 1.1 shows how each of the polarizations of a passing gravitational wave will deform
the ring of particles; the plus polarization will stretch and squeeze the ring along the x
and y axes whilst the cross polarization will stretch and squeeze along the bisection of the
x and y axes. Therefore, if we wish to detect gravitational waves, we must measure this
change in the proper distance. We can do this by leveraging the relationship between the
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Figure 1.1: Effect of the plus and cross polarizations on a ring of test masses as function
of time (left to right) for one complete wavelength. The amplitude of the individual plus
and cross polarizations is also shown and highlights the π/2 phase difference between the
two polarizations. Figure based on fig. 2 in Isi [14] and produced using the accompanying
code [15].

proper distance and the light travel time, as we will see in section 1.3.
We can now discuss how gravitational waves are produced and their typical ampli-

tudes. This requires us to consider solutions to the Einstein field equations in non-vacuum
spacetime, which are expressed as an integral over the stress-energy tensor Tµν [11]. Let us
first discuss the nature of gravitational radiation by drawing parallels to electromagnetic
radiation. For electromagnetic radiation, due to conservation of charge the monopole mo-
ment must be zero but the dipole moment can be non-zero, so dipole radiation is possible.
However, for gravitational radiation, conservation of mass and conservation of momentum
imply that the monopole and dipole moments must be zero. There is no conservation
law for the quadrupole moment, so we can expect quadrupolar (and higher) gravitational
radiation [11]. If we assume the weak-field slow-motion (v � c) limit, then the solutions
to the Einstein field equations in non-vacuum spacetime reduce to the quadrupole formula

h̄ij = 2G
c4

1
dL
Q̈ij (1.14)

where Qij is the quadrupole moment and dL is the luminosity distance to the source. This
can be then projected into the TT gauge via a projection operator [11, 12].
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Equation (1.14) gives important insight into the nature of gravitational radiation; most
importantly, it is at the leading-order quadrupolar. This informs us about what type of
motion will emit gravitational radiation. Spherical and axisymmetric motion will not
produce radiation since the quadrupole moment will be zero, instead the motion must be
non-axisymmetric. We can also use eq. (1.14) to estimate the amplitude of gravitational
radiation. If we assume that Q̈ ∼ Ek, where Ek is the non-axisymmetric kinetic energy,
then for a system with Ek = 1000 J the gravitational-wave amplitude at 1 Mpc will be
∼ 1× 10−64. This implies that to detect gravitational waves, we will need to detect very
small perturbations or observe systems that are highly energetic, or both. This hints at
potential sources of gravitational waves, which are now discussed.

1.2 Gravitational-wave sources

There is a plethora of potential gravitational-wave sources [16] that range from known,
well-modelled sources to potentially unknown, exotic sources. It is therefore informative
to classify gravitational waves according to the nature of the signal and the type of source
that we expected to produce said signal. Each of the categories can in turn have various
sub-categories. We now introduce four broad categories of gravitational waves, these are
informed by the frequencies ranges current ground-based interferometers are sensitive to
(see section 1.3) and in other contexts, e.g. space-based interferometers [17, 18], one may
consider a different classification.

1.2.1 Gravitational waves from coalescing binaries

Compact binary coalescences (CBCs) are systems of two compact objects, such as black
holes or neutron stars, that are in orbit about a common centre of mass. As they orbit,
the system loses energy via gravitational-wave emission and the orbital separation between
them decreases until the two objects plunge together and collide, leaving behind a remnant.
The nature of this remnant will depend on the compact objects in the original binary [19–
22]. For ground-based interferometers, we consider three possibles classes of CBC: binary
black holes (BBHs), binary neutron stars (BNSs) and neutron star-black holes (NSBHs).

The signals produced by such binaries are chirp-like; the frequency initially changes
very slowly but increases over time as the orbital separation decreases. An example signal
is shown in fig. 1.2. These signals can be divided into three phases: inspiral, merger
and ringdown. The inspiral is the initial phase where the binaries are in orbit and the
strength of the gravitational-wave emission increases as they get closer until they reach
the ISCO [28], which for a non-spinning (Schwarzchild) black hole is at r = 6GM/c2 [28]
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Figure 1.2: Example of the signal from a non-spinning BBH merger with source frame com-
ponent massesm1 = 32 M� andm2 = 29 M� at a luminosity distance dL = 1 Mpc from the
observer. The plus polarization is shown for a waveform produced using IMRPhenomD [23,
24] which includes the initial inspiral, merger at t = 0 and final ringdown. The vertical
dashed line indicates the time corresponding to the innermost stable circular orbit (ISCO)
with frequency fISCO ≈ 73 Hz. Figure produced using PyCBC [25] and LALSuite [26, 27].

and corresponds to a frequency of

fISCO = c3

63/2πMG
, (1.15)

where M is the total mass of the system [28]. The merger is the phase in which the objects
collide, and the ringdown is the final stage where the remnant “rings down” into a final
stationary equilibrium state. This evolution is shown in fig. 1.2.

To date, these are the only source of gravitational waves that have been detected.
The first detection of gravitational waves was of a BBH in 2015 [6] and there have since
been subsequent detections of BBH systems and BNS and NSBH systems [29, 30]. These
detections are discussed further in section 1.5.

1.2.2 Burst gravitational waves

Burst gravitational waves are a broader category of transient gravitational waves that
may be produced by a range of sources. Whilst this could include signals from CBCs,
the notion of a gravitational-wave burst generally refers to signals without well-defined
waveforms or that are harder to model [31–33]. Bursts can be classed as short–duration
. 1 s or long–duration & 1 s [16, 34] and different methods are used to detect each.

Potential sources of short-duration bursts include, but are not limited to, gamma-
ray bursts (GRBs), core-collapse supernovae; pulsar glitches; and cosmic strings [35–
37]. GRBs are of particular interest, since BNS mergers are a known progenitor of short
GRBs [38] and NSBH mergers likely also produce them [39]. Long-duration burst are ex-
pected to originate from a similarly broad range of sources, including accretion onto black
holes and long GRBs [34]. Searches for such signals are typically unmodelled searches
that search for coincident excess power in multiple detectors [40]. They can be targeted,
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such as for GRBs [35, 41], or all-sky searches [32, 42]. More recently, targeted modelled
searches have also been applied to search for cosmic strings [37]. To date, the confident
candidates that have been detected by burst searches have all been identified as signals
from CBCs [7–10, 33, 43].

1.2.3 Continuous gravitational waves

Continuous gravitational waves are long-duration quasi-monochromatic signals. There
are different possible sources of such emissions; the conventional source is rapidly rotating
neutron stars that have a non-axisymmetric mass distribution [44], however more exotic
sources have also been proposed [45].

The signals from rapidly rotating neutron stars are modelled as sinusoids with a fre-
quency decay due to the energy lost to gravitational-wave emission. Detecting these
gravitational waves requires integrating the signal over long durations (months to years)
in order to distinguish them from the noise. Searches for such signals can be categorized
into three distinct categories: targeted searches that search for signals from neutron stars
with known locations and frequency evolutions, [46, 47], directed searches that search for
signals from neutron stars with known locations but unknown frequencies [48–50], and
all-sky searches that search for unknown neutron stars [51–54]. For example, one could
perform a targeted search for the continuous gravitational waves emitted by the pulsar in
the Hulse-Taylor system, which has a known location and frequency, or a directed search
for emission from the neutron star companion, which does not have a known frequency.
As of writing, continuous gravitational waves have yet to be detected, but upper limits
have been placed on the maximum possible gravitational-wave strain amplitude [55]. For
a recent review of continuous gravitational waves, see Riles [44].

1.2.4 Stochastic gravitational-wave background

The stochastic gravitational-wave background (SGWB) is analogous to the cosmic mi-
crowave background (CMB) [56] and is produced by the superposition of unresolved
sources of gravitational radiation. Like the CMB, it should come from all directions
and can be assumed to be isotropic [57], though ultimately may be anisotropic at small
levels [58]. There are different possible sources for the SGWB: cosmological sources, such
as inflation, phase transitions and cosmic strings, or an astrophysical background [58].
The latter would be produced by numerous unresolved sources, including transient events,
such as supernovae and compact binary coalescence, that have occurred since the start of
the Universe and sources that continually emit gravitational radiation, such as rotating
neutron stars [59]. The detections made by the LVK [7–10] suggest that the astrophysical
background will be dominant over the cosmological background in LVK detectors. The
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signal from the SGWB will be a stochastic process and, in a single detector, will be in-
distinguishable from the noise. However, it will be coherent in two detectors (identical
if they are co-located). Therefore, if we have two or more detectors with uncorrelated
noise, we can cross-correlate the noise for each detector [60] to detect the SGWB. Current
searches for the SGWB target both an isotropic background [61–63] and a directional back-
ground [64–66] and currently establish upper limits on the energy density of gravitational
waves. For a more complete review of the SGWB see Christensen [58].

1.3 Gravitational-wave detectors

The first efforts to detect gravitational waves started in the 1960s and used resonant mass
gravitational-wave detectors [67], which rely on mechanical resonance. These detectors
consist of a bar with a resonant frequency close to that expected of gravitational waves
(around 1 kHz [16]), hence they are often known as bar detectors. The bar in such a
detector will stretch and contract as a gravitational-waves passes through and, if the
gravitational wave has the right frequency, it will excite the resonant frequency of the bar,
resulting in mechanical oscillations that can be measured. These detectors have largely
fallen out of favour, and whilst some still operate [68], the focus is now instead on using
laser interferometry [69–72].

1.3.1 Laser interferometry

Laser interferometry detects small changes in the lengths of optical paths, which in this
context are caused by gravitational waves. There are many different types of interferom-
eters but here we focus on the design currently used in ground-based gravitational wave
detectors [70–72] which is based on the Michelson interferometer.

In a Michelson interferometer, light from a source hits a beam splitter and is sent
down two orthogonal arms that each have a reflective mirror (test mass) at the end. The
light from each arm returns, recombines at the beam-splitter, and part of the light travels
towards a photodetector and the other part towards the source. The fraction of light
that hits the photodetector depends on how the beams interfere when they recombine.
If the arms are the same length, then there will be destructive interference and no light
will reach the photodetector, but if the arms differ in length, then there will be partial
destructive interference and some light will reach the photodetector. If an interferometer
is designed such that initially no light reaches the photodetector, then if a gravitational
wave interacts with it, it will cause a similar effect to what was seen in fig. 1.1 for a ring
of particles, one arm will stretch and the other will squeeze which will lead to light hitting
the photodetector. This difference in arm length will cause light to hit the photodetector,
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Figure 1.3: Simplified diagram of the Michelson interferometer with Fabry-Perot cavities
as used by current generation ground-based interferometers [70–72]. The beamspliter (BS)
directs light towards the two cavities comprised of an input test mass (ITM) and end test
mass (ETM). A portion of the light exits the cavity and is detected by the photodetector
(PD). This diagram is simplified and omits various components, see e.g. Aasi et al. [70]
for a more complete schematic.

allowing us to detect the gravitational wave by measuring the relative change in the arm
length, known as strain. A schematic of a Michelson interferometer is shown in fig. 1.3.

If the interferometer arms have lengths L1 and L2 and a passing gravitational wave
changes the length of each arm by ∆L1 and ∆L2, then the overall differential change will
be ∆L = ∆L1 − ∆L2. We can then relate the differential change in length, assuming
L1 = L2 = L, to the strain produced by the gravitational wave in the interferometer [12]

h = ∆L
L
. (1.16)

Ground-based interferometers have arm lengths of order L ∼ 1 km and the gravitational-
wave sources we expected to detect with these interferometers will have amplitudes of order
10−23 at frequencies of 10 Hz–1000 Hz [16]. However, a basic Michelson interferometer
with these arm lengths would not be sensitive to such small perturbations, so a number
of modifications to the basic Michelson design are needed. These include incorporating
a Fabry-Perot optical cavity in each arm which causes the light to bounce back and
forth in the arms before exiting, increasing the effective length of the arms, and the use of
power recycling which increases the laser power and sharpens the interference pattern [73].
This, and various other improvements [70–73], allow current generation detectors to reach
strain sensitivities of the order h ∼ 10−23 which are necessary for detecting gravitational
waves [74].

Another important consideration in the design of the interferometers is noise that is
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present in the detector and will impact the measured strain. There are many different
sources of noise that will impact measurements, some of these are intrinsic to the design of
the detector, such as quantum noise or thermal noise whilst others are environmental, such
as seismic noise or anthropogenic noise [70]. Furthermore, these noise sources will have
different amplitudes and occur at different frequencies. Understanding and characterizing
the different sources of noise is therefore key to determining the sensitivity of the detectors
to gravitational waves. We revisit this in section 1.4 when we discuss modelling the data
from gravitational-wave detectors.

1.3.2 Detector response

The response of a gravitational-wave detector to a gravitational wave depends on its
geometry and orientation with respect to the source. The response is defined in terms
of the response tensor, Dij, which for an interferometric detector in the long-wavelength
limit is

Dij = 1
2(p̂ip̂j − q̂iq̂j), (1.17)

where p̂ and q̂ are unit vectors along each arm of the interferometer [12].
To describe a gravitational wave, we consider two coordinate systems: the first is

defined in terms of Earth-fixed coordinates and the second in the reference frame of the
source propagating in direction n̂. In the Earth reference frame, we define the location of
the gravitational-wave source on the sky with two polar angles (θ, φ), where θ is the angle
relative to the z-axis and φ is the rotation in the p̂–q̂ plane measured about the z-axis.
This geometry is shown in fig. 1.4.

In the source frame, we define the basis vectors e1, e2 and e3 = n̂. We relate these
to the Earth-fixed coordinates using the sky location (θ, φ) and a third angle, ψ, which
describes the counter-clockwise rotation of the e1–e2 plane in the source frame about the
line-of-sight (−n̂) and is known as the polarization. The two coordinate systems and the
three angles are shown in fig. 1.4. Using the angles, the components of the basis vectors,
in terms of the Earth-fixed coordinates, are [12]

e1 = {+ cosψ sinφ− sinψ cosφ cos θ,− cosψ cosφ− sinψ sinφ cos θ,+ sinψ sin θ},
(1.18a)

e2 = {+ sinψ sinφ− cosψ cosφ cos θ,− sinψ cosφ− cosψ sinφ cos θ,+ cosψ sin θ},
(1.18b)

e3 = {− sin θ cosφ,− sin θ sinφ,− cos θ}. (1.18c)
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Figure 1.4: Diagram showing the Earth-fixed coordinate system and the source frame
coordinate system. The Earth-fixed coordinate system has its origin at the intersection
of p̂ and q̂ which denote the orientation of the interferometer arms. The location of the
source on the sky is described by the polar angles (θ, φ). The source frame is oriented such
that n̂ denotes the direction of propagation of the gravitational-wave and the polarization
ψ describes the rotation of the source frame in e1–e2 plane. es

1 and es
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of the source frame before applying the rotation by ψ.
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which are related to the plus and cross polarization tensors by [12]

e+ = e1 ⊗ e1 − e2 ⊗ e2, (1.19a)
e× = e1 ⊗ e2 + e2 ⊗ e1, (1.19b)

where ⊗ is the tensor product. We can express the strain h produced in an interferometer
with detector tensor Dij by the metric perturbation hTT

ij in the transverse-traceless gauge
as1

h = DijhTT
ij . (1.20)

Using eq. (1.12), we can re-write this as

h = Dije+
ijh+ +Dije×

ijh×,

= F+h+ + F×h×,
(1.21)

where F+ and F× are the antenna response beam patterns. If we assume an interferometer
with orthogonal arms orientated in the Earth-fixed frame such that the x-axis is along one
arm and the y-axis is along the other, then the antenna response beam patterns will be [75]

F+(θ, φ, ψ) = −1
2(1 + cos2 θ) cos 2φ cos 2ψ + cos θ sin 2φ sin 2ψ, (1.22a)

F×(θ, φ, ψ) = +1
2(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ. (1.22b)

It is also informative to consider the combination, often known as the power, of the antenna
beam pattern functions

P (θ, φ) = F 2
+(θ, φ, ψ) + F 2

×(θ, φ, ψ) (1.23)

since it is independent of the polarization angle ψ and will be invariant under any change
of polarization basis [75]. The antenna response beam patterns for a specific polarization
angle are shown in fig. 1.5

1.3.3 Current & future ground-based interferometers

The current network of gravitational-wave interferometers is made up of five ground-
based interferometers. These all share the same core design centred around a Michelson
interferometer but differ in other key design aspects. The interferometers are

• Advanced LIGO (aLIGO) [70] Hanford and Livingston in the USA, these are second-
generation detectors that improve upon the initial Laser Interferometer Gravitational-

1The strain h should not be confused with the trace defined in section 1.1 which is also denoted h.
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Figure 1.5: Plus and cross antenna response beam patterns for a ground-based interferom-
eter as defined in eq. (1.22) with ψ = 0. The directions of the arms of the interferometer
are shown in red.

wave Observatory (LIGO) design [76]. They are Fabry-Perot Michelson interferom-
eters with 4 km arms and 40 kg test masses and operate at room temperature.

• Advanced Virgo (AdVirgo) [77] in Italy is the second iteration of the Virgo de-
sign [78]. It is also a Fabry-Perot Michelson interferometer that operates at room
temperature and has 40 kg test masses, but its arm length is slightly shorter at 3 km.

• GEO600 [69] in Germany is a standard Michelson interferometer with 600 m arms
and ∼5.6 kg tests masses and is used as a development platform for the LIGO inter-
ferometers.

• Kamioka Gravitational Wave Detector (KAGRA) [72] in Japan, is a Fabry-Perot
Michelson interferometer that is cryogenically cooled, has 3 km arms and 23 kg test
masses.

The different designs result in different sensitivities. During the third observing run,
the aLIGO detectors were the most sensitive in the network, followed by AdVirgo, KAGRA
and GEO600 [8, 10, 79, 80]. Various improvements are also planned for the detectors,
which aim to improve their sensitives for future observing runs, these are detailed in
Abbott et al. [74].

In the longer-term, third generation ground-based interferometers are planned. These
are designed to be significantly more sensitive than the current generation detectors and
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include the triangular interferometer Einstein Telescope (ET) [81] and the 40 km Michelson
interferometer Cosmic Explorer (CE) [82].

1.3.4 Other gravitational-wave detectors

So far, we have focused solely on ground-based interferometers, however there are other
types of existing and planned gravitational-wave detectors that are sensitive to different
frequencies and therefore different sources.

Pulsar Timing Arrays Pulsar timing arrays measure the time of arrival of the radio
pulses from an array of pulsars, which, due to the stable rotation of pulsars, arrive at
regular intervals and can be measured and predicted with high accuracy [83, 84]. They
can therefore be used to detected perturbations in Earth’s orbit due to gravitational waves
or the effects of gravitational waves interacting with the emission from the pulsars. Such
arrays are sensitive to low-frequency gravitational waves (10−9 Hz to 10−6 Hz) [83, 85],
making them well-suited to detecting the SGWB [86], though other sources such as massive
black hole binaries have also been considered [85, 87].

Space-based Detectors Planned spaced-based detectors will use triangular constella-
tions of spacecraft in either heliocentric or geocentric orbits and perform laser interferom-
etry between the pairs of spacecraft to track the separation between the free-falling test
masses on board. There are three proposed space-based interferometers: Laser Interfer-
ometer Space Antenna (LISA) [17] which will have a heliocentric orbit and sensitive to
gravitational waves between 10−4 Hz and 1 Hz [88, 89], TianQin [18, 90] which will have
a geocentric orbit and be sensitive to gravitational waves between 10−4 Hz and 1 Hz [90]
and finally deci-hertz gravitational-wave observatory (DECIGO) [91, 92] which will com-
prise four constellations in heliocentric orbits and be sensitive in the range of 10−1 Hz and
10 Hz [92]. At these frequency ranges, spaced-based detectors will be sensitive to a range
of different sources including galactic binaries, massive black hole binariess, extreme mass
ratio insprials, primordial black holes and even some stellar mass CBC signals [93].

1.4 Modelling gravitational-wave data

We saw previously that, in general, the input to a gravitational-wave detector is given by
eq. (1.20). The output strain from the detector as a function of time d(t) will depend on
the input but also on the inherent noise in the detector. We therefore model the strain
data as the combination of two components: the signal from a gravitational wave h(t) and
the detector noise n(t), which is the combination from the different noise sources in the
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detector, so we define the data as

d(t) = h(t) + n(t), (1.24)

or equivalently in the frequency-domain as d̃(f) = h̃(f) + ñ(f). In order to extract
information about the gravitational-wave signal h(t), we must be able to distinguish it
from the noise n(t). To do so, we must be able to characterize the noise in the detector
and, in some cases, model the signal. We now review how we characterize the noise and
model the signal in the context of analysing signals from CBCs.

1.4.1 Characterizing the noise

We can model the noise in an interferometer as a random process in the time domain, which
we represent as a vector n, with components ni = n(ti). This allows us to infer statistical
properties of the noise and model it as a probability distribution p(n). In most cases, we
will assume that properties of the noise do not change over time scales being considered, in
this case the noise is referred to as stationary noise and the correlations between different
noise samples will only depend on the time lag between them τ = |ti − tj|. We will
also assume that the noise is Gaussian, so p(n) is described by a multivariate Gaussian
distribution which is parameterized by a mean and a covariance matrix. We revisit this
in section 2.10, after having introduced probability and Bayesian inference.

Alternatively, we can consider the properties of the noise in the frequency domain.
Since we assume the noise is stationary over a duration T and Gaussian, the noise in
different frequency bins will be independent, so we can use the power spectral density
(PSD), Sn(f), to characterize the noise. It is defined as

Sn(f) = lim
T →∞

2
T

∣∣∣∣∣
∫ T/2

−T/2
n(t) exp (−2πift) dt

∣∣∣∣∣
2

, (1.25)

with units of Hz−1 and the square root of it is known as the amplitude spectral density
(ASD). For a complete derivation of the PSD, see Creighton and Anderson, Chapter 7,
Section 1 [12]. Noise that can be described by a frequency dependent PSD is known as
coloured noise, whereas if the PSD is constant in time and frequency, it is known as white
noise.

In practice, the PSD is not known a priori, so it must be estimated from the data
and different methods are used [94, 95] which are discussed in the context of parameter
estimation in section 2.10.3. In fig. 1.6, we show an example of the estimated ASDs for
LIGO Hanford, LIGO Livingston and Virgo from the first half of third observing run [8].
This shows how the sensitivity of the detectors varies as function of frequency, and how
they are designed to be most sensitive in the 100 Hz–1000 Hz range.
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Figure 1.6: Example ASDs for LIGO Hanford, LIGO Livingston and Virgo for O3a. These
show the strain in each detector, assuming only noise is present, as a function of frequency
in units of 1/

√
Hz. See eq. (1.25) for the definition of the ASD and PSD. Original figure

from Abbott et al. [8].

1.4.2 Modelling signals for CBC

We have already seen how the effect of a gravitational-wave signal on an interferometer
can be modelled as a function of the cross and plus polarizations in eq. (1.21),

h(t) = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t) (1.26)

where we have now included a time dependency. The antenna patterns {F+, F×} also vary
with time due to the rotation of the Earth, however for short duration signals such as
those from CBCs detected by current ground-based detectors, this effect is ignored [96];
so what remains is to define a model for the signal polarizations {h+(t), h×(t)}.

The models that define the signal are generally referred to as waveforms or waveform
approximants and they define the strain for a CBC signal as a function of a set of parame-
ters θ. As discussed in section 1.2, these signals are comprised of three stages: the inspiral,
merger and ringdown. There are different strategies for modelling CBC waveforms, these
use different approximations, can be valid in different regions of the parameter space and
model different parts of the signal. Typically, they do not model {h+(t), h×(t)} directly
but instead decompose the signal into different spin-weighted spherical harmonic modes
hlm(t), such that

h+(t)− ih×(t) =
∞∑

l=2

l∑
m=−l

hlm(t)−2Ylm(θ, φ), (1.27)

where −2Ylm are −2-spin-weighted spherical harmonics (see e.g. Breuer et al. [97]). The
dominant modes are the l = 2,m = ±2 (or 2-2) modes and the other subdominant modes
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are referred to collectively as higher-order modes, see e.g. García-Quirós et al. [98] or
Ramos-Buades et al. [99].

We now review the different methods for generating waveforms following Schmidt [100]
but focusing on those that most relevant to the work presented in this thesis.

• Post-Newtonian Theory: these methods use the post-Newtonian formalism of
General Relativity, which provides approximate solutions to the Einstein field equa-
tions and are valid in weak fields and for slow motion. These solutions systematically
incorporate corrections to the Newtonian solution as a function of a small expansion
parameters in powers of v/c [101]. This formalism is well suited to modelling the
inspiral but not the merger or ringdown.

• Numerical Relativity: these methods numerically simulate the full relativistic
two-body problem. The complexity of the simulations depends on the system
being considered; simulations for BNSs include the full inspiral-merger-ringdown
(IMR) [102, 103] whereas BBH simulations often only included the merger and ring-
down [104–106]. Such simulations are computationally expensive and are therefore
often used to validate other methods rather than being used directly for analy-
ses [107]. Recent improvements to numerical relativity have allowed for simulations
of more complex systems, for example, including precession or eccentricity [108–110].

• Effective-one-body (EOB): these methods treat the two-body system as a single
test particle and solve a series of ordinary differential equations that describe the
motion of the particle in a Kerr spacetime. They also incorporate post-Newtonian
results to obtain a description of the complete IMR and are calibrated against nu-
merical relativity simulations [111, 112]. Various improvements to the standard
effective-one-body waveform exist, including treatments for high-order modes and
precession [113–116].

• Phenomenological Waveforms: these methods directly model the IMR waveform
in the frequency domain, rather than modelling the dynamics of the system and then
calculating the gravitational-wave emission. The amplitude and phase evolution of
each part of the IMR waveform are treated independently and use different models,
which are based on Post-Newtonian terms at early times and are calibrated against
numerical relativity for the merger and ringdown [107, 117]. The models are then
combined to produce the final waveform. Different phenomenological waveforms
have been developed, each incorporating different physical effects, the most recent
of which is the IMRPhenomX family of waveforms [98, 118] which include precession
and higher-order modes [119, 120].
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These methods have vastly different computational costs, and this largely dictates
their application. Phenomenological waveforms have been used extensively for stochas-
tic sampling based analyses, whereas the typical cost of computing EOB waveforms has
necessitated alternative approaches [7–10], however recent developments might allow for
sampling with EOB waveforms [99, 121]. These analyses techniques are discussed in sec-
tion 2.10.

1.4.3 Parameters

Irrespective of the waveform model that is used, they are all described by a set of common
parameters θ. We can then denote the waveform at a given time t as h(θ; t). The
number of parameters will depend on the physics being described but they can generally
be grouped into two distinct sets: intrinsic parameters that dictate the evolution in time
of the waveform and extrinsic parameters that change the response of the detector to the
signal.

We start with the extrinsic parameters since these are independent of the physics
being modelled and therefore common to any waveform being used. First we define the
parameters that determine the source’s location and time: the sky location, the time of
arrival of the signal and the distance to the source. The sky location is defined in terms
of two angles, and different coordinates systems can be used. The equatorial system is
described by right ascension α and declination δ, which are related to the angles defined
in eq. (1.22) by (α, δ) = (φ− tGMST, π/2− θ) where tGMST is the Greenwich mean sidereal
time of arrival of the signal. Other systems, such as azimuthal angles defined based on
the location of detectors, are also used [122]. These angles are used alongside a reference
time, such as the time of the merger as measured at the centre of the Earth tc or at a given
detector tIFO [122]. The use-cases for each are discussed in Romero-Shaw et al. [122]. For
the distance to the source, we consider the luminosity distance dL.

Having defined the parameters that are used to localize a source, what remains is to
define the parameters that determine its orientation. This requires three angles that are
analogous to Euler angles; this is discussed in more depth in section 6.2. We have already
defined one of these angles in section 1.3.2: the polarization angle ψ, which describes the
counter-clockwise rotation of the x–y plane in the source frame about the line-of-sight. It
is important to highlight that the gravitational wave produced by a source that is rotated
by ψ = 2π is equivalent to that produced by a source with ψ = π, or more formally,
gravitational waves are spin-2 in nature. Therefore, we only consider the polarization
over a range of π. Next, we consider the orientation of the orbital plane with respect
to the x–y plane in the source frame. This can be described by either the inclination
angle between the system’s orbital angular momentum L and the line-of-sight, denoted as
ι, or the inclination angle between the total angular momentum J and the line-of-sight,
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Figure 1.7: Diagram showing the geometry of a binary system of spinning compact ob-
jects in the source reference frame (non-prime), where n̂ is the line-of-sight vector to the
observer. The prime coordinate system is defined such that the x̂′–ŷ′ plane lies in the
orbital plane and the orbital angular momentum L is pointed in the z-direction. The
prime coordinate system is related to the source frame by the polarization angle ψ and
an inclination angle, either ι or θJN. ι is defined between n̂ and L whilst θJN is defined
between n̂ and the total angular momentum J . m1 and m2 the masses of each compact
object and s1 and s2 denote their spin vectors. The phase ϕc is not shown, but is mea-
sured in the x̂′–ŷ′ plane about L.

denoted θJN [123]. Finally, we define an orbital phase ϕc with respect to a reference time,
which in most cases is the time of coalescence tc. This geometry is shown in fig. 1.7 for a
spinning system and shows the relevant angles.

Now we consider the intrinsic parameters; at the very least, we must define the compo-
nent masses of the compact objects in the system, m1 and m2. These are defined such that
the more massive object is labelled as 1, that is m1 ≥ m2. This, alongside the extrinsic
parameters, are enough to define a system of two non-spinning point masses. We can also
define various alternative parameterizations of the masses, these include the total mass of
the system

M = m1 +m2, (1.28)

the asymmetric mass ratio
q = m2

m1
, (1.29)

and the chirp mass

M = (m1m2)3/5

(m1 +m2)1/5 . (1.30)

The relationship between these parameters and the component masses is visualized in
fig. 1.8, where contours of equal chirp mass and mass ratio are shown. We will revisit
these parameters when discussing gravitational-wave data analysis in section 2.10.

More often, we will consider systems with spinning binaries. The spin for each compact
object is a vector si, with components si = (six, siy, siz), these are shown in fig. 1.7. Alter-
natively, the spin can be described using a dimensionless spin magnitude ai = |si|/m2

1 ∈
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Figure 1.8: Contours of equal chirp mass M and mass ratio q in the component mass
space where we have enforced m1 ≥ m2.

[0, 1] and a set of angles used to define the orientation [96, 123]. This is referred to as the
system frame parameterization [123]. The angles used in this parameterization are the
inclination angle θJN as defined previously, the inclination of the spins (or tilt angles) θ1,2,
which are defined relative to L, and two azimuthal angles: the first φ12 is the angle of
s2−s1 relative to L and the second, φJL, specifies the angle between L and J . In addition
to these parameters, we can define several derived parameters. The effective inspiral spin
χeff [124, 125] is defined as

χeff = a1 cos θ1 + qa2 cos θ2

1 + q
, (1.31)

where M is the total mass and, unlike the spin magnitudes, is reasonably well con-
strained [7]. When considering precessing systems, it can be informative to consider the
effective precessing spin parameter χp [126, 127], which is typically defined as

χp = max
{
a1 sin θ1, q

4q + 3
(4 + 3q)a2 sin θ2

}
, (1.32)

though other definitions do exist, e.g. Gerosa et al. [128]. This parameter can capture
the effect of spin-precession and can therefore be used to identify signs of precession in
detected CBC events [8].

If additional physical effects are incorporated into the waveform, then additional in-
trinsic parameters may also be required. If analysing systems where at least one of the
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compact objects is a neutron star, then the effects of the tidal deformation can be included
by introducing a tidal deformability parameter per neutron star Λi [129, 130].

1.5 The current state of gravitational-wave astron-
omy

The first direct detection of gravitational waves was made on September 14th 2015 by the
two LIGO interferometers when they detected the gravitational radiation emitted by a
stellar-mass BBH merger and heralded the beginning of gravitational-wave astronomy [6,
131]. This event is referred to as GW150914 and occurred at the start of the first aLIGO
observing run, known as O1. This was followed by two subsequent detections also from
BBH systems [7, 132].

The second observing run, O2, began in late 2016, initially with the two aLIGO detec-
tors and later on, the AdVirgo detector. This observing run yielded a further seven BBH
detections [8, 133–135] and the first detection of gravitational waves from a BNS system,
GW170817 [29]. This event was also the first and, to date, only firm multi-messenger
gravitational-wave observation [35, 38, 41, 136–139]: the LVK interferometers detected
the gravitational waves emitted by the system and optical observatories observed the elec-
tromagnetic radiation emitted by the GRB and kilonova that followed the merger. This
observation had implications for both fundamental physics and astrophysics [38, 140, 141],
including for the speed of gravity [38], sources of GRBs [142], the Hubble constant [143]
and neutron star equation of state (EOS) [141, 144, 145].

The third observing run, O3, began in April 2019, ran until March 2020, was divided
in two parts: O3a and O3b, and saw KAGRA observing for the first time [146]. This
observing run brought the total number of confident gravitational-wave candidates to
90 [8–10]. Amongst these were many interesting systems, including, but not limited to,
the heaviest BBH to date GW190521 [147, 148], NSBH systems [149] and the first detection
of precession [150].

The ever-increasing number of gravitational-wave detections enable a range of analyses,
once the sources have been detected and characterized. These include analyses of the
rates of CBCs, the astrophysical populations that the compact objects belong to and
the formation channels that produce them [151–153], cosmological analyses that inform
us about the fundamental structure of the Universe [143, 154–157] and analyses that
test the validity of general relativity and determine if it is consistent with the observed
gravitational-wave signals [158–162].

Looking forward, the next observing run, O4, started in May 2023 and is expected
to last 18 months [163]. Various improvements have been made to the detectors, which
are expected to increase the number of detected events by up to 3.3 times [74]. Past



CHAPTER 1. INTRODUCTION 23

this there are plans for a fifth observing run with further improvements to all existing
interferometers [164–166] and the potential for a fifth instrument in India [167].

These prospects bring with them a series of challenges. The last observing run, O3,
showed us that the Universe can surprise us [148, 168]; new gravitational-wave observations
will enable us to probe new physics [150, 169], detect potentially new sources and push the
boundary of our understanding [170, 171]. However, this adds complexity to the analyses
that must be performed and increases their computational cost [96, 172, 173]. Add to this
the expected increase in the rate of observed events [74], and it is clear that there is a
need for new and improved analysis techniques that can handle the increased volume and
complexity of data that must be analysed. The work presented in this thesis explores one
particular avenue of achieving this goal: machine learning applied to Bayesian inference.

1.6 Summary

This chapter introduces gravitational waves, starting from the linearized Einstein field
equations. The solution to these equations in a vacuum is a transverse plane wave, which
can be described in terms of two polarizations bases: the cross and plus polarizations.
Such waves will stretch and squeeze spacetime in the plane perpendicular to their di-
rection of propagation. The quadrupolar nature of gravitational waves means that only
non-axisymmetric systems in motion will produce gravitational waves and their typical
amplitudes will be O(10−23).

Four different types of gravitational-wave signals are then discussed: CBC, bursts,
continuous gravitational waves and the SGWB. These are each produced by astrophysical
sources and have distinct morphologies. The work presented in this thesis will focus on
gravitational waves from CBCs which include: BBHs, BNSs and NSBHs. These sources
produce distinct chirp-like signals that increase in frequency and amplitude as the systems
evolve.

These gravitational-wave signals are detected using ground-based laser interferometers
that are sensitive to strains O(10−23). Leveraging the data from such detectors requires a
detailed understanding of how they respond to gravitational waves, which determines the
antenna response patterns shown in fig. 1.5, and characterizing the noise present in the
detectors, which we assume to stationary Gaussian noise described by a PSD. The data
is then modelled as a combination of detector noise and a signal. Different waveforms are
used to model the signals from CBC, such as phenomenological and EOB waveforms, and
are parameterized by intrinsic parameters and extrinsic parameters.

Finally, we have summarized the state of gravitational-wave astronomy. There have
been 90 confident detections to date, and these include all three expected CBC source
types. These detections provide us with new means to understand the Universe and
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have implications for our understanding of fundamental physics and astrophysics. Future
observations have similar prospects but bring with them a range of challenges that will
need to addressed.

In this thesis, we consider on one particular challenge: improving Bayesian inference
techniques for the analysis of gravitational waves from CBCs. Our aim is to investigate
and develop means to accelerate Bayesian inference using machine learning and to bridge
the gap between current techniques and novel end-to-end machine learning methods that
are being developed. We focus on augmenting a specific algorithm, called nested sampling,
which is widely used but can be computationally expensive. We centre our work around
the novel idea of incorporating normalizing flows, a type of machine learning algorithm,
into nested sampling; this idea is presented in chapter 4. We then iteratively develop
and test this idea in chapters 5 to 8. With this in mind, we now review two key topics:
Bayesian inference in chapter 2 and machine learning in chapter 3. In the former, we will
start from Bayesian probability and work towards an understanding of nested sampling
and how it is applied to gravitational-wave astrophysics. In the latter, we introduce the
basics of machine learning and neural networks before focusing on normalizing flows.



Chapter 2

Bayesian inference

This chapter introduces the fundamentals of Bayesian inference, the techniques used to
perform this inference and its application to gravitational-wave data analysis, with a par-
ticular focus on nested sampling,

Starting from the notion of Bayesian probability and Bayes’ theorem, the key concepts
needed to understand nested sampling are introduced; sections 2.1 to 2.3 introduce proba-
bility, probability density functions (PDFs) and Bayesian inference. Section 2.4 introduces
the notion of sampling and resampling and section 2.5 extends this to Markov Chain Monte
Carlo (MCMC). Section 2.6 reviews nested sampling in depth, including its formulation,
design, implementation and variants; and provides context for the work presented in later
chapters. From here, other methods for performing Bayesian inference are introduced,
namely simulation based inference in section 2.7 and variational inference in section 2.8.
Section 2.9 highlights methods for validating results from Bayesian inference that will be
used in later chapters. Finally, section 2.10 details the application of Bayesian inference
to gravitational-wave data analysis, first defining the gravitational-wave likelihood in sec-
tion 2.10.1 before focusing on its application to gravitational-wave parameter estimation
and various implementations that have been used to perform Bayesian inference in this
field.

Throughout this chapter and later chapters, certain terms will be used with subject-
specific meanings, such as using ‘evidence’ to refer specifically to the Bayesian evidence
that arises from Bayes’ theorem rather than to mean support for a particular hypothesis.
Such terms are defined in the main text when they first appear and also in the glossary.

25
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2.1 Probability

Probability encodes our degree of belief in a proposition, X, as a numerical value between
0 and 1. If the probability is 1, then the proposition is true, if it is 0, then it is false and
values in between define how much we believe X to be true. Probability also incorporates
the assumptions that have made to determine our degree of belief, which we denote I. This
understanding of probability is known as Bayesian probability. It was first conceived by the
Rev Thomas Bayes in the 1700s [174] and then developed by Pierre-Simon Laplace [175],
but it was not until the 1900s that Sir Harold Jeffreys, Richard Cox and others formulated
the Bayesian approach as we know it today [176, 177].

From this definition of probability, it follows that

p(X|I) + p(X̄|I) = 1 (2.1)

where p(X|I) is the probability of the proposition X given the assumptions I and X̄ is
the negation of X, i.e. that proposition that X is false. This is known as the sum rule.

Now consider the case where we have two propositions X and Y . If we can specify the
probability of Y being true and, subsequently, we can specify the probability of X being
true given Y is also true, then we arrive at the product rule

p(X,Y |I) = p(X|Y, I)p(Y |I). (2.2)

This defines the probability that both X and Y are true. These rules form the foundation
of the Bayesian formulation of probability theory, and various results can be derived from
them.

One such result is Bayes theorem [174]. Starting from the product rule, eq. (2.2), we
note that it could equally be expressed as p(X,Y |I) = p(Y |X, I)p(X|I). If we equate
these two expressions and rearrange them, we arrive at

p(X|Y, I) = p(Y |X, I)p(X|I)
p(Y |I) , (2.3)

which is known as Bayes theorem. These rules also lead to the concept of marginalization:

p(X|I) =
∫ ∞

−∞
p(X,Y |I)dY, (2.4)

which defines the probability of X irrespective of the value of Y . The importance of Bayes
theorem and marginalization will become apparent when considering its application to
data analysis, where we will no longer consider propositions X and Y , but data and
hypothesis. Before this, we introduce the notion of probability density functions.



CHAPTER 2. BAYESIAN INFERENCE 27

2.2 Probability density functions

Thus far, we have considered probability in the context of propositions X and Y . However,
in data analysis applications, we more typically consider an arbitrarily large number of
propositions, for example the possible distances to a binary black hole (BBH) system. This
is known as the continuum limit [178] and, in this context, X is now a continuous numerical
value instead of a single proposition. As such, p(X|I) is now no longer a probability, but a
probability density function (PDF) and, strictly speaking, should have different notation,
however, here we will simply refer to probability and PDF as p(·)1. Additionally, we will
now refer to X as a random variable and use x to denote a value of X, that is p(X = x|I)
is the probability that X will take the value x, or simply p(x).

For the PDF of a continuous random variable p(X), the cumulative density function
(CDF) is the probability that X is less than or equal to x

CDFX(x) = p(X < x) =
∫ x

−∞
p(y)dy, (2.5)

and CDFX(x) ∈ [0, 1].
We can also relate the PDFs for two random variables X and Y . Given a bijective

function f : X → Y such that y = f(x), the PDF for the random variable y is written
using the change of variable as

p(y) = p(x)
∣∣∣∣∣∂x∂y

∣∣∣∣∣ . (2.6)

2.2.1 A note on notation

Through this section, we will discuss conditional probabilities and functions with multiple
arguments. These have similar notations but their interpretation is subtly different. A
conditional probability p(x|y) is the probability of x given y, i.e. a distribution on x, not
y. Whereas in some cases where we have a function of two variables f(x, y), we will write
f(x; y) to imply the value of f at x for a chosen value of y, that is, y is fixed.

2.2.2 Distance measures

Distance measures quantify the statistical difference between probability distributions.
In this section, we will focus on two related distance measures: the Kullback-Leibler
divergence (KLD) and the Jensen-Shannon divergence (JSD).

The KLD [179] is a measure of the distance between a probability distribution p(x)
1If X is discrete instead of continuous, e.g. the integers Z, then p(X|I) is a probability mass function

(PMF) instead of a PDF.
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and a reference probability distribution q(x)

DKL(p||q) =
∫
p(x) logb

p(x)
q(x)dx, (2.7)

where b is the base of the logarithm, which we assume to be b = e if not specified. Its
units depend on the base being used, the most common are bits for b = 2 and nats for
b = e. It is important to note that the KLD is not symmetric, i.e. DKL(p||q) 6= DKL(q||p),
which means it is not a metric. The KLD is defined such that for two correctly normalized
probability distributions DKL(p||q) ∈ [0,∞), where 0 represents no difference and ∞
represents maximal difference.

The JSD is another distance measure that is commonly used, it is a symmetric version
of the KLD and measures the similarity between two distributions

DJS(p||q) = 1
2DKL(p||m) + 1

2DKL(q||m), (2.8)

where m(x) = (1/2)[p(x) + q(x)]. It can therefore be used to compare distributions when
there is no known reference. Unlike the KLD, the JSD is bounded [180] and its bounds
depend on the base b of the logarithm used

0 ≤ DJS(p||q) ≤ logb(2). (2.9)

As a result, for b = 2 the JSD is bounded on [0, 1] which, as will be seen later, is often
used when comparing posterior distributions. Whilst the JSD is also not a metric, the
square root of it is and is known as the Jensen-Shannon distance.

2.3 Bayesian inference

We now consider Bayes’ theorem eq. (2.3) in the context of data analysis, specifically
parameter estimation. We will replace the propositions X and Y with a parameter θ

that describes a model H, which replaces I, and some data d. We will then write Bayes’
theorem as

p(θ|d, H) = p(d|θ, H)p(θ|H)
p(d|H) . (2.10)

We can now see the importance of Bayes theorem: it allows us to relate the probability of
a hypothesis (that some parameter θ of a given model H describes the data) given some
data d (p(θ|d, H)) to the probability that we observed the data d given the hypothesis
was true (p(d|θ, H)). This is the foundation of Bayesian inference.

The terms in Bayes’ theorem each have formal names: p(θ|H) is known as the prior
probability or π(θ) and describes the state of knowledge prior to obtaining the data;
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p(d|θ, H) is the probability of the data given the parameter and the model, and is known
as the likelihood and often shortened to L(θ); p(θ|d, H) is the probability of the parameter
given the model and the data, known as the posterior probability; and p(d|H) is the prob-
ability of data given only the model, known as the Bayesian evidence Z or marginalized
likelihood. We can define the evidence using eq. (2.4):

Z = p(d|H) =
∫
p(d,θ|H)p(θ|H)dθ. (2.11)

Typically, we extend this formulation to include multiple parameters, denoted by
θ = {θ1, θ2, ..., θN}. Thus, the probabilities describe the state of knowledge of all the
parameters and their relationships. If we are then interested in a particular parameter,
we can marginalize over the other parameters:

p(θ1|d, H) =
∫

dθ2...dθNp(θ|d, H). (2.12)

Directly computing the posterior probability would require closed forms for the likeli-
hood, prior and evidence. In different scenarios, defining each of these can be challenging
or even impossible. In this thesis, we focus on the case where one can define a likelihood
and prior, but the evidence integral eq. (2.11) does not have an analytic solution, i.e. it is
analytically intractable. However, we discuss the case where the likelihood does not have
a closed-formed, also referred to as being intractable, in section 2.7. Estimating the pos-
terior, or drawing samples from it, requires at the very least sampling from the numerator
in eq. (2.10), however a closed form for this does not typically exist, so we instead have to
resort to different techniques for sampling from a PDF or an unnormalized PDF.

In sections 2.4 to 2.6, we introduce different methods for sampling from PDFs and,
is some cases, computing the normalization constant. Before that, we briefly introduce
another application of Bayesian inference: model selection.

2.3.1 Model selection

Whilst we have considered Bayesian inference in the context of parameter estimation, it
can also be applied to model selection, where the aim is to compare different models that
describe the same data. Generally, we can compare pairs of models (Hi and Hj) using the
posterior odds

Oij = p(Hi|d)
p(Hj|d) , (2.13)
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which, using Bayes’ theorem, we can rewrite as

Oij = p(d|Hi)
p(d|Hj)

p(Hi)
p(Hj)

= Zi

Zj

p(Hi)
p(Hj)

, (2.14)

where the term p(d) cancels out. The ratio of the evidences is known as the Bayes factor
(B), and if the prior odds for the two models are the same, then it is equal to the posterior
odds. Posterior odds greater than one indicate that H1 is favoured over H2, however
interpreting the degree to which a model is favoured is challenging. Jeffreys [176] provided
grades based on the value of Oij which correspond to levels of significance.

2.4 Sampling from distributions & resampling

There are cases where we need to draw samples from a particular distribution p(θ) but
p(θ) cannot be sampled from directly, for example an unnormalized posterior distribution
p(θ|d, H) ∝ p(d|θ, H)p(θ|H). However, if p(θ) can be computed, and we have another
distribution q(θ), known as the proposal distribution, which can be sampled from directly
and its PDF computed, then we can use resampling to obtain samples from p(θ). There
are many different resampling methods [181], however in this work we focus on two that
have been used extensively in gravitational-wave data analysis: rejection sampling and
multinomial resampling. For a set of samples Θ ≡ {θi}N

i=1 drawn from the proposal
distribution, i.e. θi ∼ q(θ), both methods make use of weights

αi ∝
p(θi)
q(θi)

, (2.15)

which are normalized such that ∑N
i=1 αi = 1. These methods are well suited to cases where

a proposal distribution that closely ‘resembles’ the target, i.e. the PDF q(θ) has similar
support and shape as p(θ), can be constructed and sampled from. If the proposal distribu-
tion and target are significantly different, then these methods will become inefficient due
to a low number of samples having large weights. Similarly, these methods also become
increasingly inefficient as the number of dimensions and complexity of p(θ) increases. In
section 2.4.3, we will see how to quantify the efficiency using the effective sample size.

2.4.1 Multinomial resampling

In multinomial resampling [182], the core idea is to return N samples by sampling N times
from a uniform distribution ui ∼ U [0, 1] and then use the values of ui to select samples
from Θ, where Θ ≡ {θi}N

i=1 and θi ∼ q(θ). The samples are selected by first sorting Θ
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given the normalized weights αi from eq. (2.15) and then computing the cumulative sum

Ci =
i∑

j=1
αj. (2.16)

For each ui, the corresponding sample from Θ is the first sample for which Ci ≥ ui.
The advantage of this method is that it returns a specified number of samples, however,

these samples will likely contain duplicates and this must be accounted for in any analyses
that make use of these samples.

2.4.2 Rejection sampling

Rejection sampling is a resampling method where samples from the proposal distribution
are accepted or rejected based on an acceptance probability. For a given sample, the
acceptance probability is compared to a random draw from a uniform distribution ui ∼
U [0, 1] and the sample is accepted when

p(θi)
Mq(θi)

= αi

M
≥ ui, (2.17)

where M = ∑
i=1 αi is a normalization constant, and rejected otherwise.

In contrast to multinomial resampling, for a given set of samples Θ, rejection sampling
returns a random number of samples from the target distribution. However, these samples
are statistically independent (i.e. they do not contain duplicates) and are therefore more
comparable to samples drawn using other methods, for example, directly from a distribu-
tion or using other Monte Carlo methods such as Markov Chain Monte Carlo (MCMC)
and nested sampling.

2.4.3 Effective sample size

When sampling from a target distribution p(θ) using a proposal distribution q(θ) and
corresponding weights αi it can be informative to compute Kish’s effective sample size
(ESS) [183]

ESS =

[∑N
i=1 αi

]2
∑N

i=1 α
2
i

, (2.18)

for a set of samples Θ ≡ {θi}N
i=1 ∼ q(θ). This gives an indication of how statistically

significant (or independent) the samples are given the weights. A low ESS indicates that
the samples drawn from q(θ) are a poor match for p(θ), i.e. the sampling is inefficient.
The ESS can also serve as an upper limit for how many samples would be obtained when
using rejection sampling.
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2.5 Markov Chain Monte Carlo

MCMC algorithms are a method for sampling from a probability distribution p(θ) by
constructing a Markov chain. They iteratively explore the parameter space and produce
samples that are distributed proportionally to the target distribution. In the context
of Bayesian inference, the target distribution is the unnormalized posterior probability
p(θ) ∝ L(θ)π(θ), which avoids having to compute the normalizing integral.

There are many different variants of MCMC, such as Gibbs sampling [184] and Hamil-
tonian Monte Carlo [185], but for the purpose of understanding how these algorithms work,
we will focus on the Metropolis-Hastings algorithm [186, 187]. For a complete review of
MCMC algorithms see Hogg and Foreman-Mackey [188].

In the Metropolis-Hastings algorithm, a new sample θ′ is drawn from a conditional
density (or proposal) q(θ′|θ) that depends on the current sample θ. At a given step, the
Markov chain can transition from the current sample to the new sample with probability

r(θ,θ′) = min
{
p(θ′)
p(θ)

q(θ|θ′)
q(θ′|θ) , 1

}
. (2.19)

If it is accepted, θ′ is added to the chain otherwise the existing sample θ is added. This
allows for the use of asymmetric proposal distributions, i.e. q(θ′|θ)/q(θ′|θ) 6= 1, which
can guide the chain towards regions of higher probability, such as in Hamiltonian Monte
Carlo [185]. If the proposal is symmetric, then q(θ′|θ)/q(θ′|θ) = 1 and the algorithm
reduces to the Metropolis algorithm [189].

MCMC algorithms do not estimate the normalization factor of the target density; the
Bayesian evidence Z when the target is the posterior. However, the use of tempering [190]
enables the use of thermodynamic integration for computing the integral. This introduces
a ‘temperature’ dependency T = 1/β to the target distribution

p(θ|β) ∝ π(θ)L(θ)β, (2.20)

and allows for the logarithm of the normalization constant to be estimated via

lnZ =
∫ 1

0
Eθ∼p(θ|β) [lnL(θ)] dβ, (2.21)

where the integrand is the expectation value of the log-likelihood for samples drawn from
p(θ|β). This requires sampling multiple chains with different temperatures, which can be
done in parallel, and then combining them to obtain the final estimate. For the complete
derivation, see e.g. Friel and Pettitt [191]. The inclusion of a temperature also changes
the nature of the likelihood surface and can improve the sampling of complex likelihoods.
However, the evidence estimates obtained via this method often have larger uncertainties
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since they depend on the number of temperatures [96].

2.6 Nested sampling

Nested sampling is a stochastic algorithm that was first proposed by Skilling [192, 193]
and is designed to compute the multidimensional integrals. In this work we focus on
its application to Bayesian inference, where it is used to compute the Bayesian evidence
Z and obtain posterior samples, the latter are by-product of the algorithm, however it
also has other applications, see e.g.Pártay et al. [194]. We now review the mathematical
formulation and core algorithm, and then discuss different variants that are relevant to the
work presented in later chapters. For more details on nested sampling, see Skilling [193],
which introduces the algorithm, and Ashton et al. [195], which is a comprehensive review
for physical scientists; both complement the explanation in this work.

The Bayesian evidence Z as defined in eq. (2.11) requires marginalizing over the likeli-
hood, which quickly becomes expensive for multidimensional parameter spaces. In nested
sampling, instead of computing the n-dimensional integral, the evidence is redefined in
terms of a new quantity known as the prior volume X which is defined on the unit inter-
val, where a prior volume of 1 contains all the prior probability and decreasing values of
prior volume contain less. The evidence, eq. (2.11), is then written (using the shorthand
notation for the likelihood L(θ) and prior π(θ)) as

Z =
∫

Θ
L(θ)π(θ)dθ =

∫ 1

0
L̄(X)dX, (2.22)

where, Θ is the domain of the parameters, dX = π(θ)dθ and L̄(X) is the likelihood as
a function of prior volume. The integrand is this equation is positive and decreasing, so
the function must be well-behaved [193]. This idea is illustrated in fig. 2.1 where a two–
dimensional parameter space is shown with four likelihood contours. The corresponding
plot of prior volume versus likelihood is also shown.

We arrive at eq. (2.22) by considering the prior volume contained with a likelihood
contour with likelihood λ ≡ L(θ), which we can define as

X(λ) =
∫

L(θ)>λ
π(θ)dθ. (2.23)

such that
Z =

∫ +∞

−∞
X(λ)dλ. (2.24)

Equation (2.22) can then be derived using integration by parts, assuming that L̄(X) is
the inverse of X(λ); see Ashton et al. [195, Box 2] for the proof.

To approximate the evidence, we must compute the area under the curve shown in
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Figure 2.1: Visualization of the core nested sampling idea adapted from Skilling [193].
Left: a two–dimensional parameter space showing four iso-likelihood contours labelled
by increasing likelihood and coloured such that a darker colour corresponds to a higher
likelihood. Right: plot of the prior volume X versus likelihood L̄(X). The same four
likelihood contours are shown in the same colours and contain, from lowest to highest
likelihood (L0 to L3), 90%, 60%, 30% and 10% of the prior volume.

fig. 2.1. If the likelihood is a well-behaved function, we can consider an ordered sequence
of M point with decreasing the prior volumes Xi:

0 < XM < · · · < X2 < X1 = 1, (2.25)

and evaluate the likelihood at each point Li = L̄(Xi). Each prior volume then, in the
original parameter space, corresponds to a contour of equal likelihood, this is shown in
fig. 2.1. The evidence integral from eq. (2.22) can then be approximated by

Z =
M∑

i=1
wiLi, (2.26)

where the weights wi can be approximated, for example using the Trapezoidal rule

wi = 1
2(Xi−1 −Xi+1), (2.27)

with reflecting boundary conditions X0 = 2−X1 and XM+1 = −XM .
What remains is how to compute the prior volume X. We required the prior volumes

to be ordered and decreasing, so we can relate them via a shrinkage factor ti ∈ (0, 1)

Xi = tiXi−1, (2.28)

with X1 = 1. But how do we compute the shrinkage between prior volumes?
This is where the core nested sampling idea comes into play; we do so statistically. At

a given step i, we can randomly draw a new point Xi such that Xi < Xi−1 by sampling
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ti ∼ U(0, 1) and then computing Xi using eq. (2.28). However, this would be impractical
since we would need to a function to map from prior volume to likelihood and then
to parameters θ. Instead, we can use the relationship between the prior volume and
likelihood, and sample a new random point θi from the prior with the constraint that
L(θi) > Li−1. We must then compute the prior volume Xi for a given likelihood.

If we consider Nlive random samples from the prior within a likelihood contour, which
we call live points, each will have a corresponding prior volume and likelihood. If we remove
the worst point (lowest L, highest X), then the next prior volume will be related via the
shrinkage ti which will be distributed according to a beta distribution given by [193, 196]

ti ∼ β(ti;Nlive, 1) = Nlivet
Nlive−1
i . (2.29)

We can then use this knowledge to estimate the mean and variance for ti, given Nlive,

Mean[ti] = Nlive

Nlive + 1 , Var[ti] = Nlive

(Nlive + 1)2(Nlive + 2) , (2.30)

and in turn compute the prior volume Xi. However, Skilling [193] proposes using the
expectation value of log ti since it dominates the geometrical exploration

Mean[log ti] = − 1
Nlive

, Var[log ti] = 1
N2

live
. (2.31)

Therefore, if we ignore the uncertainty, logXi = ∑i
j=1 log tj = −i/Nlive.

Having determined the prior volume, we then draw a new point from the prior subject
to the likelihood constraint given by the worst point and we end with Nlive points again,
so we can repeat the process. This step if the crux of nested sampling, since it most cases
the likelihood-constrained prior is not defined analytically.

2.6.1 Nested sampling algorithm

We now have all the building blocks to construct the nested sampling algorithm. The
complete algorithm is outlined in alg. 1 which we will now describe.

The algorithm starts by drawing Nlive points from the prior π(θ). The worst point
θ∗, with the lowest likelihood, is then selected and used to update the prior volume and
in turn the evidence. A replacement point is then drawn from prior with the likelihood
constraint L(θ) > Li. The process is then repeated; the worst point is used to update
evidence and then replaced with a new point. This process continues until a termination
criterion is reached.

Once the termination criterion is reached, we are left with a final set of live points.
These points are uniformly distributed with the final prior volume and can be used to im-
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prove the evidence estimate by sequentially adding them in order of increasing likelihood.
The shrinkage in prior volume can be estimated via eq. (2.31), but Nlive must be decreased
by 1 each time a point is added, since it is not replaced.

Algorithm 1: Nested sampling algorithm
Data: Prior π, likelihood L
Result: Evidence Z

1 Z = 0, X0 = 1, L0 = 0, i = 0;
2 Sample Nlive points {θ1, ...,θNlive} from the prior;
3 while termination criterion not reached do
4 i← i+ 1;
5 Set Li to the lowest likelihood value in the current samples;
6 Estimate log ti and then Xi via eqs. (2.28) and (2.31);
7 Compute wi via eq. (2.27);
8 Update the evidence Z by Liwi;
9 Replace worst point with a new point drawn the prior with L(θ) > Li;

10 end
11 for θi in final live points do
12 Set Li;
13 Nlive ← Nlive − 1;
14 Estimate Xi via eq. (2.28) with updated Nlive;
15 Compute wi via eq. (2.27); Update evidence Z by Lwi;
16 end

2.6.2 Termination criteria

Given the nested sampling formulation, we must then determine when to terminate sam-
pling. Unlike MCMC, nested sampling does not continuously produce posterior samples,
so we cannot typically use the number of samples as a termination criterion. If we have do-
main knowledge, for example the maximum likelihood is known a priori then this could be
used. However, this is not generally possible, so more often the termination is determined
at runtime.

Skilling [193] proposes using the maximum likelihood of the current live points and
computing a maximum contribution to the evidence given the current prior volume Ẑlive =
LmaxXi. The ratio

∆Ẑi = Ẑlive + Ẑi

Ẑi

, (2.32)

where Ẑi is the evidence at the current iteration, can then be used as a termination
criterion [197]; when it becomes very small the change in the evidence by adding more
samples should be minimal. Different values have been used in the literature, but ln ∆Ẑi ≤
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0.1 has been widely used within gravitational-wave data analysis [96, 198].

2.6.3 Uncertainty estimates

The statistical uncertainty in nested sampling arises from estimating the shrinkage ti. It
has been shown that this can be quantified by considering the information content H of
the posterior p(θ) compared to the prior π(θ) [193, 195], computed using the KLD

H =
∫
p(θ) log p(θ)

π(θ)dθ. (2.33)

If one rewrites this in terms of the prior volume and assumes the uncertainty is dominated
by the region around the posterior mass, then the uncertainty on the log-evidence can be
taken to be approximately Gaussian [193]

σ[lnZ] ≈
√
H
Nlive

. (2.34)

However, this estimate has been shown to be unreliable in some cases [199], for example
when the nested samples are not independently and identically distributed (i.i.d.), and
more reliable estimates can be obtained via repeated simulation [200].

2.6.4 Posterior estimation

Nested sampling can also be used to perform parameter inference. Posterior weights can
be computed for a given set of nested samples Θ ≡ {θi}N

i=1, these will be proportional to
the prior volume of each sample

pi = Liwi

Z
, (2.35)

where the weights wi are the weights from eq. (2.26). The weights are in fact random
variables described by the distribution of shrinkage ratios. This introduces an additional
uncertainty which is explored in Higson et al. [200], however, in practice, most implemen-
tations of nested sampling use the expectations values for the weights Additionally, rather
than using the nested samples and their corresponding weights, it is more common to
resample the nested samples to obtain a set of posterior samples since it can be difficult to
incorporate weighted samples into subsequent analyses. For the resampling, the weights,
i.e. αi from eq. (2.15), are the posterior weights given by eq. (2.35) and these are used
with either of the methods outlined in section 2.4.
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2.6.5 Likelihood constrained sampling

During the nested sampling algorithm (alg. 1), the worst point θ∗ is discarded and a
replacement θi is then be drawn. This replacement should be i.i.d., drawn from the prior
and must satisfy the likelihood constraint L(θi) > L(θ∗). However, this can be challenging
since a closed-form for sampling from the likelihood-constrained prior does not typically
exist and the likelihood contour may be complex; for example, it may have correlations
between certain parameters or be multimodal. Skilling [193] proposed using MCMC but
did not explore the method in much depth. Three main families of methods have since
been developed to address this challenge.

Random walk sampling

Random walk-based nested sampling algorithms use MCMC algorithms to draw new sam-
ples from the likelihood-constrained prior. This requires accepting only those points for
which L(θ) > L∗ until the correlation with the starting point (one of the existing samples)
has been lost. This method also requires a random walk that can adapt to the continu-
ously shrinking constrained prior and a method for determining the number of steps to
take [196]. Further modifications are often needed to handle multi-modality and complex
correlations between parameters, for example, as implemented in [96].

Similar to this is the use of slice sampling [201], where samples are drawn from a
randomly oriented line within the prior volume. The challenge in this case is choosing the
direction of the line and how to sample from it.

Nested samplers that implement random walk based sampling include cpnest [202],
DNest [203, 204], dynesty [197], LALInference [96], nestle [205], PolyChord [206] and
ultranest [207].

Direct (region) sampling methods

Alternatively, various methods have been proposed for approximating the likelihood con-
strained prior or a superset of it with a proposal distribution. The challenge in this case
is how to construct the proposal distribution. These are typically bounding ellipsoids that
contain the live points and are then enlarged by some factor to avoid missing regions of
the parameter space. In cases where the problem is more or complex or multi-modal,
the bounding distribution can be constructed using multiple ellipsoids [208]. More recent
variants of this idea include the RadFriends [209] and MLFriends [210] algorithms. Nested
samplers that implement direct sampling methods include DIAMONDS [211], dynesty [197],
multinest [208, 212], nestle [205] and ultranest [207].
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Hybrid methods

Finally, there are algorithms that use a combination of random walk and direct sampling
methods. These aim to improve the efficiency by leverage the advantages of both meth-
ods, namely the direct sampling methods reduce the volume of space that needs to be
sampled whereas the random walk methods have better scaling as the number of dimen-
sions increases. Nested samplers that implement a combination of both methods includes
dynesty [197] and ultranest [207]

2.6.6 Variants of nested sampling

Numerous variants of nested sampling have been proposed that modify parts of the core
algorithm. For example, some employ different methods for computing the weights used to
compute the evidence [212, 213] and others modify how samples are distributed throughout
the run [203]. We now review four variants of nested sampling that we will draw upon in
this thesis.

Diffusive nested sampling

Diffusive nested sampling [213] uses a multi-level exploration method where a mixture of
constrained distributions is sampled from at each iteration using MCMC. The constrained
distributions are added sequentially, and each contains approximately e−1 of the prior
volume of the previous. In contrast to standard nested sampling approaches, all the
samples from the MCMC chain are kept and those that do not meet the current likelihood
criteria are added to the previous level. The values for the prior volume X are estimated
using the fraction of samples above the likelihood threshold compared to the total number
of samples.

Dynamic nested sampling

Dynamic nested sampling was proposed in Higson et al. [203] and introduces a framework
for varying the number of live points throughout a nested sampling run. Since the shrink-
age in prior volume is related to the number of live points (eq. (2.29)), this allows us to
control the shrinkage over the course of the run. This can be used to focus on specific
regions of the parameter space, depending on the focus of the analysis. For example,
focusing on the region of the parameter space where the bulk of the posterior probability
is located or focusing on regions that improve the evidence estimate. Higson et al. [203]
propose two importance functions that measure the relative importance of the ith sample
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for the evidence and posterior calculation

IZ(i) ∝ Z≥i

N
(i)
live
, IPost(i) ∝ Liwi, (2.36)

where Z≥i is the evidence contribution from samples with likelihoods greater than or equal
to Li and N

(i)
live is the number of live points at ith iteration.

The dynamic nested sampling algorithm is a two stage process. It starts with a stan-
dard exploratory nested sampling run with a constant number of live points, which results
in a set of nested samples. The relative importance of the samples is then defined as the
combination of the two terms from eq. (2.36) with a user-defined weight γ ∈ [0, 1] known
as the goal [203] (G in Higson et al. [203]),

I(γ, i) = (1− γ) IZ(i)∑
j IZ(j) + γ

IPost(i)∑
j IPost(j)

. (2.37)

Additional samples are then added in regions with high importance I(γ, i).

Importance nested sampling

Importance nested sampling was proposed in Cameron and Pettitt [214] and expanded
upon in Feroz et al. [212]. In this version of nested sampling, the evidence integral is
approximated in terms of a pseudo-importance sampling density Q(θ)

Ẑ = 1
NTotal

NTotal∑
i=1

L(θi)π(θi)
Q(θi)

, (2.38)

where NTotal is the total number of nested samples. Posterior weights are then computed
using

pi = Li(θi)π(θi)
NTotalQ(θi)

, (2.39)

and these can be used as you would the posterior weights in a normal nested sampling
algorithm.

In standard importance nested sampling, the unbiased estimator for the variance of
the evidence is given by [212, 214]

σ2[Ẑ] = 1
NTotal(NTotal − 1)

NTotal∑
i=1

[
L(θi)π(θi)
Q(θi)

− Ẑ
]2

, (2.40)

however, as discussed in [212], this does not apply when using a pseudo-importance sam-
pling density, which is the case in multinest.

In multinest [208, 212], one or more ellipsoidal distributions are used to construct an
approximation of the current likelihood contour defined by L∗. New points are then drawn
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from within this proposal distribution and their likelihood evaluated until L(θ̂) > L∗

and, similarly to diffusive nested sampling, all of these points are used in the evidence
summation and define the number of points within a level ni. The pseudo-importance
sampling density for each point is given by

Q(θ) = 1
NTotal

Niter∑
i=1

niEi(θ)
Vtot,i

, (2.41)

where Vtot,i is the volume of the bounding distribution, Ei is an indicator function that
is 1 if the point lies within the i’th ellipsoidal decomposition and 0 otherwise, Niter is the
number of iterations, where an iteration is an instance of the ellipsoidal decomposition
and NTotal is the total number of points NTotal = ∑Niter

i=1 ni.

Nested Sampling via Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a general extension of importance sampling where ran-
dom samples with corresponding weights are drawn from a sequence of probability densi-
ties such that they converge towards a target density [215]. These algorithms are typically
comprised of three main steps: mutation in which the samples are moved towards the tar-
get density via a Markov kernel, correction where the weights of the samples are updated,
and selection where the samples are resampled according to their weights.

In Salomone et al. [216], the authors draw parallels between nested sampling and SMC
and show that nested sampling is a type of adaptive SMC algorithm where weights are
assigned sub-optimally. They also highlight several limitations of the standard nested sam-
pling algorithm, including the assumption of independent samples. They propose a new
class of SMC algorithms called Nested Sampling via Sequential Monte Carlo (NS-SMC)
and demonstrate that it is equivalent to nested sampling but address the aforementioned
limitations. This formulation bears similarities to the importance nested sampling as de-
scribed in [212, 214] but removes batches of live points at each iteration and includes the
mutation and selection steps that are typical in SMC.

2.6.7 Nested sampling diagnostics

Nested sampling algorithms have a range of tuneable settings, some of these will be com-
mon across most implementations, for example the number of live points Nlive, whilst
others will be implementation specific, such as the choice of proposal kernel in an imple-
mentation that uses an MCMC based random walk for drawing new points. The choice
of settings can impact the results obtained, and inappropriate setting may lead to biases
in the results; e.g. missing a mode in the posterior distribution or over-estimating the
evidence. General purpose checks, such as those discussed later in section 2.9 can be
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used to validate results, but a series of nested sampling-specific checks have also been
proposed, see e.g Higson et al. [217]. We now review two methods that we will make use
of throughout the work presented in this thesis.

Evidence uncertainty

Nested sampling provides an uncertainty estimate for the estimated log-evidence. For
a given model, one can compare the estimated uncertainty given by eq. (2.34) with the
observed distribution of log-evidences for repeated analyses of the same model. If the
sampling is unbiased, then the estimated uncertainty should agree with the observed
distribution. This is particularly useful in cases where the model being analysed has an
analytic evidence Z (eq. (2.11)) and information content H (eq. (2.33)).

Order statistic checks

Fowlie et al. [218] proposed a nested sampling cross-check based on order statistics. They
consider the insertion index , the index at which a new element is inserted into a list to
preserve the ordering, of a new live point in a nested sampling run with respect to the
existing live points sorted by enclosed prior volume. Since the relationship between prior
volume and likelihood is monotonic, this is the same as sorting by likelihood.

In a nested sampling run, if the new live points are in fact drawn from the likelihood
constrained prior then, this should result in them being uniformly distributed in prior
volume. Given the relationship between prior volume and likelihood, the discrete insertion
index of the new points should therefore be uniformly distributed between 0 and Nlive−1.

A statistical test can then be performed on the insertion indices to quantify if they
deviate from the expected uniform distribution or not. Fowlie et al. use the Kolmogorov-
Smirnov test (KS test) [219, 220] and compute a corresponding p-value which, since the
insertion index is discrete, will be a conservative estimate [221].

Fowlie et al. also propose computing a rolling p-value by breaking the nested sampling
run into various chunks, finding the smallest p-value, and then adjusting the p-value for
multiple testing. They suggest using chunks of size Nlive since the prior volume should
decrease by e every Nlive iterations.

In practice, the only modification required to implement this check is to record the
insertion index of each new live point. The final and rolling p-values can then be computed
using a KS test.
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2.7 Simulation based inference

Complex simulations have been developed for many different science domains, however,
these simulations are not always suited to the previously described techniques for Bayesian
inference. For example, whilst we may be able to simulate the data, the likelihood may be
intractable or prohibitively expensive when considering the typical number of evaluations
required. In such cases, simulation based inference can be employed to circumvent com-
puting the likelihood [222]. In broad terms, methods for simulation based inference can
be classified into classical methods and machine learning-based methods, which we will
now briefly review.

Classical methods fall into two categories: approximate Bayesian computation (ABC)
and methods that create a proxy for the likelihood. ABC compares the simulated and
observed data using a distance measure. Data is simulated with parameters θ and if it is
sufficiently close to the observed data, the parameters are kept as a posterior sample. This
is then repeated until a set of posterior samples is obtained. ABC’s effectiveness hinges
on the distance measure used and the tolerance used to determine if a simulation should
be accepted or rejected. For a more thorough review of ABC see Sisson et al. [223]. The
second method relies on creating a surrogate for the likelihood (or posterior) by estimating
the distribution of the simulated data. Unlike ABC, this method is amortized; once the
distribution has been approximated, it can be reevaluated for different observed data.

Machine learning-based methods leverage advances in machine learning to improve the
classical methods, in most cases by using it to create surrogates for a target distribution.
These replace the traditional methods, such as kernel density estimates or histograms, and
are more flexible and have better scaling to large numbers of dimensions. They can also
easily leverage other advances, such as active learning to further improve inference and
tackle more expensive simulations [222]. A wide range of machine learning algorithms can
be employed for simulation-based inference, these include density estimation algorithms,
such as normalizing flows, and other generative algorithms, such as generative adversarial
networks (GANs) and variational autoencoders (VAEs). More details about machine
learning and these algorithms is provided in chapter 3.

2.8 Variational inference

Variational inference, like simulation based inference (section 2.7), is a technique that
can be applied to Bayesian inference that does not rely on stochastic sampling, it is
sometimes referred to as Variational Bayes. It frames the estimation of the posterior
as an optimization problem over parameters φ that parameterize a distribution qφ(θ)
such that the distribution approximates the true posterior distribution p(θ|d) [224]. The



CHAPTER 2. BAYESIAN INFERENCE 44

parameters are optimized based on a distance measure D, such as the KLD described in
section 2.2.2,

φ = arg min D(qφ(θ)||p(θ|d)), (2.42)

or the reverse measure.
Variational inference is closely related to simulated-based inference; it can be applied

to simulation-based inference [225], but not all applications of variational inference are
simulation-based inference [226]. However, similarly to simulation-based inference, varia-
tional inference has developed significantly thanks to advances in machine learning, such
as VAEs [227] and normalizing flows [226].

2.9 Validating results from Bayesian inference

When performing Bayesian inference, we often need to validate the results that have been
obtained by one of the previously mentioned methods. For example, before applying
a method to real data, we might verify the method using simulated data that is well
understood, or we may want to compare results obtained using two different methods.

2.9.1 Probability-probability plots

Probability-probability plots (P-P plots) are a visual method for assessing the similarity
of two probability distributions by plotting their cumulative distributions against each
other [228]. If the distributions are similar, the resulting line will be close to a diagonal.
They are similar to quantile-quantile (QQ) plots, where the quantiles of two distribu-
tions are plotted against each other. The similarity between the distributions can also be
quantified by computing the distance between the two cumulative distributions using, for
example, the KS test [219, 220].

A common use for P-P plots is for comparing an empirical distribution to a theoretical
distribution. They are particularly useful for validating methods for producing posteriors
distributions, since they can help identify overarching issues with the method, such as
under- or over-constraining [229, 230]. For a given model, this done by simulating N

fiducial data d with parameters θ drawn from a prior π(θ) and then producing posterior
distributions for each data. For each posterior distribution, we then determine the fraction
of the posterior probability ρ below or above the true value2. In this case, the theoretical
distribution is uniform and we can produce a P-P plot using the observed distribution of
ρ.

Four example P-P plots are shown in fig. 2.2; each is generated with 100 simulated
posterior Gaussian distributions, each of which has 5000 independent posterior samples

2The choice of below or above will mirror the P-P plot.
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Figure 2.2: Example P-P plots that show the four most common issues that can be
identified using a P-P plot. The plots were produced for a set of 100 posterior distributions
each with 5000 posteriors samples using the fraction of the posterior probability ρ below
the true value. The 1-, 2- and 3-σ cumulative confidence intervals are shown with shaded
regions.
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and has had either the mean or the standard deviation adjusted to be biased. These
highlight the four most common problems that can be identified using a P-P plot:

• Over-constrained: the posterior distributions are over-constrained, i.e. narrower
than expected because the standard deviation of the samples is, on average, smaller
than expected,

• Under-constrained: the posterior distributions are under-constrained, i.e. broader
than expected because the standard deviation of the samples is, on average, larger
than expected,

• Left-biased: the posterior distributions are consistently shifted towards the left of
the true value, i.e. because the mean of the samples is, on average, biased towards
lower values than expected,

• Right-biased: the posterior distributions are consistently shifted towards the right
of the true value, i.e. because the mean of the samples is, on average, biased towards
lower values than expected.

The P-P plots in fig. 2.2 also include the 1-, 2- and 3-σ cumulative confidence intervals
which depend on the total number of data being analysed.

In cases where the posterior distribution is n-dimensional a P-P plot with multiple
lines, one for each parameter, can be produced. Additionally, since a P-P plot shows
the comparison between two distributions, one can also compute a p-value for each of
the parameters included in the plot using, for example, the KS test. An overall value
can also be computed by combining the individual p-values, for example using Fisher’s
method [231]. This provides a simple method to quantify whether a P-P plot passes or
fails based on a p-value threshold, typically 0.05 [229], but it does not provide information
on how it failed, e.g. by being over-constrained. This overall test is often referred to as a
P-P test.

One important caveat to note when using P-P plots is that if there are more complex
biases or correlations that lead to incorrect posterior distributions, these can be missed,
especially if the number of data-points is low. Therefore, P-P plots can be a useful method
for identifying significant biases but a passing P-P plot is not always an indication that
the obtained posterior distribution is unbiased.

2.9.2 Comparing posterior distributions

The need to compare posterior distributions often arises when comparing different sam-
pling methods. If the posterior probability can be evaluated directly, then distance mea-
sures such as the KLD and JSD can be used. However, in practice, we typically only
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have samples from the posterior distributions. Various methods have been proposed for
computing KLDs from n-dimensional samples [232], however these are not always reliable.

Instead, it has become standard practice in gravitational-wave data analysis to com-
pute the JSD for the one–dimensional marginal posterior distributions and determine a
threshold below which two sets of posterior samples can be considered statistically indis-
tinguishable [122, 233–236]. Romero-Shaw et al. [122] proposed maximizing the JSD over
all dimensions and established a threshold of 2 mbits. Ashton and Talbot [233] expanded
this and introduced a new threshold based on the effective number of samples

maximum JSD ≤ 10
neffective

. (2.43)

The authors compare this threshold to the 2 mbits threshold and find that the latter is
valid for samples sizes O(103) but breaks down for more samples, whereas the proposed
threshold is a conservative bound for up to 5× 104 samples [233].

2.10 Bayesian inference for gravitational-wave data
analysis

Having introduced Bayesian inference and the related techniques, we now revisit gravitational-
wave data analysis. Previously, we described how the noise in a detector and signals are
modelled and now we introduce the framework for analysing such data. We start by defin-
ing the gravitational-wave likelihood that is typically used to analyse signals from compact
binary coalescences (CBCs) and then discuss how it is used for detection and parameter
estimation, with a particular focus on the latter.

Throughout this section, we will consider a time series of duration T , sampled at a
frequency fs such that the number of discrete samples will be Ns = Tfs and the time
interval between samples is ∆t = 1/fs. We follow Veitch and Vecchio [237] and, to remain
consistent, use the following conventions for the Fourier Transform:

ã(f) =
∫ +∞

−∞
a(t) exp(−2πift)dt, (2.44)

and its inverse
a(t) =

∫ +∞

−∞
ã(f) exp(2πift)df, (2.45)

such that the discrete samples in either time or frequency are defined as

a(tj) = a(j∆t) = aj, (2.46a)
ã(fk) = ã(k/T ) = ∆tãk, (2.46b)
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with

ãk =
∑

j

aj exp(−2πijk/Ns), (2.47a)

aj = 1
Ns

∑
j

ãk exp(2πijk/Ns). (2.47b)

We will also use the shorthand notation a = {aj}Ns
j=1 to refer to the vector of discrete

samples, i.e. d for the data, n for noise and hθ for the signal with parameters θ.

2.10.1 The gravitational-wave likelihood

We start by considering the noise-only hypothesis Hn. We assume the noise is stationary
Gaussian coloured noise with zero mean and power spectral density (PSD) Sn(f), so the
likelihood will be a multivariate Gaussian distribution with the PDF given by

p(n0|Hn,C) = 1√
det(2πC)

exp
{
−1

2nT
0 ·C−1 · n0

}
, (2.48)

where C is a covariance matrix that describes the correlations in the noise and n0 denotes
the specific realization of Gaussian noise that is being analysed, hence p(n0|Hn,C) is the
probability of that specific realization. However, if we transform to the Fourier domain,
the stationary noise will have a diagonal covariance matrix given by C̃ij = δijSn(fi) [238].
So, if we define the noise-weighted inner product as [237]

〈a|b〉 = 2
∫ ∞

0

ã(f)b̃∗(f) + ã∗(f)b̃(f)
Sn(f) df, (2.49a)

≈ 2
T

∑
k>0

ã(fk)b̃∗(fk) + ã∗(fk)b̃(fk)
Sn(fk) , (2.49b)

then the noise-only likelihood can be written as

p(n0|Hn, Sn(f)) ∝ exp
{
−1

2 〈n0|n0〉
}
. (2.50)

In practice, for the analysis of CBC signals, we will use this formulation of the likelihood
instead of eq. (2.48), in part because it requires inverting the covariance matrix C.

We then consider the hypothesis Hs that the data includes a gravitational-wave signal
hθ with parameters θ in a specific noise realization n0, and is therefore modelled as
d = hθ + n0. So we can express the noise as n0 = d− hθ and rewrite eq. (2.50) as

p(d|Hs, Sn(f),θ) ∝ exp
{
−1

2 〈d− hθ|d− hθ〉
}
. (2.51)
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This is the gravitational-wave likelihood for a signal in a single detector with Gaussian
noise described by a PSD Sn(f). This can also be re-written as [239]

p(d|Hs, Sn(f),θ) ∝ exp
{
〈d|hθ〉 −

1
2 〈hθ|hθ〉 −

1
2 〈d|d〉

}
, (2.52)

where the final term 〈d|d〉 is constant for given data d.
This formalism can be easily extended to multiple detector if we assumed the noise to

be independent in each detector. For N detectors, the likelihood is then the product of N
multivariate Gaussian distributions

p(d{H,L,V }|Hs, S
{H,L,V }
n (f),θ) =

∏
k∈{H,L,V }

p(dk|Hs, S
k
n(f),θ). (2.53)

This likelihood has been used extensively to perform parameter estimation for CBC sig-
nals [96, 122, 198]. This is discussed further in section 2.10.3 but first we briefly discuss
how eq. (2.51) can be used to derive a detection statistic for gravitational-wave signals.

2.10.2 Gravitational-wave detection

Thus far, we have focused on the Bayesian inference in the context of parameter estima-
tion, e.g. via nested sampling, however, we also use a Bayesian framework for detecting
gravitational waves. In detection, we aim to determine between two hypotheses: the null-
hypothesis Hn that the data does not contain a gravitational wave, and the hypothesis Hs

that the data contains noise and a gravitational-wave signal. This is therefore a problem
in model selection.

We can write the Bayes factor between the two hypothesis following section 2.3.1 as

Bs/n = p(d|Hs, Sn(f),θ)
p(d|Hn, Sn(f)) =

exp
{
〈d|hθ〉 − 1

2 〈hθ|hθ〉 − 1
2 〈d|d〉

}
exp

{
−1

2 〈d|d〉
}

= exp
{
〈d|hθ〉 −

1
2 〈hθ|hθ〉

}
,

(2.54)

where the constants of proportionality have cancelled. For detection, we are not necessarily
interested in the values of the parameters θ and would rather marginalize over θ to obtain
p(d|Hs, Sn(f))/p(d|Hn, Sn(f)). However, as discussed in the context of nested sampling
(recall that the evidence is the likelihood marginalized over θ), marginalizing over the
parameter space can be challenging and computationally expensive. Instead, the Bayes
factor can be approximated by computing the maximum likelihood statistic for a discrete
set of N parameter values {θ1, ...,θN} [12]. In the context of gravitational-wave detection,
this corresponds to constructing a template bank of N possible waveforms and computing
a detection statistic over all waveforms. It can be shown that, from eq. (2.54), the optimal
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detection statistic for a fixed θ and Gaussian noise is [12, 239]

〈d|hθ〉 = 2
∫ ∞

0

d̃(f)h̃θ
∗(f) + d∗(f)h̃θ(f)

S(f) df, (2.55)

which is known as the matched filter. The maximum likelihood statistic for a set of N
parameter values, known as the matched filter signal-to-noise ratio (SNR), is then defined
as [12]

ρ2 = 〈d|hθ〉√
〈hθ|hθ〉

, (2.56)

where 〈hθ|hθ〉1/2 is often known as the optimal (matched filter) SNR.

2.10.3 Gravitational-wave parameter estimation

Gravitational-wave parameter estimation is typically carried out in a Bayesian framework
using the likelihood as defined in eq. (2.51), or some variant of it. We must therefore
define a signal model Hs, PSD Sn(f) and prior distributions over the model parameters
p(θ|Hs) in order to be able to perform inference with the likelihood.

Parameters

The model Hs will include one of the waveform approximants discussed in section 1.4.2.
This will model certain physics and determine which parameters we will perform inference
on. Current analyses typically include 15 parameters for BBHs and 17 for binary neutron
stars (BNSs), though as discussed previously, additional parameters are often added to,
for example, probe additional physics [129, 130] or study possible deviations from general
relativity [160, 162].

The waveform approximant will be defined in terms of specific parameters, however
it is common to use a different parameter space for inference. This reparameterization is
included because the parameter space can be highly correlated and multimodal, and certain
reparameterizations can make inference more efficient [96]. Common reparameterizations
include sampling in chirp mass and mass ratio instead of component masses [96], using
the system-frame parameters [123] to describe the spins and employing different angles for
the sky location as discussed in section 1.4.2. In spite of these reparameterizations, the
parameter space is still highly complex. Figure 2.3 shows an example of the correlations
between mass ratio and chirp mass for an example CBC signal.

Estimating the noise

The noise present in the detector must be modelled via the PSD Sn(f). For analyses that
use simulated data, a PSD that is known a priori can be used [74]. However, whilst the
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Figure 2.3: The gravitational-wave log-likelihood in a zero-noise case as a function of
chirp mass M and mass ratio q for a GW150914-like signal (see appendix C.1 for the
exact parameters) in a two-detector network. The crosshairs show the parameter values
for the injected signal.

PSD is assumed to be stationary over the timescales analysed for CBC signals (O(1− 10)
seconds for BBHs and O(100) seconds for BNSs), in practice it will vary over the course of
an observing run, so it must be estimated for each event being analysed. Different methods
can be employed for estimating the PSD and this is typically done using the data which
is adjacent in time to the data being analysed, e.g. up to 1024 s before the time of event
being analysed [96]. The most basic method, known as Welch’s method [238], divides
the adjacent data into separate non-overlapping time segments, applies a Tukey window,
computes an estimate of the PSD for each segment using the discrete Fourier transform,
and then estimates a final PSD using the median power in each frequency bin [94, 96,
198]. Alternatively, BayesWave [95] can be used to fit a parameterized model to the PSD
using MCMC and obtain a posterior distribution over the model parameters [240]. This
method has been shown to be more robust than the basic method described previously
and has been used extensively [9, 10].

In some cases, there may be one or more glitches surrounding and/or overlapping
a signal. This presents a challenge as if the glitches are not accounted for, they may
introduce biases in the parameter estimation results [241–244], such as incorrect estimates
of the chirp mass or luminosity distance due to the excess power [241]. Depending on the
type of glitch [245], different methods may be employed to mitigate its effect, these include
excluding certain frequencies from analyses or using Bayesian inference to model the glitch
and then subtract it [95, 246, 247]. These techniques have been applied to GW170817 [29,
246] and various events in the third LIGO-Virgo observing run [9, 10, 248].
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Priors

The results obtained using Bayesian inference depend on the choice of priors [249]. We
now review common choices of priors used for analysing signals from CBCs in current
ground-based interferometers.

We start with the component masses: most analyses use a joint prior on the components
masses that is uniform in m1−m2 subject to the constraint m1 ≥ m2, where the limits on
m1 and m2 depend on prior assumptions about the type of source being analysed. These
limits are informed by the initial estimates returned by detection pipelines [238] and the
length of the data segment being analysed. This is not strictly correct in a Bayesian
sense since the priors are therefore conditional on the observed d rather than representing
our state of knowledge prior to analysing the data [178]. However, assuming the priors
are sufficiently broad, it should not significantly bias the recovered parameters but will
impact the evidence estimate. Since sampling normally occurs in the chirp mass-mass
ratio space, these priors are converted to corresponding priors in this parameter space:
p(M, q|Hs) ∝ Mm−2

1 [96, 198]. Alternatively, the prior can be defined to be uniform
in the chirp mass-mass ratio space with constraints on the component masses, e.g. in
Romero-Shaw et al. [122], and we will do so in chapters 4 to 7.

The priors over the angles that describe the sky location of the source are typically
isotropic, the exact definition will depend on the convention being used, but for right
ascension and declination these are p(α, δ|Hs) ∝ cos(δ). The prior on the luminosity
distance will depend on the distance scales being considered, some analyses have employed
a distance-squared prior p(dL|Hs) ∝ d2

L [7, 96] but more recent analysis have used a prior
that is uniform in comoving volume p(z|Hs) ∝ dVc/dz or uniform in comoving volume and
source frame time p(z|Hs) ∝ 1/(1 + z)dVc/dz [122]. These priors are comparable at low
distances but differ greatly at larger distances [122].

The prior over the orientation of the binary as described by (θJN, ψ, ϕc) is normally
taken to be isotropic p(θJN, ψ, ϕc|Hs) ∝ sin θJN. When spins are included, the priors
are uniform over the spin magnitudes a{1,2} on [0, 1], and isotropic over the spin angles
p(θ1, θ2, φ12, φJL|Hs) ∝ sin θ1 sin θ2. If the spins are assumed to be aligned, then we only
consider two parameters: the z-components of the spin vectors χi ≡ siz, which are defined
on [−1, 1] [96, 250].

The prior over the coalescence time is informed by the trigger time returned by one of
the detection pipelines [238]. Typically, the prior is uniform over a 200 ms window around
the trigger time [96, 198, 251] which accounts for any uncertainties in the times provided
by the detection pipelines. Once again, this not strictly Bayesian but should not impact
the estimated coalescence time so long as the prior is sufficiently broad, though it will
change the evidence.
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Marginalization

The gravitational-wave likelihood eq. (2.51) can also be written such that certain pa-
rameters are marginalized over rather than being sampled. This reduces the number of
parameters that are sampled which can accelerate inference. Furthermore, the posterior
distributions for these parameters can be reconstructed post-sampling [251]. Currently,
three main marginalizations are used for gravitational-wave parameter estimation [251]:

• Phase marginalization: marginalizes over the phase of coalescence ϕc by consid-
ering only the 2-2 modes of the gravitational-wave signal [96, 252]. This is only
valid for waveform approximants that do not include higher-order-modes or where
the effect of precession is not measurable, which we discuss in chapter 6,

• Distance marginalization: marginalizes over the luminosity distances dL by lever-
aging h̄ij ∝ d−1

L (see eq. (1.14)) which allows for the likelihood to be integrated nu-
merically [253, 254]. This marginalization is valid for all gravitational-wave signals,
however, care must be taken if considering distances at cosmological scales due to
cosmological redshift and its effect on the observed mass [251],

• Time marginalization: marginalizes over coalescence time tc using a reference co-
alescence time, discrete Fourier transforms and a discretized coalescence time [255].
This marginalization is known to breakdown for high SNR and long-duration sig-
nals [251].

All three marginalizations, or combinations of them, can be use simultaneously, however
care must be taken to ensure the correct order is used, see, for example, Thrane and
Talbot [251, Appendix C.5].

Modifications to the likelihood

The cost of evaluating the likelihood, as defined in eq. (2.51), scales with the length of
the observation T and sampling frequency fs. This means that performing parameter
estimation for long-duration signals can be costly. There exist various modifications to
the likelihood that aim to reduce its computational cost.

Reduced order models (ROMs) build computationally efficient surrogates that ap-
proximate a given waveform, therefore reducing the cost of evaluating the likelihood.
These methods are typically based on either singular value decomposition (SVD) [256,
257] or a greedy reduced basis method and empirical interpolation [258]. Reduced-Order-
Quadrature (ROQ) based techniques [259–261] use the latter method and have been widely
applied to CBC analyses [9, 262] where they can provide speed-ups of order O(102 − 104)
when applied to BNS signals [259, 260, 263]. More recently, machine learning has also
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been applied to constructing surrogates; we discuss this, after having introduced machine
learning, in section 3.4.

Alternatively, methods based on heterodyning [264, 265] and relative binning [266–268]
make use of knowledge about the signal being analysed to reduce the cost of computing
subsequent waveforms. These use the template from a detection pipeline as a starting
point, which is then used to approximate the waveform during inference. These techniques
are best suited to long signals, where the speed-up can be up to O(104) [267].

Finally, there are techniques that use multi-banding to leverage the chirp-like nature of
signals from CBC [263, 269–271]. This enables the use of different sampling frequencies in
the time domain; since during the inspiral a lower sampling frequency is need than during
the merger. When applied to BNS signals, this technique can provide speed-ups of order
O(10) times [263] without the need to precompute bases or have prior knowledge about
the signal being analysed.

Implementations

Various implementations exist for performing gravitational-wave parameter estimation,
some employ stochastic sampling techniques, such as MCMC and nested sampling, and
others employ techniques based on ABC and simulation based inference. However, they
all aim to address the same challenges: computing the likelihood as defined in eq. (2.51)
can be computationally expensive, mostly due to the cost of computing the waveform; and
the likelihood surface is high-dimensional3, multimodal and, in cases, highly correlated,
which can make it hard to sample or approximate.

LALInference The first widely-used stochastic-sampling package for analysing gravitational-
wave signals from CBC was LALInference [96]. It implements both an MCMC sampler
and a nested sampler, both of which include specific modifications to handle the complex
nature of the gravitational-wave likelihood space [96], and builds upon a wide range of
existing work [237, 272–282]. It was used to analyse all the events detected up to and
including Gravitational-Wave Transient Catalog 2 (GWTC-2) [6–8, 29] and it is still used
for validating other samplers [10, 122].

bilby More recently, bilby has been employed instead of LALInference. Unlike its
predecessor, it uses off-the-shelf nested samplers and MCMC samplers. It includes sup-
port for bilby_mcmc [233], dynesty [197], emcee [283], kombine [284], multinest [208,
212], polychord [206], ultranest [207] and more. It also supports nessai [1], which
we introduce in chapter 4. However, the default nested sampler is dynesty [197] with
several custom proposal methods based on the methods implemented in LALInference

3
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[122, 198]. It was used in Gravitational-Wave Transient Catalog 2.1 (GWTC-2.1) and
Gravitational-Wave Transient Catalog 3 (GWTC-3) [9, 10].

Related to bilby is parallel_bilby [285], which is a highly parallelized version of
bilby and designed for use with high-throughput computing cluster. It is uses dynesty
and parallelizes the proposal process in the nested sampling algorithm. It has been pre-
dominantly used for expensive analyses such as performing inference for BNS and neutron
star-black hole (NSBH) signals [10, 30].

RIFT Unlike the implementations mentioned so far, RIFT leverages Gaussian processes
and stochastic sampling techniques [250, 286]. It uses an iterative procedure that al-
ternates between proposing posterior samples and then improving upon them. Various
improvements have been made since it was initially introduced [287–291] and it has been
used in GWTC-2.1 [9] and GWTC-3 [10] to analyse signals using waveform approximants
that are too computationally expensive for use with standard sampling methods, such as
SEOBNRv4PHM [116].

Other implementations Besides LALInference and bilby, other implementations
that use stochastic sampling have been developed and applied to gravitational-wave infer-
ence. These include PyCBC Inference [25, 292], which has been used to produce four Open
Gravitational-wave Catalogues [293–296], and bajes [297], which is specifically designed
for analysing multi-messenger transients. Similarly to bilby, both these implementations
support for various off-the-shelf samplers.

There are also implementations that do not rely on standard sampling techniques,
simple-pe [298] uses simple arguments and understanding of the underlying physics to
produce approximate posteriors in times of order minutes, and the non-Markovian sampler
VARAHA [299] iteratively discards regions of the parameter space whilst focusing on regions
of high-likelihood. The latter, whilst not framed as a nested sampling algorithm, has
significant parallels to i-nessai [2] which we present in chapter 7.

Simulation-based inference More recently, simulation-based inference has been ap-
plied to gravitational-wave inference. This technique leverages advances in machine learn-
ing to accelerate inference and, in some cases, enable analyses that are not possible with
standard sampling-based techniques since it does not require evaluating the likelihood.
We will discuss these methods in more details in chapter 3 where we introduce machine
learning and discuss its applications to gravitational-wave data analysis.
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2.11 Summary

In this chapter, we have introduced the fundamentals of probability theory and Bayesian
inference. Our focus is on Bayes’ Theorem, eq. (2.10), with allows us to relate the prob-
ability of a hypothesis given some data (the posterior probability) to the probability we
observed the data given the hypothesis was true (the likelihood) and is the foundation of
Bayesian inference. Our aim is therefore to estimate the posterior distribution, or draw
samples from it, and, is some cases, estimate the normalization constant known as the
evidence. However, doing so is not trivial since we typically cannot sample the poste-
rior directly and estimating the evidence requires computing an n-dimensional integral.
Different techniques exist to address this challenge, such as simulation based inference
and variational inference (see sections 2.7 and 2.8), however our focus in this work is on
stochastic sampling algorithms, specifically nested sampling.

Nested sampling is designed to compute the evidence integral by recasting it as a one-
dimensional problem in terms of the prior volume, we review the details in section 2.6. The
algorithm considers the fraction of the prior (volume) contained with contours of equal
likelihood, starting with the lowest likelihood which contains the entire prior and then
shrinking to higher likelihoods that contain progressively smaller fractions of the prior.
The prior volume is determined by estimating the shrinkage between subsequent likelihood
levels using a set of live points. At a given iteration the point with the lowest likelihood
is discarded, thus shrinking the prior volume, and the number of point remaining is used
to estimate the shrinkage. A replacement point is then drawn within the new likelihood
contour and next iterations begins. The crux of the algorithm is drawing new samples
with the likelihood contour, since they must be i.i.d. and distributed according to the
prior. This, alongside computing the likelihood, is typically the main bottleneck in nested
sampling algorithms. We review different methods and implementations in section 2.6.5.

We then shift our focus to Bayesian inference in the context of gravitational-wave data
analysis, where nested sampling is the standard algorithm for performing inference. We
define the gravitational-wave likelihood, eq. (2.51), which will be central to all the anal-
yses presented in this thesis. We highlight its importance in gravitational-wave detection
before concentrating on parameter estimation, specifically for CBC signals. We review
the methods used to estimate the PSD, discuss the typical choices for priors for sam-
pling and summarize variations modifications that can be made to the likelihood, such as
marginalizations and methods to accelerate the likelihood, such as ROQs. Finally, we dis-
cuss the variance implementations that exist for performing gravitational-wave parameter
estimation, including bilby which will be used throughout the work presented in later
chapters.

This second introductory chapter provides further context for the work presented in
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this thesis; performing gravitational-wave parameter estimation typically relies upon the
use of stochastic sampling algorithms, predominantly nested sampling, and such analyses
are computationally expensive, taking order days to weeks [96, 122]. This is due to the cost
of evaluating the likelihood coupled with the complexity of the parameter space, which
makes the fundamental step in nested sampling from the likelihood-constrained prior more
challenging and leads to a large number of likelihood evaluations. Developing new methods
for sampling from the likelihood-constrained prior therefore has the potential to improve
the efficiency of nested sampling algorithms and in turn reduce the cost of performing
CBC parameter estimation.



Chapter 3

Machine Learning

This chapter introduces machine learning, highlighting different types and applications,
before reviewing neural networks. The main focus is on normalizing flows, their formula-
tion, construction and training, since these will be used throughout subsequent chapters.
It concludes by reviewing applications of machine learning to gravitational-wave data
analysis.

Section 3.1 provides an overview of machine learning and reviews different categories
of machine learning algorithms based on how they are trained and how they are applied.
The basics of neural networks are then introduced in section 3.2, including how they
are trained and the different types that will be used in this work. Finally, section 3.4 re-
views applications of machine learning to gravitational-wave data analysis for data quality,
source modelling, searches and determining source properties. These fall into two broad
categories: end-to-end machine learning approaches and approaches that augment existing
techniques with machine learning. This provides the final piece of context for the work
presented in this thesis and concludes the review of the existing literature.

58
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3.1 An introduction to machine learning

Machine learning is the study of algorithms that are modified via an automatic process
that is akin to ‘learning’. This is achieved by designing and updating a model using
training data, or training the model [300]. There are a vast number of algorithms that
can fall under the umbrella of machine learning and it can therefore be useful to broadly
categorize them.

Machine learning algorithms can be categorized based by how they are trained [300]:

• Supervised learning: in supervised learning, the dataset consists of the set of
training data {x(i)} and corresponding labels (or classes) {y(i)}. The aim is to
train an algorithm to predict the labels given the training data such that, once it
is trained, it can be applied to unlabelled data. An example of supervised learning
would be learning to distinguish between pictures of cats and dogs, where a picture
is an instance of the training data x(i) and the label y(i) is either ‘cat’ or ‘dog’.

• Unsupervised learning: in unsupervised learning, the dataset consists of a series
of unlabelled examples {x(i)}. The aim is to train an algorithm that maps the dataset
to a representation that can be used to solve a problem. In the context of pictures of
cats and dogs, the pictures are once again the training data {x(i)}, however, we do
not provide labels, instead the objective is to have the algorithm identify the classes
present in the data without being told they exist.

• Semi-supervised learning: in semi-supervised learning, the dataset contains a
mix of labelled and unlabelled examples and the known labels are often ‘unreliable’.
The aim is the same as supervised learning but leveraging the additional information
that the unlabelled data can provide. Considering again pictures of cats and dogs,
the dataset is now a mix of pictures {x(i)} with corresponding labels and those with-
out {y(i)}. The unlabelled pictures provide additional information for an algorithm
to learn from compared to using just the labelled data.

• Reinforcement learning: in reinforcement learning, rather than a dataset, a ma-
chine learning algorithm, often known as an agent, is trained using a reward-based
system. The agent takes an action which results either in a reward and penalty; the
overall aim is to maximize the cumulative reward. It can be thought of as learning
via ‘trial-and-error’, such as by playing a game and learning based on the outcome
of an action which, for example, could be quantified by a score.

In this thesis, we will focus on applications of unsupervised machine learning algorithms,
therefore the following explanation will be aimed predominantly at their application. The



CHAPTER 3. MACHINE LEARNING 60

information will be broadly applicable to supervised and reinforcement algorithms, but
there may be subtle differences.

Machine learning algorithms can also be roughly classified on the type of task they
can perform, however, this classification is somewhat arbitrary and algorithms can fall in
multiple categories, so we highlight categories that are of note for gravitational-wave data
analysis:

• Classification: classification algorithms are trained to predict a label (or labels) for
input data such that it can be classified in to discrete classes [300]. Distinguishing
between pictures of cats and dogs is a typical example of a classification task [301].

• Regression: regression algorithms are trained to predict a continuous variable (also
known as a target) given some input data [300]. Predicting house prices is a common
example of a regression task [302].

• Generation: generative algorithms are trained to generate outputs that resem-
ble the training dataset [300, 303]. Generating images of human faces is a typical
example of a generative task [304].

• Anomaly/outlier detection: anomaly detection algorithms are trained to identify
inputs that deviate from the training dataset [305]. An example of anomaly detection
is identifying changes in a monitoring system, e.g. fluctuations in a power grid [306].

• Clustering: clustering algorithms are designed to split a dataset in to similar
groups, where the number of groups can be defined a priori or learnt from the data
set [307]. For example, grouping customers with similar interests in recommendation
systems [308].

Neural networks are amongst the most broadly application machine learning algo-
rithms, thanks it part to the wide number of variants. They can be used to perform all
the categories of task mentioned previously and they can also be trained using all four of
the previously mentioned methods. We now review neural networks.

3.2 Neural networks

Neural networks are a subset of machine learning algorithms that have seen extensive use
in a wide variety of fields. They were first conceived in the 1940s [309] and saw some
development in the 80s [310] but advances in hardware which enable faster training [311,
312] led to a surge in their use in the last two decades. Many variations of neural networks
have been developed and they can be applied to a wide range of problems in all areas of
machine learning.
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In its simplest form, a neural network is a function that maps from an input x to an
output y:

y = fNN(x; φ), (3.1)

parameterized by a set of trainable parameters φ that are updated in the training process.
The core building blocks of a neural network are nodes usually known as neurons, these
apply a simple operation to an input x (usually a vector) and produce a scalar output y:

y = w · x + b, (3.2)

where w and b are the trainable parameters known as the weights and biases respectively.
A single neural network, as the name implies, will be made up of multiple neurons which
are organized in layers such that a layer f with m neurons takes an n-dimensional x and
returns an m-dimensional vector output y:

y = f(x;W, b) = σ (Wx + b) , (3.3)

where the weights W are now an m × n matrix and the biases an m-dimensional vector
b. We have also included an activation function σ, this is typically a non-linear function
that allows the layer to learn a more complex mapping from the inputs to the output. Its
importance will become apparent when we consider multiple layers.

A layer is a vector function fi : Rn → Rm, e.g. as defined in eq. (3.3), that learns a
non-linear mapping between an input and an output and is parameterized by parameters
φi, in the case of eq. (3.3) φi ≡ {W, b}. A neural network is a set of nested vector functions
such that the output of the i-layer is the input to the i+ 1-layer, e.g. for three layers

fNN(x; φ) = f3(f2(f1(x; φ1); φ2); φ3). (3.4)

The importance of the non-linear activation function σ is now apparent, without it this
three-layer neural network would reduce to a single weight matrix and bias vector. Ac-
tivation functions are therefore key for a neural network to be able to represent more
complex functions. Furthermore, it has been proven that a two-layer neural network is a
universal function approximator, i.e. it can in theory approximate any possible continuous
function, this is known as the Universal Approximation Theorem [313]. There are many
different activation functions that are used, generally they are all continuously differen-
tiable which allows gradient-based optimization, common examples include the hyperbolic
tangent (tanh), sigmoid, Rectified Linear Unit (ReLU) [314] and LeakyReLU [315] which
are shown in fig. 3.1.

This simple formulation of a neural network can be extended to included various mod-
ifications, some of which will be reviewed in section 3.2.3.
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Figure 3.1: Examples of four commonly used activation functions: tanh, Sigmoid, ReLU
and LeakyReLU with a slope of 0.01
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3.2.1 Training

The final piece that is necessary to understand neural networks, and, in general, most
machine learning algorithms, is the training process used to update the trainable param-
eters. This is an optimization problem and, as such, there are many different methods
that can be used [316–318], however the most common approaches are based on gradient
descent [319, 320].

We must first define a function which will be used in the optimization process. This
will quantify the algorithm’s performance given a set of inputs and is commonly referred
to as a loss or cost function. We will denote the loss function L(x; φ), where φ are the
parameters of the neural network. The particular loss function will depend on the problem
in question, but it should be a scalar function. Example loss functions include the mean
squared error, categorical cross-entropy and Kullback-Leibler divergence (KLD).

The optimization process is typically iterative; at each iteration, the value of the loss
function is computed for a set of inputs. We must then compute the gradients of the
parameters with respect to the value of the loss function. This could be done directly
with respect to each parameter in the network, but this would be inefficient. Instead,
backpropagation [312, 321] is used to efficiently compute the gradients [320]. Once the
gradient has been computed, gradient descent is used to take a step in the parameter space
in a direction that reduces the loss and update the values of the weights. In practice,
stochastic gradient descent is used instead of standard gradient descent, since the latter
becomes prohibitively expensive for large datasets. Stochastic gradient descent uses a
subset of the training data, known as a batch, to approximate the actual gradient. Given
a batch of data of length nBS (known as the batch size), the parameters at a given iteration
i are updated following

φi+1 = φi + η∇L(φi) = φi + η

nBS

nBS∑
j=1
∇L(xj; φi), (3.5)

where η is the step size, usually known as the learning rate, and ∇L is the gradient of the
loss function with respect to the parameters φ.

A typical training regime will involve shuffling the training data and dividing it into
batches. We then iterate over the batches and for each batch compute the loss L and
update the parameters of the network. A complete loop of over all the batches of training
data is often referred to as an epoch.

What remains is to define a starting point for the optimization process, i.e. an initial
set of parameters. This is known as initializing the weights of the neural network. The
standard approach is to initialize the weights with random values that are close to, but
not exactly, zero. However, it has been shown that choice of distribution can impact both
the overall performance and time to converge [322] and various different methods have



CHAPTER 3. MACHINE LEARNING 64

been proposed [323].
Equation (3.5) is the simplest version of stochastic gradient descent. There are various

extensions and variants of stochastic gradient descent that have been used extensively
for training neural networks. Notable examples include stochastic gradient descent with
momentum [324] and adaptive moment estimation (Adam) [325]. It has also become
standard practice to adjust the learning rate during training [326]; proposed methods
include scheduling specific values of the learning rate [327], decaying the learning rate [328–
330] and cyclic learning rates [329, 331].

3.2.2 Data and its importance

Designing and training a neural network is dependent on the data being used; the data
can dictate the design of the network, how it is trained, and the validity and applicability
of the final trained network.

Data pre-processing

Data pre-processing prior to training is crucial for training neural networks [332], it can
improve the quality of the results and make training more stable. There are many ways
to pre-process data and this can include augmenting available training data [333], but we
do not cover that in this overview as it is typically problem specific.

Due to how the weights in neural networks are initialized and optimized, ensuring that
data is zero-centred and all dimensions have variances close to one can greatly improve
training [334]. It is therefore standard practice to scale data prior to training; commonly
used methods included rescaling to the unit-interval and rescaling to have zero mean and
unit standard deviation, known as standardization.

Splitting data

Given a dataset, it is common practice [335], particularly in supervised applications, to
divide the data into three categories: training, validation and testing:

• Training data: is used to train the neural network and is often the largest of the
three categories.

• Validation data: is not used to train the neural network, but instead is used to
evaluate its performance as it trains.

• Testing data: is reserved until after the final model is trained. It serves to verify
that the trained neural network generalizes to unseen data. This category of data is
sometimes omitted [335].
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This split is key to ensuring a neural network is properly trained and can generalize to
unseen data. During training, this is done using the validation data. At a given iteration,
the loss function is computed using the validation but the weights are not updated, giving
the validation loss. The validation loss is tracked over the course of training. If the neural
network is learning general properties of the training data, then the validation loss should
decrease at a similar rate to the training loss. However, if the neural network is instead
learning properties specific to the training data, or even memorizing the training data,
then the network is overfitting and the validation loss will increase.

3.2.3 Types of neural networks

There are various different types of neural networks, some are named based on the type
of layers they use and others based on how they are trained or their application. We will
now highlight two types of neural networks that are relevant to work presented in this
thesis.

Multi-layer perceptrons

Multi-layer perceptrons (MLPs) [310], also known as fully connected or dense neural net-
works, are the most basic type of neural network and they consist solely of layers as
described in eq. (3.3). They are well suited to a wide variety of problems. Their main
limitation is how the number of trainable parameters scales with the input size; for a single
layer if the input size m doubles, then, since the weight matrix W is an m× n matrix, so
will the number of trainable parameters in that layer (ignoring the bias term). This can
be inefficient for high-dimensional datasets, such as images. It is therefore common to see
MLPs used in conjunction with other types of layers that can reduce dimensionality [301].

Residual neural networks

Residual neural networks (ResNets) are a modification to the overall architecture of a
standard neural network. In a residual neural network, there are additional connections
between layers such that the input to a given layer is added to the output of a later layer
(not necessarily the following layer). This was proposed in He et al. [328] and has been
shown to mitigate the effect of vanishing gradients (when the gradients tend to zero) [336]
and allow for the training of deeper neural networks. It has since been extended and
improved upon [337–339] and ResNets are now a machine learning mainstay [340].

These neural networks are typically constructed in blocks that each consist of multiple
layers and the residual connection is between the input of the first layer in the block and
the output of the last layer [328]. Following the formulation used previously, a 3–layer
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residual block is defined as

fBlock(x; φ) = f3(f2(f1(x; φ1); φ2); φ3) + x, (3.6)

where each fi is a layer. This requires careful design of the output layer, in this case f3,
so that the shape of the output matches the shape of x and they can be added together.

3.3 Normalizing flows

Normalizing flows are a type of generative machine learning algorithm in a similar vein to
generative adversarial networks (GANs) [341] and variational autoencoders (VAEs) [227].
There are different ways to understand and motivate normalizing flows: from a machine
learning perspective or from a more statistical perspective.

Starting with the latter, normalizing flows are a family of trainable parameterized
distributions over parameters x, that are typically defined in the n-dimensional real space
Rn. They are highly flexible and can have complex correlations between the parameters.
Similar to standard distributions, they typically have a well-defined probability density
function and can be sampled from. This means they can be trained to approximate the
distribution of some arbitrary data and then provide a means to evaluate an approximate
probability density function (PDF) for said data, and produce new data points that are
drawn from the distribution.

An alternative view of normalizing flows is as an invertible parameterized mapping
from a complex distribution in the data space X , labelled pX (x), to a simpler distribution
in the latent space Z, labelled pZ(z) and often known as the latent distribution. The
mapping is constructed via a series of transforms and overall is typically represented as
f : X → Z. In this interpretation, the aim is to learn a mapping to a space (the latent
space Z) where certain calculations or operations are simpler, e.g. computing the PDF,
drawing new samples or performing a random walk [342]. The invertible nature of the
mapping then allows you to, for example, transform samples back to the original space
and obtain new samples from the complex distribution.

Both interpretations of normalizing flows are useful in different contexts, and both are
used throughout this thesis. We will now review the fundamentals of normalizing flows,
with a focus on aspects directly relevant to work in this thesis. For a complete review, see
Kobyzev et al. [343] and Papamakarios et al. [344]
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3.3.1 Mathematical formulation

The mathematical formulation of normalizing flows is centred around the change of variable
formula between the latent distribution pZ(z) and the data distribution pX (x)

pX (x) = pZ(f(x; φ))
∣∣∣∣∣det

(
∂f(x; φ)
∂x

)∣∣∣∣∣ , (3.7)

where f(x; φ) is the normalizing flow mapping parameterized by trainable parameters φ

and |det(∂f(x; φ)/∂x)| is the absolute value of the Jacobian determinant defined as

∣∣∣∣∣det
(
∂f(x; φ)
∂x

)∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∂f1
∂x1

· · · ∂f1
∂xn... . . . ...

∂fm

∂x1
· · · ∂fm

∂xn

∣∣∣∣∣∣∣∣∣ , (3.8)

where xi is the i’th component and fi ≡ f(xi,φ). The trainable parameters φ are typically
the weights of a neural network (or a series of neural networks) and their dimensionality
will depend on the dimensionality of the data space, design of the flow and complexity of
the neural network. The latent distribution is typically chosen to be a distribution which
can be sampled from directly and has a tractable PDF, pZ(z), i.e. it can be evaluated
analytically. This leads to two distinctive features of normalizing flows:

• The PDF of the learnt distribution pX (x) is also tractable. This contrasts with other
generative algorithms, where the PDF is often intractable.

• The data distribution pX (x) can be sampled from directly by sampling from the
latent distribution z ∼ pZ(z) and applying the inverse mapping x = f−1(z; φ) such
that x ∼ pX (x).

However, this imposes constraints on the types of functions that can be used to construct a
normalizing flow. Specifically, the mapping f : X → Z must be invertible and the Jacobian
determinant must be tractable. There are two predominant methods for constructing
normalizing flows such that they meet these criteria: coupling flows or autoregressive
flows.

3.3.2 Coupling flows

Coupling flows are constructed using coupling transforms, which were proposed in Dinh
et al. [345]. Given an D-dimensional input vector x ∈ RD, a coupling transforms splits
the vector into two subspaces: (xa,xb) ∈ Rd × RD−d. One subspace is then transformed
using a bijection g(·; λ) : Rd → Rd parameterized by λ which determines how the space
is transformed. The dimensions of λ will depend on the dimension of the transformed
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subspace d and the form of g(·; λ), e.g. if the subspace is two–dimensional and the bijection
is described by three parameters per dimension, then λ will comprise three vectors of length
two λ = {λ1,λ2,λ3}. We will see an example of this later in this section when we discuss
affine coupling transforms. The overall coupling transform f : RD → RD is then

f(x) = y =

ya = xa,

yb = g(xb; Θ(xa)),
(3.9)

where Θ(xa) is a function that maps xa to corresponding λ, i.e. λ = Θ(xa), and is pa-
rameterized by φ; it is often known as the conditioner. This transform is easily invertible,
assuming g is also invertible,

f−1(y) = x =

xa = ya,

xb = g−1(yb; Θ(xa)),
(3.10)

Typically, the bijection g(·; λ) is applied element-wise, so the Jacobian matrix is lower
triangular

J =
 Id 0d×(D−d)

∂yb

∂xa
diag(Θ(xa))

 (3.11)

and the Jacobian determinant is simply the product of diagonal entries

det(J) =
D−d∏
i=1

Θ(xa)i. (3.12)

Notice how we do not need the derivative of the conditioner Θ(xa), so it can be arbitrarily
complex. In practice, it is normally a neural network, such as an MLP or a ResNet [346],
with weights φ which are optimized given a loss function; this is discussed in section 3.3.5.

This class of transform only transforms one of the subspaces, however, if the order of
the two subspaces is reversed, such that g is applied to xa, then the other subspace can
also be updated. It is therefore common to stack coupling transforms and alternate which
subspace is updated. The method used to split the subspaces varies by implementation,
but it is common to split the dimensions in half (xa = x1:d, xb = xd+1:D) or use a
chequerboard pattern such that every other element dimension in the overall space is
updated [347]. Going forward, we will assume the input vector is split in half.

Affine coupling transforms

One specific type of coupling transform that we will use extensively throughout this work
is the affine coupling transform, where the bijective function g that is applied to the i’th
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Figure 3.2: Example of sequential transforms for an affine coupling transform-based nor-
malizing flows with 4 transforms: two affine transforms and two batch normalization
transforms, which scale the input data by a running mean and variance (see section 3.3.4).
The input samples are drawn from the Rosenbrock function and transformed to a Gaussian
distribution. Red arrows show when an affine transform has been applied, and yellows
arrows shown when batch normalization has been applied. Each colour of sample corre-
sponds to a quadrant in the latent space and the colour of each sample is fixed, this shows
how the latent space maps to the original data space. More details about this example
are provided in appendix B.

element is an affine transformation

g(xi;λ1, λ2) = xi exp(λ1) + λ2, (3.13)

where λ1 and λ2 are output by the conditioner. This transform is trivial to invert, and
the Jacobian determinant is det(J) = exp(λ1).

Therefore, for a D-dimensional input vector where the xb subspace is updated condi-
tioned on the xa, the conditioner will output two vectors, λ = {λ1,λ2} of length D − d.
The Jacobian determinant will then be

det(J) =
D−d∏
i=1

exp(λ1)i. (3.14)

Again, we do not need the derivative of the conditioner, so it can be a neural network.
Normalizing flows constructed with this type of transform were proposed by Dinh et al.

in [347] and are known as real non-volume preserving (RealNVP). In fig. 3.2, we show an
example of using a normalizing flow constructed with coupling transforms to map samples
from the 2-dimensional Rosenbrock distribution to a Gaussian distribution. More details
about this example are provided in appendix B.
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3.3.3 Autoregressive flows

Autoregressive flows were proposed by Kingma and Welling [227] and are constructed such
that for a D-dimensional input vector x ∈ RD, the i’th input is transformed conditioned
on the previous i− 1 inputs, denoted as x1:i−1,

yi = g(xi; Θi(x1:i−1)), (3.15)

where i = 2, ...D and Θ1 is a constant. The overall transform f can be expressed as

f(x) = y =



y1 = g(x1; Θ1),

y2 = g(x2; Θ2(x1)),

y3 = g(x3; Θ3(x1:2)),
...

yD−1 = g(xD−1; ΘD−1(x1:D−2)),

yD = g−1(xD; ΘD(x1:D−1)).

(3.16)

Note that computing yi, does not require having already computed yi−1. Similarly to
coupling flows, the Jacobian matrix is triangular, so the Jacobian determinant is the
product of the diagonal entries.

Computing the inverse is, however, more difficult, since computing the inverse for yi

requires having already computed the values for x1:i−1,

f−1(y) = x =



x1 = g−1(y1; Θ1),

x2 = g−1(y2; Θ2(x1)),

x3 = g−1(y3; Θ3(x1:2)),
...

xD−1 = g−1(yD−1; ΘD−1(x1:D−2)),

xD = g(yD; ΘD(x1:D−1)).

(3.17)

This process is therefore inherently sequential, and makes computing the inverse more
computationally expensive than the forward direction y = f(x).

Variations have also been proposed where the i’th input is transformed conditioned on
previous i− 1 outputs [348],

yi = g(xi; Θi(y1:i−1)). (3.18)

This flips the design and allows for the inverse to be computed more efficiently, whilst
making the forward pass more expensive.
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The bijective functions g used to construct autoregressive flows are the same as those
used for coupling flows, for example masked autoregressive flows [349] use the affine trans-
form as defined in eq. (3.13).

3.3.4 Including additional transforms

Additional invertible transforms can be included in between the transforms in a normal-
izing flows. These can be transforms that either have unit-Jacobian determinants, or
transforms for which the Jacobian determinant can be easily computed. These are often
elementwise transforms, common examples are batch normalization and LU factorization.

Batch normalization

Batch normalization (or batch norm) has been used extensively when training neural
networks [350]. It applies an affine scaling to each dimension of the input data based on
a running mean µ̃ and variance σ̃2

f(x) = x− µ̃√
σ̃2 + ε

, (3.19)

where ε � 1 and is included for numerical stability. The estimates of the mean and
variance are updated every time a new batch of training is used. Dinh et al. [347] proposed
its use in normalizing flows where it can be used between transforms and the running
statistics are computed per dimension; fig. 3.2 shows an example of this. Other variants
have also been proposed, such as ActNorm [346].

LU factorization

Kingma and Dhariwal [346] proposed including a transform using the LU factorization (or
LU decomposition)

f(x) = PLUx + b (3.20)

where P is a fixed permutation matrix, L is a lower triangular matrix with ones on the
diagonals, U is a learnable upper triangular matrix with non-zero diagonal entries and b

is a learnable vector. This applies a rotation and shift that can be useful when parameters
are correlated. Figure 3.3 shows an example of how LU factorization can be trained to
transform two correlated Gaussian parameters, for more details see appendix B.

3.3.5 Training normalizing flows

When training a normalizing flow, the aim is to fit the distribution described by pX (x) to
some target distribution. Alternatively, we can think of this as learning the parameters
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Figure 3.3: Example of how an LU factorization transform can be trained to transform
correlated parameters to uncorrelated parameters via a rotation and shift. This transform
was trained by minimizing the forward KLD using samples from the correlated distribu-
tion and a parameterized distribution comprised of an LU factorization transform and a
standard Gaussian distribution. Each shaded contours contains 20% of the probability
mass. See appendix B for details about how this figure was produced.

that describe the change of variables from the latent distribution to an approximation of
the target distribution. This is typically done by minimizing the KLD divergence between
the flow distribution and the target, though other methods have been proposed [351, 352].
Depending on the nature of the target density, one can choose to train a normalizing flow
using the forward or reverse KLD.

Forward KLD

Given a set of samples {x}K
i=1 drawn from a target distribution p∗(x) and a normalizing

flow pX (x|φ), the KLD can be written as

L(φ) = DKL(p∗(x)||pX (x|φ)),
= Ep∗(x)[ln p∗(x)]− Ep∗(x)[ln pX (x|φ)],

= Ep∗(x)[ln p∗(x)]− Ep∗(x)

[
ln pZ(f(x; φ)) + ln

∣∣∣∣∣det∂f(x; φ)
∂x

∣∣∣∣∣
]
,

(3.21)

where we have used eq. (3.7) to expand pX (x|φ). For a fixed set of samples, the first
term is constant, so it can be ignored when minimizing the forward KLD. Then, since the
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samples are drawn from p∗(x) the expectation value can be approximated as

L(φ) ≈ − 1
K

K∑
i=1

ln pZ(f(xi; φ)) + ln
∣∣∣∣∣det∂f(xi; φ)

∂x

∣∣∣∣∣ , (3.22)

which can be used to train the normalizing flow. This is equivalent to using maximum
likelihood estimation to fit the flow to the samples {x}K

i=1 [344].
This method is useful in cases where the target distribution cannot be evaluated di-

rectly but it can be sampled from.

Reverse KLD

The reverse KLD between a target distribution p∗(x) and a normalizing flows pX (x|φ)
can be written

L(φ) = DKL(pX (x|φ)||p∗(x)),
= EpX (x|φ)[ln pX (x|φ)− ln p∗(x)],

= EpX (x|φ)

[
ln pZ(f(x; φ)) + ln

∣∣∣∣∣det∂f(x; φ)
∂x

∣∣∣∣∣− ln p∗(x)
]
,

= EpZ (z)

[
ln pZ(z) + ln

∣∣∣∣∣det∂f
−1(z; φ)
∂z

∣∣∣∣∣− ln p∗(f−1(z; φ))
]
,

(3.23)

where eq. (3.7) has been used to change the expectation value from samples from pX (x|φ),
to samples from pZ(z). This method is useful in cases where the PDF of the target
distribution can be evaluated directly, or up to a normalization constant, and is often
used in variational inference [226].

Training normalizing flows with weighted measures

The KLD of two distributions p(x) and q(x) was defined in section 2.2 as

DKL(p||q) =
∫
p(x) log

[
p(x)
q(x)

]
dx. (3.24)

If we consider the case of minimizing the KLD between two distributions p(x) and q(x)
where p(x) is fixed, then

DKL(p||q) = −
∫
p(x) log q(x)dx +

∫
p(x) log p(x)dx,

= −
∫
p(x) log q(x)dx + constant.

(3.25)

The constant term is independent of q(x) so we only need to compute the first term when
minimizing the KLD. If we introduce a distribution r(x) from which samples {x}K

i=1 are
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drawn, the integral can be approximated using Monte Carlo integration by

DKL(p||q) ≈ − 1
K

K∑
i=1

p(xi)
r(xi)

log q(xi) + constant. (3.26)

If r ≡ p, this reduces to

DKL(p||q) ≈ − 1
K

K∑
i=1

log q(xi) + constant, (3.27)

and we can ignore the constant when optimizing q(x). However, if r 6≡ p and both p(x)
and r(x) are tractable, then we can define

DKL(p||q) ≈ − 1
N

K∑
i=1

wi log q(xi) + constant, (3.28)

where wi ≡ p(xi)/r(xi). This allows for the KLD to be minimized using samples that are
not from the target distribution.

Example of training a normalizing flow with weights We now demonstrate this
using a simple example. We use K = 10, 000 training samples from a 2-dimensional
Gaussian with mean and covariance matrix

µd =
(
0 0

)
, Σd =

25 0
0 25

 , (3.29)

and use as a target distribution a another 2-dimensional Gaussian with mean and covari-
ance matrix

µt =
(
2 2

)
, Σt =

4 0
0 4

 . (3.30)

Both distributions are shown in fig. 3.4. We then train a normalizing flow using the
training samples and weights to approximate the target distribution, where the weights
are given by the ratio of the PDF of the target distribution and the PDF of the training
data distribution. Further details can be found in appendix B.

The results are presented in fig. 3.4 and show how, once trained, the flow produces
samples that match the target distribution despite being trained with samples from a
different, broader distribution. The probability-probability plot (P-P plot) in fig. 3.4
compares the theoretical cumulative distributions for each dimension to those estimated
from the samples and shows that the samples pass, i.e. they are statistically consistent
with being drawn from the target distribution.
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Figure 3.4: Example of training a normalizing flow with weights instead of samples from
the target distribution. Left: the 1-, 2-, 3-σ contours for the training data distribution
(grey dashed line), target distribution (red dot-dashed line) and the distribution learnt
by the flow (blue solid line). The contours are computed analytically for the target and
training distributions and estimated using kernel density estimate for the flow. Right:
P-P plot for each of the dimensions (x0, x1) comparing the target distribution and 5000
samples from the distribution learnt by the flow. The shaded region indicates the 3-σ
confidence interval. See appendix B for details about how this figure was produced.

3.3.6 Conditional normalizing flows

So far, we have only discussed normalizing flows as parameterized distributions or in-
vertible parameterized mappings, however, they can be extended to be conditional dis-
tributions or mappings. That is, the transform applied f : X → Z is conditioned on an
additional input c ∈ C such that

pX |C(x|c) = pZ(f(x; c))
∣∣∣∣∣det

(
∂f(x; c)
∂x

)∣∣∣∣∣ . (3.31)

In practice, this is implemented by including the conditional input c1 in the conditioner,
e.g. Θ(·, c). For example, for a coupling flow, a conditional coupling transform f(x; c) is
formulated as

ya = xa, (3.32a)
yb = g(xb; Θ(xa, c)), (3.32b)

1c is sometimes referred to as the context.
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Figure 3.5: Example of the topological limitations of normalizing flows. Each shaded
region contains 1/8 of the total probability mass. a) A multimodal target distribution
to be learnt with a normalizing flow. b) The unimodal Gaussian latent distribution of
a normalizing flow. c) The distribution learnt using RealNVP-like flow. The ‘bridge’
connecting the two models is clearly visible. See appendix B for details about how this
figure was produced.

where the bijection g remains unchanged. Since c is not transformed, the transform is
still invertible and its Jacobian determinant istractable.

This allows normalizing flows to be used as you would any other type of conditional
generative algorithm, such as Conditional GANs [353] or Conditional VAEs [354]. More
importantly, this is key for their use in simulated-based inference [355] since it enables
training a single normalizing flow to approximate the true posterior distribution over all
possible datasets, i.e. allowing for amortized inference. For more detail, see Papamakarios
and Murray [356].

3.3.7 Limitations and variants of normalizing flows

The limitations of normalizing flows arise from their inherent architecture. The transfor-
mations used in normalizing flows do not change the topology of the space they map to or
from, therefore the support of the latent space and data space is the same. For example,
when using a Gaussian latent distribution, if the target distribution is multimodal with
zero density between the modes, the normalizing flow cannot learn the exact distribution
since it has inherently different topology. Instead, the normalizing flow will bridge between
the two modes, this is shown in fig. 3.5.

Various methods have been proposed for addressing these topological constraints,
these include using multimodal latent distributions [349, 357–359], designing normaliz-
ing flows to work on manifolds [360, 361], augmenting the data space with additional
dimensions [362], creating surjective flows [363], including stochasticity via sampling [364]
and using learned accept/reject sampling [365]. Each of the methods have various advan-



CHAPTER 3. MACHINE LEARNING 77

tages and disadvantages, such as sacrificing the bijectivity or exact PDF, and are best
suited to different applications.

Aside from topological constraints, the flexibility of a normalizing flow depends on the
bijective function g to being used. Numerous variants that use different bijections have
been proposed [366–369], perhaps the most popular of which are Neural Spline Flows [370]
which use Rational Quadratic Splines to construct both coupling and autoregressive flows.

3.4 Applications of machine learning to gravitational-
wave data analysis

Machine learning has been applied to a range of problems within gravitational-wave data
analysis, which speaks to its flexibility and versatility [371]. These applications have
leveraged a wide range of machine learning algorithms and have taken vastly different ap-
proaches. Broadly speaking, they fall into three broad groups: methods that use machine
learning to augment existing techniques, methods that entirely replace existing techniques
and methods that neither augment nor replace existing techniques and instead focus on
entirely new analyses.

3.4.1 Data quality

Machine learning algorithms have been used to improve the quality of, and characterize
the data from gravitational-wave interferometers.

Glitches frequently occur in the strain data. Detecting and classifying these glitches
can help to understand their origin and account for them in analyses, and there has been
extensive research into using machine learning to do so [372]. Two notable algorithms are:
GravitySpy [373, 374] uses neural networks and citizen science to classify glitches directly
in strain data and iDQ [375–377] which uses statistical machine learning to detect non-
Gaussian noise artefacts using auxiliary channels and has been used in O2 and O3 [377].

There has also been a significant effort to develop algorithms that can denoise gravitational-
wave times series. These techniques have been applied to denoising compact binary coales-
cence (CBC) signals [378, 379]. However, these are challenging to apply to inference since
current techniques require defining a likelihood function, which would require modelling
the noise properties of the denoising algorithm.

3.4.2 Source modelling

Accurate models of gravitational-wave sources are required for both detecting and char-
acterizing gravitational-wave signals. In some cases, these models are well-defined and in
other cases there are limited or no models for the sources.
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Neural networks have been used to construct surrogates for computationally expensive
CBC waveforms [380, 381]. These reduce the time to simulate waveforms, are inherently
vectorized and differentiable, which all could significantly reduce the cost of inference.
However, the latter two features have yet to be leveraged by widely used parameter esti-
mation pipelines, such as bilby [198] and PyCBC Inference [25, 292], though Wong et al.
[382] demonstrated their potential. Similarly, Gaussian processes have been used to model
CBC waveforms with the additional benefit of including model uncertainty [383] which
can also be included in parameter estimation.

Outside of CBC signals, GANs have been applied to generating signals that do not have
well-defined mathematical models. In McGinn et al. [384], a GAN is trained to generate
different classes of burst-like signals and interpolation in the latent space is then used to
generate signals that are a mixture of the different classes. Other works have leveraged
the ability to train GAN on limited datasets to learn to generate transient noise artefacts
similar to those observed in current generation ground-based detectors [385, 386]. Such
generative models could be used to train or validate detections algorithms.

3.4.3 Searches

Searches for gravitational-wave signals generally fall into two broad categories: modelled
searches and unmodelled searches, and machine learning has been applied to both.

Existing modelled searches for CBC use matched filtering to identify signals in the data.
There has been extensive research into constructing machine-learning based methods to
replace matched filtering [387–389]. Many of these are based on convolutional neural
network (CNN) architectures and aim to be faster than matched filtering whilst matching
the sensitivity. In the past, such approaches have often been limited by the false alarm
rates required for confident detection, however, recent studies have shown that machine
learning-based approaches may be suitable for applications in certain regions of the search
parameter space [390, 391].

Burst searches are predominantly unmodelled, relying instead on detecting excess
power present in detectors. Machine learning has been used to augment existing un-
modelled burst searches [392–395] and to augment burst searches targeting specific types
of sources [396, 397]. In both cases, machine algorithms, such as Gaussian Mixture Models
and CNNs, are trained on the output of an existing search pipeline and used as a post-
processing step to improve the detection efficiency of the search. Various pure machine-
learning burst searches have also been proposed, some modelled [398, 399] and some
unmodelled [400, 401]. The former use approaches similar to those use for detecting CBC
signals and train supervised models based label data. The latter instead treat detecting
signals as an anomaly detection problem, and train models to identify outliers in the data.

Continuous gravitational-wave searches are computationally limited [44], making them
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a prime target for applications of machine learning. Applications to modelled searches [402,
403] have, like CBC searches, used CNNs to conduct wide parameter searches for un-
known spinning neutron stars and have found such searches are effective for times-spans
of O(1 day) but do not generalize to longer durations, e.g. O(10 days). However, if one
instead focuses on a targetted search, Joshi and Prix [404] showed that a CNN-based
approached can scale to durations O(10 days). Machine learning has also been used to
augment existing searches for continuous gravitational waves, both modelled [405, 406]
and unmodelled [407, 408]. Similar to some burst applications, these use machine learning
as a post-processing step to increase search sensitivity by, for example, clustering sim-
ple candidates together or, in modelled searches, vetoing candidates that are likely of
terrestrial origin.

3.4.4 Source properties

When detecting transient gravitational-wave signals, knowledge of the type of source is
key, since this hints at the presence or not of an electromagnetic counterpart. Rapidly
determining the type of source is there for key for electromagnetic follow-up. Clustering
algorithms have been used to enabled determining the source type in low-latency [409].

Machine learning has also been used to augment existing gravitational-wave Bayesian
inference algorithms for CBC. LALInference [96] includes the option to use BAMBI [410]
to approximate the likelihood function using a neural network, which accelerate infer-
ence when the likelihood is computationally expensive. bilby_mcmc [233] implements an
Markov Chain Monte Carlo (MCMC) sampler that includes various trainable proposal
methods that are used alongside standard proposal methods to improve the efficiency of
proposing new samples. Such approaches serve to bridge the gap between standard sam-
pling techniques and the more recently developed end-to-end machine learning approaches.

End-to-end machine learning approaches entirely replace existing sampling algorithms
and are capable of performing inference in time-scales on the order of seconds. These
predominantly use variational inference to construct an approximate Bayesian posterior
distribution and amortize the cost of performing inference [234–236, 411–415], though
other non-variational approaches have also been proposed [416, 417]. As well as the po-
tential speed-up once trained, another attractive property of these techniques is the ability
to perform likelihood-free inference, which could enable analyses where the likelihood is
intractable. Most applications have focused on applications to inference for CBCs [234,
236, 411–416], however the principles can, and have been, applied to other types of sources,
such as continuous gravitational waves [235].

Machine learning has also been applied to the analyses that follow the initial parameter
estimation, such as rates and populations analyses [418–421]. In these examples, density
estimations algorithms, such as Gaussian Mixture models and normalizing flows, are used
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to accelerate analyses by approximating distributions that are otherwise intractable or
computationally expensive to evaluate. Such techniques are widely applicable and can be
translated to other problems that rely on complex multidimensional probability distribu-
tions.

3.5 Summary

In this chapter, we have introduced machine learning and highlighted the range of types
and possible applications, and then focused on neural networks. We described the funda-
mentals of neural networks, starting from a single neuron before introducing the notion of
layer and then activation functions. We covered how neural networks are trained using a
loss function and backpropagation, and the importance of data in this training process.

With the fundamentals in hand, we reviewed the different types of neural networks that
we will use going forward before focusing on a specific type of machine learning algorithm
that incorporates neural networks: normalizing flows. They are a type of density estima-
tion algorithm that can be used to approximate complex multidimensional distributions
via a series of invertible transforms and are a cornerstone of the worked presented through-
out the subsequent chapters of this thesis. We described their mathematical formulation,
which relies on the use of parameterized bijective transforms with tractable Jacobian de-
terminants and is centred around the change of variable formula. We detailed the different
methods used to construct these transforms, the additional types of transforms that can
be included and the loss functions used to train them. We discussed different variants of
normalizing flows and their limitations, which will influence how we will leverage them
and, as we will see in later chapters, can be a limiting factor in some cases.

Finally, we provided an overview of applications of machine learning to gravitational-
wave data analysis, highlighting it use for improving data quality, modelling and detect-
ing gravitational-wave sources and performing Bayesian inference. These methods include
end-to-end machine learning approaches that enabled new analyses or replace existing ones
and machine-learning augmented methods that improve upon existing techniques. We will
focus on the latter, in particular how normalizing flows can be used to improve stochas-
tic sampling techniques for Bayesian inference, which will be the focus of the following
chapters.



Chapter 4

Nested sampling with normalizing flows
for gravitational-wave inference

This chapter introduces nessai: nested sampling with artificial intelligence, a novel nested
sampling algorithm that incorporates machine learning to accelerate Bayesian inference
and demonstrates its application to gravitational-wave parameter estimation.

This work has been published in Williams et al. [1] and it is presented almost verbatim.
We have omitted the introductory sections and updated certain symbols and spellings to
be consistent with the other chapters. We have also included and new figure, fig. 4.7,
and included results that were originally included in the appendices in the main text.
The remaining appendices are included in appendix D where we have also removed the
explanation on training normalizing flows since this is already covered in chapter 3.

The symbols used for certain parameters have also been updated for consistency withe
rest of the thesis. Figures 4.3 and D.1 have also been remade to ensure the symbols used
throughout the text are consistent. As a result, the p-values have changed slightly but
this does not impact the overall conclusions. Figure 4.6 was also regenerated for the same
reason.

The chapter is structured as follows: sections 4.1 and 4.2 present the method and overall
algorithm, and section 4.3 describes problem-specific modifications for gravitational-wave
inference. In section 4.4, we compare our approach to existing methods. Section 4.5
presents results used to validate the algorithm and comparisons to an existing widely-
used sampler called dynesty. Finally, section 4.6 summarizes our findings and discusses
avenues for further work.

81
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Nested sampling is one of the cornerstones of gravitational-wave inference for compact
binary coalescence (CBC) signals; it provides estimates of the Bayesian evidence and
posterior samples, which inform us about the nature of systems that produce such signals.
However, such analyses are computationally expensive, and their cost is directly related to
the cost of evaluating the likelihood (see section 2.6) and the length of data being analysed.
Typical CBC analyses in current generation ground-based interferometers take of order
days to weeks with current inference algorithms [96, 122, 198]. Given the ever-increasing
rate of CBC detections [74] and increasing complexity of the physics being modelled [99,
120], there is therefore a necessity for more efficient inference algorithms.

Machine learning is being applied to increasingly more problems in physics and as-
tronomy, e.g. [422–426], including gravitational-wave data analysis; see section 3.4 for a
review. It has many appealing attributes that make it well suited to various problems,
such as the inference speed of trained algorithms or the ability to learn complex features
in data without a pre-defined model. In the context of parameter estimation for CBC
signals, it has predominantly been leveraged to develop algorithms that do not rely on
stochastic sampling techniques and can instead, once trained, directly produce samples
from an approximate posterior distribution [234, 236, 411–416]. Such algorithms have
the potential to perform inference on time-scales of order milliseconds but the apparent
opaqueness of these techniques and the need to redesign existing workflows has somewhat
slowed their widespread adoption.

In this work, we consider a different approach to leveraging machine learning for
gravitational-wave inference: augmenting an existing technique. In particular, we fo-
cus on nested sampling and propose a novel modified algorithm that incorporates machine
learning in the process of drawing new samples from the likelihood-constrained prior. As
discussed in section 2.6, this is the predominant bottleneck in nested sampling, and im-
proving the efficiency of this step would reduce the overall cost of performing inference.
Our focus is on normalizing flows (see section 3.3 for details), a type of generative machine
learning algorithm that can model complex probability distributions, which we train to
approximate the distributions of live points at a given iteration.

4.1 Method

We present a novel method for sampling within a given iso-likelihood using a normalizing
flow. The normalizing flow learns the distribution of a set of live points and is constructed
such that the learnt distribution can be sampled from analytically. We introduce additional
steps to ensure that the samples are distributed according to the sampling prior1 and

1We use sampling prior to denote the prior used for nested sampling and to distinguish it from the
latent prior used in normalizing flows.
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bounded by the iso-likelihood contour. This eliminates the need to evolve new samples
and allows us to efficiently draw new samples within a complex iso-likelihood contour.
A more efficient proposal equates to fewer rejected points and, since the likelihood must
be computed before a point can be rejected, this is also equivalent to a reduction in the
number of likelihood evaluations. We first describe our method in the isolated case of a
single set of live points at a given iteration and then present a nested sampling algorithm
which incorporates it.

4.1.1 Sampling within an iso-likelihood contour.

At any given point in the nested sampling algorithm there is a current set of live points
which by definition is contained within the iso-likelihood contour defined by the worst
point with likelihood L∗. We must then draw new samples within that contour that are
independently and identically distributed (i.i.d.) according to the prior and we do so using
an algorithm centred around a normalizing flow. We describe the implementation of our
algorithm in terms of four steps:

How to define an iso-likelihood contour using a normalizing flow. If we treat
the sampling space as the physical space X and the live points as the data {x}Nlive

i=1 we can
then train a normalizing flow to approximate the distribution of the live points to within
some error and use it to draw new samples in X . This requires sampling from the latent
prior pZ , which we choose to be an n-dimensional Gaussian, and then applying the inverse
mapping learned by flow f−1. However, since our choice of latent prior pZ has an infinite
domain, the resulting distribution of samples pX will not be bounded by the iso-likelihood
contour or distributed according to the sampling prior. We therefore examine the notion
of an iso-likelihood contour in the context of the normalizing flow with an n-dimensional
Gaussian latent prior.

How to determine the contour given the current set of live points. Once trained,
the normalizing flow can be used to map the current worst point in the physical space x∗

to the latent space Z as z∗. This point has a likelihood in the latent space L∗
Z given by

pZ(z∗) and, since pZ is an n-dimensional Gaussian, points of equal likelihood lie on the
(n − 1)-sphere with radius r∗ given by z∗. If we assume a perfect mapping, then this
iso-likelihood contour in the latent space can be mapped to an iso-likelihood contour in
the physical space. We can therefore sample within the contour in latent space and use
the inverse mapping to produce samples within the contour in the data space.

How to sample within the contour. We use two approaches for drawing K new
samples zi in the latent space given a radius r∗, these produce normally and uniformly
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Figure 4.1: Example of how a normalizing flow trained on a set of live points can produce
samples within current likelihood contour for a simple two-dimensional parameter space.
Top: example of training samples in the physical space X and learned mapping to the
latent space Z with the likelihood contour for the current worst point shown in orange.
Middle: samples drawn from a truncated Gaussian within the likelihood contour in Z
and mapped to X using the inverse mapping. Bottom: pool of accepted samples after
applying rejection sampling until 1000 points are obtained, shown in both Z and X .
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distributed samples respectively. Both start by drawing K samples on the (n− 1)-sphere
using the algorithm proposed in [427, 428] where K-dimensional vectors are drawn from
an n-dimensional unit Gaussian and then normalized using the Euclidean norm. These
samples yi can then be rescaled to obtain samples within in the n-ball

zi = ρi
yi

||yi||2
, (4.1)

where the choice of distribution for ρi determines how the resulting samples zi are dis-
tributed in Z. For uniformly distributed samples ρi = u1/n where u ∼ U(0, r∗) and for
normally distributed samples ρi ∼ χ(n) where χ(n) is a χ-distribution with n degrees of
freedom truncated at r. The inverse mapping of the normalizing flow can then be applied
to zi to obtain samples in the physical space. We consider two approaches because sam-
pling from a truncated Gaussian in high-dimensional spaces2 can become inefficient for
large values of r∗, though we found this has minimal impact on the analyses considered
in section 4.5.

How to ensure new samples are drawn according to the prior. The samples
obtained in the previous step must be re-sampled such that they are distributed according
to the sampling prior. We use rejection sampling and compute weights αi for each sample

αi = p(xi)
q(xi)

, (4.2)

where xi = f−1(zi), p(x) is the sampling prior and q(x) is the probability density function
(PDF) of the proposal distribution which is computed using the inverse of eq. (2.6)

q(x) = q(f−1(z)) = pZ(z)
∣∣∣∣∣det

(
∂f−1(z)
∂x

)∣∣∣∣∣
−1

. (4.3)

The choice of latent prior pZ(x) will depend on which method was used to draw the samples
in the latent space. The weights eq. (4.2) are then rescaled such that their maximum value
is one. We then draw N samples u ∼ U [0, 1] and accept samples for which αi/ui > 1. In
fig. 4.1, we show an example of this process for a simple two-dimensional case.

2The notion of a high-dimensional space is relative, in the context of gravitational-wave inference we
often consider a problem with tens of dimensions to be high-dimensional, since the parameter spaces are
typically highly correlated meaning many methods do not scale to the full parameter space. Conversely,
in other contexts, such as machine learning, we may only consider a problem to be high-dimensional once
it has hundreds or thousands of dimensions, though the parameter space may lie on a lower dimensional
manifold in the high-dimensional space.
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4.2 Algorithm outline

We identify three key stages of the sampling approach detailed in section 4.1.1 that we
then incorporate into the nested sampling algorithm:

• Training: a normalizing flow is trained on the current set of Nlive live points using
forward Kullback-Leibler divergence (KLD) as previously described in section 3.3.5.

• Population: once the normalizing flow is trained, samples are drawn within the
n-ball of radius r determined as described in section 4.1.1. These samples are then
mapped to X , re-sampled according to the prior and finally stored in the pool of
new samples.

• Proposal: once the pool of new samples has been populated, new live points are
drawn at random from the pool and then removed until the pool is empty or the
normalizing flow is retrained.

The start of the algorithm remains unchanged: Nlive live points are drawn from the
prior distribution and their log-likelihoods computed. We then start the iterative process of
determining the worst live point with log-likelihood L∗ = L(θ∗) and drawing a replacement
live point that lies within the likelihood contour. In our modified algorithm, we use
standard rejection sampling from the prior for the first M points (typically 2Nlive) or
until it becomes inefficient. The normalizing flow is then trained on the current Nlive live
points, allowing us to sample from an approximation of the likelihood constrained priors
and populate the pool. Once the pool is populated, a replacement point is drawn from
the pool, its log-likelihood is computed and if it is greater than L∗, the point is accepted;
if not, more points are drawn until one is accepted. The proposal stage is then repeated
for subsequent worst live points until one of four criteria is met:

• the proposal pool is depleted: the normalizing flow is retrained using the current
live points and worst live point is used to compute a new radius and the population
stage is repeated,

• the acceptance rate falls below a user-defined criterion: the current proposal
pool is discarded and the normalizing flow is retrained. This threshold is defined by
the user,

• the normalizing flow is retrained with the current live points: the criterion
for this is a number of iterations, by default this every Nlive iterations, but it can
also be disabled such that flow is only trained when the proposal pool is depleted,

• the nested sampling convergence criterion is met: the algorithm terminates.
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4.3 Reparameterizations

Since this algorithm relies on the normalizing flows’ ability to approximate the distri-
bution of live points at various stages throughout the sampling, we include a series of
reparameterizations of X to reduce the complexity of the data space and removing cer-
tain features. We denote this reparameterized space X ′ and include the Jacobian for each
reparameterization in eq. (4.3). These reparameterizations are:

• Rescaling: we add the option to rescale the input data according to either the
sampling priors or the current minimum and maximum values such that all the
parameters in X ′ are defined over the same domain. As a default, we use [−1, 1]n.

• Boundary inversion: we observe that asymmetric distributions with high density
regions near the prior bounds are often under-sampled. To mitigate this effect,
we add the option to mirror the live points around such bounds and train on the
resulting symmetric distribution. Further details are provided in appendix D.1.

We also introduce additional settings which help with convergence and sampling effi-
ciency, some of these and discussed in section 4.5.5 and a comprehensive list can be found
in the online documentation for our sampler [429].

4.3.1 Gravitational-wave reparameterizations

The gravitational-wave parameter space is typically 15-dimensional and contains various
degeneracies between parameters such as the masses, inclination and luminosity distance
which can make sampling inefficient. Previous work has shown that certain reparame-
terizations can improve sampling efficiency [96]. We use two of these: chirp mass M
and asymmetric mass ratio q replace the component masses and we use the system-frame
parameterization in place of the radiation-frame to describe the orientation of the bi-
nary [123].

Angular parameters

More than half of the parameters to sample are angles and we note that the periodicity of
these angles is not encoded in the mapping learned by the normalizing flow since the latent
space Z is continuous and unbounded. We therefore include a further reparameterization
specifically for the angular parameters θi. We assume that each angle has a corresponding
radial component ρθi

and together they describe a position in a two-dimensional plane.
We can therefore use standard transformations to express this position in Cartesian coor-
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dinates (xθi
, yθi

):

xθi
= ρθi

cos θi,

yθi
= ρθi

sin θi.
(4.4)

If we choose the distribution of radial components such that ρθi
∈ [0,∞) then xθi

, yθi
∈

(−∞,∞). Since we are using a Gaussian latent prior pZ , we sample ρθi
from a χ-

distribution with two degrees of freedom such that, if the angle is uniformly distributed
on [0, 2π], the resulting distribution of (xθi

, yθi
) is Gaussian. We use this treatment for

the phase, inclination, polarization and all four spin angles, for polarization we rescale the
angles to [0, 2π] before applying the transformation to Cartesian coordinates. This repa-
rameterization also naturally includes periodic boundary conditions for the angles with
uniform priors.

The sky location is described by a further two angles, right ascension α and declination
δ. For these angles, we extend the previous treatment from two-dimensional to three-
dimensional Cartesian coordinates (x, y, z) and draw the radial component ρ from a χ-
distribution with three degrees of freedom. For the standard priors, p(α) ∼ U [0, 2π] and
p(δ) ∼ cos δ, the resulting distribution of (x, y, z) is again Gaussian.

Spins

The spin magnitudes a1 and a2 also require a specific treatment. They are typically de-
fined on [0, 0.99] with uniform priors and, importantly, the posterior distributions are often
broad and span the entire prior range. We consider applying the boundary inversion to
both bounds but in practice find this ineffective. We instead opt to map χi into a two-
dimensional plane with positions described using Cartesian coordinates xai

and yai
. We

achieve this by first defining a rescaled magnitude âi ∈ [0, 1] which is obtained using the
corresponding priors. Then, we consider the angle defined by âiπ and, again, introduce
a radial component ρai

∼ χ(2). The corresponding Cartesian coordinates (xai
, yai

) are
defined on [0,∞) and (−∞,∞) respectively. However, we know that the coupling trans-
forms we have chosen to use are better suited to unbounded domains. To avoid this, we
introduce a random variable k which is drawn from a Rademacher distribution and include
it in the Cartesian coordinate transform

xχi
= ρχi

cos χ̂iπ,

yχi
= kρχi

sin χ̂iπ.
(4.5)

As a result of including k, (xχi
, yχi

) ∈ (−∞,∞) and the hard boundary at xχi
= 0 has

been avoided.
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Distance

We choose to reparameterize the luminosity distance dL such that the prior for the resulting
parameter dU is uniform. The exact reparameterization therefore depends on the prior
used for dL. In this work we choose to use a prior on dL that is uniform in co-moving
volume so we first convert the luminosity distance to a co-moving distance dC and then
the uniform parameter is simply dU = d3

C. Similar reparameterizations can be determined
for other commonly used distances priors such as a power law. Additionally, we allow
boundary inversion as described in section 4.2 but limit it to only the upper bound since
in practice the luminosity distance posterior will not rail against the lower bound.

Other parameters

The remaining parameters are the chirp massM, mass ratio q and time of coalescence tc,
for which we use the reparameterizations from X to X ′ mentioned in section 4.2, allowing
boundary inversion for q.

4.3.2 Implementation

We use the implementation of normalizing flows in PyTorch [430] available in nflows [431]
which allows for a wide variety of normalizing flows to be used. However, we choose to
use coupling transforms [347] because of the tractable Jacobian and ease of computing
the inverse mapping. As suggested in [345, 346], we include invertible linear transforms
that randomly permute the parameters before each coupling transform, allowing all the
parameters to interact with each other. We also include batch normalization [350] after
each coupling transform, as described in Dinh et al. [347]. We use a residual neural
network (ResNet) [328, 337] for computing the parameters for each transform. We train
the normalizing flows with the adaptive moment estimation (Adam) optimizer [325]. In
appendix D.3, we detail the specific parameters used for the results presented in section 4.5.

Our sampler, nessai (Nested Sampling with Artificial Intelligence), is available as an
open source package [432] and documentation is also available online [429].

4.4 Related Work

Different frameworks and samplers have been developed for gravitational-wave inference.
LALInference [96] implements nested sampling and Markov Chain Monte Carlo (MCMC)
with specific proposal methods for the gravitational-wave parameter space and has been
used extensively for analyses of the first gravitational wave detection [6] and Gravitational-
Wave Transient Catalog 1 (GWTC-1) and Gravitational-Wave Transient Catalog 2 (GWTC-
2) [7, 8]. More recently, the Python package bilby [198] has been developed to use off-
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Figure 4.2: Distribution of the optimal network signal-to-noise ratio (SNR) for the 128 sim-
ulated gravitational-wave injections in simulated Gaussian noise. The priors on chirp mass
and luminosity distance appendix D.2 were chosen such that the ringdown frequency [436]
does not exceed the Nyquist frequency and that the majority of signals have detectable
optimal network SNRs

the-shelf samplers, such as dynesty [197], and been shown to achieve comparable results
to LALInference on GWTC-1 [122].

Machine learning has previously been incorporated into stochastic sampling algorithms;
in [410] the likelihood function is approximated with a neural network, and in [433] neural
networks are used to generalize Hamiltonian Monte Carlo. More closely related to our
work, normalizing flows have been used to improve the efficiency of MCMC methods by
reparameterizing the sampling space [434] and a similar approach has also been extended
to MCMC sampling in nested sampling in [435].

Recent work has shown that likelihood-free inference using conditional variational au-
toencoders (VAEs) [234, 416] and normalizing flows [411, 412] can produce posterior distri-
butions for compact binary coalescence of binary black holes. These approaches promise
to drastically reduce the cost of producing posterior samples when compared to tradi-
tional stochastic sampling methods. However, they require large amounts of training data
and they currently lack the flexibility to deal with, for example, different power spectral
densitys (PSDs), high sampling frequencies and long duration signals.

4.5 Results

We chose to evaluate the performance of our sampling algorithm, nessai, with simulated
gravitational-wave signals from CBC. The parameter is multidimensional and various pa-
rameters are correlated, which can prove challenging when sampling. The likelihood, as
defined in section 2.10.1, is also typically computationally costly to evaluate, predomi-
nantly because of the cost of generating the gravitational-wave waveform hθ which scales
with the length of the observation. This makes it well suited to our sampler since this
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can partially offset the cost of training the normalizing flow. We first use probability-
probability plots to check the consistency of our sampler and then compare our results
to those obtained using dynesty. We then highlight how the likelihood computation can
be parallelized in nessai before finally discussing various diagnostics that can be used to
identify problems during sampling and tune the sampler settings.

We use bilby_pipe and bilby [198] to simulate 128 injections using IMRPhenomPv2 [119,
437] sampled at 2048 Hz with 4-second observing time in a three-detector network with
Advanced LIGO (aLIGO) Hanford, aLIGO Livingston and Advanced Virgo (AdVirgo) at
design sensitivity [70, 77]. We set the minimum frequency to 20 Hz and Gaussian noise is
added to the injections using the PSDs for each detector. We choose uniform priors on
chirp mass M ∼ U [25, 35] M� and asymmetric mass ratio q ∼ U [0.125, 1.0], a prior on
luminosity distance that is uniform in co-moving volume on (100–2000) Mpc, a uniform
prior for the reference time at the geocentre with width 0.2 s and the remaining priors are
set to the defaults for precessing binary black holes in bilby [122], see appendix D.2 for a
complete list. The specific priors on chirp mass and luminosity distance are chosen such
that ringdown frequency [436] does not exceed the Nyquist frequency and the majority
of signals have detectable optimal network SNRs, the distribution of SNRs is shown in
fig. 4.2.

We analyse the injections with our sampling algorithm, nessai, outlined in section 4.2
and include the specific reparameterizations for gravitational wave analyses described in
section 4.3.1. We choose to analyse each injection twice: once with just phase marginal-
ization, and once with both phase and distance marginalization. Further details of the
exact settings used for nessai are provided in appendix D.3.

4.5.1 Result validation

P-P plots are a standard method of verifying the performance of sampling algorithms [229,
230]. They test whether the correct proportion of injected values are recovered at a given
confidence interval for a specific prior distribution. These tests are particularly useful
when using a Gaussian likelihood, such as eq. (2.51), since the fraction of events within a
given confidence interval should be uniformly distributed and we can therefore compute
p-values for each parameter and a combined p-value for all the parameters. We produce
P-P plots for both of our analyses using bilby and present the results in fig. 4.3. For an
idealized sampler for the p% confidence interval, p% of the events should be recovered,
this would correspond to a diagonal line. In practice, we expect to see deviation from the
diagonal, as such the 1-, 2- and 3-σ confidence intervals are also shown in fig. 4.3. These
results show that nessai consistently recovers for the posteriors for the 128 injections but
also indicate that the luminosity distance is consistently harder to sample. The combined
p-values of 0.3391 and 0.6566 for our analyses without and with distance marginalization
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Figure 4.3: Probability-probability plots (P-P plots) showing the confidence interval ver-
sus the fraction of the events within that confidence interval for the posterior distributions
obtained using our analysis nessai for 128 simulated compact binary coalescence signals
produced with bilby and bilby_pipe. The 1-, 2- and 3-σ confidence intervals are indi-
cated by the shaded regions and p-values are shown for each of the parameters and the
combined p-value is also shown.

serve as further verification.

4.5.2 Comparison to dynesty

To further validate our results, we compare them to those obtained with dynesty [197],
another nested sampling algorithm commonly used in gravitational-wave inference [9, 10,
122, 198]. We use the configuration described in [122] but increase the number of live
points to 2000 and run on a single thread to ensure as direct of a comparison with nessai
as possible. With these settings dynesty passes the P-P test (see appendix D.4) but
we note that these settings are the minimum required to produce reliable results and in
practice more conservative settings are often used. Additionally, several injections required
a second analysis with a different sampling-seed in order to reach convergence. The results
obtained with dynesty allow us to verify the log-evidences returned by nessai since these
cannot be computed analytically and provide a point of reference when considering the
number of likelihood evaluations and total computational time.

In fig. 4.4, we compare the log-evidences returned by dynesty and nessai. If nessai
was consistently over or under-estimating the log-evidence when compared to dynesty, this
would indicate a potential problem during sampling, such as over- or under-constraining,
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Figure 4.4: Difference between the log-evidences ∆ lnZ obtained using dynesty and
nessai for all 128 injections with distance marginalization (dashed line) and without
distance marginalization (solid line).
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Figure 4.5: Distribution of the total number of likelihood evaluations required to reach
convergence for and total run time for dynesty (blue) and nessai (orange) when applied to
128 simulated signals from compact binary coalescence with the priors and sampler settings
described in section 4.5 and appendix D.3. The results with distance marginalization
disabled are shown with solid lines and those with distance marginalization enabled are
shown with dashed lines.

which would lead to biased results. The results in fig. 4.4 show no such bias. However,
since sampling is a stochastic process there is an error associated with the computed
log-evidence. The theoretical error can be approximated using the information content
H and the number of live points Nlive, δ logZ ≈

√
H/Nlive. To quantify this error, we

repeat the analysis on a single injection with 50 different sampling seeds and compute an
approximate error δ logZ ≈ 0.092. In practice, we observe a wider spread of log-evidences
of 0.11, this is consistent with previous analyses which determined that there are additional
sources of uncertainty [237].

nessai is designed with the aim of improving the efficiency of drawing replacement live
points at the cost of repeatedly training a normalizing flow and populating a pool of live
points. An improvement in the efficiency translates to a reduction in the total number of
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likelihood evaluations, since the likelihood must be computed for each rejected point. We
therefore compare the total number of likelihood evaluations required to reach convergence
for each sampler in fig. 4.5 with and without distance marginalization. nessai requires a
median of 5.04× 106 and 7.22× 106 likelihood evaluations to converge with and without
distance marginalization respectively, and dynesty requires 10.44 × 106 and 9.67 × 106.
In contrast to dynesty, the results in fig. 4.5 show that sampling with nessai is more
efficient without distance marginalization. We attribute this to a combination of the
reparameterization used for luminosity distance and the specific sampler settings used
in these experiments, which were tuned for analyses without distance marginalization.
Subsequent investigations presented in section 5.4 have shown that this result does not
hold generally, and with improved settings, sampling with distance marginalization is more
efficient than without.

This, however, does not directly translate to the run-times for each sampler, since they
each have different additional computational costs associated with sampling. In fig. 4.5 we
show the total run-time for each sampler and when comparing the median run-times we
observe that nessai is 2.32 times faster than dynesty without distance marginalization
and 1.40 times faster with it. Additionally, we examine the proportion of the run-time
spent on training and population and find that on average population-time accounts for
approximately 40% of the total run-time and training-time accounts for a further 8%.
We also note that the cost of training and population does not depend on the cost of
evaluating the likelihood, as such, the fraction of the total run-time will decrease as the
cost of evaluating the likelihood cost increases.

For each injection, we can also compare the posterior distributions produced by each
sampler. These allow us to quickly identify discrepancies between samplers for specific
injections or regions of the parameter space. We show an example of such a comparison is
fig. 4.6. We can also quantify the differences between the posterior distributions obtained
with dynesty and nessai by computing the Jensen-Shannon divergence (JSD) between
the 1-dimensional marginal posterior distributions as described in section 2.9.2. To do
so, we take 100 random subsets of 1000 samples from the marginal distributions we are
comparing and compute the median JSD over the subsets. Figure 4.7 shows the distri-
bution of JSDs per sampled parameter and the distribution of the maximum JSD across
all parameters per injection. We also include the value for the posterior distributions
show in fig. 4.6 as a point of reference. Since we are using 1000 samples, the threshold
for the JSD that indicates a statistically significant difference is 10 mbits. These results
show that the majority of the marginal posterior distributions are statistically consistent
between dynesty and nessai. In approximately a third of cases, with or without, dis-
tance marginalization, the maximum JSD is above the 10 mbits threshold suggesting that
at least one of the pairs of marginal distributions are statistically different. However, since
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Figure 4.6: Corner plot comparing the posterior distributions produced with dynesty
(blue) and our sampler nessai (orange) for an injection with an optimal network SNR
of 15.54. The phase is marginalized and remaining 14 parameters are shown, see ap-
pendix D.2 for details about the parameters. The injected value is indicated by the
cross-hairs in each subplot and the respective 16% and 84% percentiles are also shown in
the 1-dimensional marginalized posteriors.
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Figure 4.7: Distribution of JSDs in mbits between the 1-dimensional marginal posterior
distributions obtained using dynesty and nessai. The JSD reported is the median value
of 100 random subsets with 1000 samples each per parameter. Results are shown per
parameter and for the runs with (left-hand side) and without (right-hand side) distance
marginalization. The maximum JSD over all parameters per injection is also show in red.
The dashed lined denotes the 10 mbits threshold determined using the method described
in Ashton and Talbot [233] and the orange line over each distribution shows the JSD
between the posterior distributions show in fig. 4.6.

there is no ground truth for these analyses and both samplers pass the P-P test we cannot
determine which is ‘correct’ and which is biased.

4.5.3 Parallelization of the likelihood computation

Our sampler is designed such that candidate live points are drawn simultaneously in the
population stage. This allows for simple parallelization of the likelihood computation,
since the pool of candidate live points can be distributed over a number of threads and
likelihood values computed and stored until needed for the proposal stage. In fig. 4.8,
we compare the run-time and time spent evaluating the likelihood for the same injection
using an increasing number of threads for the likelihood computation. We use an additional
thread for the main sampling process. The time spent evaluating the likelihood is inversely
proportional to the number of threads allocated, although the overall run-time is not. With
a single thread it accounts for 54% of the total run-time and this decreases to 9% when
using 16 threads. As mentioned previously, there is a cost associated with the population
stage and further smaller cost associated with training, for this injection these are 36%
and 9% respectively. These remain approximately constant when increasing the number
of threads available and act as a lower limit on the theoretical minimum run-time, this
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Figure 4.8: Comparison of the total time (in hours) spent on each stage of the algorithm
for an increasing number of threads for a single injection with a fixed noise seed. The
time spent evaluating the likelihood decreases as the number of threads increases, the
theoretical reduction is shown in black. The costs of training and population stages remain
approximately constant, as such they act as a lower bound on the minimum run-time. The
sum of the time spent on likelihood evaluation, training and population is approximately
equal to the total time spent sampling, indicating minimal overhead.

is shown in fig. 4.8. The remaining < 1% of the run-time is general overhead associated
with running the sampler.

4.5.4 Diagnostics

As mentioned previously, there are various challenges when implementing a sampling
algorithm. nessai is designed to sample from within the constrained prior, in this case
care must be taken to ensure that the prior is not over-constrained since this will lead to
regions of parameter being under-sampled which in turn will bias the results. There are
also specific problems that arise from the nature of the parameter space, such as multi-
modality and correlations. We use a series of diagnostics to identify possible problems
during sampling. In section 4.5.5, we also discuss how some of these diagnostics can be
used to tune the sampler settings described in section 4.2 and appendix D.3.

We use the cross-checks proposed in [218] as a heuristic for determining if the nested
sampling algorithm has converged without over or under-constraining the posterior dis-
tributions. These checks rely on order statistics and the assumption that new live points
should be inserted uniformly into the existing live points which allows for a p-value to
be computed using a Kolmogorov-Smirnov test (KS test) [219, 220] with the additional
consideration that the underlying distribution is discrete [221]. In fig. 4.9, we show an
example of the distribution of the indices of newly inserted live points and in fig. 4.10
we show the p-values computed every Nlive iterations. The histogram shows the final dis-
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Figure 4.9: Example of the distribution of insertion indices for two nested sampling runs
with 2000 live points. Uniformly distributed indices indicate no under- or over-constraining
and deviations from uniformity indicate the opposite. The result with an orange dashed
line shows over-constraining and the result with a solid blue line shows the correctly
converged run. The shaded region indicates the 2-σ errors on the expected distribution.

tribution of insertion indices for all the nested samples, this may not highlight specific
problematic regions of the parameter space but if it is not uniform, it is a clear indica-
tion that the sampler is consistently over- or under-constraining. If the distribution of
p-values in fig. 4.10 is non-uniform then this is another clear indication of problems during
sampling.

The acceptance is another important statistic to monitor during sampling since we
aim to develop a more efficient sampler. There are two acceptances we can monitor in
nessai, the proposal acceptance (the acceptance based on the likelihood threshold) and
the population acceptance (the acceptance of the rejection sampling step). The first has
a direct effect on the number of likelihood evaluations whilst the second only affects the
total run-time, both quantities are shown in fig. 4.10. This figure also highlights how
periodically retraining the normalizing flow leads to an increase in the proposal efficiency.
It also shows how the population process is typically inefficient which explains why on
average 40% percent of the total run-time is spent on the population stage.

We also track the minimum and maximum log-likelihoods, number of log-likelihood
evaluations, log-evidence and fractional change in evidence. The combination of these
statistics allows the user to quickly understand the current state of the sampler and identify
potential issues such as plateaus in the likelihood space and regions which are inefficient
to sample. The complete set of statistics is shown in fig. 4.10.

4.5.5 Tuning nessai

nessai includes various settings, a comprehensive list and description of each can be
found in the documentation [429]. In practice, we find that a small subset of the settings
predominantly determine whether the algorithm converges without any bias. We use the
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Figure 4.10: Example of the state plot produced by our sampler that tracks statistics
as a function of sampling iteration: (a) minimum (blue solid) and maximum (orange
dashed) log-likelihood, (b) cumulative number of likelihood evaluations, (c) log-evidence
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of every Nlive live points. The iterations at which the normalizing flow is trained are
indicated with vertical lines, for this injection these total 87.
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validation method described in section 4.5.1 and the diagnostics from section 4.5.4 to
understand how these settings affect convergence.

As expected, the number of live points Nlive is an important setting but it is even
more crucial in nessai since it limits the amount of training data available. We find
that a minimum of 1000 live points is required and for more complex problems, such as
gravitational-wave inference, at least 2000 live points should be used.

There are a large number of settings which relate to the complexity of the normalizing
flow. While tuning the sampler we found that the number of coupling transformations
greatly affected convergence. If too many transforms were used the algorithm was prone
to over-constraining the posterior distribution. We attribute this to the complexity of the
likelihood contour learnt by the flow, if the flow has too many trainable parameters it
can over-fit the distribution and exclude regions of the parameter space which should be
sampled. At the other extreme, if the model is too simple, then the resulting contour can
“smooth” fine details and more samples are drawn outside the initial likelihood constraint.
These will not be accepted and the sampling process is therefore less efficient. We use a
similar logic for the number of neurons and layers in the neural network that parameterizes
the flow but we find that these parameters predominantly affect training time with a lesser
effect on overall convergence. Another parameter that is important to consider is the
batch size, during sampling the normalizing flow can be training upwards of 100 times.
Hence, a larger batch size is recommended since it can greatly reduce training time, we
also recommend increasing the batch size when using reparameterizations that increase
the amount of training data, such as the boundary inversion described in section 4.2
and appendix D.1.

We note that the size of the pool of new samples affects the efficiency of the algorithm
and the total run-time. If the pool-size is small, then the normalizing flow is frequently
retrained, in the extreme case where the proposal is inefficient due to, for example, the
complexity of the parameter space, then the normalizing can be retrained multiple times
during a single iteration. Conversely, if the pool-size is large then if the flow is force-ably
retrained a number of points are discarded or, if the flow is only retrained once the pool
is empty, then the rejection sampling becomes in-efficient since a large fraction of the
potential new points will lie outside the likelihood bound. We instead opt to inversely
scale the pool-size given the mean acceptance of the sampler since the last iteration the
flow was trained. We recommend setting the base pool-size to the number of live points,
only retraining the model when the pool is empty and setting the maximum pool-size to
be ten times the base pool-size. We use these settings for the results in section 4.5 and
find that this results in a median of 263 training instances required to reach convergence.

As mentioned previously, approximately 40% of the run-time is spent on populating
the pool of new samples. This is directly attributable to the efficiency of the rejection
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sampling required to ensure samples are distributed according to the prior. In section 4.1.1
we propose two methods for drawing samples within the contour in the latent space, these
produce uniformly and normally distributed samples respectively. In practice, we find the
two methods comparable in most cases except for when the latent radius lies in the tail of
the χ-distribution that corresponds to the latent prior pZ . In this case, using the uniform
distribution results in lower population and proposal acceptances, which leads to longer
run-times.

4.6 Conclusions

We have proposed a novel method for sampling within a given likelihood contour according
to the prior that can be incorporated into the standard nested sampling algorithm. Our
method employs normalizing flows to learn the density of the current set of live points,
which, once trained, allows us to produce points within the contour by sampling from a
simple distribution and using rejection sampling. The use of normalizing flows allows us
to avoid using multiple bounding distributions and since new samples are independent of
the previous samples we eliminate the need to use a random walk. We implement this
proposal method in our sampler, nessai, and conduct a series of tests to verify that it
recovers the correct Bayesian posteriors and then compare our results to those obtained
with another sampler to determine if our design does in fact result in a more efficient
sampler.

We apply our sampler to 128 four-second duration simulated signals from the coales-
cence of binary black hole systems sampled at 2048 Hz and we run two separate analyses,
one with distance marginalization and another without. The resulting P-P plots (fig. 4.3)
show that our sampler more reliably recovers the posterior distributions with distance
marginalization than without, however both pass the P-P test. This indicates that our
proposal method does not introduce any inherent biases.

We use dynesty for the comparison, which has been shown to produce results consistent
with those used in previous LVK analyses [122]. We find that our sampler returns evidences
consistent with dynesty, which serves as further verification of our results. Since we aim
to produce a more efficient sampler, we also compare the likelihood evaluations required
to reach convergence. When not using distance marginalization, we find that nessai
requires 5.04× 106 likelihood evaluations, 2.07 times fewer than dynesty. When distance
marginalization is enabled nessai requires 7.22× 106, which, whilst still 1.34 fewer than
dynesty, is more than with the marginalization disabled. We revisit this in the following
chapter.

However, this reduction in likelihood evaluations does not relate directly to the to-
tal computation time because of the additional costs associated with sampling, which for



CHAPTER 4. NESTED SAMPLING WITH NORMALIZING FLOWS 102

nessai are associated with training the normalizing flow and populating the pool of new
samples. We find that the fraction of the time spent on each stage changes when using
distance marginalization. Without the marginalization, on average, 8% of the total com-
putation time is spent on training and a further 40% on population. When using distance
marginalization, this changes to 5% spent on training and 42% on population. We at-
tribute the difference in population time to the efficiency of the rejection sampling, which
is improved when including the reparameterization for distance discussed in section 4.3.1.
We find that without distance marginalization, the median run-time for nessai is 2.32
times faster than dynesty. However, when distance marginalization is enabled we observe
that, on average, nessai is only 1.40 times faster than dynesty. This further reinforces
our recommendation to use nessai with distance marginalization disabled.

We also show how our sampler can make use of parallelized likelihood functions by
evaluating the likelihood of new live points during the population stage. We repeat the
previous analysis for a single injection without distance marginalization and parallelize
the likelihood computation with increasing number of threads up to 16. We observe that
the reduction time evaluating the likelihood does not quite match the theoretical values,
indicating that there is a small overhead associated with it. This also highlights how the
limiting factor is the time spent training the normalizing flow and populating the pool of
new live points.

To aid in diagnosing potential biases during sampling, we include a series of diagnos-
tics in our sampler which allow us to easily identify under and over-constraining. These
diagnostics also help to tune the sampling settings and highlight how periodically retrain-
ing the normalizing flow during sampling prevents the proposal from becoming inefficient
during sampling.

We find that our algorithm is susceptible to under-sampling regions of the parame-
ter space which are close to the prior bounds. We consequently introduce the previously
described reparameterizations to mitigate this, and a series of diagnostics to aid in diag-
nosing biases and correctly tuning the settings. We aim to address this in further work
with changes to the design of the normalizing flows we have used.

It is natural to compare this work to simulation-based inference approaches [234, 411,
412, 416] which use VAEs and normalizing flows to produce posterior distributions. Our
approach differs from these in that it requires no prior computation since training occurs
during sampling and we do not introduce any assumptions about the data other than those
necessary to apply a nested sampling algorithm. nessai is therefore a drop-in replacement
for existing sampling algorithms that does not require changes to existing pipelines.

In future work we aim to evaluate our sampler using more expensive waveform models
including those for longer duration signals, such as those from binary neutron star (BNS)
or neutron star-black hole (NSBH) systems, and models which include higher-order modes.
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We will also investigate the suitability of other types of normalizing flow transforms, such
as the spline based transforms from Durkan et al. [370] and flows which allow for specifying
a manifold [360]. These changes could improve the efficiency of the population stage, which
is currently the slowest part of the algorithm. Another possible approach for reducing the
cost of population is using alternative reparameterizations for parameters such as the spin
magnitudes, which we observe to be two of the most challenging parameters to sample.

In summary, we have proposed a novel variation of the standard nested sampling al-
gorithm that incorporates normalizing flows specifically designed for inference with com-
putationally expensive likelihood functions. We have applied our sampler to the problem
of gravitational wave inference and shown that it consistently recovers the Bayesian pos-
teriors distributions and evidences with 2.07 times fewer total likelihood evaluations than
dynesty, another commonly used sampler, which translates to a 2.32 times reduction in
computation time. Our sampler therefore serves as a more efficient drop-in replacement
for existing samplers.



Chapter 5

Improvements to nessai

In this chapter, we discuss potential sources of bias in nessai and minor modifications to
the algorithm that are designed to avoid them and have the potential to further accelerate
the algorithm. We test these modifications on toy examples and repeat the gravitational-
wave analyses described in chapter 4.

Section 5.1 describes constant volume mode, a modification to how new samples are
drawn in nessai that is designed to avoid over-constraining. Section 5.2 discusses biases
that may arise from repeatedly training the normalizing flow and means to avoid this. We
then test these modifications in section 5.3 using a series of toy examples. Section 5.4
then presents results from repeating the analysis described in chapter 4 using the afore-
mentioned modifications and compares these results to those obtained previously. Finally,
section 5.5 summarizes the findings and makes recommendations for what settings to use
in analyses.

104
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When applying nested sampling, the most common sources of biases in the results
are correlations between subsequent nested samples and over- or under-shrinking the
likelihood-constrained prior at a given iteration [200]. These can lead to biases in both
the estimated evidences and posterior distributions [218].

In nessai, samples are not drawn using a current live point as a starting point, so new
samples are not directly correlated to existing samples. However, these samples are used to
train subsequent normalizing flows, so there are instead correlations between subsequent
distributions of samples. Additionally, if the radius used to construct the latent contour
used for drawing new samples is too small, this can lead to likelihood contours being over-
constrained. In both cases, these issues can be diagnosed using the insertion indices as
described in chapter 4. We now discuss specific methods for combating both these sources
of potential biases in nessai and present results demonstrating these methods. We then
repeat the analysis from chapter 4 and compare the results.

5.1 Constant volume mode

In the original version of nessai [1], the radius of the latent contour was determined
based on the worst point by mapping it to the latent space. This relied on the point being
mapped to a region of low-probability (larger radius) in the latent space. However, since
the flow is trained with samples rather than the likelihood of the points, the regions with
the lowest probability in the latent space (largest radius) will not always correspond to
regions with the lowest likelihood. This can result in the worst point mapping to a small
radius.

In practice, we observe that this leads to large variations in the radius used between
training, as shown in fig. 5.2. Whilst this is not inherently an issue, if the volume of
the latent contour is consistently underestimated, then this can lead to the likelihood-
constrained prior being over-constrained. This results in an over-estimate of the final
evidence and an over-constrained posterior distribution. The effect is most noticeable for
posterior distributions where the true posterior should be uniform but the estimated pos-
terior is under-sampled at the prior bounds. An example of this is shown in fig. 5.1 which
shows an over-constrained run alongside increasingly well-sampled runs and is discussed
further in section 5.3.1.

Originally, we counteracted this by including a fuzz factor (εFF) that increased the
volume of the latent contour, by reparameterising certain parameters, such as those we
expect to have broadly uniform posterior distributions, and by extensively tuning the sam-
pling settings. To avoid this and make nessai more reliable, we introduce an alternative
to using the worst point, which we call constant volume mode.

In constant volume mode, the volume of the latent contour, and therefore radius r, is
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Figure 5.1: Posterior distribution for 16-dimensional likelihood described in appendix A.3
with four Gaussian parameters, four Half-Gaussian parameters, four Gamma distribution
parameters and four uniform parameters. The true posterior distributions are shown with
solid black lines, the results obtained using nessai with different settings are shown on
each row. From top to bottom they are: without constant volume mode with the default
fuzz factor εFF, without constant volume mode with the fuzz factor manually specified to
εFF = 1.3, with constant volume mode and the default value ρCVM = 0.95, with constant
volume mode and ρCVM = 0.98, and with constant volume mode, ρCVM = 0.95 and
resetting the flow every fourth time it is trained.
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fixed for the entire sampling run which avoids variations in the latent radius. Since, for an
n-dimensional Gaussian, the distribution of the radius follows a χ-distribution, this corre-
sponds to truncating the χ-distribution at a specific value of r. The value is determined
using the inverse cumulative density function (CDF) and a user-defined fraction defined
on ρCVM ∈ (0, 1), which defaults to ρCVM = 0.95. This method is tested in section 5.3.1

5.2 Correlations between subsequent normalizing flows

We tested various different methods for determining when to train the normalizing flow
when sampling with nessai, but ultimately we found that training when the pool of new
points is depleted to be the most reliable. This is the method that was used in chapter 4
and, whilst it can lead to the flow being frequently retrained, this is often preferable since
populating the pool of points with a flow trained on a previous set of live points will lead
to an inefficient proposal if using constant volume mode, since the same latent radius will
be used.

At a given iteration, a flow is trained with the current live points. By design, these live
points will be either draws from the previous flow or samples that were used to train the
previous flow. Therefore, the weights of the previous flow should be a reasonable starting
point for training the next flow. This is the method used in the original version of nessai
and it has the advantage of speeding up training since the flow is not starting from scratch
each time it is trained. The downside to this approach is that if the previous flow is poorly
trained, for example stuck in a local minimum, then the subsequent flow will be starting
from a ‘bad’ starting point and may fail to recover.

In the context of nessai, this can translate to the previous flow over- or under-
constraining the likelihood contour and the subsequent flow showing the same bias. Over-
constraining arises in the final result as a bias in the evidence and, often, missing modes
in the posterior if it is multimodal. Under-constraining is less apparent in the final result,
and instead is more noticeable when examining the efficiency of the run, since it will lead
to more proposed points being rejected. Both cases can be easily mitigated by periodically
training the flow from scratch rather than using the previous flow as a starting point.

5.3 Results

We present results comparing runs without and without constant volume mode and reset-
ting the normalizing flow. Code to reproduce all the results is available at [438] and uses
the likelihoods implemented in nessai-models [439].



CHAPTER 5. IMPROVEMENTS TO NESSAI 108

0 10000 20000 30000 40000

Iteration

3

4

5

6

7

r

0 10

Count

CVM No CVM - εFF=1.106 No CVM - εFF=1.3

Figure 5.2: Radius of the latent distribution for three nested sampling runs with nessai:
one with constant volume mode and two without. The two runs without constant volume
have different values for the fuzz factor, the first has the default which in 16 dimensions
is 1.106 and the second has the value manually set to 1.3. The shaded region shows the
iterations before the normalizing flow was trained.

5.3.1 Constant volume mode

To test constant volume mode, we use a 16-dimensional likelihood where the likelihoods is
the product of 16 independent distributions, each corresponding to one dimension. These
are: four Gaussian distributions, four Half-Gaussian distributions, four γ-distributions and
four uniform distributions. This likelihood contains a mixture of features that will test
whether the likelihood contours are over-constrained or not, these include likelihoods that
are maximum at the prior bounds and likelihoods that are uniform. More details about
the likelihood is provided in appendix A.3.

We perform three runs: one with constant volume mode and two without. For the
runs without constant volume mode, we consider two values for the fuzz factor εFF: the
first is the default that is determined based on the expansion fraction εVF = 4, which is
related to the fuzz factor by εFF = (1 + εVF)1/nflow , and the second we set to εFF = 1.3.

The radii of the latent distributions for the three runs are shown in fig. 5.2. This
highlights how the radius can vary greatly over the course of a run. Increasing the fuzz-
factor can help offset this, but it does noes entirely prevent small radii and also has the
downside of decreasing the rejection sampling efficiency when larger radii are used. Both
small and large radii are avoided with constant volume mode which leads to more efficient
sampling.

The posterior distributions produced by the four runs are shown in fig. 5.1. These
highlight how over-constrained likelihood contours can lead to biased posterior distribu-
tions, which are most noticeable when the default the fuzz-factor is used (top row). It
also shows how this effect is most apparent for parameters where the likelihood contour
does not shrink, like the uniform parameters (second column), or where the posterior rails
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Table 5.1: p-values computed between the true marginal posterior distributions and es-
timated distributions for the 16-dimensional mixture of distributions described in sec-
tion 5.1. Results are shown for five runs with different settings, from left to right without
constant volume mode with the default fuzz factor εFF, without constant volume mode
with the fuzz factor manually specified to εFF = 1.3, with constant volume mode and
the default value ρCVM = 0.95, with constant volume mode and ρCVM = 0.98, and with
constant volume mode, ρCVM = 0.95 and resetting the flow every fourth time it is trained.
The combined p-value for each run is also shown in the final row.

Parameter No CVM No CVM - εFF = 1.3 CVM CVM - ρCVM = 0.98 CVM reset
Gaussian 1 0.00 0.55 0.57 0.03 0.81
Gaussian 2 0.00 0.00 0.25 0.15 0.11
Gaussian 3 0.00 0.24 0.56 0.60 1.00
Gaussian 4 0.00 0.67 0.38 0.47 0.23
Uniform 1 0.00 0.31 0.00 0.61 0.33
Uniform 2 0.00 0.08 0.00 0.02 0.74
Uniform 3 0.00 0.00 0.06 0.99 0.38
Uniform 4 0.00 0.15 0.06 0.96 0.17
Gamma 1 0.00 0.13 0.49 0.55 0.92
Gamma 2 0.00 0.00 0.00 0.72 0.52
Gamma 3 0.00 0.04 0.32 0.55 0.19
Gamma 4 0.00 0.16 0.10 0.94 0.37
Half-Gaussian 1 0.00 0.36 0.09 0.00 0.28
Half-Gaussian 2 0.00 0.00 0.00 0.01 0.26
Half-Gaussian 3 0.00 0.03 0.00 0.75 0.91
Half-Gaussian 4 0.00 0.25 0.23 0.56 0.88
Combined p-value 0.00 0.00 0.00 0.01 0.64

up against the prior bounds, like the half-Gaussian parameters (fourth column). Enabling
constant volume mode or increasing the fuzz factor both significantly reduce the biases
in the final posterior distributions, as seen in rows two and three of fig. 5.1. However,
if we compute p-values between the posterior samples and the true posterior distribu-
tions, shown in table 5.1, we see that there are still biases, most notably in the uniform
and half-Gaussian distributions. Increasing the volume fraction used in constant volume
mode, row 4 four in fig. 5.1, further reduces the biases in the posteriors but the combined
p-value in table 5.1 is still below the nominal threshold of 0.05, which we attribute to the
half-Gaussian parameters being undersampled at the prior bounds.

These results demonstrate how constant volume mode can mitigate over-constraining
but additional adjustments to the settings may be required to sample particular distribu-
tions, such as those that have maximum posterior probability at the priors bounds. In the
following section, we repeat this test but periodically reset the normalizing flow and show
how this can be used alongside constant volume mode.
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5.3.2 Resetting the normalizing flow

We test three applications of resetting the flow. First, we repeat the analysis of the
16-dimensional mixture of distributions from the previous section, then we analyse the
8-dimensional Rosenbrock likelihood as defined in appendix A.1. Finally, we analyse a
50-dimensional Gaussian likelihood with uniform priors on [−10, 10]n. In all three cases,
we enable constant volume mode with the default value ρCVM = 0.95 and in the two new
tests we perform one run without resetting the flow and another where the flow is reset
every 4th time it trains.

Results for the 16-dimensional mixture of distributions are presented in the final row
of fig. 5.1 and are almost indistinguishable from the results obtained without resetting the
flow with ρCVM = 0.98. However, the p-values for each marginal posterior distribution
in table 5.1 show that this change has addressed the remaining biases, and the combined
p-value now passes. This demonstrates that in some scenarios, it is better to periodically
reset the flow instead of increasing ρCVM.

The Rosenbrock likelihood is challenging to sample from due to its ‘banana-like’ shape
and multiple modes [440], which can often lead to over-constraining. Figure 5.3 shows the
1- and 2-dimensional posteriors obtained when sampling with nessai with and without
resetting the normalizing flow. This demonstrates how the run where the flow is not
reset is over-constrained; it misses part of the posterior mass in the second mode and the
long tail that is present in the later dimensions. This bias is also present in the insertion
indices, which have a corresponding p-value of 0.0038. Since the initial result is over-
constrained, it is to be expected that the run where the flow is reset will require more
likelihood evaluations, however, the training time also increases since the flow takes longer
to train when starting from random weights. In this particular example, the run time
doubles from 3.25 minutes to 6.5 minutes. This is the main disadvantage to resetting
the flow: it can increase the wall time.

Since the evidence for a Gaussian likelihood is analytic, we can compare the estimated
evidences to the true value, which is lnZ = −50 × ln 20 ≈ −149.79. These results are
shown in table 5.2 alongside the posterior effective sample size, the number of likelihood
evaluations and wall time. From these results, we see that the run where the flow is not
reset significantly over-estimates the log-evidence, i.e. it is over-constrained. On the other
hand, the log-evidence estimate for the run where the flow is periodically reset agrees
with the analytic value. The number of likelihood evaluations required is consistent with
the first run being over-constrained. However, despite requiring half as many likelihood
evaluations, the run without resetting is 50% slower than the run with it. This is in
part due to using a vectorized likelihood that accounts for less than 0.1% of total wall
time, so the cost is dominated by rejection sampling. We present the rejection sampling
acceptance as a function of iteration in fig. 5.4, this shows how resetting the flow results
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brock sampled using nessai with (blue) and without (orange) resetting the normalizing
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Table 5.2: Comparison of the results obtained when sampling a 50-dimensional Gaussian
with and without resetting the normalizing flow between training.

lnZ ESS Likelihood evaluations Wall time [min] Likelihood time [sec]
Analytic −149.79 - - - -
No resetting −147.78± 0.20 19 868 31 376 997 889 10.6
Reset every 4 −149.93± 0.20 19 840 62 534 452 510 21.7

in significantly higher acceptance, which explains the difference in wall times. Figure 5.4
also shows that training becomes less frequent when the flow is not reset, which is again
consistent with over-constraining: if the contour is over-constrained, then fewer samples
will be rejected by the likelihood threshold and the flow will be trained less frequently.

The results in fig. 5.4 also highlight a limitation of the normalizing flows being used in
nessai. After first training the flow, the sampling efficiency given the likelihood threshold
increases, however the rejection sampling is significantly less efficient than the later stages
of the run. This is a result of the flow proposing samples that are outside the prior bounds
and are therefore rejected, as the likelihood contour shrinks fewer of the proposed samples
are outside the prior and the rejection sampling becomes more efficient.



CHAPTER 5. IMPROVEMENTS TO NESSAI 113

0.0

0.5

1.0

A
cc

ep
ta

n
ce

0

2000

C
u

m
u

la
ti

ve
tr

ai
n

in
g

co
u

n
t

0

1000

It
er

at
io

n
s

b
et

w
ee

n
tr

ai
n

in
g

0 25000 50000 75000 100000 125000 150000 175000

Iteration

10−2

100

R
ej

ec
ti

on
sa

m
p

li
n

g
ac

ce
p

ta
n

ce

Figure 5.4: Comparison of the sampling efficiency, training frequency and rejection sam-
pling efficiency when sampling a 50-dimensional Gaussian likelihood with (blue) and with-
out (orange) resetting the normalizing flow. The shaded region indicates the iterations
before the normalizing flow was first retrained.



CHAPTER 5. IMPROVEMENTS TO NESSAI 114

5.4 Improving previous gravitational-wave results

We repeat the analysis of 128 binary black holes (BBHs) performed in chapter 4 with
updated settings and compare the results. The main change is enabling constant volume
mode with ρCVM = 0.95. As shown in section 5.1, this can reduce issues during sampling
that lead to under-sampling regions near the prior bounds. As a result, we find that the
reparameterization introduced for the spin magnitudes a1 and a2 is no longer necessary and
the default rescaling can be used instead. We keep all the other settings unchanged. The
probability-probability plots (P-P plots) for the updated analyses is included in fig. 5.5
and shows that with these settings nessai still produces reliable results with and without
distance marginalization.

We then compare the number of likelihood evaluations required to reach convergence
and total wall time in fig. 5.6. These results show that this simple change improves
the sampling efficiency both with and without distance marginalization. With distance
marginalization enabled, the number of likelihood evaluations and wall time improve by
2.7 and 3.0 times respectively, whereas without distance marginalization the improvement
is only 1.6 and 2.0 time respectively. This translates to an overall average reduction in
likelihood evaluations of ∼ 6 times compared to dynesty.

We also investigate these improvements on a per-injection basis, focusing on the runs
with distance marginalization. In fig. 5.7, we present a comparison of change in number of
likelihood evaluations and wall time as a function of network signal-to-noise ratio (SNR)
for the original results obtained with nessai compared to nessai with constant volume
mode. These results improve for all 128 injections but show that the largest improvements
come at larger SNRs. We present similar results comparing both sets of nessai run to
those performed with dynesty in fig. 5.8. These results show that the original version of
nessai is more efficient than dynesty at intermediate SNRs but less efficient and high
and low SNRs. In contrast, when constant volume mode is enabled, nessai’s efficiency
improves at higher SNRs and, as a result, it is more efficient than dynesty at high SNRs.
However, it remains worse at low SNRs. We now explore these specific runs.

The runs that are less efficient than dynesty (i.e. require more likelihood evaluations)
are largely below a network SNR of 10 and, as the SNR decreases, they get comparatively
slower. We examine the 16 ‘worst’ runs compared to dynesty, of which 14 require more
likelihood evaluations, and find that they are all highly multimodal likelihoods, partic-
ularly in the sky angles (α, δ). This includes some injections with higher SNRs, where
the signal lies in a sky location where one of the detectors is insensitive due to the an-
tenna patterns. The nested samples for the 16 runs are presented in fig. 5.9 and show
this multimodality. As discussed in section 3.3.7, when normalizing flows are trained on
multimodal distributions, the resulting flow has non-zero probability between the modes.
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Figure 5.5: P-P plots showing the confidence interval versus the fraction of the events
within that confidence interval for the posterior distributions obtained using nessai with
constant volume mode for 128 simulated compact binary coalescence signals produced
with bilby and bilby_pipe. The 1-, 2- and 3-σ confidence intervals are indicated by
the shaded regions and p-values are shown for each of the parameters and the combined
p-value is also shown.
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Figure 5.7: Comparison of the number of likelihood evaluations and wall times for nessai
with and without constant volume mode as function of network SNR. The results shown
are for runs with distance marginalization enabled.
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Figure 5.9: Nested samples for right ascension α and declination δ for the 16 injections,
for which nessai with constant volume mode is the least efficient compared to dynesty.
Runs which required fewer likelihood evaluations than dynesty are marked with a black
triangle.

In nessai, this is exacerbated by the low number of samples used during training and
will lead to learnt likelihood contours that contain regions below the likelihood threshold.
Any samples drawn from these will be rejected, leading to low sampling efficiency and
increasing the number of likelihood evaluations required.

5.5 Conclusions

In this chapter, we have introduced and tested two main modifications to the standard
settings in nessai: constant volume mode, which fixes the latent radius, and period-
ically resetting the normalizing flow. These modifications aim to mitigate biases in the
results obtained with nessai by reducing the potential for over-constraining the likelihood
constrained prior when drawing new samples. Such biases arise in the evidence and pos-
terior distributions and be diagnosed using the insertion indices discussed in section 2.6.7.
Furthermore, these changes make nessai more robust to the choice of settings.



CHAPTER 5. IMPROVEMENTS TO NESSAI 119

The results presented in section 5.1 show that without constant volume mode, the
latent radius can vary greatly between iterations leading to over-constrained posterior
distributions, particularly for parameters with posterior mass at the prior bounds, see
fig. 5.1. Constant volume mode mitigates this by fixing the latent radius, thus reducing
the over-constraining, as shown in fig. 5.1. However, biases can still arise in certain cases,
such as when the posterior probability is maximal at the prior bounds.

The second modification, resetting the normalizing flow, is designed to avoid cumula-
tive biases from poor training at a given iteration by periodically retraining from scratch.
We show that this improves results for posteriors with maximum probability at the prior
bounds, see table 5.1, for complex posterior distributions with long tails and multiple
modes, such as the Rosenbrock likelihood (fig. 5.3), and for high-dimensional problems
(table 5.2).

With these improvements in hand, we repeat the analysis of 128 BBHs presented
in chapter 4 and find that nessai still passes the P-P tests without and with distance
marginalization. Comparing these results to those obtained with the original settings, we
find that the new settings improve sampling efficiency (measured in terms of likelihood
evaluations) by up to 2.7 times whilst also reducing the wall time by 3.0 times. This
results in median wall time of just 8.5 h on a single core with distance marginalization
enabled.

We also explore how sampling efficiency compares to dynesty as a function of SNR
and present the results in fig. 5.8. We find that nessai performs worse than dynesty
at low network SNRs or when the SNR in a single detector is low. Such signals with
have likelihood surfaces that multimodal in the sky angles, which normalizing flows are
ill-suited to. This could be partially address by sampling in the detector-frame [96, 198]
and we test this in chapter 8.

In summary, the modifications to the original version of nessai used in chapter 4
make sampling significantly more robust whilst also improving the efficiency for both
gravitational-wave and non-gravitational-wave applications. We therefore recommend
their use for analyses that use nessai.



Chapter 6

Sampling phase with nessai

This chapter considers applications of nessai to gravitational-wave analyses where the
orbital phase cannot be marginalized and the challenges that arise from the increased
complexity of the parameter space being sampled. This includes examining alternative
reparameterizations of the phase and other source angles, such as the quaternion param-
eterization, and evaluating their suitability for use with nessai.

Section 6.1 presents a series of baseline analyses that highlight the issues that arise
when sampling the phase with nessai. Section 6.2 describes how the source angles, in-
clination, polarization and phase, can be reparameterized using the unit-quaternions and
defines equations for transforming between them. Section 6.3 reviews other reparame-
terizations of the phase that exist in the literature. These different reparameterizations
are then tested and evaluated in section 6.4, starting with validating the quaternions and
comparing the reparameterizations in sections 6.4.1 and 6.4.2 before performing analyses
similar to those from chapters 4 and 5, but including phase, in section 6.4.3. Finally,
section 6.5 summarizes the results and highlights important considerations to account for
when using nessai for analyses without phase marginalization.

120
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The orbital phase ϕc is hard to sample due to the correlations in the parameter space
between it and the polarization and inclination [96]. The gravitational-wave analyses
presented so far all avoid sampling the phase by using analytic phase marginalization.
This marginalization was introduced in Veitch and Del Pozzo [252] relies on the assumption
that the waveform can be factorized as hθ = hθ,0 exp(iϕc), where hθ,0 is the waveform
evaluated at a reference frequency, e.g. ϕc = 0. This allows for the marginalized likelihood
to be written as

p(d|H) ∝ exp
{
−1

2 〈hθ,0|hθ,0〉
}

exp
{
−1

2 〈d|d〉
}

× 1
2π

∫ 2π

0
exp 1

2
{
〈d|hθ,0〉 e−iϕc + 〈hθ,0|d〉 eiϕc

}
dϕc, (6.1)

where we have assumed p(ϕc|H) = 1/2π [252]. This is a standard integral that yields a
modified Bessel function of the first kind I0:

1
2π

∫ 2π

0
exp 1

2
{
〈d|hθ,0〉 e−iϕc + 〈hθ,0|d〉 eiϕc

}
dϕc = I0 (| 〈d|hθ,0〉 |) , (6.2)

so the marginalized likelihood can then be written as

p(d|H) ∝ exp
{
−1

2 〈hθ,0|hθ,0〉
}

exp
{
−1

2 〈d|d〉
}
I0 (| 〈d|hθ,0〉 |) . (6.3)

However, as discussed in section 2.10.3, this is only valid for waveforms that solely contain
the dominant 2-2 modes or when the effects of precession are minimal because of the
assumption that hθ = hθ,0 exp(iϕc). Therefore, since current analyses use approximants
that include higher-order modes [9, 10, 98, 118] and this marginalization is no longer
valid, we must instead sample the phase. We now explore the modifications necessary to
efficiently sample phase with nessai.

6.1 Baseline analyses

As a point of reference, we now present a baseline analysis performed using settings based
on the results presented in chapter 5. These use the gravitational-wave specific repa-
rameterizations, minus the reparameterization for the spins, as described previously in
section 5.4. We apply the same reparameterization to phase as was used for the other
periodic angles, where they are mapped to Cartesian coordinates by introducing a radial
parameter.

We analyse a GW150914-like injection with IMRPhenomPv2 in a three-detector network
with Advanced LIGO (aLIGO) and Advanced Virgo (AdVirgo) design sensitivity [70,
74, 77] with an optimal network signal-to-noise ratio (SNR) of ∼ 40. We perform two
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analyses: one where all 15 parameters are sampled (or marginalized) and another where
the spin parameters {a1, a2, θ1, θ2, φJL, φ12} are fixed to the injected values. We repeat
each analysis with and without phase marginalization, and use distance marginalization
in both cases. When the spins are fixed, the extrinsic parameters are better constrained,
making the correlations between polarization and phase more apparent, see for example
fig. 6.6. We use this when testing the quaternion parameterization and demonstrating
other parameterizations.

In fig. 6.1, we present a subset of the posterior distributions for the complete analysis
with and without phase marginalization. These results show reasonable agreement for
the phase, polarization and inclination but the remaining parameters are over-constrained
when sampling without phase marginalization, most notably the spin magnitudes. The
insertion indices, shown in appendix E.1, reinforce that the results are over-constrained
and overall this is a clear indication that these initial settings are inadequate for sampling
phase.

We also compare a subset of the diagnostics produced by nessai, shown in fig. E.2,
and find that disabling phase marginalization significantly reduces the acceptance, which
in turn results in the normalizing flow being trained more frequently and the pool of
samples being repopulated more frequently. This is in-line with previous studies that
find that disabling phase marginalization significantly reduces sampling efficiency [252],
however the effect is significantly larger for nessai: we observe a ∼ 10 times increase in
the number of likelihood evaluations and wall time, whereas previous studies report closer
to a factor of 4 [252].

Results for the runs with fixed spin parameters are included in appendix E.1. Unlike
the previous results, these do not show clear signs of over-constraining and the posterior
distributions obtained with and without phase marginalization agree, including for the
phase and polarization. However, there is still a 10-fold increase in the number of likelihood
evaluations and, therefore, total wall time, and the rejection sampling efficiency drops
significantly.

These results imply that the nessai settings used in previous analyses can be used to
sample phase, polarization and inclination, however, not in the complete precessing case.
Therefore, revised settings or alternative reparemeterizations, or both, will be required to
produced unbiased results when sampling phase. We now explore possible reparameteri-
zations and settings in the following sections.
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Figure 6.1: Corner plots comparing posterior distributions for a subset of parameters
sampled with (blue) and without (orange) phase marginalization for GW150914-like signal
in a three-detector network with an optimal network SNR of approximately 40. For the run
with phase marginalization, the ϕc posterior has been reconstructed [198]. Both results
were produced using nessai with the same sampling settings. The 2-dimensional contours
contain 39.3%, 86.5% and 99.8% of the posterior probability respectively.
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6.2 Representing the orientation of binaries with quater-
nions

The three source angles that parameterize the orientation of binaries, orbital phase ϕc,
inclination θJN and polarization ψ, describe a series of rotations and can be treated as
Euler angles. They can therefore be transformed into unit-quaternions, which represent
the 3-dimensional rotation group SO(3) [441]. The unit-quaternions are comparatively
simpler to construct than Euler angles and eliminate their inherent degeneracies. We now
examine the relationship between the source angles (ϕc, θJN, ψ) and the unit-quaternions
and determine if it is possible to sample in the unit-quaternions instead of the source
angles.

6.2.1 Unit-quaternions

The quaternions are akin to the complex numbers but defined in four–dimensional space
and introduce not one but three ‘imaginary parts’ q = a + bi + cj + dk where a, b, c, d
are real coefficients [442]. However, since our focus is on rotations, we will use the unit-
quaternions:

q̂ = [q0, q1, q2, q3]T , (6.4)

where
|q̂|2 = q2

0 + q1
1 + q2

2 + q2
3 = 1, (6.5)

which lie on the 3-sphere S3 and can describe the rotation group SO(3) [443]. The rotations
describe the Euler angles and the unit-quaternions can be related to equivalent rotation
matrices, the exact form of which will depend on the convention used [444]. In this work,
we use the ZY Z convention for the Euler angles which starts with a rotation through γ

about the z-axis, followed by a rotation through β about the y-axis and finally a rotation
about the z-axis by α, where y and z are the fixed frame axes. This allows us to define
the transformation from the Euler angles to the unit-quaternions [444]:


α

β

γ

 =


atan2

(
q3
q0

)
+ atan2

(
−q1
q2

)
2 arccos

(√
q2

0+q2
3

|q̂|

)
atan2

(
q3
q0

)
− atan2

(
−q1
q2

)

 , (6.6)
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where the atan2 function [445] allows for distinguishing between quadrants. The inverse
transformation is then

q̂ =



cos β2 cos α + γ

2
− sin β2 sin α− γ2
sin β2 cos (α− γ)

2
cos β2 sin (α + γ)

2


. (6.7)

We now consider how the source angles are related to this convention.

6.2.2 From unit-quaternions to source angles and back

Our goal is to sample in the parameter space defined by the unit-quaternions and trans-
form to source angles when evaluating the likelihood, however we must first address the
inverse of this transformation: from source angles to quaternions. For this, we must relate
[ϕc, θJN, ψ] to [α, β, γ] and define equivalent priors on the unit-quaternions that can be
used for sampling.

We follow the convention used in section 1.3.2, and define the line-of-sight to the
observer n̂ to be aligned with the z-axis such that x–y plane lies perpendicular to n̂. The
source angles describe a rotation through ϕc about the line-of-sight, followed by a rotation
through θJN about the y-axis and finally a rotation about the line-of-sight through ψ.
Therefore, the equivalence is [ψ, θJN, ϕc] ≡ [α, β, γ] which allows us to relate the source
angles to the unit-quaternions with eqs. (6.6) and (6.7).

The prior distributions for the sources angles are ϕc ∼ U [0, 2π], θJN ∼ sin θJN and
ψ ∼ U [0, π] where polarization is defined on the interval [0, π] because gravitational waves
are spin-2 in nature1. To determine the equivalent priors on the components of the unit-
quaternions, we first consider the domain over which they are defined.

As mentioned previously, the unit-quaternions lie on the 3-sphere S3 so we consider the
uniform distribution on S3 and transform to the Euler angles using eq. (6.6). However,
S3 double-covers SO(3) [441], so the resulting distributions will double-cover the Euler
angles. This is remedied by mapping back to the closed region [0, 2π] × [0, π] × [0, 2π]
using modulo 2π. We then take one more step and apply α mod π to map it back to
[0, π] to match the interval used for ψ. This transformation is two–to–one and means that
once samples are transformed to the source angle-space, the original quaternions cannot

1This implies that a gravitational wave produced by a source that is rotated by ψ = 2π, will be equal
to those produced by a source with ψ = π.
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be recovered. The final transformation from unit-quaternions to source angles is therefore

ϕc

θJN

ψ

 =



[
atan2

(
q3
q0

)
+ atan2

(
−q1
q2

)]
mod 2π

2 arccos
(√

q2
0+q2

3
|q̂|

)
[
atan2

(
q3
q0

)
− atan2

(
−q1
q2

)]
mod π

 . (6.8)

What remains is to define the priors on the unit-quaternions, eq. (6.4). However, since
these are defined on the unit-3-sphere, the prior will be joint on the four components

p(q̂) = 1
S
δ(|q̂| − 1) (6.9)

where δ(·) is the delta function and S = 2π3/2/Γ(3/2) is the surface area of the unit-3-
-sphere. Whilst one could use joint priors for sampling, in practice it is easier to instead
consider the quaternions and define the priors in the non unit-quaternion space. Muller
and Marsaglia [427, 428] showed that points can be drawn uniformly on the n-sphere by
generating an n-dimensional vector of normal deviates x and normalizing by the length of
the vector. We can therefore define the priors on each of the quaternion components such
that p(qi) ≡ N (qi; 0, 1) which is equivalent to defining a joint uniform prior on all four
components. During sampling, a quaternion can be normalized to a unit-quaternion and
then used to compute the source angles. This also has the added benefit of being better
suited for use with nessai since the priors are unbounded, so the normalizing flow cannot
propose samples outwith the priors bounds.

6.3 Other reparameterizations for phase and the source
angles

We now consider alternative reparameterizations of the phase, and in some cases, other
source angles. We compare them to the default reparameterization used for angles in
nessai using the posterior distribution from the analysis with the fixed spin parameters
described in section 6.1. The posterior distribution in the source angles is presented in
fig. 6.2 and shows the typically correlations that are observed between the three source
angles.

The approach used in the baseline run is described in detail section 4.3, in summary:
a radial component ρθ is sampled from a χ-distribution with two degrees of freedom and
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Figure 6.2: Posterior distribution for the source angles for a GW150914-like signal with
all the spin parameters fixed to the injected values. This shows the highly-correlated and
multimodal nature of these parameters. The 2-dimensional contours contain 39.3%, 86.5%
and 99.8% of the posterior probability respectively.

used to convert the angle θ to Cartesian coordinates:

xθ = ρθ cos θ,
yθ = ρθ sin θ.

(6.10)

This treatment is used for angles that are periodic and the resulting parameters have unit-
Gaussian priors. For angles, such as the inclination, that are not periodic and have Sine or
Cosine priors we instead use the default rescaling in nessai which rescales the samples at
a given iteration to [−1, 1] since the probability at the prior bounds is zero. The posterior
distribution after applying this reparameterization is shown in fig. 6.3. This distribution
is free of hard bounds. However, some of the parameters appear ‘folded’ and have other,
more complex shapes or multiple modes. Whilst the flow can learn approximations of
these shapes, the regions between the various modes will lead to samples being rejected
based on the likelihood criterion.

LALInference [96] introduced two replacement parameters for polarization and phase
that leverage the correlations between the three source angles, they are

α = ψ + ϕc,

β = ψ − ϕc.
(6.11)
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coordinates by introducing radial parameters. The 2-dimensional contours contain 39.3%,
86.5% and 99.8% of the posterior probability respectively.



CHAPTER 6. SAMPLING PHASE WITH NESSAI 129

−6
−4
−2
0

2

β

0 2 4 6 8

α

0.
0

0.
3

0.
6

0.
9

1.
2

θ J
N

−6 −4 −2 0 2

β
0.
0

0.
3

0.
6

0.
9

1.
2

θJN

Figure 6.4: Posterior distribution for source angles using the parameters α and β intro-
duced in LALInference and defined in eq. (6.11) for a GW150914-like signal with all the
spin parameters fixed to the injected values. The 2-dimensional contours contain 39.3%,
86.5% and 99.8% of the posterior probability respectively.

These parameters remove the correlation between the polarization and phase and result in
a posterior distribution with disconnected modes in the α− θJN space as shown in fig. 6.4.
Closely related to this is the use ∆ϕc which was introduced in bilby [198] and is defined
as

∆ϕc = ϕc + sgn(cos θJN)ψ, (6.12)

where sgn returns the sign {+,−} of the input. This single parameter has a similar effect
to α and β and is not correlated with the inclination. The corresponding posterior is
shown in fig. 6.5.
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6.4 Results

We test the different reparameterizations using the baseline analyses described in sec-
tion 6.1 and then based on these findings perform P-P tests to validate the settings. We
consider four different methods of sampling the phase: sampling the standard phase and
applying the reparameterization for periodic parameters, sampling ∆ϕc and applying the
reparameterization for periodic parameters, sampling the unit-quaternions and sampling
without any gravitational-wave specific reparameterizations. We omit the (α, β) reparam-
eterization since when the angles are transformed to Cartesian coordinates the resulting
space only differs by a rotation to that obtained when using ∆ϕc. All analyses are per-
formed using bilby [198] with a custom likelihood implementation for the quaternions.

6.4.1 Quaternions

We validate sampling the quaternions by analysing the GW150914-like injection with fixed
spins twice: once with the default parameters and once sampling the quaternions, and
comparing the results. In the latter, the quaternions are transformed to unit-quaternions
and then source angles during the likelihood calculation.

We start by comparing the posterior distributions, which are presented in fig. 6.6.
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Figure 6.6: Comparison of the posterior distributions obtained when sampling with the
standard source angles (ϕc, θJN, ψ) versus the quaternions. The results for the quaternions
are shown in yellow and those for the default source angles are shown in teal. The 1-σ
confidence intervals are shown for the marginal distributions and 2-dimensional contours
shown contain 39.3%, 86.5% and 99.8% of the posterior probability respectively.
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Figure 6.7: Posterior distribution for a GW150914-like binary black hole (BBH) injection
in the unnormalized quaternion parameter space. The 2-dimensional contours contain
39.3%, 86.5% and 99.8% of the posterior probability respectively

These show that sampling the quaternions allows nessai to correctly capture the cor-
relations between the phase and polarization and verifies that the transforms and prior
distributions described are indeed equivalent to the standard parameters and priors. The
posterior distribution in the unnormalized quaternion space is shown in fig. 6.7. This is
the space in which nessai is sampling and the normalizing flows are being trained. We
observe a cloverleaf-like structure in the q0–q3 plot; this arises because the quaternions
double-cover the Euler angles which in turn double-cover the source angles, and is a par-
ticularly challenging structure for the normalizing flows to learn since it is multimodal and
the marginal distributions have a narrow trough around the origin. These features may
lead to inefficient sampling or a particular mode being undersampled when compared to
the others. We therefore examine the effect this has on sampling efficiency.

The log-evidences, number of likelihood evaluations and wall times for both analyses
are presented alongside the baseline analysis with phase marginalization in table 6.1. The
quaternion analysis over-estimates the log-evidence compared to the baseline runs, imply-
ing the run is over-constrained and the settings may need fine-tuning, however we leave
this for complete analysis in section 6.4.2. The number of likelihood evaluations between
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Table 6.1: Comparison of the results obtained when sampling using the quaternions com-
pared to the default reparameterisation.

lnZ ESS Likelihood evaluations Wall time [min]
Default (marg.) −12145.37± 0.11 11 763 358 916 6.6
Default −12145.23± 0.12 12 629 3 544 511 72
Quaternions −12144.64± 0.12 12 726 3 433 878 38

the two runs without phase marginalization are comparable, meaning that the sampling
in the quaternion space has not significantly improved sampling efficiency. However, the
wall time has decreased by ∼ 50%. We investigate the cause of the difference and find
that the rejection sampling efficiency that ensures samples are distributed according to
the prior is more efficient when using the quaternions.

We have shown that the unit-quaternions are an alternative parameterization of the
source angles. When sampling in a reduced parameter space, this parameterization is as
efficient as sampling the source angles directly. However, that parameter space presents
various features that may prove difficult to sample in some cases. We test the quaternions
on the complete parameter space in the next section.

6.4.2 Comparing reparameterizations

We first consider the different reparameterizations: the default, ∆ϕc and the quaternions.
Changing the parameters being sampled to ∆ϕc or the quaternions is insufficient to prevent
the over-constraining described previously, therefore irrespective of which parameters are
sampled other settings will need changing. Given the results obtained in chapter 5, we
consider increasing the volume of the latent contour by increasing ρCVM and periodically
resetting the flow.

We iteratively increase latent volume up to ρCVM = 0.995 and find that this progres-
sively reduces the over-constraining at the cost of reducing the efficiency of the rejection
sampling, which leads to longer wall times. However, even at ρCVM = 0.995 the insertion
indices show signs of over-constraining, suggesting further changes may be needed. We
present a subset of the diagnostics produced by nessai in fig. 6.8 for the three different
parameters being sampled. These results show that sampling in ∆ϕc or the quaternions
is largely comparable to the default reparameterization. The run sampling ∆ϕc is slightly
more efficient than the other two, however, it is also the most over-constrained of the three
runs, see appendix E.2. These results suggest that there is little benefit to sampling in
these parameters compared to default reparameterization in nessai. We attribute this to
the multimodality present in the parameter spaces, as seen in figs. 6.5 and 6.7, which we
know reduces sampling efficiency. Therefore, we do not consider these reparameterizations
in further analyses and use the default reparameterization.
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Figure 6.8: Subset of the diagnostic plots for runs with nessai using different reparam-
eterizations to sample phase. From top to bottom these are: the acceptance base on
the likelihood threshold at a given iteration, the cumulative training count, number of
iterations between training and the rejection sampling efficiency. To improve readability,
the rolling mean with a window length of 16 has been used to smooth the acceptances
and iterations between training. Results are shown for a run sampling the default phase
parameter with the default reparameterizations, a run sampling with quaternions, a run
sampling ∆ϕc instead of phase, a run sampling the default phase with no gravitational-
wave reparameterizations and a run sampling the default phase parameter with additional
reparameterizations for the spin magnitudes.
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The over-constraining seen in fig. 6.1 is similar to what was described in section 5.3, so
one might expect that resetting the flow would address the over-constraining. However,
we find that the increase in computational cost is prohibitive; more than 10-fold that of
the baseline analysis without phase marginalization irrespective of the parameters being
sampled. We attribute this to the reparameterizations used to map between the X -space
and the X ′-space which change how the likelihood-constrained prior shrinks, most notably
the reparameterization for mass ratio that mirrors samples about the prior bound.

In lieu of resetting the flow, we consider alternative reparameterizations for the spin
parameters. In the original version of nessai, the spin magnitudes were mapped to
a two–dimensional parameter space (xai

, yai
) where a uniform prior corresponded to a

two–dimensional Gaussian. In chapter 5, we found that this reparameterization was no
longer needed when using constant volume mode, which sped up inference. We re-test
the reparameterization when sampling phase and find that it helps mitigate the over-
constraining with lower values of ρCVM however it significantly decreases the sampling
efficiency as shown in fig. 6.8. We test these settings further in the following section.

As an alternative, we also test disabling the gravitational-wave specific reparameter-
izations and use instead the default rescaling in nessai which rescales the samples at a
given iteration to [−1, 1] in each dimension based on the current minimum and maximum.
This presents different challenges, for example there is not dedicated treatment for peri-
odic parameters, but we find that periodically resetting the flow every 8’th training and
increasing the volume fraction to ρCVM = 0.98 are enough to produce results that do not
show signs of over-constraining, see fig. 6.9. The various diagnostics for this run are shown
alongside the previous analyses in fig. 6.8. The run without any problem-specific repa-
rameterizations has significantly lower acceptance, particularly at early iterations where a
large fraction of the proposed samples lie outside the prior bounds.

6.4.3 Probability-probability tests

The tests conducted so far serve as a starting point for conducting P-P tests. We perform
P-P tests using the same configuration as in chapter 4. The simulated four-second BBH
signals in a three-detector network with design sensitivity [70, 77] sampled at 2048 Hz. We
use the same priors but, due to the increased computational cost, reduce the number of
injections from 128 to 64 and use 16 cores per analysis. The median network SNR of the
resulting injections is 18.

We perform three separate analyses. The first uses the defaults reparameterizations
but increases the latent contour to ρCVM = 0.995, the second uses the reparameterizations
for the spin magnitudes introduced in chapter 4 with ρCVM = 0.98 and the third uses the
default reparameterizations in nessai with ρCVM = 0.98 and the flow is reset every 8th
training.
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Figure 6.10: P-P plots showing the confidence interval versus the fraction of the events
within that confidence interval for the posterior distributions obtained using our analysis
nessai for 64 simulated compact binary coalescence signals produced with bilby and
bilby_pipe. The 1-, 2- and 3-σ confidence intervals are indicated by the shaded regions
and p-values are shown for each of the parameters and the combined p-value is also shown.

We present probability-probability plots (P-P plots) for the first two analyses in fig. 6.10.
The P-P plot for the first analysis with ρCVM = 0.995 indicate that there is a systematic
bias in the posterior distributions, most notably in the spin magnitude a1 and phase ϕc.
The results for the second analysis with the additional reparameterizations pass the P-P
test with a p-value of 0.3997. This suggests that the additional reparameterization for the
spins is needed to reliably sample without phase marginalization.

The analyses without any problem-specific reparameterizations show significantly dif-
ferent behaviour. A fraction of the analyses complete in comparable times to the previous
analyses, however, the remaining analyses take significantly longer and in some cases failing
to complete after two weeks. This is a result of the rejection sampling being increasingly
inefficient at later iterations due to multimodality in various parameters, including the sky
location and geocentre time, similar to what was observed in section 5.4.

We examine the number of likelihood evaluations and wall times as a function of
network SNR for the analyses that passes the P-P test and present the results as a function
of network SNR in fig. 6.11. Higher SNRs require more likelihood evaluations and, as
expected, take longer to sampler. In some cases, low SNR injections can take longer than
higher SNRs, this occurs when the likelihood surface is multimodal which, as discussed
previously, can lead to inefficient sampling. The average number of likelihood evaluations
required is 43.0× 106 which corresponds to an average wall time of 84 hours. We show a
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(b) Compared to sampling with phase
marginalization

Figure 6.11: Wall time and number of likelihood evaluations when analysing the 64 BBH
injections using nessai without phase marginalization. The colour of each marker cor-
responds to the optimal network SNR of each injection. Left: the wall times in hours
versus the total number of likelihood evaluations. Right: increase in the wall time and
the number of likelihood evaluations compared to sampling with phase marginalization
enabled.

breakdown of the total wall time in terms of time spent evaluating the likelihood and time
spent populating the pool of new samples, which is dominated by the cost of rejection
sampling, in fig. 6.12. In spite of using 16 cores to parallelize the likelihood evaluation,
it is still the dominant cost and, on average, accounts for 71% of the wall time whilst
populating the pool accounts for 27% and training accounts for less than 1%. We also
compare the wall time and number of likelihood evaluations to equivalent analyses with
phase marginalization enabled, also run with 16 cores. The P-P plot for this analysis is
included in appendix E.3. We present the comparison in fig. 6.11. On average, sampling
phase is 20 times slower than marginalizing it whilst requiring 23 times as many likelihood
evaluations.

6.5 Conclusions

The orbital phase is challenging to sample, and the same applies when using nessai.
The settings used in previous gravitational-wave analysis with nessai are not suitable for
applications where phase cannot be marginalized and result in over-constrained results, as
seen in fig. 6.1. Therefore, revised settings or alternative reparameterizations are required
for such as analyses.

We relate the source angles, phase, polarization and inclination, to the unit-quaternions
and demonstrate that they are equivalent. However, due to the spin-2 nature of gravi-
tational waves, the mapping from source angles to unit-quaternions is one-to-many and
the unit-quaternion space double covers the source angle space. We introduce equivalent
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Figure 6.12: Fraction of the wall time spent evaluating the likelihood (orange) and pop-
ulating the pool of new samples (blue) when analysing 64 BBH injections without phase
marginalization.

priors on the quaternions and show that it is possible to sample in the quaternion space
to obtain results that are consistent with sampling in the standard parameter space, see
fig. 6.6.

We compare sampling the default phase parameter, to sampling the quaternions or
sampling ∆ϕc and find that irrespective of the parameter that is sampled, the results are
over-constrained, suggesting that other settings need changing. We find that over a range
of settings, sampling the quaternions or ∆ϕc leads to lower efficiency than sampling the
default parameters, which we attribute to the multimodal likelihood surface.

Following the success using constant volume mode and resetting the flow seen in chap-
ter 5, we test both when sampling phase. Increasing the volume of the latent contour
helps reduce over-constraining but is insufficient to pass a P-P test. We find that resetting
the flow is prohibitively expensive with the gravitational-wave specific reparameterizations
and, as such, we do not recommend it in this case. However, if one disables the these repa-
rameterizations, increasing ρCVM and resetting the flow produces unbiased results for a
GW150914-like injection. The final change we test is using different reparameterizations
for the spin magnitudes, as described in section 4.3.1.

We perform P-P tests with three different configurations: setting ρCVM = 0.995, using
additional spin reparameterizations and disabling all gravitational-wave specific reparam-
eterizations. Of the three, only the analysis with additional spin reparameterizations
passes the P-P test. The analysis with ρCVM = 0.995 produces over-constrained results,
and the analysis without gravitational-wave specific reparameterizations fails to converge
for a number of the injections.

These results show that nessai can be used in scenarios where phase marginalization
is no longer applicable. However, even when running with 16 cores, the analyses take on
average 84 hours and this is dominated by the time spent evaluating the likelihood. The
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equivalent analyses with phase marginalization are, on average, 20 times faster and require
23 times fewer likelihood evaluations. This suggests that, whilst these settings pass the
P-P test, they could likely be improved. These improvements could focus on either finding
better reparameterizations for the spins, which are often over-constrained, or developing
methods for handling multimodality, which becomes the limiting factor when not using
the gravitational-wave specific reparameterizations.

In summary, the results presented in this chapter serve as a starting point for perform-
ing inference in scenarios where phase marginalization is not applicable. Most importantly,
such analyses require different settings and care should be taken to ensure results are
correctly converged. In chapter 8, we perform analyses on real LIGO-Virgo-KAGRA Col-
laboration (LVK) data, including without phase marginalization, which serves to further
validate the settings we have proposed so far.



Chapter 7

Importance nested sampling with nor-
malizing flows

This chapter introduces i-nessai: importance nested sampling with artificial intelligence,
a novel modified nested sampling algorithm that is designed around normalizing flows and
addresses the main bottlenecks in nessai. We validate i-nessai on toy problems and for
gravitational-wave parameter estimation and demonstrate the speed-ups it can provide.

This work has been published in Williams et al. [2] and it is presented almost ver-
batim. We have omitted the introductory sections since the material is already covered
in the previous chapters. The appendices are included in appendix F but the appendix
on the training normalizing flows with weights has been omitted since it already covered
in section 3.3.5. Certain spellings have been updated to be consistent with other chap-
ters, but the symbols have not been changed, as they were already consistent with other
chapters.

This chapter is structured as follows: section 7.1 reviews the various alternative for-
mulations of nested sampling that this work builds upon; these are described in-depth
in section 2.6.6. A simplified version of the modified nested sampling is then described
and validated in section 7.2. This is followed by a description of the complete method
and algorithm, including all its components, in section 7.3. Section 7.4 reviews existing
related approaches in the literature. Section 7.5 presents a range of results from analy-
ses of increasing complexity; these include analyses of the Rosenbrock likelihood and two
gravitational-wave analyses. The results are also compared to nessai and dynesty. Fi-
nally, section 7.6 reviews the results, summarizes the main finding and discusses potential
directions for future work.

141
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When implementing nested sampling, the main challenge is drawing new points from
the likelihood-constrained prior at a given iteration. There are different approaches to
this such as using Markov Chain Monte Carlo (MCMC), slice sampling or sampling from
bounding distributions [196]. There have also been efforts to incorporate machine learning
into nested sampling for approximating the likelihood [410], in the proposal process [1,
435] and for sampling from arbitrary priors [446].

In Williams et al. [1], we proposed nessai, a nested sampling algorithm that uses
normalizing flows to approximate the likelihood-constrained prior at different iterations.
We showed that this approach could speed up convergence and allowed for natural paral-
lelization of the likelihood. However, we noted that a significant portion of the wall time
was being spent performing rejection sampling to ensure points were distributed according
to the prior, and this, alongside the inherently serial nature of nested sampling, set an
upper limit on how fast the algorithm could be.

In this work, we present a modified nested sampling algorithm based on importance
sampling that addresses the aforementioned bottlenecks. In particular, this modified al-
gorithm:

• incorporates normalizing flows similarly to Williams et al. [1],

• removes the requirement for samples to be independently and identically distributed
(i.i.d.) and distributed according to the prior,

• allows samples to be added in any order independent of a likelihood constraint,

• allows the evidence to be updated for batches of samples.

Taken together, these changes improve the efficiency of the algorithm, reducing the number
of required likelihood evaluations by up to an order of magnitude over our previous version,
and greatly increasing the scalability of the algorithm.

This is especially relevant in the context of gravitational-wave data analysis, where
nested sampling is the de facto analysis algorithm [96, 198]. As of the last LIGO-Virgo-
KAGRA Collaboration (LVK) [71–73] observing run, there are 90 confirmed detected
compact binaries [8–10] and this number is expected to increase by a factor of ∼ 3.3 in
the fourth observing run [74]. This presents a significant computational challenge since
typical analyses take of order days to weeks. Furthermore, a subset of these analyses are
currently only possible at great computational cost [250, 285]. The algorithm we present
brings the possibility of tackling these challenging analyses and dramatically reduces the
wall-time required to complete an analysis.
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7.1 Alternative formulations of nested sampling

This work draws on three existing formulations of nested sampling which were introduced
previously in section 2.6.6. We now summarize each of them.

• Diffusive nested sampling: this variant of nested sampling explores multi-level
likelihood levels at once and retains all samples from the MCMC chains irrespective
of the likelihood threshold. The main similarity to our work is the lack of a likelihood
constraint and how all the samples that are drawn, are used.

• Importance nested sampling: this formulation of nested sampling defines a
pseudo-importance sampling density Q(θ) which is used to compute the evidence
instead of the usual weights computed using the prior volume. Similarly to diffusive
nested sampling, it does not reject samples based on a likelihood threshold.

• Nested Sampling via Sequential Monte Carlo: this framework reformulates
nested sampling as a version of Sequential Monte Carlo (SMC) which has similari-
ties to importance nested sampling. Batches of samples are drawn from successive
probability density functions (PDFs) until the overall distribution approximates the
posterior.

The keys elements of these three versions of nested sampling that we draw upon are:
removing the likelihood threshold, considering batches of samples and computing the
evidence using a proposal distribution Q. In this formulation, the evidence is computed
using

Ẑ = 1
NTotal

NTotal∑
i=1

L(θi)π(θi)
Q(θi)

, (7.1)

and the corresponding uncertainty using

σ2[Ẑ] = 1
NTotal(NTotal − 1)

NTotal∑
i=1

[
L(θi)π(θi)
Q(θi)

− Ẑ
]2

. (7.2)

From eq. (7.1), it then follows that the posterior weights are given by

pi = L(θi)π(θi)
NTotalQ(θi)

. (7.3)

We now combine all of these elements and describe our proposed algorithm.

7.2 Core importance nested algorithm

In this section, we motivate and present the core importance nested sampling algorithm
used in nessai. We extend the formulation of importance nested sampling described in
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section 7.1 to allow the use of normalizing flows instead of ellipsoidal bounding distri-
butions. We also draw on the design of diffusive nested sampling where the likelihood
constraint is relaxed such that samples are not rejected based on their likelihood.

We start by considering the definition of the evidence from eq. (7.1). In importance
nested sampling, the aim is to construct an importance sampling density Q(θ), which
we will call meta-proposal, from which samples can be drawn, and used to estimate the
evidence. The error on this estimate is given by eq. (7.2) and depends on the number of
samples NTotal and Q(θ). If we consider a fixed number of samples, the meta-proposal
that maximizes the effective sample size (ESS) of the set of summands L(θi)π(θi)/Q(θi),
and therefore provides the most precise evidence estimate, will be Q(θ) ≡ L(θ)π(θ)/Z,
i.e. when Q(θ) is equal to the target posterior. Since the evidence is unknown a-priori,
the aim is to construct the meta-proposal such that Q(θ) ∝ L(θ)(π)(θ).

This formulation of nested sampling is closely related to Variational Inference [224],
where the goal is to approximate a target probability density. In this case, the target
density is L(θ)π(θ) and the approximate distribution is the meta-proposal Q(θ). The
difference is in how the approximate distribution is obtained. In variational inference,
the approximate distribution is optimized by minimizing a variational objective, whereas
in this algorithm the distribution is constructed by progressively sampling and adding
proposal distributions.

We now consider how to construct the meta-proposal using normalizing flows. An
important difference between the ellipsoidal bounds used in multinest and normalizing
flows is the space over which they are defined. For a normalizing flow, this depends
on the domain of the latent distribution pZ . For the typical case of a n-dimensional
Gaussian the mapping is defined such that f : Rn → Rn, so the flow will have infinite
support. We need the meta-proposal to have the same support as the prior, so we include
an additional invertible transform that maps from Rn to a bounded space, such as the
Sigmoid s(x) = [1 − exp(−x)]−1. We denote the bounded space X and the unbounded
space X ′.

Therefore, instead of considering a series of bounded distributions, we consider a set
of N normalized proposal distributions (normalizing flows) {q1, ..., qN} all defined over the
entire prior volume and with corresponding weights αj defined such that ∑N

j=1 αj = 1.
The overall proposal density as a function of θ is given by

Q(θ) =
N∑

j=1
αjqj(θ). (7.4)

In practice, in order to sample from Q(θ) we first draw a proposal k ∈ {1, ..., N}, drawn
from a categorical distribution with category weights {α1, ..., αN}, then a sample is drawn
from the sub-proposal qk(θ).
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With this formulation, we can compute an estimate of the evidence for a set of samples
drawn fromQ(θ) using eq. (7.1) and, as noted in Feroz et al. [212], we no longer require new
samples that have monotonically increasing likelihood values. Furthermore, as described in
Salomone et al. [216], we do not require that new samples be i.i.d. or distributed according
to the likelihood-constrained prior. This removes the need for the rejection sampling that
was a bottleneck in the version of nessai we described in Williams et al. [1].

We now outline a simplified importance nested sampling algorithm, which we build
upon in later sections. The main changes are to the process of removing and replacing the
worst point at each iteration. Instead of removing a point and finding a single replacement
point, we construct a proposal distribution qj(θ) based on the points sampled thus far and
draw a set of Nj new points Θj = {θi}

Nj

i=1 which are added to the overall set of points
{Θ1, ...,Θj−1}. The meta-proposal Q(θ) is then updated to include qj(θ) and the evidence
is updated. The new importance nested sampling algorithm therefore consists of the
following steps:

1. Draw Nlive points {θi}Nlive
i=1 ∼ π(θ) and compute the likelihood Li = L(θi) of each

point,

2. add the next proposal distribution qj(θ),

3. draw Nj samples from Θj = {θi}
Nj

i=1 ∼ qj(θ) and compute the corresponding likeli-
hoods,

4. update the meta-proposal Q(θ) to include qj(θ),

5. compute the evidence and the corresponding error via eqs. (7.1) and (7.2)

6. repeat steps 2-5 until a stopping criterion is met,

7. compute the final evidence and posterior weights using the independent samples and
eqs. (2.38) and (2.39).

This includes an additional step not present in standard nested sampling: redrawing inde-
pendent samples from the final meta-proposal. Since subsequent proposals are constructed
using samples from the previous iterations, new samples are not i.i.d. and eqs. (2.38)
to (2.40) do not strictly apply. However, once the meta-proposal is finalized, i.i.d. sam-
ples can be sampled and used to compute unbiased estimates of the evidence and posterior
weights.

The design of the algorithm hinges on how the next proposal distribution is added, how
the number of samples drawn from each proposal (Nj) is determined and how the weights
in the meta-proposal Q(θ) are determined. Note that the first proposal distribution q0(θ)
will typically be the prior. We now apply this simplified algorithm to a toy example.



CHAPTER 7. IMPORTANCE NESTED SAMPLING WITH NORMALIZING FLOWS146

7.2.1 Toy example

In this toy example, we consider a simple problem with an analytic evidence and posterior
distribution. We apply the algorithm described in section 7.2 but with some simplifica-
tions. This allows us to validate the core algorithm.

We use a 2-dimensional Gaussian likelihood with mean µL = 0 and standard deviation
σL = 1 and a Gaussian prior a with mean µπ = 0 and standard deviation σπ = 2. The
posterior distribution is therefore another Gaussian distribution with mean µP ost = 0 and
standard deviation σP ost =

√
1/[(1/σ2

L) + (1/σ2
π)]. The evidence is given by a Gaussian

distribution with mean µπ and standard deviation
√
σ2

L + σ2
π evaluated at µL, so ZAnalytic =

0.03183.
To make the comparison between the true and sampled posterior distributions easier,

we express the posterior distribution in terms of the log-likelihood p(lnL). To do this,
we note that the posterior distribution defined in terms of the radius squared is p(r2) =
χ2

2(r2)/σ2
P ost where χ2

2 is a chi-squared distribution with two degrees of freedom. Then

p(lnL) = p(r2)
∣∣∣∣∣ ∂r2

∂ lnL

∣∣∣∣∣ , (7.5)

where
r2 = −2σ2

L

[
ln(2πσ2

L) + lnL
]
, (7.6)

which is defined on [0,∞) since the maximum possible value of the log-likelihood is lnL =
− ln(2πσ2

L).
The four steps we must define for the simplified algorithm are: how to construct each

proposal distribution, how to determine the number of samples to draw from each proposal,
how to determine the weights for each proposal in the meta-proposal and a stopping
criterion. For the proposals, instead of normalizing flows, we use 2-dimensional Gaussian
distributions qj(θ) with mean zero and different standard deviations. We determine the
standard deviation of each proposal by setting a likelihood threshold Lt such that 50%
of the points from the previous iteration are discarded and then compute the standard
deviation of the remaining points. We set the number of samples drawn from each proposal
to constant Nj = Nlive = 500 and set the weights for the meta-proposal αj to be equal.
This means that each proposal will contribute equally to the meta-proposal. Finally,
instead of using a stopping criterion, we define a fixed number of proposal distributions
(iterations) N = 4 where the first is the prior distribution q0(θ) ≡ π(θ). This is akin
to fixing the number of iterations in a normal nested sampling algorithm.Once the final
proposal has been added, we draw i.i.d. samples from the finalized meta-proposal and
compute the final unbiased evidence estimate and posterior weights.

We present the results obtained with this algorithm in fig. 7.1. This shows the samples
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Figure 7.1: Results for the toy example described in section 7.2.1. Top: the final sam-
ples are shown in grey, the solid lines show the 1-σ contour for each proposal distribution
starting with the prior, lighter colours indicate later iterations. The orange dashed line
shows the 1-σ contour for the analytic posterior distribution. Bottom left: distribution
of log-likelihoods for the final samples drawn from each proposal distribution. Bottom
right: distribution of the log-likelihoods of the final samples weighted by their correspond-
ing posterior weights. The orange dashed line indicates the analytic posterior distribution
computed using eq. (7.5).
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and the 1-σ contours for each of the proposal distributions, along with the corresponding
distribution of log-likelihoods. We compute two evidence estimates: one with the initial
samples that are not i.i.d. Ẑ = 0.03177 ± 0.00042 and the other with the final i.i.d.
samples Ẑ = 0.03191 ± 0.00042. We find that both are in agreement with the analytic
value, Z = 0.03183, but, as we will see in section 7.5.1, the initial estimate will be biased,
the bias is just very small in this simple example. This demonstrates that the underlying
algorithm can reliably estimate the evidence. We also compute the posterior weights
using eq. (7.3) and plot the weighted histogram in log-likelihood space, which shows good
agreement with the analytic expression from eq. (7.5). Overall, these results demonstrate
the principles of the proposed algorithm and that, for a simple toy example, it converges
to the expected result.

7.3 Method

Having outlined the underlying algorithm, we now describe each of the steps in the com-
plete algorithm in detail.

7.3.1 Constructing proposal distributions

With this formulation of nested sampling, the main design choice is how to construct the
proposal distribution qj(θ) at each iteration (step 2). This is akin to drawing new samples
in standard nested sampling however, since we no longer require an ordered sequence
of points with decreasing prior volume, new points no longer need strictly increasing
likelihood values.

The new proposal qj(θ) at each iteration is defined in terms of a likelihood threshold
Lt: of the current Nlive points, Mj are discarded based on a likelihood threshold and the
remaining Nlive−Mj points are used to construct the next proposal distribution qj(θ). In
our implementation, this is done by training a normalizing flow. The result is a series of
increasingly dense proposal distributions, which is equivalent to the distributions becoming
narrower in the log-likelihood space. This is shown in fig. 7.1.

We therefore require a method for determining the likelihood threshold Lt used to
determine how many points will be discarded before constructing the next proposal dis-
tribution. We consider two methods, both of which use weights

wi = π(θi)
Q(θi)

, (7.7)

which quantify the relative importance of each sample θj compared to the prior. Addi-
tionally, one could include the likelihood in the weights, however, we leave this for future
work.
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In the first method, the threshold Lt is determined using the (1 − ρ) quantile of the
likelihood values of the samples from the previous iteration, where ρ is set by the user.
To account for non-prior distributed samples used in our algorithm, we use a weighted
quantile, where the weights are given by eq. (7.7). This method is based on the standard
method used in SMC [216] and diffusive nested sampling [213], but with the addition of
the weighted quantile.

The second method we consider is closely related to the first but uses log-weights logwi

instead of wi. We consider the normalized sum of logwi for the set of N live points ordered
by increasing likelihood

λ(M) =
∑M

m=1 logwm∑N
i=1 logwi

, (7.8)

where M is the number of live points to be discarded. We then determine the value of
M at which λ(M) ≥ ρ, for ρ ∈ [0, 1] and set Lt ≡ L(θM). This is analogous to shrinking
the log-prior volume by a factor ρ at each iteration whilst also accounting for the different
weights of each sample. In practice, since the normalizing flows have support over the
entire prior volume, this results in increasing the entropy of qj(θ). We therefore denote
this as the entropy-based method to distinguish it from the quantile-based method.

For both methods, we employ a maximum number of live points that can be removed -
this prevents the remaining live points being too few to robustly train the next normalizing
flow. This maximum together with the value of ρ will determine the total number of
samples used in the algorithm. We also employ a minimum number of samples to ensure
a minimum change in distribution of training data between subsequent proposals. We
discuss the advantages and disadvantages of both methods in appendix F.1.

7.3.2 Training normalizing flows with weights

As discussed in section 2.6.6, it is common practice in SMC to resample at each iteration
prior to the mutation step. Different sampling methods can be used, but they all keep the
total number of samples constant by including repeated samples. This works when the
mutation step is a Markov kernel, but in this work we use a normalizing flow to perform
the equivalent of the mutation step and, when training a normalizing flow duplicates in
the training data, can be problematic. In extreme cases, where only a few samples are
representative, the training data could contain tens of copies of the same sample, which
will make training unstable.

Without a step that is equivalent to resampling, deficiencies in training can have a
cumulative effect. For example, if the mapping learnt by the normalizing flow qj(θ) under-
samples a region of the space compared to the target, then if another normalizing flow
qj+1(θ) is trained with samples drawn using qj(θ) then qj+1(θ) will also under-sample
the same region. To counteract this effect, we include weights in the approximation of
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Kullback-Leibler divergence (KLD) used to train the normalizing flow as described in
section 3.3.5. To train the j-th flow, we use all samples from the current meta-proposal
Qj−1(θ) that satisfy the likelihood constraint L(θ) > Lt and then minimize

Loss = − 1
N

N∑
i=1

wi log qj(θi), (7.9)

where qj(θ) is given by eq. (2.6) and wi are the weights for each sample. In principle these
weights could include the likelihood, however in this work we use the weights given by
eq. (7.7) which are proportional to the ratio of the likelihood-constrained prior and the
likelihood-constrained meta-proposal.

7.3.3 Drawing samples from the proposal distributions

At a given iteration j, once the normalizing flow qj(θ) has been trained (step 2), we
sample from the flow (step 3) and evaluate the likelihood for each new sample. This
involves sampling from the latent distribution pZ(z) and then applying the inverse flow
mapping f−1 to obtain samples in X ′. These samples must then be mapped backed to the
original space X , where the likelihood can be computed.

The number of samples drawn at a given iteration Nj should be determined by draw-
ing from a multinomial distribution with N possible outcomes (the number of proposal
distributions) and NTotal = ∑N

j=1 Nj trials, however the weights for each outcome are not
known prior to sampling. Instead, we set Nj and determine the weight for the current
iteration αj based on its value. We allow Nj to either be equal to the number of samples
removed at that iteration (Mj) or kept constant (Nj = Nlive). The former will maintain a
fixed number of live points Nlive throughout the run whereas the latter allows for Nlive to
vary. We discuss the consequences of this approximation in sections 7.3.4 and 7.3.7.

Similarly to diffusive nested sampling, all the samples are kept irrespective of their
likelihood, which means that samples can ‘leak’ below the current likelihood threshold.

7.3.4 Updating the meta-proposal

Having drawn samples from the current proposal distribution, the meta-proposal Q(θ)
must be updated. The overall form of Q(θ) will depend on the weights αj that are assigned
to each proposal. Whilst adding proposals, we approximate the weights as αj ∝ Nj and
normalize them such that they sum to one. This approximation can be corrected for once
the sampling has been terminated by fixing the weights to their values from sampling,
recomputing Nj by sampling from a multinomial distribution with weights {α0, ..., αNj

}
and drawing new samples from each qj(θ) according to Nj. However, in practice, we find
error introduced by this approximation to be significantly smaller than the overall error
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of the estimated evidence.

7.3.5 Stopping criterion

We define the stopping criterion to be the ratio of the evidence between the live points
and the current evidence

Condition = ẐLP

Ẑ
, (7.10)

where ẐLP is computed using eq. (7.1) and including only the live points in the sum. The
algorithm will then terminate when the condition is less than a user-defined threshold τ .

This is more suitable than the fractional change in the evidence between iterations,
that is used in standard nested sampling algorithms, because multiple points are removed
simultaneously at each iteration, the number of points can vary between iterations and
points can leak below the current Lt, which all mean fractional change does not decrease
smoothly and instead can fluctuate significantly between iterations.

7.3.6 Posterior samples

Similarly to SMC and multinest, our algorithm returns samples {θi}NTotal
i=1 and their

corresponding posterior weights pi given by eq. (7.3). Different methods can then be
employed to draw posterior samples. The standard approach in nested sampling is to
use rejection sampling [1] or multinomial resampling [197] to resample the nested samples
using the posterior weights. Alternatively, the weights can be used directly in weighted
histograms or kernel density estimates.

When using multinomial resampling or the weights directly, the posterior samples are
not statistically independent, so it is informative to compute Kish’s ESS [183] with the
posterior weights. This gives an indication of the effective number of posterior samples in
the posterior and allows for comparing results obtained via different sampling methods.
It can also be used to diagnose poorly converged runs, since a low ESS is an indication
that the samples and their corresponding weights are a poor match for the true posterior
distribution.

7.3.7 Post-processing

Once sampling is complete, we correct for the approximation of the meta-proposal Q(θ)
discussed in section 7.3.4 by redrawing NFinal samples from the meta-proposal according
the draws from the multinomial distribution. The number of samples can be equal to
NTotal or can be increased or decreased depending on the desired output.

This has the additional benefit of allowing more samples to be drawn after sampling
has completed and can be used to obtain more posterior samples or decrease the estimated
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error on the evidence.

7.3.8 Complete algorithm

We can now combine all these elements into a complete algorithm, which is shown in
alg. 2. The algorithm incorporates normalizing flows but no longer requires that samples
drawn from them be i.i.d. according to the prior. Furthermore, samples are drawn and
their likelihoods evaluated in batches and all the samples are kept irrespective of their
likelihood. Finally, the evidence is a simple sum, so it can be updated for batches of
samples. Thus, this algorithm meets all the criteria that were initially set out.

Algorithm 2: Overview of i-nessai
Input: Likelihood L, Prior π, Tolerance τ , Method for determining Nj, NFinal

Output: Evidence Ẑ, samples {Θ1, ...,Θj} and posterior weights W
1 j ← 1 ;
2 Θ1 ← {θi ∼ π}N1

i=1;
3 NTotal ← N1, q1 ← π ;
4 while condition ≥ τ do
5 j ← j + 1 ;
6 qj ← trained normalizing flow;
7 Nj ← determined via specified method;
8 Θj ← {θi ∼ qj}

Nj

i=1;
9 NTotal ← NTotal +Nj;

10 Ẑ ← 1
NTotal

∑NTotal
i=1

L(θi)π(θi)
Q(θi) ;

11 W ←
{

L(θi)π(θi)
NTotalQ(θi)

}NTotal

i=1
;

12 end
13 Redraw NFinal samples from the final meta-proposal and compute the final

evidence estimate and posterior weights.

7.3.9 Biases

In our algorithm, the proposal distributions (normalizing flows) are trained and then
sampled from, rather than being constructed post sampling. This means that, unlike in
multinest, the meta-proposal distribution is an importance sampling density and eq. (7.2)
should give a reliable estimate of the evidence error. We verify this in section 7.5.1.

We also note that a different bias in the evidence arises from evaluating each nor-
malizing flow with samples that were also used to train it. This is necessary since the
meta-proposal requires evaluating each normalizing flow on every sample. This is a side
effect of the small amount of training data available to each flow and difficulty in set-
ting the hyperparameters for N different normalizing flows prior to sampling. This bias
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is corrected for when the samples are redrawn as described in section 7.3.7 which we
demonstrate in section 7.5.

7.4 Related work

As described in section 7.1, the proposed method draws from existing variations of nested
sampling: the soft likelihood constraint from diffusive nested sampling [213], the formu-
lation of importance nested sampling used in multinest [212] and the use of normalizing
flows as described in Williams et al. [1] and Moss [435]. However, it also has parallels to
standard importance sampling and the methods derived from it.

Considering the use of a sequence of normalizing flows to approximate a target (or pos-
terior) distribution, the most closely related works are Nested Variational Inference [447],
Annealed Flow Transport Monte Carlo [448] and Preconditioned Monte Carlo [449]. The
first is a hybrid between Variational Inference and SMC where a series of parameterized
distributions are simultaneously optimized using an annealed version of the target dis-
tribution. In the latter two works, the standard SMC algorithm is modified to include
an additional step that uses a normalizing flow. Additionally, in Karamanis et al. [449]
the authors apply their algorithm to gravitational-wave inference, however only a single
simulated event is analysed rather than a set of events.

As with any stochastic sampling algorithm for Bayesian inference, this work can also
be compared to simulation-based or likelihood-free inference [355] where the posterior dis-
tribution is approximated using repeated simulations of the data instead of evaluating the
likelihood. This technique has been applied to data analysis in physics and astrophysics,
including but not limited to gravitational-wave data analysis [234, 412, 414, 416], cosmol-
ogy [450, 451] and particle physics [452]. The approach used in these methods involves
training on a dataset that is representative of the entire parameter space and then being
able to perform inference for any given point in that space. This is the opposite to the
approach employed in this work, where the algorithm is general purpose and is not trained
for a specific task but instead is trained on the fly, removing the need for expensive initial
training at the cost of being slower when performing inference.

7.5 Results

We present results obtained using the algorithm described in section 7.3.8 on range of
problems. We implement the algorithm in the nessai software package and it is available
at 10.5281/zenodo.4550693 [432]. To distinguish it from the version of nessai described
in Williams et al. [1], we will refer to it as i-nessai.

We run all our experiments using normalizing flows based on real non-volume preserv-

https://doi.org/10.5281/zenodo.4550693
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Figure 7.2: Mean estimated log-evidence before (blue cross) and after (orange dot) the
resampling step described in section 7.3.7 for an n-dimensional Gaussian and Gaussian
Mixture. The error-bars show the mean estimated error for the log-evidence. The es-
timated evidence has been rescaled using the true value such that the distributions of
log-evidences should be centred around zero. The number of samples drawn during the
resampling step is set such that is equal to the number of samples accumulated during the
initial sampling.

ing (RealNVP) [347] as we find that more complex flows, such as Neural Spline Flows [370],
over-fit to the small amount of data available1 and, compared to the other components of
the algorithm, are too computationally expensive to justify using. Furthermore, i-nessai
requires storing the normalizing flow for each level so using a flow with more parameters
can significantly increase the memory footprint of the algorithm.

We start with a series of tests using analytic likelihoods followed by a test using a
more challenging likelihood and compare these results to those obtained with nessai. We
then apply i-nessai to two different gravitational-wave analyses. Finally, we investigate
parallelization of the algorithm and how it scales with the number of live points.

For all experiments, we use the entropy-based method for constructing each proposal
distribution described in section 7.3.1 with ρ = 0.5. We discuss this choice in appendix F.1.
We also set the number of samples per flow to a constant Nj = Nlive. Code to reproduce
all the experiments is available at 10.5281/zenodo.8124198 [453].

7.5.1 Validation using analytic likelihoods

We start by validating i-nessai using likelihoods for which the evidence can be computed
analytically in n dimensions. We choose to analyse the simple case of an n-dimensional
Gaussian. For a more complex case, we employ the n-dimensional M -component Gaussian
mixture likelihood described and used in Moss [435] and Higson et al. [203] which is
documented in appendix A.2.

For both likelihoods, we consider n = {2, 4, 8, 16, 32} and use uniform priors on
[−10, 10]n. The analytical log-evidence for both models is lnZ = −n log 20. We analyse

1A single instance of over-fitting across all the flows will not significantly impact results, however, if
the flows consistently over-fit then the final result will be over-constrained.

https://doi.org/10.5281/zenodo.8124198
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each likelihood 50 times, including redrawing the samples as described in section 7.3.7, and
examine the distribution of the log-evidence estimates and the corresponding estimated
error. In fig. 7.2, we include the result of the redrawing of the samples and recomputing
the final log-evidence estimate. This shows that without redrawing the samples there is
a bias in the estimated log-evidence, however this bias is small compared to the value of
the log-evidence, for example, for the 32-dimensional Gaussian and Gaussian Mixture the
true log-evidence is -95.86 and the average biases are 0.6% and 0.9% respectively. After
redrawing the samples, i-nessai reliably estimates the evidence for both models for all
values of n. We also compare the distribution of the re-computed log-evidences alongside
the expected distribution computed using eq. (7.2) in appendix F.2 and observe that the
estimated log-evidence errors agree with the observed distributions.

7.5.2 Comparison with standard nested sampling

We now compare i-nessai with standard nested sampling, in particular the standard
version of nessai. This allows us to verify the results obtained with i-nessai, com-
pare the observed and estimated evidences and evidence errors, the number of likelihood
evaluations, the wall time and ESS of the posterior distribution. We repeat the analyses
described in section 7.5.1 using nessai and present the results for both likelihoods in
fig. 7.3.

Figure 7.3 shows that i-nessai produces estimates of the log-evidence for the Gaus-
sian and Gaussian Mixture that are consistent with nessai but have significantly lower
variances and the corresponding estimates of the error are correspondingly smaller. We
explore how the error on the log-evidence estimate scales in section 7.5.7. Furthermore,
fig. 7.3 shows that i-nessai requires a comparable number of likelihood evaluations in
lower dimensions but more than an order of magnitude less in higher dimensions and a
similar trend is seen with the wall time. However, this behaviour is highly dependent
on the user-defined settings, which in these experiments were set based on the require-
ments for the high-dimensional analyses. The ESS of the posterior distribution highlights
a notable difference between the two samplers; with nessai the ESS increases as the num-
ber of dimensions increase for both likelihoods whereas with i-nessai, for the Gaussian
Mixture likelihood, it decreases in higher dimensions but is still of order 104. Since in
importance nested sampling the ESS depends on how well the meta-proposal approxi-
mates the likelihood times the prior, a lower ESS indicates a ‘worse’ approximation. In
contrast, in standard nested sampling, and therefore nessai, the ESS does not depend on
the convergence of the sampler and an under- or over-constrained result can still have a
large ESS.
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Figure 7.3: Comparison of results produced using nessai (orange) and i-nessai (blue)
when applied to the n-dimensional Gaussian, Gaussian Mixture and Rosenbrock likeli-
hoods as described in sections 7.5.1 and 7.5.3. From top to bottom, results are shown
for the final estimated log-evidence rescaled by a reference evidence (the true value for
the Gaussian and Gaussian Mixture and the mean value obtained with i-nessai for the
Rosenbrock), the estimated log-evidence error, the total number of likelihood evaluations,
the total wall time in seconds and the ESS of the posterior distribution. Results are aver-
aged over 50 runs with different random seeds for both samplers and the error bars show
the standard deviation.
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7.5.3 Testing on more challenging likelihoods

To further test i-nessai, we consider the n-dimensional Rosenbrock likelihood [454] which
has highly correlated parameters and is recognized as a challenging function to sample.
We use the more involved variant [440, 455] as defined in appendix A.1 with a uniform
prior on [−5, 5]n. We test for n = {2, 4, 8} and run i-nessai 50 times for each n. Above
n = 2 there is no analytical solution for the log-evidence of the Rosenbrock likelihood, so
we compare results to those obtained with nessai. We present these results in fig. 7.3. We
observe that i-nessai is consistent with nessai for n = 2 but for n = {4, 8} predicts a
lower evidence than nessai, however the relative difference is less than 1%. The number
of likelihood evaluations and wall times are comparable between both samplers but i-
nessai has a larger ESS in n = {2, 4} and lower in n = 8. To better understand these
differences, we inspect the results obtained with nessai and find that the insertion indices
[1, 218] are consistent with the results being over-constrained (see appendix F.3). This
corresponds to the log-evidence being marginally over-estimated which agrees with the
differences in estimated log-evidence observed in fig. 7.3.

7.5.4 Probability-probability test with binary black hole signals

As a more practical test for i-nessai, we repeat the analysis used to validate nessai in
Williams et al. [1], where we used bilby [198] and nessai to analyse simulated signals from
compact binary coalescence of binary black holes injected into 4 seconds of data sampled
at 2048 Hz in a three-detector network. For this analysis, we use the same priors (described
in Appendix C of Williams et al. [1]) and enable phase, distance and time marginalization
in the likelihood. This reduces the parameter space to 12 parameters. We analyse 64 injec-
tions simulated from the same priors and produce a probability-probability (P-P) plot and
corresponding p-values using bilby. This analysis includes the resampling step described
in section 7.3.7 and we re-draw the same number of samples that were used in the initial
sampling, doubling the number of likelihood evaluations. The probability-probability plot
is presented in fig. 7.4 with individual and combined p-values. The combined p-value is
0.3798 which demonstrates that i-nessai reliably recovers all 12 parameters. Further-
more, these results are obtained without introducing any of reparameterizations used in
standard nessai [1] to handle, for example, angles and spin magnitudes.

In fig. 7.5, we show the sampling time and the number of likelihood evaluations required
to reach convergence. The median number of likelihood evaluations is 6.5 × 105 and the
median wall time is 119 minutes. We also include results obtained using nessai and
dynesty [197], which has been used extensively for gravitational-wave inference [8–10,
122]. Probability-probability plots for both samplers are shown in appendix F.4. We
observe that the median reduction in the number of likelihood evaluations are 3 and 13
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Figure 7.4: Probability-probability plot (P-P plot) for 64 simulated signals from binary
black hole coalescence analysed using i-nessai. The shaded regions indicated the 1-, 2-
and 3-σ confidence intervals. Individual p-values are shown for each parameter, and the
combined p-value is also shown.
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Figure 7.5: Total sampling time versus number of likelihood evaluations for i-nessai
(blue dots), nessai (orange crosses) and dynesty (green plus signs) for the 64 binary
black hole injections described in section 7.5.4.

for nessai and dynesty respectively. These equate to reductions in the total wall time of
4 times and 17 times.

7.5.5 Binary neutron star analysis with reduced order quadra-
ture bases

We simulate the signal from a binary neutron star merger similar to GW190425 [262] at
a distance of 45 Mpc using IMRPhenomPv2_NRtidalv2 [456] and inject it into 80 seconds
of simulated noise from a two-detector network with aLIGO noise spectral density sen-
sitivity [70] sampled at 8192 Hz. The resulting signal has an optimal network SNR of
30.12.

To analyse the signal, we use IMRPhenomPv2 [126, 437, 457, 458] with an Reduced-
Order-Quadrature (ROQ) basis [260] to reduce the cost of evaluating the likelihood2. We
also limit the analysis to assume aligned spins and use a low-spin prior a described in
Abbott et al. [262]. We run the analysis using i-nessai, nessai and dynesty. We repeat
each analysis with four different random seeds and combine the posterior distributions for
each seed into a single distribution. We use 16 cores for each analysis to decrease the
overall wall time. The settings for i-nessai are tuned to ensure that the effective number

2We use the ROQ data available at https://git.ligo.org/lscsoft/ROQ_data.

https://git.ligo.org/lscsoft/ROQ_data
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Figure 7.6: Evolution of the proposal distributions (qi(θ)) included in the meta-proposal
when performing inference on the binary neutron star injection described in section 7.5.5.
Brighter colours indicate later iterations in the algorithm. Left: the 90% contours for
each of the proposal distributions in the chirp mass-mass ratio space. Only a small region
of the parameter space around the highest likelihood is shown. The cross-hair indicates
the injected value. Right: the distribution of log-likelihoods for each of the proposal
distributions.

of posterior samples are comparable to the other samplers.
In fig. 7.6, we show how the meta-proposal evolves as more proposal distributions

(normalizing flows) are added over the course of sampling. This shows how the proposals
converge around the parameters of the injected signal which correspond to the region with
the highest log-likelihood.

To quantify the differences between the results, we compute the Jensen-Shannon diver-
gence (JSD) between the marginal posterior distributions for each parameter as described
in Romero-Shaw et al. [122]. We use the threshold described in Ashton and Talbot [233] to
determine if the JSD indicate significant statistical differences between the results. We find
that all the divergences are below the threshold, except for the in-plane spin χ1, for which
i-nessai and nessai agree but dynesty marginally disagrees with both. We include the
complete set of JSDs in appendix F.5 and a corner plot comparing the distributions in
fig. 7.7.

We also compare the total number of likelihood evaluations and wall time for each
sampler in table 7.1. From these results we see that, on average, i-nessai requires 1.4
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Figure 7.7: Posterior distributions for the GW190425-like injection described in sec-
tion 7.5.5. Results are shown for dynesty in green, nessai in orange and i-nessai
in blue. The 1-σ confidence intervals for each parameter are shown in the marginal his-
tograms.
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Table 7.1: Total likelihood evaluations, wall time in minutes and ESS from the posterior
distribution for the binary neutron star analysis with ROQs as described in section 7.5.5
for dynesty, nessai and i-nessai. Results are averaged over four runs and the mean
and standard deviations are quoted. All analyses were run with 16 cores.

Wall time [min] Likelihood evaluations Effective sample size
dynesty 376.3± 8.1 4.30× 107 ± 7.12× 104 13098± 131
nessai 57.9± 8.9 1.42× 106 ± 1.74× 105 13036± 45
i-nessai 24.3± 3.0 1.01× 106 ± 8.99× 104 14625± 3539

and 42.5 times fewer likelihood evaluations than nessai and dynesty respectively.

7.5.6 Parallelization

As mentioned previously, the formulation of nested sampling used in this work does not
have the same serial limitations of standard nested sampling. The algorithm we present
is designed around drawing new samples and evaluating their likelihood in parallel. This
leverages the inherently parallelized nature of the normalizing flows. However, the process
of training subsequent proposals to add to the meta-proposal is still a serial process.

In standard nessai, the costs of rejection sampling and training set an upper limit for
the reduction in wall time that can be achieved by parallelizing the likelihood evaluation.
However, the total cost of training typically accounted for less than 8% of the total wall
time [1]. In i-nessai, the rejection sampling step is no longer necessary, so the training
is now the main limiting factor and the potential reduction in wall time is far greater. In
fig. 7.8, we present results showing how the wall time decreases for an increasing number
of cores for one of the binary black holes injections used in section 7.5.4. This shows
how initially the wall time is dominated by the cost of evaluating the likelihood but as
more cores are added the inherent cost of sampling, which includes training the flows
and drawing new samples, becomes the dominant cost. However, in this example, it only
accounts for 13% of the total wall time when running on a single core.

7.5.7 Algorithm scaling

In i-nessai the number of live points has a different function to that in a typical nested
sampler since, in combination with the method used to determine new levels, it will de-
termine how many points are removed at an iteration and how many remain to train the
normalizing flow. We previously noted that, for nessai, 2000 points were needed for reli-
able results [1]. We now test i-nessai with different values of Nlive and set the number
of samples per flow Nj = Nlive

We evaluate the scaling of i-nessai as a function of Nlive and present the results in
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Figure 7.8: Comparison of the wall time spent training the normalizing flows and evaluat-
ing the likelihood in nessai and i-nessai as a function of the number of cores. Results
are shown for one of the binary black hole injections described in section 7.5.4 and are
averaged over four runs.

fig. 7.9 for a 16-dimensional Gaussian likelihood sampled withNlive = {100, 500, 1000, 2000, 4000, 6000, 8000, 10000}.
The estimated log-evidence is consistent with the true value for all values of Nlive and both
the observed and estimated standard deviations decrease as Nlive increases, which is con-
sistent with eqs. (7.1) and (7.2). We observe that the number of likelihood evaluations
scales approximately linearly with the number of live points. This contrasts with the wall
time which, for a 100 times increase in the number of live points, only increases by 22
times. This is the result of using a likelihood that has a low computational cost, so the
cost of running the sampler is dominated by the operations related to the normalizing flow:
training, drawing new samples and computing the meta-proposal probability as given by
eq. (7.4). In practice, most likelihoods will have a higher computational cost and the wall
time will scale approximately linearly with Nlive.

7.6 Discussion and conclusions

In this work, we present an importance sampling-based nested sampling algorithm, i-
nessai, that builds on existing work [212, 213, 216] to incorporate normalizing flows and
overcome the main bottlenecks in nessai described in Williams et al. [1]. The resulting
algorithm is a hybrid between standard nested sampling and SMC, where normalizing
flows are successively trained and added to an overall meta-proposal that describes the
distribution of samples.

We demonstrate that i-nessai reliably estimates the log-evidence and associated error
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eq. (2.18).
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for Gaussian and Gaussian Mixture likelihoods in up to 32 dimensions. When we compare
these results to those obtained with standard nessai, we observe that i-nessai con-
verges significantly faster and requires fewer overall likelihood evaluations. Furthermore,
the observed variance in the estimated log-evidence is consistently less than for nessai.
This demonstrates that i-nessai produces consistent evidence estimates at a fraction of
computational cost while also being more precise.

We perform inference on 64 simulated gravitational-wave signals from binary black
hole coalescence using i-nessai and show that it passes a probability-probability test
(fig. 7.4) which indicates that it produces unbiased estimates of the system parameters.
Furthermore, these results are obtained without introducing problem specific reparameter-
izations. Similarly to the analytic likelihoods, we compare these results to those obtained
with nessai and dynesty and observe a median reduction in the number of likelihood
evaluations of 3 and 13 times respectively, which equates to a 4 and 17 times reduction in
the total wall time.

To further demonstrate the advantages of i-nessai compared to standard samplers,
we perform inference on a simulated GW190425-like binary neutron star merger using ROQ
bases [260] and aligned low-spin priors. The inference completes in just 24 minutes, 2.4 and
15.5 times faster than nessai and dynesty respectively, while also producing consistent
posterior distributions and only requiring 1.01 × 106 likelihood evaluations compared to
1.42× 106 and 4.30× 107 respectively.

We also show how the likelihood evaluation can be parallelized in i-nessai and find
that, once of the cost of evaluating the likelihood becomes negligible, training the nor-
malizing flows and drawing new samples are the main limiting factors. This is in contrast
to nessai, where performing rejection sampling is the main limiting factor, accounting
for approximately 40% of the time when running on a single core. In i-nessai training
and drawing new samples account for significantly less of the total time. It therefore has
improved scaling with respect to the number of cores compared to nessai, as shown in
fig. 7.8.

A downside of this approach when compared to nessai is that the order statistics-
based tests proposed in Fowlie et al. [218] and included in nessai are no longer applicable
since we no longer require points be distributed according to the likelihood-constrained
prior. It is therefore harder to identify under- or over-constraining in i-nessai. The ESS
(eq. (2.18)) can be used to diagnose issues during sampling, however it is not always a
reliable diagnostic.

In future work we will consider alternative methods for constructing the meta-proposal
which do not rely on discard samples, for example using only the weights in eq. (7.9) and
we will explore optimizing the meta-proposal weights after sampling. We will also explore
applications of i-nessai more complete gravitational-wave analyses like those described in
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[8–10] which included calibration uncertainties and waveforms with higher-order modes.
Another possible application to explore is model comparison; typically, if we want to
obtain a posterior distribution for a different prior than that used for the sampling, the
existing posterior samples must be re-weighted using an alternative prior. However, the
formulation of the nested sampling in this work would allow for the prior to be changed
post-sampling and the evidence recomputed by updating eq. (7.1), so long as the new
prior does not extend the boundaries of the prior using during the initial sampling.

In summary, we have introduced an importance nested sampling algorithm, i-nessai,
that leverages normalizing flows and addresses the bottlenecks in nessai [1]. We have
demonstrated that i-nessai produces results that are consistent with standard nested
sampling for a range of problems, whilst requiring up to an order-of-magnitude fewer
likelihood evaluations and having improved scalability. Similarly to nessai, i-nessai is
a drop-in replacement for existing samplers, meaning it can easily be used to accelerate
existing analyses.



Chapter 8

Applications of nessai

In this chapter, we presented results from analysing gravitational-wave data from O1, O2
and O3 using nessai and i-nessai. We discuss the challenges associated with these anal-
yses, compare our results to those published by the LIGO-Virgo-KAGRA Collaboration
(LVK) and highlight some of the challenges associated with analysing data from future
ground-based gravitational-wave detectors.

Section 8.1 reviews how calibration errors are accounted for in parameter estimation
and presents results demonstrating the most suitable methods for use with nessai. Sec-
tion 8.2 presents results from analysing binary black holes (BBHs) mergers and binary neu-
tron star (BNS) merger from O1 and O2 using nessai and discusses how these compare
to results from Gravitational-Wave Transient Catalog 1 (GWTC-1) and Gravitational-
Wave Transient Catalog 2.1 (GWTC-2.1). Section 8.3 presents results for 4 events from
O3 that are challenging to analyse: GW190412, GW190425, GW190521 and GW191109,
and examines how nessai performs. A limited analysis with i-nessai is then presented
in section 8.4 which highlights its potential but also the need for further investigation.
Section 8.5 presents results for analyses of simulated data from Einstein Telescope (ET)
and Cosmic Explorer (CE) and discussed the challenges associated with these analyses.
Finally, section 8.6 summarizes the results and reviews the pros and cons of using nessai
when analysing real data.

167
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Thus far, we have introduced nessai and various modifications to it, including i-
nessai. These algorithms have been validated using a mixture of non-gravitational-
wave likelihoods, such as the Rosenbrock and Gaussian mixture model, and fiducial
gravitational-wave injections. These tests are particularly useful because we can either
compute an analytic solution or perform other tests, such as probability-probability plots
(P-P plots) to validate the posterior distributions. However, real data presents different
challenges that are not captured in these tests and that can make analyses more challeng-
ing [94]. In this chapter, we explore the applications of nessai and i-nessai to real data
from LIGO-Virgo-KAGRA Collaboration (LVK) observing runs. We focus predominantly
on nessai since we have performed more extensive testing with it and have determined
the settings necessary for analyses without phase marginalization, as detailed in chapters 5
and 6. In contrast, we have not performed the same ranges of tests with i-nessai and
the tests presented in chapter 7 were limited to applications with phase marginalization.
This is discussed further in section 8.4.

When analysing real data, we will use previous analyses produced by the LVK as point
of reference to compare to. In most cases, this involves comparing the posterior distribu-
tions using Jensen-Shannon divergence (JSD) as described in section 2.9.2. However, such
comparisons are not always possible due to differences in the underlying assumptions that
have been made, such as priors or choices of waveform approximants.

8.1 Calibration errors

When considering real data, we must account for the systematic errors caused by the im-
perfect nature of the detector calibration, which will affect the observed strain. Different
approaches can be used to model the error [96, 122, 459], but recent analyses, such as
Gravitational-Wave Transient Catalog 2.1 (GWTC-2.1) [9] and Gravitational-Wave Tran-
sient Catalog 3 (GWTC-3) [10] follow Farr et al. [460] where the errors are treated as
frequency dependent phase and amplitudes errors (δφ(f) and δA(f)) such that the ob-
served strain as function of frequency is

d̃obs(f) = d̃(f)[1 + δA(f)] exp[iδφ(f)], (8.1)

where h̃(f) is the true strain. These errors are expected to be small and vary smoothly [460]
and must be included in the likelihood when analysing real data. They are typically mod-
elled using cubic spline polynomials with 10 nodes for phase and amplitude per detec-
tor [122], thus adding 20 parameters to sample per detector in the network. Since the
errors are expected to be small, the priors are assumed to be Gaussian with means and
standard deviations given by a calibration envelope [461, 462]. Recent studies suggest
that the effects of these errors are negligible with current detector sensitives but will be
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Table 8.1: Run statistics for the analysis of GW150914 using nessai when not accounting
for calibration errors compared to sampling the calibration parameters or using calibration
reweighting. The number of posterior samples is shown for the combined results, whereas
the number of likelihood evaluations and wall time are shown for both parallel runs.

Posterior samples Likelihood evaluations Wall time [min] Reweighting time [min]

No calibration 8230 2 713 780
2 997 256

99
117 -

Sample 8839 7 983 618
7 018 733

574
864 -

Reweight 3369 1 967 937
2 623 297

74
96 < 1

more relevant in next generation detectors [463, 464]. Payne et al. [464] also proposed us-
ing importance sampling to reweight results obtained without modelling calibration errors
and thereby include the errors. This allows analysis to be performed without sampling
the additional parameters that are necessary when modelling the calibration errors, and
can reduce computational cost. We consider both reweighting and sampling for use with
nessai.

8.1.1 Calibration errors with nessai

The analyses with nessai presented so far have not accounted for calibration errors since
they used simulated data. However, tests on non-gravitational-wave likelihoods, e.g. in
section 7.5.1, have shown that increasing the number of dimensions being sampled requires
adjustments to the settings being used. We now test sampling the calibration parameters
with nessai and using calibration reweighting and use these results to inform further
analyses.

We analyse GW150914 using nessai; once sampling the calibration errors, once using
calibration reweighting and once without accounting for calibration. We model the signal
with IMRPhenomPv2 and use the calibration data provided with GWTC-2.1 [9]. We run
the analyses with bilby and bilby_pipe [198] on 16 cores. We perform two parallel runs
per analysis and combine the final results to obtain a single set of the posterior samples
for each of treatment of the calibration errors.

We compare the posterior samples and find that the reweighting step has more than
halved the final number of samples compared to the other runs, as shown in table 8.1. How-
ever, it has minimal impact on the overall wall time and number of likelihood evaluations,
whereas sampling the calibration parameters significantly increases both, see table 8.1.
A subset of the posterior distributions for each run are shown in fig. 8.1. As expected,
the differences between the posterior distributions that account for calibration errors and
those that do not are minimal. The most notable, though overall minor, change when
accounting for calibration is to the sky location (α, δ) which is due to the correlations
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between the location and other parameters, such as the inclination, that are affected by
the amplitude calibration errors [465].

We also examine the diagnostics produced by nessai and compare them with and
without sampling the calibration errors. The insertion indices for one of the runs sampling
the calibration errors indicate the result may be slightly over-constrained, whereas the
other does not, see appendix G.1. This suggests that whilst the results presented in
fig. 8.1 show reasonable agreement, the settings may not be generally robust. In fig. 8.2,
we compare a subset of the statistics tracked by nessai over the course of sampling.
These show how the additional parameters that are included when sampling the calibration
errors significantly reduce sampling efficiency. Both the acceptance based on the likelihood
threshold and for the rejection sampling are consistently lower, which increases the overall
wall time, shown in table 8.1.

In summary, sampling the calibration parameters significantly increases the cost of
performing analyses with nessai whilst also requiring different sampling settings. In
contrast, calibration reweighting does not impact sampling, allowing for the use of the
same settings and the reweighting state can be parallelized to reduced wall time. This
comes at the cost of the final number of posterior samples. However, the reduction in
number of samples can be offset by running more parallel analyses whilst still remaining
faster than sampling the parameters directly. We therefore opt to perform the analyses
using calibration reweighting instead of sampling the calibration parameters

8.2 Analysis of O1 and O2 events

Eleven gravitational-wave transients were detected in the first two LIGO-Virgo Collabo-
ration (LVC) observing runs, O1 and O2 [7]. Ten of these were identified as binary black
holes (BBHs) and the remaining signal was the first binary neutron star (BNS) detection,
GW170817 [29]. These events have since be been reanalysed multiple times with different
inference algorithms and waveform approximants [7, 9]. Here, we focus on the results from
Gravitational-Wave Transient Catalog 1 (GWTC-1) [7] and GWTC-2.1 [9] and compare
them to results obtains with nessai. For all analyses, we use the data and calibration
envelopes described in GWTC-2.1 [9]

8.2.1 BBH analyses

The analyses in GWTC-1 used LALInference [96] with IMRPhenomPv2 [457, 458] for the
BBHs events. In contrast, the analyses in GWTC-2.1 used bilby and bilby_pipe [198],
with the dynesty sampler [197], and the more recent IMRPhenomX family of waveforms [118],
specifically, IMRPhenomXPHM which includes precession and higher-order modes [118]. This
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Figure 8.1: Corner plot showing a subset of the posterior distributions for GW150914
obtained using nessai with three different treatments for the calibration errors: sampling
the calibration errors (blue), calibration reweighting (orange), and not accounting for
calibration errors (black dashed line). The 2-dimensional posteriors show the 39.3%, 86.5%
and 99.8% contours.
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gives us a range of results to compare to and provides context for the statistical variations
we expect to see between different inference codes and samplers.

We use bilby and bilby_pipe for the analyses with nessai and base the config-
uration for each event on analyses performed in GWTC-2.1 since it also used bilby
and bilby_pipe. We use calibration reweighting to account for the calibration error
and perform two parallel runs per event which are then combined to obtain a single re-
sult. We analyse each event using three different waveform approximants: IMRPhenomPv2,
IMRPhenomXP and IMRPhenomXPHM. We opt to use phase marginalization with IMRPhenomPv2
and IMRPhenomXP, under the assumption that the effects of precession will be negligible,
and disable it for IMRPhenomXPHM since it contains higher-order modes. Results obtained
with IMRPhenomPv2 will mostly closely match the results in GWTC-1, however, differ-
ences may arise due to differences between LALInference and bilby and the use of
phase marginalization, which the GWTC-1 analyses did not use. Results obtained with
IMRPhenomXPHM should be consistent with GWTC-2.1 since it also used bilby, so any
differences can be attributed to differences between nessai and dynesty. Finally, results
obtained with IMRPhenomXP will differ from GWTC-1 because of changes to the waveform
and inference pipeline, but will also differ from GWTC-2.1 in cases where higher-order
modes are present or the effect of precession is large.

Comparison to GWTC-1 results

We compare the results obtained using nessai with IMRPhenomPv2 to the samples released
with GWTC-1 [466]. These only contain a subset of the usual 15 parameters over which
inference is performed, which limits the comparisons that can be made. We compute
JSDs between the nessai results with IMRPhenomPv2 and IMRPhenomXP and the GWTC-1
results and present them in fig. 8.3. The average overall JSD is 0.011 bits whilst, fol-
lowing Ashton and Talbot [233], the average threshold that indicates agreement between
the posteriors, given the number of posterior samples, is almost an order of magnitude
smaller at 0.0017 bits. These results show that there are significant differences between
the GWTC-1 and IMRPhenomPv2 results. We note, however, that the priors on chirp mass
used for the two analyses are different; they differ in the range of chirp masses but also in
the allowed component and total mass. More details are provided in appendix G.2. The
event with the lowest average JSD is GW170809, and the event with the highest average
JSD is GW150914. We present the corner plots for these two events in figs. 8.4 and 8.5,
and also include the posteriors obtained with IMRPhenomXP.

For GW150914 there is a noticeable difference in posterior distribution for the chirp
mass and mass ratio, with the GWTC-1 results favouring higher chirp masses and equal
masses. To explore this difference in more detail, we perform additional analyses with
priors that are consistent with GWTC-1 and disable phase marginalization, but the results
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Figure 8.3: JSD in bits between GWTC-1 posterior samples and posterior samples pro-
duced by nessai with IMRPhenomXP and IMRPhenomXP for the 10 BBH events from O1
and O2. The mean JSD in bits for each event is shown above each plot. The horizontal
grey line shows the 10/n samples threshold, where n is the minimum number of samples
between the three sets of posterior samples for each event.
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obtained are still inconsistent with those with GWTC-1, see appendix G.3. We therefore
attribute this to differences in the configuration, data (e.g. power spectral densitys (PSDs))
and overall pipelines being used (LALInference vs bilby). This result also highlights a
difference between IMRPhenomPv2 and IMRPhenomXP; the latter has more support for larger
values of χp, whereas the former is broad agreement with the GWTC-1 result. This is
consistent with the results reported in Pratten et al. [120], where the authors observe
similar differences between IMRPhenomPv2 and IMRPhenomXP.

For GW170809, as quantified by the JSD, the posterior distributions show signifi-
cantly better agreement than for GW150914. The estimates of the masses are consistent
across both GWTC-1 and nessai with IMRPhenomPv2 but also between IMRPhenomPv2
and IMRPhenomXP. There are however visible differences in the sky location returned by
nessai and GWTC-1, though this may be in part due to large differences in the number
of samples being plotted; more than 50 000 for GWTC-1 and only ∼ 8000 for both nessai
analyses. Whilst the results for IMRPhenomPv2 and IMRPhenomXP share the same support
for the masses, the IMRPhenomXP results again show more support for higher values of χp.

If instead of per event, we consider the mean JSD per parameter, we find that chirp
mass has the highest JSD of 0.0294 bits whilst the inclination θJN has the lowest at
0.0019 bits. The 1-dimensional marginal chirp mass posterior distributions for each event
are shown in fig. 8.6. Most of the posteriors show minor differences; slight shifts in the me-
dian values or differences in width of the posteriors, the one exception to this is GW151012
where the secondary higher-mass mode has more posterior mass compared to GWTC-1.

Overall, we find consistent differences between the results obtain with nessai and
those from GWTC-1, most notably in the estimated chirp mass. For GW150914, we
explore these discrepancies in more detail and find that changing the priors and marginal-
izations cannot fully account for them. We therefore attribute them to differences in the
configuration, the analysis pipelines and possibly data being used. Comparing runs with
IMRPhenomPv2 and IMRPhenomXP highlights cases where changes in the waveform lead to
noticeable differences in the posterior distributions, most notably for the spin parameters.

Comparison to GWTC-2.1 results

We present the results obtained using nessai with IMRPhenomXP and IMRPhenomXPHM
and compare them to samples released alongside GWTC-2.1 [467]. We compute JSDs
between the three results for a subset of the parameters and present them in fig. 8.7. The
results using IMRPhenomXPHM are directly comparable to those from GWTC-2.1 and, unlike
the previous comparison to GWTC-1, all the results have a mean JSD below 0.005 bits.
This implies that the results obtained with nessai are consistent with those published
in GWTC-2.1. Since phase was sampled rather than marginalized, this also implies that
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Figure 8.4: Corner plot showing the posterior distributions for GW150914 from GWTC-1
(black dashed line), and two analyses using nessai: one with IMRPhenomPv2 (blue solid
line) and another with IMRPhenomXP (orange solid line). The 2-dimensional posteriors
show the 39.3%, 86.5% and 99.8% contours.
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Figure 8.5: Corner plot showing the posterior distributions for GW170809 from GWTC-1
(black dashed line), and two analyses using nessai: one with IMRPhenomPv2 (solid blue
line) and another with IMRPhenomXP (orange solid line). The 2-dimensional posteriors
show the 39.3%, 86.5% and 99.8% contours.
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Figure 8.6: Posterior distributions for chirp mass for the 10 BBH events from O1 and O2
comparing GWTC-1 and an analysis using nessai with IMRPhenomPv2. The GWTC-1
samples are shown in blue on the left of each violin plot and the nessai sample are shown
in orange on the right.

the settings proposed in chapter 6 are suitable for such analyses. However, similar to the
results for GWTC-1, the choice of settings and use of calibration reweighting has resulted
in comparatively low number of posterior samples. The event with the highest average
JSD is GW170729 and lowest corresponds to GW170814. Corner plots for both events
are shown in figs. 8.8 and 8.9 and include results obtained with IMRPhenomXP with phase
marginalization.

GW170729 has the highest average JSD of all the events at 0.0046 bits, with the high-
est individual JSD of 0.0154 bits for the right ascension, a pattern that repeats across
multiple events. Despite this, the posterior distribution in fig. 8.8 still show good agree-
ment between results from nessai with IMRPhenomXPHM and GWTC-2.1, including for the
highly multimodal posterior over right ascension and declination. However, the posteri-
ors for nessai with IMRPhenomXPHM appear, in both the 1- and 2-dimensional marginal
distributions, to be narrower than the results from GWTC-2.1. This suggests that the
results from nessai may be slightly over-constrained. However, these differences result
correspond to only slight variations in the confidences intervals, for example the median
detector frame mass of the heavier component is estimated to be m1 = 77.21+15.72

−14.50 M� for
GWTC-2.1 and m1 = 77.29+15.30

−14.20 M� for nessai with IMRPhenomXPHM. Conversely, the
results with IMRPhenomXP and phase marginalization once again have more support for
equal masses and larger values of χp.
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Figure 8.7: JSD in bits between GWTC-1 posterior samples and posterior samples pro-
duced by nessai with IMRPhenomXPHM and IMRPhenomXP for the 10 BBH events from O1
and O2. The mean JSD for each event is shown above each plot. The horizontal grey line
shows the 10/n samples threshold, where n is the minimum number of samples between
the three sets of posterior samples for each event.
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Figure 8.8: Corner plot showing the posterior distributions for GW170729 from GWTC-
2.1 (black dashed line), and two analyses using nessai: one with IMRPhenomXPHM (blue
solid line) and another with IMRPhenomXP (orange solid line). The 2-dimensional posteriors
show the 39.3%, 86.5% and 99.8% contours.
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GW170814 has the lowest average JSD of all events at 0.0007 bits. All but one of the
parameters have JSD below 0.001 bits, the exception being the inclination angle θJN with
DJS = 0.0014 bits. As expected, fig. 8.9 shows that posteriors between the analyses are
consistent, however the lower number of samples for the nessai analyses is apparent. The
result obtained with IMRPhenomXP and phase marginalization also shows good agreement
with the results with IMRPhenomXPHM, suggesting there is little evidence for precession or
higher-order modes in this signal.

Of all the parameters, right ascension and declination (α, δ) have the highest average
JSDs at 0.0062 bits and 0.0042 bits respectively. Once again, χp has the lowest average
JSD at just 0.0008 bits. We present the sky maps produced using the right ascension and
declination posterior samples from each analysis in figs. 8.10 and 8.11, these also include
the area in square degrees contained within the 50% and 90% contours for each analysis.
The 50% contour for the nessai is smaller than the corresponding contour from GWTC-
2.1 for eight of the events. Similarly, for the 90% contours, nessai produces smaller sky
maps for seven of the events. Furthermore, GW170729 and GW17809, the posterior from
nessai is missing small secondary modes that are present in the GWTC-2.1 results. If
we assume the GWTC-2.1 results to be unbiased, this suggests that the nessai sky maps
are over-constrained, though the low number of samples may also contribute to this.

In summary, the results produced using nessai with IMRPhenomXPHM are broadly con-
sistent with the samples released alongside GWTC-2.1; the average JSD between the
samples is 0.0025 bits. GW170729 has the highest JSD, but the posterior distributions
presented in fig. 8.8 still show good visual agreement. Of all the parameters, the right
ascension and declination show the largest disagreement and the sky maps in figs. 8.10
and 8.11 suggest that some of the results with nessai may be slightly over-constrained,
though the lower number of samples may also contribute to this. When considering these
results alongside those presented for GWTC-1, they suggest the differences are not due to
nessai, but rather how the different analyses are configured.
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Figure 8.9: Corner plot showing the posterior distributions for GW170814 from GWTC-
2.1 (black dashed line), and two analyses using nessai: one with IMRPhenomXPHM (blue
solid line) and another with IMRPhenomXP (orange solid line). The 2-dimensional posteriors
show the 39.3%, 86.5% and 99.8% contours.
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Figure 8.10: Sky maps for the first half of the BBH events from O1 and O2. Sky
maps are shown for the analysis from GWTC-2.1 and for the analysis using nessai with
IMRPhenomXPHM. The 50% and 90% contours are shown for both analyses, and the area of
each contour in square degrees is also quoted.
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Figure 8.11: Sky maps for the second half of the BBH events from O1 and O2. Sky
maps are shown for the analysis from GWTC-2.1 and for the analysis using nessai with
IMRPhenomXPHM. The 50% and 90% contours are shown for both analyses, and the area of
each contour in square degrees is also quoted.
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Run statistics

We now examine the run statistics for the BBH analyses described in the previous sections.
Equivalent statistics are not included in the data releases that accompany GWTC-1 and
GWTC-2.1 [467], so we cannot compare them to nessai. However, we can still compare
the runs with nessai with different waveform approximants and determine which part of
the algorithm is the dominant cost.

For each event, we track the number of likelihood evaluations and total wall time
per parallel run. However, the wall time is highly dependent on the hardware allocated
to each run, so it is a less reliable indication of sampling efficiency than the number
of likelihood evaluations. In fig. 8.12, we present the wall times and total likelihood
evaluations for each event. There is an approximately linear relationship between the
number of likelihood evaluations and wall time, which suggests that the likelihood accounts
for a significant portion of the total wall time. We revisit this later in this section. As
expected, the analyses with phase marginalization require an order of magnitude fewer
likelihood evaluations and there are similar differences in the wall time. We also observe
that the number of likelihood evaluations is strongly correlated to duration of the signal
and signal-to-noise ratio (SNR). GW151012 and GW170104 used 8 s segment lengths and
GW151226 and GW170608 use 16 s segment lengths and these are amongst the most costly
analyses, alongside GW150914 which is the loudest BBH event from O1 and O2 [7].

We compute the fraction of the total wall time spent evaluating the likelihood, training
the normalizing flow and populating the pool of new samples and present the results per
event in fig. 8.13. The fraction of the time spent evaluating the likelihood is higher in
the runs with IMRPhenomXPHM and phase marginalization disabled, but a clear trend is
visible across both sets of runs: analyses for events that have a longer duration spend
a larger portion of the time evaluating the likelihood, since the cost of evaluating the
likelihood scales with duration. This is particularly noticeable for the two 16-second events,
GW151226 and GW170608, where more than 50% of the time was spent evaluating the
likelihood and suggests that these analyses could be performed with more cores.

The run statistics for the analyses with nessai show expected correlation between
signal duration and number of likelihood evaluations and wall time. As seen in chapter 6,
disabling phase marginalization for the runs with IMRPhenomXPHM increases the cost of
performing analyses by an order of magnitude. For shorter signals, this is dominated
by the cost of populating the pool of new samples, which includes rejection sampling
and highlights how i-nessai could be used to reduce the cost of performing analyses.
However, for longer signals, even when using 16 cores, the cost of evaluating the likelihood
still accounts for more than 50% of the wall time, suggesting that such analyses may be
able to make use of more cores.
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8.2.2 BNS analysis

Unlike the BBH events from O1 and O2, the sole BNS event GW170817 [29] has not been
reanalysed by the LVK and the most recent public samples are those from GWTC-1 [7,
466], it has however been reanalysed by other groups [122, 296]. We reanalyse the event
using nessai and bilby with IMRPhenomPv2_NRtidalv2 [456] and compare our results to
those from GWTC-1, which used LALInference and IMRPhenomPv2_NRTidal [129].

In GWTC-1, two analyses were performed: one with low-spin priors (ai < 0.05) and
another with high-spin priors (ai < 0.89) [29] and we use the same treatment here. For the
tidal parameters, we sample in the dimensionless parameters (Λ̃, δΛ̃) [468, 469] instead of
sampling (Λ1,Λ2) directly, since this is what was used in the GWTC-1 analysis [7]. We em-
ploy Reduced-Order-Quadratures (ROQs) to reduce the cost of evaluating the likelihood,
however this requires that we analyse 256 s of data instead of the 128 s used for GWTC-1
and that we use a different prior range for the chirp mass: [0.92, 1.7] M�. Furthermore,
the electromagnetic emission that followed the merger [38] allowed for its sky location to
be precisely determined, meaning that one can also fix the sky location instead of sam-
pling it, further reducing the computational cost. Due to the length of the signal being
analyses, calibration reweighting has increased computational cost for BNS analyses, we
therefore also perform the analyses twice: once sampling over the calibration parameters
and a second time using calibration reweighting.

We compare the posterior samples produced by our analyses to those released with
GWTC-1 in fig. 8.14. For the low-spin priors, the two nessai analyses are broadly consis-
tent with each other and the with GWTC-1 results. The insertion indices for the analyses,
see fig. 8.15, show clearly that the runs where the calibration parameters are sampled are
over-constrained whilst the runs with calibration reweighting are not. This suggests that,
despite the apparent agreement with GWTC-1, the settings used are only appropriate
when used with calibration reweighting. The high-spin posteriors, unlike for the low-spin
analyses, show clear differences to those from GWTC-1, most notably in the 2-dimensional
posteriors for the masses and tidal parameters. This may be in part due to the priors used
in our analysis which, due to the use of ROQs, have additional constraints on the masses
compared to the GWTC-1 priors. Furthermore, the updated treatment for tidal parame-
ters (NRTidal versus NRTidalv2) and use of phase marginalization, may also account for
some of the differences. However, even when using calibration reweighting, the insertion
indices show slight signs of over-constraining, suggesting that the high-spin posteriors are
slightly over-constrained.
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Figure 8.15: Comparison of analytic cumulative mass function (CMF) and the empir-
ical CMF for the insertion indices corresponding to the low- and high-spin analyses of
GW170817 with nessai. The two parallel runs for each analysis are shown in different
shades of orange (low-spin) and blue (high-spin). The shaded regions indicate the 1-, 2-
and 3-σ confidence regions.

Whilst run statistics for the published results are not available, we can still compare
the number of likelihood evaluations and wall times between different analyses, which we
present in table 8.2. As observed in section 8.1.1, sampling the calibration parameters in-
creases the wall time and number of likelihood evaluations, however for these long-duration
signals, calibration reweighting is also more expensive, taking of order 5 minutes per run
when spread across 16 cores. Furthermore, the analyses that sampled the calibration
parameters are over-constrained, see fig. 8.15, and will have therefore required fewer like-
lihood evaluations than equivalent analyses that were not over-constrained. As such, the
corresponding run statistics in table 8.2 under-represent the cost of obtaining unbiased
results when sampling the calibration parameters with nessai.

These results show that the results from analysing GW170817 with nessai are broadly
consistent with previous LVK analyses. The largest differences arise in the high-spin
analyses, however, these differences are still smaller than the statistical differences we
would expect from e.g. a different noise realization and well within the uncertainty of the
previous analyses. This, alongside the diagnostics produced by nessai, implies that the
settings used are suitable for low-spin analyses of BNS signals when the sky location is
fixed and calibration reweighting is used. However, despite being broadly consistent with
previous analyses, the high-spin results show signs of over-constraining, even when using
calibration reweighting, suggesting that such analyses may require different settings. We
emphasize though that the insertion index diagnostic test is more stringent than some
other tests, e.g. P-P tests, and it has not been used in the LVK analyses, so we cannot
be sure that previous LVK analyses would pass it1. We revisit this application in the

1The insertion index diagnostic test has been applied to some events from O1, O2 and O3a in Klinger
and Agathos [470], however this has some limitations since the insertion indices were computed post-
sampling rather than being recorded during sampling.
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Table 8.2: Run statistics for the low- and high-spin analyses of GW170817 using nessai.
The number of posterior samples is shown for the combined results, whereas the number of
likelihood evaluations and wall time are shown for both parallel runs. Note that the number
of likelihood evaluations does not include the evaluations required in the reweighting step,
however, there will only be O(104).

Analysis Calibration method Posterior samples Likelihood evaluations Wall time [min] Reweighting time [min]

Low-spin Sample 9176 9.1× 105

12.0× 105
82
110 -

Reweight 3474 6.2× 105

5.6× 105
17
65

4.7
5.0

High-spin Sample 9319 11.1× 105

12.1× 105
1158
2176 -

Reweight 4209 8.2× 105

8.6× 105
409
607

4.8
6.5

following section when we reanalyse another BNS event, GW190425.

8.3 Analysis of selected O3 events

We now analyse a subset of the events detected in O3 and compare the results obtained
using nessai with IMRPhenomXPHM to the samples released alongside GWTC-2.1 [9, 467]
and [10, 471]. We choose events that are particularly challenging to sample with the aim of
identifying deficiencies during sampling when using the settings determined in chapter 6.
All non-sampler-specific settings were set based on the settings used in GWTC-2.1 and
GWTC-3.

8.3.1 GW190412

GW190412 was the first confident detection of BBH with asymmetric masses, and also
showed significant contribution from higher-order modes in the waveform [472]. We repeat
the analysis with nessai using the same settings as the analyses in section 8.2 with two
parallel runs and present the results in fig. 8.16. The posterior distributions produced by
our analyses are broadly consistent with those previously published by the LVK; the mass
ratio and chirp mass are estimated to be q = 0.276+0.76

−0.61 and M = 15.22+0.21
−0.18, however,

the posteriors are narrower, suggesting the two parallel runs may be over-constrained. In
fig. 8.16b, we compare the distribution of insertion indices to the expected distribution and
find that both runs show signs of over-constraining. This suggests that these settings may
not be suitable for more challenging to analyse events, however it once again highlights
the value of checking the insertion indices.
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Figure 8.16: Results for the reanalysis of GW190412 with nessai. (a) Comparison of
the posterior distribution for chirp mass and mass ratio obtained using nessai (blue)
and the GWTC-2.1 analysis (black). The 2-dimensional contours shown contain 39.3%,
86.5% and 99.8% of the posterior probability respectively. (b) Comparison of the empirical
distribution of the insertion indices for the two parallel runs to the analytic distribution.
The shaded regions indicate the 1-, 2- and 3-σ confidence regions.

8.3.2 GW190425

GW190425 was detected in O3a and has component masses that are consistent with being
a BNS, however the source-frame total mass is larger than the known population of BNS
systems [262]. Unlike the first BNS detection, GW170817, this was a two-detector event
and the higher mass results in a shorter signal. We reanalyse the GW190425 with nessai
using IMRPhenomPv2_NRtidalv2 [456] with ROQ bases and compare the results to the
samples released with the discovery paper [262] and the reanalysis in GWTC-2.1. Similarly
to our analysis of GW170817, we perform both a low spin (ai < 0.05) and a high spin
(ai < 0.89) analysis and perform runs sampling the calibration parameters and using
calibration reweighting. However, unlike for GW170817, the analyses in discovery paper
and GWTC-2.1 sampled in Λ1 and Λ2 rather than Λ̃ and δΛ̃ [262]; we do the same in our
analysis.
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Figure 8.17: Subset of the posterior distributions for the low- and high-spin analyses of GW190425. Posteriors are shown for the
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Figure 8.18: Comparison of analytic CMF and the empirical CMF for the insertion indices
corresponding to the low- and high-spin analyses of GW190425 with nessai. The four
parallel runs for each analysis are shown in different shades of orange (low-spin) and blue
(high-spin). The shaded regions indicate the 1-, 2- and 3-σ confidence regions.

In fig. 8.17, we compare the posterior distributions for the chirp mass, mass ratio, tidal
deformabilities, spin magnitudes and inclination angle θJN for both the low and high spin
analyses. We see mostly good agreement between all three low-spin results, including the
analysis that sampled the calibration parameters, the exception is the spin magnitude of
secondary mass a2, where nessai is consistent with the discovery paper but the GWTC-
2.1 result has less support for low spin magnitudes. However, in the high-spin case we see
significant differences between the results from nessai compared to the GWTC-2.1 results,
instead, the nessai results show better agreement with the discovery paper results, for
example in the inclination angle θJN. The two nessai runs are also inconsistent, suggesting
one or both may be over- or under-constrained.

We examine the insertion indices for these runs, see fig. 8.18, and find that the
indices for the analyses where the calibration parameters are sampled show signs of
over-constraining, particularly for the high-spin analyses. The runs that use calibration
reweighting however do not show clear signs of over- or under-constraining, so the differ-
ences observed in fig. 8.17 cannot unequivocally be attributed to sampling biases, suggest-
ing over differences are at play. This contrasts with our analyses of GW170817, where the
high-spin analyses showed signs of over-constraining even using calibration reweighting

The results alongside those for GW170817 provide further evidence that nessai, with
the correct settings, can produce reliable results for low-spin BNS analyses. Moreover,
unlike GW170817, these analyses did not fix the sky locations, showing that nessai is
not limited to BNS analyses where the sky location is known. High-spin analyses remain
challenging due to the increased complexity of the parameter space.
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8.3.3 GW190521

GW190521 is the most massive BBH detected to date, with a source frame total mass of
∼ 150 M� [147]. The LVK analysis also found that posterior obtained with IMRPhenomXPHM
has support for a secondary lower and unequal mass mode, fig. 8.19 shows the IMRPhenomXPHM
samples release with GWTC-2.1 [467]. The posterior distribution produced by our reanal-
ysis with nessai and IMRPhenomXPHM is shown alongside the result from GWTC-2.1 in
fig. 8.19 and only shows support for higher, equal mass mode. The analysis with nessai
does not recover the second mode that is present in the original analysis, which may be
a result of using Nlive = 1000 for the analysis or over-constraining of likelihood contours
during sampling. We therefore perform another analysis with Nlive = 2000, which is also
included in fig. 8.19, and examine the insertion indices for both runs, see fig. 8.20. The
posterior distribution obtained after increasing Nlive is still inconsistent with the GWTC-
2.1 results – it shows better agreement in the inclination but the more extreme mass ratio
mode is still not present. The insertion indices in fig. 8.20 do not show clear signs of
over-constraining, though overall the Nlive = 1000 do appear slightly worse. Given that
this inconsistency cannot be clearly attributed to biases in sampling, this suggests there
is another difference in either the configuration used or the pre-processing of the data.

8.3.4 GW191109

GW191109 is another event from O3 with a high-mass source (median total source frame
of mass of M = 112+20

−16 M� [10]) and it also has significant support for negative values of
χeff. We reanalyse the data using nessai with IMRPhenomXPHM and compare the results to
the IMRPhenomXPHM samples released with GWTC-2.1 [467]. In fig. 8.21, we compare the
posterior distribution produced by our analysis with nessai to the GWTC-2.1 samples.
The nessai result has more support for negative χeff, however, it is missing a secondary
mode in the sky that is present in the GWTC-2.1 result and it lacks support for the
higher-mass region. This suggests the posterior distribution may be over-constrained, so
we compare the insertion indices for the two parallel analyses to the analytic distribution
and present the result in fig. 8.22. The insertion indices, whilst not as clearly over-
constrained as those for GW190412 or some of the GW190425 analyses, do show signs of
slight over-constraining, which is most likely the cause of the differences seen in fig. 8.21.
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8.4 Analysis with i-nessai

The analysis of the BBH events from O1 and O2 highlighted once again how rejection
sampling can be a bottleneck in compact binary coalescence (CBC) analyses with nessai,
see fig. 8.13. We presented i-nessai in chapter 7 and demonstrated that it can address
this bottleneck and reduce inference times. We now repeat the analyses described in
section 8.2.1 for GW170823 using i-nessai and compare the results and run statistics to
those presented previously.

We perform analyses with IMRPhenomPv2 with phase marginalization and we use two
parallel runs per analysis which are combined to obtain a single set of posteriors samples
per analysis. For both analyses we keep Nj constant and set it to Nj = 10 000 and we set
ρ = 0.5 with the entropy-based method for determining the next proposal, see chapter 7
for details. We also include consider similar analyses with IMRPhenomXPHM but find that,
similar to what is discussed in chapter 6 for nessai, this would require changes to the
sampler settings and the current settings do not reliably converge or produce a low number
of effective samples. We show an example of this in appendix G.4.

In section 8.1.1, we showed that sampling the calibration errors significantly increases
the cost of analyses with nessai, due to both increased number of likelihood evaluations
and lower rejection sampling efficiency. Since i-nessai no longer requires rejection sam-
pling, we also perform an analysis with i-nessai where the calibration parameters are
sampled rather than using calibration reweighting and include this in our comparisons.

We compare the two analyses using i-nessai with IMRPhenomPv2 (calibration reweight-
ing and sampling calibrtion parameters) to the analysis with nessai from section 8.2.
Figure 8.23 shows the posterior distributions for all three analyses, we see that all three
analyses produce consistent results, including the analysis that sampled the calibration
parameters. This shows that i-nessai can produce consistent results when applied to
real data and suggests that sampling the calibration parameters does not lead to the same
biases that are seen in nessai, however more extensive testing is required. To quantify
the differences, we compute the JSD divergences between the three runs and present the
results in table 8.3. These divergences reinforce that the results with i-nessai are consis-
tent with nessai and that sampling the calibration parameters does not necessarily bias
the results.

Given the results with i-nessai show good agreement with those obtained with
nessai, we compare the run statistics. Table 8.4 contains the average number of like-
lihood evaluations, average effective sample size (ESS) rounded to the nearest integer and
average wall time in minutes for the three analyses. If we consider the two i-nessai
analyses, these results show that, whilst the inclusion of calibration parameters may not
bias the sampling, it still has a significant impact on the overall efficiency, be that in terms
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Table 8.3: JSD in mbits between the posterior distributions for GW170823 from three
analyses: the original analysis with nessai from section 8.2, an analysis using i-nessai
with calibration reweighting and an analysis using i-nessai whilst sampling the cali-
bration parameters. Since all three analyses use identical configurations, the divergences
are shown for the 12 parameters that are sampled, rather than other derived parameters.
These include the azimuth and zenith (ε, κ) instead of right ascension and declination and
the time of coalescence measured at L1, tL1.

M q a1 a2 θ1 θ2 φ12 φJL θJN ψ ε κ tL1

nessai-i-nessai 0.83 0.39 0.16 0.26 0.41 0.38 0.22 0.42 0.10 0.43 0.30 0.76 0.44
nessai-i-nessai w. cal 0.63 0.30 0.38 0.56 0.67 0.56 0.12 0.28 0.12 0.36 0.18 0.86 1.00
i-nessai-i-nessai w. cal 1.42 0.42 0.47 0.25 0.33 0.23 0.20 0.37 0.21 0.11 0.44 0.75 0.48

Table 8.4: Run statistics for three analyses of GW170823: nessai with calibration
reweighting, i-nessai with calibration reweighting and i-nessai with calibration sam-
pling. The statistics are average over the two parallel runs performed for each analysis.
The ESS has been rounded to the nearest integer.

Likelihood evaluations ESS Wall time [min]
nessai (reweighting) 14.3× 105 6759 91.4
i-nessai (reweighting) 7.7× 105 15 305 17.5
i-nessai (sampling) 29.8× 105 5319 236.5

of the number of likelihood evaluations to ESS or the wall time. This is no longer due to
the inefficiency of rejection sampling in higher numbers of dimensions but instead due to
poor convergence when training the flow, which we attribute to a combination of the low
number of training samples and mixture of a few informative parameters with far more
uninformative parameters (calibration parameters). On the other hand, if we compare the
result using i-nessai with reweighting to nessai, we see that i-nessai produces more
than double the number of effective samples in less than a fifth of the time. This speed-up
comes predominantly from no longer requiring rejection sampling, which for this event
accounted for more than 70% of the wall time (see fig. 8.13), though the reduction in the
total number of likelihood evaluations also contributes.

The results show that i-nessai can be applied to real data and still provides the speed-
ups seen for simulated data. They highlight that i-nessai has different failure modes
to standard nessai; instead of producing over-constrained results when the calibration
parameters are sampled, it yields fewer effective posterior samples and takes longer to
converge. However, the recommendation is the same as for standard nessai: calibration
reweighting is the preferred method for handling calibration uncertainty. Whilst this shows
the potential of i-nessai, we find that the settings used here do not scale to analyses
with higher-order modes, i.e. without phase marginalization, and further investigation is
needed.
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8.5 Looking forward

The next generation of ground-based interferometers will be significantly more sensitive
than current generation detectors [473]. This will enable us to probe the early Universe
and increases the expected event rate by orders of magnitude, but also brings new chal-
lenges [81]. For example, signals from the population of BBH systems detected by the cur-
rent generation ground-based interferometers will have order-of-magnitude higher SNRs
and be in the sensitive band of the detectors for 10 s of seconds [81]. This will signifi-
cantly increase the cost of performing parameter estimation, because of the increased cost
of computing the likelihood and the increased complexity of the likelihood surface due to
e.g. higher-order modes [474], and require improved waveform approximants [475]. In this
section, we demonstrate some of these challenges by applying nessai to simulated data
for a network of next-generation ground-based detectors and highlight the need for further
investigation into performing parameter estimation with data from these detectors.

We consider two network configurations: a network where Einstein Telescope (ET) is
the only interferometer and a network with ET and Cosmic Explorer (CE). The former
is unlikely but highlights some of the challenges posed by the triangular nature of ET.
For ET we use the ET-D PSD described in Hild et al. [476] and place the detector at
the current location of Advanced Virgo (AdVirgo) and for CE we use the pessimistic
PSD from Abbott et al. [473] and place it at the current location of Laser Interferometer
Gravitational-wave Observatory (LIGO) Hanford2. We simulate coloured Gaussian noise
based on the PSDs and inject a GW150914-like signal at a distance of 4000 Mpc using
IMRPhenomXP [118, 120]. Based on a minimum frequency of 5 Hz for ET, we analyse 40 s
of data sampled at 40 Hz, the injected signal has a combined SNR of 104 in ET and 230
in CE.

We enable phase and distance marginalization but disable time marginalization since it
is known to break down at high SNRs [251]. Given the SNR of the signal, phase marginal-
ization is no longer valid since the effect of precession will no longer be negligible [477],
however, given the challenges associated with sampling phase with nessai (chapter 6)
and, as we will see, the complexity of the problem, we ignore this. We run our analysis
using bilby [198] and use the settings for nessai described in chapter 5, including the use
of constant volume mode, we also parallelize the likelihood evaluation over eight cores.

2These locations are based on what is currently implemented in bilby.
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Figures 8.24 and 8.25 show the posterior distributions and sky maps for the two network
configurations. In the ET-only case, the sky angles (α, δ) are constrained to eight discrete
modes on the sky, one of which contains the injected location. We also see two modes
in the inclination angle that differ by π/2 and correspond to two different times; one at
the injected time and another ∼ 15 ms before, and half of modes on the sky correspond
to each. These two modes in inclination are mirror images of each other, reflected about
the plane of the detector; this is visible in the sky map shown in fig. 8.25. Overall, the
injected parameters have been recovered, however, the multimodal nature of many of the
parameters makes sampling challenging. On the other hand, the inclusion of CE resolves
the degeneracies seen in the ET-only case, and there is only a single sky-inclination-time
mode.

The posterior distributions in fig. 8.24 hint at the difficulty of performing parameter
estimation. When considering analyses with nessai, the biggest challenge is the highly
multimodal parameter space, which will lead to inefficient rejection sampling. The ET-
only run required O(2× 107) likelihood evaluations, compared to O(5× 106) for the two
interferometer case, and it also shows signs of over-constraining which implies that more
likelihood evaluations would be required for an unbiased run. Less specifically to nessai,
the high SNR of the signals also poses a challenge; the ET plus CE analyses took ∼ 23
hours, of which 21.3 hours were spent evaluating the likelihood. Compare this to the
analyses of GW150914 in section 8.2 that took less than 10 hours, of which ∼ 15% of
the time was spent evaluating the likelihood, and increased computational cost of the
longer-duration, higher-SNR is clear.

These results highlight some of the challenges associated with parameter estimation
for next generation ground-based detectors. In particular, it highlights that the triangular
nature of ET can result in a challenging to sample likelihood surface but also emphasizes
the importance of having a second detector. We also show that nessai in its current
state can be used to analyse such signals, but similar to what was observed in previous
analyses, multimodality is a challenge and an improved treatment could reduce the cost
of performing inference.

8.6 Conclusions

In this chapter, we have explored analysing real strain data from the current ground-
based interferometers with nessai and i-nessai, focusing predominantly on the former
since we have already determined the necessary settings in chapters 5 and 6. We start
by considering how to handle calibration errors, and then reanalyse the events detected
in O1 and O2 using a range of waveform approximants and compare our results to those
from GWTC-1 and GWTC-2.1. As a further stress test, we also reanalyse a subset of



CHAPTER 8. APPLICATIONS OF NESSAI 206

0◦ 315◦ 270◦ 225◦ 180◦ 135◦ 90◦ 45◦ 0◦

0◦

30◦

60◦

30◦

0◦

−30◦

−60◦

−30◦

ET only: 50.0%: 16.1 deg2, 90.0%: 79.2 deg2

ET + CE: 50.0%: 0.1 deg2, 90.0%: 0.3 deg2

2° E

N
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ascension and declination of the injected signal, and the red-dashed line shows the plane
of the detector projected onto the sky for the ET-only case.

the events detected in O3 and compare our results to corresponding results from GWTC-
2.1 and GWTC-3. Finally, we present two preliminary analyses; the first demonstrates
how i-nessai can be used to analyse real data and the second highlights the challenges
associated with applying nessai to next generation ground-based detectors.

The first hurdle to overcome when applying nessai to real data is handling the ad-
ditional parameters introduced to model the imperfect nature of the detector calibration.
This introduces upwards of 50 additional parameters that must either be sampled or oth-
erwise accounted for. We find that sampling these parameters is inefficient with nessai
due to how normalizing flows scale and can lead to over-constraining. Instead, we find
success using calibrating reweighting as a post-processing step which avoids the need to
sample additional parameters, but does result in fewer posterior samples. We test this
further in subsequent analyses of real events from O1, O2 and O3.

We start by applying nessai to the BBH events from O1 and O2. These events have
been analysed as a part of both GWTC-1 and GWTC-2.1, which allow us to compare runs
with both IMRPhenomPv2 and IMRPhenomXPHM. For the former we enable phase marginal-
ization but disable it for the latter. When compared to results released with GWTC-1,
we find that the results obtained using nessai with IMRPhenomPv2 show systematic dif-
ferences for some events, including GW150914. We investigate this further, considering
the choice of priors and the use of phase marginalization, but conclude that these do not
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account for the differences, implying they must arise due to another discrepancy, for exam-
ple changes between LALInference and bilby. When we reanalyse the same events using
nessai and IMRPhenomXPHM, we see that nessai is broadly consistent with the results
from GWTC-2.1. The sky angles show the largest difference, with the sky maps for the
nessai analyses tending to be smaller than those for GWTC-2.1, suggesting some of the
results with nessai may be slightly over-constrained. Since the settings were unchanged
between the two analyses with nessai, the results with IMRPhenomXPHM suggest that the
differences seen compared to GWTC-1 are not caused by problems during sampling.

We examine the run statistics from our analyses of the O1 and O2 BBHs and compare
the analyses with and without phase marginalization, which correspond to the analyses
with IMRPhenomPv2 and IMRPhenomXPHM respectively. These statistics are consistent with
the results presented in chapter 6, and show that sampling the phase increases the number
of likelihood evaluations and wall time by roughly an order of magnitude. We also observed
a clear correlation between the length of the data being analyses and the fraction of the
time spent computing the likelihood. This suggests that analyses with longer data lengths
could make use of more cores compared to the four-second analyses performed in previous
chapters.

GW170817 was the first detection of gravitational waves from BNS system and it
was also the first multi-messenger gravitational-wave observation. We reanalyse the event
using nessai and, following previous analyses, perform low- and high-spin analyses and
compare our results to those released with GWTC-1 [7, 466]. Our analyses differ slightly
from those in GWTC-1 since they use ROQs which require the use of different mass
priors and analysing 256 seconds of data rather than 128 seconds. We perform analyses
with calibration reweighting but, given the increased computational cost for long-duration
signals, also perform runs where the calibration parameters are sampled. In both the low-
and high-spin, analyses the insertion indices show sigs of over-constraining when sampling
the calibration parameter whereas the analyses that used calibration reweighting only show
slightly signs of over-constraining in one of the high-spin runs. The posterior distributions
for the low-spin analyses are consistent with the GWTC-1 results. The high-spin analyses
show differences in the posteriors for the masses and tidal parameters, these are likely due
to of or a combination of the more up-to-date waveform model, the different priors and the
use of phase marginalization. However, these differences are small and within uncertainty
in the results from GWTC-1.

To identify failure modes with nessai, we reanalyse four events from O3 which we
identify as being particularly challenging and compare the results to those published in
GWTC-2.1 and GWTC-3. These events we choose to analyse are three BBH events:
GW190412, GW190521 and GW191109 and the BNS event GW190425. GW190412 is
a BBH with asymmetric masses that showed significant contribution from higher-order
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modes, our reanalysis produces results that are consistent with those from GWTC-2.1
but the insertion indices show signs of over-constraining. GW190521 is the most massive
BBH detected to date, and the analysis from GWTC-2.1 found support for a secondary
lower, unequal mass mode. The initial posterior distribution from our reanalysis does
not have support for this secondary mode, so we repeat the analyses with double the
number of live points but this second analysis also lacks support for the secondary more.
Unlike for GW190412, the insertion indices for these runs do not show clear signs of over-
constraining, suggesting there may be other differences at play. The final BBH event,
GW191109, is also a high-mass source but also shows significant support for χeff < 0. The
results from our reanalysis also show support for χeff < 0, however, a secondary mode in
the sky location is absent from the posterior distribution and the insertion indices show
slight signs of over-constraining.

GW190425 was the second confident detection that was consistent with being a BNS.
We repeat the low- and high-spin analyses described in the discovery paper [262] and
GWTC-2.1 [9] and compare our results to the samples released alongside each publication.
We test both sampling the calibration parameters and calibration reweighting, but once
again find that sampling them leads to over-constraining, so focus on the reweighted
results. In the low-spin case, we observe good agreement between nessai and both sets
of LVK results, except for a2 where nessai is consistent with the discovery paper but
disagrees with GWTC-2.1. In the high-spin case, the results produced by nessai are not
consistent with either analyses; agreeing with the discovery paper for some parameters but
with GWTC-2.1 for others. The insertion indices for the high-spin runs are not clearly
over-constrained, so we cannot confidently attribute these differences to solely nessai.
Instead, we attribute these differences to a combination of different priors, an updated
waveform and different analysis framework (LALInference versus bilby).

We also perform limited tests of i-nessai applied to real data, specifically analysing
GW170823 with IMRPhenomPv2 and phase marginalization enabled. We find that unlike
standard nessai, the inclusion of calibration parameters does not bias the results but does
lead to a significant increase in the overall wall time and we therefore recommend using
calibration reweighting for i-nessai. The results produced by i-nessai are consistent
with nessai but, when using calibration reweighting, they are produced approximately
five times faster whilst also yielding more than double the number of effective post samples.
However, we find the settings used do not scale to analyses without phase marginalization,
and this therefore requires further investigation.

Looking forward to next generation ground-based interferometers, there will be sim-
ilar challenges when performing parameter estimation. As an example, we analyse a
GW150914-like injection in an ET-only network and an ET plus CE network using nessai.
We find that even when the analysis is simplified by including phase marginalization, it
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is significantly more costly than comparable analyses in the current generation of ground-
based detectors. The ET-only case is particularly challenging since we observe a degen-
eracy in the sky angles and time of coalescence, which leads to multimodal posterior
distributions. This highlights the need for further investigation into improved sampling
techniques for next generation ground-based interferometers.

Overall, these results show that, when applied to real data, nessai can produce results
that are consistent with published results or with differences that can be attributed to
other differences in the analyses. Furthermore, in most cases, the observed differences are
smaller than the statistical uncertainties from e.g. a different noise realization and are
within the uncertainties of the published results. Additionally, these results demonstrate
the value of the diagnostics included in nessai, particularly the insertion indices; they
can be used to reliably identify biases during sampling and are more stringent than other
commonly used tests, such as P-P tests. Therefore, in cases where they do not show signs
of biases, they are an indicator of unbiased results that does not require repeating analyses
with e.g. a different sampler. However, certain caveats still apply when using nessai to
analyse real data:

• calibration errors should be handled via calibration reweighting rather than by sam-
pling additional parameters since the latter increases the computational cost and
can lead to biases in the results,

• sampling with phase marginalization remains an order of magnitude faster than
without and should be used where possible,

• the insertion indices recorded by nessai should be checked for signs of over- or
under-constraining,

• multimodality remains a challenge and can significantly impact sampling efficiency.

These caveats also highlight aspects that could be the subject of further investigation, for
example: improved treatment of the phase parameter in nessai and i-nessai or novel
methods for handling multimodality.



Chapter 9

Conclusions

The overarching aim of the work presented in this thesis is to investigate and develop means
for accelerating gravitational-wave data analysis using machine learning. Our specific
focus is on augmenting stochastic sampling techniques used to perform Bayesian Inference,
thus bridging the gap between current techniques and the end-to-end machine learning
techniques that are being developed. We have demonstrated that the methods proposed
can accelerate gravitational-wave inference for compact binary coalescence (CBC) by up
to and, in some cases, more than an order of magnitude. This improvement stems from the
core idea of incorporating normalizing flows into nested sampling and the many iterative
improvements that built upon it. We now review the main contributions and conclusions
from chapters 4 to 8 before considering the broader impact of the work presented and
overall implications.

nessai The first stepping stone to achieve this was the development of the algorithm
nessai: nested sampling with artificial intelligence, (pronounced /'nes.i/) which is in-
troduced in Williams et al. [1]. nessai is centred around the standard nested sam-
pling algorithm first proposed by Skilling [193] that has since be built upon in vari-
ous works [195]. Unlike previous implementations, it uses normalizing flows to learn the
likelihood-constrained prior and sample directly from it without the need for Markov Chain
Monte Carlo (MCMC). At a given iteration, a normalizing flow is trained to map the cur-
rent distribution of live points to a Gaussian distribution in the latent space, a contour
is then constructed in the latent space, samples are drawn from within the latent contour
and then mapped back to the original space to obtain new samples within the likelihood
contour. The flexibility of normalizing flows allows nessai to learn complex contours and
sample from them efficiently, though this process requires the use of rejection sampling to
ensure samples are distributed according to the priors.

Our first demonstration of nessai is for analysing simulated 4-second binary black
hole (BBH) signals in a three-detector network. We analyse 128 signals with nessai;

210



CHAPTER 9. CONCLUSIONS 211

we use phase marginalization but also repeat the analyses with and without distance
marginalization. The resulting probability-probability plots (P-P plots) show that in the
both cases nessai consistently recovers the posterior distributions for the injections.

We repeat the analyses using another nested sampler, dynesty, which has been used
extensively for analysis of CBC signals [9, 10, 296] and use this a baseline to compare our
results. We find that, on average, the number of likelihood evaluations required by nessai
is smaller than dynesty by a factor of 2.07 when not using distance marginalization, and
a factor of 1.34 with distance marginalization enabled. This improvement also translates
to the wall time; we find that nessai is 2.32 times faster than dynesty without distance
marginalization enabled and 1.40 with it disabled; demonstrating that nessai can re-
duce both the number of likelihood evaluations and wall time. We therefore recommend
using nessai with distance marginalization since, after the improvements presented in
chapter 5, it is faster, but in this initial work we recommended using it without distance
marginalization.

We also consider other aspects of nessai that distinguish it from other nested sampling
implementations. The design of the algorithm allows for natural parallelization of the
likelihood computation, since new samples are drawn in batches rather than sequentially,
and this means it is trivial to reduce the wall time of analyses using more cores, particularly
for analyses where computing the likelihood is the dominant cost. However, we also find
that the rejection sampling necessary to ensure samples are distributed according to the
prior becomes an increasing bottleneck as more cores are used. We revisit this in chapter 7
we when proposed an alternative formulation of nested sampling that avoids this. Finally,
we also introduce the diagnostics available in nessai, most important of which are the
insertion indices. These allow for over- or under-constrained runs to be identified without
the need for a point of reference, e.g. a result from another sampler. We will see throughout
this thesis the utility of these diagnostics when understanding results and tuning settings.

This work set the foundation for the work that is presented in the subsequent chapters.
It demonstrated that nessai can be used to accelerate Bayesian inference for BBH signals
but also highlighted areas of improvement; we found that this version was highly dependent
on the choice of settings, we did not investigate applications without phase marginalization,
we noted that rejection sampling can be a significant bottleneck and we did not test nessai
on real gravitational-wave data. These are all aspects we investigate in the remainder of
this thesis.

Improvements to nessai The initial analyses with nessai presented in chapter 4
made use of problem-specific reparametrizations and settings to mitigate bias during. In
nessai, these biases arise predominantly from over- or under-constrained contours learnt
by the normalizing flow and we therefore investigate specific methods of combating them.
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We introduce constant volume mode, which fixes the radius of the latent contour for the
duration of sampling based on a user-defined fraction ρCVM ∈ (0, 1). This prevents small
radii that can lead to over-constrained contours and consequently, biased results. We test
constant volume mode on a likelihood that combines 1-dimensional distributions for which
the previous settings tend to produce biased results, this includes uniform distributions
and distributions that have maximal posterior probability at the prior bounds. The results
show that the use of constant volume mode can reduce these biases, although they can
still arise in some scenarios.

The second change we introduce is periodically resetting the flow, that is: periodically
training from randomly initialized weights rather than starting from the previous trained
flow. This minimizes biases that can arise when a training instance fails to converge on a
suitable contour, which can otherwise have a cumulative effect over the course of sampling.
We find this improves results for posteriors with maximal posterior probability at the prior
bounds and for complex posterior distributions with long tails and multiple modes.

We reanalyse the 128 BBH injections from chapter 4 using nessai with constant
volume mode and compare the results to our original results with nessai. With these
changes, nessai still passes the P-P tests with and without distance marginalization but
has improved sampling efficiency compared to previous results. This results in, on average,
a 2.7 times reduction in the number of likelihood evaluations when distance marginalization
is enabled and, 1.6 times when it is disabled. This means that with the updated settings
using distance marginalization is more efficient than not, and we therefore recommend its
use in analyses with nessai using constant volume mode. Furthermore, we find that there
is an improvement in efficiency for all injections rather than just a subset. The largest
improvements are for events with signal-to-noise ratios (SNRs) greater than 20 which still
remain amongst the most costly analyses overall but show relative improvements of up
to O(100) in wall time. In contrast, the events that show the least improvement are
those with lower SNRs and those that exhibit multimodality in the likelihood surface,
particularly in the right ascension and declination.

Sampling phase with nessai Next we turn to tackling more complex analyses with
nessai, namely those where phase marginalization is no longer valid, for example because
of the inclusion of higher-order modes, and the phase must instead be sampled. Prelimi-
nary studies find that the settings used in previous analyses with nessai are not suitable
for such analyses and, and we therefore explore alternate parameterizations and settings.

Part of the challenge when sampling phase is the correlations between it and the other
source angles, polarization and inclination. With this is mind, we propose sampling using
the quaternions and define a mapping between them and the three source angles. We verify
that the two sets of parameters are equivalent and test this parameterization alongside
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others introduced in previous works. Compared to the default parameterizations, these
parameterizations show at best marginal improvement, however we find they are also
more prone to over-constraining. We attribute this to the multimodality that is observed
in the reparameterized space, particularly for the quaternions, see fig. 6.7, which nessai
is not well suited to. Based on these findings, we perform all subsequent tests using the
standard parameterization for the source angles. Future work could consider applications
of the quaternions for other sampling algorithms better suited to multimodality.

We perform similar tests to those described in chapters 4 and 5; we analyse simulated
BBH signals in a three-detector network. However, due to the increased computational
cost, we only analyse 64 injections. The settings we converge upon leverage the problem-
specific reparameterizations in order to pass a P-P test as we find simply tweaking the
general settings available in nessai insufficient. With these updated settings, sampling
phase requires on average 23 times more likelihood evaluations and takes 20 times longer
than the equivalent analyses with phase marginalization. Whilst these results demonstrate
that nessai can sample phase, the settings could likely be improved in a similar way to
that shown in chapter 5 for analyses with phase marginalization.

i-nessai One of the fundamental bottlenecks in nessai is the rejection sampling re-
quired to ensure new samples are distributed according to the prior, as discussed in chap-
ters 4 and 6. Removing the need for this step would therefore enable even faster inference.
In Williams et al. [2], reproduced in chapter 7, we propose a modified nested sampling
algorithm that is designed around the use of normalizing flows and importance weights,
which we call i-nessai: importance nested sampling with normalizing flows. i-nessai
incorporates normalizing flows similarly to nessai but removes the requirements for sam-
ples to be independently and identically distributed (i.i.d.) and distributed according to
the priors, and added in order of increasing likelihood, whilst also allowing for samples
to be added in batches. It draws upon existing variants of nested sampling including dif-
fusive nested sampling [213], importance nested sampling [212, 332] and nested sampling
via sequential Monte Carlo [216].

We outline the algorithm in section 7.3.8; it revolves around iteratively adding proposal
distributions to construct a meta-proposal which should be proportional to the posterior.
In the complete algorithm, each proposal distribution is a normalizing flow but we first
demonstrate a simplified version using 2-dimensional Gaussian distributions on a toy ex-
ample in section 7.2.1 before detailing the algorithm in section 7.3.

We first test i-nessai on a range of non-gravitational-wave problems: a Gaussian
likelihood, Gaussian mixture likelihood and the Rosenbrock likelihood. These tests allow
us to verify that the algorithm produces results that are consistent with standard nested
sampling, i.e. nessai. Compared to nessai, we find that i-nessai produces more precise
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evidence estimates whilst requiring fewer likelihood evaluations.
Returning to gravitational-wave inference, we perform analyses similar to those de-

scribed in chapters 4 and 5 and analyse 64 simulated signals from BBH coalescences in a
three-detector network. The posterior distributions from these analyses pass a P-P test,
further verifying that i-nessai can produce statistically consistent results. We analyse
the same injections using nessai and dynesty and present the likelihood evaluations and
wall times for these analyses in fig. 7.5. With a median of 6.5 × 105 likelihood evalua-
tions, i-nessai is more than an order of magnitude more efficient than dynesty. This
also translates to the wall time, where i-nessai is an order of magnitude faster, with a
median wall time of 119 minutes minutes on a single core.

We apply i-nessai to the analysis of a GW190425-like binary neutron star (BNS)
signal in a two-detector network. We use Reduced-Order-Quadratures (ROQs) to accel-
erate the likelihood calculation, assume low-spin priors and compare the results to those
obtained with dynesty and nessai. The results from i-nessai show good agreement
with the other two samplers and required more than 40 times fewer likelihood evaluations
than dynesty. However, the improvement compared to nessai is less than 1.5 times,
suggesting than nessai may be more efficient when applied to BNSs than BBH, though
this requires further investigation.

Given that rejection sampling is no longer required, we revisit parallelizing the likeli-
hood calculation. For a BBH signal, we find that even when using 16 cores to evaluate the
likelihood, it is still the dominant cost, whereas for nessai, populating the pool of new
samples becomes the dominant cost for 8 cores and above. In this particular example,
when using 16 cores, inferences takes of order 15 minutes using i-nessai, compared to
40 minutes for nessai.

The algorithm we introduce, i-nessai, addresses the largest bottleneck in nessai;
rejection sampling, whilst simultaneously removing sequential elements of the standard
nested sampling algorithm. i-nessai has significant differences to standard nested sam-
pling, such as what constitutes an iteration, how the evidence is calculated or when the
algorithm terminates, all of which are designed around normalizing flows. This means
that existing understanding of standard nested sampling does not necessarily translate to
i-nessai, instead, this is an opportunity for further research into improving i-nessai
and our understanding of the differences between it and standard nested sampling.

Applications of nessai Having developed and tested nessai and i-nessai, we finally
focus on exploring applications of both algorithms, though predominantly nessai, to a
range of different problems, focusing primarily on gravitational-wave events detected in
O1, O2 and O3. This allows us to thoroughly test the proposed algorithm to make general
recommendations about its application and use.
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When analysing real data, there are systematic calibration errors that must be mod-
elled and included in the inference, either by sampling the additional parameters or
reweighting the final result. We find that nessai is better suited to using calibration
reweighting, since sampling the calibration parameters can require including 50+ extra
parameters and the normalizing flow-based proposal scales poorly when these are included
and can result in over-constraining The downside to using reweighting is that it reduces
the final number of samples obtained and can be computationally costly for long-duration
signals.

We analyse the BBH events from O1 and O2 using three different waveform ap-
proximants: IMRPhenomPv2, IMRPhenomXP and IMRPhenomXPHM. For IMRPhenomPv2 and
IMRPhenomXP, we enable phase marginalization, whereas for IMRPhenomXPHM we disable
it. We compare our results to those released with Gravitational-Wave Transient Catalog
1 (GWTC-1), which used IMRPhenomPv2, and Gravitational-Wave Transient Catalog 2.1
(GWTC-2.1), which used IMRPhenomXPHM. We find nessai shows better agreement with
GWTC-2.1 than with GWTC-1, with mean Jensen-Shannon divergences (JSDs) across all
events of 0.005 bits compared to 0.011 bits. The agreement with GWTC-2.1 implies that
nessai can produce results that are consistent with previous LIGO-Virgo-KAGRA Col-
laboration (LVK) analyses, however, the lack of publicly available run statistics prevents
us from drawing conclusions about sampling efficiency. We can though compare between
the different analyses with nessai; the analyses with IMRPhenomXPHM take an order of
magnitude longer than those without, highlighting once more how sampling phase signif-
icantly impacts sampling efficiency with nessai. We investigate the differences between
the results from nessai and GWTC-1 and find that whilst the difference in priors and
choice of marginalization cannot account for the differences. Given this, and the agree-
ment with GWTC-2.1 results, we attribute these differences to the use of bilby instead
of LALInference and other possible changes in the data, such as to the power spectral
densitys (PSDs) used.

There are two confident BNS detections from O1, O2 and O3: GW170817 and GW190425
and we reanalyse both using nessai. Following previous analyses, we perform low- and
high-spin analyses for both events, however for GW170817 we fix the sky location based
on the corresponding electromagnetic observations whereas for GW190425 we sample the
sky location. We also repeat each analysis twice: once with calibration reweighting and
once sampling the calibration errors. For both events, the low-spin analyses with nessai
agree with the published results, however the analyses that use calibration reweighting
show less over-constraining in the insertion indices than those that sample calibration er-
rors. The high-spin results show larger differences; for GW170817 we observe differences in
the estimated masses and tidal parameters when compared to GWTC-1. For GW190425,
the results show better agreement with the initial results published in Abbott et al. [262]
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than those released with GWTC-2.1 [9]. Furthermore, the insertion indices are not clearly
over-constrained, so we attribute these difference to other factors, e.g. differences in the
waveform and analysis framework.

We reanalyse three BBH events from O3: GW190412, GW190521, and GW191109.
These events all contain features in the posterior distributions that may be challenging to
sample and therefore serve to identify failure modes in nessai. The results for GW190521
do not show support for the secondary mode at more extreme mass ratios present in the
LVK results, however the insertion indices do not show signs of over-constraining, suggest-
ing these differences are not caused by nessai. Meanwhile, the results for GW190412 and
GW191109 show slight signs of over-constraining, which is reflected in the corresponding
posteriors. This suggests that whilst the settings used are suitable for more “vanilla”
BBHs, they may need changing for more challenging analyses. It also demonstrates the
importance of checking the insertion indices to identifying but that they cannot always
explain the difference observed between results.

We also analyse an event using i-nessai, specifically GW170823 from O1 [7], and
compare the results to those obtain with nessai. We once again perform analyses with
IMRPhenomPv2 and IMRPhenomXPHM, but find that for the latter i-nessai, the current
settings do not converge or produce a low number of effective posterior samples. However,
when using IMRPhenomPv2, the results are consistent with nessai, even when sampling
the calibration parameters rather than using reweighting. This suggests that sampling the
calibration parameters does not bias i-nessai in the same way it does nessai, though
it does result in less effective posterior samples and leads to an increase in the wall time
and number of likelihood evaluations. When using calibration reweighting, i-nessai
produces results five times faster than nessai and yields more effective samples. This
demonstrates the potential benefits of using i-nessai over nessai, however further testing
and validation is required, which we leave for future work.

The next generation of ground-based detectors will bring new challenges for parameter
estimation. With this in mind, we perform inference on a simulated GW150914-like signal
in two different network configurations: Einstein Telescope (ET)-only and ET plus Cosmic
Explorer (CE). In both cases, the analyses take significantly longer than the equivalent
analyses in current generation detectors and they are dominated by the cost of evalu-
ating the likelihood. Furthermore, in the ET-only case, the likelihood surface is highly
multimodal, with up to eight distinct modes in some parameters. These results highlight
the need for further investigation in parameter estimation techniques for next generation
detectors and emphasize the importance of a multi-detector network.

These results from applying nessai to real gravitational-wave detections demonstrate
that it can produce results that are consistent with previous analyses, and the observed
differences are within the uncertainties of the previous analyses. However, there are cases
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where the settings used lead to over-constraining; this emphasizes the importance of val-
idating results, e.g. via the insertion indices, which are a more stringent test than, for
example, a P-P test. Furthermore, the results once again demonstrate that sampling phase
and multimodal likelihood surfaces remain challenging with nessai and could be the focus
of future investigations.

On the impact of nessai The discussion thus far has focused on demonstrable and
quantifiable results produced with nessai and i-nessai. However, this overlooks an
aspect of the work that is harder to evaluate: the time and effort spent developing the
nessai software package [429] and the impact this had on its use outside the work pre-
sented in this thesis. Our aim was to produce a stable and user-friendly package that
could be used in existing analyses without the need for extensive modifications to existing
codes. With this in mind, we highlight research that has and is making use of nessai.

Starting with other applications for LVK data analysis; nessai has been used in wave-
form development, specifically in the development of pySEOBNR, where it was using to
perform parameter estimation for validating the waveform model [478]. In Mérou et al.
[479], nessai was used alongside jax [480] to search for long-duration transient contin-
uous gravitational waves [481, 482]. Similarly, ContinuousFUN [483] leverages nessai
and i-nessai as alternatives to MCMC to perform continuous gravitational-wave follow-
up [484].

Laser Interferometer Space Antenna (LISA) data analysis poses different challenges
to analyses for ground-based detectors [93]. Nonetheless, nessai has successfully been
applied to a range of problems in LISA data analysis. In Linley [485], nessai is used in
conjunction with newly developed “downsampling” approach to evaluate the feasibility of
multi-band analyses. In Finch et al. [486], nessai is used to analyse galactic white dwarf
binaries. Finally, in Chapman-Bird et al. [487], nessai is used to validate a machine
learning-based approach for estimating the selection function in LISA.

Beyond gravitational-wave parameter estimation, nessai has also been used to analyze
other astronomical transients. In Hayes et al. [488] it used to perform model comparison
between different jet-structure models for short gamma-ray burst (GRB) and it was used
alongside Gaussian processes to perform inference for kilonova light curves in Datrier [489].
Both of these applications rely heavily on parallelizing the likelihood evaluation using
nessai to accelerate inference. Even further still from its original application, in Tait
et al. [490] nessai is used to diagnose issues in experimental measurements of mechanical
disk resonators.

Many of these studies are not applying nessai to CBC parameter estimation for cur-
rent generation ground-based interferometers, or even gravitational-wave inference. This
emphasizes that the nessai algorithm and code base are flexible and versatile. Further-
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more, it can be used to accelerate inference in a wide range of applications and its impact
is not limited to gravitational-wave astrophysics.

Broader conclusions There has been a Bayesian revolution and Bayesian inference
is becoming an integral part of data analysis in many fields [491–494], including physics
and astronomy [495, 496]. Although these fields are diverse and aim to answer differ-
ent questions, they often share the same underlying challenges when leveraging Bayesian
techniques. In many cases, the volume of data along coupled with the cost of performing
inference can be a challenge and developing solutions to this is an ongoing effort, including
in gravitational-wave data analysis [96, 198, 234]. One area of research that may prove
key for developments in Bayesian inference is machine learning.

Machine learning is experiencing a similar revolution; it ballooned in popularity, it
has already revolutionized certain fields, e.g. Jumper et al. [497], and current research is
continually redefining what was thought to be possible [498]. Physics and astronomy are no
exception to this, machine learning has the potential to revolutionize data analysis in these
fields, and it is already seeing use. However, there are various hurdles that may hinder
its widespread adoption, we now highlight some examples. The apparent opaqueness of
machine learning algorithms can make results hard to interpret, though this is an active
area of research and recent advances may help address this [499]. It can also be challenging
to determine when machine learning is well suited to a problem; one can train such an
algorithm to perform a given task, but that does not guarantee that it is applicable in
practice. This can lead to an abundance of methods that do not address a particular
problem, or the use of which over existing methods is difficult to justify. Finally, machine
learning algorithms are often inherently general purpose, in the context of physics and
astronomy this means that, whilst they can be applied to a plethora of problems, they
do not always leverage all the domain knowledge available. Developing problem specific
algorithms, i.e. that inherently incorporate domain knowledge rather than trying to learn
it, may therefore be key but may require more in-depth machine-learning knowledge.

In this research, we choose an approach to leveraging machine learning that avoids
some of the aforementioned hurdles: incorporating machine learning into existing analy-
ses. This allows one to build on existing domain knowledge and expertise, rather than
having to develop this from scratch and can help avoid the apparent opaqueness of end-
to-end approaches, since the overall method is still based on familiar and well-understood
concepts. Furthermore, such hybrid methods can be easier to use than bespoke machine
learning approaches since they are drop-in replacements. They also serve as an intermedi-
ary between existing analyses and end-to-end machine learning analyses that, whilst often
faster, can be harder to adopt due to the changes needed to existing infrastructure.

We have focused on the intersection of Bayesian Inference and machine learning and de-
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veloped machine-learning augmented methods that can accelerate inference for gravitational-
wave data analysis. Both methods are based on nested sampling and incorporate normal-
izing flows, however there are fundamental differences in how they are designed. The first
is nessai, which is built around the standard nested sampling algorithm with minimal
changes and uses normalizing flows to propose new samples. We have shown that, with
various improvements, nessai produces unbiased results and can accelerate inference by
up to four times compared to the standard analyses used by the LVK. The second is
i-nessai, which is a novel nested sampling algorithm designed entirely around normal-
izing flows and addresses the bottlenecks in nessai. The results presented here show
that i-nessai is up to an order-of-magnitude faster than the standard analyses, enabling
analyses of BBH events on the order of 10 minutes.

These hybrid methods complement the end-to-end machine learning approaches for
Bayesian inference that are being developed, e.g. Gabbard et al. [234] and Dax et al. [236],
and present a tradeoff between speed, flexibility and ease-of-use. End-to-end machine
learning methods can perform inference in fractions of a second but require extensive
training and validation beforehand, whereas our methods may be slower but can be applied
immediately and without the need for new infrastructure.

Overall, we believe that these methods can serve as a key component for future
gravitational-wave analyses. They can be employed directly to enable faster and more
efficient inference in existing analyses, which will be key for rapid follow-up of multi-
messenger observations and for handling the ever-increasing number of events [74]. They
also have the potential to aid in detecting new physics in the signals we observe by en-
abling analyses that could otherwise being computationally prohibitive. There is also
scope to expand upon these methods and adapt them for applications to more challenging
data analysis problems, such as performing inference for signals in LISA [486, 500, 501].
Finally, we hope that this work serves as an example of how machine learning can be
leveraged to augment existing techniques and prompts others to consider applying such
approaches to more data analysis problems.
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Likelihood functions for testing sam-
plers

We now describe the various likelihood functions that have been used for testing and vali-
dating nessai and i-nessai. All the likelihoods are implemented in nessai-models [439].
The QR codes included in this appendix link to interactive visualizations of the likelihoods
in two dimensions.

A.1 Rosenbrock

The n-dimensional Rosenbrock function [454] has highly correlated pa-
rameters and is recognized as a challenging function to sample. We use
the more involved variant [440, 455] where the log-likelihood is defined as

lnLRosenbrock(θ) = −
n−1∑
i=1

[100(θi+1 − θ2
i )2 + (1− θi)2]. (A.1)

The evidence for this likelihood can only be computed analytically in two
dimensions: lnZ = −5.804 [208].

A.2 Gaussian mixture

An n-dimensional M -component Gaussian mixture likelihood has been
used to validate nested sampling algorithms in various works. Here, we
describe the version used in Moss [435] and Higson et al. [203]. The
likelihood is defined as

LGM(θ) =
M∑

m=1
W (m)

(
2πσ(m)2)−n/2

exp
{
−|θ − µ(m)|2

2σ(m)2

}
, (A.2)
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where µ(m) and σ(m) are the mean and standard deviation of each compo-
nent in all dimensions and ∑M

m=1 W
(m) = 1. We use the same hyperparameters [203,

435]: M = 4, W (m) = {0.4, 0.3, 0.2, 0.1}, µ(m)
1 = {0, 0, 4,−4}, µ(m)

2 = {4,−4, 0, 0},
µ(m)

n = 0 ∀ n ∈ {3, ..., n} and m ∈ {1, ...,M}, and σ(m) = 1 ∀ m ∈ 1, ...,M .

A.3 Mixture model

This likelihood is designed to include various different characteristics that can lead to issues
during sampling that lead to over-constrained or biased results. The model comprises
independent variables which are distributed according to one of four distributions:

• Gaussian distribution with default parameters µ = 0, σ = 1, with default prior
U [−10, 10],

• Half-Gaussian distribution with parameters µ = 0, σ = 1, with default prior U [0, 10],

• γ-distribution with parameters k = 1.99, with default prior U [0, 10],

• uniform distribution U [−5, 5], with default prior U [−5, 5].

The model is then constructed to contain an independent mixture of these distributions.

A.4 Skilling’s statistical model

In Skilling [193], the author proposes a “statistical” example with a like-
lihood that represents a narrow Gaussian “spike” atop a wider Gaussian
“plateau” both centred at the origin. The narrow spike has 100 times
the posterior mass of the wide plateau. Skilling also considers a variant
where the narrow peak is off-centre, and Brewer et al. [213] also consider
a variant of this.

For this model, the priors are uniform on U [−0.5, 0.5]n with n = 20 by
default, and the likelihood is given by

L(θ) =
n∏

i=1

1√
2πv

exp
(
− θ2

i

2v2

)
+ 100

n∏
i=1

1√
2πu

exp
(
−(θi − µu)2

2u2

)
, (A.3)

with v = 0.1, u = 0.01 and µu is the offset of the narrow peak which Skilling sets to µu = 0
and µu = 0.2 and Brewer et al. set to µu = 0.031. To distinguish it from Skilling’s variant,
we refer to the latter as the Brewer likelihood. For all three variants of this likelihood, the
log-evidence is lnZ = ln(101) ≈ 4.615 [193, 213].

https://plotly.com/~michael.j.williams/15/


Appendix B

Details of normalizing flow examples

This appendix contains further details about of the examples included in section 3.3. Code
to reproduce all the examples is available at [438].

B.1 Example of an affine coupling-based normalizing
flow

In this example, an affine coupling-based normalizing flow is trained to transform samples
from the 2-dimensional Rosenbrock function, as defined in appendix A.1, to samples from
a unit Gaussian.

The normalizing flow comprises two affine coupling transforms with alternating masks.
After each transform is a batch normalization transform (see section 3.3.4). Each affine
coupling transform contains a conditioner network that uses a residual neural network
(ResNet) style architecture with four blocks, each containing 2 layers with 64 neurons and
a Rectified Linear Unit (ReLU) activation function.

We train the flow using 10 000 samples from the 2-dimensional Rosenbrock, which
we obtain using rejection sampling, and reserve 10% of the samples for computing the
validation loss. We use a batch size of 1000 with the adaptive moment estimation (Adam)
optimizer [325] and a learning rate of 0.001. We train for a maximum of 500 epochs but
stop training early if there is no improvement in validation loss after 20 epochs.

Figure 3.2 is produced by passing 2000 samples from the Rosenbrock function through
each of the transforms and plotting the output at each stage.
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B.2 Example of training a flow with weights

In this example, a normalizing flow is trained to approximate a 2-dimensional multivariate
Gaussian distribution Gt with mean and covariance

µt =
(
2 2

)
, Σt =

4 0
0 4

 . (B.1)

However, instead of using samples from the target distribution, we use samples from a
different training distribution and use weights in Kullback-Leibler divergence (KLD). The
training data is drawn from another 2-dimensional multivariate Gaussian distribution with
mean and covariance

µd =
(
0 0

)
, Σd =

25 0
0 25

 . (B.2)

The weights wi are then given by the ratio of the probability density functions (PDFs)

w = pGt(x)
pGd

(x) , (B.3)

where pGt is the PDF of the target and pGd
is the PDF of the training data.

The normalizing flow comprises two affine coupling transforms with alternating masks.
Note that for this example, we do not include batch normalization or LU factorization.
It is trained using the Adam optimizer [325] with batch size of 1000 and learning rate
η = 0.001. We 10 000 random samples from the target distribution and use 10% for
validation. We train for a maximum of 500 epochs but stop training early if there is no
improvement in validation loss after 50 epochs. We draw 5000 samples from the trained
flow and use these to produce fig. 3.4.

B.3 Application of LU factorization

In this example, the initial distribution is a 2-dimensional multivariate Gaussian distribu-
tion with mean and covariance matrix

µ =
(
1.0 1.0

)
, Σ =

1.2 0.9
0.9 1.2

 . (B.4)

The aim is to transform samples from the initial distribution using the LU factorization
such that the resulting samples are approximately normally distributed. To do so, we
construct a distribution consisting of 2-dimensional unit Gaussian and an LU factorization
layer, implemented using glasflow [502]. The only trainable parameters are those of the
LU factorization layer.
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We train the LU factorization layer using the Adam optimizer [325] for 1000 iterations
with learning rate η = 0.05. At each iteration, 1000 samples are drawn from the initial
distribution. The forward KLD is computed using the samples and eq. (3.22) and weights
are then updated using backpropagation. Figure 3.3 is produced by drawing 50 000 samples
from the initial distribution and applying the learnt LU factorization.

B.4 Example of the topological limitations of normal-
izing flows

In this example, an affine-coupling based normalizing flow is trained using samples from
a bimodal distribution. The distribution comprises two equal weighted 2-dimensional
multivariate Gaussian distributions with means µ1 = (−2.5,−2.5) and µ2 = (2.5, 2.5)
and unit variances.

The normalizing flow comprises four affine coupling transforms with alternating masks.
Before each transform is an LU factorization transform (see section 3.3.4) and after each
is a batch normalization transform (see section 3.3.4). Each affine coupling transform
contains a conditioner network that uses a ResNet style architecture with four blocks,
each containing 2 layers with 16 neurons and a ReLU activation function.

The flow is trained using the Adam optimizer [325] with batch size of 1000 and learning
rate η = 0.001. We 4000 random samples from the target distribution and use 10% for
validation. We train for a maximum of 500 epochs but stop training early if there is no
improvement in validation loss after 20 epochs. Cosine annealing [329] is used to reduce
the learning rate of the course of training.

Each subfigure in fig. 3.5 is produced by evaluating the different PDFs on a 100× 100
grid. From left to right: the PDF of the target distribution, the PDF of the Gaussian
latent distribution and normalizing flow PDF computed using eq. (3.7).



Appendix C

Gravitational-wave parameter & injec-
tions reference

C.1 Injection parameters

Table C.1: Intrinsic parameters for injected signals used in various chapters. The masses
quoted are detector-frame masses. For details of the different parameters, see table C.3

m1M� m2 M� a1 a2 θ1 θ2 φJL φ12 Λ1 Λ2

GW150914-like BBH 36 29 0.4 0.3 0.5 1.0 0.3 1.7 - -
GW190425-like BNS 1.725 1.607 0.0092 0.0102 0.2839 0.2978 0.4823 0.3266 149.3519 984.6168

Table C.2: Extrinsic parameters for different injections. For details of the different pa-
rameters, see table C.3

α δ dL ψ θJN ϕc

GW150914-like BBH 1.375 -1.2108 350 Mpc 2.659 0.4 1.3
GW190425-like BNS 4.6980 0.3122 45 Mpc 0.0264 0.6688 0.0264

225



APPENDIX C. GRAVIATIONAL-WAVE REFERENCE 226

C.2 Parameter reference

Table C.3: Reference of parameter used to described compact binary coalescence (CBC)
signals and the corresponding symbols

Parameters Label Unit
Detector-frame mass of the ith component mi M�
Detector-frame chirp mass M M�
Detector-frame total mass M M�
Asymmetric mass ratio (≤ 1) q -
Luminosity distance dL Mpc
Right ascension α rad
Declination δ rad
Azimuth ε rad
Zenith κ rad
Time of coalescence measured at the geocentre tc s
Time of coalescence measured at an interferometer (IFO) tIFO s
Inclination angle between the total angular momentum J
and the direction of propagation n̂

θJN rad

Inclination angle between the orbital angular momentum
L and the direction of propagation n̂

ι rad

Polarization angle ψ rad
Phase ϕc rad
Dimensionless spin magnitude of the ith component ai -
Aligned spin of the ith component χi -
Spin tilt angles θi rad
Difference between the azimuthal angles of each spin vector
relative to the orbital angular momentum

φ12 rad

Difference between the azimuthal angles of the total and
orbital angular momentum

φJL rad

Effective inspiral spin [124, 125] χeff -
Effective precessing spin [126, 127] χp -
Dimensionless tidal deformability of the ith component Λi -
Combined dimensionless tidal deformability [468, 469] Λ̃ -
Relative difference in the combined tidal deformabil-
ity [468, 469]

∆Λ̃ -
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Appendices for Nested sampling with
normalizing flows

D.1 Boundary inversion

In section 4.3 we describe boundary inversion which we introduce to avoid under-sampling
regions which are close to the prior bounds. The user defines which parameters the inver-
sion can be applied to and before training the sampler determines if it should be applied
to each parameter using the following steps:

1. Compute the density of samples over the specified range and find the maximum
value.

2. Compute the fraction of the density that lies within the initial and final m% of the
bounds, i.e. [0, 0.1] and [0.9, 1.0] if the parameter is defined on [0, 1].

3. Choose to apply inversion to the bound with the highest density if it is at least n%
of the maximum density and the density at the bound is non-zero.

From our testing the percentages m and n default to 10% and 50% respectively but
can be changed by the user. We consider two methods for applying the inversion:

• duplication: duplicate the set of points and apply the inversion to the duplicates,

• splitting: randomly select half of the points to apply the inversion to.

We find that duplication generally provides more consistent results but at the cost of
the increasing the training time. As such, we recommend using splitting when inversion
is applied to more than two parameters.
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D.2 Gravitational-wave priors

Table D.1: Prior distributions used for each parameter for gravitational-wave parameter
estimation. Their corresponding labels and the lower and upper bounds are included where
applicable.

Parameters Label Prior Bounds
Chirp mass M Uniform (25–35) M�
Asymmetric mass ratio q Uniform [0.125, 1.0]
Luminosity distance dL Uniform in co-moving volume (100–2000) Mpc
Right ascension α Uniform [0, 2π]
Declination δ Cosine -
Reference time at geocentre tc Uniform around trigger time [−0.1, 0.1]
Inclination θJN Sine -
Polarization ψ Uniform [0, π]
Phase φc Uniform [0, 2π]
Dimensionless spin magnitudes ai Uniform [0, 0.99]
Spin tilt angles θi Sine -
Difference between the azimuthal angles
of each spin vector relative to the orbital
angular momentum

φ12 Uniform [0, 2π]

Difference between the azimuthal angles
of the total and orbital angular momen-
tum

φJL Uniform [0, 2π]
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D.3 nessai sampling settings

Table D.2: Settings used for nessai for gravitational-wave inference in Williams et al. [1].
These are split into three categories: general settings which control aspects of the sampler
such as the choice of latent prior or pool-size, flow hyperparameters which determine
the configuration of the normalizing flow and flow training settings which control the
training process. Different batch sizes were used for runs with and without distance
marginalization, and this is shown in parentheses. For a complete description of each, see
the documentation [429].

nessai settings
General settings Flow hyperparameters Flow training settings

Training frequency None Coupling transformations 6 Optimizer Adam
Cooldown 200 Linear transformation LU Learning rate 0.001
Base pool-size 2000 Network type residual neural network (ResNet) Batch size 2000 (4000)
Update pool-size True Layers per network 2 Max. epochs 500
Draw-size 2000 Neurons per layer 32 Patience 50
Train on empty True Activation Rectified Linear Unit (ReLU)
Weights reset False Batch-Normalisation Intra-transforms
Latent prior Truncated Gaussian
Rescale True
Update bounds True
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D.4 P-P tests for dynesty
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Figure D.1: Probability-probability plots (P-P plots) showing the confidence interval ver-
sus the fraction of the events within that confidence interval for the posterior distributions
obtained using dynesty for 128 simulated compact binary coalescence signals produced
with bilby and bilby_pipe. The 1-, 2- and 3-σ confidence intervals are indicated by
the shaded regions and p-values are shown for each of the parameters and the combined
p-value is also shown. We use the settings described in Romero-Shaw et al. [122] except
for the number of live points which we increase to 2000.
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Additional results for analyses with
phase

E.1 Baseline analysis when sampling phase
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Figure E.1: Insertion indices produced by nessai when sampling with (top) and without
(bottom) phase marginalization with the baseline settings discussed in section 6.1. Left:
histogram of the insertion indices, with the analytic probability mass function (PMF)
shown in grey. Right: comparison of the empirical distribution of the insertion indices
to the analytic distribution. The shaded regions indicate the 1-, 2- and 3-σ confidence
regions.
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Figure E.2: Subset of the diagnostic plots from the baseline run with nessai, with (blue)
and without (orange) phase marginalization. From top to bottom these are: the acceptance
based on the likelihood threshold at a given iteration, the cumulative training count,
number of iterations between training and rejection sampling efficiency. These highlight
how disabling phase marginalization significantly reduces the acceptance when sampling
with the default settings used in previous analyses.
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E.2 Insertion indices for runs with different source
angle reparameterizations
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Figure E.3: Comparison of analytic cumulative mass function (CMF) and the empirical
CMF for the insertion indices corresponding to three analyses using nessai with different
reparameterizations for the source angles: the default in nessai (blue), ∆ϕc (orange) and
the quaternions (green). See sections 6.2 and 6.3 for details about the reparameterizations.
The shaded regions indicate the 1-, 2- and 3-σ confidence regions.
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E.3 Probability-probability with phase marginaliza-
tion
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Figure E.4: Probability-probability plot (P-P plot) showing the confidence interval versus
the fraction of the events within that confidence interval for the posterior distributions
obtained using nessai with phase marginalization for 64 simulated compact binary co-
alescence signals produced with bilby and bilby_pipe. The 1-, 2- and 3-σ confidence
intervals are indicated by the shaded regions and p-values are shown for each of the pa-
rameters and the combined p-value is also shown.
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Appendices for Importance nested sam-
pling with normalizing flows

F.1 Methods for constructing the next proposal dis-
tribution

We test the quantile-based method and the entropy-based methods for constructing the
next proposal distribution described in section 7.3.1 and consider the stability and number
of iterations required to converge. We find that the quantile-based method for determining
the next level is sensitive to outliers in the meta-proposal Q(θ). This leads to large changes
in the number of discarded samples Mj between iterations which in turn can make the
algorithm unstable. In contrast, the entropy-based approach is far more stable and leads
to smoother variations in the number of discarded samples which we attribute to the use
of the log-weights. Additionally, we find that the entropy-based method converges quicker
than the quantile-based because the prior volume shrinks faster. As such, we use the
entropy-based method for all our experiments.
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F.2 Validating the variance estimator

We validate the unbiased estimator for the variance of the evidence from eq. (7.2) for
i-nessai using the Gaussian and Gaussian Mixture likelihoods described in section 7.5.1.
We use the results from the analyses described in section 7.5.1 and produce probability-
probability (P-P) plots comparing the observed distribution of evidences and a Gaussian
distribution with the mean equal to the true evidence and the standard deviation estimated
using eq. (7.2) averaged over the 50 runs per dimensions. The results are presented in
fig. F.1 and show good agreement between the estimated and observed distributions.
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Figure F.1: probability-probability plots (P-P plots) for the estimated evidences for the
Gaussian and Gaussian Mixture models described in section 7.5.1 for n = {2, 4, 8, 16, 32}.
The theoretical distribution is assumed to be a Gaussian centred around the true evidence
with the standard deviation given by the estimated standard deviation eq. (7.2) averaged
over 50 analyses per dimension. The 1-, 2- and 3-σ confidence intervals are indicated by
the shaded regions.
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F.3 Insertion indices test for the Rosenbrock likeli-
hood

In section 7.5.3, we analyse the Rosenbrock likelihood for n = {2, 4, 8} using nessai and
i-nessai and find that the estimated log-evidence disagreed as shown in fig. 7.3. In
Fowlie et al. [218], the authors proposed using order-statistics to check the convergence
of nested sampling runs. This involves computing an insertion index for each new sample
according to where it is inserted into the current ordered set of live points. If new samples
are distributed according to the prior, then the overall distribution of the insertion indices
should be uniform. This can be quantified by computing a p-value for the overall distri-
bution using the Kolmogorov-Smirnov statistic [219, 220] for discrete distributions [221].
We compute p-values for each analysis and presented the results in fig. F.2. If the re-
sults are unbiased then the distribution of p-values should be uniform on [0, 1], however
we observe that for n > 2 the distributions are not uniform, indicating problems during
sampling. This agrees with the observation that for n = {4, 8}, with the settings used,
nessai over-estimates the log-evidence.

2-dimensional

4-dimensional

0.0 0.2 0.4 0.6 0.8 1.0

p-value

8-dimensional

Figure F.2: Distribution of the p-values for the insertion indices [218] when analysing the
Rosenbrock likelihood 50 times using nessai with n = {2, 4, 8}.
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F.4 Probability-probability plots for other samplers
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Figure F.3: P-P plots showing the confidence interval versus the fraction of the events
within that confidence interval for the posterior distributions obtained using nessai and
dynesty for 64 simulated compact binary coalescence signals produced with bilby and
bilby_pipe. The 1-, 2- and 3-σ confidence intervals are indicated by the shaded regions
and p-values are shown for each of the parameters and the combined p-value is also shown.
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F.5 Jensen-Shannon divergence for comparing marginal
posterior distributions

We compute the Jensen-Shannon divergence (JSD) between the marginal posterior dis-
tributions obtained in section 7.5.5 as described in Romero-Shaw et al.[122]. We use
bootstrapping to compare 100 different realizations of 5,000 samples from each posterior
and quote the mean JSD and standard deviation in table F.1. Following Ashton and Tal-
bot [233], for 5,000 posterior samples, the JSD threshold is 2×10−3 nats. The divergences
between i-nessai and nessai agree for all the parameters, whereas for dynesty there is
marginal disagreement in the posteriors for the aligned spin χ1. However, since nessai
and i-nessai are in agreement, we do not investigate this further in this work.

Table F.1: JSD in units of 1× 10−3 nats for the marginal posterior distributions between
nessai, i-nessai and dynesty. Values shown are the mean and the 1-σ quantiles com-
puted over 100 different realisations of 5,000 samples.

dynesty-nessai dynesty-i-nessai nessai-i-nessai

M 0.610.20
−0.20 0.690.22

−0.19 0.530.21
−0.13

q 0.520.29
−0.16 0.360.22

−0.11 0.300.18
−0.08

χ1 2.240.78
−0.55 2.610.77

−0.59 0.530.27
−0.17

χ2 1.680.60
−0.46 1.930.47

−0.54 0.730.22
−0.22

δ 1.370.29
−0.28 1.470.34

−0.28 1.590.38
−0.31

α 1.040.22
−0.25 1.150.25

−0.27 1.370.30
−0.28

θJN 0.710.22
−0.17 0.740.21

−0.21 0.790.26
−0.23

ψ 0.180.13
−0.06 0.210.15

−0.09 0.190.10
−0.09

tc 1.290.42
−0.25 1.560.31

−0.39 1.570.39
−0.33



Appendix G

Additional results for applications of
nessai

G.1 Insertion indices for analyses with calibration er-
rors
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Figure G.1: Comparison of analytic cumulative mass function (CMF) and the empirical
CMF for the insertion indices corresponding to two analyses of GW150914 with nessai:
sampling the calibration parameters (blue) and calibration reweighting (orange). The two
parallel runs for each analysis are shown in different shades of blue and orange. The
shaded regions indicate the 1-, 2- and 3-σ confidence regions.
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G.2 Prior distributions for O1 and O2 events in GWTC-
1 and GWTC-2.1

We compare the prior distributions used to analyse binary black hole (BBH) events
from O1 and O2 in the Gravitational-Wave Transient Catalog 1 (GWTC-1) [7] and
Gravitational-Wave Transient Catalog 2.1 (GWTC-2.1) analyses [9]. The priors for the ex-
trinsic parameters and six spin parameters are consistent between both analyses, whereas
the priors on the masses are different. Both analyses use priors that are defined in chirp
mass and mass ratio, but are uniform in component mass (see section 2.10.3). However,
as a result of using an improved waveform model, GWTC-2.1 allows for mass ratios as low
as 0.05 for all events whereas GWTC-1 only allows values as low as 0.125 [7, 9]. Further-
more, the two analyses use different constraints on the component masses, GWTC-1 uses
event-specific constraints on component masses, and for some events total mass, whereas
GWTC-2.1 constrains the component mass to mi ∈ [1, 1000] M�. The priors on compo-
nent masses for each event are shown in fig. G.2.
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Figure G.2: Priors on component masses used in GWTC-1 and GWTC-2.1 for the analysis
of the 10 BBH events from O1 and O2.
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G.3 Further analysis of GW150914

In section 8.2, we observe sizeable differences between the posterior distributions for
GW150914 obtained using bilby and nessai with IMRPhenomPv2 compared to the samples
released with GWTC-1 [7] that used the same waveform. To better understand this
difference, we perform multiple analyses with difference priors and marginalizations and
compare the results to those presented in 8.2. The analysis in section 8.2 used priors and
other settings based on the reanalysis of GW150914 from GWTC-2.1 [9]. As shown in
appendix G.2, these priors differ significantly from those used in GWTC-1. We therefore
repeat the analysis with priors that match GWTC-1. We also perform an analysis with
phase marginalization disabled, as it was not enabled in the GWTC-1 analyses. All other
settings are left unchanged.

We present the posterior distributions for chirp mass and mass ratio in fig. G.3, this
includes five sets of samples: the samples from GWTC-1, the samples from GWTC-2.1 [9,
467], samples from an analysis using nessai with the GWTC-2.1 priors, IMRPhenomPv2
and phase marginalization enabled, samples from an analysis using nessai with the
GWTC-1 priors, IMRPhenomPv2 and phase marginalization enabled and samples from an
analysis using nessai with the GWTC-1 priors, IMRPhenomPv2 and phase marginalization
disabled. The results from GWTC-1 are the clear outlier, favouring higher chirp masses
and more equal masses. Changing the priors and phase marginalization does not signif-
icantly impact the posterior distributions, suggesting that the discrepancy is caused by
another difference between the runs. The results obtained with nessai more closely re-
semble those from GWTC-2.1, however this analysis used IMRPhenomXPHM which includes
higher-order modes, so some differences in the results are expected.
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Figure G.3: Comparison of posterior distributions GW150914 for chirp mass and mass
ratio for samples from five different analyses. The sets of samples are: the samples from
GWTC-1 (black solid line), the samples from GWTC-2.1(black dashed line), samples from
an analysis using nessai with the GWTC-2.1 priors, IMRPhenomPv2 and phase marginal-
ization enabled (blue solid line), samples from an analysis using nessai with the GWTC-1
priors, IMRPhenomPv2 and phase marginalization enabled (orange solid line) and sam-
ples from an analysis using nessai with the GWTC-1 priors, IMRPhenomPv2 and phase
marginalization disabled (green solid line). The 2-dimensional posteriors show the 50%,
86% and 98% contours.
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G.4 i-nessai analysis with higher-order modes

We present a preliminary analysis of GW170823 using i-nessai with IMRPhenomXPHM
and compare to results obtained with nessai in section 8.2.1 and to results released with
GWTC-2.1 [9]. We use bilby and bilby_pipe [198] with the same data and priors as
used in section 8.2.1 and, based on the results presented in section 8.4, use calibration
reweighting to handle the calibration uncertainty. In order for i-nessai to converge, we
increase the number of samples drawn per proposal to Nj = 50 000 and set ρ = 0.9 with
the entropy-based method for determining the next proposal, without these changes we
find that i-nessai fails to converge.

In fig. G.4, we present the posterior distribution obtained with i-nessai and compare
it to the results from nessai and GWTC-2.1. The results from i-nessai are consistent
with the other analysis but there is significant statistical noise from the comparatively
low number of posterior samples. Similarly to the analyses presented in section 8.4, these
results are produced by combining two individual runs, these took 5 and 7 hours respec-
tively, compared to 11 and 28.6 hours for the equivalent runs with nessai. This suggests
that i-nessai can be used to accelerate such analyses, but would likely require more
robust settings to reliably produce sufficient posterior samples.
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Figure G.4: Corner plot showing a subset of the posterior distributions for GW190823
from different analyses using IMRPhenomXPHM. Results are shown for GWTC-2.1 (black
dashed line), the analysis with nessai described in section 8.2.1 (blue solid line) and the
analysis with i-nessai described in appendix G.4 (orange solid line). The 2-dimensional
contours shown contain 39.3%, 86.5% and 99.8% of the posterior probability respectively.



Software & Code

Software The research presented in this thesis made extensive use of the Python pro-
gramming language and various open-source software packages, without which, this re-
search would not have been possible. In particular, I wish to highlight the use of:
bilby and bilby_pipe [198], corner [503], cpnest [202], dynesty [197], glasflow [502],
LALSuite [26, 27], matplotlib [504], nflows [431], NumPy [505], pandas [506, 507], PyTorch
[430], SciPy [508], and seaborn [509].

Code Code to reproduce all the results and figures presented in this thesis is available
under the MIT licence at the following locations:

• nessai: main codebase: 10.5281/zenodo.4550693 [432] and documentation: https:
//nessai.readthedocs.io [429],

• nessai-models: codebase with likelihoods for testing nessai:
10.5281/zenodo.7105559 [439],

• code to reproduce the figures from chapters 1 to 3: https://github.com/mj-will/
thesis-code [438],

• code to reproduce the results from chapter 4: https://github.com/mj-will/nessai-
experiments [510],

• code to reproduce the results from chapters 5 and 6: https://github.com/mj-
will/thesis-code [438],

• code to reproduce the results from chapter 7: 10.5281/zenodo.8124198 [453],

• code to reproduce the results from chapter 8: https://github.com/mj-will/nessai-
gwtc-analysis [511].
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Glossary

χ-distribution the probability distribution that describes the distribution of the square
root of the sum of the squares of ν random normal variables, i.e x =

√∑ν
i=1 y

2
i | yi ∼

N (0, 1). ν is known as the degrees of freedom and the probability density function
(PDF) is given by

χ(x; ν) ≡ p(x; ν) = xν−1e−ν2/2

νk/2−1Γ(k/2) ; x ≥ 0, (G.1)

where Γ(k) is the gamma function. 85, 88, 101, 107, 126

γ-distribution a gamma distribution is parameterised by a shape parameter k and a
scale parameter α. Its PDF is

p(x; k, α) = 1
Γ(k)αk

xk−1e− x
α ,

where Γ(k) is the gamma function. 108, 221

active learning in machine learning, introducing more training samples at specific points
in the parameter space that will have the largest benefit to the performance. 43

all-sky in gravitational-wave searches, a search that does not target specific (known)
locations on the sky. 8

amortized In the context of simulation-based inference, the inference is amortized if,
once the approximate likelihood (or posterior) has been learnt, performing inference
does not require updating the approximate posterior. 43

batch size the number of data samples used to update the parameters of a neural network
with stochastic gradient descent. 63, 222–224, 229

coloured noise Gaussian noise where the power spectral density (PSD) is frequency
dependent. 16, 48

248



Glossary 249

conditioner In the context of normalising flows, the function that returns the parameters
that parameterise a transform. Typically a neural network. In this thesis it is
denoted by Θ(·) 68, 69, 222, 224

constant volume mode setting in the standard version of nessai that fixes the volume
of the latent contour to a user-defined fraction ρCVM ∈ (0, 1) for the duration of the
sampling run. v, x, 104–110, 114–119, 135, 139, 203, 212

epoch when training a neural network, an epoch is a complete loop over all the batches
of training data. 63, 222–224

equation of state equation that governs the pressure-density of matter; in the context
of neutron stars this will determine their composition. xix, 22

evidence (or Bayesian evidence or marginalized likelihood) is the probability of some data
d given a model H, (p(d|H)). It is the denominator in Bayes’ theorem eq. (2.10), is
often denoted Z and is defined in eq. (2.11). xi, xxii, 29, 30, 32, 33, 49, 52, 56, 82,
92, 93, 98, 99, 101, 103, 105, 107, 110, 118, 132, 142–146, 148, 151, 152, 154–157,
163–166

expansion fraction (εVF) setting in the standard version of nessai that is used to set
the fuzz factor for the latent radius (εFF) based on the number of dimensions in the
normalising flow nflow, εFF = (1 + εVF)1/nflow . 108

extreme mass ratio insprial system comprised of a massive black hole (105 M�–109 M�)
and stellar-mass compact object (∼1 M�) that will be observed by space-based
gravitational-wave detectors [512]. 15

extrinsic parameters when modelling gravitational waves, extrinsic parameters deter-
mine how the detector will respond to the gravitational-wave signal. Examples
include parameters that descrived the sky location and orientation of a source with
respect to a reference point. xiv, 19, 23, 225, 241

galactic binary binary system where both components are white dwarfs and is located
within the Milky Way [513]. 15

gamma-ray burst highly energetic short–duration emission from events such as super-
novae . xx, 7, 217

Gaussian See: Gaussian distribution x, 83, 84, 112, 113
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Gaussian distribution a Gaussian distribution, also known as a normal distribution, is
parameterised by a mean µ and a standard deviation σ. Its PDF is

N (x;µ, σ) ≡ p(x;µ, σ) = 1
σ
√

2π
e− 1

2

(
x−µ

σ

)2

.

When µ = 0 and σ = 1 it is often referred to as a unit Gaussian. See also: multi-
variate Gaussian distribution. 49, 72, 108, 221, 249–251

Gaussian noise See: white noise 91

Gaussian process a stochastic process modelled by a multivariate Gaussian distribution,
where the mean and covariance are functions rather than a vector and matrix. 55,
217

generative adversarial network a neural network that comprises of two components:
a generator and a discriminator, that ‘compete’ against each other during train-
ing [341]. xx, 43, 66

GEO600 600 m Michelson interferometer located in Germany and operator by the GEO
collaboration [69]. 14

GW150914 the first detected gravitational-wave event from a binary black hole (BBH)
merger [6]. x–xiv, 22, 132, 139, 169, 171, 173, 175, 176, 185, 203–206, 208, 216, 240,
243, 244

GW170817 the first detection of gravitational waves from a binary neutron star (BNS)
system and the first multi-messenger observation [29, 38]. xii, xiv, 22, 170, 188,
190–192, 194, 207, 215

GW190412 BBH system detected in O3a with support for asymmetric masses [472] 167,
191, 192, 195, 207, 208, 216

GW190425 BNS event detected during O3a with a total mass ∼ 3.4; M� [262] xii, 167,
191–195, 207, 208, 215

GW190521 heaviest binary system detected up to the end of O3 with a total mass
∼ 150 M� [9, 10, 147] xii, 22, 167, 195–198, 207, 208, 216

GW191109 high-mass BBH event from O3b with total mass ∼ 112M� and support for
negative χeff [10] xii, 167, 195, 199, 207, 208, 216

Hubble constant constant of proportionality that describes the rate of expansion of the
universe usually denoted H0 [514]. 22
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information content in the context of nested sampling, the information (typically in
bits or nats) contained in the posterior distribution compared to the prior. This
is denoted H and is computed using the Kullback-Leibler divergence (KLD), see
eq. (2.33). xxii, 37, 42, 93

intractable lack of a closed-form and/or an analytic solution. 29, 43, 67

intrinsic parameters when modelling gravitational waves, intrinsic parameters deter-
mine the evolution of the waveform as a function of time. Examples include the
masses and spins of a binary system. xiv, 19, 20, 23, 225

Kerr spacetime Spacetime around a spinning axially symmetric black hole. 18

Kronecker delta a function defined for two positive integers that is 1 when the integers
are equal and 0 otherwise,

δij =

1 if i = j,

0 if i 6= j.
(G.2)

4

long-wavelength limit the assumption that (fL)/c� 1, where f is the frequency of a
gravitational wave, L is the length of the interferometer arm and c is the speed of
light. 11

massive black hole binaries binary systems comprised of black holes with masses in
the range 104 M�–108 M� and redshifts up to z ∼ 10 that will be observed by space-
based gravitational-wave detectors [515]. 15

metric (or distance function) is a non-negative function f : D × D → R that describes
the ‘distance’ between points and, for a series of points series of points x, y, z ∈ D,
must

• satisfy the triangle inequality f(x, y) + f(y, z) ≥ f(x, z),

• be symmetric so f(x, y) = d(y, x),

• satisfy f(x, x) = 0.

28

multivariate Gaussian distribution generalization of the Gaussian distribution to n

dimensions. It is parameterized by a mean µ and a covariance matrix Σ and its
PDF is

p(x; µ,Σ) = 1√
(2π)n|Σ|

exp
{
−1

2(x− µ)T Σ−1(x− µ)
}
,
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where Σ−1 is the inverse of the covariance matrix. 48, 223, 224, 250

neutron star a compact object formed from the collapse of supergiant stars with a typical
mass 1 M�–2 M� and radius O(10 km) [516]. 6, 8, 22, 249, 253

O1 the first LIGO Scientific Collaboration (LSC) observing run that ran from September
2015 to January 2016. ii, xi, xii, 22, 167, 170, 174, 178, 179, 183–186, 188, 190, 200,
205–207, 214–216, 241, 242

O2 the second LIGO-Virgo Collaboration (LVC) observing run that ran from Novemem-
ber 2016 until August 2017. ii, xi, xii, 22, 167, 170, 174, 178, 179, 183–186, 188, 190,
200, 205–207, 214, 215, 241, 242

O3 the third LIGO-Virgo-KAGRA Collaboration (LVK) observing run that started in
April 2019 and ran until March 2020 with a one-month break in October 2019. ii,
22, 23, 167, 191, 195, 206, 207, 214–216, 250, 252

O3a the first half of the third LVK observing run (O3) that started in April 2019 and
ran until October 2019. ix, 17, 190, 192, 250

O3b the second half of the third LVK observing run (O3) that started in November 2019
and ran until March 2020. 250

O4 the current LVK observing run, starting in May 2023. 22

overfitting when training a neural network, if the network learns characteristics specific
to the training data rather than general characteristics, it is said to be overfitting.
65

P-P test See: probability-probability plot (P-P plot) 46, 96, 119, 130, 135, 137, 139, 140,
190, 209, 212–214, 217

primordial black hole black hole that formed in the early Universe with masses any-
where between 10−8 M� and 104 M� and could also be one of the components of
dark matter [517]. 15

probability-probability plot Probability-probability (P-P) plots are a visual method
for assessing the similarity of two distributions by plotting their cumulative distri-
butions against each other. The difference can be quantified using, for example, a
Kolmogorov-Smirnov test (KS test) and a corresponding p-value can be computed;
this constitutes a P-P test. See fig. 2.2 for example P-P plots. ix, xxi, 44, 74, 92,
114, 137, 158, 168, 211, 230, 234, 236, 252
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proposal See: proposal distribution. 32

proposal distribution in sampling, a distribution with a known PDF from which sam-
ples can be drawn (or proposed) and, typically, accepted or rejeceted based on an
acceptance criterion, see e.g. rejection sampling (section 2.4) or Markov Chain Monte
Carlo (MCMC) (section 2.5). 30–32, 38, 41, 85, 143–148, 150, 152, 154, 160, 253

pulsar rapidly rotating neutron star that emit radios pulses at regular pulses. 7, 15

Rademacher distribution a discrete probability distribution with support k ∈ {−1, 1}
and the two outcomes have equal probability. The probability mass function (PMF)
is

p(k) =


0.5 if k = −1,

0.5 if k = 1,

0 if k /∈ {−1, 1}.

(G.3)

88

Rosenbrock See: appendix A.1. x, xii, 69, 110, 111, 119, 141, 156, 157, 168, 222, 237

state plot plot produced live by nessai that includes various diagnostics including the
minimum and maximum likelihood, log-evidence, acceptance and other metrics that
are useful when examining a run. x, 99

template bank a bank of gravitational-wave waveforms over which a detection statistic
is maximized to detect gravitational waves. 49

traceless (tensor) a tensor where the sum of the diagonals elements (the trace) is zero,
e.g.

h = ηµνhµν = 0. (G.4)

3

tractable has a closed form and/or an anlytic solution 67, 74, 76

Tukey window also known as a cosine-tapered window, is the convolution of a cosine
lobe of width (α/2)N and a rectangular window of width (1 − α/2)N , where N is
the number of samples and α ∈ [0, 1] [518]. 51

uniform distribution a uniform distribution is parameterized by a minimum and a max-
imum (a, b). Its PDF is

U(x; a, b) ≡ p(x; a, b) =


1

b−a
if x ∈ [a, b],

0 if x /∈ [a, b].
(G.5)
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30, 31, 42, 108, 221

variational autoencoder a neural network where the input is compressed to a latent
representation via an encoder and then reconstruted to match the original input via
a decoder [227]. xxi, 43, 66, 90

well-behaved See: well-behaved function 33

well-behaved function a function that is single-valued, continuous and continuously
differentiable. 34, 254

white dwarf compact object similar in size to the Earth that is formed after the death
of solar mass stars. 249

white noise noise where the PSD is constant in frequency. 16, 250
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