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Abstract

Bayesian probabilistic models’ structure (determined by the mathematical relations of the model’s
variables) and outputs (i.e., the posterior distributions inferred through Bayesian inference) are
complex and difficult to grasp and interprete without specialized knowledge. Various visual-
izations of probabilistic models exist but it is very little known about whether and how they
support users’ comprehension of the models. The aim of this thesis is to investigate whether
adding interaction or animation to visual representations of probabilistic models help people
better understand the structure of models and interprete the (causal and non-causal) relations of
the variables.

This research presents a generic pipeline to transform a probabilistic model expressed in
a Probabilistic Programming Language (PPL) and associated inference results into a standard-
ized format which can then be automatically translated into an interactive probabilistic models
explorer (IPME). IPME provides at-a-glance communication of a model’s structure and uncer-
tainty, and allows interactive exploration of the multi-dimensional prior or posterior MCMC
sample space. A collapsible tree-like structure represents the structure of the model in IPME.
Each variable is represented by a node that presents graphically the prior or posterior distribution
of the variable. Slicing on indexing dimensions or forming conjunctive restrictions on variables
by interacting with the distribution visualizations is supported. Each user interaction with the
explorer triggers the reestimation and visualization of the model’s uncertainty. This closed-loop
exchange of responses between the user and the explorer allows the user to gain a more intuitive
comprehension of the model. IPME was designed to enhance informativeness, transparency and
explainability and ultimately, the potential of increasing trust in models.

This research investigates also whether adding interactive conditioning to classical scatter
plot matrices that present samples from the prior distribution of probabilistic models helps users
better understand the models, and if there are levels of structural detail and model designs for
which it is beneficial. A user study was conducted. The analysis of the collected data showed that
interactive conditioning is beneficial in cases of sophisticated model designs and the difference
in response time between the interaction and static group becomes less important in higher levels
of structural detail. Participants using interactive conditioning were more confident about their
responses overall with the effect being stronger in tasks of lower level of detail.

This research proposes a pipeline to generate simulated probabilistic data from interven-
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tions applied on causal structures that are expressed in PPLs using probabilistic modeling and
Bayesian inference. An automatic visualization tool for visualizing the simulated probabilistic
data generated by this pipeline was developed. A user study to evaluate the proposed tool was
conducted. How effectively and efficiently people identify the causal model of the presented
data and make decisions on interventional experiments when the uncertainty in the simulated
data of interventions was presented using static, animated, or interactive visualizations was in-
vestigated. The findings suggested that participants were able to identify the causal model of
the presented data either given a single intervention or by exploring various interventions. Their
performance in identifying sufficient interventions was poor. Participants did not rely on the suf-
ficient interventions to identify the causal model in the case of multi-interventional tasks. They
might have relied more on combining information from multiple interventions to draw their
conclusions. There were three different visual exploration strategies of the information in the
scatter plot matrices which participants followed; roughly 1/3 of them relied on both the scatter
and KDE plots, another 1/3 of them relied more on the scatter plots, and the last 1/3 of them
relied more on the KDE plots. Those who followed the last strategy had a better performance in
identifying the causal model given a specific intervention. Most participants judged the design
of the visualization positively with many having mentioned that “it was informative”.
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Chapter 1

Introduction

1.1 Summary

The main focus of the research presented in this thesis is how visualization could be used to rep-
resent probabilistic models and their outputs more effectively and efficiently for the users. Prob-
abilistic models constitute the focal point of all visualization-related research efforts presented
in this thesis. Section 1.2 explains what probabilistic models are. It discusses the advantages of
probabilistic modeling and the obstacles in becoming widely adopted as a modeling and analy-
sis approach. Section 1.3 presents how probabilistic models and their outputs are communicated
(visually) based on the currect practices and discusses the challenges in using visualization to
achieve this. Finally, Section 1.4 presents the research scope, aims, contributions, and research
challenges of this work in regards with visualizing probabilistic models. It also provides the
outline of the thesis.

1.2 Probabilistic Models: Opportunities and Obstacles

1.2.1 Opportunities

1.2.1.1 Modeling Data Generating Mechanisms

Probabilistic models are models describing data generating processes. They are similar in pur-
pose to any other type of model used in science, engineering, industry etc. A simple and straight-
forward description of what a model is, is given by Martin [2018, Chap.1]:

Models are simplified descriptions of a given system or process that, for some rea-
son, we are interested in. Those descriptions are deliberately designed to capture
only the most relevant aspects of the system and not to explain every minor detail.
This is one reason a more complex model is not always a better one.

1
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Models are designed to capture only the “relevant aspects of the system” that are of interest.
A set of variables and relations (i.e., mathematical associations) are defined appropriately to
describe these “relevant aspects of the system”. A model consists of two types of variables; the
directly observed or measured variables called observed, and the unobserved hidden variables
called latent. The latter are often referred as parameters. Parameters define the behaviour of
the model through the mathematical associations relating them to each other or to the observed
variables. In cases when more than one observed variables are considered in the model, these
can also be associated to each other.

Box 1.1 presents a simple linear (non-probabilistic) regression model that consists of two
parameters, a and b, and two observed variables, rt and n. The parameters are independent
(one cannot be used to predict the other) of each other and are used to define the observed
variable rt. The observed variable n is also used to define rt. This model can be modelled in
a probabilistic way, as well, as it will be shown in Section 1.2.1.2.

Box 1.1 Linear regression model
An important task in a logistics company is the allocation of routes to drivers. The com-

pany wants to minimize the risk of accidents when allocating long routes to drivers that
are susceptible to tiredness under sleep-deprivation conditions, and thus, wants to model
drivers’ reaction time in regards with the number of consecutive days of driving under sleep-
deprivation. Assuming that the reaction time of drivers increases linearly with the number
of driving days under sleep deprivation, a linear regression model could be used for the
prediction of drivers’ reaction time.

rt= b ·n+a, (1.1)

where a is the intercept and b the slope of the regression line, n is the predictor (independent
variable) representing the number of consecutive days of driving under sleep-deprivation
with n ∈ {0,1,2, ...,9}, and rt is the dependent variable to be predicted representing the
reaction time in milliseconds after n consecutive days of driving under sleep deprivation
conditions.

All models do not necessarily define causal associations between variables, namely relations
that determine which variable causes the other (which variables are the cause of others and which
variables are the effects of others), based on the actual data generating mechanism that governs
the modelled system. For example, in the linear regression model in Box 1.1 the independent
variable (n) is used as a predictor for the dependent variable (rt). This association does not
necessarily mean that n causes rt. It simply expresses the belief of the modeller that some kind
of predictive relation exists between these two variables. Hence such variables’ relations in a
model reflect simple predictor-predicted relations. These relations are used to compose a proxy
for a data generating process with the aim to approximate the actual process as to the “relevant
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aspects of the system”. The aim of such models is usually prediction or forecasting, in which
cases a proxy for the data generating process suffices.

There are special types of models called causal models that can be used to model the cause-
effect relations of observed variables. These can be graphical or mathematical models defining
the causal relations among observed variables. The aim of these models is to explain the actual
data generating mechanism. Box 1.2 presents a graphical causal model called causal diagram.
This consists of a Directed Acyclic Graph (DAG) where variables are represented by nodes and
the direct causal relations by directed edges starting from a variable-cause and pointing to a
variable-effect.

Regression models can be used as mathematical models to describe the causal relations of
variables under some assumptions [McElreath, 2020a, Chap. 5,6;McElreath, 2021; Westreich
and Greenland, 2013; Bulbulia et al., 2021; Textor and Gilthorpe]. The independent observed
variables would represent the causes of the dependent observed variable. In Box 1.2 a causal
model of three variables is expressed mathematically by a set of two linear (non-probabilistic)
regression models.

Box 1.2 A causal model
The causal diagram in Fig. 1.1 is a graphical causal model describing the causal relations

among three observed variables; insomnia, anxiety, and tiredness.
The linear regression models 1.2 can be used as a mathematical model to describe the

causal relations of these three observed variables (under some assumptions). Both models
describe the following causal relations: insomnia causes anxiety and tiredness,
and anxiety causes tiredness.

insomnia

anxiety
�redness

Figure 1.1: Causal model of insomnia, anxiety, and tiredness.

anxiety= banx_ins ·insomnia+aanx

tiredness= btir_ins ·insomnia+ btir_anx ·anxiety+atir.
(1.2)

1.2.1.2 Modeling Uncertainty

An advantage of probabilistic models is that they account for uncertainty. Uncertainty encom-
passes phenomena in a system or process from the natural processes of their occurence or evo-
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lution (e.g., is the weather going to get colder?) to the measuring and modeling of them (e.g., is
there noise in the measurement of temperature? is the linear regression model a proper model for
predicting the temperature?). In existing literature uncertainty is mainly categorised as aleatoric

or epistemic [Alleman, 2013; Gelman, 2022; Spiegelhalter and Riesch, 2011].
Aleatory uncertainty is part of the naturally occuring stochastic processes [Alleman, 2013].

For example, the uncertainty about the outcome of a coin flip (heads or tails) is aleatoric. Epis-
temic uncertainty is the result of lack of knowledge deriving from various sources like the in-
complete knowledge or understanding of the underlying processes of the phenomena, or the im-
precise evaluation of their related characteristics (e.g., noisy measurements) [Alleman, 2013].
While aleatoric uncertainty is irreducible because it refers to the inherent uncertainty of random
processes, epistemic uncertainty can be reduced if additional information about the underlying
processes (e.g., more measurements) becomes available.

Both types of uncertainty can be modelled by a probabilistic model. The aleatoric uncer-
tainty expressed as “naturally occuring variances” in the observations of a system [Alleman,
2013] is modelled in a probabilistic model “by placing a distribution over the output of the
model” [Kendall and Gal, 2017]. The output of a probabilistic model is represented by a random

variable. These types of variables do not take a fixed value like the variables in non-probabilistic
models, but may take any value within a range with some probability.

The definition of the term “probability” has a long story, which will be narrated in Chapter 2
(Section 2.2.1). For the moment the Bayesian definition of it is given: probability is a measure
of belief that a possible event (or outcome) will happen in a scale from 0 (no belief) to 1 (max-
imum belief) [Lambert, 2018a, Chap. 2; Martin, 2018, Chap. 1]. A random variable follows
a probability distribution which assigns a probability to each possible value of the variable so
that the sum of all probabilities or the area under the distribution is 1 depending on whether the
random variable is discrete or continuous, respectively.

In Box 1.3 the linear regression model described in equation 1.1 (that was a non-probabilistic
model) is rewritten in a probabilistic way to account for aleatoric uncertainty. The following
paragraph describes how probabilistic models can account for epistemic uncertainty.
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Box 1.3 Probabilistic linear regression model
In a probabilistic approach, the reaction time in the drivers’ reaction time problem could

be viewed as a random variable distributed according to a normal distribution. The mean
(μ) of this normal distribution would be provided by the linear predictor μ= b ·n+a, with
some standard deviation (σ) such as σ = s. Equation 1.1 can be written in a probabilistic
way as following:

rt∼ Normal(μ,σ)⇒

rt∼ Normal(b ·n+a,s).
(1.3)

Probabilistic statement 1.3 quantifies aleatoric uncertainty. For any 4-tuple of values
(a,b,s,n), a normal distribution of drivers’ reaction time (rt) is defined. This normal
distribution quantifies the aleatoric uncertainty.

1.2.1.3 Incorporating Prior Knowledge

Placing a prior distribution over a model’s parameters, and then capturing how much these
parameters vary given some data accounts for epistemic uncertainty [Kendall and Gal, 2017].
These prior distributions are the probability distributions of the model’s parameters. They quan-
tify any prior (incomplete) knowledge of the modeller or expert about the underlying data gen-
erating process of the modelled system before observing any data. Box 1.4 shows how priors
could be set for the parameters of the drivers’ reaction time problem.
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Box 1.4 Definition of priors for the drivers’ reaction time problem
An expected reaction time of a driver under normal conditions might be known to be

around 100 ms with a standard deviation of 100 ms. This knowledge could arise from
previous studies or experience. This forms a prior belief in the form of a distribution for
the intercept a. The intercept equals the reaction time of a driver on the first driving day;
rt= b ·0+a= a. Based on this information, the prior distribution of a takes the form:

a∼ Normal(100, 100). (1.4)

The more days a driver drives under sleep deprivation conditions, the more tired he is
expected to get. Hence, the slope of the regression model is expected to be positive. The
bigger the slope of the regression line is, The more tired (bigger reaction times) the drivers
get after consecutive days of driving, the bigger the slope of the regression line becomes. It
is not known though how sharp this slope could be. For this reason, a wide prior distribution
is set for the slope of the regression line: a normal distribution with mean value 10 and a
standard deviation 10. This forms the prior distribution of parameter b:

b∼ Normal(10, 10). (1.5)

The standard deviation of the drivers’ reaction time cannot be judged a priori, but it is
known to be a positive number. Thus, a wide prior distribution is set for parameter s such
that it is defined over positive values:

s∼ HalfNormal(50). (1.6)

The prior distributions express how much or little is known about the system’s underly-
ing data generating process before observing any data. A prior is more informative (i.e., the
distribution is tighter) when there is more known and hence, the epistemic uncertainty is less.
Otherwise, it is less informative.

1.2.1.4 Estimating Uncertainty through Bayesian Inference

The epistemic uncertainty can be reduced in the presence of observations especially in the case of
less informative prior distributions. Bayesian inference is the mechanism that describes how this
reduction of uncertainty can take place in the presence of observations in probabilistic modeling.
In Bayesian inference, the prior beliefs about the value of the model’s parameters get updated
in the light of the observations and are turned into posterior beliefs. The update mechanism of
prior beliefs in the light of observations is described mathematically by the Bayes’ rule as it will
be explained in detail in Section 2.2.

Box 1.5 explains why the observations can cause an update in the prior beliefs.
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Box 1.5 Uncertainty reduction in the drivers’ reaction time problem
Let us assume that a dataset of drivers’ observed reaction times is available in the database

of the logistics company. The data of one of the drivers is shown in Table 1.1.
Driver 330’s reaction time on day 0 is 321 ms. Observing this data-point, the model

might want to change the prior belief about the regression line’s intercept (initially centered
around 100 ms in statement 1.4) and shift it to higher values. This mathematically is
interpreted as an assignment of more probability density to higher values of the parameter
a in the posterior distribution.

Table 1.1: The reaction times of a driver after n consecutive days of driving under sleep-
deprivation conditions. The dataset is from [Belenky et al., 2003] and can be retrieved from
[Lambert, 2018b] for all 18 available drivers.

Driver ID Days of Driving (n) Reaction Time (rt)

330 0 321
330 1 300
330 2 283
330 3 285
330 4 285
330 5 297
330 6 280
330 7 318
330 8 305
330 9 354
330 6 280
330 7 318
330 8 305
330 9 354

The observed data of a system can be used to estimate the values of the parameters and
consequently to generate predictions. The approach followed in the case of non-probabilistic
modeling is to apply some algorithm to fit the parameters of a model to observations. For exam-
ple, Ordinary Least Squares (OLS) is a commonly used algorithm for fitting linear regression
models to observations. It fits the parameters of the regression model to the data by minimizing
the sum of square differences between the observed and predicted values of the dependent vari-
able. Such modeling approaches would generate fixed-value estimates for the parameters of the
model. The predicted data would be fixed-valued given the value of the model’s parameters.

The parameters of a probabilistic model are random variables defined by a probability dis-
tribution. The outcome of a probabilistic model is also represented by a random variable. A
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probabilistic model produces predictions for the outcome with a confidence (or uncertainty) at-
tached to them in contrast to non-probabilistic models that produce a prediction with certainty.
The probability distributions of the parameters and observed variables in a probabilistic model
can be inferred by Bayesian inference through the observations. Starting from a prior distribu-
tion that gets updated in the light of observation, a posterior distribution can be inferred through
Bayesian inference, with the epistemic uncertainty being reduced as the observations accumu-
late.

Box 1.6 demonstrates how the outputs of a non-probabilistic and a probabilistic model differ
within the context of the drivers’ reaction time problem. The Python code for the modeling
of the drivers’ reaction time problem in this and the following chapter can be found in Taka
[2023a]. Fig. 1.2 presents the outputs of both models. The parameters’ estimates and the pre-
dicted reaction time take fixed values in the case of the non-probabilistic model, while they can
take any value from a range of possible values in the case of the probabilistic model according to
the estimated posterior distribution. The figure presents also the prior distributions of the param-
eters. The uncertainty included in the prior distributions is reduced in the posterior distributions
in the light of data.

Modeling uncertainty is a valuable modeling attribute to achieve realistic predictions. For
example, both the non-probabilistic and probabilistic models in Box 1.6 can predict the drivers’
reaction time after n consecutive days of driving under sleep-deprivation conditions. Based on
the non-probabilstic model all drivers would have the exact same reaction time if they all drive
3 consecutive days under sleep-deprivation conditions. These types of events are unlikely based
on the human experience, while they are certain events based on this model. The probabilistic
model estimates the distribution of the predicted reaction time. Based on this estimate the pre-
dicted reaction time will not be the exact same value for all drivers for any specific number of
days driving under sleep-deprivation conditions.
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Box 1.6 Estimation of parameters’ value and generation of predictions in the drivers’
reaction time problem

For the non-probabilistic linear regression model of equation 1.1, OLS is used to fit the
parameters to the available observed data (found in [Lambert, 2018b]). The values of the
parameters a and b are estimated; a = 251.41 and b = 10.47. The estimated values
of the parameters can then be used in equation 1.1 to predict the reaction time of a driver
after 3 consecutive days of driving, n = 3; rt = 10.47 ·3+251.41 = 282.82 ms.

For the probabilistic linear regression model of statement 1.3, the priors given in state-
ments 1.4-1.6, and the available observed data are used to conduct Bayesian inference and
infer the posterior distributions of the parameters a, b, and s and the posterior predictive

distribution of rt.
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Figure 1.2: Parameter estimates and reaction times’ predictions from the probabilistic and
non-probabilistic model of the drivers’ reaction time problem.

1.2.1.5 Accounting for Uncertainty when Modeling Causal Relations

As it was discussed in Section 1.2.1.1, the relation of two observed variables in a model is not
necessarily truly causal, unless the model is a causal model or is designed under a causal model.
For example, the observed variable days of driving n used as a covariate in the non-probabilistic
and probabilistic regression models to predict the reaction time variable rt in Box 1.1 and
1.3, respectively, is not necessarily a cause of drivers’ reaction time. On the other hand, the
insomnia variable used as a covariate in the non-probabilistic regression models in Box 1.2
is a cause of the anxiety and tiredness variables. This is because the insomnia-anxiety-
tiredness model in Box 1.2 was designed under a causal model represented by the causal diagram
shown in Fig. 1.1.

Probabilistic models designed under a causal model can model the causal relations of ob-
served variables in a probabilistic way. Box 1.7 demonstrates how the insomnia-anxiety-tiredness
model shown in Box 1.2 is modelled probabilistically through probabilistic linear regressions.
Appropriate priors could be set for the b, a, and σ parameters and Bayesian inference could be
used to infer the posterior distributions of the parameters and the posterior predictive distribu-
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tions of the observed variables.

Box 1.7 Modelling causal relations probabilistically
Fig. 1.3 replicates Fig. 1.1 to show again the causal diagram of the insomnia-anxiety-

tiredness causal model here. The linear regression models 1.2 shown in Box 1.2 are rewritten
below in a probabilistic way to account for uncertainty.

The insomnia, anxiety, and tiredness are assumed to be continuous random
variables and linearly related. anxiety and tiredness are assumed to follow a nor-
mal distribution with mean µanx= banx_ins ·insomnia+aanx and µtir= btir_ins ·
insomnia+ btir_anx ·anxiety+atir and standard deviation σanx and σtir, respec-
tively.

insomnia

anxiety
�redness

Figure 1.3: Causal model of insomnia, anxiety, and tiredness.

anxiety∼ Normal(banx_ins ·insomnia+aanx,σanx)

tiredness∼ Normal(btir_ins ·insomnia+btir_anx ·anxiety+atir,σtir).
(1.7)

The regression coefficients b (the parameters that multiply the independent variables) in a
linear regression model describe the correlation between the independent and dependent vari-
ables. When the independent variables are causes of the dependent ones, the regression co-
efficients b describe the causal effect the independent variables have on the dependent ones
[Bulbulia et al., 2021; McElreath, 2021; Textor and Gilthorpe]; that is a measure of how much a
variable-effect would change by a change in its variable-cause.

Using probabilistic models to model causal relations of variables can account for the uncer-
tainty about the value of their causal effects and the predicted data. Estimations of the uncer-
tainty about the size of causal effects or the values of predicted data could be valuable informa-
tion in many settings of crucial decision-making. A simplistic example could be a doctor, who
needs to decide which treatment to give to a patient. The effect of the possible treatments on
the disease are not expected to be the same for all patients but to present variability. A more
informative decision could be made if the uncertainty about the size of each treatment’s effect
on the disease is known.
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1.2.2 Obstacles

The roots of Bayesian inference go back to the work presented by Thomas Bayes in 1763 [Bayes
and Price, 1763] but Bayesian inference had remained in obscurity for a very long time since
then and was mainly used within academia. A reason for this was the computational challenges
in applying Bayes’ rule for the computation of the posterior distribution when the complexity of
the probabilistic models was increased. As the number of the parameters in the model increases,
some components of Bayes’ rule become intractable. This will be explained through concrete
examples in Section 2.2.3. Alternative estimation techniques could be used for the calculation
of the posterior in certain cases but these required specialized statistical knowledge.

The foundations of a wider adoption of Bayesian statistics were laid in early 1990’s, when in-
direct estimation methods of the posterior were introduced; Markov Chain Monte Carlo (MCMC)
algorithms [Spiegelhalter and Rice, 2009] and a decade later the Probabilistic Programming
Languages (PPLs) [Poole and Wood, 2022]. The creators of PPLs started working on integrat-
ing semantically the inference in a programming language to hide the mathematical details and
automate the inference process. They also incorporated powerful MCMC algorithms for the
estimation of the posterior [Poole and Wood, 2022].

Bayesian probabilistic modeling has many advantages; it accounts for uncertainty system-
atically; it allows precise incorporation of prior expert knowledge; and the intrinsic structure
of models is well-defined in terms of relations among random variables: the mathematical and
statistical dependencies are explicitly stated. Bayesian probabilistic models can be implemented
via PPLs, which provide automatic inference via efficient MCMC sampling algorithms. Never-
theless, probabilistic models and Bayesian inference are still not widely adopted.

From the perspective of an analyst, building a probabilistic model still requires some statis-
tical knowledge. For example, the specification of the probability distributions for the priors can
be a difficult task especially if the analyst has poor background in statistics [Phelan et al., 2019;
Sarma and Kay, 2020]. Many analysts might avoid probabilistic modeling and Bayesian infer-
ence because they are not able to specify appropriate priors. Validating how well an analyst’s
prior knowledge aligns with the probability distribution of a prior or refining the model to more
accurately capture the “relevant aspects of the system” are tasks that cannot be easily done by
novices. Comprehension of the statistical context of the model is required for the validation or
refinement of probabilistic models.

From the perspective of a user of a probabilistic model, parameter tuning and decision-
making under uncertainty are tasks that require comprehension of model’s structure and insight
into the uncertainty of parameters’ value and predicted data. Users need to know how variables
in a model are related, namely which variable affects the other and how, to tune a parameter
appropriately, or make a decision for an intervention on a variable that might affect other vari-
ables in the model. Insight into variables’ uncertainty could help decision-makers make better
assessment of the risk over all possible outcomes and thus, make more informed decisions.



CHAPTER 1. INTRODUCTION 12

Textual representions of probabilistic models like probabilistic statements or PPLs hide most
of the mathematical details of probabilistic models but still require some statistical knowledge to
infer variables’ relations. The complexity of the model plays also an important role in the ability
of users’ to comprehend model’s structure and uncertainty. A very simple probabilistic model
with few parameters could allow a user to contemplate the entire model at once and comprehend
how parameters interact with each other and the predictions of the model. This becomes chal-
lenging as the model becomes more complex, perhaps with multivariate distributions, complex
inter-dependencies and increasingly abstract latent states.

Communication of uncertainty has challenges, too. The uncertainty in a probabilistic model
can be complex and multidimensional (one dimension per parameter in the model) and is de-
picted in two types of distributions, the prior and the inferred posterior. Communicating uncer-
tainty and especially a complex distribution may confuse people if the design of its representa-
tion does not account for the needs of a specific application [Fernandes et al., 2018; Greis et al.,
2017; Kay et al., 2016a] or for the ways that people naturally reason about probability [Belia
et al., 2005; Cosmides and Tooby, 1996; Gigerenzer and Hoffrage, 1995; Joslyn and LeClerc,
2013].

1.3 Communicating Probabilistic Models through Visualiza-
tion

This section presents the current practices in using visualization to communicate probabilis-
tic models given the available tools (Section 1.3.1) and discusses the challenges in visualizing
probabilistic models (Section 1.3.2).

1.3.1 How is Visualization Used to Communicate Probabilistic Models?

A probabilistic model consists of the following components:

• a structure; this reflects the relations (i.e., the statistical and mathematical associations) of
the variables in the model;

• inference results; these consist of the prior and posterior distributions of the parameters
and the (prior and posterior) predictive distributions of the observed variables.

Both these aspects of a probabilistic model need to be communicated to users to help them draw
a complete picture of the model. In this way users would be able to perform tasks like check-
ing the validity of the model, refining it, using it to make decisions, or tuning its parameters.
The following subsections discuss the existing practices in representing the structure and the
inference results of probabilistic models visually.
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1.3.1.1 Visualizing the Structure of Probabilistic Models

Graphs are a common way of representing a probabilistic model’s structure visually. The nodes

correspond to model’s variables. The edges are directed arrows from one variable to another
indicating the direction of their dependency based on the definition of the model; the arrow starts
from the independent variable and points to the dependent variable. An informationally minimal
graph is the Bayesian network [Koller and Friedman, 2009] (Fig. 1.4(a)). More informative
versions of graphs are provided by the graphical tools of some PPLs. For example, in the
DoodleBUGs’ graph [Spiegelhalter et al., 2003], nodes contain information about variables’
dimensions (Fig. 1.4(b)). In PyMC’s graphs [Ellson et al., 2004], nodes also contain the name of
the prototype distribution of the variables (Fig. 1.4(c)). The Kruschke-style diagram [Kruschke,
2015, Chap. 8] (Fig. 1.4(d)) elaborates the graph with the iconic “prototypes” of the variables’
distribution on each node and annotations for the parameters of distributions being set by other
parameters in the model.

b sa

rt

(a)

for(i IN 1:18)

ba s

rt[i]

(b)

N=18

rt ~ Normal

b~Normala~Normal s~HalfNor
mal

(c)

μ=100
σ=100

μ=10
σ=10 σ=50

μ
σ

rt

a b s

b.n + a

(d)

Figure 1.4: Various graphical representations of the probabilistic model of the drivers’ reaction
time problem (Box 1.3 and 1.4). (a) Bayesian network, (b) DoodleBUGs’ graph, (c) PyMC’s
graph, and (d) Kruschke-style diagram.

Diagrammatic representations of probabilistic models like these ones could provide a “com-
prehensive overview of the relations between parameters and their meanings with respect to each
other and to the data” [Kruschke, 2018a]. Sketching out a diagram of the probabilistic model
could facilitate tasks like model validation or specification in PPL code [Kruschke, 2018a].

1.3.1.2 Visualizing the Inference Results

Although the diagrammatic representations of probabilistic models are useful in communicating
the structure of the models, Bayesian modeling needs more than this. For example, Gabry et al.
[2019] highlight the importance of visualization in all the stages of a Bayesian workflow that
comprise of an iterative process of model building, inference, model checking and evaluation,
and model expansion.

The most common practice in reporting the inference results of Bayesian analysis is tables
that present summary statistics of the posterior distributions. For example, Table 1.2 presents the
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summary statistics of the posterior distributions of the parameters in the drivers’ reaction time
probabilistic model (Box 1.3 and 1.4). The mean value, standard deviation, and Highest Den-
sity Interval (HDI) of the posterior distributions are reported in this table. The HDI (sometimes
encountered as Highest-Posterior Density (HPD) in the literature when referred to the poste-
rior distribution) is a measure of spread of the distribution and designates the shortest interval
containing a given portion of the probability density (e.g., 94%).

Table 1.2: Posterior statistics in a tabular format for the drivers’ reaction time probabilistic
model. The 97% HDI is included in the statistics: the left end of the interval shown in column
HDI_1.5% is represented by the value below which 1.5% of the posterior falls and the right end
of the interval shown in column HDI_98.5% is represented by the value above which 1.5% of
the posterior falls.

mean std HDI_1.5% HDI_98.5%

a 251 6.6 237 265
b 11 1.2 8 13
s 48 2.6 43 54

The inference results of a probabilistic model could be represented visually through uncer-
tainty visualizations. Depending on the type of uncertainty visualization used (e.g., error bar,
Box plot, Kernel Density Estimate (KDE) plot), this way of communicating the inference results
could be more or less informative in comparison to the tables of summary statistics. The use of
visual means like color, transparency, gradient, etc., could make the uncertainty in the inference
results of a probabilistic model more intuitively comprehensible.

A common uncertainty visualization used for the communication of inference results is the
Kernel Density Estimate (KDE) plot. This can be used to communicate visually a smoothed
summary of a parameter’s prior or posterior distribution. The width of the KDE plot indicates
the range of possible values that the variable can take and its height at each value point how
probable that value is.

Fig. 1.5 presents the Kruschke-style [Kruschke, 2015] posterior distributions of the param-
eters in the drivers’ reaction time probabilistic model (Box 1.3 and 1.4) in the form of KDE
plots. The Kruschke-style representation of the posterior distributions is a quite informative vi-
sual representation as it provides information about the exact statistics of the distributions (the
mean value and HDI) in the form of annotations.

There are various visualization tools that can represent the inference results visually. Many
of them are suitable for Bayesian analysis as they can accept the outputs of various PPLs. The
most common are ArviZ [Kumar et al., 2019] in Python, and bayesplot [Gabry and Mahr, 2020],
tidybayes [Kay, 2020], and shinystan [Stan Development Team, 2017] in R. The ArviZ API was



CHAPTER 1. INTRODUCTION 15

230 240 250 260 270

235  264

97% HDI

mean=251

a

6 8 10 12 14

8  13

97% HDI

mean=11

b

45 50 55 60

43  54

97% HDI

mean=48

s

Figure 1.5: Kruschke-style parameters’ posterior distributions of the probabilistic model of the
drivers’ reaction time problem.

used to generate Table 1.2 (arviz.summary) and the Kruschke-style KDE plots in Fig. 1.5
(arviz.plot_posterior).

1.3.2 Challenges in Visualizing Probabilistic Models

Although the means for the communication of probabilistic models seem to exist, very little
is known about how effective they can be in improving users’ comprehension of and trust in
probabilistic models, and helping them in tasks. For example, diagrammatic representations of
probabilistic models like graphs can help users view the relations among variables in a model
at a glance (through the existence or absence of edges). In the case of the more informed
graphs like Kruschke-style diagrams, users could even observe the exact statistical associations
or mathematical equations. But inferring what exactly the effect of one variable on another is,
is still very much dependent on the ability of the users to understand the mathematical details.

Similarly, interpreting representations of inference results in the form of tables of summary
statistics or KDE plots depends on users’ level of statistical knowledge. The numerical data pre-
sented are usually statistics like mean, standard deviation or confidence intervals, which could
mislead or overwhelm unfamiliar users. A static representation of the inference data in summary
tables or uncertainty visualizations could not communicate the sensitivity of the parameters,
which would allow a decision-maker to assess the impact of parameter inter-dependencies and
associated risks.

The efficiency of the existing communication means of probabilistic models can also be
questioned especially in cases of complex models. The tables of summary statistics or the un-
certainty visualizations of the parameters’ posterior distributions can become unwieldy when
the number of the parameters in the model increases. The limited capacity of human cognition
could be a hurdle for users to grasp the uncertainty presented and make required assessments
of the risk. Communicating the prior would imply communicating a second table of similar
complexity or as many KDE plots. Thus, the priors or many of the posteriors might be omitted
in reports of Bayesian analysis leaving the reader with an incomplete picture of the analysis and
findings.



CHAPTER 1. INTRODUCTION 16

1.4 This Work

1.4.1 Thesis Statement, Aims and Scope

The hypothesis investigated in this research is that interactive animated visualizations of Bayesian
probabilistic models and their outputs aid end-users in better understanding probabilistic models
and causality in data. Specifically, it is investigated whether adding interaction and animation
to visual representations of a probabilistic model helps people better understand the structure of
the model and interprete the (causal and non-causal) relations of the variables within the context
of the model. This is investigated through user studies.

To that end, novel and automated tools for visualizing Bayesian probabilistic models and
their outputs are proposed and created in this research. The proposed visualizations incorporate
structural information about the model and its sample-based (MCMC) inference and integrate
interaction and animation. The communication and exploration of variables’ prior and posterior
distributions and relations is facilitated through the proposed visualizations. The ultimate aim
is the proposed visualization tools to help make Bayesian analysis and its outputs more intuitive
and interpretable for non-experts.

The created visualization tools are offered to the research community in the form of pack-
ages or libraries. Also anything related to the user studies conducted within the context of this
research (collected data, analysis code, training material) is published along with the findings to
encourage replication or meta-analyses.

The targets of this research are summarized by the points below:

1. The creation of novel and automated tools for visualizing Bayesian probabilistic models
to:

(a) communicate variables’ distributions;

(b) explore the prior and posterior MCMC sample space of the inference;

(c) visualize variables’ (causal and non-causal) relations (dependencies) in a probabilis-
tic model.

2. The investigation of whether animation and interaction improve the understanding of a
model’s structure and its variables’ dependencies.

3. The investigation of whether animation and interaction improve the understanding of vari-
ables’ causal relations in probabilistic models that model a causal structure.

1.4.2 Contributions

The research presented in this thesis consists of three parts which all focus on the visualization
of probabilistic models and their outputs but from a different perspective.
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The first part (Chapter 4) investigates two things; first, how an automated visualizer of prob-
abilistic models that are expressed in any PPL and their outputs can be designed, and second
how interaction could be incorporated to this design to make sample-based (MCMC) inference
results more intuitive and easily explorable. A concrete implementation of such a tool is pre-
sented.

The second part (Chapter 5) investigates whether interactive conditioning when used to ex-
plore samples from the prior distributions of probabilistic models’ variables helps users better
understand the structure of the probabilistic model, namely the relations among the variables’ of
the model. The design of a concrete visualization presenting these distributions and integrating
interactive conditioning is presented. The results from the analysis of data collected through a
user study using the suggested interactive visualization as a visualization instance are presented
and discussed.

The third part (Chapter 6) investigates two things; first, how probabilistic models and exist-
ing PPLs can be used to simulate causal models and interventions on them, namely to generate
data with uncertainty from specific causal structures before or after an external change imposed
on variables of the model. The second thing that is investigated is whether interaction or an-
imation when used in visualizing simulated data from these models and interventions applied
on them helps users better understand their structure or make decisions about the design of ac-
tual interventional experiments. The conduction of actual interventional experiments could help
users (e.g., researchers, doctors, psychologists) infer the causal relations of observed variables
of interest. The design of concrete visualizations presenting the simulated data of causal models
and integrating interaction and animation are presented. The results from the analysis of data
collected through a user study using the suggested visualizations as visualization instances are
presented and discussed.

1.4.3 Research Challenges

The research on the visualization of probabilistic models presented in this thesis entails many
challenges from a research, technical and dissemination perspective. The identified challenges
are discussed in this subsection to give the reader an initial idea of the breadth and depth that
this research could reach.

The challenges from the research perspective are mainly two-fold; how to design the visual
representations and how to investigate their effectiveness. The communication of uncertainty
in complicated multi-parameter models should employ visualization designs that account for
people’s ability to interpret uncertainty and in fact doing this in many dimensions, one per pa-
rameter. The incorporation of interaction and animation in these designs with the aim to make
model’s structure and output more intuitive rather than confusing for the naïve users constitutes
the main research challenge in this thesis. The design of appropriate evaluation protocols for
the user studies is another challenge. Decisions like whether participants should get trained and
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how, how the questions and training could be simplified to enable participants of any statistical
background to take part in the user studies, what modeling choices (e.g., hierarchical modeling,
sophisticated parameterizations for setting the parameters of variables’ distribution etc.) to be
investigated to ensure a broad enough range is included should be made.

The challenges from the technical perspective are of lower importance but are there for cre-
ating limitations to how far the designs of the suggested visualizations could go. The use of
animation and interaction imply the need for a real-time retrieval, presentation, and update of
information in the visualizations which sets many technical challenges in terms of implemen-
tation especially as the models complexity increases and the visualizations need to scale up.
The capabilities that existing development tools (e.g., existing visualization libraries for inter-
action) could offer sometimes put restrictions on the flexibility that the visualization designs
could have. The creation of shareable code in the form of packages or libraries sets also certain
technical specifications that should be met.

The challenges from the dissemination perspective are great. The aim of this research is to
create tools that will be useful and helpful not only for the experts or already users of Bayesian
analysis, but also for the less familiar audience. The communication of this research to a broader
audience with possibly limited background in statistics is challenging both within the context of
the evaluation user studies and generally for purposes of research dissemination. The definition
of a set of appropriate models and applications for explaining and demonstrating the impact
of this research is required. The context of the applications should be comprehensible and
interesting to the broader audience and enable them to understand the benefits they can get
by utilizing visusalization means in Bayesian analysis. The technical and mathematical details
should be simplified.

1.4.4 Thesis Outline

Chapter 2 explains the theoretical background to the work by expanding on the themes pre-
sented above. The technicalities of Bayesian inference and PPLs that are relevant to the context
of the thesis are explained. Why modeling causal relations requires extra methodologies is ex-
plained. The relevant theories of visual perception are also presented in this chapter.

Chapter 3 presents the existing work in the field of uncertainty visualization; the existing
approaches, the challenges in communicating uncertainty, the evaluation of uncertainty visu-
alization, the uncertainty visualization in Bayesian reasoning, and the decision-making under
uncertainty.

Chapter 4 presents the first part of the research presented in this thesis, which focuses on
the design and creation of an automated interactive visualizer of probabilistic models that are
expressed in any PPL and use sample-based (MCMC) inference.

Chapter 5 presents the second part of the research presented in this thesis, which focuses
on the investigation of the role of interactive conditioning in the comprehension of variables’
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relations in a probabilistic model.
Chapter 6 presents the third part of the research presented in this thesis, which focuses on

the simulation of causal models and interventions by using probabilistic modeling and PPLs, the
design of appropriate visualizations for representing the simulated data, and the evaluation of
these designs.

Chapter 7 discusses the conclusions drawn from the thesis, and the dimensions that this
work could take in the future.



Chapter 2

Theory

2.1 Summary

This chapter expands on the theoretical background of key themes encountered in this thesis.
Bayesian inference is the main theoretical concept that readers need to know to follow the work
presented in this thesis. All visualizations proposed and evaluated in this work present the out-
puts of sample-based (MCMC) Bayesian inference. Section 2.2 presents useful concepts from
probability theory and explains Bayes’ rule. The difficulties with the computation of Bayes’
rule and the alternative methods to conduct Bayesian inference are discussed. The algorithm
to generate predictions from the inferred distributions is presented. An example of outputs of
Bayesian inference is provided. A discussion about why to use Bayesian statistics to analyse
data is also provided.

PPLs are automated tools enabling the definition of probabilistic models and the conduction
of Bayesian inference. A part of this research focuses on the automatic transformation of PPLs’
outputs into interactive visualizations. For this reason, Section 2.3 discusses the purpose that
PPLs want to serve, how a probabilistic model is expressed in PPL code and the advantages of
doing this, and finally, how this code leads to arrays of samples within the context of a PPL.

Probabilistic models can be used to model variables’ causal relations under a causal model
(i.e., a model that explains which variable causes which other variables) as it was explained in
Chapter 1. A systematic way to do this and to simulate interventions using PPLs is presented
in Chapter 6. But before presenting this work in Chapter 6, it is important for the reader to
understand why extra information, like that provided by causal models, is required to model
causal relations of variables. Section 2.4 explains the reasons through illustrative examples and
presents some well-known causal modeling methodologies.

Finally, there are various theories or empirical knowledge of the role that human visual
perception plays in the effectiveness of visualization. This is a very relevant topic to the subject
of this thesis as it sets the theoretical background of this research: why to use visualization to
communicate probabilistic models? why to expect them to be effective? how should they be

20
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designed? Section 2.5 introduces the reader to the relevant theories and empirical knowledge in
human visual perception to provide the context in which this research is developed and for which
it is purposed. It explains why it is important to understand how people perceive information
visually. It discusses the most relevant theories of visual perception of uncertainty, animation,
and interaction that constitute main research focuses in this thesis.

2.2 Bayesian Inference

2.2.1 Schools of Statistical Inference and Definition of Probability

A definition of statistical inference is given by Johnson et al. [2012]: “Statistical inference is
the process through which inferences about a population are made based on certain statistics
calculated from a sample of data drawn from that population.” The notion of “probability” plays
a leading role in a statistical inference process. Specifically, the aim of statistical inference is
the computation of the probability of a hypothesis about the population given the observed
sample data, Pr(hypothesis|data) with Pr denoting the probability [Lambert, 2018a,
Chap. 2.8].

The definition of probability varies depending on the school followed for the conduction
of statistical inference. There are mainly two schools of statistical inference: the frequentist

and the Bayesian. In frequentist statistics, the probability represents the frequency of an event
occurring in an infinite number of repetitions of an experiment [Lambert, 2018a, Chap. 2.5]. In
Bayesian statistics, probability is a measure of certainty about subjective beliefs, which can be
updated in the light of data [Lambert, 2018a, Chap. 2.6]. Triggered by the different approaches
in defining the notion of “probability” and for reasons of reference later in the thesis, a short
discussion about the main differences between the two schools of statistical inference will be
provided here, although the main focus of this work is on Bayesian inference.

The two schools of statistical inference differ in their approach of computing the probability
Pr(hypothesis|data). Given some hypothesis about the population the frequentist statis-
tics assumes that this hypothesis is true, collects sample data from the population, and estimates
the probability of this data occuring given the hypothesis is true, Pr(data|hypothesis), and
if this probability is very small (smaller than an arbitrary threshold), the hypothesis is rejected:
Pr(hypothesis|data) = 0. Frequentist statistics focuses on estimating the probability of
obtaining the sample data given the hypothesis is true to infer the probability of the hypoth-
esis is true given the sample data through a hypothesis testing. Estimating the probability of
obtaining the sample data given the hypothesis is true, Pr(data|hypothesis), requires that
the data is considered random and the parameters of the model fixed to reflect the hypothesis
[Lambert, 2018a, Chap. 2.5].

Bayesian statistics can directly estimate the probability of the hypothesis is true given the
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sample data, Pr(hypothesis|data). This is possible through Bayes’ rule, which is the
mathematical tool to invert the probability of obtaining the sample data given the hypothesis is
true, Pr(data|hypothesis), and compute the intented probability of the hypothesis is true
given the sample data, Pr(hypothesis|data). Estimating the Pr(hypothesis|data) re-
quires that the parameters are considered to vary and the data is considered to be fixed [Lambert,
2018a, Chap. 2.6]. Section 2.2.3 presents Bayes’ rule and how it can be used for the estimation
of this probability.

2.2.2 Summary of Useful Probabilistic Concepts

This section gives a very brief summary of the probabilistic concepts from the probability theory
that will be encountered in this thesis. More details on any of these concepts could be found in
any relevant textbook [Papoulis and Pillai, 2002; Rotondi et al., 2022; Speegle and Clair, 2021].

A random variable x is discrete when it takes one value from a countable set of values, or
continuous when it takes values from a continuous range of values. A discrete random variable
follows a valid probability distribution when its probability mass function (PMF) p(x) assigns
a probability value from 0 to 1 to each possible value of the variable so that the sum of the
probabilites of all possible values equals 1:

∑
x∈X

p(x)= ∑
x∈X

Pr(x= Xi) = 1, (2.1)

with X= {Xi} and i∈ {0,1,...,n}. A continuous random variable follows a valid probabil-
ity distribution when its probability density function (PDF) p(x) assigns a probability density
to each possible value of the variable so that the integral of the probability densities over the
range of the variable equals 1, ∫

x
p(x)dx= 1. (2.2)

Well-known discrete probability distributions are the Poisson, binomial, Bernoulli distributions,
and continuous are the normal, uniform, Cauchy distributions.

Given a set of random variables x1, ...,xn, the joint probability distribution of these variables
can be defined as p(x1, ...,xn). If the random variables are independent (none of the variables
help to predict another), x1⊥⊥ ...⊥⊥ xn, the joint distribution of the variables is computed by the
product of the distributions of the individual probabilities: p(x1, ...,xn) = ∏ip(xi). In case
the random variables are not independent their joint probability distribution can be expressed
in terms of the conditional probabilities of the variables based on the chain rule. For example,
assuming n= 2 and x1 ⊥̸⊥ x2: p(x1,x2) = p(x1|x2)p(x2) = p(x2|x1)p(x1). For more than
two variables, p(x1, ...,xn) = p(xn|x1, ...,xn−1)p(x1, ...,xn−1).

The distribution of a random variable can be calculated by the joint distribution of this vari-
able with other random variables by calculating the marginal distribution for this variable. For
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example, the marginal distribution of xn is p(xn) = ∑x1 ...∑xn−1 p(x1, ...,xn) in the discrete
case and p(xn) =

∫
x1
...

∫
xn−1

p(x1, ...,xn)dxn−1...dx1 in the continuous case.

2.2.3 Bayes’ Rule

The aim of Bayesian inference is the computation of the probability of a hypothesis being
true given some sample data, Pr(hypothesis|data), as it was explained in Section 2.2.1.
Let us denote as θθθ the vector with the parameters of the model that describe the hypothesis and as
data the list of observations. In Bayesian inference the value of the parameters is considered to
vary and thus, the parameters are represented by random variables. The probability distribution
of the parameters given the list of the observations, p(θθθ |data), can be computed with Bayes’
rule according to the following formula:

p(θθθ |data) = p(data|θθθ)p(θθθ)
p(data)

. (2.3)

The p(θθθ) is a valid probability distribution called prior distribution. The prior distribution
represents the analyst’s prior belief about the parameters θθθ and expresses his pre-data uncer-
tainty for the parameters’ true value based on his knowledge, experience and expertise in the
specific problem or context, or on potential previous analyses [Lambert, 2018a, Chap. 5.3]. The
prior distribution p(θθθ) is a k-variate joint distribution with k denoting the number of parameters
in the model.

The p(data|θθθ) is called likelihood and is a function of the parameters θθθ as the data is
fixed [Lambert, 2018a, Chap. 4.4]. The likelihood models the distribution of the data for the
various values of the parameters θθθ and it is not a valid probability distribution, as the value of
the parameters varies. If the value of the parameters is fixed, a valid probability distribution is
retrieved. This is often encountered in the literature as sampling distribution.

The p(θθθ |data) is a valid probability distribution called posterior distribution. The poste-
rior distribution represents the posterior belief about the parameters θθθ after updating the pre-data
(prior) belief about them in the light of the data [Lambert, 2018a, Chap. 7.4]. The posterior dis-
tribution p(θθθ |data) is a k-variate joint distribution with k denoting the number of parameters
in the model like in the case of the prior distribution. The posterior distribution is the result of
combining the likelihood and the prior and usually has less uncertainty than the prior because it
includes the extra information from the observed data.

The denominator of Bayes’ rule, p(data), is a normalising factor used to ensure the poste-
rior is a valid probability distribution [Lambert, 2018a, Chap. 6.3]. The denominator of Bayes’
rule is calculated by summing (for discrete variables) or integrating (for continuous variables)
out all the parameter dependencies in the numerator, namely the product of the likelihood and
priors. In the discrete case, that is:



CHAPTER 2. THEORY 24

p(data) = ∑
θθθ

p(data,θθθ) = ∑
θθθ

p(data|θθθ)p(θθθ), (2.4)

and in the continuous case, that’s:

p(data) =
∫

θθθ

p(data,θθθ)dθθθ =
∫

θθθ

p(data|θθθ)p(θθθ)dθθθ . (2.5)

In the case of a single-parameter model where θθθ consists of a single parameter, equations 2.4
and 2.5 consist of a single sum or integral, respectively, while in the case of multi-parameter
models where θθθ consists of a vector of parameters, the single sum or integral is replaced by a
number of summations or integrals, respectively, one for each parameter in θθθ .

Having explained the components of Bayes’ rule, it is clearer now what an analyst needs
to do to compute the Pr(hypothesis|data) using Bayesian inference. He needs to have
a list of observed data, place a prior distribution over every parameter of the model, define a
likelihood for the observed data, and finally, apply the Bayes’ rule to estimate the posterior
distribution p(θθθ |data). Having done so, he can then estimate the probability of the parameters
to take the specific values of the hypothesis.

2.2.4 Difficulty with the Computation of Bayes’ Rule

2.2.4.1 Explaining Complexity of Bayes’ Rule Components

Bayes’ rule is a valuable tool for conducting statistical inference. Nevertheless, its components
can easily lead to high-dimensional distributions that are hard to calculate as the model increases
in complexity, i.e., the number of parameters or the coordinates of the indexing dimensions of
the parameters increases. Let us demonstrate in which ways the complexity of the components in
Bayes’ rule can be increased through a concrete example. Three different types of probabilistic
models for the drivers’ reaction time problem discussed in the previous chapter are considered;
a homogeneous, heteregonous, and hierarchical model.

A homogeneous model is the probabilistic model of the drivers’ reaction time problem pre-
sented in Chapter 1 (Box 1.3 and 1.4). Box 2.1 presents again the definition of this model as
it was presented in Boxes 1.3 and 1.4. This model uses a global set of parameters to model all
drivers.
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Box 2.1 Homogeneous probabilistic model of the drivers’ reaction time problem
The homogeneous model assumes all drivers are modelled with a global set of parameters.

The inferred posteriors of the parameters are common for all 18 drivers in the dataset.

a∼ Normal(100,100) (2.6)

b∼ Normal(10,10) (2.7)

s∼ HalfNormal(50) (2.8)

rt∼ Normal(b ·n+a,s), (2.9)

The whole set of the observations data is used for the inference of the parameters’ poste-
riors.

In a homogeneous probabilistic model, data is pooled together for inference and a single pos-
terior distribution is estimated for each parameter in the model. An inferred posterior in a ho-
mogeneous model is common for all subjects in the dataset. This model is good for modeling
the uncertainty in the predictions. It also accounts for the common characteristics of the sub-
jects in the dataset. For example, the homogeneous probabilistic model in Box 2.1 accounts for
the common characteristics of the drivers in the dataset; all drivers are professional drivers that
underwent similar training and are used to driving under sleep-deprivation conditions.

A homogeneous model does not account for the individual characteristics of the subjects.
This could be achieved by conducting a separate inference for each subject and inferring a
separate posterior distribution of the model’s parameters based on the observed data of each
subject. A heterogeneous model can be used in this case. This type of model indexes the
parameters by numbers corresponding to each one of the subjects in the dataset. The indexing
dimensions of the parameters in a heterogeneous model depends on the number of the subjects
in the dataset. Box 2.2 presents the definition of the heterogeneous probabilistic model for the
drivers’ reaction time problem. The parameters in this model are indexed by numbers indicating
a driver in the dataset. A heterogeneous model accounts for the individual characteristics of
the subjects but does not account for their common characteristics as the homogeneous model
does. For example, the heterogeneous probabilistic model in Box 2.2 accounts for the individual
characteristics of the drivers; drivers might vary in skills, experience, and endurance.

Probabilistic modeling offers the option of hierarchical modeling [Gelman, 2006; Kruschke,
2012a]; a more realistic modeling approach that would account for both aspects of subjects’
characteristics. A hierarchical probabilistic model captures the uncertainty of predictions for
subjects overall taking into consideration the uncertainty of the individual subjects’ behavior, at
the same time.
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Box 2.2 Heterogeneous probabilistic model of the drivers’ reaction time problem
The heterogeneous model assumes that each driver is modelled with a separate set of

parameters. The inferred posteriors of the parameters are unique for each one of the 18
drivers in the dataset.

ai ∼ Normal(100,100) (2.10)

bi ∼ Normal(10,10) (2.11)

si ∼ HalfNormal(50) (2.12)

rti ∼ Normal(bi ·n+ai,si), (2.13)

where i ∈ {1,2,...,18} for each one of the 18 drivers included in the dataset of obser-
vations. Only the datai subset of the observations corresponding to the i-th driver is used
for the inference of the i-indexed parameters.

Hierarchical modeling enables inferences at both the individual and the whole population
level at the same time. This is achieved by adding extra parameters in the model, the hyperpa-

rameters. Instead of fixing the parameters of the model’s priors to constant numbers, they are es-
timated directly from the data by placing shared hyperpriors over them. Hyperpriors are inferred
on the level of the population and thus, are common for all subjects. The priors are inferred on
the level of the individual subjects like in heterogeneous modeling. The complexity of the model
is further incresed in hierarchical modeling by the addition of the extra (hyper)parameters. Box
2.3 presents the definition of the hierarchical probabilistic model for the drivers’ reaction time
problem.

The dimensionality of the distributions in Bayes’ rule increases in line with the complexity
of the probabilistic model. From k = 3 dimensions in the case of the homogeneous model
of the drivers’ reaction time problem, we move to k = 3 ·18 = 54 dimensions in the case of
the heterogeneous model, and k = 3 ·18+5 = 59 dimensions in the case of the hierarchical
model. This k determines the dimensionality of the vector θθθ of the parameters used in Bayes’
rule formula. The vector θθθ of the parameters for each one of the homogeneous, heterogeneous,
and hierarchical model takes the following form:

θθθ hom = (a,b,s) (2.14)

θθθ het = (a1, ...,a18,b1, ...,b18,s1, ...,s18) (2.15)

θθθ hi = (µa,σa,µb,σb,σ s,a1, ...,a18,b1, ...,b18,s1, ...,s18) (2.16)

The dimensionality of the prior p(θθθ), posterior p(θθθ |data), and likelihood p(data|θθθ) is de-
termined by the dimension of the θθθ vector.
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Box 2.3 Hierarchical probabilistic model of the drivers’ reaction time problem
The hierarchical model assumes that all drivers are modelled with a global set of hy-

perparameters and each driver is modelled with a separate set of parameters. The inferred
posteriors of the hyperparameters are common for all 18 drivers in the dataset and the in-
ferred posteriors of the parameters are unique for each one of the 18 drivers in the dataset.

µa ∼ Normal(100,100) (2.17)

σa ∼ HalfNormal(100) (2.18)

µb ∼ Normal(10,10) (2.19)

σb ∼ HalfNormal(10) (2.20)

σs ∼ HalfNormal(50) (2.21)

ai ∼ Normal(µa,σa) (2.22)

bi ∼ Normal(µb,σb) (2.23)

si ∼ HalfNormal(σs) (2.24)

rti ∼ Normal(bi ·n+ai,si), (2.25)

where i ∈ {1,2,...,18} for each one of the 18 drivers included in the dataset of obser-
vations. Only the datai subset of the observations corresponding to the i-th driver is used
for the inference of the i-indexed parameters.

Assumptions:

• The parameters of each driver are independent, a1⊥⊥ ...⊥⊥ a18⊥⊥ b1⊥⊥ ...⊥⊥ b18⊥
⊥ s1 ⊥⊥ ...⊥⊥ s18.

• The hyperparameters are independent, µa ⊥⊥ σa ⊥⊥ µb ⊥⊥ σb ⊥⊥ σs.

• Drivers’ observations and the observations of each driver are independent; datai ⊥⊥
and datai1 ⊥⊥ ...⊥⊥ dataiM.

• The data depends on the hyperparameters only through the parameters; the
data is independent of the hyperparameters given the parameters: datai ⊥⊥
µa,σa,µb,σb,σs|ai,bi,si [Hyvönen and Tolonen, 2019, Chap.6.1].

The complexity of the denominator of Bayes’ rule p(data) is also determined by the di-
mensionality of the θθθ vector. In equations 2.4 and 2.5 the single sum or integral is replaced by a
number of summations or integrals, respectively, one for each parameter in θθθ . For example, in
the case of the homogeneous model of the drivers’ reaction time problem this expression for the
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calculation of the denominator consists of 3 integrals, in the case of the heterogeneous model it
consists of 54 integrals, and in the case of the hierarchical model it consists of 59 integrals.

2.2.4.2 The Difficulty with the Denominator

The calculation of Bayes’ rule’s denominator for a single or double-parameter models with
continuous parameters is possible, but in cases of multi-parameter models the integral in the
expression 2.5 becomes multi-dimensional and its analytical solution can become intractable.
Doing Bayesian statistics involves the solution of analytically intractable expressions like the
denominator of Bayes’ rule for the computation of the posterior distribution [Lambert, 2018a,
Chap. 12].

Various methods were suggested through the years to give a solution to this problem and
allow the use of Bayesian analysis for more complex models. The main tool to do Bayesian
statistics for many years was conjugate priors, which allows the problem to be solved analyti-
cally. With conjugate priors the mathematical form of the prior and likelihood are jointly chosen
to ensure that the posterior is in the same family of distributions as the prior [Lambert, 2018a;
Spiegelhalter and Rice, 2009]. However, conjugate priors only allow the use of particular com-
binations of likelihoods and priors and therefore, they are often very limiting and too simple for
most real life examples [Lambert, 2018a, Chapter 9.7].

In 70s and 80s, numerical integration methods based on analytic approximations or quadra-
ture were developed [Spiegelhalter and Rice, 2009] providing more flexibility in the selection
of prior distributions and likelihoods, but unfortunately, these methods suffer from the curse
of dimensionality and do not scale well for models with many parameters [Lambert, 2018a,
Chap. 12.4,12.5].

2.2.4.3 Markov Chain Monte Carlo

In early 90s, Markov Chain Monte Carlo (MCMC) became a promising indirect method for
doing Bayesian statistics offering a solution to the aforementioned problems [Spiegelhalter and
Rice, 2009]. MCMC algorithms are based on dependent sampling to produce an estimation of
the posterior distribution’s form by skipping the calculation of the denominator. As Lambert
[2018a, Chap. 12.8] explains very eloquently, sampling the posterior based on the relative pos-
terior density of pairs of points in the posterior space results in a histogram that proxies for the
posterior distribution’s PDF.

For example, assume two points in the posterior parameter space, θ1 and θ2, and a ratio of
the posterior at these two points p(θ1|data)

p(θ2|data) =
2
1 . Creating a sampler that samples twice as many

times the first point is all that is needed. The use of the relative posterior densities removes the
need for calculating the denominator based on the following equations:
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p(θ1|data)
p(θ2|data)

=

p(data|θ1)p(θ1)
p(data)

p(data|θ2)p(θ2)
p(data)

=
p(data|θ1)p(θ1)
p(data|θ2)p(θ2)

. (2.26)

MCMC algorithms consisted of very simple steps of low computational complexity making
them an implementable tool based on the technological means of that time. However, MCMC
required specialized knowledge to implement and use and it remained a tool used mainly by
academics for many years. The wide adoption of Bayesian statistics was inhibited for a long
time, as well, because of the practical engineering challenges of the computational methods and
the highly specialized knowledge that they required [Coyle, 2018].

2.2.5 Predictions

So far what has been discussed is how the parameters of a probabilistic model can be infered by
the data using Bayesian inference. The capabilities of Bayesian inference are not limited to that.
Bayesian inference provides the tools for producing predictions for the observed variables of the
probabilistic models which is the ultimate aim of any prediction or forecasting problem. Using
random sampling from the posterior and sampling distribution of the model an approximation of
the posterior predictive distribution can be obtained. This distribution represents the probability
distribution of a new data sample, data

′
, given the current data sample, data [Lambert, 2018a,

Chap. 7.8].
The following algorithm is used to retrieve a set of posterior predictive samples. These

samples are used to graph the histogram of data
′
, which will consist the estimation of the

posterior predictive distribution.

Algorithm 1 Sampling posterior predictive samples
Require: k,n> 0

1: for i← 1, k do
2: θi ∼ p(θθθ |data)
3: for j← 1, n do
4: data

′
ij ∼ p(data|θi)

5: end for
6: end for

In step 2 a value of the parameters is sampled from the posterior distributions. In step 4
a value of the observed variable is sampled from the sampling distribution conditional on the
value of the parameters that was sampled in step 2.

2.2.6 Example of Bayesian Inference

This section demonstrates the differences in the estimates of the regression line among the ho-
mogeneous, heterogeneous, and hierarchical probabilistic models of the drivers’ reaction time
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model presented in Boxes 2.1, 2.2, and 2.3, respectively. Sample-based Bayesian inference was
conducted based on MCMC sampling.

Box 2.4 presents a comparative graph with the estimates of the regression line of these prob-
abilistic models and includes the corresponding estimate of the homogeneous non-probabilistic
model presented in Chapter 1 (Box 1.1). The inferred posteriors for the intercept a and slope
b parameters are same for all drivers in the case of the homogeneous models, while they are
unique for each driver in the case of the heterogeneous and hierarchical models.

A phenomenon that is confirmed by the presented data in Fig. 2.1 is the shrinkage [Arnold;
Kruschke, 2012a] of the hierarchical models’ posteriors towards the overall mean of the corre-
sponding posterior of the homogeneous model. The parameters whose posterior estimates have
the highest uncertainty and lie furthest away from the overall mean, see their posterior to shrink
the most in hierarchical models. For example, the posteriors of parameters a and b for driver
351 are shrunk towards the overall mean, and are between those of the homogeneous and hetero-
geneous model. The same happens with the posterior of parameter b for driver 308. Shrinkage
is not observed for the posteriors of the hierarchical model in the case of driver 309 though,
although they are further away from the overall mean. This happens because the posteriors of
the parameters for this driver are quite certain (i.e., tight).
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Box 2.4 Homogeneous, heterogeneous, and hierarchical estimations of regression line
Fig. 2.1 presents the estimations of the intercept a and slope b parameters of the regres-

sion line for four different drivers from the dataset [Lambert, 2018b]. The estimations of
the homogeneous non-probabilistic, and the homogeneous, heterogeneous, and hierarchical

probabilistic model are presented in a different color.
The last row of the figure shows the observed reaction times of each driver, the regres-

sion line estimated by the homogeneous non-probabilistic model, and the 97% HDI of the
regression line estimated by the probabilistic models.
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Figure 2.1: Homogeneous, heterogeneous, and hierarchical estimations of the regression
line in the drivers’ reaction time problem.

2.2.7 Why to Use Bayesian Statistics for the Analysis of Research Data?

In the field of analysis of experimental results, the frequentist and Bayesian statistics are the
most common analysis approaches. Bayesian statistics came to the forefront as an alternative
to the most common method used for the analysis of experimental data, frequentist analysis,
after the breakout of the replication crisis in the 2010s. The replication crisis is an "ongoing
methodological crisis in which it has been found that many scientific studies are difficult or
impossible to replicate or reproduce" [Wikipedia:ReplicationCrisis].

Shrout and Rodgers [2018] reviewed the questionable methodological research practices in
psychology and designated frequentist statistics as one of the sources of questionable practices.
Colling and Szűcs [2018] argued that one of the main problems is the misinterpretation of the
frequentist statistics’ concepts by researchers. Greenland et al. [2016] presented a list of 25
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common misconceptions of statistical concepts in statistical interpretation and reporting like
p-values, confidence intervals, and power.

Cumming [2014] advocated a shift of emphasis from the hypothesis testing of the frequentist
approach to the estimation of the Bayesian approach and proposed the term “new statistics” to
infer all the substantial changes in the analysis of research data. Kruschke and Liddell [2018]
explained how Bayesian methods achieve the goals of “new statistics” better than frequentist
methods. Colling and Szűcs [2018] explored the benefits of the Bayesian statistics as an al-
ternative to frequentist statistics and summarized them into the Bayesian statistics’ “immunity”
to researchers’ intentions and its dependency only on the observed data. Shrout and Rodgers
[2018] reviewed the potential of Bayesian analysis for understanding the variation in the repli-
cation of an analysis. Researchers from other fields outside psychology advocate the Bayesian
statistics, as well. Kay et al. [2016b] argued that Bayesian statistics was more appropriate for
the data analyses of experimental data in HCI than the statistical significance testing. Buchin-
sky and Chadha [2017] encouraged the use of Bayesian statistics over the traditional frequentist
statistics in otolaryngology research.

Bayesian inference is an iterative process of updating the prior beliefs by observing every
incoming datapoint and estimating the posterior beliefs about the model’s parameters. Bayesian
inference is possible for small datasets that may even contain a single datapoint (a single it-
eration of priors’ update will take place in this case). This attribute of Bayesian inference is
valuable because most existing ML methods rely on the amount of available data for making
predictions making them inappropriate for applications with only a limited amount of data or
one-off problems such as the prediction of the outcome of an election. In such cases, Bayesian
inference in comparison to other machine learning or statistical approaches, whose credibility is
heavily dependent on the sample size [Jenkins and Quintana-Ascencio, 2020] could easily give
an estimation of the outcome.

A problem that is often discussed as a criticism of Bayesian inference is the effect that
the priors can have on the inferences [Martin, 2018, Chap. 1;Depaoli et al., 2020;Kruschke,
2018b] and the “subjectivity involved in choosing a prior” [Lambert, 2018a, Chap.5.2]. The
more informative a prior is and the fewer the observed datapoints are, the stronger the effect of
the prior on the posterior distribution is. A prior distribution is informative when the uncertainty
it implies for a parameter is small. For example, tight distributions implying small ranges for a
parameter are informative priors expressing a strong belief of the modeller about the parameter.

This topic has been extensively discussed in the existing literature with many researchers
providing suggestions about the choice of priors [Gelman, 2020]. The use of uninformative
(known also as flat or vague) priors, although it would have the least possible impact on the
posterior, are not usually recommended [Gelman, 2020]. The use of weakly-informative pri-
ors is often suggested when restrictions of the parameters or some information on the scale of
the parameters for the order of magnitude of the outcomes are known for a specific likelihood
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[Martin, 2018, Chap. 1;Gelman et al., 2017;Kruschke, 2018b]. The use of informative priors is
suggested only in the cases that strong prior knowledge or evidence is available through years
of research and previous literature [Martin, 2018, Chap. 1]. In cases when the conclusions of a
research might differ by a slight change in the priors, this should be reported by the researchers
[Lambert, 2018a, Chap. 2.10] who are encouraged to conduct a sensitivity analysis of their priors
[Depaoli et al., 2020; Kruschke, 2018b].

2.3 Probabilistic Programming Languages

2.3.1 Purpose

PPLs are a new “breed” of programming languages that are designed to enable inference through
probabilistic models [Quddus, 2019]. PPLs can be an either entirely new languages like JAGs
[Plummer, 2017], BUGs [Spiegelhalter et al., 2003], Church [Goodman et al., 2008], Stan [Stan
Development Team] with some of them offering interfaces to other popular programming lan-
guages or hosted in an existing programming language like Edward [Tran et al., 2016] or PyMC
[Salvatier et al., 2016] in Python or Webppl [Goodman and Stuhlmüller, 2014] in Javascript.

PPLs are designed to enable inference with general purpose representations. These include
semantics for defining a random variable as observed and specifying a likelihood for it. PPLs’
predecessors, simulation languages like Simula [Dahl and Nygaard, 1966], lacked the possibility
of defining observed variables and indicating the conditioning over observed data syntactically
[Poole and Wood, 2022].

The notion of interpretation for the probabilistic models specified in a simulation language
differs between the predecessors of PPLs and PPLs themselves. When a probabilistic program
specified in such simulation languages was interpreted, a set of random samples was generated
from the specified random variables (unconditionally) based on the built-in random number gen-
erators. When a probabilistic program specified in a PPL is interpreted, the posterior distribution
conditioned on the observed data is computed. The main purpose of PPLs is to offer an environ-
ment that automates the interpetation of probabilistic programs into posterior distributions.

2.3.2 Expressing a Probabilistic Model in a PPL

In Section 2.2.4.1 probabilistic statements were used for the definition of the homogeneous,
heterogeneous, and hierarchical models of the drivers’ reaction time problem. This is a form of
textual language used often to hide the many mathematical details involved in the definition of
a probabilistic model and offer a level of abstraction.

PPLs are designed to include semantics equivalent to these of probabilistic statements in
their syntax as well as indicating conditioning on observed data. The aim is to make the def-
inition of the model more intuitive, hiding the mathematical details and offering flexibility in



CHAPTER 2. THEORY 34

a

b

s

rt 

(a) (b)

μ=100
σ=100

μ=10
σ=10 σ=50

μ
σ

rt

a b s

b.n + a

(c)

Figure 2.2: Definitions of the homogeneous probabilistic model of the drivers’ reaction time
problem in (a) probabilistic statements, (b) PPL code (PyMC), and (c) Kruschke-style diagram.

the specification of models. As Tejas D. Kulkarni, one of the pioneers in introducing proba-
bilistic programming in computer vision, says “When you think about probabilistic programs,
you think very intuitively when you’re modeling. You don’t think mathematically. It’s a very
different style of modeling.” [Kurzweil, 2015].

Fig. 2.2 presents the definition of the homogeneous probabilistic model of the drivers’ reac-
tion time problem in probabilistic statements, in PPL code (PyMC) and through a Kruschke-style
diagram side by side. There is a one-to-one correspondence among the lines of the probabilistic
statements, the lines of PPL code and the nodes of the diagrammatic representation. This is
an important attribute of PPLs because the definition of probabilistic models becomes simple,
intuitive and more easily comprehensible.
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2.3.3 From the Definition of a Model to a Trace of Samples

PPLs automate the specification of probabilistic models and inference benefiting users who only
need to use minimal problem-specific engineering [Kulkarni et al., 2015]. As Kulkani says:
“The whole hope is to write very flexible models [...] as short probabilistic code, and then not
do anything else. General-purpose inference schemes solve the problems.”

An important advantage of PPLs is that they offer interfaces to efficient and well-tested im-
plementations of MCMC algorithms. Writing a MCMC algorithm and optimizing it requires
specialized knowledge. PPLs automate the inference of probabilistic models with their inter-
faces to MCMC sampling algorithms; the inference can literally be conducted by the push of a
button [Martin, 2018, Chap. 2].

Many contemporary PPLs like PyMC and Stan offer ready-made diagnostics tools for the
users to check the convergence of the MCMC samplers. Such diagnostics include the Gelman-
Rubin statistic [Gelman and Rubin, 1992] using multiple chains and computing the Rhat statistic
to check for lack of convergence, autocorrelation, or prior and posterior predictive checks.

The output of a sample-based (MCMC) PPL inference is the trace, the set of samples re-
sulting from the inference with an MCMC sampler; the output from “running” the model. The
trace can be a complex object containing samples from the prior, posterior, prior predictive and
posterior predictive distributions of the model.

2.4 Why Does Modeling Causal Relations Require Extra Mod-
eling Methodologies?

The definition of a probabilistic model determines the relations of the variables and ultimately,
the structure of the model; some variables are independent and others are used to determine the
distribution parameters of other variables generating a set of hierarchical parent-child relations.
Section 1.2.1.1 discussed that the relation of two variables in a model is not necessarily truly
causal, unless the model is a causal model or is designed under a causal model. Extra information
like this provided by a causal model is required to judge whether the relation of two variables
is causal and to model this relation as causal. The fact that correlation is not causation could
explain why this extra information is required to model causal relations.

This section explains why correlation is not always causation (Section 2.4.1) and how a
correlation could be identified as a true causal relation (Section 2.4.2). Finally, it presents well-
known existing methodologies for causal modeling (Section 2.4.3).

2.4.1 Correlation is not Always Causation

A research question often encountered in various fields (e.g., sociology, anthropology, medicine)
is whether an observed correlation between two variables is a true causal effect: does one of the
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variables causes the other?
Let us assume x and y are two variables of interest. Some observed data of these variables

are available based on which the two variables appear to be positively correlated (Fig. 2.3(a);
figure retrieved from Huszár [2019]); when one increases the other increases, too. This informa-
tion is not enough to tell us which of the two is true: an increase in x is because of an increase
in y, or an increase in y is because of an increase in x? Which variable causes the other? In
reality, there is a third possible scenario; none of the variables causes the other, they simply
appear correlated for other reasons. Why?

(a)

z

x y

(b)

z

x y

(c)

z

x y

(d)

Figure 2.3: Correlation of the x and y variables and the causal diagrams of the three basic
three-variable causal primitives of the x, y, and z variables with z being a (b) confounder, (c)
mediator, or (d) collider.

Fig. 2.3(b), (c), and (d) present the causal diagrams of three different causal models of the
same three variables, x, y, and z. The arrows on a causal diagram represent direct causal links
with the direction of the arrow indicating the directionality of causality starting from a cause
and pointing to an effect. Two variables in a causal diagram are adjacent if they are directly
connected by an edge; e.g., x is adjacent with z but not with y in Fig. 2.3(b). According to
Greenland et al. [1999] a path through the graph is “any unbroken route traced out along or
against arrows or lines connecting adjacent nodes”. Correlation flows across paths on a causal
diagram, sometimes even against arrows.

A correlation between two variables could be spurious due to the existence of confounding,
namely a third variable (z) that intercepts the path from one to the other being a common cause
of the two variables [McElreath, 2020a,b, Chap. 6]. Every time that the value of this third
variable changes, the values of the two variables change at the same time and thus, they appear
correlated, although they may not even have a causal link (arrow) between them (Fig. 2.3(b)).
Confounding creates a bias in the observed correlation of the two variables.
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In the absence of confounding, the correlation would express either a direct causal effect
between the variables if a direct link exists between them or an indirect one through a mediator

(Fig. 2.3(c)) [McElreath, 2020a,b, Chap. 6]. This is a third variable (z) intercepting the path
from one variable to the other without changing the direction of the path (all arrows in the
path follow the same direction). In the case of a confounder or mediator, the path is open for
correlation to flow.

Collider is a third case of causal primitive that could associate two variables. The collider is a
variable that intercepts the path of the two variables being the common effect of the two variables
(Fig. 2.3(d)). The existence of a collider in a causal model blocks the correlation between its two
causes; its two causes will not appear correlated unless they have a direct causal link, a common
cause, or a mediator. A path between two variables is blocked if it has one or more colliders and
does not allow correlation to flow from one variable to the other; otherwise it is unblocked. In the
case of collider another type of bias, the selection (Berkson’s) bias [Berkson, 1946; Greenland
and Pearl, 2017], could cause observed correlation between the two independent ancestors of a
common descendent when a selection from the population of the collider is done based on some
criteria.

2.4.2 How can I tell if a correlation is a true causal effect?

To ensure that an observed correlation is a true causal effect, confounder paths should be closed
and collider paths open to avoid biases such as confounding or selection bias. There are various
methodologies for dealing with these biases. Conducting interventional experiments is one such
way; an intervention is applied on a variable to externally force it to take a specific value. An
intervention on a variable prevents any causes of the variable from affecting it because its value
is completely determined externally. This approach is effective for confounding bias because the
confounding path is blocked when the intervention is applied on a descendant of a confounder.
Interventional experiments need attention with colliders; intervening on a collider opens the path
and introduces selection bias.

In cases when interventions might not be possible or ethical (e.g., forcing people to smoke to
investigate the effect of smoking on health) and only observational studies are possible, different
approaches should be followed to make causal inference based on the observed data. One way
is statistically controlling for confounders by applying stratification or conditioning on them
or including them as a covariate to a multivariate (regression) model [Pourhoseingholi et al.,
2012]. Attention is again required with the colliders; colliders should not be controlled for to
avoid selection bias. The problem with the observational studies is that unless there is well-
established prior knowledge about which variables can be colliders, which is usually not the
case, it is not possible to know with certainty which variables can be safely controlled for.

A more modern approach involves simulating interventional experiments in cases when ob-
served data is available [Han et al., 2018; Herd and Miles, 2019; Huszár, 2019; Ibeling, 2018;
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Sofrygin et al., 2017; Witty et al., 2019] along with some assumptions about the possible un-
derlying causal structures. Huszár [2019] presents a toy example of simulating an intervention
on variable x probabilistically and using visualization to observe the effect of this intervention
on another variable y in three different cases of causal models. Fig. 2.4 from [Huszár, 2019]
demonstrates this example.

Three different Gaussian samplers are created for the two random variables, x and y, which
have a similar joint distribution (first row of Fig. 2.4(a)). Each one reflects a different causal
structure for the two variables presented. These causal structures are represented by causal
diagrams shown in the first row of Fig. 2.4(c). The three simulators are run and observations are
generated for the two variables. These observations are plotted in the scatter plots in the second
row of Fig. 2.4(a).

The samplers are altered to include an intervention on variable x: x = 3 (first row of
Fig. 2.4(b)). The causal diagrams are altered to depict the intervention in the second row of
Fig. 2.4(c); any incoming arrow to x from its causes is removed because the causes of x cease
affecting it after the intervention (these pruning operations applied on a causal diagram after an
intervention are often encountered in the literature as mutilation of the causal diagram). The
simulators are run again and the samples of y after the intervention are plotted in the scatter
plots in the second row of Fig. 2.4(b).

The distribution of y changes after the intervention in the first simulator (the distribution’s
value range from [−4,6] became [-1,8]), while it remains the same in the second and third
simulator (the distribution’s value range remains [-4,6]). This happens because in the first
causal model y is a descendant of x and is affected every time x’s value changes, while in the
second and third causal model y becomes independent of x after the intervention (the inter-
vention blocked the path from one to the other) and does not get affected by x when its value
changes.

2.4.3 Causal Modeling Methodologies

The difficulty of interpreting the correlations in observed data as causal or non-causal relations
leads to the need for methodologies of causal inference from observed data; how could observed
data be used to infer whether the relations of variables are causal? The approaches to causal
inference may be broadly divided into two schools of thought; the potential outcomes and the
causal graphical models. The potential outcomes framework roots back to the work of Hume
[1748], was first proposed by Neyman [1923], and extended into a general framework for causal
inference by Rubin [Sekhon, 2007]. The causal graphical models were first used by Wright in
his path analyses [Wright, 1921] and Pearl was instrumental in extending them into a general
unified framework for causal inference [Larsen, 2021; Pearl, 2010].

The two schools differ in how they define the notion of causal effect. According to Rubin
[1972] the causal effect is defined as following:
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(a)

(b)

(c)

Figure 2.4: Toy example from Huszár [2019] demostrating the effect of simulated interven-
tions in three similarly-correlated two-variable (x and y) systems. (a) Three simulators for the
similarly-correlated two-variable systems and scatter plots of the x-y simulated observations,
(b) the simulators altered to reflect the x = 3 intervention and the x-y scatter plots after the
intervention, and (c) the underlying causal structure of each system before (upper row) and after
the intervention (lower row).
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Intuitively, the causal effect of one treatment, E, over another, C, for a particular
unit and an interval of time from t1 to t2 is the difference between what would
have happened at time t2 if the unit had been exposed to E initiated at t1 and what
would have happened at t2 if the unit had been exposed to C initiated at t1: ’If
an hour ago I had taken two aspirins instead of just a glass of water, my headache
would now be gone,’ or ’because an hour ago I took two aspirins instead of just a
glass of water, my headache is now gone.’ Our definition of the causal effect of the
E versus C treatment will reflect this intuitive meaning.

Based on this school of thought a causal effect of a “treatment” on a unit exists when the differ-
ence of the two potential outcomes of the “treatment” on the unit is not zero.Then, it could be
said the “treatment” and the unit have a causal relation.

The “fundamental problem of causal inference” [Holland, 1986] is that it is impossible to
observe both potential outcomes on a single unit and estimate the causal effect of the treatment;
you either take the aspirin now or you don’t. Thus, the problem of causal inference according
to the potential outcomes framework is reduced to a problem of missing data (counterfactuals).
Then, given some assumptions various statistical tools could be used for the estimation of the
missing information. Rubin contributed to the expansion of various statistical techniques for the
conduction of causal inference within this context, like instrumental variables [Angrist et al.,
1996].

Judea Pearl advocated that causal inference “requires new mathematics and that causal ques-
tions cannot be solved within existing paradigms for probabilistic inference” [Lattimore and
Rohde, 2019b]. He introduced the do-calculus [Pearl, 1995], a graphical inference tool com-
prising a set of rules to express the conditional probabilities of the variables given the interven-

tions, P(y|do(X))1, in terms of the observed conditional probabilities of the variables, p(y|x),
through querying causal diagrams. According to Pearl, the causal effect of x on y is determined
by whether the post-intervention distribution P(y|do(X)) differs from the pre-intervention dis-
tribution p(y|x); if they are the same, it means that x affects y causally.

In Huszár [2019]’s example the mutilated causal diagrams after the intervention in the sec-
ond row of Fig. 2.4(c) were generated after applying the rules of do-calculus. The third row
Fig. 2.4(c) presents how the conditional distribution of y given the intervention on x, P(y|do(X)),
is expressed based on the observed, conditional and non-conditional, probabilities of y in each
one of the three causal models. The post-intervention conditional distribution P(y|do(X)) is
the same with the pre-interventional conditional distribution p(y|x) only in the case of the first
causal model. This means that only based on the first model x affects y causally.

Causal diagrams and do-calculus gave rise to specialized algorithms for automatic causal

discovery, which try to learn the causal structure of data by applying do-calculus given some
assumptions [Glymour et al., 2019]. These estimates, albeit incomplete, can be used by users to

1The symbols P and p are used to denote the post- and pre-intervention probability distributions, respectively.
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decide upon the variables they can control for or intervene on.

2.5 Theories of Human Visual Perception

2.5.1 Why is it Important to Understand Human Visual Perception?

Visualization is an “external artifact” functioning as a cognitive tool for humans [Ware, 2012]
who use it in tasks like making decisions or forming beliefs and judgements. The ways that
humans perceive visual information and turn it into cognitive actions play an important role in
visualization. Visualization cannot alone generate human actions without the intervention of
human’s perception that will receive information, process it, draw conclusions from it, and then
decide what it will do with it.

Understanding the ways humans perceive (process) the visual information is vital when de-
signing visualization tools if the aim is to maximize the “cognitive throughput”, namely the
amount of valuable cognitive work done per unit of time [Ware, 2012, Chap. 11]. As Shneider-
man [1996] states very eloquently

the bandwidth of information presentation is potentially higher in the visual domain
than for media reaching any of the other senses. Humans have remarkable per-
ceptual abilities, that are greatly under-utilized in current designs. Users can scan,
recognize, and recall images rapidly, and can detect changes in size, color, shape,
movement, or texture. They can point to a single pixel, even in a megapixel display,
and can drag one object to another to perforrn an action.

Designing visualizations that exploit humans’ perceptual and cognitive capabilities could lead
to really powerful cognitive tools.

The field of visual perception has extensively been studied especially by psychologists.
Many theories exist and much specialized knowledge is involved. There is also extensive em-
pirical work which investigated how people perceive information visually and established new
or confirmed existing theories. This section focuses on theories of visual perception that are
relevant to the context of this thesis; Section 2.5.2 discusses theories of visual perception of un-
certainty, Section 2.5.3 discusses the visual perception of animation, and Section 2.5.4 discusses
the visual perception of interaction. Most of these topics will be revisited in Chapter 3.

2.5.2 Visual Perception of Uncertainty

2.5.2.1 Heuristics and Biases When Judging Probabilities

The ways that people reason about uncertainty have extensively been studied in literature. It has
been found that people have difficulty reasoning about uncertainty based on standard probability
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formats (e.g., probability, percentile, odds). They tend to rely on heuristics or rules of thumb to
make judgments about probabilities rather than apply a correct mathematical solution to make
rational choice.

Tversky and Kahneman [1974] have systematically studied the heuristics people use to make
judgments about uncertainty. For example, they found that people tend to rely on representative-

ness (i.e., the degree to which an event (individual) is representative of a process (population))
to judge the probability of an event to originate from a process. The representativeness heuristic
make people to be insensitive to prior probability or sample size.

Kahneman and Frederick [2002] talked about substitution, an unconscious strategy people
often employ when they have to deal with difficult information; people tend to substitute a
difficult mental computation with an easier one. The substitution heuristic can lead to quick
decisions which might also be correct if the judgment is detrimental (e.g., the “deterministic
construal error” occuring when people try to substitute visual uncertainty information for deter-
ministic information [Joslyn and LeClerc, 2012]). However, this heuristic was not found to be
always effective [Belia et al., 2005].

Another heuristic that Tversky and Kahneman [1974] found is the availability according
to which people assess a probability of an event by the ease with which it can be brought to
mind [Tversky and Kahneman, 1974]. A characteristic example that Tversky and Kahneman
[1974] give is that “a class whose instances are easily retrieved [e.g., because they are more
easily memorable] will appear more numerous than a class of equal frequency whose instances
are less retrievable”. All these heuristics, although they might benefit judgments of probability
up to a point, they lead to “predictable biases” [Tversky and Kahneman, 1974] making some
researchers argue that “human logic is systematically flawed” [Padilla et al., 2021b].

2.5.2.2 Frequency Framings of Probability Improve Probability Judgments

In response to the theories of systematic flaw in people’s judgments of probabilities, Gigerenzer
[1996] suggested that this systematic flaw in people’s judgments of probabilities is influenced
by the format in which probabilities are communicated; confusing formats to express proba-
bility (e.g., as a percentile) that people cannot easily understand could be replaced by formats
that naturally express probability in ways “how people experience probability throughout their
lives (e.g., changing 10% to 1 out of 10)” [Padilla et al., 2021a]. Hence, Gigerenzer [1996]
suggests expressing probabilities as frequencies to make probabilistic judgments more intuitive
and less reliant on heuristics [Gigerenzer, 1996; Gigerenzer and Hoffrage, 1995; Hoffrage and
Gigerenzer, 1998].

This theory gave rise to many visualization designs that present distributional information
framed as frequency, e.g., quantile dotplots [Kay et al., 2016a] or Hypothetical Outcome Plots
(HOPs) [Hullman et al., 2015] (these will be explained in detail in Chapter 3). Extensive empir-
ical research has been conducted to evaluate such visualization designs [Fernandes et al., 2018;
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Hullman et al., 2015; Kale et al., 2019; Kale et al., 2021; Kay et al., 2016a] and has found that
frequency-framed uncertainty shown in visualizations can improve viewers’ accuracy and recall
compared to visualizations that show only probability distributions or summary statistics (e.g.,
intervals, mean, median) [Padilla et al., 2021a]. The frequency-framed uncertainty visualiza-
tions require that the viewer exploits their cognitive mechanisms to acquire an intuitive sense of
the underlying distribution and according to Kale et al. [2021] they do not “allow the viewer to
fixate on summary information such as a mean” [Padilla et al., 2021a]. Hence, presenting prob-
ability framed as frequency in visualizations is recommended as a best practice by researchers
in literature.

More about the theories of uncertainty visualization can be found in [Padilla et al., 2021a].

2.5.3 Visual Perception of Animation

Moving patterns can be used to represent motion in dynamic systems like vector fields or motion
can be used to display dynamic data [Ware, 2012]. For example, animation could be used to
convey causality by exploiting the “temporal cue” an intervention produces when applied on
a system: the intervention is the most likely cause of any subsequent changes [Lagnado and
Sloman, 2004].

Animation can offer a rich “vocabulary of expressive motion” [Ware, 2012] that could be
exploited for the communication of other aspects of data than its timely evolution. Ware [2012]
argues that “the perception of dynamic patterns is not understood as well as the perception
of static patterns, but we are very sensitive to patterns in motion, and if we can learn to use
motion effectively it may be a good way to display certain aspects of data”. The visual system’s
ability to “form gist representations from experience” [Kale et al., 2019] could be exploited to
communicate difficult to grasp concepts like probability. For example, animation has been used
to communicate samples from distributions [Hullman et al., 2015; Kale et al., 2019].

Tversky et al. [2002] was skeptical about the superiority of animation over static visual-
izations. The animated and static versions of visualizations often compared in studies are not
informationally equivalent [Kim et al., 2019]. Tversky et al. [2002] suggested two high-level
principles for effective animation; the Congruence Principle states “the content and format
of the graphic should correspond to the content and format of the concepts to be conveyed”
and the Apprehension Principle states that “graphics should be accurately perceived and ap-
propriately conceived”. According to the first principle studies comparing animated with static
visualizations should ensure “equivalence between animated and static graphics in content or
procedures”. According to the second principle animations should not be “too complex or too
fast to be accurately perceived”.
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2.5.4 Visual Perception of Interaction

An interactive visualization usually exploits various interactive graphical elements like sliders,
drop-down menus, radio buttons to enable the exploration and query of data according to the
users’ demands. Ideally information should be displayed as needed and disappear when not
needed for an interactive visualization to support users’ thinking processes [Ware, 2012]. The
need for drilling down and finding data according to users’ demands requires visualizations that
would be appropriately designed. Shneiderman [1996] developed the Visual Information Seek-

ing Mantra to be used as a guideline for designing interfaces that would support “information-
seeking behaviors” [Ware, 2012] more effectively: “Overview first, zoom and filter, then details
on demand”.

According to Ware [2012] interactive visualization consists of three levels of “interlocking
feedback loops”. In the data manipulation loop users select or move objects using basic eye-
hand coordination skills. In the exploration and navigation loop users explore the data space,
form a cognitive model for it, and try to navigate the data space to “find their way” to the
information they need. In the problem-solving loop users form hypotheses about the data and
refine the view of the data to confirm or reject their hypotheses.

These feedback loops depending on the application create requirements that should be ac-
counted for by the designs of the visualization (see Ware [2012] for a detailed discussion about
this topic). Human cognitive capacity is limited. The human “working memory” cannot store in-
formation for long or cannot support high cognitive load to conduct complicated “calculations”.
An implication of this is that delays in the feedback loops or increase of the cognitive load can
lead to low rates of information uptake [Ware, 2012]. Another implication is that the “cognitive
context” users form by perceiving the presented information and processing can be easily lost
when users need to switch attention between thinking and interacting with the interface in a
feedback loop [Ware, 2012]. All these reveal the difficulties and the precision that is required
for designing interactive visualizations.
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Literature Review

3.1 Summary

This chapter presents the literature review of existing work in topics relevant to the research
presented in this thesis. Uncertainty is a cornerstone of probabilistic models; it is encountered
in the prior and the posterior distributions. When probabilistic models need to be communi-
cated uncertainty cannot be omitted. Section 3.2 reviews the existing work as to uncertainty
visualization approaches and empirical evidence about their effectiveness. Static, animated, and
interactive visualization approaches are considered. The emphasis is primarily on univariate
uncertainty representations as they are required for representing the (univariate) probability dis-
tributions of variables in a probabilistic model (i.e., the marginal distributions of the model’s
joint distribution).

Probabilistic models have a structure that is determined by the associations of their variables.
This structure presents the order of the operations in the modelled data generating process. The
structure of a probabilistic model should be communicated along with the uncertainty to provide
a complete picture of the model. Section 3.3 explains how Bayesian network (i.e., a graphical
representation) can be used to represent the structure of probabilistic models. It reviews the
existing tools for generating such a graphical representation.

The structure of a probabilistic model does not necessarily reflect the cause-effect relations
of the variables, unless it is designed under a causal model. Section 3.3 explains also how the
structure of causal models is presented graphically. It reviews existing tools for graphically pre-
senting, exploring, and validating learned causal structures of data. It reviews existing evaluation
work of visualization in causal reasoning (i.e., how visualization can be used to help people rea-
son about which variable causes which other variable). This last part in Section 3.3 is related to
the last part of the research presented in this thesis (Chapter 6). A main focus of this research
was how visualization could support causal reasoning.

Interaction is not often used for the communication of uncertainty in literature. Thus, Sec-
tion 3.4 presents interesting ideas on interactive visualization from the literature that served as

45
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inspiration for the work presented in this research.

3.2 Visualization of Uncertainty

The perception of uncertainty by people contains many misconceptions or biases leading to in-
correct or imprecise judgements of uncertainty [Belia et al., 2005; Gigerenzer, 1996; Kahneman
and Tversky, 1974; Tversky and Kahneman, 1971, 1973, 1974]. This fact makes many analysts
sceptical about whether uncertainty should be communicated [Hullman, 2020]. However, hid-
ing uncertainty from people could lead to uninformed decisions. This could prove disastrous
in crucial decision-making occasions like in healthcare, or stock-market trading where the risk
which a decision entails should be considered.

For this reason, there was a huge research effort conducted in the last decades about whether
and how visualization could be used to communicate uncertainty effectively. This section re-
views the most relevant work presented in this field. Section 3.2.1 presents the existing ap-
proaches in the visualization of uncertainty categorized as static, animated, and interactive. Sec-
tion 3.2.2 presents the relevant experimental work in the evaluation of uncertainty visualizations.
Section 3.2.3 provides a discussion about the challenges in designing and evaluating uncertainty
visualizations overall.

3.2.1 Existing Approaches

The existing uncertainty visualization approaches that will be presented in this subsection are
categorized in three categories; static, animated, and interactive. Static uncertainty visualiza-
tions rely on static graphics and visual encodings to communicate uncertainty. Animated un-
certainty visualizations rely on animation to communicate uncertainty. Interactive uncertainty
visualizations rely on interaction techniques and interactivity to communicate uncertainty.

The basis of this categorization is the level of user engagement required to exploit the pro-
vided uncertainty visualization for making a judgement or decision. Static visualizations lacking
any motion or interaction require users to passively preceive the presented information. Ani-
mated visualizations use motion to add movement to static graphics and require users to more
actively engage their mental mechanisms. Interactive visualizations require users to come into
a closed-loop with the visualization by interacting with it, querying the information they need,
wait until it is displayed, perceive it, process it, and query a new piece of information to refine
the perceived “picture” of the information [Ware, 2012, Chap. 1,10].

This categorization serves the scope of this research: the use of interaction and animation
in the communication of uncertainty in probabilistic models to increase user engagement and
make difficult and unintuitive mathematical formulations more easily understood. The uncer-
tainty visualization approaches suggested or investigated in empirical studies in the literature
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are presented in this subsection. The related empirical work will be presented in the following
subsection.

3.2.1.1 Static Visualisations of Uncertainty

Various visual attributes of graphics that can be interpreted by human visual perception encode
uncertainty-related information; the position, shape, size, color, number of presented shapes,
density of glyphs, etc. The existing uncertainty visualizations presented here are categorized
based on the visual attributes they rely on to encode uncertainty.

Size and Position. Typical uncertainty visualizations that encode uncertainty in their size (i.e.,
width, height) and position are error bars, bar charts with error bars, and Box plots. These
plots are called often interval plots because they encode some statistical interval (confidence or
credible interval, interquartile range, standard error, standard deviation) in their size.

An error bar is a line passing from a point representing a measure of central tendency (e.g.,
mean or median) of a univariate variable and is drawn parallel to the axis corresponding to this
variable. The two ends of the line can correspond to various statistics describing the variation in
the observed data: e.g., a particular confidence interval of the variable’s distributions, the mean
value plus/minus the standard deviation, or the mean value plus/minus the standard error.

A bar chart with an error bar consists of a bar plot whose height represents some aggregation
measure like the mean value, and an error bar drawn vertically to the top edge of the bar plot
and passing from the center of it.

The Box plot [Frigge et al., 1989; Haemer, 1948; Spear, 1952; Tukey, 1977] is a more
informed representation of uncertainty as it presents a five-number summary of the variable’s
data distribution. It is represented by a box with whiskers. The first (Q1) and third quartile (Q3)
of the observed data correspond to the left-right or bottom-top edges of the box depending on
the orientation of the box; horizontal or vertical, respectively. The whiskers are usually drawn
within the 1.5 interquartile range (IQR = Q3 - Q1) but can stand for several other things; the
minimum and maximum observed values, one standard deviation above and below the mean of
the data, the 95% central quantile. A line enclosed in the box and drawn parallel to the Q1 and
Q3 edges represents the median (Q2).

Shape. Various uncertainty visualizations use the shape of the presented graphic to encode
the density of the distribution. These visualizations are often called density plots because they
encode the density of the distribution.

In the case of continuous variables, Kernel Density Estimate (KDE) plots depict the PDF
of continuous variables in the shape of the presented curve. In the case of discrete variables,
histograms can be used instead to depict the PMF of discrete variables. KDE plots and his-
tograms can be used to depict uncertainty in 2D, as well. Enhanced Box plots like hist plots
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[Benjamini, 1988], vase plots [Benjamini, 1988], Box-percetile plots [Esty and Banfield, 2003],
or violin plots [Hintze and Nelson, 1998] encode probability density in their shape. Another
extended Box plot that encodes uncertainty information in its shape is proposed by Potter et al.
[2010]; Potter’s summary plot incorporates higher order descriptive statistics. Potter et al. [2010]
presents also an extension of this to two-dimensional distributions.

Color Intensity. Various uncertainty visualizations use the color intensity to encode probabil-
ity density. These visualizations are often called gradient plots.

A density strip [Jackson, 2008] is a strip of a usually single-hue colormap; the darkness level
is proportional to the probability density at each point.

Correll and Gleicher [2014] present a version of gradient plot. A distribution is represented
by a box whose left-right or bottom-top edges (depending on the orientation of the box) corre-
spond to the 100% confidence interval. A solid enclosed line parallel to the confidence interval
edges represent the median. The box contains densily stacked lines parallel to the median line.
Within the 95% confidence interval the lines are fully opaque. Outside the 95% confidence in-
terval the opacity decays with respect to the cumulative probability for the absolute value of the
variable based on an underlying t-distribution, until the lines at the edges of the box become
completely transparent.

Density and Spatial Arrangement. The uncertainty visualizations in this category present
discrete outcomes (samples from distributions) and are often called discrete plots.

The rug and strip plots [Feigelson and Babu, 1992; Yi] represent the observations of a uni-
variate variable as tick or dot markers, respectively, across their axis. Scatter plots can be used
to represent two-dimensional observations on a 2D plane. The density of the markers in these
plots encodes the probability density of the variable.

Dot plots [Wilkinson, 1999] are used to represent individual observations on a continuous
scale using dots that are locally displaced in a direction orthogonal to their axis to prevent over-
lapping. Dot plots could be considered as a discrete analog of the KDE plot.

Number of Presented Shapes. The uncertainty visualizations in this category present uncer-
tainty as discrete outcomes (i.e., draws from a probability distribution) and allow probability
estimation through counting. They encode uncertainty in the number of presented shapes using
a frequency framing for it (i.e., they represent a percentile 10% as a ratio, e.g., 1 out of 10).
These visualizations are often called frequency-framed (discrete) plots.

Icon arrays use a shape or small picture that is repeated as many times as the denominator
of the ratio with a number of them corresponding to the numerator altered usually by colour.

Quantile dotplots [Kay et al., 2016a] represent distributions where dots are sampled pro-
portional to the quantiles of the distribution. Icon arrays are appropriate for a small number
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of discrete possible outcomes, while quantile dotplots can be used as an “frequency-framed al-
ternative for displaying uncertaintyfor a continuous variable” [Padilla et al., 2021a]. Quantile
dotplots could be considered as a discrete analog of the KDE plot.

3.2.1.2 Animated Visualisations of Uncertainty

Communicating Uncertainty Through Animation of Simulated Data. In geospatial appli-
cations, Ehlschlaeger et al. [1997] suggested the use of animation to present the uncertainty in
spatial data, which resulted from coarse coverage of the area in sampling. Spatial uncertainty is
modelled by specialized stochastic models, which generate “many potential realizations” of the
spatial data (e.g., surfaces). Ehlschlaeger et al. [1997] suggested the use of random and serial
animation of these “potential realizations” visualizations. Animation could help researchers get
a better insight into the uncertainty in spatial analysis and recognize spatial autocorrelation.

Evans [1997] suggested the use of “flickering” to present the reliability of data in land cover
maps; a frame showing a map that presents all the data alternates with a frame showing a bivarate
map that presents only highly certain data (color-on cells show highly certain data, color-off cells
show highly uncertain data).

Kwock et al. [2010] proposed the use of animation to present the statistically modeled uncer-
tainty about a large dataset in density plots instead of the actual PDF of the datapoints. The aim
was to provide visual summaries of large datasets instead of conducting expensive computations
of high quality density plots. They proposed the probabilistic plots which present a set of ani-
mated frames showing a scatter plot or a parallel coordinate plot. In each frame the plots present
a different set of random samples from the underlying distribution. In these animated plots the
regions of high probability density remain stable, while the outliers “intermittently flicker in and
out of existence” [Kwock et al., 2010] drawing viewers’ attention to them.

Animated Frequency-framed Plots. Hullman et al. [2015] inspired by the ideas of using
simulated data to communicate uncertainty introduced the Hypothetical Outcome Plots (HOPs),
a form of animated frequency-framed plot. HOPs present a set of frames each of which shows
a random draw from a distribution and is displayed for a short time (i.e., <500ms). Viewers of
HOPs need to use their cognitive mechanisms to acquire an intuitive sense of the underlying
distribution (i.e., estimate the mean value or identify the less possible outcomes). HOPs force
users to “account for uncertainty in their understanding of the data” [Padilla et al., 2021a].

Animated Transitions for Statistical Data Grahpics. This category of visualizations ex-
ploits animated transitions to tranform a graphic into another by possibly applying some opera-
tion to the underlying data. Transitions can be thought of as “state changes” [Heer and Robert-
son, 2007]. Heer and Robertson [2007] describe the process of transition and explain what the
challenge in designing animated transitions is:
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Analytic operators make changes to the semantic model of the data graphic, editing
the data schema, data values, or visual mappings. This in turn results in changes
to the graphical syntax. In static transitions, the original syntactic form is simply
replaced with the new one. The challenge of designing animations is to visually
interpolate the syntactic features such that semantic changes are most effectively
communicated.

Heer and Robertson [2007] created the DynaVis, a visualization framework supporting ani-
mated transitions for statistical data graphics like bar charts, pie charts, and scatter plots.

Kim et al. [2019] suggested the use of animated transitions to communicate the meaning
of aggregation operations (i.e., min, max, mean, median, count, standard deviation, interquar-
tile range) over univariate distributions. The original design concerned the transitioning from
unaggregated to aggregated dot plots. They provide an example that illustrates the animated
transitions for the arithmetic mean: individual dots shift along a horizontal line representing the
average, and transform to residual lines, which then collapse synchronously in a way that the
upper and lower parts cancel out to form the average. They extend their design to transitions to
depict the construction of box plots, histograms, and means and confidence intervals calculated
via bootstrapping.

3.2.1.3 Interactive Visualisations of Uncertainty

Although interaction is broadly used in the communication of complex data or ideas [Faith,
2007; Nguyen et al., 2020; Sankaran and Holmes, 2018], it is not often encountered in the
designs of uncertainty visualizations. The effect of interaction was investigated in tasks like
Bayesian reasoning [Khan et al., 2018; Mosca et al., 2021; Tsai et al., 2011], or graphical pre-
diction of uncertainty or trends in data [Collective, 2019; Hullman et al., 2018; Kim et al., 2017,
2018]. The following paragraphs present the ways to use interaction in Bayesian reasoning and
graphical prediction that were explored in the literature.

Interaction in Bayesian Reasoning. Tsai et al. [2011] suggested the use of an interactive fre-

quency box diagram to present the different components of a conditional probability in Baysian
reasoning problems. The frequency box diagram is suggested to accompany the frequency-
framed textual description of the problem. The frequency box diagram consists of a large box
that is subdivided into small squares that symbolize the entire population (each small square rep-
resents one person in the population). A set of checkboxes is provided for toggling on or off the
components of a problem (subpopulations) in any order or combination using a different color
to highlight each component. Improvent in performance of participants who used the interactive
frequency box diagram was found in comparison to participants who only relied on the textual
descriptions of the problem.
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Khan et al. [2018] explored the effect of adding interaction to the double-tree diagram [Khan
et al., 2015] on people’s performance in a Bayesian reasoning task. The double-tree diagram
can be used to visualize the “double branching structure of a Bayesian problem”; “the false-
positive/true-positive and false-negative/true-negative symmetry of the problem” is directly rep-
resented [Khan et al., 2018]. Khan et al. [2018] asked participants in a user study to construct the
double-tree diagram using drag-and-drop based on the textual description of the problem before
responding to the questions of the task. The results showed that interactively constructing the
double-tree diagram was not beneficial for participants’ performance.

Mosca et al. [2021] explored the effect of adding interaction to the stimulus used in a
Bayesian reasoning problem concerning a disease in population. The stimulus was an icon
array showing the subpopulations: “Have Disease”, “Do Not Have Disease”, “Test Positive”,
and “Test Negative”. They experimented with adding checkboxes or drag and drop to hide or
show subpopulations in the icon arrays. They also tested an implementation of hover in which
users hovering their mouse over an area of text describing a subpopulation in the description of
problem, the text and corresponding subpopulation in the icon array were highlighted. Finally,
they tested tooltips showing up in the icon array when users hovered over a subpopulation and
stating the part of the textual description of the problem. None of these interactions seemed to
be beneficial in participants’ performance in a user study conducted.

Interactive Graphical Prediction of Uncertainty or Trends in Data. Hullman et al. [2018]
suggested a novel interactive, graphical uncertainty prediction technique for communicating
uncertainty in experiment results. With this technique users can predict the uncertainty in exper-
iment replications graphically before they see the true sampling distribution. They can sketch
their prediction of the uncertainty either as a probability density plot or a quantile dotplot. Hull-
man et al. [2018] argue that graphically predicting replication uncertainty is an effective way to
communicate uncertainty in experimental science.

Kim et al. [2017] suggested the interactive graphical elicitation of users’ prior expectations
about trends in data to improve users’ recall of the data. Users who draw their predictions, view
their expectations against the actual data, and try to self-explain data are benefited. This interac-
tion with their “internal representations” of the expectations about the data support learning and
deepen users’ understanding of data [Kim et al., 2017]. Kim et al. [2018] showed that presenting
users’ expectations against others’ expectations is also beneficial to the recall of data.

The results of these studies led to the creation of TheyDrawIt!, a publicly available authoring
tool for eliciting people’s prior beliefs about the data in an interactive way [Collective, 2019].
TheyDrawIt! enables users to create line charts, sketch their beliefs about the trend in data, and
view other users’ beliefs.
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3.2.2 Evaluation of Uncertainty Visualizations

A multitude of experimental work on evaluation of uncertainty visualization exists in the liter-
ature. All these studies vary in the methodologies and evaluation strategies. Evaluating uncer-
tainty visualizations involves many design-related decisions for the experiment like the evalua-
tion goal, behavioral targets, expected effects, measures etc. Hullman et al. [2019] reviewed and
analysed the evaluation decisions made in 86 studies of uncertainty visualization to define the
more or less common decisions in the literature.

Most studies aimed at comparing multiple uncertainty visualizations or investigating the
impact of uncertainty by evaluating at least one visualization that does not contain uncertainty.
Aspects like how or why a visualization works or how it could interact with user characteristics
were less often investigated. The greatest part of the user studies focused on the evaluation
of the participants’ performance and mostly by investigating effects on users’ accuracy (i.e.,
the difference from a ground truth). Evaluation of user experience and effects on confidence,
confidence/accuracy alignment, response time, decision quality, memorability etc. were not so
commonly encountered.

In this subsection a relevant part of the existing literature on the evaluation of uncertainty
visualization is presented: the evaluation of decision-making under uncertainty (does presenting
uncertainty lead to better decisions than omitting it?); the evaluation of uncertainty visualization
through comparisons of different designs, most of which presented in the previous subsection
(are there particular designs of uncertainty visualizations that are more beneficial in specific
tasks?); the evaluation of uncertainty visualization in Bayesian reasoning (is uncertainty visual-
ization beneficial for people’s performance in Bayesian reasoning tasks?).

3.2.2.1 Evaluation of Decision-Making Under Uncertainty

Uncertainty - No Uncertainty. The effect of communicating uncertainty in various decision-
making contexts was evaluated in the existing literature.

One of these contexts was the communication of weather uncertainty information. Two stud-
ies evaluated people’s decisions on taking precautionary measures for adverse weather condi-
tions (salting the roads overnight). Nadav-Greenberg and Joslyn [2009] and Joslyn and LeClerc
[2012] found that people made more optimal decisions when the uncertainty of the wheather
forecasts was communicated to them. Joslyn and LeClerc [2012] also found that displaying
uncertainty increased people’s trust in the forecast.

In transportation scenarios, Jung et al. [2015] argued that displaying the uncertainty of the
remaining range in an electrical vehicle improved drivers’ driving experience and behavior in
regards to road and remaining range conditions in comparison to a single point estimate. Fernan-
des et al. [2018] found that some displays presenting uncertainty information about bus arrival
times led to more accurate and consistent real-time transit decisions compared to displays with
no uncertainty.
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Conclusion. Communicating uncertainty helps people make more optimal decisions in com-
parison to point estimates according to the findings of empirical studies.

3.2.2.2 Evaluation of Uncertainty Visualization Through Comparison of Different De-
signs

Interval - Density - Gradient Plots. Uncertainty visualizations that display intervals have
been found to be confusing or misinterpreted [Belia et al., 2005; Correll and Gleicher, 2014;
Stock and Behrens, 1991]. Belia et al. [2005] found that interval plots like error bars are hard
to interpret correctly for both naïve and expert users. [Stock and Behrens, 1991] found that
viewers of Box plots underestimate the length of the whiskers for larger boxes and overestimate
for smaller boxes. This was attributed to a visual perceptual illusion. Correll and Gleicher
[2014] found that bar plots with error bars suffer from perceptual issues. The bar provides a
false metaphor of containment; values within the bar are seen as likelier than those outside the
bar. Viewers tend to adopt a binary interpretation in regards with the error bar; values are within
the margins of error, or they are not. This leads to overestimated effect sizes.

Ibrekk and Morgan [1987] evaluated nine different representations of uncertainty including
interval, density, or gradient plots (an error bar showing a certain confidence interval, discretised
representations of the probability density function as a histogram and pie chart, a conventional
probability density plot, violin plot, horizontal bar encoding density in the shading using either
dots or vertical lines, a predecessor design of the modern Box plot (Tukey box), CDF plot)
through a survey. Participants were asked to determine the location of the “best estimate” based
on the presented visualization. No statistical differences were found but Cummulative Density
Function (CDF) plots were found to be confusing when used to estimate the mean value.

Correll and Gleicher [2014] compared interval plots (i.e., bar plots with error bars and box
plots) with density and gradient plots (i.e., violin and gradient plots) through a user study. The
findings suggested that gradient and violin plots helped participants better understand uncer-
tainty.

Conclusion. Overall density and gradient plots are preferred over interval plots according to
the findings of the empirical studies. According to [Padilla et al., 2021a]: “More expressive
visualizations provide a fuller picture of the data by depicting more properties, such as the
nature of the distribution and outliers, which can be lost with intervals.”

Static Frequency-framed - Conventional Uncertainty Plots. The frequency-framed uncer-
tainty visualizations were suggested in the literature on the basis that people were found to better
understand and reason more accurately about uncertainty when this is framed as a frequency
(e.g., 1 out of 10) instead of probability (e.g., 0.1) or percentile (e.g., 10%).This hypothesis was
formulated and investigated by Gigerenzer [Gigerenzer, 1996; Gigerenzer and Hoffrage, 1995;
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Hoffrage and Gigerenzer, 1998]. Gigerenzer argued that people reason more naturally about un-
certainty when it is framed as frequency because this is how they experience probability in the
world around them. Visualizations that implement frequency framing of uncertainty information
have been suggested in the literature (e.g., icon arrays, quantile dotplots, HOPs). The evaluation
work on the comparison of static frequency-framed uncertainty visualizations and other more
conventional static designs is presented here.

Kay et al. [2016a] compared quantile dotplots with density plots in the context of realtime
transit prediction scenarios. They found that the quantile dotplots reduced the variance of peo-
ple’s probabilistic estimates compared to density plots and facilitated more confident estima-
tions.

Fernandes et al. [2018] compared displays with textual uncertainty, uncertainty visualiza-
tions (quantile dotplots, interval plots, density plots, and complementary CDF plots), or no-
uncertainty in the ability of users’ make optimal decisions in realtime transit scenarios. They
found that low-density quantile dotplots and CDF plots led to better decisions and more accurate
estimations of probability intervals.

Hullman et al. [2018] compared quantile dotplots with probability density plots when used
in a graphical prediction interface for communicating uncertainty in experiment results. They
found that quantile dotplots improved recall of a sampling distribution from a single experiment
in comparison to the density plot.

Conclusion. Overall static frequency-framed plots are preferred over interval or density plots
according to the findings of the empirical studies.

Staged Animated - Interpolated Animated - Static Transitions for Statistical Data Graph-
ics. Heer and Robertson [2007] evaluated the effectiveness of static, interpolated animated,
and staged animated transitions for common statistical data graphics (i.e., bar charts, pie charts,
and scatter plots) in object tracking and value change estimation tasks. In static transitions the
final chart replaces the intial one in a single step. In interpolated animated transitions the final
chart replaces the intial one in a number of steps that show (usually linear) interpolations of the
marks in the initial chart to its final state. This is a kind of direct animation [Heer and Robertson,
2007] and is different from staged animated transitions. In staged animated transitions the final
chart results after a row of visual transitions in the position or value of the presented graphics
(position and value might change synchronously or asynchronously).

Some of the transitions tested were “bar chart to donut chart (visualization change), stacked
to grouped bars (drilldown), and sorting a bar chart (ordering)”. The analysis of the collected
data showed that participants’ graphical perception was significantly improved when animated
transitions were used in both types of tasks. Participants also reported strong preference for
animation as they found it more helpful and engaging.
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Kim et al. [2019] evaluated people’s performance in identifying the aggregation performed
over a distribution when animated transitions were used. They compared views with staged

animated (the aggregated chart results after a row of visual transitions in the position or value
of presented graphics), static (the aggregated chart replaces the unaggregated one) or interpo-

lated animated transitions (interpolated transitions linearly interpolate marks in the unaggre-
gated charts to their final values). Participants were asked to perform “binary identification
tasks” to indicate whether a presented transition matches a provided aggregation. They found
that the staged animated transitions improved participants’ performance in identifying the ag-
gregation performed and disambiguating the average and median, or stdev and iqr operations.

Conclusion. Overall animated transitions are more beneficial in comparison to static transi-
tions according to the findings of the empirical studies.

Animated - Static Representation of Data Reliability in Cartography. Evans [1997] eval-
uated the use of animation in presenting the reliability of data shown in land cover maps. They
compared a static composite bivarate map that presented only highly certain data with a “flicker-
ing” land cover map (animated alterations of the all-data and the high-certainty-data map). Both
representations were found to be helpful according to participants’ opinions.

Conclusion. Animated alterations of all-data and high-certainty-data maps were not found to
be superior to the static high-certainty-data maps in cartography.

Animated Frequency-framed - Conventional Uncertainty Plots. The extisting work in the
evaluation of animated frequency-framed uncertainty visualizations in comparison to other more
conventional static designs is discussed here.

Hullman et al. [2015] found that HOPs supported more accurate probability estimates than
static alternatives (violin plots and error bars). Higher precision in participants’ inferences came
at a cost of time. Hullman et al. [2015] argued that HOPs required little statistical background to
interpret as only simple mental processes were required to infer properties of the distributions.

Kale et al. [2019] compared the effectiveness of HOPs, error bars, and line ensembles (this
is a form of discrete plot) as to users’ ability in defining a trend in ambiguous data. They found
that participants were able to correctly infer the underlying trend in presented data of lower level
of evidence when using HOPs rather than static aggregate uncertainty visualizations.

Conclusion. Overall HOPs are preferred over interval, density, or discrete plots. According
to Kale et al. [2019] the greater effectivenes of HOPs could be attributed to the fact that the
sampling-oriented visualizations of uncertainty are in alignment with visual system’s ability to
“form gist representations from experience”.
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Interactive Graphical - No Prediction of Uncertainty or Trends in Data. Hullman et al.
[2018] evaluated the effect of sketching one’s predictions about uncertainty in the replications of
an experiment prior to viewing the sampling distribution. They compared three conditions; in the
first, participants were asked to graphically predict what would happen when an experiment was
replicated; in the second, participants viewed the true sampling distribution for an experiment
in a discrete representation; in the third, participants were asked to complete a rule training task
about sampling distributions. Participants recall of the sampling distribution and accuracy in
estimating the replication uncertainty in a transfer task were evaluated. The findings suggested
that users were able to make better predictions about replications of new experiments when they
graphically predicted the replication uncertainty in an experiment.

Kim et al. [2017] evaluated the effect of interactive graphical elicitation of users’ prior beliefs
about trends in data. Users’ recall of the data was evaluated. Five conditions were investigated;
no prior prediction and simple observation of data (control group); self-explanation of presented
data typed in a text box; prior prediction of omitted data, comparative observation of prediction
and actual data, and self-explanation of the gap between the prediction and the actual data; prior
prediction of omitted data and comparative observation of prediction and actual data; prior pre-
diction of omitted data, comparative observation of prediction and actual data, and observation
of textual and visual annotation of the gap between the prediction and the data. For each one
of these conditions there was one of two types of data representation; text and visualization.
Participants who predicted the trend in data graphically and were prompted to self-explain data
outperformed the control group in recall and comprehension. The effects were observed when
visualization was used instead of text and persisted for participants with moderate or little prior
knowledge on the datasets.

A relevant user study was conducted by Kim et al. [2018]. Although this study did not com-
pare interactive and static conditions, it is interesting because it adds value to the findings of
Kim et al. [2017]. Kim et al. [2018] used a similar interactive graphical elicitation interface
and evaluated the effect of showing partipants predictions against other users’ predictions. Par-
ticipants recall of the data was evaluated. Participants recalled the data more accurately when
other users’ predictions had high degree of consensus in comparison to participants who only
viewed the data. Participants showed less trust in the validity of data and were more likely to
maintain their initial expectations when other users’ expectations aligned with their own initial
expectations but not with the data.

Conclusion. Interactive graphical prediction of the replication uncertainty in an experiment
help users make better predictions about the replications of new experiments. Also interactive
graphical prediction of trends in data improves viewers’ recall of the data when their predic-
tions are presented against the actual data and the predictions’ of other people who present high
consensus.
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3.2.2.3 Evaluation of Uncertainty Visualization in Bayesian Reasoning

Existing work in human Bayesian reasoning found that people perform poorly in Bayesian rea-
soning tasks, where they need to calculate the conditional probability of a hypothesis by up-
dating their prior beliefs in the light of data (apply Bayes’ rule). It was found that people’s
difficulty to perform well in Bayesian reasoning tasks is attributed to various cognitive biases
[Cole, 1989; Gigerenzer and Hoffrage, 1995; Tversky and Kahneman, 1974] like the base rate
neglect [Tversky and Kahneman, 1974]. Many research efforts in the literature focused on sug-
gesting problem descriptions including visualization for debiasing people’s Bayesian judgments
and improving their performance. The evaluation work conducted in this direction is reviewed
in this subsection.

Graphical Displays - Textual Descriptions. People’s performance in Bayesian reasoning
seemed to have been benefited when graphical displays (contingency tables, signal detection
bar, detection bar, probability map or double-tree diagram) [Cole, 1989; Khan et al., 2018] or
iconic pictorial representations [Brase, 2009] or interactive frequency grids with check boxes
[Tsai et al., 2011] were combined with a textual description of the Bayesian reasoning problem.
Expanding the sample through crowd-sourcing [Micallef et al., 2012; Ottley et al., 2012] led to
inconsistent findings with previous work possibly because the wording of textual descriptions
could significantly impact users’ accuracy [Ottley et al., 2016]. Ottley et al. [2016] showed that
(text-only or) visualization-only designs were more effective than those which blend text and
visualization.

Conclusion. Text-only or visualization-only designs seem to be more beneficial for people’s
Bayesian reasoning.

Interactive - Static Representations. There are few studies having investigated the effect of
interaction on users’ performance in Bayesian reasoning, and the findings were unexpected.

Mosca et al. [2021] found no improvement in people’s Bayesian reasoning by adding inter-
action (checkboxes, drag and drop, hover, tooltips) to static icon arrays to show or hide subpop-
ulations or link the textual description to the visualization. Khan et al. [2018] found that interac-
tively constructing the double tree diagrams [Khan et al., 2015] through dragging-and-dropping
led to worse performances in the Bayesian reasoning tasks. Khan et al. [2018] suggested that
people’s worse performance when using interaction might result from the cognitive overload
caused to them by interacting. Khan et al. [2018] argues that these findings arise the need for
future research in the effects of interaction on cognitive load.

Conclusion. The existing work about the added value of interaction on static visualizations is
little and thus, conclusions about this contradiction cannot be easily drawn.
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3.2.3 Challenges in Designing and Evaluating Uncertainty Visualizations

Challenges in Designing Uncertainty Visualizations. Although the presented literature sug-
gests that communication of uncertainty helps people make better and more informed decisions,
it may also confuse them if the design of the uncertainty visualization does not account for 1)
the needs and 2) the ways that people naturally reason about probability. These two important
parameters should be considered in the process of designing uncertainty visualizations.

Regarding the first parameter, Greis et al. [2017] emphasized the importance of developing
general design guidelines as to how to design for and with uncertainty in HCI. The lack of
general design guidelines is a serious problem often leading designers to omit uncertainty. In
many instances though the application may set design specifications for the representation of
uncertainty. For example, in the case of designing visualizations for a transit prediction mobile
application by Fernandes et al. [2018]; Kay et al. [2016b], users had to make quick, in the
moment-decisions. The representations of uncertainty had to be glanceable and compact for the
mobile phone display. That was a helpful cue for the designer to create appropriate displays of
uncertainty.

Regarding the second parameter, the ways that people reason about uncertainty depend on
various factors. The statistical literacy of viewers of uncertainty visualization is one such fac-
tor. Many typical uncertainty representations like error bars are misunderstood or misinterpreted
especially by non-experts or researchers unfamiliar with statistical concepts like confidence in-
tervals and standard error [Belia et al., 2005]. Another factor is cognitive biases in people’s
judgments under uncertainty because of the reliance on judgmental heuristics [Tversky and Kah-
neman, 1974]. According to [Hullman, 2016], people often employ

a form of intuition that provides a mental shortcut for hard decisions. Most heuris-
tics work by substituting a simple but less accurate representation to turn a difficult
decision about a situation with multiple parameters and uncertainties into an easier
one.

The ways that people more naturally reason about uncertainty is another factor. For exam-
ple, people more accurately understand frequency formats than probabilities [Gigerenzer, 1996;
Gigerenzer and Hoffrage, 1995; Hoffrage and Gigerenzer, 1998].

Challenges in Evaluating Uncertainty Visualizations. The process of designing the evalu-
ation of uncertainty visualizations needs attention. Hullman [2016] argued that this process is
usually error-prone and categorizes the factors she believes influence the effect of evaluating
uncertainty visualizations into three categories:

• the nature or definition of probability and subjective probability distributions (e.g., should
participants’ subjective uncertainty be compared to statistical uncertainty?);
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• the sensitivity of participants’ responses to the elicitation method (e.g., response modes as
numeric responses, decisions between alternatives, Likert scale ratings, etc.);

• the use of heuristics in the judgements of probability by users who try to make their
responses resemble normative ones.

She also suggested some good practices to be followed in the design of the evaluation routine.
Hullman et al. [2019] presented a taxonomy of six levels of decisions that should be made

in the designing of an uncertainty visualization evaluation experiment: the behavioral targets
of the study, expected effects from an uncertainty visualization, evaluation goals, measures,
elicitation techniques, and analysis approaches. They reviewed existing work in the evalua-
tion of uncertainty visualization and analysed the design decisions made for the evaluation of
such visualizations. Based on this analysis they suggested a set of recommendations designed
“to encourage more transparent evaluations aligned with the state of the art in knowledge on
uncertainty comprehension”.

3.3 Visualization of Models’ Structure

Uncertainty is inherent in probabilistic models (found in the prior distributions of the mod-
els’ parameters) and their outputs (found in the posterior distributions of the models’ parame-
ters). Nevertheless, communicating only the uncertainty of parameters or predictions is often
not enough. In tasks like model refinement, parameter tunning, or decisions of interventions on
a variable a good comprehension of the dependencies of the model’s variables in the model is
required. For this reason the structure of the model should be communicated to users along with
the uncertainty.

A common way to represent the structure of a model visually is through directed graphs.
This section presents the existing work in presenting the relations of variables in a model graph-
ically. Section 3.3.1 presents the Bayesian network, a “skeleton” for representing a probabilistic
model’s joint distribution in a factorized way [Koller and Friedman, 2009], and the available
tools for generating such representations. Section 3.3.2 presents the causal diagram, a graphical
representation of the causal relations among the variables in a model. It presents the existing
tools suggested in literature for visualizing graphically the causal relations in datasets recov-
ered by causal discovery algorithms. Finally, it reviews the evaluation work in the effects of
visualization in causal reasoning.



CHAPTER 3. LITERATURE REVIEW 60

3.3.1 Probabilistic Models

3.3.1.1 Bayesian Network

A common visual representation of the structure of a probabilistic model is the Bayesian net-
work [Koller and Friedman, 2009] (see Fig. 3.1(a) which replicates Fig. 1.4 shown in Chapter
1). A Bayesian network comprises a Directed Acyclic Graph (DAG) with nodes correspond-
ing to random variables and edges indicating the direction of the “influence” of one node on
another. The Bayesian network apart from presenting an at-a-glance overview of the model’s
variables and their dependencies, provides a framework for compactly representing the model’s
joint distribution by factoring out independencies.
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Figure 3.1: Various graphical representations of the homogeneous probabilistic model of the
drivers’ reaction time problem (Box 2.1). (a) Bayesian network, (b) DoodleBUGs’ graph, (c)
PyMC’s graph, and (d) Kruschke-style diagram.

The dimensionality of the joint distribution of a probabilistic model depends on the num-
ber of its parameters (i.e., it increases with the complexity of the model) (explained in Sec-
tion 2.2.4.1). Expressing a multi-dimensional joint distribution in terms of the simpler marginal
distributions of the model’s parameters is straight-forward when the model’s parameters are
independent (the joint distribution equals the product of the marginal distributions of the param-
eters) but becomes challenging when the parameters present dependencies like in hierarchical
models.

A Bayesian network encodes a set of conditional dependence and independence assumptions
among model’s random variables. The conditional dependencies are represented as edges, while
the conditional independencies as missing edges in the DAG. Bayesian networks satisfy the local
Markov property, which states that a node is conditionally independent of its non-descendants
given its parents. As Koller and Friedman [2009] very precisely state in their book, there are
two equivalent ways that a Bayesian network can be viewed; “a skeleton for representing a joint
distribution compactly in a factorized way”, and “a compact representation for a set of condi-
tional independence assumptions about a distribution”. Box 3.1 demonstrates how the Bayesian
network of a hierarchical model can be interpreted into a set of conditional independence as-
sumptions and used to factorize the joint distribution of the model.
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The Bayesian network is a specific instance of a probabilistic graphical model representing
the model’s joint distribution. There may be multiple valid probabilistic graphical models for
a joint distribution because there may be more than one ways to factorize it. For example, any
joint distribution of two variables (x, y) that are not independent may be represented by both
x � y or x � y [Lattimore and Rohde, 2019a]. The direction of the arrows in probabilistic
graphical models do not necessarily indicate the order of the operations in the modelled data
generating process (e.g., the order of operations as determined by the definition of the model
e.g., in probabilistic statements) but in Bayesian networks they do. Thus, Bayesian networks
provide a natural representation of the model’s joint distribution.
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Box 3.1 Bayesian network of the hierarchical model of the drivers’ reaction time prob-
lem
Fig. 3.2 presents the Bayesian network of the hierarchical model of the drivers’ reaction
problem defined in Box 2.3 in Chapter 2.
Conditional dependencies among variables in Bayesian networks are represented by the
directed edges. For example, the (µb,bi) edge expresses the conditional probability dis-
tribution p(bi|µb). Bayesian networks satisfy the local Markov property: a node is condi-
tionally independent of its non-descendants given its parents. For example, the conditional
probability of node rti given its parent nodes ai,bi,si is conditionally independent of
the hyperparameters’ nodes, µa, σa, µb, σb, σs:

p(rti|ai,bi,si,µa,σa,µb,σb,σs) = p(rti|ai,bi,si). (3.1)

The joint distribution of the model can be expressed as a product of the variables’ con-
ditional probability distributions based on the chain rule of probability, the local Markov
property, and the independence assumptions of the model’s variables (see Box 2.3 for the
assumptions):

p(rti,ai,bi,si,µa,σa,µb,σb,σs) =

p(rti|ai) ·p(rti|bi) ·p(rti|si) ·p(ai|µa) ·p(ai|σa) ·p(bi|µb) ·p(bi|σb) ·p(si|σs)·

p(µa) ·p(σa) ·p(µb) ·p(σb) ·p(σs)
(3.2)

Equation 3.2 shows how a Bayesian network can provide a factorized representation of the
model’s joint probability distribution such that each factor in the factorized representation
is represented by an edge in the DAG.

bi siai

μa σa μb σb σs

rti

Figure 3.2: Bayesian network of the hierarchical model of the drivers’ reaction time problem
defined in Box 2.3.

3.3.1.2 Existing Tools for Graphical Representation of Probabilistic Models

The existing tools that can generate a graphical representation of a probabilistic model in the
spirit of Bayesian networks are reviewed in this section. There are few tools that could automat-
ically transform a specification of a probabilistic model into a graphical representation. There
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are two PPLs that provide some form of graphical model interface; BUGS (via DoodleBUGS)
and PyMC3.

DoodleBUGS is a software component of WinBUGs [Spiegelhalter et al., 2003] that provides
a Doodle editor for creating probabilistic graphical models as DAGs and automatically transcrib-
ing DAGs into BUGs language [Lunn et al., 2009]. However it cannot do the opposite, namely
transform a model written in BUGS into a DAG. Fig. 3.1(b) presents the graphical probabilis-
tic model of the drivers’ reaction time homogeneous model that was created with DoodleBUGs.
PyMC [Salvatier et al., 2016] provides a method that converts a probabilsitic model expressed in
PyMC code into a graphviz Digraph (pymc.model_graph.model_to_graphviz) using
the Graphviz graph visualization software [Ellson et al., 2004]. Fig. 3.1(c) presents the graphi-
cal model of the drivers’ reaction time homogeneous model that was generated through PyMC’s
interface.

Kruschke [2015] introduced a more informative DAG that shows iconic “prototypes” of the
distributions on each node of the diagram. Kruschke [2012b] argues that this type of diagram
(in comparison to the ones created with DoodleBUGS) has “a much more direct correspondence
to lines of code in JAGS/BUGS: (Usually) each arrow in this diagram corresponds to a line
of code in the JAGS/BUGS model specification.” Kruschke [2012b] explains that this type of
diagram indicates which parameters participate in the same distribution, which is not visible in
DoodleBUGs graphs. There is no automatic tool for the creation of this Kruschke-style diagram,
but Kruschke [2013] presents two drawing tools that were created specifically for the creation of
this type of diagram; a set of distribution and connector templates in LibreOffice Draw and R;
and LaTeX/TikZ scripts. Fig. 3.1(d) presents the Kruschke-style diagram of the drivers’ reaction
time homogeneous model created with the LibreOffice Draw template.

3.3.2 Causal Models

3.3.2.1 Causal Diagrams

A probabilistic graphical model in which a link x� y is assumed to mean x causes y [Lattimore
and Rohde, 2019a] represents a causal model. Causal models are “mathematical models repre-
senting causal relationships within an individual system or population” [Stanford Encyclopedia
of Philosophy, 2018]. The probabilistic graphical models that represent causal models are called
causal diagrams.

Causal diagrams were first introduced by Wright [1921]. Causal diagrams are used for com-
municating causal models and facilitating causal reasoning (i.e., reasoning about what variable
affects what other variable). They are also used for causal inference, namely for quantifying
the causal effects among variables [Greenland et al., 1999; Pearl, 1995; Pearl and Mackenzie,
2018].

In this thesis the focus is more on how causal diagrams can be used as visual aids for causal



CHAPTER 3. LITERATURE REVIEW 64

reasoning. The relevant existing work is reviewed in this section. First, existing visualization
tools in literature that present graphically learned causal structures by automatic causal discovery
algorithms are presented. Then, a review of relevant work in the evaluation of visualization in
facilitating people’s causal reasoning follows.

3.3.2.2 Existing Visualization Tools for Causal Reasoning and Exploration

Various algorithms have emerged recently that can learn the causal structure from observational
data, as well as experimental data [Glymour et al., 2019; Malinsky and Danks, 2018]. The
learned causal structure informs about whether the variables in a dataset have a cause-effect
relation and sometimes even about the direction of this relation (which variable is the cause, and
which one is the effect). Various visualization tools have been suggested in the existing literature
for the visualization, exploration, and validation of these learned causal structures.

Dang et al. [2015] presented the “ReactionFlow”, an interactive visualization tool for causal-
ity analysis amongst proteins, complexes, and biochemical reactions in biological pathways.
That tool enabled users to interactively filter, cluster, and select pathway components across
linked views, or use animation to view the flow of activity through a pathway. Xie et al. [2020]
presented the “Causality Explorer”, a visual analytics tool for validating causal relations and ex-
ploring causal effects through simulations of interventions and stratification of variables. Ge
et al. [2020] presented the first web-based causal discovery tool that presents the graphical
models of the learned causal models and provides interactive features for the exploration and
annotation of the causal relations among the variables.

There are cases when automatic causal discovery algorithms are not able to determine the
direction of the causal relation between variables (discriminate between a cause and effect)
solely based on the observed data. In these cases, causal assumptions inferred through the
analyst’s or expert’s experience and expertise could be valuable. Existing literature presents
some notable causality elicitation and visualization tools that can bring the analyst in a closed-
loop with the causal analysis tool.

Wang and Mueller [2015] presented the “Visual Causality Analyst”, an interactive visual
tool that enables domain experts to verify and edit the causal links on the estimated causal
model and explore causal effects by controlling for variables through stratification and condi-
tioning or regression models. Wang and Mueller [2017] extended this work by developing more
features which were integrated into a new tool called the “Causal Structure Investigator”. The
new visualization tool had many advantages in comparison to the previous tool; among others, it
presented the causal relations in path diagrams laid out using spanning trees to better expose the
flow of causal dependencies, used a scoring function and corresponding visual hints to compare
alternative causal models, and provided interactive facilities for the exploration of data subdivi-
sions, which might imply different associations among variables depending on how the data is
subdivided (this is described as the Simpson’s Paradox [Simpson, 1951]).
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3.3.2.3 Evaluation of People’s Causal Reasoning with Visualization

Existing visual analytics tools aim at facilitating the exploration of causality in data through the
use of visual means (e.g., graphs, interaction, annotations, bar/pie charts etc.) but there is very
little known about how well people can infer the causal structure of data through visualization.
The existing work is still quite poor in this field.

Kale et al. [2022] evaluate the quality of people’s causal reasoning based on visualizations.
They assessed the ability of users to detect a treatment effect and a confounding relationship
in visualized count data. They tested their hypotheses for non-interactive visualizations (text
contingency tables, faceted icon arrays, and faceted bar charts) and two interactive designs;
aggregating bars with similar design to the faceted bar charts whose faceting could be interac-
tively toggled, and cross-filtering bars, which were linked bar charts that could be interactively
cross-filtered by clicking on the bars. The analysis of the collected data did not show any re-
liable improvement in participants’ performance when they used the common visualizations in
comparison to textual contingency tables.

Yen et al. [2019] evaluated people’s performance, strategies, and pitfalls in identifying me-
diators in a dataset using bar charts. They compared an interface presenting data in bar charts
with a similar design that included a component allowing an interactive graphical representation
of the variables’ causal relations. They found that participants’ performance in identifying the
mediator significantly decreased when a confounding variable influenced the variable being ana-
lyzed. Participants’ individual visualization exploration strategies and the design of the interface
seemed to have influenced participants’ reasoning performance.

Lagnado and Sloman [2004] evaluated the ability of people to identify a causal chain model
(a three-variable causal model that included a mediator) when simulated data was presented to
them. The participants were either presented with observational data or were able to interactively
intervene on one of the variables and set its value and then view the values of the other two
variables. They found that interveners’ performance was better than observers’ having ruled out
as possible explanation for this any informational differences between the two conditions. The
experimental evidence confirmed that the advantage of interveners was driven by a temporal
signal: “interveners exploited the cue that their interventions were the most likely causes of any
subsequent changes”.

3.4 Inspiring Ideas From the Literature on Interactive Visu-
alization

Exploiting interaction for communicating complex ideas, methods, and results in science, re-
search, or education is well-established in the research literature. Various interactive visualiza-
tion techniques have been developed to either reveal dimensions of the information that cannot
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be conveyed through static visualizations or to enhance comprehension of the presented infor-
mation.

For example, there is an extensive literature on interactive projection of high dimensional
data [Faith, 2007; Sankaran and Holmes, 2018]. These occur in Bayesian probabilistic models
with many parameters in the joint distribution. Some studies focused on the importance of inter-
action for comprehension and engagement [Hullman et al., 2018; Kim et al., 2017, 2018; Tsai
et al., 2011]. A novel interactive reporting method for scientific and research results brings inter-
action in the center of attention for statistical reporting. Dragicevic et al. [2019] presented a new
approach to statistical reporting where readers of research papers can explore alternative anal-
ysis options by interacting with the paper. The “explorable multiverse analysis reports” allow
authors to report the outcomes of many different statistical analyses and readers to dynamically
change some elements of the analysis and get new “versions” of the paper based on the new
produced results.

The “explorable multiverse analysis reports” rely on two key concepts. The first is the “mul-
tiverse analysis” in statistical reporting [Steegen et al., 2016], where all processed data sets that
are generated from raw data based on different choices of processing are analysed to produce a
multiverse of statistical results. This multiverse reveals the fragility of the results across various
processing options. The second is the idea of “explorable explanations” [Victor, 2011a], which
aims at encouraging active reading through active engagement of the readers with a new form
of interactive narratives (e.g. reactive documents, explorable examples, contextual information)
that could allow readers dynamically change some elements and get a new “version” of the
narrative.

Victor has also expounded how interaction, simulation and visualization could be used for
simplifying abstract ideas to provide an intuitive understanding. For example, he suggests the
creation of a high-level mathematical tool that could become “as ubiquitous as the pocket cal-
culator”, which would transcribe mathematical problems into software simulations of simple
physical models instead of abstract equations and symbols [Victor, 2009]. He argues that this
kind of software could introduce a new form of practical mathematics that could “provide a
broader context, allowing a deeper understanding of the problem; easily handle problems which
are difficult or impossible to solve analytically; and be used to actively create, not just passively
understand”. An illustrative example was the scrubbing calculator [Victor, 2011c] that inter-
actively explores parameter spaces of algebraic problems by scrubbing over numbers until the
desired result is reached.

Finally, Victor [2011b] highlights the importance of a “ladder of abstraction”. By moving
between levels of abstraction starting from the lower one that indicates a concrete working sys-
tem and stepping down to the higher one that indicates abstract equations or aggregate statistics,
the system designers’ intuition and their design develop “side-by-side”. Victor [2011b] argues
that interaction in this iterative process of exploring a system design is an essential element to
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move around the “ladder of abstraction”.



Chapter 4

Using Interaction for Visualizing
Probabilistic Programming Models

4.1 Summary

This chapter presents the first of the three parts of this research. The focus of this part is on
the design and implementation of a novel interactive graphical representation of a probabilistic
model’s structure at varying levels of granularity, with seamless integration of uncertainty vi-
sualization. The probabilistic model is assumed to be expressed in any PPL and the intention
is to achieve an automatic transformation of the probabilistic model expressed in a PPL into
this interactive graphical representation. This interactive graphical representation supports the
exploration of the prior and posterior MCMC sample space.

Section 4.2 discusses the purpose of this work in more detail, Section 4.3 presents the typical
tasks that users of Bayesian probabilistic models need to undertake and could be supported by
the proposed tool, Section 4.4 presents the main aspects of the design and implementation of
the proposed tool, Section 4.5 provides a comparative presentation of the proposed tool and
other existing relevant tools, Section 4.6 demonstrates illustrative examples of use, and finally,
Section 4.7 discusses the contributions and limitations of this work and the potential future
endeavours in the field.

4.2 Purpose

Bayesian probabilistic modeling has many advantages; it accounts for uncertainty, incorporates
prior expert knowledge, has a well-defined intrinsic structure in terms of relations among ran-
dom variables: the mathematical and statistical dependencies are explicitly stated. Extremely
flexible Bayesian probabilistic models can be implemented via PPLs, which provide automatic
inference via efficient MCMC sampling. Nevertheless, Bayesian probabilistic models’ structure
and inference results can be challenging to communicate as the model becomes more complex,
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perhaps with hierarchical structure, multivariate distributions, complex inter-dependencies and
increasingly abstract latent states. Communicating uncertainty has challenges, too. Bayesian
reasoning is closely tied to reasoning about conditional probabilities. People with a weaker
background in statistics can have difficulty reasoning about (conditional) probabilities [Díaz
and Inmaculada, 2007; Gigerenzer and Hoffrage, 1995; Kahneman and Tversky, 1974; Koller
and Friedman, 2009; Tversky and Kahneman, 1973, 1974]. For example, people find it diffi-
cult to distinguish conditional and joint probabilities, and recognize that conditional probability
involves a restriction in the sample space [Díaz and Inmaculada, 2007]. But even in cases that
people are fully aware of these issues in theory, it is practically difficult to reason about the
conditional probabilities of a complex model.

There are visualization tools that seek to communicate the structure of a probabilistic model
or its inference results to users in a compact and relevant way. For example, ArviZ [Kumar
et al., 2019] is a unified library in Python that provides tools for diagnostics and visualizations
of Bayesian inference for various PPLs. A very simple probabilistic model with few parameters
could allow a human user to contemplate the entire model at once and comprehend how param-
eters interact with each other and the predictions of the model. However, a complex Bayesian
model could result in a high-dimensional posterior distribution that would require unwieldy ta-
bles to present summary statistics or a multitude of uncertainty visualizations, one per marginal
distribution, that are difficult to grapple with (as explained in Section 1.3.1). Also the more
complex a Bayesian probabilistic model becomes, the more error-prone the specification and
validation process of a Bayesian probabilistic model becomes given the existing ways to repre-
sent probabilistic models’ structure and inference results.

Another difficulty users usually encounter is that most existing visualization tools for Bayesian
analysis are PPL-dependent as they require the model- or inference-related information to be
provided in formats (structures) compatible with the specific PPL they were built for. This
might not allow the exploitation of the available representation possibilities of all existing visu-
alization tools by the users of a specific PPL or might require users to switch from one PPL to
another to be able to benefit from a certain visualization offered for a specific PPL backend.

There is need for tools that would automatically synthesize user interfaces to PPL inference
results independently of the PPL used for the inference, creating a compact graphical represen-
tation that would convey model- and inference-related information in conjunction. These tools
could exploit interactivity to vary the granularity of the presented information and facilitate the
exploration of complex probabilistic models’ structures and inference results. Such tools could
replace large tables of statistics with interactive graphical representations which would integrate
the structural relation of parameters along with their inferred distributions to convey uncertainty
accurately. Such tools could also support interactive sensitivity analysis of the model’s parame-
ters.

In this chapter, one realization – design and implementation – of such a tool is presented; the
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interactive probabilistic models explorer (IPME). The objectives of its design are:

1. automatic synthesis of a graphical representation of a model independently of the PPL
used;

2. seamless integration of uncertainty visualization into the graphical representation of the
model;

3. inclusion of both prior and posterior distributions of the model’s parameters, and the cor-
responding predictive ones for the observed variables;

4. interactive exploration of inference MCMC sample space;

5. interactive sensitivity analysis of model’s parameters;

6. granularity in the presented visual information according to user’s choices and needs;

7. inclusion of predictive checks.

These objectives are set to support a series of probabilistic models-related tasks that might
not be well supported by existing tools. Real users like model builders, decision-makers, or
researchers need to rely on probabilistic models to conduct Bayesian analysis or interpret the
results of Bayesian inference. These users need to be supported in their tasks. This chapter
identifies and describes a number of cognitive and practical probabilistic models-related tasks
that people dealing with probabilistic models and Bayesian inference usually need to undertake.
Some of these tasks require new IPME-like tools to be supported. A comparison of existing
visualization tools with the new suggested tool is presented in this chapter to emphasize the
identified gap in the availability of such tools. Concrete use case scenarions demonstrating the
use of IPME in a variety of scenarios (and probabilistic models) to support such tasks are also
presented in this chapter.

4.3 Congitive and Practical Tasks that Users of Bayesian Prob-
abilistic Models Undertake

The purpose of this section is to present the main cognitive and practical tasks that most users
(i.e., modelers, decision-makers, or researchers) are usually required to undertake when they
have to deal with probabilistic models and Bayesian inference. Some of these tasks might be
supported by existing visualization tools, but possibly not efficiently or effectively, while others
are not supported at all. These tasks informed the design of IPME, which will be presented in the
next section. The identified tasks are categorized in four categories, each indicating a different
user intention.
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Distributional Information Comprehension. The comprehension of the distributional in-
formation contained in the prior and posterior joint distribution of a Bayesian probabilistic model
is critical for any relevant task, from building and validating the model to interpreting the in-
ference results and making decisions based on them. The prior and posterior distributions of
a Bayesian probabilistic model are multi-dimensional joint distributions (as explained in Sec-
tion 2.2.4.1). The marginal distributions of the prior and posterior distributions of the model are
slices which reveal the uncertainty of a subset of (usually one of) the model’s parameters. PPLs’
typical output consists of a trace, a set of samples from the posterior distribution resulting from
inference with a MCMC sampler; that’s, the output from “running” the model (as explained in
Section 2.3.3). PPLs can also produce a set of independent samples drawn from the prior joint
distribution of the model. The marginal (prior or posterior) distribution of each parameter in a
model can be easily estimated from these (MCMC) samples.

Fig. 4.1(b) in Box 4.1 presents the posterior MCMC samples of a two-parameter model and
Fig. 4.1(c) shows the estimated 3D posterior distribution along with the 2D marginal distribu-
tions of the parameters (in dark blue). The distributional information of the prior or posterior
joint distribution of a model is usually communicated in the form of summary statistics or un-
certainty visualizations (e.g. KDE plot, error bar, Box plot, CDF plot, quantile dotplot) of the
marginal distributions of the model’s variables. The complexity of the model (i.e., number of
parameters and number of variables’ indexing dimensions) determines the number of the un-
certainty visualizations or rows in the tables of summary statistics. Thus, as the complexity
of the model increases, the distributional information of the model’s variables becomes harder
to communicate, explore, and ultimately, comprehend. Some representation that would allow
granularity of the presented information and some mechanism of requesting the information of
interest from the outputs of probabilistic models expressed in a PPL would be really useful.

The density of the joint samples of the model’s prior or posterior usually is not uniformely
distributed in the corresponding sample space. Understanding how the distribution of this den-
sity might vary given that a parameter or a subset of parameters take a specific value or values
in a specific subrange is useful when users need to estimate conditional probability densities of
the form p(Y |X = x), where X and Y are two random variables and it is observed that variable X

takes the value x. For example, this could be particularly useful for decision-makers who would
like to have estimates of a parameter’s uncertainty under some specific conditions, which could
represent a worst case scenario.

Estimating conditional probabilities from the output of a PPL leads to some form of querying

the results of the MCMC process; for example, a conjunctive restriction like (1.6 < µ < 2.0)

AND (1.0 < σ < 1.4) for the mean and standard deviation of the average minimum tem-
perature of the example in Fig. 4.1. The sample space of the (prior) posterior distribution can be
restricted by setting bounds to the range of values of the individual parameters. Each restriction
on the value range of a parameter defines a slice on the distribution. All the MCMC samples that
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belong to the subset of the restricted sample space determine the distribution of the model within
this subset of the sample space. In a conjunctive query, if we restrict the value range of more
than one parameters, then the resulted subset of the sample space of the (prior) posterior joint
distribution is defined by the intersection of all the restricted value ranges of the parameters. For
example, Fig. 4.1(b) presents the MCMC samples that lie in the intersection of two value ranges
restrictions in orange and Fig. 4.1(c) presents the re-estimated posterior distribution within the
restricted sample space.

Such queries could be specified and reported visually if the user could interactively set value
ranges and get the updated uncertainty visualizations for the entire model’s joint distribution
within the defined subset of the sample space. At the moment, it does not seem that tasks like
these are supported by existing tools and libraries for representing and visualizing the outputs of
Bayesian inference.

Box 4.1 Average Minimum Temperature in Scotland
This example presents a two-parameter Bayesian model modeling the average

minimum temperature in Scotland for the month November. The average minimum
temperature in Scotland in month November for the years 1884-2020 is available in a
dataset. PyMC3 is used for the inference (see Appendix A.1 for definition of model
in PyMC3 and link to the dataset). The inference results are explored by setting two
value range restrictions; µ ∈ [1.6,2.0] and σ ∈ [1.0,1.4]. The posterior marginal distri-
bution of µ (in orange) in the subset of the posterior space became slightly tighter and
shifted towards lower values of µ , which lead us to less uncertainty about expecting
lower average temperature in Scotland for November given this particular conditioning.
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Figure 4.1: (a) Kruschke-style diagram of the two-parameter Bayesian model. (b) Posterior
MCMC samples of the model’s parameters. The samples that lie within the intersection of
the value range restrictions are colored in orange. (c) The estimated posterior distributions
and marginal distributions based on the entire posterior MCMC sample set (dark blue) and
the restricted sample set (orange).

Inference Results Comprehension. Comprehending simply the distributional information
of the posterior distribution might not suffice to achieve comprehension of the inference results.
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For example, some users might want to investigate the sensitivity of inference results to the prior
distributions chosen. This task would require a comparison between the prior and posterior dis-
tribution; the users would need to observe both in parallel and in a direct and explicit way. This
kind of comparison between the prior and posterior distribution could also help users to get a
profounder understanding of how their prior knowledge changes in the light of the data: e.g.,
does the posterior distribution become wider or shift in the posterior space given the actual ob-
servations? (for example see example in Box 1.6 in Chapter 1). These tasks could be facilitated
by presenting the uncertainty visualizations or tables of summary statistics of the distributions
of model’s variables side-by-side. The complexity of the model could be a hurdle, though, in
this case, as well.

Model Comprehension. In many tasks like decision-making in crucial areas like healthcare
or stock market investments, going a step further and acquiring a profounder understanding of
the structure of the model might be critical. Understanding whether and how one parameter
might affect another in a probabilistic model could enable decision-makers to account for any
possible risk entailed by the produced predictions of such models. Aspects of the structure of
such models that are usually useful to be well-understood are the parameters’ associations (e.g.,
which parameters are used to set the parameters of the distribution of another variable; that’s,
the parent-child relations of the variables in a model), the hierarchies (e.g., which parameters
are hyper-parameters and how deep in the model’s hierarchy they lie), and the dimensions of the
parameters (e.g., which parameters are global or model groups of samples).

The parent-child relations of variables in a probabilistic model, and the hierarchy and dimen-
sion of the parameters are glanceable in the definitions of the models in probabilistic statements
or any existing graphical representation of the model (in the form of a DAG). Nevertheless, un-
derstanding the effect that one parameter might have on the distribution of another parameter
in a probabilistic model (e.g., how does the distribution of one parameter change if another pa-
rameter takes a certain value? how sensitive is one parameter to changes in the value of another
parameter?) given these means of communicating the model’s structure relies on the ability of
the user to interprete the mathematical details of the model’s definition.

Existing visualization libraries or tools do not seem to offer an alternative representation
that could facilitate the communication of the effects one parameter has on others within the
context of a probabilistic model in ways to alleviate users’ potential inability to deal with statis-
tical/mathematical details. One way to explore the sensitivity of parameters in the model could
be setting range restrictions on one parameter and observe how the uncertainty visualization of
others is affected. By restricting the value range of one or more parameters the influence on the
remaining parameters can be observed, because only the MCMC samples of the prior or poste-
rior joint distribution that satisfy the constraints are included. For example, setting parameter µ

in increasing value ranges and observing how the posterior predictive distribution of y changes
in the probabilistic model shown in Fig. 4.1(a) could help people interprete the effect of param-
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eter mu on the mean value of the distribution of y. Through such exploration the parameters that
are strongly coupled or, conversely, are wholly independent could be identified. This could be
critical for decision-makers, who in the process of assessing the risk, would like to know how
fragile the estimation of crucial parameters is.

Model Check. A common task especially for model builders is checking and validating the
model. For example, one type of model validation is checking whether the prior (predictive) dis-
tributions capture effectively the prior knowledge (e.g., expected value ranges for parameters).
Another type of model validation is checking whether the predictions of the model capture
sufficiently aspects of the observed data that are of interest. These kind of checks are called
predictive checks [Lambert, 2018a, Chap. 10.3; Sinharay and Stern, 2003]. Through predictive
checks statistics of the observed data are tested against the predictions of the model. The aspects
of the observed data that are usually investigated could be defined as statistical metrics over the
data. For example, the extreme observed values could be interpreted as the min and max value
of the observations. Other common aspects of the data that could be checked are the mean and
std (standard deviation) values.

A common metric for checking how well these statistics of the observed data are repre-
sented by the predictions of the model is the predictive (Bayesian) p-value [Lambert, 2018a,
Chap. 10.3; Sinharay and Stern, 2003]; the probability Pr(metric(yj) ⩾ metric(obs)),
where j ∈ {0,1, ..,N} and N is the number of coordinates of the indexing dimension of the
observed variable y, yj indicates the set of predictive samples of the model for the j-th co-
ordinate of the indexing dimension and obs the set of actual observed data, and metric

∈ {min,max,mean,std} or any other statistical metric considered [Sinharay and Stern, 2003].
The p-value represents the proportion of the N replicated datasets from the model (resulting from
the sampling happening in the loop in line 3 of Algorithm 1 shown in Section 2.2.5) for which
metric(yj)⩾ metric(obs). If none of the p-values of the test statistics is too high or low,
the model is considered to generate “replicate data” similar to actual observed one based on the
criteria of the provided test statistics.

Validating the priors of a model could be conducted by visualizing the priors with any typical
uncertainty visualization, but conducting predictive checks visually is not that straight-forward.
Histograms of the N calculated values of each statistical metric for the predicted samples are
commonly used for conducting predictive checks [Lambert, 2018a, Chap. 10.3; Sinharay and
Stern, 2003] to compare the distribution of the metric’s values for the predicted samples with the
value of the metric for the observed data. Existing visualization tools do not generally support
automatic creation of such visualizations from the definition of a model or its PPL output.

There is need for new tools to support users in probabilistic models-related tasks. These
tools could support:

1. decision-makers seeking to interpret inference results or make predictions;

2. experts seeking to effectively express their prior beliefs and the implications of their be-
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liefs on inference;

3. data-scientists and statisticians seeking to refine and validate an inference process (debug-
ging a PPL program such that it runs effectively).

The next section presents the design and implementation of one such tool, as proposed in this
thesis, the interactive probabilistic models explorer (IPME).

4.4 Interactive Probabilistic Models Explorer

This section discusses the design and implementation of the IPME tool. The discussion is split
into two parts. The first part presents the challenges of encoding any PPL model and associated
inference results into a coherent PPL-independent structure. This structure could be given as
an input to graphical tools like IPME. The realization of a pipeline to create such a structure is
shown. The second part focuses on the design and implementation of the IPME itself.

4.4.1 PPL Model Encoding

The automatic transformation of a PPL model into an interactive graphical representation is not
technically straight-forward. There are two types of information required:

• Model-related information: some transformation of the PPL source code (i.e. the lines
of code) that defines the model into model-related information;

• Inference-related information: the traces of the model’s inference results (see Sec-
tion 2.3.3).

This research restricts to MCMC approaches to inference, and so it always deals with collections
of definite, (hopefully) independent samples representing possible model configurations. The
traces can include samples from the prior, posterior, prior predictive and posterior predictive
distributions.

A pipeline to encode a PPL model and its inference results into a unified PPL-independent
structure is shown in Fig. 4.2 (this pipeline was suggested and implemented by Williamson
[2019]). Fig. 4.2 presents the steps that a modeler should take to export a PPL model and its
inference results into a form tha can be accepted as input by the IPME tool. The following
subsections describe the model- and inference-related information encoded in this structure and
how this structure is generated by the pipeline shown in Fig. 4.2.

4.4.1.1 Model-related Information

Model-related information is necessary for the construction of the graphical representation (DAG)
of the model. The construction of a DAG requires, at minimum, the names of the nodes and
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Figure 4.2: Flowchart showing the steps that a modeler should take to export the PPL-specified
probabilistic model and the inference data into a standardized output, which will then be used as
an input to the IPME module. The presented pipeline adds three new steps to the typical model
specification and inference running routine; the export of the PPL model graph into a JSON
structure; the export of the inference data into an ArviZ InferenceData object, where the
structured description of the graph from the previous step is attached; and finally, the export of all
these into a collection of .npy arrays and metadata in a zipped file. A concrete implementation
of this pipeline is provided by the arviz_jsonmodule [Williamson, 2019], which was created
for providing a standardized output for the PyMC3 models and inference data.

their associations that define the edges. Therefore, the input of the IPME tool should include
the names of the model’s variables and a list of the parent nodes for each variable. We would
also expect to be able to extract annotations for each parameter, including the distribution type
(Gaussian, Poisson, binomial, Dirichlet etc.), data type (floating point, integer), tensor shape
(univariate, N-d vector, MxN matrix, etc.), and inferential type (observed, free, deterministic).

In a tree-like structure like the DAG of a Bayesian network, the lowest level of nodes consists
of observed variables (see Section 3.3.1.1). The DAG is “rooted” at the top with non-stochastic
nodes with known, fixed values (e.g., constants used in specifying prior distributions). Unob-
served variables could either be free parameters defined by prior distributions or they could be
deterministic variables constituting transformations of other parameters or observed variables.

Each node in the DAG should provide some minimum information about the corresponding
variable. This could include the name of the variable and the type of the variable’s distribution;
this is sufficient to arrive at a graph similar to those of Kruschke [2015]. The last model-related
information needed is the dimensions and coordinates of the probabilistic model’s variables;
i.e. the tensor shape and its semantic structure. Interpreting tensor shapes in probabilistic pro-
gramming is subtle [Ma, 2019] and may require additional annotation. The dimensions of a
probabilistic model’s variables usually correspond to dimensions of the observed data and they
can be used to model groups of parameters (like in the case of a heterogeneous models as ex-
plained in Section 2.2.4.1). A variable might have multiple dimentions because it is distributed
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according to a multivariate distribution. IPME supports variables with univariate distributions,
depicts their distribution using 2D visualizations, and enables the user to define the coordinates
of the variables’ dimensions corresponding to observed data.

PPLs usually provide an API for users to access this model-related information, though
the form this information is provided in, varies significantly. A prototype (JSON) structure that
encodes the model-related information has been used to formulate the input of IPME (see details
about the JSON structure in Appendix B). The fields of this structure are vastly determined by
the model-related information that IPME needs to create the graphical representation of the
model. A modeler could access the model-related information using the corresponding API of
any PPL and produce the prototype structure of the model’s graph. A Python package called
arviz_json was developed by Williamson [2019] to provide an API for the transformation
of PyMC3 [Salvatier et al., 2016] model objects into these structures.

4.4.1.2 Inference-related Information and Data

PPLs store inference results in different ways, which are usually backend-specific. For example,
PyMC3 stores the MCMC samples in PyMC3 MultiTrace [MultiTrace] objects, whereas
PyStan stores inference results in PyStan Fit objects [Fit]. Thus, there is a need for a stan-
dardized backend-agnostic way of organizing and storing the inference-related information and
results before forwarding it to a tool that would synthesize an interactive graphical representa-
tion of the model. The samples for estimating the prior and posterior (predictive) distributions of
the model’s variables should be stored in standardized structures and linked to the PPL model’s
variable names.

One solution to this problem is provided by the ArviZ library [Kumar et al., 2019], which
provides an API for transforming the inference data of different inference back-ends and pro-
gramming languages (PyMC3, PyStan, CmdStanPy, Pyro, NumPyro, emcee, and TensorFlow
Probability objects) into ArviZ InferenceData1 data structures. These are standardized data
structures for storing MCMC-based inference results that are dependent on xarray’s2 multi-
dimensional array structures that introduce “labels in the form of dimensions, coordinates and
attributes on top of raw NumPy-like multidimensional arrays”. The InferenceData objects
group various data sets that could be produced by a Bayesian analysis (prior or posterior sam-
ples, prior or posterior predictive samples, sample statistics etc.). ArviZ provides an API for
exporting the InferenceData data structures in netcdf3 files. The arviz_json pack-
age is used for exporting ArviZ InferenceData objects into a zip file containing the model’s
DAG structure and inference results in a collection of npy4 format arrays corresponding to those
of the InferenceData object. JSON metadata that link the model’s variables to the data ar-

1https://arviz-devs.github.io/arviz/schema/schema.html
2https://xarray.pydata.org/en/stable/why-xarray.html
3https://www.unidata.ucar.edu/software/netcdf/
4https://numpy.org/devdocs/reference/generated/numpy.lib.format.html
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rays and provide information about the type of the samples (prior, posterior), the dimensions
and the coordinates are also included (see details in Appendix B).

4.4.2 Design and Implementation of IPME

IPME was created as a Python module that takes as an input the model- and inference-related
information in the standardized format presented in the previous section, and more concretely,
the output of the arviz_json module. IPME creates the interactive graphical representation
of the model. For the developement of the IPME’s components Bokeh5, a Python interactive vi-
sualization library for modern web browsers, and Panel6, a Python library for interactive web
apps and dashboards were used. The IPME tool provides a web-browser-based visualization of
the interactive probabilistic models explorer and thanks to Bokeh that affords high-performance
interactivity over large datasets, it provides a low-latency interactivity with the MCMC sam-
ple set. The code of the IPME tool and videos demonstrating the tool can be found in [Taka,
2020a,c]. I recommend the reader watches these videos as they read through the following de-
scriptions of the tool because the interactive aspects of the tool cannot be easily demonstrated in
the static form of figures shown.

Box 4.2 presents a hierarchical model that is used as a reference example in this chapter.
Fig. 4.3 presents the IPME representation of this model.

Box 4.2 The Eight Schools’ Hierarchical Model
This example presents a hierarchical model for predicting the effect of coaching pro-

grams on the scholastic aptitude test (SAT) for the admission to college in the US (see
Appendix A.2 for details about the model, and its specification in PyMC3). Observed data
from eight different schools is available. The eight schools’ hierarchical model is described
by the following set of probabilistic statements:

µ ∼ Normal(µ = 0,σ = 5) (4.1)

τ ∼ Half-Cauchy(x0 = 0,γ = 5) (4.2)

θi ∼ Normal(µ = µ,σ = τ) (4.3)

yi ∼ Normal(µ = θi,σ = σi) (4.4)

where i ∈ {1,...,8}, yi are the observed changes in the SAT scores, and σi are the
standard errors of the observed scores’ changes.

IPME presents the model’s DAG in a tree-like structure. The tree is simplified into rows of
nodes ordered vertically from hyperpriors down to observed values. This format is a vertically
ordered representation which orders nodes such that constant values (which are not shown)

5https://docs.bokeh.org/en/latest/
6https://panel.holoviz.org/index.html



CHAPTER 4. INTERACTIVE PROBABILISTIC MODELS EXPLORER 79

Figure 4.3: The IPME representation of the hierarchical model of the eight schools problem
presented in Box 4.2. The KDE plots shown present the prior marginal distributions of the
model’s variables. PyMC3 was used for the model’s specification and inference.

would be placed at the very top of the graphical representation and the lowest nodes in the
graph are observed variables. Parameter nodes are organised such that child nodes appear on
rows lower than their parent prior distributions. In most hierarchical models, which have well-
separated hyperpriors, this leads to a neat separation of the graph into rows and an obvious
reading of the graph from top to bottom. There are, of course, graphs which are hard to arrange
well in this format. Each node is a cell in a Panel GridSpec7 object. Each node of the graph
has a toggle button, some text and a KDE distribution plot. The toggle button label presents the
variable’s name, the tilde (∼) symbol and the variable’s distribution name. The text below the

7https://panel.holoviz.org/user_guide/Components.html
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toggle button states the parent nodes and the dimensions of the variable. The KDE curve can be
hidden with the toggle button (Fig. 4.4).

Figure 4.4: The collapsed IPME representation of the hierarchical model of the eight schools
problem presented in Box 4.2. The toggle buttons were used to hide the KDE plots.

The variables’ distribution is presented using a kernel density estimation8 (KDE) algorithm,
computed based on the corresponding variable’s (MCMC) samples, using Silverman bandwidth
estimation [Silverman, 1986]. The KDE curve of the non-observed variables is estimated based
on the (MCMC) samples of the (posterior) prior marginal distribution of the variable, while
the KDE curve of the observed variables is estimated based on the (posterior) prior predictive
(MCMC) samples. A rug plot is presented below the KDE curve to display the corresponding
(MCMC) samples as tick markers. Two views of the DAG are presented, one showing the
model’s distribution in the prior and one in the posterior sample space, in separate tabs so that
users can compare both quickly.

IPME uses the dimensions’ and coordinates’ information to automatically create a widget
box on the left-side of the graphical representation. Each indexing dimension in the model is
converted into a drop-down menu presenting the semantically meaningful coordinates of the
indexing dimension. Users can select the value of the coordinate for each indexing dimension
and get a different view of the data. The range of the x-axis of each variable’s KDE plot is
fixed across all coordinates of the indexing dimensions in each one of the prior or posterior
sample space to enable immediate comparisons among the various coordinates of an indexing
dimension. These ranges are calculated by taking the widest distribution in each sample space
(prior or posterior).

Users can apply a value range condition to any variable in the model interactively by drawing
a variable-width and fixed-height selection box on the corresponding KDE plot of the variable
(Fig. 4.5). The part of the KDE curve that is enclosed into the selection box is highlighted
in green and a second KDE curve that is computed based on the restricted (MCMC) sample
set is drawn in orange. The rug plot is updated accordingly to give a better perception of the
conditioning process on the sample space. The color palette of the arviz-darkgrid style

8https://en.wikipedia.org/wiki/Kernel_density_estimation
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was used because it was designed to be color-blind friendly and it would add a tone of familiarity
for the users of the ArviZ library. The user can update their initial selection by drawing a new
selection box or can draw additional selection boxes on other distributions to add constraints to
the query.

Figure 4.5: The IPME representation of the hierarchical model of the eight schools problem
presented in Box 4.2. The KDE plots shown present the posterior marginal distributions of the
model’s variables.

Every time the user draws a selection box, both the prior and the posterior spaces are re-
stricted to include only samples that lay within the selected subset. The user can restrict the
value range of any parameter at any coordinate of any indexing dimension and the restriction
to the sample space will be reflected in both the prior and posterior, as well as to the prior and
posterior predictive histograms. This kind of interaction allows the user compare the changes in
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the uncertainty in the restricted space between the prior and posterior beliefs about the model
parameters. The user can also remove the restriction of a parameter by clicking on the “x” button
that accompanies the updated KDE curve. Finally, the user can reset all the uncertainty visual-
izations by globally removing all the restrictions by clicking the “Reset Diagram” button on the
left-hand side of the graph.

IPME provides an interface for predictive model checking with predictive p-values (Fig. 4.6).
The prior and posterior histograms of four statistical metrics (min, max, mean, std) over the
prior and posterior predictive samples, respectively, are presented in two extra separate tabs.
The actual observed value of each test statistics is indicated by a vertical black line on the
corresponding histogram. The (Bayesian) p-values are also noted in the legend above each
histogram. For the predicted data to capture sufficiently the test statistics of the observed data we
expect the probability of the corresponding test statistic of the observed data to have a sufficiently
big probability given the distribution of the test statistic of the predicted data. Usually the
application might set a specific requirement as to the size of this probability.

Figure 4.6: The posterior predictive test statistics (min, max, mean, std) of the model of the
eight schools problem presented in Box 4.2.
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4.4.3 Objectives of IPME

IPME was designed to fulfil a set of objectives that were identified to support the tasks that users
of Bayesian analysis typically undertake. These objectives were summarized in Section 4.2 and
are repeated here:

1. automatic synthesis of a graphical representation of a model independently of the PPL
used;

2. seamless integration of uncertainty visualization into the graphical representation of the
model;

3. inclusion of both prior and posterior distributions of the model’s parameters, and the cor-
responding predictive ones for the observed variables;

4. interactive exploration of inference MCMC sample space;

5. interactive sensitivity analysis of model’s parameters;

6. granularity in the presented visual information according to user’s choices and needs;

7. inclusion of predictive checks.

Let us discuss now how IPME meets these objectives.
Objective 1. The transformation of a PPL model – some lines of code of a PPL, potentially

alongside some observed data – into a graphical representation of the model is the purpose of
this objective. The intention is to transform PPL models independently of the PPL and structure
of the specific model implemented. IPME was designed to accept as an input the model- and
inference-related information encoded in a standardized format as explained in Section 4.4.1.
This allows the automatic synthesis of a graphical representation of a model independently of
the PPL used. By the term “graphical representation” a coherent graph-like representation of
the probabilistic model is meant, which reveals the internal structure of dependencies among the
model’s parameters. IPME presents the model’s graph in a tree-like structure with each node
representing a variable in the model. The nodes contain annotations to indicate the parent-child
relationships of the model’s variables.

Objective 2. The integration of parameters’ distribution into the graphical representation
of the model is the purpose of this objective. In IPME the distributional information of each
model’s variable is integrated into the graphical representation of the model by including an
uncertainty visualization (i.e., a KDE plot) into the node of the variable. A Bayesian model
can simulate drawing samples in the space of observations, which is sometimes the ultimate
task (e.g., in prediction), is sometimes essential for validation and calibration (e.g., in prior pre-
dictive checks), and is sometimes the most relevant way to explain consequences to users. The
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prediction of an observed variable’s value by Bayesian probabilistic models is a distribution over
possible (prior or posterior) observations and not just a single point estimate (the MCMC pre-
dictive sampling was explained in Section 2.2.5). Thus, nodes that represent observed variables
also include an uncertainty visualization to present the predictions’ uncertainty in IPME.

Objective 3. The integration of both prior and posterior distributional information of model’s
variables into the graphical representation of the model is the purpose of this objective. Bayesian
probabilistic models can provide estimations of the model’s uncertainty both before and after
seeing the observed data. Two visual representations should be incorporated in each node of the
graphical representation, one for the prior and one for the posterior distribution of the associated
variable. In IPME there is a tab bar at the top which allows the user to switch between the prior
and posterior view of the graphical representations.

Objectives 4 - 5. The interactive exploration of the variables’ (prior and posterior) sample
space and sensitivity analysis of model’s parameters is the purpose of these two objectives.
IPME enables users to apply value range conditions to model’s variables by dragging a fixed-
height selection box on the KDE plot of the variable. Appropriate highlighting in the form of
brushing-and-linking is applied on the KDE curves and rug plots of all variables of the model
both in the prior and posterior sample space to indicate the sample subset belonging to the
restricted sample space. The KDE curves of all variables in this restricted sample space are
drawn.

Objective 6. Adjustable granularity is the purpose of this objective. Some users may wish to
have a simplified summary view; while others may be involved in tasks like validating sampling
and require detailed interactive visualisations. It therefore makes sense the nodes of the model’s
graphical representation to be collapsible in some way, and the user is able to interactively
select the information to be revealed. In IPME the toggle buttons used as headers in the nodes
of model’s variables serve this purpose: hide the variable’s KDE plot when clicked.

Objective 7. The inclusion of prior and posterior predictive checks is the purpose of this
objective. In IPME users can use the tab bar to switch between the prior and posterior predictive
checks view where the prior and posterior histograms, respectively, have been calculated for the
test statistics of the predictive samples and shown along with the test statistic of the observed
data and the corresponding predictive p-value.

4.5 What Makes IPME a Unique Tool

This section discusses how other PPL-linked available tools display the graph structure of prob-
abilistic models and compares this with IPME (Section 4.5.1). It also compares the way that
inference results are presented using typical presentation practices with the way IPME achieves
this, and discusses how IPME was designed to provide a more compact and flexible presentation
of the inference results (Section 4.5.2). This section presents also a comparison of IPME with
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existing visualization libraries for Bayesian analysis (Section 4.5.3) based on a set of indicative
visualization features.

4.5.1 Presentation of the Probabilistic Programming Model’s Graph

Fig. 4.7(a) presents the graphical representation of the hierarchical model of the eight schools
problem (shown in Box 4.1) created with DoodleBUGS [Spiegelhalter et al., 2003]. Fig. 4.7(b)
presents the graphical representation of the same model using the PyMC Graphviz interface
(pymc.model_to_graphviz). Although both ways present the structure of the probabilis-
tic model as a graph providing an at-a-glance representation of the model’s parameters and
dependencies derived from the PPL specification of the model, they both lack the presentation
of the parameters’ distribution. Fig. 4.7(c) presents (a manually created) Kruschke-style dia-
gram of the same model, which is more informed since it presents the prototypes of the prior
distributions of the model’s parameters. But still, this representation of the probabilistic model
does not provide any indication of the actual distribution of latent parameters.

Using the framework presented in Fig. 4.2, the IPME representation of the eight schools’
hierarchical model was created. Fig. 4.7(d) presents the IPME representation for the posterior
space as an expanded DAG (Fig. 4.4 presents its collapsed form). IPME seamlessly integrates
the actual uncertainty estimations into the graph’s nodes and provides variable granularity by
allowing users to collapse certain elements. The widget box on the left-hand side contains
one widget per indexing dimension and allows selecting different views of the inference data.
Finally, the tab bar at the top enables switching between prior and posterior.

4.5.2 Presentation of the Inference Results

The most common practice in reporting of inference results in Bayesian analysis is the creation
of tables that present summary statistics of the posterior distributions. As the number of model
parameters or coordinates of indexing dimensions increases, these tables become unwieldy. For
example, Silva et al. [2015] use a rather massive table of summary statistics when analyzing data
of wildfires in Portugal between 1990–1994. The limited capacity of human cognition could be
a hurdle for users like decision-makers to grasp the uncertainty presented in tables of this sort
and assess the risk appropriately. The numerical data presented are usually statistics like mean,
standard deviation or confidence intervals, which could mislead or overwhelm unfamiliar users.

A static representation of the inference data in summary tables cannot communicate sensi-
tivity of the parameters, which would allow decision-makers to assess the impact of parameter
inter-dependencies and associated risks. Communicating the prior would imply communicating
a second table of similar complexity, which is often omitted in reports of Bayesian probabilistic
models. For example, Table 4.1 presents the summary statistics of the posterior of the eight
schools’ hierarchical model. The ArviZ API (arviz.summary) was used to produce this
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Figure 4.7: Graphical representations of the eight schools model.(a) DoodleBUGs graph, (b)
PyMC graph using the Graphviz interface, (c) Kruschke-style diagram, (d) IPME representation.

table.
Another way of communicating inference results is by generating an uncertainty visualiza-

tion to show the marginal distribution for each model’s parameter independently. This solution
is not very common, although it is more informative than the tables of summary statistics. The
reason for this is that it leads to a large number of visualizations in the case of many-parameter
models, which are difficult to communicate in a concise way. For example, Fig. 4.8 presents the
posterior densities for the parameters of the eight schools’ hierarchical model. Although, this
is a rather simple model, we see that it produces 10 different uncertainty visualizations. This
number could rise even more if the parameters of the model had more indexing dimensions or
the indexing dimensions more coordinates.
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Table 4.1: Posterior statistics in a tabular format for the eight schools’ hierarchical model. This
is a rather simple model and the table only consists of ten rows. This number could rise im-
mensely if the model had more parameters or the parameters had more (multi-valued) indexing
dimensions.

mean std HDI_5% HDI_50% HDI_95%

mu 4.479 3.392 -1.090 4.562 10.012

theta[0] 6.524 5.849 -1.590 5.937 16.632

theta[1] 5.128 5.001 -2.892 5.104 13.255

theta[2] 3.991 5.589 -5.179 4.226 12.165

theta[3] 4.923 5.094 -3.503 4.914 13.160

theta[4] 3.519 4.934 -5.189 3.895 10.993

theta[5] 4.142 4.973 -4.137 4.311 11.903

theta[6] 6.697 5.294 -0.998 6.197 16.067

theta[7] 5.026 5.667 -3.804 4.877 13.716

tau 4.127 3.144 0.937 3.281 10.151

IPME presents an overview of the model’s parameters in two similar tree-like structures for
the prior and posterior that are as big as the number of the model’s parameters. The number
of indexing dimensions or coordinates does not affect the size of the graphical representation,
in comparison to the summary statistics tables or uncertainty visualizations where each extra
coordinate results in an extra row in the table or an extra graph, respectively. The presentation
of inference results with IPME becomes more compact and concise. Users have more flexibility
in the exploration of inference results with IPME; they can define the coordinates of the indexing
dimensions, expand the nodes of interest and collapse the rest, compare priors to posteriors.



CHAPTER 4. INTERACTIVE PROBABILISTIC MODELS EXPLORER 88

Figure 4.8: The posterior densities of the eight schools’ hierarchical model presented in the
style introduced by Kruschke [2015]. Although, this is a rather simple model, we can see that
it can produce 10 different uncertainty visualizations. This number could rise even more if the
parameters of the model had more (multi-valued) indexing dimensions.

4.5.3 Comparison of IPME with Existing Visualization Libraries for Bayesian
Analysis

There are various existing visualization libraries specialised for presenting the outputs of Bayesian
analysis. The aim of this section is to present the main visualization features the most commonly
used such libraries offer and compare them to the proposed IPME tool. Table 4.2 provides a com-
parative summary presentation of these tools including the IPME, based on a set of visualization
and analysis means for inference results in Bayesian analysis.

Kumar et al. [2019] created ArviZ, a unified Python tool for exploratory analysis, processing
and visualization of the inference results of probabilistic programming models. ArviZ integrates
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Table 4.2: Comparative presentation of existing Bayesian analysis visualization libraries includ-
ing IPME. IPME offers unique features that are not encountered in any other of the existing
tools; the interactive exploration of the (MCMC) sample space and the graphical analysis of the
model.

ArviZ bayesplot tidybayes shinystan IPME

Visual summaries of parameters yes yes yes yes yes

Numerical summaries of parameters yes no yes yes no

PPL/MCMC-algorithm independent
input

yes yes no no yes

MCMC diagnostics yes yes no yes no

Predictive test statistics yes yes no yes yes

Semantic definition of indexing di-
mensions and coordinates

yes no yes no yes

Interactive customization of visu-
al/numerical summaries

no no no yes yes

Interactive exploration of MCMC
sample space

no no no no yes

Graphical analysis of model no no no no yes

seamlessly with various established PPLs, which makes it a very powerful tool in the field of
Bayesian data analysis. While it has sophisticated tools for visualising trace statistics and model
diagnostics, it does not analyse the model graph, nor does it offer interactive visualisation tools.
A corresponding tool in R is bayesplot [Gabry and Mahr, 2020], which provides a variety of
plotting functions and MCMC diagnostics for users working with a variety of R packages for
Bayesian modeling, such as RStan or packages powered by RStan, such as rstanarm or brms
packages. Another visualization tool of Bayesian analysis in R is tidybayes [Kay, 2020]. Tidy-
bayes extracts, manipulates, and visualizes prior and posterior samples from Bayesian models
of a range of PPLs and Bayesian analysis packages (JAGS, Stan, rstanarm, brms, MCMCglmm,
coda) in a tidy data format. Common visualization primitives (ggplot geometries) are exploited
for the visualization of priors and posteriors like quantile dotplots, eye plots, point/interval sum-
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maries, and fit curves with multiple, arbitrary uncertainty bands.
Shinystan [Stan Development Team, 2017] is a web-based interactive Bayesian exploratory

tool in R, which is PPL-agnostic and offers “customizable visual and numerical summaries of
model parameters and convergence diagnostics for MCMC simulations”. This tool, although
it exploits interactivity to customize the visual presentation of the data, it does not offer the
possibility of exploring prior and posterior sample space through interactive conditioning or any
analysis of the model’s graph.

4.6 Use Case Scenarios

This section presents use case scenarios, where IPME is used in realistic modeling problems.
IPME could assist modelers in model checking and validation. IPME provides two possibilities
for checking the model. The first arises through the prior interactive graphical representation,
where users could explore and observe the prior beliefs that were set during the model defini-
tion process and the prior predictive distributions along the various coordinates of the indexing
dimensions. The consistency of the model’s priors with prior knowledge and experience could
be investigated in this way. The second arises from the prior and posterior predictive model
checking with predictive p-values. Users could observe how well aspects of the observed data
are represented in the predictions of the model.

IPME could also help users acquire a more intuitive comprehension of various aspects of the
model and inference results. This could be achieved through interactivity. IPME offers two types
of interactivity; the interaction with the indexing dimensions that allows the exploration of the
data from different viewpoints, and the interactive conditioning on the sample space that allows
the exploration of the prior and posterior sample spaces. The first type of interactivity could
reveal similarities or differences between groups of data. The second type of interactivity could
reveal associations between parameters, changes in the parameters and predictions uncertainty
under certain circumstances (conditions), or the effects of priors on posteriors. The following
use case scenarios illustrate all the above.

4.6.1 Drivers’ Reaction Time

The first use case is based on the drivers’ reaction time problem used in Chapters 1, 2, and 3.
The data scientist of the logistics company created a homogeneous and hierarchical probabilistic
linear regression model to predict the reaction times of the drivers on each day of driving (see
models’ definition in Box 4.3). The bigger the slope of the regression line is, the more tired
(bigger reaction times) the drivers get after consecutive days of driving. The data scientist used
PyMC3 for the specification of the model and the inference, arviz_json to export the models
in a standardized format, and IPME to visualize the models and their outputs (Python code can
be found in Appendix A.3).
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Box 4.3 The Drivers’ Reaction Time Models Defined by the Data Scientist
The data scientist of the logistics company specified the following probabilistic regression

models for the drivers’ reaction time problem. The homogeneous model is described by the
following probabilistic statements:

a∼ Normal(µ = 100,σ = 250) (4.5)

b∼ Normal(µ = 10,σ = 250) (4.6)

sigma∼ Half-Normal(µ = 0,σ = 250) (4.7)

y_predi ∼ Normal(µ = a+t ·b,σ = sigma), (4.8)

where i ∈ [0,17] indexing the drivers, t ∈ [0,9] indexing the days of driving, and
y_predi denotes the predicted reaction time of driver i.

The hierarchical model is described by the following probabilistic statements:

mua ∼ Normal(µ = 100,σ = 250) (4.9)

sigmaa ∼ Half-Normal(µ = 0,σ = 250) (4.10)

mub ∼ Normal(µ = 10,σ = 250) (4.11)

sigmab ∼ Half-Normal(µ = 0,σ = 250) (4.12)

sigmasigma ∼ Half-Normal(µ = 0,σ = 200) (4.13)

ai ∼ Normal(µ = mua,σ = sigmaa) (4.14)

bi ∼ Normal(µ = mub,σ = sigmab) (4.15)

sigmai ∼ Half-Normal(µ = 0,σ = sigmasigma) (4.16)

y_predi ∼ Normal(µ = ai+t ·bi,σ = sigmai) (4.17)

where i ∈ [0,17] indexing the drivers, and t ∈ [0,9] indexing the days of driving, and
y_predi denotes the predicted reaction time of driver i.

4.6.1.1 Model Check

The data scientist uses the IPME first to check the models. Both models predict a priori negative
slopes (Fig. 4.9 and 4.10) meaning that drivers could have faster reaction times as days pass by.
This is not realistic, but could happen with a small probability. The models also predict negative
reaction times meaning that drivers could react before even they see a stimulation. Very big
reaction times, close to tens of seconds, are also predicted as we move closer to the 10th day. It
seems that the priors might not fit well the prior knowledge about the problem.
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Figure 4.9: The prior IPME representation of the homogeneous drivers’ reaction time model.
The model predicts negative slopes, negative and very big (tens of seconds) values of reaction
times a priori, which indicates that the priors might not fit well with the prior knowledge about
the problem.
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The data scientist wonders which model of the two is the most appropriate, and thus, ob-
serves the posterior predictive test statistics of both models. Fig. 4.11(a) and (b) present the
four histograms for the homogeneous and hierarchical model, respectively. The homogeneous
model gives a very low posterior p-value for the min test statistics, which is improved in the
hierarchical model. The hierarchical model improves the p-values of the min, max, and std
test statistics of the observations in the predictions.
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(a)

(b)

Figure 4.11: The posterior predictive test statistics of the (a) homogeneous and (b) hierarchical
drivers’ reaction time model. The hierarchical model improves the representation of the min,
max, and std test statistics of the observations in the predictions.
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4.6.1.2 Interactivity

Using the interactive drop-down menus, the data scientist observes the posterior predictive dis-
tribution of each driver on the same day of driving and realizes that the homogeneous model
does not present significant differences in the uncertainty of the predicted reaction times among
drivers in contrast to the hierarchical one, which actually does (Fig. 4.12 and 4.13) (this topic
was discussed in Sections 2.2.4.1 and 2.2.6). The data scientist chooses the hierarchical model
and passes it over to the logistics’ manager.

(a)

(b)

Figure 4.12: The IPME representation of the drivers’ reaction time models, where we set the
driver to 308 and observe the posterior predictive distribution of the reaction times for the ho-
mogeneous and hierarchical model. The posterior predictive distribution of the reaction times
for driver 308 and the (a) homogeneous and (b) hierarchical model. The homogeneous model
does not reveal significant differences among drivers.
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(a)

(b)

Figure 4.13: The IPME representation of the drivers’ reaction time models, where we set the
driver to 309 and observe the posterior predictive distribution of the reaction times for the ho-
mogeneous and hierarchical model. The posterior predictive distribution of the reaction times
for driver 309 and the (a) homogeneous and (b) hierarchical model. The homogeneous model
does not reveal significant differences among drivers.
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The logistics’ manager has to choose between two available drivers, driver 310 and 335,
who would take over an urgent shipping of a cargo that had to be delivered in 6 days, although it
would normally require 9. Using the drivers drop-down menu, the logistics’ manager observes
the uncertainty of the predicted reaction times for both drivers on the 6th day of driving (Fig. 4.14
and 4.15); driver 310 has a wider distribution (more uncertainty), but centered to lower reaction
times, whereas driver 335 has a tighter distribution (less uncertainty), but centered to higher
reaction times.

The logistics’ manager would like to see how the uncertainty of the predicted reaction times
would look like in the worst case of the model’s predictions; the bigger values of slope. He sets
a condition on the hyperprior of the mean value of the slopes to restrict the posterior sampling
space to higher values of slopes (Fig. 4.14 and 4.15). The distribution of driver 310 becomes
wider with a slight shift to lower reaction times, whereas the distribution of driver 335 becomes
again wider with a slight shift to higher reaction times. It seems that driver 310 is more ro-
bust to the worst case conditioning, although initially he was having more uncertainty over his
predictions in comparison to driver 335.

A video demonstrating a similar scenario can be found in the talk Taka [2020c].
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4.6.2 Stochastic Volatility

There are periods of time when assets’ returns are highly variable, which implies greater uncer-
tainty about the actual value of the returns of the assets the next day. The day returns of assets is
defined as the difference in asset’s price at the end of the day (Pt−1) in comparison to the start
of the day (Pt) over the initial asset price at the start of the day, Rt = (Pt−Pt−1)/Pt−1. Box
4.4 provides the definition of a probabilistic model to predict the returns of assets.

Box 4.4 The Stochastic Volatility Model
The models that are used to predict the assets’ returns use a latent variable volatility.

The following probabilistic statements relate the returns variable to the volatility
parameter based on the specification of such a model (see more details in Appendix A.4):

step_size∼ Exp(λ = 50) (4.18)

ν ∼ Exp(λ = 0.1) (4.19)

volatilityt ∼ Normal(µ = volatilityt−1,σ = step_size−2) (4.20)

returnst ∼ StudentT(ν = ν ,λ = exp(−2 ·volatilityt)) (4.21)

4.6.2.1 Model Check

By looking at the range of x-axis of the prior predictive distribution of the returns variable in
Fig. 4.16, we realize that the model produces extremely large values of prior predictive returns
for some coordinates of the indexing dimension. These values are not reasonable, especially if
we think that “the total value of all goods and services the world produces is $109.”9 We might
need to change our prior distributions because they seem to fail to capture the prior knowledge
well.

9https://www.pymc.io/projects/docs/en/v3/pymc-examples/examples/case_
studies/stochastic_volatility.html
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Figure 4.16: The prior IPME representation of the stochastic volatility model.
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4.6.2.2 Interactivity

It is difficult to explain how volatility affects the predictive distribution of returns
based solely on the model specification. For example, does increasing volatility mean
that returns will increase, too? To reason about this, users would need to be familiar with
the λ parameter of the student-t distribution and with the exponential transformation. Using
IPME we can answer such questions by using the interactive conditioning option. When we
restrict the volatility to values higher than −4.5 (Fig. 4.17), the predictive distribution of
the returns variable becomes wider and therefore, there is more uncertainty about the values
of the returns. On the other hand, when we restrict the volatility to values lower than−5.1
(Fig. 4.18), the predictive distribution of the returns variable becomes tighter and there is
less uncertainty about the values of the returns.
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Figure 4.17: The posterior IPME representation of the stochastic volatility model. The updated
posterior graphical representation after restricting the volatility to values greater than -
4.5 is shown.
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Figure 4.18: The posterior IPME representation of the stochastic volatility model. The updated
posterior graphical representation after restricting the volatility to values smaller than
−5.1 is shown. The greater the value of the volatility, the more uncertain the model
becomes about the predicted values of the returns.
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In this example we could also use interaction to observe the effect of priors’ informativeness
on the posteriors. The model uses a quite wide exponential distribution (with λ = 0.1) as a
prior for the degrees of freedom parameter (ν) of the student-t distribution. We could set a
condition on the prior distribution of (ν) to make it tighter and see how the posteriors will
change. We restrict ν ∈ [21.0,30.0] in Fig. 4.19(a). The posterior distribution of volatility
and the posterior predictive distribution of returns on date 02/05/2008 become tighter in
Fig. 4.19(b). It is obvious that the more informative a prior is, the less uncertainty the model
gives to its predictions.

(a) (b)

Figure 4.19: The IPME representation of the stochastic volatility model where we set the con-
dition ν ∈ [21.0,30.0]. The (a) prior and (b) posterior graphical representation. The posterior
distribution of volatility and the posterior predictive distribution of returns become
tighter. More informative priors make the model to be more certain about its predictions.
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4.6.3 Coal Mining Disasters

The coal mining disasters model in Box 4.5 models the recorded coal mining disasters in the
UK from 1851 to 1962 [Jarrett, 1979]. During this period changes in the safety regulations
are thought to have influenced the frequency of disasters. Thus, the model tries to predict a
switchpoint, when the disasters seemed to start declining.

Box 4.5 The Coal Mining Disasters’ Model
The following probabilistic statements define the probabilistic model that was created to

infer the period of time when most probably a change in the safety regulations took place
(see more details in Appendix A.5):

disasterst ∼ Poisson(λ = ratet), ratet =

early_rate if t ⩽ switchpoint

late_rate if t > switchpoint
(4.22)

switchpoint∼ Uniform(a = tl,b = th) (4.23)

early_rate∼ Exp(λ = 1) (4.24)

late_rate∼ Exp(λ = 1) (4.25)

where disasterst is the number of disasters in year t, ratet the rate parameter of the
Poisson distribution in year t, switchpoint is the switchpoint, namely the year, when
the change in the safety regulations occurred and there was a switch in the rate rate,
early_rate is the rate parameter before the switchpoint, and late_rate is the rate
parameter after the switchpoint.

Using IPME we can see that the posterior PMF of the switchpoint variable indicates
that the switch most probably took place at some point around the year 1890 (Fig. 4.20).
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4.6.3.1 Interactivity

We could select the year 1890 from the year drop-down menu so that we can observe the un-
certainty of the posterior predictions about the number of disasters in this year. Most of the
probability mass is concentrated around the values of 1 or 2 disasters. What would happen to
the uncertainty of the model about the number of disasters in year 1890 if the change in the
regulations had happened between 1893-1897?

Fig. 4.21(a) presents how the uncertainty about the disasters’ number changes a priori given
this condition is applied on the switchpoint variable. The prior predictive PMF of the
disasters variable becomes more dispersed, but the model does not seem to believe that
the number of the disasters in year 1890 could be increased given the change in the regulations
happens after 1890. Fig. 4.21(b) shows the posterior predictive PMF of disasters becomes
more dispersed and the probability mass gets slightly shifted towards 4. The model becomes
more uncertain about the number of disasters and the mean value increases slightly. This is
reasonable, because if the regulations changed after 1890, the number of disasters in year 1890
is expected to increase.
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(a)

(b)

Figure 4.21: The IPME representation of the coal mining disasters model. The updated (a) prior
and (b) posterior graphical representation after restricting the switchpoint to values within
the interval 1893−1897. The posterior predictive PMF of the number of disasters in year 1890
shifts towards 4. This is reasonable as we assumed with our conditioning that the regulations
changed at a later time.



CHAPTER 4. INTERACTIVE PROBABILISTIC MODELS EXPLORER 111

4.7 Discussion

4.7.1 Contributions

This section provides an overview of the contributions the proposed novel representation of
probabilistic models, IPME, could have in the field of Bayesian modeling, reasoning, and visu-
alization. IPME was mostly inspired by the work presented in Section 3.4. Hence, it is discussed
here how IPME could enhance the interpretability of Bayesian probabilistic programming mod-
els in terms of informativeness, transparency, and explainability of the model to humans, and
finally, the potential of more trust into the model.

IPME could be seen as an extension of the Kruschke-style diagram [Kruschke, 2015], where
MCMC samples from the prior and posterior distributions are integrated into a visualisation of
the parameters’ distribution. This seamlessly integrates the inference results with the structural
representation in a single compact representation with varying levels of abstraction to provide
modelers and decision-makers with a powerful visualization tool. This increases the informa-

tiveness of a Bayesian probabilistic model.
A probabilistic programming model, expressed as PPL source code, can be too abstract for a

user to understand or too difficult for conducting model validity checks during the model speci-
fication process. The proposed interactive graphical representation provides a broader overview
of a model’s structure. Modelers can at a glance observe the structure of the model and the spec-
ifications of its parameters. Variable granularity makes IPME adaptable to users’ needs, skills
and experience. IPME increases transparency of the model’s structure by balancing levels of
visual abstraction to avoid potentially overwhelming users.

The most important feature of IPME is interaction. This includes sub-setting, indexing/plate
dimension selection and prior/posterior comparisons. Users can restrict the prior or posterior
space by selecting ranges for individual parameters, can slice inference across indexing dimen-
sions, and can quickly compare prior and posterior beliefs. Users can interactively create pro-
jections on the 2D plane of a high-dimensional entity that consists of the model’s parameters,
their indexing dimensions, and the prior and posterior MCMC samples. Users can explore this
“multiverse” of different views of the model’s inference results [Steegen et al., 2016]. In this
way, the proposed interactive graphical representation increases the transparency of the model’s
inference results and observed data.

IPME could be seen as a Bayesian “scrubbing calculator” [Victor, 2011c]. Users can it-
eratively update the restrictions of the sample space based on one or more parameters/indexing
dimensions until they reach certain levels of uncertainty for a parameter or prediction of interest.
This explorability allows the investigation of the sensitivity of the distribution about any param-
eter or the predictions of the model. Although Bayesian reasoning requires reasoning about
joint distributions and conditional probabilities, which are usually prone to misconceptions and
biases [Koehler, 1996; Tversky and Kahneman, 1974], IPME avoids the abstraction of distribu-
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tions and numerical probabilities by allowing “explorable explanations” [Victor, 2011a]. Users
develop an intuitive understanding of the mechanics of the Bayesian inference through active
engagement. The proposed interactive graphical representation increases the explainability of
the model for the users.

IPME integrates visualizations to present prior and posterior predictive checks as part of a
Bayesian workflow. Prior predictive checks could provide evidence of the consistency of the
model with the domain expertise and posterior predictive checks could provide evidence of the
degree that the model is rich enough to capture the essentials of the true data generating process
according to Betancourt [2018]. This is very important in cases where trust in models’ inference
is questionable and modelers or decision-makers need evidence that the assumptions made led
to a model that works as expected. IPME could enhance the trust of the users in the model’s
inference results.

The last contribution is the development of a Python package that automates the creation of
interactive probabilistic models’ explorers from PPLs. This is a unified tool that could become
a valuable tool for users of any PPL. This tool is offered to the research community with the
hope of fulfilling an existing gap in the field of Bayesian probabilistic programming models and
with the hope of raising valuable feedback and possibly contribution for improving its design
and features, and extending its functionalities.

IPME aims at shedding light to the abstraction of the PPL code and the conditional proba-
bilities of Bayesian inference by actively engaging users in exploring the inference results and
developing an intuition about the inherent probability space of the model’s parameters and pre-
dictions. IPME enables users to move around the “ladder of abstraction” [Victor, 2011b] starting
from an abstract representation of PPL code and climbing up to a “multiverse” of concrete fully-
expandable views of inference results in the pursuit of a profounder understanding of the model
and the inference.

4.7.2 Limitations

This section discusses the limitations of IPME’s implementation. First of all, feeding back re-
specified prior distributions and rerunning the inference is something that would be useful, but
requires additional engineering to implement the feedback path to the sampler. For this reason,
there might be cases where restrictions on the sample space exhaust the available samples and
result in very small or empty sample sets. IPME currently does not handle these cases well.
Only a single restriction in the value range per parameter is supported currently.

There are two issues connected to the presentation of the tree-like structure of the graph and
the KDEs that arose during the implementation of the tool. First, because a tree level with many
nodes is not uncommon, the number of nodes in each row should be restricted to avoid horizontal
scrolling. If a tree level has more than some maximum number of nodes, the row is broken into
two or more rows. Because this presentation spoils the tree-like feeling of the structure, the
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rows that correspond to the same level of the tree were left-aligned to give the feeling of the
continuation for these rows. This is analogous to typesetting text: nodes are words, which
are broken at the end of lines for visual presentation, and separated into paragraphs which are
semantically distinct levels, offset with vertical spacing and indentation.

The second presentation issue had to do with the scaling of the KDEs. The KDEs were
not normalized so that the prior and posterior distributions are presented as valid probability
distributions, namely the area under the KDE graph sums to 1. If normalization was applied, this
would obscure changes in the uncertainty in the subsets of the (MCMC) sample set. However,
this lack of normalization could lead to significant differences in the maximum a posteriori
(MAP) estimation10 of the initial and updated KDE in cases of restricting the sample space to
highly dense subsets. In these cases the overlap of the KDEs retaining their scales will present
a very tiny initial KDE in comparison to the updated one and the user might need to use the
“zoom wheel” tool to inspect the initial KDE.

A limitation of the work presented in this chapter is that the design of IPME was not evalu-
ated with human users. Although Section 4.5 discusses the uniqueness of IPME in comparison
to existing tools and Section 4.6 provides a series of illustrative use cases for IPME, the evalua-
tion of IPME’s effectiveness in real user’s comprehension of probabilistic models would provide
evidence about the importance of such visual representations of probabilistic models in facilitat-
ing and making Bayesian inference accessible to a wider audience. Also, although the design of
IPME was guided by a set of objectives identified to support typical Bayesian inference-related
tasks, the details of the design were not informed by the feedback of real users as to whether or
which individual features they think are more useful or preferable.

4.7.3 Future Work

Future work in the field of creating representations of probabilistic models could involve im-
provement of IPME’s design or development of alternative designs to better support users in
their tasks. Future work towards this direction is definitely encouraged through this work. Some
indicative examples of future work that could constitute extension of the work presented in this
chapter are discussed below.

IPME’s design as presented in this work meets the minimum requirements to serve its ob-
jectives. This design could be improved or elaborated as to various aspects like the navigation
of the DAG or users’ flexibility in customization of visual presentation of inference results and
predictive test statistics. For example, interaction could be used to highlight parent nodes when
the user interacts with or hover over a specific node. Faciliating users to sub-set the coordinates
of interest could be useful in case indexing dimensions are of big sizes. This would narrow
down the options in the drop-down menus of indexing dimensions and make navigation of data
easier. More visual primitives (Box plots, CDF plots, quantile dotplots etc.) or more predictive

10https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
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test statistics could be included in a list of pre-implemented features for users to select from and
enable customization according to users’ preferences and scenario requirements. Future exten-
sions of this tool could incorporate recommendations of sets of “interesting” parameters based
on the scenario to provide some sort of guidance through decision-making tasks.

The design of IPME was determined at a considerable degree by the limited flexibility of-
fered by the existing visualization libraries that could be used as a backend (e.g., Bokeh, Panel).
An alternative and possibly more natural design of the view of model’s graph could use the
typical presentation of nodes and edges (arrows). Although visualizing a graph in this way is
possible by using various existing visualization libraries, integrating various annotations and
(interactive) uncertainty visualization plots into the nodes of such graphical representations is
not supported by the existing tools. Future work on developing a graphical representation of
probabilistic models that is more compatible with the typical representation of graphs (with
nodes and edges) would be worthwhile. The presentation of the parent-child relations would be
visually conveyed directly through the arrows (the user now gets this information from the tree-
like structure and the textual information included on the header of each node). Such designs
could be benefited from further interactivity to adjust the granularity of the presented informa-
tion: e.g., making the nodes clickable to hide or expand the sub-tree rooted at the node that is
clicked. Such design options would facilitate the scalability of the representation for increased
complexity of the model.

Evaluation user studies could inform the design of IPME and lead to improved and more
effective representations based on feedback provided by real users or the evaluation of their
performance in various tasks given different possible alternative designs.

The presented design of IPME in this chapter can only support querying the precomputed
results of Bayesian inference. An alternative design could support closing the loop between the
user interface and the rest of the components in a typical inference system; the observed data,
model, and inference. Such an alternative design could enable users to retrieve more inference
data possibly in subsets of the sampling space, update the priors, or even to set disbelief upon the
presented data. In this way, we would move from exploring static inference results to exploring
dynamic inference results.

For example, in IPME a user conditional query in the sample space of the model leads to
the calculation of the conditional distributions in the precomputed restricted sample space and
not to rerunning the inference. In a closed-loop tool each user conditional query in the sample
space of the model could lead to rerunning the inference and the tool could enable exploring
how the posterior is updated when the users’ constraints are applied to the model as a new
(prior) knowledge. This could convert IPME into a tool of “interactive Bayesian inference” in
the notion of “interactive machine learning” [Kulesza et al., 2015]. Work towards this direction
would most possibly require the possibility of running the inference with close to real-time
performances.
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4.7.4 Conclusions

A generic pipeline was presented to transform a probabilistic programming model and associ-
ated sample-based MCMC inference results into a standardized format which can then be auto-
matically translated into an interactive probabilistic models explorer, a novel representation of
Bayesian probabilistic models that fuses structural and distributional display. An initial tool was
developed to render these interactive graphical representations from standard PPL definitions.
This representation aims at a threefold representation effort; the representation of a collapsible
tree-like structure of the model’s variables and parameters to reveal internal levels of statistical
or mathematical dependencies among them; the representation of each inferred parameter as a
node that presents graphically the prior or posterior marginal distribution of the inferred param-
eter’s MCMC samples; the representation of the observed variables through prior or posterior
predictive distributions of the model’s predictive samples. Appropriate uncertainty visualization
techniques are used to graphically represent the marginal distributions.

The added value of this representation lies in the interaction. Slicing on indexing dimensions
or forming conjunctive restrictions on parameters by interacting with distribution visualizations
are supported. Each user interaction with the explorer triggers the reestimation and visualiza-
tion of the model’s uncertainty based on the users’ preferences. This closed-loop exchange of
responses between the user and the explorer allows the user to gain a more intuitive comprehen-
sion of the Bayesian probabilistic model.

IPME provides at-a-glance communication of a probabilistic program’s structure and uncer-
tainty of latent parameters, and allows interactive exploration of the multi-dimensional prior or
posterior MCMC sample space. The representation was designed with the principles of enhanc-
ing informativeness, transparency and explainability and ultimately, the potential of increasing
trust in models. PPLs have made sophisticated statistical methods available to the mainstream,
but the user interface lags behind. There is enormous potential in interactive exploratory tools
for probabilistic models that support the elicitation, validation and presentation of Bayesian
probabilistic models.



Chapter 5

Using Interactive Conditioning for
Supporting Users’ Understanding of
Probabilistic Models

5.1 Summary

This chapter presents the second part of this research. The focus of this part is on interactive
conditioning of a probabilistic model’s distribution and what effect this could have on users’
comprehension of probabilistic models’ structure (i.e., how the variables are related). A hy-
brid design of a visualization of a model’s distributions is explored: the interactive pair plot
(IPP). This is a scatter plot matrix of the distribution of a probabilistic model allowing IPME’s
interactive conditioning on the model’s variables. A user study was conducted to investigate
whether interactive conditioning in a scatter plot matrix of a model helps users better under-
stand variables’ relations in comparison to static scatter plot matrices and without conveying the
mathematical details of these relations.

Section 5.2 discusses the purpose of this work, Section 5.3 describes the structural aspects
of variables’ relations and presents existing ways to visualize them, Section 5.4 presents the
details of the design and implementation of IPP, Section 5.5 presents the concrete research
questions investigated by the user study, while Section 5.6 details the design of the user study.
Finally, Section 5.7 presents the analysis of the collected data and the results that occured, and
Section 5.8 discusses the findings, practical implications, and limitations of the user study.

5.2 Purpose

The emergence of PPLs made probabilistic modeling accessible to a broader audience. Despite
growing interest, analysis methods based on probabilistic models are not widely adopted. Non-
experienced researchers who conduct experiments and analyze data do not feel confident to use
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Figure 5.1: Visual representations of Model 1 of user study. Definitions in Textual Languages:
(a) Probabilistic statements. (b) PPL code (PyMC) of model for Bayesian inference. A likeli-
hood is defined for the observed variable temperature to account for the list temp_list of
N observed temperatures for a set of years. Graphs: (c)-(f) Transcriptions of model in various
graph representations.

such methods for the analysis [Hullman et al., 2019; Kay et al., 2016b] even when they have
access to learning and exploration tools [Phelan et al., 2019]. Users, who need to rely on such
models to do their job, might find it difficult to understand their structure. Decision-makers with
moderate statistical background might make uninformed and potentially risky decisions because
they cannot understand the effect of intervening on a variable upon other variables in a model.
The mathematical definition of probabilistic models can be complex, unintuitive and hard to
understand even for more experienced users [Sarma and Kay, 2020].

Understanding the relations among variables in a probabilistic model given definitions of
the model in textual languages or graphs [Ellson et al., 2004; Koller and Friedman, 2009; Kr-
uschke, 2015; Spiegelhalter et al., 2003] (Fig. 5.1) is very much dependent on users’ statistical
knowledge. For example, variable b in Model 1 (Fig. 5.1(a)) controls the mean value of vari-
able temperature. Increasing b’s value would increase temperature’s mean value. In
models where relations are governed by more complex statistical or mathematical associations,
it requires good statistical knowledge to tell what the effect of a variable on others would be.

There is a need for tools to communicate variables’ relations in probabilistic models more
intuitively and help users to conduct their tasks without having to delve into the mathematical
details of the models’ definitions. For example, such tools would be useful for a clinician, who
needs to understand how the dose of a medicine might affect the treatment of a disease and might
need to understand how the parameters of the treatment’s distribution are set by the variable of
the medicine’s dose. Or such tools would be useful even for model builders who might want to
check and validate their models.

Variables’ relations in a probabilistic model can be visualized through visualizations of vari-
ables’ distribution. Scatter plot matrices present variables’ pairwise distributions conveying ex-
isting correlations. IPME uses interactive conditioning implemented as a brushing-and-linking
interactivity on KDE plots to enable a form of “sensitivity analysis” of the variables and reveal
their relations.

Various visualization designs were explored in the literature to facilitate reasoning about
unintuitive mathematical concepts like uncertainty [Correll and Gleicher, 2014; Hullman et al.,
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Figure 5.2: Visualizations of variables’ relations in Model 1 of user study. Joint & Marginal
Distributions: (a)-(c) The prior and posterior joint (3D surface plots) and marginal distributions
(line plots on cube faces) of variables temperature, and b, a, or c, respectively. The yellow
stars represent the observations in temp_list. Scatter Plots: (d)-(k) Samples and contours of
variables’ pairwise prior joint distributions. Conditioning facilitates the interpretation of scatter
plots’ shape. For example, conditioning on b in sequential increased ranges in (e)-(g), increases
the mean value (white dot) of temperature’s distribution. Interactive Conditioning with
IPME: (l)-(s) IPME-like representation. Interactive conditioning is applied on the prior marginal
distributions of b, a, or c and the conditional marginal distributions are drawn (in orange).

2015; Kay et al., 2016a] and Bayes’ rule [Brase, 2009; Cole, 1989; Micallef et al., 2012; Mosca
et al., 2021; Ottley et al., 2012, 2016; Tsai et al., 2011]. Brushing-and-linking [Becker and
Cleveland, 1987; McDonald, 1982; Newton, 1978], although it is often present in scatter plot
matrices to help with the exploration of multidimensional data, is rarely evaluated for its effi-
ciency with real test subjects [Martin and Ward, 1995; Sankaran and Holmes, 2018].

This work explores a “hybrid” design as to its ability to communicate variables’ relations in
a probabilistic model; the interactive pair plot (IPP) (the code can be found in [Taka, 2020b]).
This is a classical scatter plot matrix that integrates IPME’s interactive conditioning with some
additional sample highlighting (i.e., brushing). IPP is different from IPME in that it presents the
pairwise distribution of a model’s variables so that any correlations become explicitly glanceable
through the scatter plots. IPP is also different from the classical scatter plot with brushing-and-
linking in that it enables users to explore the “sensitivity” of the parameters’ or predictions’
distribution to the values a certain parameter in the model might take (the conditional marginal
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distributions of the model’s variables are calculated and drawn as it will be explained in Sec-
tion 5.4). This is achieved through the feature of IPME’s interactive conditioning.

IPP offers more flexibility in the exploration of a probabilistic model’s distribution than the
classical scatter plot matrices, which constitute the most common way of presenting the pairwise
distributions (and correlations) of a probabilsitic model’s variables. This is due to the interactive
conditioning option. In existing literature there is contradictive evidence in regard to the benefits
of interaction for users when this is used in visualization. To investigate whether there is added
value to scatter plot matrices attributed to interactive conditioning an evaluation user study with
human participants was conducted in which IPP was used as a visualization instance.

More concretely, the user study investigated whether users make better inferences about
variables’ relations presented in a scatter plot matrix when they use interactive conditioning
in comparison to simply observing a static scatter plot matrix. The focus was on which lev-
els of detail of variables’ relations (Section 5.3.1) and which probabilistic model designs (e.g.
hierarchical structures, complex parameterizations of variables’ distributions) (Section 5.6.1)
interactive conditioning can be more beneficial for. The concrete research questions that were
investigated are the following: RQ1: Does interactive conditioning when used on pair plots
help users understand the structure of probabilistic models more accurately, faster, and
with more confidence? RQ2: Are there levels of detail of variables’ relations or model de-
signs for which interactive conditioning is beneficial? Participants’ accuracy, response times,
and confidence was measured.

This user study provides useful evidence as to what extent (level of detail of relations or
model designs) interactive conditioning of a probabilistic model’s distribution could facilitate
people’s comprehension of model’s structure without conveying details about the mathematical
definition of the model. These types of investigations are important to guide research in visual-
ization of probabilistic models and inference results towards a direction to first, support users in
tasks in which they cannot or do not need to comprehend the mathematics, and second, make the
mathematics more intuitively explainable through the visualization. In the user study presented
in this chapter, IPP is evaluated as to its ability to convey variables’ relations in a probabilis-
tic model through visual means like graphs and interactive conditioning independently of the
complexity that might govern these relations.

5.3 Relations of Probabilistic Models’ Variables

5.3.1 A Hierarchy of Variables’ Relations

Two random variables in a probabilistic model are related when one is used for setting the
distribution’s random-valued (non-fixed) parameters of the other. In this work three levels of
detail, from lowest to highest, are identified to characterize such relations among variables in a
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model. These levels are used in the user study conducted to evaluate users’ understanding in the
different levels of detail as it will be explain in Section 5.5.

L1 Existence. Are variables related? Variable temperature is related to b and c, but not
to a in Model 1 (Fig. 5.1(a)).

L2 Polarity. What is the sign (positive or negative) of the polarity of the effect one variable
has on another? The µ parameter of temperature’s distribution increases when the
value of b increases in Model 1 (positive polarity), while it would decrease if it was set
equal to -b (negative polarity).

L3 Quantification. How are variables related? A relation is quantified by the specific statisti-
cal associations (which parameters of a distribution are affected by a variable) and formula
(mathematical transformation or equation) that sets it. Variable b sets temperature’s µ

parameter through a simple assignment. A transformation exp(b) or an equation 5−2 ·b
could be more complex ways to do so.

The following subsection discusses how variables’ relations could be represented through the
existing visual representations, and explains which of these levels of detail could be retrieved
from these representations, and how.

5.3.2 Visualization of Variables’ Relations

Textual Language Definitions. Variables’ relations (L1) and their quantification (L3) are re-
trievable through an at-a-glance observation of the model’s definition in probabilistic statements
(Fig. 5.1(a)) or PPL code (Fig. 5.1(b)). Retrieving the polarity of variables’ effects (L2) is de-
pendent on the ability of the user to interpret the mathematical details.

Graphs. Graphs (Fig. 5.1(c)-(f)) can hide the mathematical details of probabilistic models,
while preserving some structural information. The edges (directed arrows) from one variable to
another indicate the direction of the relation between the two variables. Given a graph, users
could view relations among variables (L1) at a glance (through the existence or absence of
edges). In the case of the more informed graphs like Kruschke diagrams, users could even ob-
serve the exact statistical associations or mathematical equations (L3). But inferring the polarity
of the effect of a variable on other variables (L2) is still very much dependent on the ability of
the users to understand the mathematical details.

To convey relations’ polarity (L2) visually, we need to incorporate representations of the
model’s real-data uncertainty.

Joint & Marginal Distributions. A model’s joint distribution is multivariate. The pairwise
joint or marginal distributions of the variables could be represented (Fig. 5.2(a)-(c)). While KDE
plots are a common way of representing marginal distributions, 3D surfaces are rarely used for
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representing the pairwise joint distributions especially in the context of probabilistic modeling.
Contour and scatter plots are more commonly used for this instead. There are various existing
visualization libraries to create such representations for Bayesian analysis (ArviZ [Kumar et al.,
2019], bayesplot [Gabry and Mahr, 2020], tidybayes [Kay, 2020], shinystan [Stan Development
Team, 2017]).

Variables’ relations (L1), their polarity (L2) and aspects of their quantification (e.g. statis-
tical associations) (L3) are conveyed by the shape of scatter and contour plots. Conditioning
could help interpreting the shapes of these plots in regards with these three aspects of variables’
relations, and retrieving them from KDE plots alone, as it is explained below.

Scatter Plots. The shape of a scatter plot of samples and contours representing a 2D distri-
bution can reveal relations between the two variables. For example, the well-elongated elliptical
shape of the scatter plot of temperature and b in Fig. 5.2(d) implies the existence of a rela-
tion, while the rectangular shape of the scatter plot of temperature and a the absence of a
relation (L1). In the first case, increasing values of b lead to higher mean value of the distribu-
tion of temperature, while in the later, increasing values of a do not affect the distribution
of temperature. The shape of the scatter plot reveals the polarity of the relation (L2) and the
statistical associations (b controls the µ parameter of temperature’s distribution) (L3). The
effect becomes more evident if the sample set is divided into subsets of samples for sequential
increasing ranges of b (Fig. 5.2(e)-(g)).

Interactive Conditioning with IPME. Interactive conditioning could also be used to convey
information about variables’ relations through KDE plots. In IPME the interactive conditioning
of the marginal distributions and the presentation of the conditional marginal distributions of
the variables are possible. For example, comparing the marginal distribution of temperature
(drawn in blue) with its three sequential conditional marginal distributions (drawn in orange)
in Fig. 5.2(m)-(o) while conditioning on b in three increasing and sequential ranges, we could
infer a relation such that increasing values of b lead to higher mean value of the distribution of
temperature (reveals L1, L2, and statistical associations in L3). Conditioning is applied by
the user by dragging a fixed-height and variable-width selection box in KDE plot corresponding
to the conditioning variable.

Scatter Plot Matrix. A Scatter plot matrix (or pair plot) presents the pairwise joint and
marginal distributions of a model’s variables. ArviZ offers the ArviZ Point Estimate Pairplot
(APEP) [ArviZ Point Estimate Pairplot], which presents variables’ joint samples and contours of
the pairwise distributions on the bottom corner of the matrix and the KDE plots of the marginal
distributions on the diagonal. Scatter plot matrices usually offer selection tools for applying
data filtering (conditioning). In this work the interactive pair plot (IPP) is introduced; that is
an interactive scatter plot matrix like APEP that incorporates IPME’s interactive conditioning
on the KDE plots to present the conditional marginal distributions. Section 5.4 presents IPP in
more detail.
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IPME and IPP implement interactive conditioning as a brushing-and-linking effect. Brushing-
and-linking is an interactive approach usually used on static visualizations of multivariate data
like scatter plot matrices. This method is useful in many tasks like analyzing subsets of multi-
variate [Elmqvist et al., 2008; Martin and Ward, 1995; Nguyen et al., 2016, 2020] or hierarchical
[Sankaran and Holmes, 2018] data which could not easily be conducted through static visualiza-
tions. The added value of brushing-and-linking to static visualizations is rarely the main focus
of evaluation user studies. For example, Nguyen et al. [Nguyen et al., 2020] found that an
interactive version of a scatter plot visualization improved the accuracy of users in data explo-
ration compared to static versions of it. The effect of brushing-and-linking alone could not be
evaluated through this study design because the provided interactivity ranged from choosing the
number of plot panels to brushing-and-linking.

A user study was designed as part of this work to investigate whether users can infer struc-
tural information about probabilistic models presented in scatter plot matrices and whether there
is an effect of interactive conditioning in scatter plot matrices on users’ performance on infer-
ring this information. A visualization-only design was followed for a clearer experiment design;
the questions included the visualization and no textual or mathematical (e.g. probabilistic state-
ments) description of the model to exclude any effect on participants’ performance (to identify
structural relations) from other sources of information other than the scatter plot matrix and
interactive conditioning.

Through this user study, the intention is to collect evidence about how well the distributional
information of probabilistic models shown in scatter plot matrices and explored through inter-
active conditioning is understood and interpreted by participants. These types of experiments
are especially important to understand to what extent such designs of exploratory visualizations
could support tasks without necessarily to communicate the mathematical details of the model
and expect lay users to understand them. For example, a decision-maker with poor statistical
background, who needs to have a good understanding of how one parameter affects another or
how sensitive one parameter is to various values of another parameter, does not have to know
the mathematical details of the model as long as they have an informative representation of it.

5.4 Interactive Pair Plot

IPP (Fig. 5.3) was designed by combining elements from the designs of APEP and IPME visu-
alizations, and adding some extra highlighting. The design of the APEP was replicated in terms
of the outlook of the pair plot. The scatter and contour plots of variables’ pairwise joint samples
and distribution are presented on the columns and rows of the matrix’s lower triangle, and the
KDE plots of the variables’ marginal distributions on the diagonal.

IPP was built on IPME’s framework inheriting its design elements (e.g., plot’s style and
attributes like the grey background, color palettes, rug plots’ inclusion of variables’ samples
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Figure 5.3: IPP of Model’s 1 variables. A selection box is dragged and drawn on the KDE
plot of variable b restricting its range to [12− 40]. The conditional marginal distributions of
the variables are drawn (in orange) in the KDE plots on the diagonal and the samples in the
restricted sample space are highlighted (in orange) in the scatter and rug plots.

on the KDE plots, side interactive toolbar, and the interactive conditioning’s mechanism and
design) and limitations (e.g., inflexibility in rerunning online (prior) sampling or inference to
get more samples in sub-ranges of model’s sample space with few or no samples, or applying
multiple conditions on a single variable).

The interactive conditioning’s design in IPP replicates IPME’s corresponding brushing-and-
linking interactivity. The KDE plots (on the diagonal) can be interactively conditioned by drag-
ging and drawing a fixed-height and variable-width selection box (brushing) and the KDE and
rug plots are updated (linking) with the KDEs of the conditional distributions being drawn and
samples in the restricted sample space being highlighted in orange exactly like in IPME. The
choice of the selection box was limited by the offered options of the Bokeh visualization library
used in the backend. The interactive conditioning’s design in IPP was enhanced by adding the
highlighting of the joint samples in the scatter plots (linking) in orange color for consistency.
The intention was to replicate the typical linking effect encountered in scatter plot matrices. A
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video demonstrating IPP’s interactivity can be found in [Taka, 2020a].
Both the discrete (scatter plots, rug plots) and continuous (KDEs, contours) representations

of model’s distribution encountered in APEP and IPME were kept in IPP to complement each
other. The contours and KDEs illustrate how the density of the samples change with the value
of the variables. Without these plots, identification of high probability density value ranges
would be difficult especially in cases of high-density sampling that creates visual overlaps of
samples. The scatter plots and rug plots of samples provide a discretized form of the continuous
representations, which according to existing literature could better support people’s reasoning
for uncertainty [Hullman et al., 2015; Kay et al., 2016a].

IPP’s API considers subsets of variables of interest to deal with the quadratic scaling in
area of the scatter plot matrix with the number of variables. This would be especially useful,
for example, when users might want to inspect only an aspect of complex models with many
variables or deep-hierarchy structures.

Submit

The visualization presents the uncertainty of the predicted temperature and parameter b.
How is parameter b related to the predicted temperature?
Single selection allowed. Remember, you can interact with the pair plot.
Higher values of parameter b lead to 

more uncertainty about the value of the predicted temperature
less uncertainty about the value of the predicted temperature
higher average value of the predicted temperature
lower average value of the predited temperature
They are not related to each other

1 (not at all)
2 (slightly)
3 (somewhat)
4 (fairly)
5 (completely)

How confident are you about your answer?

(a) (b)

Figure 5.4: (a) Task t3 (Model 1 - T2) of user study. Participants in SG were shown a static pair
plot. (b) The interactive pair plot participants in IG were shown instead. Both pair plots showed
the minimum necessary subset of model’s variables.

5.5 Research Questions, Tasks & Conditions

RQ1: Does interactive conditioning when used on pair plots help users understand the
structure of probabilistic models more accurately, faster, and with more confidence? The
aim was to investigate how efficient interactive conditioning is in the comprehension of prob-
abilistic models and when it can be beneficial. RQ2: Are there levels of detail of variables’
relations or model designs for which interactive conditioning is beneficial? Three types of
tasks were determined in the user study, T1, T2, and T3, each accounting for the L1, L2, and L3
level of detail, respectively. Various model designs were explored as described in Section 5.6.1.
Table 5.1 summarizes the study’s tasks and models.

A between-subject user study with two conditions was designed. The two conditions were
the static pair plot and the interactive pair plot (IPP). Participants in both conditions were view-
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Table 5.1: Summary of probabilistic models and tasks used in the user study.

Model Graph Task
id

T Question

Model 1

a∼ Uniform(α = 80,β = 100
b∼ Normal(µ = 2,σ = 10)
c∼ Half-Normal(σ = 10)
temperature∼ Normal(
µ = b,
σ = c)

temperature

μ σ

~      

        

cba

t1 T1 Which of the parameters a, b and c
are related to temperature?

t2 T2 How is parameter a related to
temperature?

t3 T2 How is parameter b related to
temperature?

t4 T2 How is parameter c related to
temperature?

t5 T3 How would you describe the ef-
fect of parameters a, b and c on
temperature?

Model 2

a∼ Normal(µ = 0,σ = 10)
b∼ Half-Normal(σ = 10)
c∼ Half-Normal(σ = 20)
random_number∼ Uniform(
α = a−c,
β = a+c)

random_number

a

a a

~      

      

cb

βα

        
−c +c

t6 T1 Which of the parameters a, b and c
are related to random_number?

t7 T2 How is parameter a related to
random_number?

t8 T2 How is parameter b related to
random_number?

t9 T2 How is parameter c related to
random_number?

t10 T3 How would you describe the ef-
fect of parameters a, b and c on
lower_bound?

t11 T3 How would you describe the ef-
fect of parameters a, b and c on
upper_bound?

Model 3

c∼ Normal(µ = 100,σ = 150)
e∼ Half-Normal(σ = 150)
f∼ Normal(µ = 10,σ = 100)
g∼ Half-Normal(σ = 100)
h∼ Half-Normal(σ = 200)
ai ∼ Normal(µ = c,σ = e)
bi ∼ Normal(µ = f,σ = g)
sigmai ∼ Half-Normal(σ = h)
d∼ Normal(µ = 0,σ = 10)
reaction_time_i∼ Normal(
µ = ai+day ·bi,
σ = sigmai)

reaction_time i

μ

~      

        

d b

c
    

μ

+b∗day

a

a
σ

t12 T1 Which of the parameters a,
b, c and d are related to
reaction_time?

t13 T1 Which of the parameters b, c and d
are related to a?

t14 T2 How is parameter a related to
reaction_time?

t15 T2 How is parameter b related to
reaction_time?

t16 T2 How is parameter c related to
reaction_time?

t17 T2 How is parameter d related to
reaction_time?

t18 T3 If reaction_time, a and c lie
on a graph, what is the structure of
the graph?

t19 T3 How would you describe the ef-
fect of parameters a, b and day on
reaction_time?

ing the same pair plot designed as described in the previous section, but participants in the static
condition were not able to use the interactive conditioning. Fig. 5.4(a) presents a T2 task of the
user study with a static pair plot shown to participants in the static group (SG) and an interactive
pair plot (Fig. 5.4(b)) shown to participants in the interaction group (IG) instead.

Participants had to look at the static scatter plot matrices (in SG), or interact with them and
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Figure 5.5: Demographic statistics of participants in the user study. Both groups of participants
(SG and IG) comprised of more older participants (D1). There was a slight gender imbalance
between the groups with IG having more males and SG more females (D2). The educational
background was generally well-balanced between the groups (D3), while participants in SG had
a slightly higher former training in Statistics (D4, D5).

look at the additional highlights (in IG) to perform the tasks. For example, participants in SG
could determine the direction of relation between b and temperature in task t3 (Fig. 5.4(a))
based on the shape of the scatter plot. Participants in IG could use interactive conditioning on
increasing ranges of b and observe the changes in the highlighted visual elements of variable
temperature. The fourth training video used in the user study (more about training in Sec-
tion 5.6) presents a demonstration of task examples and how they could be answered by each
group based on the presented visualization.

This design of the pair plot allows a fair comparison of the two conditions in regards with
the amount of presented information. The changes in the interactive condition refer to two
new types of visual elements added to the static visualization; firstly, a highlighting of visual
information already existing in the static case (of dots in the scatter plots or vertical lines in the
rug plots), and secondly the inclusion of the conditional marginal distributions in the KDE plots.
These visual additions are informationally equivalent to scatter plots as the first does not insert
new information, and the second represents existing information (in scatter plots’ shape) in a
different format (marginal distribution).

5.6 User Study’s Design

The study was approved by the institution’s ethics review board (approval number: 300200319)
and conducted online. It consisted of three parts; training, tasks, and demographic questions.
The training consisted of 4 videos (find links in Appendix C.1) presenting the aim and structure
of study, an introduction to basic probabilistic concepts, an explanation of assigned version
(static or interactive) of visualization, and some example tasks.

The study tasks were split into three parts, each corresponding to a different probabilistic
model of increasing complexity. A set of questions of all three task types (Ts) was created for
each model. Table 5.1 presents a summary of the 3 models and 19 tasks used in the study.
Appendix C provides a detailed description of the models and screenshots of all tasks. The
models were presented in increasing complexity and the tasks in increasing level of structural
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detail, and in the same order to all participants (from t1 to t19). The version of the scatter plot
matrix was only varying among participants.

All questions were multiple-choice. Multiple selections were allowed for the T1 tasks, and
single selection for the rest. Each available option was graphically illustrated in the cases of T2
and T3 questions. Participants’ confidence was input in a five level Likert scale.

At the end participants recorded their age, gender, highest educational level completed, for-
mer training in Statistics and knowledge of Bayes’ rule. Fig. 5.5 presents participants’ demo-
graphic statistics. 26 participants were randomly assigned in the IG and SG (13 participants in
each). Participants were recruited through mailing lists and social media of the institution and
personal contacts without any requirement regarding their statistical background. They each
received a £10 worth online shopping voucher as a compensation.

5.6.1 Task Models’ Design

The intention was to include different models of increasing complexity in the study. That was
achieved by increasing the number of variables used for setting parameters of the observed
variable’s distribution in each model, combining various mathematical operations (+,-,·) for the
assignment of distributions’ parameters, and the use of hierarchy (Model 3). The aim was to
include both typical (Model 1 and 3) and more exotic (Model 2) model designs to account for
any possible prior familiarity of participants with certain statistical structures, and the use of a
variety of distribution types.

Model 1 was the simplest probabilistic model used in the user study and is a typical one; a
normal distribution for the observed variable with the mean and variance being directly set by
two other (latent) parameters of the model.

Model 2 used a parameterization to set the bounds of the observed variable’s uniform dis-
tribution through a deterministic transformation: α = a− c and β = a+ c. This parame-
terization broadens the visual effects that can be explored. The combination of a uniform
(temperature) and normal (a) or half-normal (c) distribution creates unusual shapes of the
pairwise scatter plots. The interpretation of the changes in the conditional marginal distribution
while interacting is different in this model in comparison to previous model, because it is the
bounds of the distribution that change here.

Model 3 was the most complex model representing a typical hierarchical linear regression
model with a normal distribution for the observed variable, an often encountered structure in
probabilistic modeling. The mean of the distribution was set as µ = a+b ·day and there were
hyper-priors set for the priors of the a and b parameters. The hierarchy of the latent parameters
in this model is an added complexity in comparison to previous models.

The observed random (or deterministic) variable in each model had a semantically mean-
ingful name (temperature, random_number, reaction_time, day (deterministic)).
The unidentified parameters were named with letters a, b, c etc. to avoid revealing information
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about variables’ relations through their names (e.g., sigma, µ). Each model had an unidenti-
fied parameter which was unrelated to the rest of variables. A variety of prior distributions for
the unrelated parameters was used; a uniform for parameter a in Model 1, a half-normal for
parameter b in Model 2, and a normal for parameter d in Model 3.

Models’ prior distributions were used in the study. Prior distributions reflect directly models’
structure. As observations come into a model and the prior beliefs are updated, the initial struc-
ture of the model can be overwhelmed in the posterior distribution. For a clearer experimental
protocol, the tasks restricted to the prior space.

5.6.2 Implementation Details

Irrelevant interactive elements (zoom tools, hovering-over tooltips, tabs, drop-down menus)
were removed from pair plots in study tasks to isolate the conditioning-related interactivity as
the focus of the study was on that. The pair plot was showing the minimum necessary subset
of model’s variables in every task to avoid overwhelming participants with irrelevant informa-
tion. The unidentified variables were appearing in alphabetical order across the diagonal of the
matrix with the observed variable presented at the bottom to create a consistent view across par-
ticipants and tasks and avoid any possible extra cognitive load of participants having to search
for a variable in a randomized matrix.

The task models were specified and interpreted in PyMC3. The PyMC3’s prior sampling
method (pymc3.sample_prior_predictive) was used to generate prior samples for
models’ variables. For example, for Model 1 specified in PyMC3 in Fig. 5.1(b), samples were
generated from the prior joint distribution of temperature and b represented by the blue
surface in Fig. 5.2(a). This set of samples was used to create the scatter and KDE plots in
Fig. 5.2(d)-(g) and (l)-(o), Fig. 5.3, and Fig. 5.4(a),(b).

5.7 Analysis and Results

5.7.1 Evaluation Measures

Participants’ accuracy, response time and confidence were evaluated in the user study. Accuracy
was measured as the number of correct selections in the multiple-choice input by each participant
in every task. Participants’ selections in the multiple-choice input were transformed into a binary
representation with 0 indicating a wrong and 1 a correct selection. The binary representation of
each response in T1’s tasks (multiple selections were allowed) consisted of as many binary digits
as the available options of the multiple-choice input, excluding the “none” option, while for T2
and T3 tasks (single selection was allowed) consisted of a single digit. Participants’ performance
in each task was computed as the number of occurrences of digit 1 in their response.
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(c) Response Times and Confidence

Figure 5.6: Probabilistic models used for the Analysis presented as Kruschke-style diagrams.

Participants’ response time was measured (in seconds) from the moment the task was dis-
played until the answer was submitted. Participants rated their confidence in each task on a 1-5
scale with increasing level of confidence (1: not at all, 2: slightly, 3: somewhat, 4: fairly, 5:
completely). This was remapped to the {−2,−1,0,1,2} set to center the parameterization.

5.7.2 Data & Bayesian Modeling of Responses

Data. The collected data was split into subsets based on the condition (IG and SG). No par-
ticipant or response was excluded. The multiple blank registrations of some participants, who
accidentally clicked the “Register” button multiple times were omitted. Accuracy data con-
sisted of numbers of participants’ correct selections in the multiple-choice input in every task.
Response time data consisted of times (in sec). Confidence data consisted of ordinal values.
A Bayesian analysis of the collected data was conducted on the level of the individual tasks.
Fig. 5.6 presents the graphs of the three probabilistic models used for the analysis (see more
details about these model in Appendix C.3).

Accuracy Analysis Models. Each group’s performance in every task was modelled by a
binomial likelihood (that was reduced to a bernoulli likelihood for T2 and T3 tasks) (Fig. 5.6(a)-
(b)). The posterior probability of success θ of the binomial distribution was estimated for each
group. This probability expresses the propensity of a participant in the corresponding group to
make a correct selection in each task. The two groups were compared in terms of accuracy by
taking the difference of each group’s posterior distribution of θ .

Response Time Analysis Model. Each group’s response time in every task was modelled
by a normal likelihood (Fig. 5.6(c)). The posterior distribution of effect size (Cohen’s d) was
estimated for the comparison of the two groups to normalise for the varying duration (and thus
typical variances) of the tasks.

Confidence Analysis Model. Each group’s confidence in every task was modelled by a
normal likelihood (Fig. 5.6(c)). The simplifying assumption that the ordinal values could be
treated as if they lay on a common continuous scale was made; hence the normal likelihood. A
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more sophisticated analysis could have inferred a (potentially per-subject) monotonic relation-
ship between ordinal responses and “true” confidence. The posterior mean confidence level was
estimated for each group as confidence takes ordinal values and there was no need to normalise.
The difference of the mean confidence posterior distribution of each group for every task were
estimated to compare the two groups.

5.7.3 Results

Fig. 5.7 presents the results of inference in a set of forest plots. Comparing the two groups (IG
and SG) based on the differences of the posterior distributions, an effect of the interactive con-
ditioning is more likely given the data as the value 0.0 (reference line in columns 3-5 of Fig. 5.7
indicating no difference) becomes less likely under the difference of the posterior distributions
(horizontal posterior highest density interval bars). That is the highest density intervals of the
posteriors in the forest plots presenting the differences are pulled away from the reference value
towards the right. The effect of interactive conditioning becomes less likely when the highest
density intervals of the posteriors are pulled towards the reference value.
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Figure 5.7: Results. Forest plot (94% HDI) of the posterior distributions of the probability of
correct answer for IG (thetaIG) and SG (thetaSG), difference of θs (diff_of_thetas), effect size
of response times (effect_size) between IG and SG (normalised difference of duration), and dif-
ference of the estimated mean confidence of participants about their responses (diff_of_means).
Tasks are presented vertically grouped per model.

Accuracy. Participants’ performance overall was good in both groups with the inferred
probability θ of giving a correct answer being over 0.5 in most tasks with greater certainty for
tasks of lower level of structural detail (T1-T2) (columns 1-2 of Fig. 5.7). Participants’ accuracy
in tasks t3-4, t11, t19 in IG and t19 in SG was around 0.5, while in tasks t9-10 in IG and
t7-11, t18 in SG was the lowest than other tasks (< 0.5). The lower accuracy concerned tasks
with instances of more complicated statistical modeling; the parameterization of the bounds of a
uniform distribution in t7-11 (Model 2) and a hierarchical structure of a hyper-prior and prior
in t18 (Model 3).

The effect of interactive conditioning is revealed by the differences of θs. The effect is
strong in t6-8 (Model 2), and t18 (Model 3) and weaker in t10-11 (Model 2) (column 3
of Fig. 5.7) clearly showing the benefit of interactive conditioning in more sophisticated model
designs.

Tasks t2 (Model 1), t8 (Model 2), and t17 (Model 3) concerned unrelated variables. A
strong effect of interactive conditioning is observed in t8 (Model 2) and not in the rest (columns
3 of Fig. 5.7). The square and full-gaussian shapes of the scatter plots in t2 and t17 respectively
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were more accurately interpreted as “absence of relation”, while the half-gaussian shape of
the scatter plot in t8 confused participants in SG regarding the existence of a relation (see
relevant screenshots of tasks in supplemental material). This shows the benefit of interactive
conditioning in identifying relations in cases of peculiar shapes of scatter plots resulting from
unusual combinations of prior distributions.

Response Times. Participants using interactive conditioning needed more time to complete
tasks overall with the effect being strong in tasks t1-3 (Model 1), t6-7 and t10 (Model 2),
t12-14 (Model 3) (column 4 of Fig. 5.7). The differences in response time between groups are
pulled towards the reference line (0.0) in tasks of middle or high level of detail t4-5 (Model 1),
t8-9 and t11 (Model 2), t15-17 and t18-19 (Model 3) (column 4 of Fig. 5.7) implying
that the extra exploration time interactive conditioning introduces tends to diminish in cases of
more complex tasks.

Task t8 was the one with the smallest mean difference (close to 0.0) in the response time
and the greatest mean difference in accuracy between the groups (columns 3-4 of Fig. 5.7).
This could imply that the observed effect on accuracy cannot be explained by possible extra
exploration time in IG (see Section 5.7.4 for further analysis on this).

Confidence. Participants in IG are more confident than those in SG overall with the effect
being strong in tasks of lower level of detail t6-9 (Model 2), t13 and t17 (Model 3) (column
5 in Fig. 5.7). Task t13 presents one of the strongest effects of interactive conditioning on
confidence, while there is no corresponding effect on accuracy (columns 3, 5 in Fig. 5.7). This
could imply that interactive conditioning makes participants with equivalent performance more
confident (see Section 5.7.4 for further analysis on this).

5.7.4 Comparative Analysis

Do higher response times imply better accuracy or higher confidence? Does better accuracy
imply higher confidence? The conduction of a causal analysis of the observed data is out of the
scope of this analysis, but the existence of relations (correlations) between these pairs based on
the inferred data will be investigated.

Fig. 5.8 presents the pair plot of the mean values of the differences of the posteriors for the
accuracy, response times, and confidence between the IG and SG groups. There is a positive
correlation between the differences in accuracy and confidence implying increased confidence
with increased accuracy of the IG in comparison to the SG. Interactive conditioning when used
in pair plots seems to support more accurate and certain decisions in the study tasks than the
static pair plots. There is a slight negative correlation between the differences in accuracy and
response time implying that any increase in the accuracy of the IG would not be attributed to
increased response times. The negative correlation between the differences in confidence and
response time is implied by the previous two correlations.
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Figure 5.8: Results. Pair plot of mean values of the posterior distributions of diff_of_thetas for
the accuracy, effect_size for the response times and diff_of_means for the confidence. The fitted
linear regression line is drawn with a 90% bootstrap confidence interval in each scatter plot.

5.7.5 Analysis of Interaction Logs

The coordinates of the selection boxes drawn by the IG participants in each task were recorded.
The proportion of participants having drawn at least one selection box was high in all tasks
(10/13 in task t5, 12/13 in tasks t3-4, t6, t15, t19, and 13/13 in all other tasks). The
(Q1,Q2,Q3) quartiles of the number of selection boxes drawn per task were (4.5, 9., 13.) and of
the normalized (by the range of the corresponding variable) length of selection boxes were (0.11,
0.16, 0.24). The lengths of the selection boxes dragged and drawn by participants were between
the 10% and 25% of variables’ ranges being coherent with the shape of the distributions. Such
sizes of selection boxes are big enough to capture part of the distribution with roughly constant
curvature. Bigger sizes would capture several modes.
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5.8 Discussion

5.8.1 When is Interactive Conditioning (not) Beneficial?

Model Designs. The analysis of the collected data (Section 5.7.3) showed that the use of in-
teractive conditioning is beneficial for users’ comprehension of probabilistic models in cases of
more sophisticated model designs like the parameterization of the bounds of a uniform distri-
bution, hierarchical structures, and unusual combinations of prior distributions (e.g. uniform
and half-normal) (t6-8, t18). This finding is strengthened by the fact that participants in SG
had a higher former training in Statistics than those in IG (Fig. 5.5D4-5) and by excluding the
possibility that the higher accuracy could be attributed to the longer response times observed in
IG due to more time spent in the exploration of the structures (Section 5.7.4).

In all other tasks (t1-5, t10-17, t19) there was no strong effect of interactive condition-
ing on participants’ performance (column 3 of Fig. 5.7). The possibility of low use of interactive
conditioning being an explanation for this was excluded (Section 5.7.5). The low complexity
and commonness of the statistical associations encountered in most of these tasks or the high
complexity of others could possibly, at least partly, explain this observation. Tasks t1-5 and
t12-17 concerned simple common statistical associations (e.g. a normal distribution setting
the µ of another normal distribution) making both representations adequate enough for partici-
pants to achieve a similarly good performance (θ > 0.5) in most of these tasks (columns 1-2 in
Fig. 5.7). Task t19 was a very complex task concerning the determination of the mathematical
formula (a linear regression) (T3) linking four variables (temperature, a, b, day) together.
Participants’ performance in any of the groups was close the random choice (θ ≈ 0.5) (columns
1-2 in Fig. 5.7).

Level of Structural Detail. Interactive conditioning did not seem to benefit participants’
performance in a specific level of detail of variables’ relations (column 3 of Fig. 5.7). Model
design was more determining in the effect of interactive conditioning on users’ performance
than the complexity of the task. On the contrary, the level of detail seem to play a role in the
differences of participants’ response time and confidence between the two groups. The differ-
ences in response time diminish in tasks of higher levels of detail (Section 5.7.3). The burden of
the extra exploration time required for interactive conditioning reduces in more complex tasks.
The greatest advantage of interactive conditioning in participants’ confidence in comparison to
static pair plots appear with greater certainty in tasks of lower level of detail (Section 5.7.3). In
simpler tasks, participants using interactive conditioning are more confident.

5.8.2 Practical Implications

Various types of users of probabilistic models could benefit from visualizations like interactive
pair plots. Model builders could benefit from such visualizations when they encounter complex
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model designs or have lack of statistical experience to conduct prior predictive checks and val-
idate models (are the relations (effects) of variables as expected?). Decision-makers in crucial
areas like healthcare or stock market could benefit from such visualizations when they should
eliminate any risk of ignorance or misunderstanding of models’ structure to decide on crucial
interventions (what is the effect of a model’s variable on another?).

Researchers could benefit from such visualizations when they need to tune some parameters
in a model and need to (for)see the effect of doing so, or to communicate their models to a
broader audience and provide a more intuitive overview of the model. Teachers and learners
of Bayesian modeling could benefit from such visualizations when the former seek for ways to
illustrate the effects of variables in various model designs, and the latter to gain a more intuitive
understanding of the different model designs.

Visualizations like IPP could help users explore the effects of variables in the posterior space,
as well. The relationships of variables under the posterior are governed by effects, although
these effects usually cannot be expressed analytically in explicit mathematical or statistical as-
sociations as they can in the prior space. This happens because the exact form of the posterior
distribution usually cannot be expressed analytically unless the priors are conjugate [Lambert,
2018a]. In these cases, posterior distributions can be estimated by sampling algorithms (e.g.
MCMC), which does not allow us to know how exactly variables are associated (e.g. variable
x sets the µ of the distribution of variable y). Although the effects of variables in the posterior
space could be visualized and explored though such visualizations, most probably they could
not be interpreted as specific analytical relations.

The findings of the user study are not restrictive to a specific PPL. Visualizations like IPP
could be used to present the output of any probabilistic programming code that is being in-
terpreted. Any programming language or library (including PPLs) that supports operations on
probability distributions could be used for sampling from the prior and any PPL could be used
for inferring the posterior.

5.8.3 Limitations of User Study

The analysis of the collected data suggests that interactive conditioning is beneficial for users’
understanding, but it is not clear what aspect of it actually helps users. The recorded interaction
data could not provide us with more insight into how participants in IG were exploiting the
specific implementation of interactive conditioning. Were they combining information from
both scatter plots and marginal distributions? Were they only looking at the conditional marginal
distributions? Or were they only looking at the highlighted scatter plots? Such questions would
require other experiment designs that would include one or combinations of open questions,
think-aloud protocol, analysis of participants’ micro-interactions [Breslav et al., 2014] or eye-
tracking.

The participants’ sample in this study present limited demographics with respect to age and
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educational background. Further experimentation could be conducted on an expanded sample
with broader demographics to investigate if the findings of this user study would replicate (as
Ottley et al. [2012] did for Brase [2009] and Micallef et al. [2012]).

The presentations of the study’s models was restricted to the prior space. This offers analytic
descriptions of variable’s relations (what controls what and how) as explained in Section 5.8.2,
which could be used to validate participants’ responses (ground truth). For a clearer experiment
design, the case of posteriors determined by conjugate priors was not included. The types of
distributions that could be explored was limited by the fact that prior sampling from heavy tail
distributions (student-t, Pareto, Cauchy) gives a Dirac-delta-looking estimation of the probabil-
ity density. Exploring variables distributed in such ways in IPP would not reveal any effect on
their distribution while conditioning on them.

The number of questions had to be limited to ensure the completion of study by partici-
pants in roughly an hour. The user study was designed to include a variety of probabilistic
model types (parameterized, linear regression, hierarchical), distributions (normal, half-normal,
uniform), and statistical associations (setting the mean, standard deviation, or bounds of the
distribution directly or through simple mathematical equations). There are many more model
designs (logistic regression, GPs), distributions (discrete distributions like binomial and Pois-
son) and configurations that could be explored in the future in the context of a study like this
one.

The user study presented in this chapter focused on a concrete implementation of interactive
conditioning of a model’s distribution; a brushing-and-linking approach in a classical scatter
plot matrix. The findings of the user study concern this concrete implementation. Further exper-
imental evaluation is required to investigate whether other designs of interactive conditioning
(e.g., interactive conditioning on a parallel coordinate graph) would confirm the results of the
analysis shown in this chapter.

The user study in this chapter was a controlled experiment where participants were not pro-
vided with any textual or mathematical description of the probabilistic models for the purpose of
a clearer experiment design. Nevertheless, there are various tasks like building, validating, and
refining a model in which presenting a textual or mathematical description of the model along
with the interactive pair plot could be required, expected and helpful. A limitation of the work
presented in this chapter is that such scenarios of tasks in which information about the model
might be retrieved and/or combined from an explicit and implicit presentation of a probabilistic
model have not been investigated. In such cases, further investigation is required as to whether
the findings of this user study can be confirmed when these two sources of information about
the model are combined.



CHAPTER 5. INTERACTIVE PAIR PLOT 137

5.8.4 Future Work

This chapter focused on a specific implementation of a visualization to communicate visually
the relations of variables in a probabilstic model. The design of this visualization could be
further improved or extended. For example, by interviewing actual users of the tool like experts
in the field (analysts or statisticians who build models) or decision-makers, who would need to
use such a tool in their everyday work routine, could inform the design of the tool and lead to
various improvements.

For example, at the moment brushing can only be applied on the KDE plots of the marginal
distributions. Brushing in the scatter plot matrices is typically applied on the data shown. A
similar implementation of brushing could be implemented for IPP; users could apply either a
univariate or conjuctive condition on the scatter plot showing the distribution of two variables
of the model. This could offer more flexibility in conditioning the model’s distribution. An
alternative design of IPP could offer a conjuctive view of the scatter plot matrix and the definition
of the model in probabilistic statements and create a link between the two. For example, every
time a user hovers over a scatter or KDE plot the probabilistic statements of the corresponding
variables could be highlighted. Such a design would be more informative as it would include
the mathematical details of the model. It would be interesting to investigate whether a design
like this would be useful for or preferred by actual users.

A completely different design approach to show the distributional information of the model
could be an interactive parallel coordinate graph; the vertical axis of the graph would correspond
to the model’s variables and each line to a joint sample drawn from the (prior or posterior)
model’s distribution. In this design interactive conditioning could be implemented in various
ways: for example, imposing a value restriction on the vertical axis, or selecting individual
lines. This representation could possibly convey the distributional information more intuitively
as it does not involve any graphs of distributions, which in existing literature do not seem to be
as well understood as other frequency-framed forms. It would be interesting to investigate if the
findings of the user study presented in this chapter would replicate when this alternative design
is used by users.

5.8.5 Conclusions

Although there are various existing visualizations of probabilistic models and variables’ rela-
tions, it is very little known about whether and when they support users’ comprehension of the
models. This work focused on interactive conditioning and investigated through a user study
whether adding it to classical scatter plot matrices helps users better understand probabilistic
models and if there are levels of structural detail and model designs for which it is beneficial.
The analysis of the collected data showed that interactive conditioning is beneficial in cases of
sophisticated model designs and the difference in response time between the interaction and
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static group becomes less important in higher levels of structural detail. Participants using in-
teractive conditioning were more confident about their responses overall with the effect being
stronger in tasks of lower level of detail. These initial findings evoke the need for more research
to understand how users can benefit from visual representations of probabilistic models and
could pave the way for future investigation into the role of interaction to support more explain-
able Bayesian probabilistic models [Kulesza et al., 2015] and users’ engagement with them.



Chapter 6

Visualizations of Simulated Data of
Interventions to Support Users’ Causal
Reasoning and Decisions on Interventions

6.1 Summary

This chapter presents the third part of this research. This work focuses on proposing a pipeline
to generate simulated probabilistic data from interventions applied on causal structures that are
expressed in PPLs using probabilistic modeling and Bayesian inference. The creation of an au-
tomatic visualization tool for visualizing the simulated probabilistic data from causal structures
and interventions as generated by this pipeline is an aim of this work. The purpose of this tool is
to support causal reasoning and design of interventional experiments through the exploration of
simulated data from interventions. The evaluation of the proposed visualizations in this tool is
another aim of this work. The evaluation focuses on how people reason causally and make deci-
sions on interventional experiments when the uncertainty in the simulated data of interventions
is presented in static, animated, or interactive visualizations.

Section 6.2 discusses the purpose of this work, Section 6.3 describes the proposed pipeline
for simulating interventions on causal structures using Bayesian inference, Section 6.4 presents
the automatic visualization tool for visualizing the simulated probabilistic data from the inter-
ventions, Section 6.5 presents the details of the evaluation user study conducted, the analysis of
the collected data and the results of the analysis. Finally, Section 6.6 discusses the contributions
of this work and the conclusions drawn from it.

139
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6.2 Purpose

6.2.1 Motivation

A common task in many fields in science (e.g., medicine, epidimiology, biology), or industry
(e.g., marketing) is the identification of cause-effect relations between variables of interest. For
example, a doctor needs to know what the cause of a disease is to be able to treat it, or a
marketing manager needs to know which campaign locations or referral channels influence the
purchases of a product the most to decide on a marketing plan.

The first and most intuitive thing to do to identify the cause of an observed effect is to
follow a “trial-and-error” approach. Everybody applies this, many times even unconsciously, in
their everyday life [Lagnado and Sloman, 2004]; click on buttons, icons, and other interactive
elements on our mobile phone to see what does what, remove items from our diet to see what
makes us overweight, etc. This trial-and-error is formally called intervention in the language of
causality.

Interventions is a valuable tool in science and industry for inferring causality but they are
not always possible or might be expensive to run. Thus, a current issue in existing literature is
how to infer causality through observed data, which leads to the so widely-studied question “Is
correlation causation?” [Pearl, 2009; Sekhon, 2008]. Various visualization tools have been pro-
posed for the visualization, exploration, validation, and eliciation of causality based on observed
data [Dang et al., 2015; Ge et al., 2020; Wang and Mueller, 2015; Wang and Mueller, 2017; Xie
et al., 2020]. Nevertheless, it is very little known about how well people reason causally or how
informative their decisions on interventional experiments are when they use such visual analyt-
ics tools [Kale et al., 2022; Yen et al., 2019]. On the other hand, the existing literature presents
some evidence that users’ performance in identifying the causal relations of variables improves
when simulated data of interventions is presented to them instead of the observed data [Lagnado
and Sloman, 2004].

6.2.2 Purpose of This Work

This work focuses on proposing a visualization tool to support the exploration of various as-
sumed causal structures of observed data by simulating interventions on them. The purpose of
such a tool is to guide users in the design of interventional experiments. Users will be able
to simulate interventions on structures that encode their causal assumptions about how the ob-
served variables might be causally related and observe what the expected outcomes of possible
interventional experiments could be under various assumptions.

Using such a tool, users would be able to test their expectations about an interventional
experiment against the outcomes of simulations that incorporate prior knowledge or possible
assumptions about the data generating mechanisms. This could possibly lead to more informed



CHAPTER 6. VISUALIZATIONS OF SIMULATED INTERVENTIONS 141

decisions about the conduction of an experiment. Such a tool could also be useful in cases that
interventional experiments might not be possible and some background knowledge about them
is available.

The aim of a visual exploratory tool that relies on simulation like the one described above
is not the conduction of causal inference, i.e., the identification of the true causal structure of
data. Such a tool will not reveal the actual underlying data generating mechanism but will
help determine what the most informative interventional experiments might be to reveal the true
causal structure of data. Any conclusion users draw from their explorations with such a tool will
depend on the specific causal model and dataset used for the simulation. If the causal model
or dataset are not true, there is always the risk that the conclusions might not be valid in the
true world. After all, true causal structures can only be retrieved through actual interventional
experiments or causal inference tools.

6.2.3 Summary of This Work

The contribution of this work is mainly in three areas; first, the suggestion of a pipeline to exploit
existing powerful tools for probabilistic modeling and Bayesian inference in simulating inter-
ventions on causal structures (Section 6.3), second, the creation of automatic visualization tools
to present the simulated data from causal structures and interventions on them (Section 6.4), and
third, the evaluation of these uncertainty-aware visualizations in causal reasoning and decision-
making tasks (Section 6.5). The intention was to investigate how well people reason causally
and how informed decisions on interventional experiments they make when they are presented
with uncertainty-aware visualizations of simulated probabilistic data of interventions.

Existing PPLs are tools for probabilistic modeling that are not inherently built to model
causality. Thus, they are quite inflexible in the manipulation of models for applying and sim-
ulating interventions. In this work the ways that these tools could be used for this purpose are
demonstrated. The intention is to exploit the advantages of Bayesian inference in modeling un-
certainty and accounting for prior knowledge in causal inference, and simulating interventions
given the existing probabilistic modeling tools.

In terms of visualization, the classical scatter plot matrix is used for the parallel presentation
of the simulated data before and after an intervention. This is enhanced with interaction or
animation to present the simulated data of interventions in slices conditioned on the intervened
variable. An automatic tool that generates this visualization is created.

This implementation of the scatter plot matrix has many similarities with IPP especially in
the outlook but differs in various crucial aspects of the design to serve the purposes of this re-
search: two separate sets of data are presented in parallel in the new tool, the simulated data
before and after the intervention, while only the first was presented by IPP; the slicing of the
interventional data is performed using a slider instead of the IPP’s selection box; only the se-
lected slice of the interventional data is shown each time in contrast to IPP in which the whole
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dataset is shown and the slice is simply highlighted. All these design options will be explained
in Section 6.4.1.

A user study was conducted to investigate the effect of interaction and animation on users’
ability to identify the causal structures of the presented data and to make decisions on interven-
tional experiments.

6.3 From Observed Data to Simulated Probabilistic Data of
Interventions

6.3.1 Approaches to Causal Inference

An observed correlation between two variables in a dataset does not guarantee that there is a
cause-effect relation between the variables. This correlation could be spurious resulting, for ex-
ample, by the existence of a confounding (common cause) variable as explained in Section 2.4.1.
This difficulty of interpreting the correlations in observed data as causal or non-causal relations
leads to the need for methodologies of causal inference from observed data.

The two main existing frameworks for causal inference differ in the approach they follow;
one is more data-driven, while the other is model-driven [Hernán and Robins, 2020; Pearl and
Mackenzie, 2018]. The first framework is based on the idea of potential outcomes developed by
Neyman and extended by Rubin [Sekhon, 2007]. In this framework a causal effect is approached
as a difference between the effects of the potential outcomes of a treatment on the level of the
individual subjects. Only one of the potential outcomes realizes for each subject. The other is
counterfactual and is missing from the observed data. As a result, the causal effect of a treatment
on each subject cannot be directly estimated due to the missing data. The causal inference is
treated as a missing data problem using assumptions and statistics to estimate, for example,
mean effects. In this methodology, causal inference is data-driven.

The second framework mainly proposed and developed by Pearl unifies all the pre-existing
approaches to causation; graphical, potential outcome, structural equations, decision analytical,
interventional, sufficient component and probabilistic approaches to causation with each of these
viewed as a restricted version of the structural causal model [Pearl, 2010]. Pearl’s structural
causal model (or causal model) [Pearl, 2009] approaches the causal effects as influences of
variables on each other within the context of a system or population. Pearl’s structural causal
model is a mathematical model that consists of two sets of variables, V and U, and a set of
functions, F determining how values are assigned to each variable Vi ∈ V [Bareinboim and
Pearl, 2016]. The variables in V are endogenous variables whose values are determined by
factors within the model. The variables in U are observed or unobserved exogenous variables
whose values are determined by factors outside the model and influence but are not influenced
by the endogenous variables [Pearl, 2010]. These variables describe background conditions
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for which no explanatory mechanism is encoded in the causal model (i.e., it is not explained
how they occur) because the modeler decides to keep them unexplained [Bareinboim and Pearl,
2016; Pearl, 2010]. Their existence is acknowledged to qualitatively assess how they relate to
endogenous variables [Pearl, 2010].

The variables in U can induce (epistemic and aleatoric) uncertainty in the causal model.
There might be lack of knowledge about their values because they might be unobserved (epis-
temic uncertainty is introduced) [Pearl, 2010]. They might be part of a “physical reality (e.g., ge-
netic factors, socio-economic conditions)” which causes variations in the observed data (aleatoric
uncertainty is introduced) [Pearl, 2010]. An example of this could be a natural variability ap-
pearing in terms of a feature in a general population [Bareinboim and Pearl, 2016; Stanford
Encyclopedia of Philosophy, 2018]. Every instantiation Ui = ui of the exogenous variables
uniquely determines the values of all variables in V and, hence, if probability distributions p(Ui)

are defined for the variables in U, a probability distribution function p(Vi) will be induced on V.
Regarding the functions in F, the causal model consists of a system of functions, fi ∈ F, with

each function corresponding to one of the observed variables Vi ∈ V in the model and expressing
the dependencies of the observed variable on the other exogenous and endogenous variables. If
each function is invariant to possible changes in the form of the other functions, the system of
these functions is said to be structural [Pearl, 2010]. Let us assume X,Y ∈ V, and UX,UY ∈ U
assumed to be jointly independent, and X causing Y. The structural equations for X, and Y are as
following:

X = fX(UX) (6.1)

Y = fY (X ,UY ) (6.2)

According to Pearl [2010]:

Each of these functions represents a causal process (or mechanism) that determines
the value of the left variable (output) from those on the right variables (inputs). The
absence of a variable from the right hand side of an equation encodes the assumption
that Nature ignores that variable in the process of determining the value of the output
variable.

For example, the absence of a variable Z ∈ V from the arguments of fY conveys the empirical
claim that variations in Z will leave Y unchanged, as long as variables UY, and X remain constant
[Pearl, 2010].

Pearl’s structural causal model has its roots to the structural equation models (SEMs), which
were first used by Wright [1921, 1934]. Wright revolutionised the standard practice of us-
ing regression to predict an outcome by combining information from more than one regression
equations using a causal approach to regression modeling rather than merely predictive. Pearl
disentangled linearity from causal models in his theory by representing causal models with non-
parametric structural equations and introducing a framework for conducting causal inference
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graphically without the need of any algebraic analysis [Pearl, 2010].
Pearl proposed the use of causal diagrams to encode all the information that the non-parametric

structural equations represent and created the do-calculus, a set of rules applied to the causal di-
agram of a causal model, to represent interventions. He introduced the do(x) mathematical
operator to simulate physical interventions on x. By this operator certain functions are deleted
from the model and replaced by a constant X= x (e.g., fX in equation 6.1 is replaced by a con-
stant value x), while the rest of the model is unchanged. According to Pearl, the causal effect
of a variable X ∈ V on Y ∈ V is given by the probability Pr(Y = y|do(X) = x) [Pearl, 2010],
namely the post-intervention probability of Y.

The central question in the analysis of causal effects is the question of identification: Can
the controlled (post-intervention) probability distribution, p(Y|do(X)= x), be estimated from
data governed by the pre-intervention joint distribution of the model, p(Y,X,∪Vi /∈ {Y,X}). In
the absence of unobserved confounding variables (when the set of variables U does not contain
any unobserved confounding variable), all causal effects are identifiable [Pearl, 1993; Tian and
Pearl, 2002]. The problem of identifiability arises when some confounders are not measured. In
such cases a precise estimation of a desired causal effect depends critically on the locations of
those confounders in the causal diagram.

Sufficient graphical conditions for ensuring the identification of the post-intervention distri-
bution were established by several authors [Pearl, 1993, 1995, 2009; Spirtes et al., 2000; Tian
and Pearl, 2002]. For example, all causal effects are identifiable whenever the causal model is
Markovian, namely its graph is acyclic and all the variables in U are jointly independent [Pearl,
2010]. For such models the local Markov property is valid and used to factorize the joint dis-
tribution of the model based on its original and mutilated causal diagram before and after the
intervention (see Section 3.3.1 for an example on factorizing a joint distribution based on the
local Markov property). It is proved that the post-intervention joint distributions of the endoge-
nous variables of the model equals the factorization of the joint distribution of the endogenous
variables of the model before the intervention [Pearl, 2010]. Thus, the identification problem can
be reduced to a graphical procedure and the do operator permits the use of structural equations
as a basis for modeling causal effects and counterfactuals [Pearl, 2010].

This work focuses on representing causal models by linear probabilistic regression models
in the spirit of the structural equation model; one linear probabilistic regression model is defined
per observed variable using as covariates only the other variables of the model that are assumed
to affect this variable. Some assumptions are made as explained in the following subsection.
The probabilistic regressions are specified in a PPL; appropriate priors are set for the parameters
of the model and likelihoods for the observed variables, and the observed data is used to infer the
posterior distributions of the regressions’ parameters and generate posterior predictive samples
for the observed variables.

The intention in this work is to use the inferred posterior distributions to generate simulations
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from interventions. When imposing an intervention on a causal model the structure of the causal
diagram changes; any incoming arrow in the node we intervene on needs to be removed because
the value of the variable corresponding to that node is defined externally and any causes of it do
not affect it any more. This implies that the probabilistic model of the causal structure needs to
be amended to reflect this change in the causal diagram and generate simulated post-intervention
data based on the mutilated causal diagram.

Simulating interventions probabilistically has been encountered in the existing literature
again [Huszár, 2019; Lagnado and Sloman, 2004; Witty et al., 2019; Xie et al., 2020]. The ex-
isting approaches amend the probabilistic model and usually sample directly from the amended
probabilistic model. The proposed approach aims to define a mechanism for amending the
probabilistic model and sampling from the pre-estimated inference results in alignment with the
amended model. The closest idea to this is presented by Witty et al. [2019]. Witty et al. [2019]
had a different ultimate aim; they wanted to infer the causal structure of some observed data
from a prior distribution over various possible pre- and post-intervention causal structures. They
used Bayesian inference and simulated interventions probabilistically to inform the prior distri-
bution of the possible causal structures of the data. In this work, the inverse of this is suggested;
to use the results of Bayesian inference to generate simulated data from interventions.

The following subsection presents a proposed pipeline for simulating interventions proba-
bilistically exploiting the results of Bayesian inference. A concrete example will demonstrate
how a PPL-specified causal model can be altered to apply an intervention, and how the in-
ferred distributions can be used to generate simulated posterior predictive samples from the
post-intervention mutilated causal model.

6.3.2 Using Bayesian Probabilistic Models to Simulate Interventions

If we have some observed data and prior knowledge for a problem that we cannot conduct

actual interventional experiments, can we exploit Bayesian simulating engines to simulate in-

terventions? The intention is to exploit any knowledge learned about the system based on the
inferred posterior distributions and posterior predictive sampling distributions to generate data
from the same system assuming that an intervention is applied on it. PPLs define a simulator

via the posterior predictive distribution, whose parameters are “pre-baked” by inference on ob-
served data. There are various advantages in using a Bayesian probabilistic approach and PPLs
to model causal structures. The following points summarize them.

• The uncertainty in the causal model (e.g., because of lack of knowledge about the values
of exogenous unobserved variables that affect the endogenous variables ) can be modelled
in a systematic way.

• Any prior knowledge about the problem and any available observed data can be used to
generate posterior distributions.
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• PPLs are powerful simulating engines that could be exploited to simulate interventions.
This is very important when interventions cannot be conducted.

Simulating interventions by using probabilistic models and PPLs is not that straightforward.
The purpose of this subsection is to present a pipeline for modeling a causal model using prob-
abilistic models to define the structural equations of the causal model, and exploit the inference
of these probabilistic models to generate simulated data of interventions applied on the causal
model. This work restricts itself to linear models; probabilistic linear regression models will be
used to determine the structural equations of the causal model. The probabilistic models will be
expressed in a PPL, and specifically PyMC3. Although PyMC3 is used as a reference PPL in
this work, the modeling approaches discussed here could be applicable to other PPLs present-
ing similar inflexibilities with PyMC3 in causal modeling and interventions simulating. These
inflexibilites will be revealed along the discussion in this subsection and the identified ways to
overcome them will be discussed.

The proposed pipeline to model a causal model probabilistically and create a Bayesian sim-
ulator for interventions is presented in Fig. 6.1. The main component in this pipeline is the
Probabilistic Modeling of Causal Models. This component exploits the modeling and simula-
tion mechanisms of PPLs to generate simulated posterior predictive data before (D) and after an
intervention (G). It is designed to hide the implementation details from the user. The function-
alities of this component could be split in four discrete subcomponents (B,C,D,G). The inputs to
this component consist of a causal model and the available observed data (A), and the details of
an applied intervention (i.e., the variable to intervene on and the value to set it) (F). A concrete
implementation of this pipeline in Python using PyMC3 is provided in [Taka, 2023c].

There are two distinct paths in the proposed pipeline; the path A->B->C->D->E that describes
the process of modeling probabilistically a causal structure, and the path F->G->B->D->H that
describes the process of simulating interventions. The following paragraphs discuss the most
important aspects of the design in regards with these two paths.

6.3.2.1 Probabilistic Modeling of Causal Structures

Let us start the discussion about the proposed pipeline with a concrete example of a causal model
found in Lagnado and Sloman [2004]. Box 6.1 presents the causal model of three observed
variables: insomnia, anxiety, and tiredness. To model this causal structure some assumptions
are made:

1. there is no other observed variable that affects these three variables;

2. there is no unobserved variable confounding any of these three variables;

3. any unobserved variables influencing these three variables are jointly independent;

4. when any affects another of the three variables, it does this in a linear way;
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Interven�on
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Figure 6.1: Proposed pipeline for modeling a causal model probabilistically and simulating
interventions.

5. the distributions of the observed variables and unobserved parameters of their distribution
are known.
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Box 6.1 A Causal Model Expressed By Linear Regression Models
Fig. 6.2(c) presents the causal diagram of three observed variables; insomnia, anxiety,

and tiredness. The variables are represented by nodes and the direct causal relations by
directed edges starting from a cause and pointing to an effect. Based on this causal diagram,
insomnia causes anxiety and tiredness. The following probabilistic statements describe the
probabilistic linear regression models of this three variables’ causal model.

(a) (b)
insomnia

anxiety
�redness

(c)

Figure 6.2: Definition of the insomnia, anxiety, and tiredness model in (a) probabilistic
statements, and (b) PyMC3 code. (c) Causal diagram of insomnia, anxiety, and tiredness.

The path A->B->C->D->E in the pipeline in Fig. 6.1 describes the process for modeling this
insomnia-anxiety-tiredness causal structure probabilistically and generating posterior predictive
data from it. Based on the assumptions above a probabilistic linear regression model is used for
each one of the observed variables in the notion of the structural equations. These probabilistic
regressions are defined in Fig. 6.2(a) and expressed in PyMC3 in Fig. 6.2(b). This process takes
place in component B.

The input to component B consists of the available observed data and the causal model (A).
Some synthetic observations are generated from the insomnia-anxiety-tiredness causal model
(see details about this in Appendix D.1) and used for the inference of the PyMC3 model. The
causal structure is encoded in a Python dictionary structure in the way described in Ap-
pendix D.1.

Component C consists of the MCMC sampler of the PPL. The posterior distributions of the
model’s parameters and posterior predictive distributions of the three observed variables are es-
timated here. Component D holds these distributions along with a sampler to sample from them.
The posterior predictive data can be then visualized e.g., using a scatter plot matrix (component
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E). Fig. 6.3 presents in a joint scatter plot matrix the synthetic observed and simulated posterior
predictive data for the insomnia, anxiety, and tiredness. In both cases all three variables seem to
be positively correlated.
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Figure 6.3: Scatter plot matrix of the synthetic observed and simulated posterior predictive data
of the insomnia-anxiety-tiredness causal model.

6.3.2.2 Simulating Interventions Probabilistically

So far, the uncertainty in the causal model is modelled using any prior knowledge about the
problem and the observed data, and given some assumptions. The intention is now to exploit the
generated inference results, namely the inferred posteriors, to generate data after an intervention.
The path F->G->B->D->H describes the process of achieving this according to the proposed
pipeline. Let us assume that we want to apply an intervention on axiety and set its value equal
to 2.0 (F). This intervention causes a change in the structure of the causal diagram as depicted
in component F that needs to be reflected in the specification of the probabilistic model in
component B.

A problem in achieving this in the context of a PPL is that usually the probabilistic model
once specified cannot be amended. The proposed way to overcome this is to use a deterministic
transformation of the likelihood of each observed variable that would serve as a “switch” ac-
tivating and deactivating the likelihood and applying an intervention to the observed variables.
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Two factors are needed for this transformation; f1 and f2. Using these factors the likelihoods in
the PPL code can be set as following: f1 ·likelihood+f2. The first factor is used to activate
and deactivate the likelihood and the second to set apply the intervention to the variable and set
it equal to a specific value. More concretely, the two factors are initialized as following for the
path A->B->C->D->E: f1 = 1.0 and f2 = 0.0 meaning that the likelihood is initially activated
and no intervention is applied to the observed variable setting it equal to x. The factors are set
as following when an intervention needs to be applied; f1 = 0.0 and f2 = x meaning that the
likelihood is deactivated and an intervention is applied on the variable setting it equal to x.

In PyMC3, the pymc.Data object is used to define these factors of the likelihood. The
factors defined in this way can be set at any point after the specification of the probabilis-
tic model. This is an indirect way of amending the structure of the model on-the-fly. The
pymc.sample_posterior_predictive method can be used after setting the factors of
the likelihood appropriately to apply an intervention to sample from the pre-etimated poste-
rior distributions. Doing so, we would essentially sample from the mutilated causal diagram
after the intervention. Component G receives as input the details of the intervention, amends
the model by setting appropriately the control factors of the likelihoods, and samples from the
pre-estimated posterior predictive distributions. The posterior predictive samples constitute the
post-intervention data that can be visualized, e.g., in a scatter plot matrix (H).

Three different types of interventions were considered in the provided implementation of the
proposed pipeline in line with the work of Witty et al. [2019]:

• atomic;

• shift;

• variance.

The atomic intervention is when the value of a variable is set to a specific value as discussed so
far. In this case, the f1 and f2 factors are used for the definition of the likelihood.

The shift intervention is applied to the mean value of a variable by shifting it by a fixed
amount. A third factor, f3 is included in the specification of the probabilistic model of the causal
model to allow the application of shift interventions. For a normal likelihood, the specification
of the likelihood given all three factors is as following: f1 ·Normal(µ +f3,σ)+f2. The factor
f3 is initialized to 0.0 and is set to the specific value the shift intervention requires it to be when
a shift intervention needs to be applied.

The variance intervention is applied to the variance of a variable by scaling the standard
deviation by a fixed amount. A fourth factor, f4 is included in the specification of the prob-
abilistic model of the causal model to allow the application of variance interventions. For
a normal likelihood, the specification of the likelihood given all four factors is as following:
f1 ·Normal(µ +f3,f4 ·σ)+f2. The factor f4 is initialized to 1.0 and is set to the specific
value when a variance intervention needs to be applied.
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6.4 The Visualizer of Causal Structures’ Simulated Interven-
tions

This section deals with how data from interventional experiments could be visualized to convey
information about the causal structure of the underlying data visually. This data could either
derive from actual interventional experiments or from simulations of such experiments. This
section focuses mainly on the visualization of simulated interventional data deriving from prob-
abilistic approaches. The main aim is the design and implementation of a visualization tool that
would automatically transform the outputs of the simulation pipeline proposed in the previous
section into uncertainty-aware visualizations. Section 6.4.1 presents the objectives that were set
for the design of this tool, Section 6.4.2 presents the details of this tool’s design and implemen-
tation and the limitations of the implementation, and Section 6.4.3 presents a use case of the
tool.

6.4.1 Objectives of Design

This work identifies and focuses on two types of user tasks that could be supported by visualiza-
tions of simulated data from causal interventions. The first task type (TT1) is the identification
of the underlying causal structure of some observed data of interest. In this type of tasks the
visualizations of the simulated interventional data should present all the useful information en-
tailed by the intervention to help users make judgements about which causal relations exist
among variables. The second task type (TT2) is more complicated and builds upon the first. In
cases when researchers want to conduct interventional experiments to infer the causal structure
of some observed data, there might be many possible such experiments. Visualizing simulated
interventional data could help users to identify which experiments could be more informative
for determining the causal structure of the data and thus, make more informative decisions on
which experiments to conduct.

These two types of tasks determined the design objectives of the visualization tool presented
in this section and later, the research questions of the evaluation user study that was conducted.
In this subsection the design objectives of the visualization tool for the simulated data of inter-
ventions are presented.

6.4.1.1 Inclusion of Uncertainty

The first objective is the inclusion of uncertainty in the visualization of simulated data from inter-
ventions. The data from interventional experiments usually entails inherent uncertainty even if
the experiments are conducted in consistent environments and conditions. Researchers and ana-
lysts who conduct such experiments with the aim of identifying causal relations among observed
variables have to deal with this uncertainty often and infer relations out of it. It is a reasonable
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design objective to include uncertainty in the visualizations of simulated interventions with the
aim to create a realistic depiction of the outcomes of an actual interventional experiment.

6.4.1.2 Parallel Presentation of the Simulated Data Before and After the Intervention

The second objective is the parallel presentation of the simulated data before and after the in-
tervention. Some aspects of causal inference could be informed by the direct comparison of
these two. For example, the fact that a correlation between two variables of interest breaks af-
ter intervening on a third variable implies that this correlation is spurious (a concrete example
of how this could be inferred through the visualizations of the simulated data is presented in
Section 6.4.3). This is interpreted as absence of causal relation between the two variables of
interest.

6.4.1.3 Visualization of the Pairwise Distributions of the Simulated Data

The third objective is the visualization of the pairwise distributions of the simulated data. The
purpose of this objective is similar to the objectives IPP had to serve; the communication of the
variables’ statistical relations. As explained in the provided example for the explanation of the
previous objective, communicating how the statistical relation of two variables changes after an
intervention can be informative in reasoning about the causal relation of the variables.

6.4.1.4 Exploration of the Outcomes From Applying Different Interventions

The fourth objective is the exploration of the outcomes from applying different interventions.
The possible interventions considered in this work might vary in the following aspects:

• in the type of intervention (i.e., atomic, shift, and variance);

• in the observed variable the intervention is applied on. This variable will be called inter-

vened variable;

• in the exact value to which the intervention is set. This value represents the value to
which the intervened variable is set in an atomic intervention, or the amount of shift that
is applied to the mean value of the intervened variable in a shift intervention, or the scaling
factor that is applied to the variance of the intervened variable in a variance intervention.
This value will be called interventional value.

Offering the possibility of exploring different intervention types provides the flexibility to
researchers to explore many different scenarios and designs of potential experiments. Exploring
the interventional data corresponding to different interventional values could help identify which
other variables in the model are affected by or remain correlated with the intervened variable
after the intervention. These inferences could inform users’ reasoning as to which the causes



CHAPTER 6. VISUALIZATIONS OF SIMULATED INTERVENTIONS 153

and the effects of the intervened variable could be (a concrete example of how this could be
inferred through the visualizations of the simulated data is presented in Section 6.4.3). The
sensitivity of the affected variables to various changes in the value of the intervened variable
could also be observed.

6.4.1.5 Joint Presentation of Causal Models & Simulated Interventional Data

The fifth objective is the graphical representation of multiple hypothesized causal models in con-
juction with the simulated data of interventions generated from a single causal model. Presenting
causal models graphically is a standard practice in causal reasoning and has been advocated to
facilitate effective reasoning [Greenland et al., 1999; Kale et al., 2022; Yen et al., 2019]. This
possibility would serve various purposes. First, an intervention might not be informative enough
to determine the causal relations between all variables in a model and ultimately, the exact causal
structure of the data. If there are some hypothesized causal models that are considered as possi-
ble explanations of the data generating mechanism the information provided by an intervention
could narrow down these possibilitites. Thus, analysts could explore which of their hypothe-
sized causal models could be compatible with beliefs and observations under the interventional
data. Second, a user could explore various interventions and determine those that are informa-
tive enough to distinguish the hypothesized causal models. This could support decisions on the
conduction of actual interventional experiments.

6.4.1.6 Automatic Transformation of Simulated Interventional Data Into Visualizations

The sixth objective is the automatic transformation of the outputs (i.e., posterior distributions,
and posterior predictive samples before and after interventions) of the interventions’ simulation
pipeline presented in the previous section into the visual representations of the visualization tool
proposed in this section. The outputs of the simulation pipeline will be standardized in similar
way like in the case of IPME and IPP and used as an input to the proposed visualization tool in
this section. The aim is to create a seamless representation of the simulated data to support TT1
and TT2 tasks.

6.4.2 Design & Implementation

This subsection presents the Visualizer of Causal Assumptions and Uncertainty-Aware Simu-

lations of Interventions (vicausi). This is a visualization tool for visualizing the simulated
data before and after interventions as generated by the pipeline presented in Section 6.3 and
for exploring the probabilistic outputs of various causal interventions. This tool was designed
according to the objectives presented in the previous subsection. The main visualization ele-
ments used are the scatter plot matrix and the causal diagrams; the first is used for presenting the
simulated interventional data of the variables in pairs, and the second for presenting the causal
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structure of the hypothesized models. The tool is provided in the form of a Python module
in [Taka, 2023d]. The following paragraphs present the main aspects of the tool’s design and
implementation and explains why certain design decisions were made where appropriate.

6.4.2.1 Input

The input of the vicausi tool consists of the pre-computed simulated data and some user-
defined configurations. More concretely, the following elements should be given as arguments
to the plotting method:

• a list of npz files similar in format to that given as input to IPME and IPP. Each one
of these files corresponds to a different causal model (e.g., these models could be the
hypothesized causal models of the analyst), contains sets of prior and posterior samples for
each parameter in the model, and prior and posterior predictive samples for each observed
variable in the model, and the DAG of the probabilistic model from which the assumed
causal structure could easily be retrieved through the parent-child relations of the observed
variables. These files are enhanced with extra npy matrices and corresponding metadata
for the pre-computed posterior predictive samples of a range of possible interventions.
There is the possibility to add simulated data of interventions applied on each one of the
observed variables in the model, for a range of interventional values for each observed
variable, and for all intervention types considered in this work; the atomic, shift, and
variance intervention. The code for generating this compact file can be found in [Taka,
2023c];

• an index to the model’s file whose simulated data is to be visualized in the scatter plot
matrix. The simulated data of one of the provided causal models is shown in the scatter
plot matrix each time. On the contrary, the causal structures of all provided causal models
are shown along with the scatter plot matrix. This design option will be explained later in
this section;

• the order in which the observed variables will appear on the visualization (i.e., a scatter
plot matrix) and the graphical representation (i.e., causal diagrams) of the causal models;

• the preferred mode for visualizing the simulated data. The scatter plot matrix has been
implemented in three different modes (i.e., static, interactive, and animated) for reasons
that will be explained later in this section;

• the types of interventions that the user will be able to select and explore, and for each type
of intervention the variables that could be intervened on. Pre-computed simulated data
from these interventions should be included in the npz file of the model.
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6.4.2.2 The Components of the Design

Fig. 6.4 presents the outlook of the vicausi tool for each one of the three visualization modes.
The layout is similar in all modes. At the top there is a set of radio buttons for each intervention
type with the radio buttons in each set corresponding to model’s observed variables. These radio
button widgets allow users to select the intervention they wish to explore.

Below the radio buttons widget there is the scatter plot matrix of the simulated data on the
left, and the causal diagrams of the causal models contained in the input npz files on the right.
The intention is that these causal diagrams would represent the various hypothesized causal
models that according to an analyst or expert could have possibly generated the observed data.
The scatter plot matrix presents the simulated data of one of these causal models, which is
defined by the user in the arguments of the plotting method.

Designing the view of the simulated interventions in this way presents many advantages.
Users can explore the expected outcomes from a variety of different interventions applied on a
causal model of his choice. They can create a different view for each one of the hypothesized
causal models. This allows them to explore the expected outcomes of interventional experiments
under the various causal hypotheses of how data could have been generated. They can use the
provided visual cues to test various causal hypothesis against the outputs generated by a concrete
intervention under a specific causal hypothesis. This could help users to realize how informative
a specific intervention can be given their assumptions.

6.4.2.3 The Design of the Scatter Plot Matrix

The scatter plot matrix presents only the data corresponding to the observed variables of the
probabilistic model, which are the variables of the causal models. The data of the parameters
of the probabilistic model are not presented here as they are irrelevant to the tasks of causal
reasoning we focus on.

The outlook of the scatter plot matrix is similar to that of the IPP. The lower triangular part
of the matrix is kept. The diagonal presents the KDE plots of the posterior predictive samples
of the observed variables before (in blue for the interactive and animated mode or green in
the static mode) and after (in orange for the interactive and animated mode or various colors
determined by the provided colorbar for the static mode) the intervention. The rug plot of the
posterior predictive samples before the intervention is presented below each KDE curve. The
presence of the rug plot serves only the purpose of giving the user the sense of frequency and
discretization for the KDE curve (the same principle was followed in the design of the IPME and
IPP). Thus, presenting the simulated data after the intervention in a second rug plot below the
KDE curve was omitted for reasons of decluttering. The scatter plots of the pairwise posterior
predictive samples before and after the intervention are presented across the rows and columns
of the matrix.
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(a)

(b) (c)

Figure 6.4: The (a) interactive, (b) animated, and (c) static visualization mode of the vicausi
tool. The simulated data before the intervention is shown in blue in the interactive and animated
visualization mode, and in green in the static. The simulated data after the intervention is shown
in orange in the interactive and animated visualization mode, and in colors determined by the
colorbar (colors are mapped to slices of data of increasing ranges) in the static.

6.4.2.4 The Presentation Problem of the Interventional Data

The scatter plot matrix in vicausi has very similar outlook to that in IPP. There is an important
difference in the purpose each serves that led to a different implementation. The scatter plot
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matrix in IPP was required to present only the posterior and posterior predictive samples of the
probabilistic model’s (observed and latent) variables. The scatter plot matrix in vicausi is
required to visualize the posterior predictive samples both before and after an intervention at the
same time. This is required to be in line with the second design objective.

Visualizing the posterior predictive samples before the intervention creates a view similar
to IPP. In this case there is the interventional data that should be presented in conjunction with
simulated data before the intervention to allow direct comparisons. Various possible design op-
tions were considered as to how this could be implemented. One option could be to visualize the
whole set of interventional data for all considered interventional values along with the simulated
data before the intervention using a different color. Some stratification of the interventional data
could be used, e.g., in the form of interactive conditioning like in IPME or IPP or statically by
using a different color for the strands. This would enable users to infer causal information like
which variables in the model are affected by an intervened variable and the sensitivity of these
variables to changes in the intervened variable.

This approach is reasonable and offers a good overview of the interventional data in a single
view but can easily lead to cluttered views of the scatter plot matrix (for example see Fig. 6.4(c)).
The number of the presented data points in the scatter plots is heavily dependent on the number
of the different interventional values considered. More concretely, the size of the trace that holds
the posterior predictive samples of an observed variable depends on the following parameters:

• the number N of observations that were used for the inference for this particular observed
variable;

• the number S of samples drawn from the posterior predictive distribution (S samples are
drawn for each one of the N data points).

The total size of such a trace is defined by N×S. Assuming that there are I different interven-
tional values considered, there would be I traces of size N×S of interventional data and another
trace of same size N×S for the simulated data before the intervention, all required to be plotted
in the same scatter plot matrix. In the case of IPP only a trace of size N×S would be required
to be shown.

As the number of interventional values, I, increases the number of the data points that need
to be presented increases linearly with the size of the trace, N×S leading to cluttered views. On
the other hand, keeping the number of interventional values low to avoid cluttering decreases
the granularity in the exploration of the resulted effects after a certain kind of intervention. To
mitigate this a different approach in presenting the interventional data was considered. Specifi-
cally, it was considered to visualize only the interventional data corresponding to a single inter-
ventional value each time and provide a mechanism for querying and updating the scatter plot
matrix with the interventional data corresponding to a queried interventional value. This ap-
proach would reduce the number of data points being plotted at the same time (only two traces
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of simulated data of size N×S would need to be shown, one for before and the other for after
the intervention) leading to a clearer view. It could also create more intuitive views of the in-
terventional data by exploiting means like interaction or animation for the update of the scatter
plot matrix.

Given these design options for the visualization of the interventional data, three different
designs of the scatter plot matrix were considered in this work. Each one of them uses a dif-
ferent visualization mode for presenting the interventional data; statically, interactively, or with
animation. A user study was conducted for evaluating the effect of the visualization design on
users’ causal reasoning in TT1 and TT2 tasks. These three visualization modes were used as the
conditions in the user study, which will be presented in detail in Section 6.5. For the moment,
the detail of each one of these visualization modes will be explained.

In the static mode (Fig. 6.4(c)), the whole set for all interventional values along with the sim-
ulated data before the intervention is presented. The simulated data of the interventions are strat-
ified in 5 strands corresponding to 5 sequential, non-overlapping, and increasing value ranges
of the intervened variable so that its whole value range is covered. This number of strands was
chosen to provide enough granularity and at the same time avoid cluttering the plots too much
by plotting many KDEs or groups of pairwise samples. The data corresponding to each strand
is coloured based on a mapping of the strand’s index to a color from a colorbar (the smallest
index corresponds to the strand of the lowest value range and the highest index to the highest
value range). A continuous palette was used from the colorcet Python library [Colorcet],
and specifically the linear bmy. The continuous colormaps in this library were designed to be
“perceptually uniform, with each new color equally perceptually distinct from the previous and
following colors” [Colorcet].

In the interactive and animated mode (Fig. 6.4(a) and (b)), only a slice of interventional data
is presented along with the simulated data before the intervention; the slice that corresponds to a
single interventional value (uniform noise is added to interventional values to account for uncer-
tainty present in actual realizations of interventions). A slider at the top of the scatter plot matrix
indicates this interventional value. In the interactive mode the user can set the value of the slider
and the scatter plot matrix gets updated once the slider is set to present the corresponding slice
of the interventional data. In the animated condition, once a user selects a specific intervention
from the radio button widgets an animation of the outcomes corresponding to all possible inter-
ventional values is triggered. The slider is automatically set to one interventional value after the
other sequentially starting from the smallest and following each slider’s value setting, the scatter
plot matrix gets updated to show the corresponding slice of interventional data. Any interactive
element (radio buttons, slider, clear button) is deactivated as long as the animation is played
and once it finishes they get activated again. All subplots of the scatter plot matrix are updated
simultaneously once the slider is set to a new value in both the interactive and animated mode.
Videos demonstrating the visualization modes can be found in [Taka, 2023d].
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The “Clear Intervention” button presented below the scatter plot matrix in all conditions
was added to clear any selection of intervention, remove any annotation or highlighting from
the causal diagrams and any presented interventional data from the scatter plot matrix, and
resets the slider and the radio buttons. This could be useful especially in the static mode for
creating a separate view of the simulated data before the intervention in case it hides behind the
interventional data and is not clearly discernible.

6.4.2.5 The Design of Causal Diagrams

The causal diagrams of the hypothesized causal models are presented on the right of the scatter
plot matrix. The variables are represented by nodes and their hypothesized causal relations by
arrows starting from the cause and pointing to the effect. The DAGs are initially drawn in the
same color as the posterior predictive samples of the variables before the intervention (blue
in the interactive and animated mode and green in the static mode). After the intervention the
node corresponding to the intervened variable is highlighted (it turns orange). The intention is to
create a color consistency for the presentation of the information before and after an intervention.

In the case of an atomic intervention any incoming arrow to the node corresponding to the
intervened variable is annotated with a dashed orange line. These arrows normally should be
removed in standard causal diagrams. The choice here is to keep them and simply use some
annotation to indicate the breaking of the link due to the intervention. In this way it will be
ensured that users are aware that these links existed before the intervention at any point of
their explorations. The incoming arrows to the node corresponding to the intervened variable
should not be removed in the case of a shift or variance intervention. The reason is that in these
interventions the values of the intervened variable are not completely set externally, but they are
determined by the variable’s causes as usual. The intervention is then applied to the variable’s
values to transform them either by shifting their mean value or scaling their standard deviation.

6.4.2.6 Implementation and Limitations

The development of the vicausi tool was based on the same technologies used for IPME
and IPP (e.g., the Panel and Bokeh visualization libraries in Python), and utilized many code
components from IPP. Of course, this code had to be extended to accommodate the extra features
entailed by the need of visualizing and exploring the intereventional data. The Python package
NetworkX1 was used for drawing the causal diagrams.

This concrete implementation of the vicausi tool presents some limitations; some of them
were unavoidable, others could be avoided by elaborating the tool with extra features. The
first major unavoidable limitation of the tool is that the presentation and exploration of the
interventional data is restricted to the pre-computed sets of simulated data that are provided as

1https://networkx.org/
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input to the tool. The query and generation of interventional data on-the-fly and in real-time is
not possible because the PPL-related simulators cannot produce posterior predictive samples for
the model’s variables in real-time at the moment.

Another limitation of the tool is that interventions can only be applied on a single variable
at a time. Allowing combinations of interventions to be applied on the model would require to
pre-compute all possible combinations of interventions and provide the outputs as input to the
tool. This can be a tedious task most possibly leading to large npz files that would require to be
loaded and hold in the computer memory every time an instance of vicausi is created. The
greater the exploration flexibility offered, the larger the file with the pre-computed simulated
data. This problem would go away if dynamic computation was available.

Other limititations of the current implementation of the tool are that only continuous vari-
ables are supported, the hypothesized models should consist of the same set of variables, and the
density of the interventional variables, and hence the level of granularity in the interventional
data, cannot be adjusted. Extra features could be added to the tool in the future to extend the
range of possibilities to explore.

Finally, there is the possibility that the conclusions the user will reach through the interaction
with the exploratory tool are not realistic because the assumptions applied do not reflect the
actual data generating mechanism. The less informed (by prior knowledge and experience)
the explorations using such tools and the more complex the assumed causal structures are, the
greater the risk to reach unrealistic conclusions is. This might constitute a source of confusion
or error for the users of the tool. Hence, the users should be conscious about and aware of these
risks considering and testing as many causal assumptions as possible. The current design of the
tool, which only presents the simulated data from a single hypothesized causal model and dataset
in a single instance of the tool, might not encourage extensive explorations of assumptions.
Alternative designs like the ones discussed in Section 6.6.2 could be more effective in raising
users’ attention to such risks and encourge them to conduct more thorough explorations.

6.4.3 Use Case

A sleep specialist wants to investigate the causal relations among insomnia, anxiety, and tired-
ness. He thinks that there are two possible causal structures for these three variables; first,
insomnia is a mediator from anxiety to tiredness, and second, insomnia is a common cause of
the other two variables. Also he has some ratings of patients’ insomnia, anxiety, and tiredness
levels that he maps in a continuous scale. He uses vicausi to test his hypotheses and explore
the expected outcomes of various interventional experiments to decide which ones would be
more informative to conduct.

He uses the implementation of the pipeline presented in Fig 6.1 provided in [Taka, 2023c] to
generate the input files for vicausi; he inputs his two hypothesized causal structures and the
available observed data to the simulation pipeline. The pipeline generates probabilistic models
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similar to those in Fig. 6.2(a) for each one of the hypothesized causal structures, and conducts
the inference for each one of them. Then it generates simulated interventional data for each one
of the models, taking all variables in each model as the intervened variable, one after the other,
and simulating data from applying each one of the three available types of intervention (i.e.,
atomic, shift, variance) on each intervened variable for a range of interventional values, equally
spaced one from the other.

One of the explorations the sleep specialist can make with vicausi is to assume that the
mediator model generates the data. He produces a view of the simulated data from this model
using vicausi (Fig. 6.5 presents the initial view of vicausithat is generated).

Figure 6.5: The vicausi view presenting potserior predictive samples (before any interven-
tion) from the mediator causal model (Causal Model 1) of the insomnia-anxiety-tiredness prob-
lem.

He first observes the posterior predictive data generated by the probabilistic model of the
mediator causal model. Any of the two hypothesized causal models could generate observations
like the ones presented in the scatter plot matrix where all variables are positively correlated to
each other. Causal model 1 dictates that any increase in insomnia is caused by an increase in
anxiety, and any increase in tiredness is caused by an increase in insomnia. Although there is
no direct link (arrow) between anxiety and tiredness, anxiety affects tiredness indirectly through
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insomnia (the pipe effect). So, based on this causal model, anxiety and tiredness would appear
correlated. Causal model 2 dictates that any increase in anxiety or tiredness is caused by an
increase in insomnia. Although there is no link (arrow) between anxiety and tiredness, they
both have a common cause, insomnia, which when increases causes an increase to tiredness and
anxiety at the same time. So, plotting the data of tiredness and anxiety in a scatter plot, each will
seem to increase when the other increases, although none of them causes the other. Both causal
models are plausible explanations of the process that generated this data.

The data before the intervention alone cannot tell if and which of the variables cause other
variables in the model. The data of insomnia, anxiety, and tiredness occur naturally through
a data generating mechanism described possibly by causal model 1 or 2. The sleep specialist
could make an intervention externally on this data generating mechanism, and by collecting the
new data that will be generated after the intervention make some inferences about the causal
relations of the variables.

Intervention allows the identification of the variables that an intervened variable affects. A
change applied on a variable would affect only the variables caused (directly or indirectly) by
this variable and leave the remaining variables of the model unaffected. By an intervention,
controlled changes are applied to the value of a variable. Other variables that are affected by this
variable are identified by spotting changes to them.

The sleep specialist uses vicausi to visualize the simulated interventional data to explore
various interventions and observe to what extent each intervention would help him to determine
the causal relations among the variables of interest. The exploration of three of these interven-
tions is demonstrated in the following paragraphs.

6.4.3.1 Atomic Intervention On Insomnia

The sleep specialist selects the atomic intervention on insomnia from the radio button widgets
above the scatter plot matrix. The simulated interventional data of setting insomnia’s level to a
specific value in the interactive mode (Fig. 6.6(b)-(d)) or ranges of different values in the static
mode (Fig. 6.6(a)) is shown. The observations that can be made by setting the level of insomnia
to increasing values are the following:

1. tiredness increases. There is a shift of tiredness’s range of values to higher values in the
scatter plot of tiredness-insomnia and tiredness’s KDE plot. This means that insomnia

affects tiredness;

2. anxiety is not affected. Anxiety’s range of values remains essentially unaffected after the
intervention in the scatter plot of anxiety-insomnia and anxiety’s KDE plot. This means
that anxiety is not affected by insomnia;

3. tiredness and anxiety appear uncorrelated after the intervention. This can be inferred
by the fact that the slices of interventional data in the anxiety-tiredness scatter plot are
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uncorrelated as insomnia’s value increases, or by that anxiety’s KDE does not change as
that of tiredness’s shifts to higher values.

(a)

(b) (c) (d)

Figure 6.6: The vicausi view presenting potserior predictive samples before and after an
atomic intervention on insomnia from the mediator causal model (Causal Model 1) of the
insomnia-anxiety-tiredness problem. (a) The static visualization mode. (b)-(d) Three instances
of the interactive visualization mode with each corresponding to a different interventional value.
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How could these 3 observations be used to tell which of the two hypothesized causal models
generated the data? Both causal model 1 and 2 dictate that insomnia affects (causes) tiredness

(there is an arrow from insomnia to tiredness) based on the causal diagrams of the two models
on the right of the scatter plot matrix (both causal models confirm observation 1). Causal model
1 dicates also that anxiety is not expected to change after this intervention because anxiety is the
cause of (and not caused by) insomnia. In causal model 2 insomnia causes anxiety (there is an
arrow from insomnia to anxiety) and a change in anxiety would be expected by changing the
value of insomnia (only causal model 1 confirms observation 2).

Insomnia’s value is completely controlled (set) externally in an atomic intervention. This
means that any cause of insomnia will no more be able to affect the value of insomnia. In
causal model 1, anxiety won’t affect insomnia any more after the intervention because insomnia
is manipulated externally. For this reason, the correlation of anxiety and insomnia breaks (the
link between them breaks and is denoted by a dashed orange arrow in the causal models’ DAG).
This will make anxiety unable to affect tiredness through insomnia and their correlation will
also breaks. In causal model 2 insomnia would affect tiredness, so we would expect to see a
correlation between them after the intervention (only causal model 1 confirms observation 3).

As a result of this exploration, the sleep specialist can conclude that an atomic intervention
on insomnia assuming that the data is generated by the mediator causal model provides sufficient
information for distinguishing the two causal models and identify which one is that describing
the actual data generating mechanism of the variables of interest.

6.4.3.2 Shift Intervention On Tiredness

The sleep specialist selects the shift intervention on tirednes from the radio button widgets above
the scatter plot matrix. The simulated interventional data of setting tiredness’s level to a specific
value in the interactive mode (Fig. 6.7(b)-(d)) or ranges of different values in the static mode
(Fig. 6.7(a)) is shown. The observations that can be made by shifting tiredness’s mean value by
increasing factors are the following:

1. insomnia is not affected. Insomnia’s range of values remains essentially unaffected after
the intervention in the scatter plot of tiredness-insomnia and insomnia’s KDE plot. This
means that insomnia is not affected by tiredness;

2. anxiety is not affected. Anxiety’s range of values remains essentially unaffected after the
intervention in the scatter plot of anxiety-tiredness and anxiety’s KDE plot. This means
that anxiety is not affected by tiredness.

Causal model 1 dictates that tiredness is caused by anxiety through insomnia. This means
that anxiety and insomnia will not be affected when intervening on tiredness because tiredness
does not cause but is caused by them. Causal model 2 dictates that tiredness and anxiety are
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(a)

(b) (c) (d)

Figure 6.7: The vicausi view presenting potserior predictive samples before and after a shift
intervention on tiredness from the mediator causal model (Causal Model 1) of the insomnia-
anxiety-tiredness problem. (a) The static visualization mode. (b)-(d) Three instances of the
interactive visualization mode with each corresponding to a different interventional value indi-
cated by the interactive slider at the top of the scatter plot matrix.

caused by insomnia. Thus, similarly, this means that anxiety and insomnia will not be affected

when intervening on tiredness because tiredness does not cause but is caused by insomnia and
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does not affect anxiety (both causal models confirm observation 1 and 2).
As a result of this exploration, the sleep specialist can conclude that a shift intervention on

tiredness assuming that the data is generated by the mediator causal model does not provide
sufficient information for distinguishing the two causal models and identify which one is that
describing the actual data generating mechanism of the variables of interest.

6.4.3.3 Variance Intervention On Anxiety

The sleep specialist selects the variance intervention on anxiety from the radio button widgets
above the scatter plot matrix. The simulated interventional data of setting anxiety’s level to a
specific value in the interactive mode (Fig. 6.8(b)-(d)) or ranges of different values in the static
mode (Fig. 6.8(a)) is shown. The observations that can be made by scaling anxiety’s variance
by increasing factors are the following:

1. insomnia is affected. Insomnia’s range of values increases after the intervention in the
scatter plot of anxiety-insomnia and insomnia’s KDE plot. This means that insomnia is

affected by anxiety;

2. tiredness is affected. Tiredness’s range of values increases after the intervention in the
scatter plot of anxiety-tiredness and tiredness’s KDE plot. This means that tiredness is

affected by anxiety.

Causal model 1 dictates that anxiety causes tiredness through insomnia. This means that
insomnia and tiredness will be affected when intervening on anxiety because anxiety influences
the value of insomnia and tiredness. Causal model 2 dictates that anxiety and tiredness are
caused by insomnia. This means that insomnia and tiredness will not be affected when inter-
vening on anxiety because anxiety does not cause but is caused by insomnia and does not affect
tiredness (only causal model 1 confirms observation 1 and 2).

As a result of this exploration, the sleep specialist can conclude that a variance intervention
on anxiety assuming that the data is generated by the mediator causal model provides sufficient
information for distinguishing the two causal models and identify which one is that describing
the actual data generating mechanism of the variables of interest.

6.5 Evaluation User Study

6.5.1 Research Questions, Conditions & Participants

An evaluation user study was designed and conducted with the aim to investigate the effect of the
way that the simulated interventional data is presented on users’ ability to reason causally. The
concrete research questions that were investigated through this user study were the following:
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(a)

(b) (c) (d)

Figure 6.8: The vicausi view presenting potserior predictive samples before and after a vari-
ance intervention on anxiety from the mediator causal model (Causal Model 1) of the insomnia-
anxiety-tiredness problem. (a) The static visualization mode. (b)-(d) Three instances of the
interactive visualization mode with each corresponding to a different interventional value.

Does interaction or animation when used for the visualization of simulated probabilistic

interventional data help users

RQ1 identify the causal structure of some variables of interest more accurately, faster, and with
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more confidence?

RQ2 make decisions on interventional experiments more accurately, faster, and with more con-

fidence?

RQ1 and RQ2 were the two leading reasearch questions in this user study. However, the
user study was designed in a way to provide insight into the ways the participants exploited
the provided information and visual means to reason causally. Specifically, the user study was
designed so that the subsequent analysis of the collected data would allow the investigation of
the following aspects:

ASP1 how people performed in causal reasoning tasks when simulated probabilistic data before
and after an intervention was presented to participants in the form of a scatter plot matrix
and in three different visualization modes: static, interactive, and animated. RQ1 and RQ2
are part of this investigation;

ASP2 whether there were any specific settings (e.g., intervention types, causal models) in which
participants were able to perform better under these circumstances;

ASP3 what strategies participants used to identify the causal model when they explored the sim-
ulated data from multiple interventions;

ASP4 whether the statistical or causal inference level of knowledge played a role in participants’
performance;

ASP5 whether there was any strategy followed in how the information presented in the scattter
plot matrix was used to reason causally;

ASP6 whether the visualization mode played any role in the adoption of any such strategy;

ASP7 to what extent participants’ responses were valid;

ASP8 how participants judged the design of the visualization.

The design of the user study will now be discussed. The investigation aspect that is enabled
by the various design choices will be noted in parenthesis using the ASPx codes provided above.

The user study followed a between-subject design with three conditions; the static, interac-
tive, and animated visualization mode of the vicausi tool as described in Section 6.4.2 and
shown in Fig. 6.4 (ASP1, ASP5, ASP6). 32 participants were randomly assigned in the static
group (SG), interaction group (IG), and animation group (AG) (11 participants in each of IG
and AG, and 10 participants in SG). All participants in the SG, IG, or AG were exposed to only
the assigned version of vicausi.

Participants were recruited through mailing lists and social media of the institution and per-
sonal contacts. They each received a £10 worth online shopping voucher as a compensation.
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There was no requirement regarding participants’ statistical background to participate in the
user study. They were only required to be over 18 years old, have a personal computer (lap-
top/desktop/tablet etc.) with an at least 11” screen, and be able to read graphs. The intention
was to evaluate vicausi based on the general audience independently of their statistical or
causal inference knowledge. Users who need to use such tools (e.g., researchers, health ex-
perts, industry partners) do not often acquire specialized knowledge in these fields but they still
need to conduct causal inference and make decisions based on this. An appropriate training was
provided to all participants as it will be explained in the following section. In this way it was
ensured that all participants were provided with the required knowledge for dealing with the user
study’s tasks.

6.5.2 Study’s Structure

The study was approved by the institution’s ethics review board (approval number: 300220041)
and conducted online through a web interface developed for this purpose. It consisted of four
parts presented to participants in the following order; demographic questions, training, tasks,
and user experience questions.

In the demographic questions’ part, five questions (D1-5) were asked to participants. They
were all multiple-choice allowing participants to input any response that was not included in
the provided options. The demographic questions asked to participants are presented in the
following list. Fig. 6.9 presents participants’ demographic statistics.

D1 What is your age? 5 options were provided including a “Prefer not to say” option.

D2 What is the highest level of education you have completed? 4 options were provided plus
the “Other” option allowing another response being input in a text box.

D3 What former training in statistics have you undertaken? (ASP4) 5 options were provided
plus the “Other” option allowing another response being input in a text box.

D4 Could you confidently state the difference between correlation and causation? (ASP4) 4
Likert-scale options were provided.

D5 Are you aware of having any color vision deficiency? Yes/no options were provided.

The training part consisted of six pages (find screenshots in Appendix D.2) presented to
participants through the web interface of the user study. It consisted mainly of reading and
comprehension and demonstration of the vicausi tool. The training was similar in all con-
ditions; only the presented visualization mode of the vicausi tool varried among the static
(SG), interaction (IG), and animated (AG) group. The training’s material constituted an intro-
duction to the purpose of the study and concepts like causal diagram, difference of correlation
and causation, scatter plot matrix, intervention and the types of intervention considered in the
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Figure 6.9: Demographic statistics of participants in the user study.

user study (atomic, shift, variance). A demonstration of the vicausi tool, and a use case of
identifying the true causal model by using this tool similar to that presented in Section 6.4.3
were also shown to participants during the training.

The next part after the training was the study tasks. The study tasks were split into two
parts each consisting of tasks of a different type; task type TT1 accounting for RQ1, and task
type TT2 accounting for RQ2. There were 10 TT1 tasks and 6 TT2 tasks included in the user
study. Tables 6.1 and 6.2 summarize the TT1 and TT2 tasks used in the user study, respectively.
Screenshots of all tasks in the user study can be found in Appendix D.3. Section 6.5.3 explains
how these tasks were designed.

The last part of the user study consisted of 4 user experience questions (UE1-4). The aim of
these questions was to understand if participants’ responses were informative or not (how often
did they respond uninformatively?) (UE1), how they used the scatter plot matrix (did they rely
on the scatter plots or KDE plots more often?) (UE2-3), and how they judged the design of the
visualizations (UE4). The exact questions were as following:

UE1 In how many tasks in the study do you estimate that you looked at the directed graphs

(DAGs) of the causal models? (ASP7) A slider was provided with options the integers
from 0 to 16;

UE2 In how many tasks in the study do you estimate that you looked at the scatter plots (plots

presenting data with dot markers) in the scatter plot matrix? (ASP5) A slider was pro-
vided with options the integers from 0 to 16;
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Table 6.1: Summary of TT1 tasks of user study.

Task Question
Causal Models

Correct response. 

Correct response. The simulated data of this 
model is shown in the sca�er plot matrix.

Wrong response.

t1

A sleep doctor conducts an atomic
intervention on patients’ tiredness.
Which of the hypothesized causal
models generated this data?

t2

A sleep doctor conducts an atomic
intervention on patients’ insomnia.
Which of the hypothesized causal
models generated this data?

t3

A sleep doctor conducts an atomic
intervention on patients’ anxiety.
Which of the hypothesized causal
models generated this data?

t4

A sleep doctor conducts an atomic
intervention on patients’ tiredness.
Which of the hypothesized causal
models generated this data?

t5

A sleep doctor conducts an atomic
intervention on patients’ anxiety.
Which of the hypothesized causal
models generated this data?

t6

A sleep doctor conducts a shift
intervention on patients’ tiredness.
Which of the hypothesized causal
models generated this data?

t7

A sleep doctor conducts a shift
intervention on patients’ anxiety.
Which of the hypothesized causal
models generated this data?

t8

A sleep doctor conducts a variance
intervention on patients’ anxiety.
Which of the hypothesized causal
models generated this data?

t9

A sleep doctor conducts a variance
intervention on patients’ insomnia.
Which of the hypothesized causal
models generated this data?

t10

A sleep doctor conducts a variance
intervention on patients’ anxiety.
Which of the hypothesized causal
models generated this data?
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Table 6.2: Summary of TT2 tasks of user study. The question asked in all tasks was the follow-
ing: “You want to design and run one interventional experiment, which will help you identify
the causal model of the data. Which of the provided interventions (if any) could be a candidate
design for your experiment? Select all interventions (if any) that each alone is sufficient to reveal
the causal model.” The ticked boxes in the interventions column represent the correct response
in each task.

Task Interventions Causal Models
Correct response. The simulated data of this 
model is shown in the sca�er plot matrix.

t11
✓□ Atomic on insomnia
□ Atomic on anxiety
□ Atomic on tiredness

t12
✓□ Atomic on insomnia
✓□ Atomic on anxiety
□ Atomic on tiredness

t13
✓□ Shift on insomnia
□ Shift on anxiety
□ Shift on tiredness

t14
✓□ Shift on insomnia
□ Shift on anxiety
✓□ Shift on tiredness

t15
✓□ Variance on insomnia
✓□ Variance on anxiety
□ Variance on tiredness

t16
✓□ Variance on insomnia
□ Variance on anxiety
□ Variance on tiredness

UE3 In how many tasks in the study do you estimate that you looked at the KDE plots (plots

presenting the variables’ distribution) on the diagonal of the scatter plot matrix? (ASP5)
A slider was provided with options integers from 0 to 16;

UE4 How did you find the design of the visualization for the simulated data? Was it informative,

annoying, distractive? (ASP8) This was an open-ended question. The participants were
asked to input their feedback in a text box.
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6.5.3 Design of Study’s Tasks

Two types of tasks were designed for this user study; task type TT1 and task type TT2, each
accounting for the corresponding research question.

In TT1 tasks participants were asked to identify the causal model of the presented simulated
data (before and after an intervention) given a list of 2 different models and a concrete interven-
tion (a specific type of intervention - atomic, shift, or variance- applied on a specific variable of
the model) (Fig. 6.10(a)).

In TT2 tasks participants were required to explore the outcomes of a specific type of inter-
vention applied on any of the models’ variables and identify two things: first, the causal model
of the presented simulated data from a list of 3 different models, and second, the interventions
that each provides sufficient information to identify the causal model (Fig. 6.10(b)). Tasks of
type TT2 were more complex than the tasks of type TT1.

The aim of TT1 tasks was to investigate if users can reason causally when they are provided
with simulated probabilistic data (before and after an intervention) presented in a scatter plot
matrix. These tasks preceded the more complex TT2 tasks with the aim to help users to famil-
iarize themselves with the environment and give them the chance to pre-establish a strategy for
exploiting the presented information to reason causally before moving on to the more complex
tasks of type TT2.

The aim of TT2 tasks was to emulate the task of a specialist or researcher who wants to
design an interventional experiment. The intention was to investigate if they can make infor-
mative decisions on which interventional experiments to conduct when they rely on simulated
probabilistic data of interventions. The complexity was increased in TT2 tasks in comparison to
TT1 tasks in terms of two aspects; first, an extra causal model was added in the list of provided
options, and second, the participants were required to explore information from multiple inter-
ventions. The intention was to make the tasks of type TT2 more realistic by aligning them with
the tasks that an actual user would like to conduct.

All questions were multiple-choice. A single selection was allowed for determining the
true causal model in TT1 tasks. Multiple selections were allowed for determining the sufficient
interventions in TT2 tasks, and single selection was allowed for determining the true causal
model. At the end of each task participants recorded their confidence about their response. This
was input in a five level Likert scale.

A variety of combinations of intervention type - atomic, shift, and variance - and intervened
variable was included in TT1 tasks (ASP2). The provided intervention in most TT1 tasks was
informative enough to identify which one of the two provided causal models is the one having
generated the presented data. Only in two tasks (t3 and t10) the intervention was not providing
enough information to distinguish the two causal models. In 5/10 of the TT1 tasks an atomic
intervention was applied, in 2/10 a shift, and in 3/10 a variance intervention.

InTT2 tasks all types of interventions were considered (ASP2). Two TT2 tasks for each
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(a)

(b)

Figure 6.10: (a) Task t1 (TT1) and (b) task t11 (TT2).

one of the atomic, shift, and variance interventions’ type were included. There was at least one
sufficient intervention in all TT2 tasks. This means that sufficient information was provided in
all TT2 tasks to identify the causal model of the presented data (ASP3).

The tasks in each part were presented to participants in a randomized order to account for
any learning effect. The order in which the variables were presented in the scatter plot matrix
and causal diagrams varied across the tasks but was fixed accross participants (see screenshots
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in Appendix D.3 to see how the order of variables varied among the tasks). The reason for not
keeping the order of variables fixed in all tasks was again to avoid any learning effect.

The insomnia-anxiety-tiredness problem was used as reference in all tasks of the user study.
This model was referenced in the existing literature [Lagnado and Sloman, 2004] and was chosen
because any direction of the causal link between the variables could be deemed as reasonable.
For example, anxiety causes insomnia or insomnia causes anxiety could both be possible facts.
In a different model, which for example could include age as a variable, only the fact that age
affects insomnia could be possible and not the inverse, namely insomnia affects the age of the
patient. It was also deemed that the general audience would not be able to rely on their previous
epxerience or knowledge to infer the causal relations in this model.

The insomnia-anxiety-tiredness model is a three-variable model. The two-variable models
would be too trivial, while models with more than three variables would add extra unnecessary
complexity given the purposes of the user study and the limited time for its completion by each
participant. The three-variable model allows a good variety of possible causal structures to be
explored.

Three specific causal models describing the causal relations among insomnia, anxiety, and
tiredness were considered (the ones shown in Table 6.2); in the first, insomnia is a common
cause of anxiety and tiredness, in the second, insomnia is a mediator from anxiety to tiredness,
and in the third, insomnia is a common effect of anxiety and tiredness. These models were
not chosen to necessarily reflect the true scientific knowledge about how these three variables
might be related causally, but to allow the exploration of a variaty of possible causal relations.
A mediator, a common cause, and a collider model were the three causal structures considered.
These types of causal structures have been included in the tasks of similar user studies [Kale
et al., 2022; Lagnado and Sloman, 2004; Yen et al., 2019].

Synthetic observations were created from the common cause model so that all three variables
are positevely correlated to each other (find exact code in Appendix D.1). These observations
along with the three considered causal models were then used in the pipeline presented in Fig 6.1
and provided in [Taka, 2023c] to generate the input files for vicausi. The npz files that were
used in the user study and the code for generating them can be found in the /examples folder
of the github repository in [Taka, 2023c].

6.5.4 Statistical Analysis & Results

This subsection presents the statistical analysis of the collected data from the user study and dis-
cusses the results. The purpose of this analysis is to investigate aspects ASP1-3. Section 6.5.4.1
presents the evaluation measures and the data used for the analysis. Section 6.5.4.2 discusses
the analysis’s process presenting all the levels of inference considered. Sections 6.5.4.3-6.5.4.5
present the analysis of participants’ performance, response time and confidence in TT1 and TT2
tasks. The data and the Python code of the analysis can be found in the github repository in
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[Taka, 2023b].

6.5.4.1 Evaluation Measures & Data

Participants’ accuracy, response time and confidence are the evaluation measures used for the
statistical analysis. Accuracy is measured in a different way depeding mainly on the type of the
response input used (i.e., single- or multi-selection input).

In the case of a multi-selection response input, accuracy is measured as the number of cor-
rectly selected and non-selected options in the multiple-choice input by each participant in every
task. Participants’ responses in the multiple-choice input are transformed into a binary repre-
sentation with 0 indicating a wrong and 1 a correct selection or non-selection. The binary rep-
resentation of each participant’s response in these cases consists of as many binary digits as
the available options of the multiple-choice input excluding the “none” option, if present. Par-
ticipants’ accuracy in each task is computed as the number of occurrences of digit 1 in their
response.

In the case of a single-selection response input, accuracy is measured as 0 or 1 depending on
whether the participant selected a wrong or the correct option, respectively.

Participants’ response time was measured (in seconds) from the moment the task was dis-
played until the answer was submitted. Participants rated their confidence in each task on a 1-5
scale with increasing level of confidence (1: not at all, 2: slightly, 3: somewhat, 4: fairly, 5:
completely). This was remapped to the {−2,−1,0,1,2} set to center the parameterization.

Accuracy data consists of numbers of participants’ correct selections or non-selections in the
multiple-choice input, or a 0 or 1 in every task depending on the approach followed. Response
time data consists of times (in sec). Confidence data consists of ordinal values. No participant
or response is excluded from the collected data. Only the multiple blank registrations of some
participants, who accidentally clicked the “Register” button multiple times, are omitted.

6.5.4.2 Bayesian Analysis & Levels of Analysis

A Bayesian analysis of the collected data is conducted. Various levels of inference are con-
sidered as allowed by the design of the user study and with the aim to investigate the research
questions and the other aspects of interest. These levels of inference are summarized in the
following list. They will be called levels of analysis (LA).

LA1 All participants are pooled together independently of the condition (ASP1);

LA1.1 inference is conducted by taking participants’ responses in the individual tasks sep-
arately (ASP2);

LA1.2 inference is conducted by taking participants’ responses in all tasks together (ASP1);
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LA1.3 inference is conducted by taking participants’ responses in the tasks concerning the
same type of intervention (i.e., the atomic, shift, and variance) together (ASP2).

LA2 Participants are pooled together based on the visualization condition (IG, SG, and AG)
(RQ1 and RQ2);

LA2.1 inference is conducted by taking participants’ responses in the individual tasks sep-
arately (ASP2);

LA2.2 inference is conducted by taking participants’ responses in all tasks together (RQ1
and RQ2).

The LA1 level of analysis allows the investigation of participants’ performance overall in-
dependently of the visualization mode that the participants used. The intention is to investigate
whether and how participants were able to deal with the particular tasks given the probabilistic
interventional data.

The LA2 level of analysis allows the investigation of considerable differences in participants’
performance between the visualization conditions. The intention is to investigate if the specific
way of presenting the interventional data plays any role in participants’ performance.

The sublevels allow the investigation of considerable differences in participants’ perfor-
mance for particular tasks (LA1.1, 2.1) or intervention types (LA1.3). The aim is to investigate
if there are particular causal conditions or intervention types that are more beneficial.

Sections 6.5.4.3 - 6.5.4.4 present the analysis of participants’ accuracy separately for TT1
and TT2 tasks (ASP1-3). This is reasonable because the two types of tasks differ in the questions
asked to participants and the response inputs. Thus, the approach followed for the analysis of
participants’ responses in each type of tasks presents some differences that need to be separately
discussed. Section 6.5.4.5 presents the analysis of participants’ response time and confidence
for all tasks of the user study (ASP1-2).

6.5.4.3 Analysis of Accuracy in TT1 Tasks

Metrics of Accuracy In TT1 tasks (t1-10) participants were able to select only one of three
possible options: “Causal Model 1”, “Causal Model 2”, “Both causal models are possible”. Two
approaches are considered for measuring accuracy in these tasks.

The first approach considers that only one of the three available options is correct. A par-
ticipant’s response is marked as 0 when he selects a wrong option and as 1 when he selects
the correct option. This approach will be called Single Correct Option (SCO) approach. This
approach is reasonable but following this, there is a risk of missing some existing signal in the
data. What if the correct answer is the “Both” (this is the case in tasks t3 and t10) and the
participant identifies only one of the two models? What if the participant selects the "Both"
option and only one of the two models is correct? Could a participant’s response in these cases
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be considered as completely wrong? For this reason, a second approach is considered with the
aim to produce non-binary scores for measuring accuracy.

This second approach considers that any of the two models can be correct in each task. A
participant’s response is transformed into a binary representation consisting of 2 digits, one for
each model. Each digit is marked as 0 when the participant thinks the corresponding model is
wrong and as 1 when he thinks it is correct. The accuracy of a participant’s reponse is measured
as the number of correct selections and non-selections. This approach will be called Multiple

Correct Options (MCO) approach.
Participants’ responses in TT1 tasks are transformed in accuracy scores based on the SCO

and MCO methods; that is 0s and 1s for the SCO and numbers in {0,1,2} for the MCO. Fig. 6.11
presents the numbers of participants per task that scored each one of the possible values per
task for both approaches independently of the visualization condition (LA1) and based on the
visualization condition (LA2).

(a) SCO Accuracy Scores

(b) MCO Accuracy Scores

Figure 6.11: Count plots of number of participants scoring a particular level of accuracy per
task independently of the visualization condition (LA1) and based on the visualization condi-
tion (LA2) for the (a) Single Correct Option (SCO), and (b) Multiple Correct Options (MCO)
approach.

Tasks t3 and t10 in which the “Both” option is correct present the worst performance in
SCO in comparison to the rest of the tasks (see the LA1 plot in the first row of Fig. 6.11). In
this case participants who possibly identified only one of the two provided causal models were
considered as having given a completely wrong response. Using MCO these participants could
be assigned an intermediate accuracy score, namely 1. Following the MCO approach scores of
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0 are not possible in such tasks (see that score 0 is missing from tasks t3 and t10 in the plots
of the second row in Fig. 6.11) because whichever model the participants select they would get
1 unless they select the “Both” option and get 2.

For the rest of tasks in which only one causal model is correct, the 0-score components
(green bars) of the SCO count plots in the first row of Fig. 6.11 are broken into two separate
components in the MCO count plots in the second row of Fig. 6.11; one component of com-
pletely wrong responses (0-score green bars) and a component of half-correct response (1-score
orange bars). The half-correct components in all tasks except t3 and t10 represent the cases
when the participants select the “Both” option.

The SCO and MCO approaches for measuring accuracy are both used for the analysis of
participants’ accuracy in TT1 tasks. They complement each other and enrich the analysis by
providing two different perspectives at looking at participants’ choices.

Analysis Models Two models are created for each one of the SCO and MCO approaches to
account for the two main levels of analysis (LA1 and LA2). The first model is used to conduct
the inference on the level of all participants idependently of the visualization condition (LA1).
The second model is used to conduct the inference on the level of visualization conditions (LA2).
Fig. 6.12 presents the Kruschke-style diagrams of all the Bayesian probabilistic models used for
the analysis of accuracy in TT1.
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Figure 6.12: Kruschke-style diagrams of the analysis models for participants’ accuracy in TT1
tasks. Two models for each one of the Single Correct Option (SCO) and Multiple Correct Op-
tions (MCO) approaches for measuring accuracy are created. (a) SCO LA1 Model for all par-
ticipants independently of visualization condition. (b) SCO LA2 Model for participants in each
visualization condition. (c) MCO LA1 Model for all participants independently of visualization
condition. (d) MCO LA2 Model for participants in each visualization condition.

Both models (LA1 and LA2) in each one of the SCO and MCO approaches are similar; they
use the same type of likelihood and prior distributions. The likelihood of the two models in
the SCO is a Bernoulli with a beta prior for the theta (represented by p in Fig. 6.12(a), (b))
parameter of the Bernoulli. The likelihood of the two models in the MCO is a binomial with
number of trials n= 2 (one trial per causal model) and a beta prior for the theta (represented
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by p in Fig. 6.12(c), (d)) parameter of the binomial.
Parameter theta expresses the probability of success in each trial. In SCO, theta rep-

resents the probability of a participant selecting the correct option from the three available:
“Causal Model 1”, “Causal Model 2”, “Both causal models are possible”. In MCO, theta rep-
resents the probability of a participant to correctly select or not select each one of the available
models: “Causal Model 1”, and “Causal Model 2”. In summary theta expresses the propensity
of a participant to make a correct selection in a task within the context of these analyses.

The difference between the two models (LA1 and LA2) in each approach is that the second
model (LA2) uses a separate likelihood and set of the priors for each visualization conditions.
Also the second model estimates the difference between the groups’ (IG, SG, and AG) posterior
distributions of theta.

Results Fig. 6.13 presents the inference results (posterior distributions) in the form of forest
plots for all 4 models used for the analysis of participants’ accuracy in TT1 tasks. The orange
vertical lines are reference lines representing the chance in the case of the thetas or the zero

difference in the case of the differences between the conditions. The chance level for the theta
depends on the approach used for measuring accuracy (i.e., the SCO or MCO). In the SCO
approach the probability of randomly selecting the correct option from the three available is
1/3. In the MCO approach the probability of randomly selecting or not selecting correctly an
available option is 1/2. Thus, the reference lines in the estimates of theta from the SCO
models are set to 1/3 and from the MCO models to 1/2.

The horizontal bars represent the posterior highest density interval (the thinest represent the
94% and the thickest the 50% HDI). The furthest away the horizontal bars are from the reference
lines, the less likely the reference value is under the corresponding posterior distribution.

Based on the analysis conducted on the LA1 level both approaches of measuring accuracy
(SCO and MCO) lead to estimations of theta that are better than the chance (Fig. 6.13(a) and
(c)).

The LA1.2 level of analysis shows strong evidence that participants were able to perform
better than chance (the “all tasks (LA1.2)” HDI bars in Fig. 6.13(a) and (c) are further on the
right of the reference line and do not overlap with it).

The estimations of theta are more uncertain in LA1.1 than LA1.2 (the HDI bars in LA1.1
are wider than those in LA1.2 in Fig. 6.13(a) and (c)) because only the subset of participants’
responses corresponding to a specific task are used for the inference of these tasks’ posterior
distributions. But still there is strong evidence in LA1.1 that participants performed better than
chance in many tasks. Specifically, participants performed well in tasks t1, t2, t5, t7, t9
based on both the SCO and MCO approaches. The performance in tasks t3 and t10 becomes
more certainly better than chance based on the MCO approach. The chance (value of reference
line) seems to be quite possible under the posterior of theta for participants’ performance in
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Identification of Causal Model in TT1

(a) SCO LA1 (b) SCO LA2

(c) MCO LA1 (d) MCO LA2

Figure 6.13: Forest plots of the posterior distributions inferred based on participants’ accuracy
in TT1 tasks. The results of the analysis models for both the Single Correct Option (SCO) and
Multiple Correct Options (MCO) approaches for measuring accuracy are included. Forest plot
of the (a) SCO LA1 Model for all participants independently of visualization condition, (b)
SCO LA2 Model for participants in each visualization condition, (c) MCO LA1 Model for all
participants independently of visualization condition, (d) MCO LA2 Model for participants in
each visualization condition.

tasks t4, t6, and t8 in LA1.1 for any of the SCO and MCO approaches.
All tasks t1, t4, and t6 apply an intervention on tiredness with the first two applying

an atomic and the third a shift intervention (see Table 6.1). These three tasks differ in which
model’s simulated data is presented to participants in the scatter plot matrix: in t1 participants
see the simulated data from the common cause model, and in t4 and t8 from the collider.
The intervention on tiredness results in similar effects in the alternative causal models that are
provided as a second option in these three tasks. Assuming that the order in which the variables
are presented in the scatter plot matrices and causal diagrams does not play any important role in
participants’ causal reasoning, it could be inferred that the causal model whose simulated data
is presented to participants plays a role in participants’ ability to reason causally in this specific
case.

The LA1.3 level of analysis shows strong evidence that participants were able to perform
better than chance in the tasks of atomic interventions (the “atomic (LA1.3)” HDI bars in
Fig. 6.13(a) and (c) are further on the right of the reference line and do not overlap with it).
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The HDI bars of the tasks of shift interventions are the widest of the three in LA1.3 because
only 2/10 TT1 tasks fall in this category in contract to 5/10 in the atomic and 3/10 in the vari-
ance. The estimation of theta in the variance intervention tasks seems to move to higher
values in the MCO approach. The reason for this is that one of the three tasks that fall into this
category is task t10 for which participants’ accuracy improves based on the MCO approach.

The LA2 level of analysis confirms partly these observations about the estimation of theta
but this time within each visualization condition (Fig. 6.13(b) and (d)).

The LA2.2 level of analysis shows strong evidence that participants were able to perform
better than chance (the “all tasks (LA2.2)” HDI bars of the theta estimations in each visu-
alization condition in Fig. 6.13(b) and (d) are further on the right of the reference line and do
not overlap with it), although theta is not estimated to be high in most of the visualization
conditions in the SCO and MCO approach.

The estimations of theta are more uncertain in LA2.1 than LA2.2 (the HDI bars in LA2.1
are wider than those in LA2.2 in Fig. 6.13(b) and (d)) because only the subset of participants’
responses corresponding to a specific task are used for the inference of these tasks’ posterior
distributions. The theta increases in tasks t3 and t10 based on the MCO approach in LA2.1
in comparison to SCO but it does not seem to become clearly better than chance in any of the
visualization conditions. The performance in the tasks that were found to be better than chance
in the LA1.1 (t1, t2, t5, t7, t9) is confirmed to be so in many cases in LA2.1, as well, but
not in all visualization conditions.

The differences of the thetas between two visualization conditions in LA2 suggest an
effect of one condition over the other when the value 0.0 (reference lines in columns presenting
the differences of thetas and indicating no difference in Fig. 6.13(b) and (d)) becomes less
likely under the difference of the posterior distributions. The effect of one condition becomes
less likely when the highest density intervals of the posteriors of differences are pulled towards
the reference value.

The inference on LA2.2 does not suggest any difference between any of the visualization
conditions; the “all tasks (LA2.2)” HDI bars of the diferences of thetas estimations in each
visualization condition in Fig. 6.13(b) and (d) overlap with the reference line.

Similarly, the inference results in the LA2.1 level of the individual tasks do not seem to
suggest any considerable difference between the visualization conditions. The HDI bars are
consistently close and overlap with the reference line across the tasks.

Summary of Findings Overall participants’ performance in TT1 tasks was better than chance
independently of the visualization condition. The performance of participants in tasks in which
the intervention was not informative enough to identify the causal model (tasks t3 and t10)
is estimated to be better than chance when the MCO approach is used for measuring accuracy.
Atomic interventions seemed to be well-interpreted by participants as their performance in TT1
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tasks of atomic interventions was better than chance. Finally, in the case of distinguishing the
collider from the common cause or mediator causal model through applying an intervention on
tiredness, the model whose simulated data is presented to participants seems to play a role in the
their ability to identify the true causal model.

6.5.4.4 Analysis of Accuracy in TT2 Tasks

Metrics of Accuracy In TT2 tasks (t11-16) participants were asked to identify two things:

• all the interventions that were sufficient on their own to reveal the causal model of the
presented data. Participants were given 3 interventions and had to select the ones that were
sufficient (and not to select the ones that were not sufficient). A multiple-choice response
input that allowed multiple selections was used for recording participants’ responses.

• the true causal model of the presented simulated data. Participants had to select one
of three possible options: “Causal Model 1”, “Causal Model 2”, “Causal Model3”. A
multiple-choice response input that allowed a signle selection was used for recording par-
ticipants’ responses.

For the analysis of participants’ responses in TT2 tasks, the MCO approach is used for mea-
suring participants’ accuracy in identifying the sufficient interventions and the SCO approach is
used for measuring participants’ accuracy in identifying the true model.

Analysis Models Similarly to the analysis of accuracy in TT1 tasks, a LA1 and a LA2 MCO
Bayesian probabilistic model is created for the analysis of participants’ responses in regards with
the sufficient interventions, and a LA1 and a LA2 SCO Bayesian probabilistic model is created
for the analysis of participants’ responses in regards with causal model to account for the two
main levels of analysis. These models are similar to those presented in Fig. 6.12.

Initially, the inference is conducted separately for participants’ responses regarding the suf-
ficient interventions and the causal model. Subsequently, only the sufficient interventions re-
sponses of participants who got the causal model correct are analysed.

There might be different ways in which participants could conclude which of the provided
causal models is true for the presented simulated data. They might be able to combine informa-
tion from the different available interventions to exclude one after the other the possible causal
models until they reach to the one that is the true. They might also be able to determine an
intervention that provides sufficient information on its own to identify the true model. Thus,
the selections of models and interventions are initially analysed separately to investigate partic-
ipants’ performance independently of how they determined the causal model. The subsequent
analysis of only the responses of participants who got the model correct aims at investigating to
what extent their performance could be attributed to the identification of sufficient interventions
(ASP3). All TT2 tasks included at least one sufficient intervention.
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Results Fig. 6.14 presents the inference results (posterior distributions) in the form of forest
plots from the analysis of participants’ accuracy in TT2 tasks.

Selection of Causal Model in TT2

all participants’ responses considered

(a) SCO LA1 (b) SCO LA2

Selection of Sufficient Interventions in TT2

all participants’ responses considered

(c) MCO LA1 (d) MCO LA2

Selection of Sufficient Interventions in TT2

only the responses of participants’ who got the model correct were considered

(e) MCO LA1 (f) MCO LA2

Figure 6.14: Forest plots of the posterior distributions inferred based on participants’ accuracy
in TT2 tasks. The first row presents the forest plots of results from the Single Correct Option
(SCO) model for participants’ selections of causal models inferred on the (a) LA1 (all par-
ticipants’ responses are taken together independently of visualization condition), and (b) LA2
(participants’ responses are taken together in each visualization condition) level of analysis. The
second row presents the forest plots of results from the Multiple Correct Options (MCO) model
for participants’ selections of sufficient interventions inferred on the (c) LA1, and (d) LA2 level
of analysis. (e)-(f) The third row presents the forest plots of results from the same models as in
the second row but considering only the responses of participants who got the model correct.

The first row of the figure (Fig. 6.14(a) and (b)) concerns the analysis of participants’ se-
lections of causal models conducted on the LA1 and LA2 levels. The LA1 level of analysis
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produces estimates of the theta taking participants’ responses together independently of the
visualization condition (Fig. 6.14(a)).

The LA1.2 level of analysis shows somewhat strong evidence that participants were able to
perform better than chance (the “all tasks (LA1.2)” HDI bar in Fig. 6.14(a) is further on the right
of the reference line and do not overlap with it). In LA1.1 there is strong evidence in LA1.1 that
participants performed better than chance in tasks t11, t12, t14 (the “t11 (LA1.2)”, “t12
(LA1.2)”, and “t14 (LA1.2)” HDI bars in Fig. 6.14(a) are further on the right of the reference
line and do not overlap with it). The chance (value of reference line) seems to be quite possible
under the posterior of theta for participants’ performance in tasks t13, t15, and t16 based
on LA1.1.

All tasks t11, t13, and t16 presented the simulated data of the mediator model (see Ta-
ble 6.2) to participants. These tasks differ in the type of interventions that were provided as
options to participants: the first allows atomic, the second shift, and the third variance interven-
tions. Assuming that the order in which the variables are presented in the scatter plot matrices
and causal diagrams does not play any important role in participants’ causal reasoning, it could
be inferred that the type of interventions that participants are able to explore plays a role in
participants’ ability to identify a mediator model.

All tasks t12, and t15 presented the simulated data of the common cause model (see Ta-
ble 6.2) to participants. These tasks differ in the type of interventions that were provided as
options to participants: the first allows atomic interventions, and the second variance interven-
tions. Assuming that the order in which the variables are presented in the scatter plot matrices
and causal diagrams does not play any important role in participants’ causal reasoning, it could
be inferred that the type of interventions that participants are able to explore plays a role in
participants’ ability to identify a common cause model.

The LA1.3 level of analysis shows strong evidence that participants were able to perform bet-
ter than chance in the tasks of atomic interventions (the “atomic (LA1.3)” HDI bar in Fig. 6.14(a)
is further on the right of the reference line and do not overlap with it). On the other hand, chance
seems to be possible under the posterior of theta in the tasks of variance interventions.

The LA2 level of analysis confirms partly these observations about the estimation of theta
but this time within each visualization condition (Fig. 6.13(b)).

The LA2.2 level of analysis shows a rather fragile improvement in participants’ performance
than the chance (the “all tasks (LA2.2)” HDI bars in columns 1, 2, and 3 of Fig. 6.14(b) are on
the right of the reference line and they nearly overlap with it). In LA2.1 level of analysis the
HDI bars of the tasks that were found to be better than chance in the LA1.1 (t11, t12, t14)
nearly overlap with the reference line in all visualization conditions.

The inference on LA2.2 does not suggest any difference between any of the visualization
conditions; the “all tasks (LA2.2)” HDI bars in columns 4, 5, and 6 of Fig. 6.14(b) overlap with
the reference line. Similarly, the inference results in the LA2.1 level of the individual tasks do
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not seem to suggest any considerable difference between the visualization conditions. The HDI
bars are consistently close and overlap with the reference line across the tasks.

The second row of the figure (Fig. 6.14(c) and (d)) concerns the analysis of participants’
selections of sufficient interventions conducted on the LA1 and LA2 levels. The LA1 level of
analysis produces estimates of the theta taking participants’ responses together independently
of the visualization condition (Fig. 6.14(c)).

The LA1.2 level of analysis shows that chance is possible under the posterior of theta (the
“all tasks (LA1.2)” HDI bar in Fig. 6.14(b) nearly overlaps with the reference line) and theta
is estimated to be quite low. In LA1.1 only task t11 seems to indicate some evidence of better
performance than the chance. Chance seems to be possible under the posterior of theta for
participants’ performance in the rest of tasks based on LA1.1 with the exception of task t14

that indicates a very poor performance. The LA1.3 level of analysis shows strong evidence that
participants were able to perform better than chance in the tasks of atomic interventions (the
“atomic (LA1.3)” HDI bar in Fig. 6.14(c) is further on the right of the reference line and do not
overlap with it).

The LA2 level of analysis confirms partly these observations about the estimation of theta
but this time within each visualization condition (Fig. 6.14(d)). In the LA2.2 level of analysis
the “all tasks (LA2.2)” HDI bars of the theta estimations in columns 1, 2, and 3 of Fig. 6.14(d)
overlap with the reference line in all visualization conditions. In LA2.1 the HDI bars of the task
t11 (in columns 1, 2, and 3 in Fig. 6.14(d)) that was found to be better than chance in the LA1.1
overlaps with the reference line in all visualization conditions except for the static condition. The
inference on LA2.2 does not suggest any difference between any of the visualization conditions;
the “all tasks (LA2.2)” HDI bars in columns 4, 5, and 6 of Fig. 6.14(d) overlap with the reference
line. Similarly, the inference results in the LA2.1 level of the individual tasks do not seem to
suggest any considerable difference between the visualization conditions. The HDI bars are
consistently close and overlap with the reference line across the tasks.

The third row of the figure (Fig. 6.14(e) and (f)) concerns the analysis of participants’ se-
lections of sufficient interventions for only those participants who got the causal model correct.
conducted on the LA1 and LA2 levels.

The LA1.2 level of analysis shows that the “all tasks (LA1.2)” HDI bar in Fig. 6.14(e)
is slightly shifted away from the reference line and towards higher values but still it is close
to the reference line. In LA1.1 only task t16 joins task t11 in those that seem to present
some stronger evidence of better performance than the chance. In the LA1.3 level of analysis
the variance tasks join the atomic ones in those that seem to present some evidence of better
performance than chance (the “atomic (LA1.3)” and “variance (LA1.3)” HDI bars in Fig. 6.14(e)
are further on the right of the reference line and do not overlap with it).

The LA2 level of analysis confirms partly these observations about the estimation of theta
but this time within each visualization condition (Fig. 6.14(f)). In the LA2.2 level of analysis the
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“all tasks (LA2.2)” HDI bars in columns 1, 2, and 3 of Fig. 6.14(f) overlap with the reference line
in all visualization conditions except for the animated. In LA2.1 the HDI bars of tasks t11 and
t16 (in columns 1, 2, and 3 in Fig. 6.14(d)) that were found to be better than chance in the LA1.1
overlap with the reference line in all visualization conditions except for the static condition. The
inference in LA2.2 does not suggest any difference between any of the visualization conditions;
the “all tasks (LA2.2)” HDI bars in columns 4, 5, and 6 of Fig. 6.14(f) overlap with the reference
line. Similarly, the inference results in the LA2.1 level of the individual tasks do not seem to
suggest any considerable difference between the visualization conditions. The HDI bars are
consistently close and overlap with the reference line across the tasks.

A final observation is that although there is strong evidence that participants were able to
identify the true model in task t14 (the “t14 (LA1.1)” HDI bar in Fig. 6.14(a) is further on
the right of the reference line and do not overlap with it), their performance in identifying the
sufficient interventions in this task was very poor in both the analysis considering all participants
and only those that found the correct model (the “t14 (LA1.1)” HDI bars in Fig. 6.14(c) and (e)
are further on the left of the reference line and do not overlap with it).

Summary of Findings Overall participants’ performance in identifying the causal model
through the exploration of multiple interventions in TT2 tasks was better than chance. This
is more certain in the SG than in IG and AG. Participants’ performance was better than chance
when the type of the interventions in the TT2 tasks was atomic or shift. The exploration of sim-
ulated data from atomic interventions seemed to have helped participants to identify common
cause and mediator causal models.

The analysis of participants’ selections of sufficient interventions suggests that the task of
identifying interventions that provide sufficient information for identifying the causal model of
the presented data was a hard task for participants independently of the visualization condition.
The analysis of participants’ selections of sufficient interventions for only those participants who
got the causal model correct does not seem to change the picture drawn by the similar analysis
conducted based on all participants.

The poor performance of participants in identifying sufficient interventions seems to sug-
gest that they did not rely on the identification of sufficient interventions at a great extent for
identifying the causal model. An assumption that could be made is that participants combined
information from the different interventions to reach a conclusion as to which the true causal
model is. This assumption about the existence of such a strategy is enhanced by the case of task
t14.

6.5.4.5 Analysis of Response Times and Confidence

Analysis Model The same Bayesian probabilistic model is used for the analysis of the re-
sponse times and confidence adjusting only the values of the fixed-value parameters. Two such
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models are created to account for two main levels of analysis, LA1 and LA2. Fig. 6.15(a) and (b)
present the Kruschke-style diagrams of the Bayesian probabilistic models used for the analysis
of the response time and confidence on LA1 and LA2 levels, respectively. A normal likelihood
has been used in both cases. The simplifying assumption that the ordinal values of confidence
could be treated as if they lay on a common continuous scale was made.

{rt,conf}

μ σ

~

group_stdgroup_mean

(a) LA1

{rt,conf}XG

μ μσ σ

~

groupXG_stdgroupXG_mean

{rt,conf}YG
~

groupYG_stdgroupYG_mean

diff_of_means

diff_of_means = groupXG_mean− groupYG_mean

effect_size

effect_size=diff_of_means /√((groupXG_std2+ groupYG_std2
)/2 )

X,Y in {I,S,A}

(b) LA2

Figure 6.15: Kruschke-style diagrams of the analysis models for participants’ response time
and confidence in the user study’s tasks and analysis on the (a) LA1 level for all participants
independently of visualization condition, and (b) LA2 level for participants in each visualization
condition.

The posterior distribution of effect size (Cohen’s d) is estimated for the comparison of the
three groups (IG, SG, and AG) in terms of the response time to normalise for the varying dura-
tion (and thus typical variances) of the tasks. The posterior mean confidence level is estimated
for each group as confidence takes ordinal values and there was no need to normalise. The dif-
ference of the mean confidence posterior distribution of each group for every task are estimated
to compare the groups.

Results Fig. 6.16 presents the inference results (posterior distributions) in the form of for-
est plots for the analysis of participants’ response time (Fig. 6.16(a) and (b)) and confidence
(Fig. 6.16(c) and (d)). No reference lines were drawn in the forest plots presenting the posterior
distributions of the mean response time and confidence as there was no reference value for these
two measures.

The analysis of participants’ response times and confidence in the LA1 level shows strong
evidence that participants were faster and more confident in TT1 tasks than TT2 tasks (the “all
tasks TT1 (LA1.2)” HDI bars are further apart from the “all tasks TT2 (LA1.2)” HDI bars with
no overlap in Fig. 6.16(a) and (c)).

This effect seems to replicate in the forest plots of mean response time and confidence in
the LA2 level of analysis for the AG in the case of response times and the IG and SG in the
case of confidence (in these cases the “all tasks TT1 (LA2.2)” HDI bars are further apart from
the “all tasks TT2 (LA2.2)” HDI bars with no overlap in Fig. 6.16(b) and (d)). The posterior
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distributions of the mean response time in TT1 and TT2 tasks overlap well with each other in SG
(see the “all tasks TT1 (LA2.2)” and “all tasks TT2 (LA2.2)” HDI bars in the second column
of Fig. 6.16(b)) meaning that participants were able to deal with two types of tasks equally
efficient. Nevertheless, their confidence levels in TT2 tasks were fairly lower than in TT1 tasks
(see the “all tasks TT1 (LA2.2)” and “all tasks TT2 (LA2.2)” HDI bars in the second column of
Fig. 6.16(d)).

(a) Resp. Time LA1 (b) Resp. Time LA2

(c) Confidence LA1 (d) Confidence LA2

Figure 6.16: Forest plots of the posterior distributions inferred based on the analysis model for
the response time and confidence of participants in the user study’s tasks. Forest plot of response
time analysis on level (a) LA1 and (b) LA2. Forest plot of confidence analysis on level (a) LA1
and (b) LA2.

Another observation is that the posterior distribution of participants’ mean response time in
task t6 is shift to higher values than the rest of the TT1 tasks (see “t16 (LA1.1)” in Fig. 6.16(a)).
That was one of the TT1 tasks that participants did not seem to have performed well (see “t16
(LA1.1)” in Fig. 6.13(a)). A similar effect in the response time of the rest of tasks that indicated
poor performance (t4 and t8) is not observed.

Participants in the IG needed more time than participants in SG in all tasks (the “all tasks
TT1 (LA2.2)” and “all tasks TT2 (LA2.2)” HDI bars in the fourth column of Fig. 6.16(b) are on
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the right of the reference line and do not overlap with it), while they were less confident (the “all
tasks TT1 (LA2.2)” and “all tasks TT2 (LA2.2)” HDI bars in the fourth column of Fig. 6.16(d)
are on the left of the reference line and do not overlap with it).

Summary of Findings Overall the analysis of participants’ response times and confidence
showed that participants needed more time and their confidence levels were lower in TT2 tasks
than in TT1 tasks. Also participants in IG were less efficient and confident in their responses
than participants in SG.

6.5.5 Other Analyses

This subsection presents other data analyses of the collected data from the user study and dis-
cusses the findings. The purpose of these analyses are to investigate aspects ASP4-8. Each one
of the following paragraphs investigate one of these aspects. The data and the Python code of
these data analyses can be found in the github repository in [Taka, 2023b].

6.5.5.1 Did participants’ statistical or causal inference literacy play a role in their perfor-
mance?

Participants’ statistical or causal inference literacy could have played a role in their performance
(ASP4). Question D3 and D4 in the demographic questions’ part of the user study captured
the level of participants’ former statistical training and their awareness level of the difference
between correlation and causation. Participants’ responses to these questions are plotted along
with their overall performance in the TT1 tasks. The overall performance of a participant in
TT1 tasks is calculated as the number of TT1 tasks that the participants got correct following
the SCO approach.

Fig. 6.17 presents the strip and box plots of participants’ performances plotted against their
level of statistical (D3 question) and causal inference (D4) knowledge based on the recorded
responses to the demographic questions.

Most of the participants stated that they had either a school or some university training in
statistics. The performances of these participants vary from very low values (2 or 3 correct TT1
tasks) to high values (9 correct TT1 tasks) and are distributed quite evenly along the axis be-
tween these values. Similarly, most of the participants stated that they could state the difference
between correlation and causation quite confidently (definitely yes or probably yes). The perfor-
mances of these participants vary from very low values (1 or 2 correct TT1 tasks) to high values
(9 correct TT1 tasks) and are distributed quite evenly along the axis between these values.

Based on these observations it does not seem that participants’ statistical and causal inference
background plays a role in their ability in reasoning causally in the TT1 tasks.
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(a) (b)

Figure 6.17: Strip and box plots of participants’ performance measured as the number of TT1
tasks that each participant got correct plotted against their statistical (D3 question) and causal
inference (D4 question) level of knowledge as these were recorded in the demographic questions.
Blue dot markers are used in the strip plots to represent the observations (each dot represents a
participant in the user study).

6.5.5.2 Did the visual exploration strategy followed by participants play a role in their
performance?

There are various ways that the information presented in the scatter plot matrix (i.e., the sim-
ulated data before and after the intervention) could be read and perceived by the participants
(ASP5). The question is how participants exploited this information and whether the visual
exploration strategy that they used to do this played any role in their performance.

In the user study part with the user experience questions participants were asked in how many
tasks they looked at the scatter plots (UE2 question) and at the KDE plots (UE3 question). The
intention was to use the data from these questions to verify if participants relied mainly on one
of them to respond and if that might have affected their performance. Fig. 6.18 presents a graph
showing the responses of each participant in these two questions along with their performance.
Participants’ performance is calculated as the number of TT1 tasks that the participants got
correct following the SCO approach.

Observing Fig. 6.18 one could say that there were roughly three different strategies followed
for reading the scatter plot matrix. In the central part of the figure participants who looked at
both the scatter and KDE plots in all tasks (the circles and squares overlap for these participants)
are shown. On the right there are the participants who relied more on the KDE plots (squares are
higher than circles for these participants). On the left there are the participants who relied more
on the scatter plots than the KDE plots (circles are higher than squares for these participants).

Participants seem to be almost equally split among these three categories of visual explo-
ration strategy. Participants who relied more on the KDE than the scatter plots seem to have
scored higher than the rest of participants (the shapes are darker for these participants).
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Figure 6.18: Participants responses in UE2 question (In how many tasks in the study do you
estimate that you looked at the scatter plots (plots presenting data with dot markers) in the
scatter plot matrix?) represented by circles and UE3 question (In how many tasks in the study
do you estimate that you looked at the KDE plots (plots presenting the variables’ distribution)
on the diagonal of the scatter plot matrix?) represented by squares. The darker a shape is, the
higher the performance of the participant is.

6.5.5.3 Did the visualization condition favor a specific visual exploration strategy?

Participants seem to have followed different strategies in exploring the presented data in the
scatter plot matrices. The question is if this was a personal choice or the strategy followed could
have been favored by the visualization condition (ASP6). Fig. 6.19 presents a similar graph
to Fig. 6.18 showing the responses of each participant in the UE2 and UE3 user experience
questions. This time the color of the shapes represents the visualization condition that each
participant was assigned to.

Based on Fig. 6.19 participants that followed a specific exploration strategy seem to be
equally distributed to visualization conditions. Thus, the visual exploration strategy seems to
be driven more by a personal choice of the participant than the visualization condition.

6.5.5.4 Are participants’ responses valid?

A validity check of participants responses is conducted based on their responses to the UE1
user experince question: In how many tasks in the study do you estimate that you looked at

the directed graphs (DAGs) of the causal models? (ASP7). If many participants report small
numbers of tasks in this question, it would mean that they responded uninformatively and most
possibly at random. The questions in the user study’s tasks could not be answered without
looking at the causal diagrams, at all.

Fig. 6.20 presents a graph showing the responses of each participant in the UE1 question
along with their visualization condition. Participants’ performance is calculated as the number
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Figure 6.19: Participants responses in UE2 question (In how many tasks in the study do you
estimate that you looked at the scatter plots (plots presenting data with dot markers) in the
scatter plot matrix?) represented by circles and UE3 question (In how many tasks in the study
do you estimate that you looked at the KDE plots (plots presenting the variables’ distribution)
on the diagonal of the scatter plot matrix?) represented by squares. The color of the shape
represents the visualization condition to which each participant was assigned.

of TT1 tasks that the participants got correct following the SCO approach.

Figure 6.20: Participants responses in UE1 question (In how many tasks in the study do you
estimate that you looked at the directed graphs (DAGs) of the causal models?) represented by
circles. The color of the circles represents the visualization condition of the participant.

Based on Fig. 6.20 very few participants reported that they looked at the causal diagrams in
less than 8 tasks. These participants were not excluded from the analysis because we could not
be sure in which tasks they might have answered randomly and in which they answered based
on some thinking. The first participant on the left of the figure reported that they did not look at
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the causal diagrams in any of the tasks. Nevertheless, this participant was not excluded because
in the UE2 question in Fig. 6.18 they reported that they looked at the scatter plots in 12/16 of
the tasks. Based on this information it is not certain how engaged they were and to what extent
they exploited the provided information to answer the questions.

Regarding the distribution across conditions, the responses in the AG group seem to have
more noise than these in the IG and SG. There are more participants in AG who stated that they
did not look at the causal diagrams in all of the tasks.

6.5.5.5 How did participants judge the design of the visualization?

In the part of the user experience questions participants were asked to state how they found
the design of the visualization for the simulated data in UE4 question (ASP8). 27 out of 32
participants left a comment in the provided text box. Table 6.3 presents the responses of partic-
ipants in the first column and the condition they were assigned to in the second. The comments
were tagged with one of three codes to characterize the impression of participants about the
visualization: positive, negative, ambivalent.

From the 27 participants who left a comment 19 reported a positive impression, 3 reported
a negative impression, and the rest 5 were ambivalent. In IG 6 comments were positive, 3
negative, and 1 ambivalent. In AG 7 comments were positive and 2 ambivalent. In SG 6

comments were positive and 2 ambivalent.
Considering the content of the comments, 17/27 of the comments mentioned that the vi-

sualization was informative. The negative cues in the negative or ambivalent comments regard-
ing the visualization were the following: “distractive” (2/8), “annoying” (1/8), or “complex”
(1/8). A few of the negative cues in participants’ comments seem to refer to the design of the
study rather than of the visualization: “annoying, lenghty” (1/8), “descriptive” (1/8), “repeti-
tive” (1/8).

6.5.6 Summary of Findings

The analysis of the collected data from the user study led to various interesting results and
findings. The analysis investigated all the different aspects mentioned in Section 6.5.1:

ASP1 how people performed in causal reasoning tasks when simulated probabilistic data before
and after an intervention was presented to participants in the form of a scatter plot matrix
and in three different visualization modes: static, interactive, and animated. RQ1 and RQ2
are part of this investigation;

ASP2 whether there were any specific settings (e.g., intervention types, causal models) in which
participants were able to perform better under these circumstances;
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Table 6.3: Participants’ responses to the UE4 (How did you find the design of the visualization
for the simulated data? Was it informative, annoying, distractive?) shown in the first column,
the condition each was assigned to shown in the second column, and the code with which each
comment was tagged shown in the third column.

Comment Condition
Code
positive/negative/ambivalent

It gave information in a simple, clear
and organized way. IG positive

Informative IG positive
Good IG positive
Very Informative IG positive
I found it distractive IG negative
Very good and easy to understand the changes. IG positive
Informative, the visualization was actually very good IG positive

annoying, lengthy IG negative
Could have been spaced out a little more. IG negative
Informative but too descriptive at times IG ambivalent
The visualisations were informative
and fairly easy to follow AG positive

found it useful; I like that it was animated and
you could see how changing one variable
"moves" the others

AG positive

the colours were a good contrast -
the scatter graph i found easier to view AG positive

Informative but complex AG ambivalent
Informative AG positive
Informative AG positive
Informative AG positive
The design of visualization for simulated data
was informative but repetitive after a point of time.
Overall it gave good information

AG ambivalent

Clear enough AG positive
A bit distractive but on the whole comprehensive SG ambivalent
Informative SG positive
Informative SG positive
Informative SG positive
Informative SG positive
Quite informative SG positive
Somewhat informative SG positive
it was what it needed to be SG ambivalent

ASP3 what strategies participants used to identify the causal model when they explored the sim-
ulated data from multiple interventions;

ASP4 whether the statistical or causal inference level of knowledge played a role in participants’
performance;
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ASP5 whether there was any strategy followed in how the information presented in the scattter
plot matrix was used to reason causally;

ASP6 whether the visualization mode played any role in the adoption of any such strategy;

ASP7 to what extent participants’ responses were valid;

ASP8 how participants judged the design of the visualization.

For ASP1 participants perfomed well overall in tasks of identifying the causal model given a
specific intervention (TT1 tasks) or given multiple interventions of the same type (TT2 tasks). In
the latter a better performance is more certain when the simulated interventional data is presented
in a static scatter plot matrix, while in the first it is independent of how the data is presented.
The tasks of identifying sufficient interventions for the determination of the causal model were
hard for all participants independently of the visualization condition. Participants needed more
time and their confidence levels were lower in the tasks they were required to explore multiple
interventions (TT2 tasks). Participants in IG were less efficient and confident in their responses
than participants in SG independently of whether they had to explore multiple interventions.

For ASP2 the performance of participants in single-intervention tasks (TT1 tasks) in which
the intervention was not informative enough to identify the causal model (tasks t3 and t10) is
estimated to be better than chance when the MCO instead of the SCO approach is used for mea-
suring accuracy. Participants seemed to be able to identify the causal model in the case of atomic
interventions independently of whether they had to explore multiple interventions. The explo-
ration of simulated data from multiple atomic interventions seemed to have helped participants
to identify common cause and mediator causal models. Finally, in the case of distringuishing
the collider from the common cause or mediator causal model through applying an intervention
on tiredness the model whose simulated data is presented to participants seems to play a role in
their ability to identify the true causal model.

For ASP3 participants who were able to explore multiple interventions and got the causal
model correct were not able to determine the sufficient interventions. The poor performance
of participants in identifying sufficient interventions seems to suggest that they did not rely on
the identification of sufficient interventions at a great extent for identifying the causal model.
An assumption that could be made is that participants combined information from the different
interventions to reach a conclusion as to which the true causal model is. This assumption about
the existence of such a strategy is enhanced by the case of task t14.

For ASP4 it does not seem that participants’ statistical and causal inference background
played a role in their ability in identifying the causal model in single-intervention tasks.

For ASP5 three different strategies followed by participants for reading the scatter plot ma-
trix; looking at both the scatter and KDE plots, looking more on the KDE than the scatter plots,
and looking more on the scatter than the KDE plots. Participants seem to be almost equally split
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among these three categories of visual exploration strategy. Participants who relied more on the
KDE than the scatter plots seem to have scored higher than the rest of participants.

For ASP6 participants who followed a specific exploration strategy seemed to be equally
distributed to visualization conditions. Thus, the visual exploration strategy seems to be more a
personal choice than driven by the visualization mode.

For ASP7 few participants reported that they did not look at the causal diagrams in all tasks,
and very few of them in less than 8 tasks. The selections of participants in the user study’s tasks
seem to have been informative according to their responses in the user experience questions.

For ASP8 the majority of participants reported a positive impression about vicausi and
that was consistent in all visualization conditions. Most of the participants mentioned that they
found the provided visualization informative.

6.5.7 Limitations of the User Study

The number of questions had to be limited to ensure the completion of study by participants in
roughly an hour. The user study was designed to include the three main three-variable causal
primitives (common cause, mediator, and collider), three different types of interventions, in-
terventions on any of the three variables, and two different types of tasks: one for identifying
the causal model given a specific intervention and two possible causal models, and another for
identifying the causal model by exploring multiple interventions of a single type and given three
possible causal models. These were enough to produce a multitude of possible settings to be
explored. Only a subset of these possible combinations was finally included in the user study.
This limited the extent of insight into the causal contexts in which people might perform better
or worse (ASP2).

The design of this user study provided some insight into how participants identified the
causal model when they explored multiple interventions (ASP3), but still the exact strategy
is not known. How did they combine the information from multiple interventions to reason
about the causal relations found in the simulated data? Other design protocols (e.g., think-aloud
protocol) could help with this.

A single causal reasoning problem (the insomnia-anxiety-tiredness problem) was used both
in the training and all tasks of the user study. It was not investigated to what extent the visual
causal reasoning skills and strategies participants used in the context of this problem would be
transferable to the context of another problem.

The tasks in the user study were cognitively demanding, especially the TT2 ones (see the
increased variability in the inferred mean response time in Fig. 6.16(a) and 3 first columns of
Fig. 6.16(b) for tasks t11-t16). A few of the participants’ comments in their feedback in
question UE4 (see Table 6.3) could also imply the complexity of the tasks and a possible tired-
ness of the participants; some of these comments mentioned the phrases “complex”, “annoying,
lengthy”, “repetitive”, “descriptive”. Participants’ possible tiredness could constitute a form of
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bias especially for the second part of the tasks, the TT2 ones, that came last in the study and
might be the reason why participants failed to identify the sufficient interventions. To exclude
the factor of tiredness from biasing the findings of the user study, the design of the user study
could have further simplified the participant’s session, possibly by investigating each set of tasks
in separate sessions or user studies.

6.6 Discussion

6.6.1 Contributions

A common task in many fields that are concerned with defining the cause of observed effects
(e.g., medicine, epidimiology, biology, marketing) is the design and conduction of interventional
experiments. By applying interventions on the variables of a system of interest the underlying
causal relations of the variables can be learned reliably. Interventional experiments are not
always possible; they might be unethical or too expensive to conduct. On the other hand, when
they are possible, the decisions on which variables to intervene, especially when there are many
possibilities, might not be very informative. Is any prior knowledge or expectation (hypotheses)
of the causal relations among variables taken into consideration? Are researchers’ hypotheses
about the expected outcomes of an interventional experiment tested before the conduction of an
experiment to verify whether this is the right experiment? Is uncertainty accounted for?

Simulating interventions could provide valuable information for designing interventional
experiments or in cases when these experiments are not possible. For example, a researcher or
analyst might want to simulate interventions to test (validate) their expectations about a planned
experiment and possibly decide whether this is the right experiment to conduct. Or there might
be multiple possible interventional experiments and the analyst needs to decide which ones
would be more informative and helpful in identifying the causal structure of the data.

Producing such simulations involves specialized knowledge (e.g., in statistics or causal in-
ference) or skills (e.g., in programming) that researchers or analysts often do not possess. There
are very few existing tools that support the simulation and exploration of interventions [Xie
et al., 2020] or the incorporation of assumptions and prior knowledge [Wang and Mueller, 2015;
Wang and Mueller, 2017]. There is need for tools that are specifically designed to simulate
interventional experiments by accounting for uncertainty and researchers’ prior knowledge and
causal hypotheses. There is also need for tools that would allow the exploration of the out-
comes of these simulated experiments with the aim to support researchers in causal reasoning
and designing of such experiments. These tools could also provide insight into the outcomes of
interventional experiments that are not realizable.

This work introduced a simulation pipeline for exploiting existing simulation tools of prob-
abilistic models and Bayesian inference (e.g., PPLs and sample-based inference using MCMC)
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to produce uncertainty-aware simulations of interventions. These interventions are applied on
hypothesized causal models, which possibly describe the data generating mechanisms of data
variables of interest according to an analyst. A concrete implementation of this pipeline is
provided in Python [Taka, 2023c]. This implementation enables the user to input their hypothe-
sized causal models into a Python method in a simple way. This method automatically retrieves
a batch of simulated data before and after a variety of different interventions applied on the
hypothesized causal models along with metadata, all combined into a standardized output struc-
ture. In this way, users can have access to simulated data of interventions through the call of a
single method.

The output of this pipeline is quite complex consisting of multitudes of samples from mul-
tidimensional distributions. To facilitate the exploration of such outputs, an automatic visual
exploration tool was designed, vicausi [Taka, 2023d]. This is a browser-based application
that takes as an input the pre-computed simulated data (in the standardized form produced by
the simulation pipeline) and some preferred configurations. It renders a page on the browser
showing the simulated data of a chosen hypothesized causal model in a scatter plot matrix, the
causal diagrams of all the hypothesized causal models, and controls that enable the exploration
of various interventions.

We could not rely on existing work too much to inform the design of this tool because this is
limited. Existing visualization tools supporting causal reasoning were not primarily designed to
present probabilistic data of interventions with the aim to support causal reasoning and design
of interventional experiments. Most importantly there is very little work on understanding how
people exploit visual information to reason causally [Lagnado and Sloman, 2004; Yen et al.,
2019].

For this reason, two target tasks were determined and the design of this tool was informed by
a set of objectives set to facilitate these two target tasks. These target tasks were the identification
of the causal model of the presented data given a specific intervention, and the determination of
interventions that provide sufficient information to identify the causal model of the presented
data. Three different ways of showing the simulated data after an intervention were included
in the design of the tool. The first way was statically showing the simulated data after the
intervention as slices of continuous ranges of the intervened variable. The second way was to
use interaction for querying the slice of simulated data to be shown. The third way was to show
an animation of all sequential slices that cover the range of the intervened variable.

A user study was designed and conducted to evaluate the design of vicausi on the basis
of the two target causal reasoning tasks. The effect of interactive and animated presentations
of the simulated interventional data in vicausi on participants’ ability to reason causally was
investigated. The visual exploration strategies used by participants to exploit the information
provided by the scatter plot matrix were analysed. Participants’ user experience was also cap-
tured by this user study.
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The findings from the analysis of the collected data (the code of the analysis and the data
can be found in [Taka, 2023b]) suggest that participants using vicausi were able to identify
the causal model of the presented data either given a single intervention or by exploring vari-
ous interventions. On the other hand, their performance in identifying sufficient interventions
was poor. It was found that participants did not rely on the sufficient interventions to identify
the causal model in the case of multi-interventional tasks. They might have relied more on
combining information from multiple interventions to draw their conclusions.

In terms of vicausi’s design, no strong effect of any of the visualization modes used
for presenting the interventional data was found. It was found that there were three different
visual exploration strategies of the information in the scatter plot matrices which participants
followed; roughly 1/3 of them relied on both the scatter and KDE plots, another 1/3 of them
relied more on the scatter plots, and the last 1/3 of them relied more on the KDE plots. Those
who followed the last strategy had a better performance in identifying the causal model given a
specific intervention. Finally, most participants judged the design of the visualization positively
(this was consistent in all visualization conditions) and mentioned that they found it informative.

6.6.2 Future Work

This research presents some original ideas in the field of supporting causal reasoning by using
simulation and visualization, creates a working framework for demonstrating their value, and
provides research evidence about this value. This research could pave the way for further future
research towards this direction.

Probabilistic modeling and Bayesian inference become more and more popular lately be-
cause of the emergence of powerful inference tools that rely on simulation engines, the PPLs.
PPLs’ simulation engines exploit efficient and well-tested implementations of MCMC sampling
algorithms and are continuously improving. Interventions on causal structures could be simu-
lated by exploiting these simulation engines to account for uncertainty and the complexity the
conduction of such simulations could involve.

Existing implementations of PPLs do not offer great flexibility in intervening on a defined
model and amend it to apply interventions. The simulation pipeline for interventions proposed
in this work showed that this could be achieved through the manual definition of linear transfor-
mations of the observed variables’ likelihood when expressing the model in PPL code. In the
future, PPLs’ designers and developers could include these options in the syntax of the language
to make the process of modeling interventions more intuitive and flexible.

Automatic tools for designing and defining in PPL code the probabilistic models into which
the causal models are transcribed are also necessary. This would offer more flexibility in the
types of variables (continuous or discrete), likelihoods and priors used for the modeling.

From the visualization perspective, it is very little known about how visualization could
support the complex cognitive task of causal reasoning. This research provides some context
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towards this direction but there are still many questions that are unanswered.
For example, it is not clear why participants in the conducted user study could not identify

sufficient interventions, although they were able to identify the causal model of the presented
data. Participants seemed to be able to use the information provided by vicausi to reason
causally and identify the causal model given a concrete intervention. This process involves many
cognitive steps of validating or rejecting causal links between the variables of the hypothesized
causal models and it seemed that the use of a scatter plot matrix and causal diagrams supported
them.

The question is why participants failed to replicate this primary task in the case of multi-
interventional tasks for as many as the interventions to identify the sufficient ones. Was it a
matter of the visualizations’ design, ability of reasoning in complex causal reasoning tasks (is
there a threshold in the complexity of the causal reasoning task that people can deal with?),
comprehension of the task, or tiredness (these tasks were shown last to participants in the user
study)? Future research could investigate more thorougly how people reason causally in more
complex causal reasoning tasks, how the presented visual information could support them in
this, and whether the design of the visualization has an impact on this.

Regarding the design of the visualization to support such tasks, there are various extensions
of the tool that could possibly offer more flexibility in the exploration of causal assumptions.
For example, vicausi shows the simulated data from a single causal model in the scatter plot
matrix. This was decided to emulate the condition of possessing and exploring actual interven-
tional data. An alternative design could include the comparative presentation of the simulated
data from multiple hypothesized causal models (e.g., the parallel presentation of a separate scat-
ter plot matrix showing the simulated data from each one of the hypothesized causal models) or
datasets in a single instance of the visualization. Such designs could possibly encourage users to
explore multiple causal assumptions or datasets at once and thus, become implicitly aware of the
fact that any conclusions drawn are at stake as they are based on assumptions, which might not
reflect the reality. Conducting interviews with real users of such visualizations like researchers
who decide, design, and conduct interventional experiments would inform the design of such a
tool and provide useful feedback as to which views and functionalities might be more helpful in
their work routine.

An alternative more compact design of the tool would be a presentation of the causal di-
agrams of the hypothesized causal models, which would incorporate the KDE plots into the
nodes of the causal diagram. Such a design would remind IPME. Users would be able to ex-
plicitly compare the simulated data before and after an intervention for each variable across the
different hypothesized models and infer which interventions could be more informative. Also
as discussed in Section 6.5.5.2, participants who focused more on KDE plots and less on the
scatter plots seemed to have performed better than those who relied more on the scatter plots.
Further experimentation is required to investigate whether such alternative designs would be
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more effective in supporting complex causal reasoning tasks.

6.6.3 Conclusions

Simulating interventions could provide valuable information for designing interventional exper-
iments or in cases when these experiments are not possible. Producing such simulations involves
specialized knowledge or skills that analysts often do not possess. There is need for automatic
tools for simulation and visual exploration of interventions to support causal reasoning and de-
signing of interventional experiments. This work focused on proposing a pipeline to generate
simulated probabilistic data from interventions applied on causal structures that are expressed in
PPLs using probabilistic modeling and Bayesian inference. The implementation of an automatic
visualization tool for visualizing the simulated probabilistic data generated by this pipeline was
presented. An evaluation user study of the proposed tool was conducted. The evaluation fo-
cused on how people reason causally and make decisions on interventional experiments when
the uncertainty in the simulated data of interventions was presented using static, animated, or
interactive visualizations.

The findings suggested that participants were able to identify the causal model of the pre-
sented data either given a single intervention or by exploring various interventions. Their perfor-
mance in identifying sufficient interventions was poor. Participants did not rely on the sufficient
interventions to identify the causal model in the case of multi-interventional tasks. They might
have relied more on combining information from multiple interventions to draw their conclu-
sions. There were three different visual exploration strategies of the information in the scatter
plot matrices which participants followed; roughly 1/3 of them relied on both the scatter and
KDE plots, another 1/3 of them relied more on the scatter plots, and the last 1/3 of them relied
more on the KDE plots. Those who followed the last strategy had a better performance in iden-
tifying the causal model given a specific intervention. Most participants judged the design of the
visualization positively (this was consistent in all visualization conditions) and mentioned that
they found it informative. These initial findings evoke the need for more research to understand
how users can benefit from visual representations of simulated interventional data and could
pave the way for future investigation into the role of visual means to support more complex
causal reasoning tasks like the design of interventional experiments.



Chapter 7

Conclusions

7.1 Summary

This chapter summarizes the purpose of the research presented in this thesis, its contributions
and the conclusions drawn from it. The future direction of this work is discussed.

7.2 Purpose of Research

The aim of this research was the proposal and creation of novel and automated tools for visu-
alizing Bayesian probabilistic models and their outputs using interaction and animation. These
tools would make Bayesian analysis and its outputs more intuitive and interpretable for a general
audience. Bayesian models’ structure and inference results are complex and difficult to grasp
and interpret without specialized knowledge. Thus, the proposed tools were intended to support
users in understanding and validating the structure of probabilistic models, and exploring and
understanding their outputs through visual representations.

Uncertainty was a main aspect of the proposed tools. It is a cornerstone of probabilistic
models and is accounted for in them. When included in the representation of a probabilistic
model and its outputs, uncertainty can offer rich valuable information about the model and its
variables. This could convey, for example, the amount of risk involved in a decision. Uncertainty
could also reveal the causal- and non-causal relations of variables in a probabilistic model. For
example, representing the pairwise distribution of variables in a model could convey correlations
between variables, which, within the context of a causal model, could be interpreted as causal
relations or not.

The evaluation of the proposed visualizations was also part of the purpose of this research.
The aim of the evaluation was two-fold. First, to investigate the effectiveness of the proposed
tools in tasks where participants would have to identify the (causal and non-causal) relations of
variables in probabilistic models. Second, to gain insight into how participants exploit the visual
information to draw conclusions about variables’ relations.
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7.3 Summary of Findings

The research presented in this thesis consisted of three separate parts which all focused on the
visualization of probabilistic models and their outputs but from a different perspective.

The first part (Chapter 4) presented a generic pipeline to transform a probabilistic program-
ming model and associated sample-based MCMC inference results into a standardized format.
This standardized output could then be automatically translated into an interactive probabilis-

tic models explorer (IPME). IPME is the first novel representation of Bayesian probabilistic
models proposed in this research. It fuses the structural and distributional display of a proba-
bilistic model in an interactive graphical representation. An initial tool was developed to render
these representations from standard PPL definitions and offered in the form of a Python package
[Taka, 2020a].

IPME aimed at a threefold representation effort; the representation of a collapsible tree-like
structure of the model’s variables and parameters to reveal internal levels of statistical or math-
ematical dependencies among them; the representation of each inferred parameter as a node
that presents graphically the marginal prior or posterior distribution of the inferred parameter’s
MCMC samples; the representation of the observed variables through prior or posterior predic-
tive distributions of the model’s predictive samples. Appropriate uncertainty visualization tech-
niques were used to graphically represent the marginal distributions. Interactive conditioning
was used to enable a form of “sensitivity analysis” of the variables by querying and presentating
the conditional marginal distributions.

IPME was designed with the intention to enhance informativeness, transparency and ex-
plainability and ultimately, the potential of increasing trust in models. It provides at-a-glance
communication of a probabilistic program’s structure and uncertainty of latent parameters, and
allows interactive exploration of the multi-dimensional prior or posterior MCMC sample space.
It makes the sample-based (MCMC) inference results easily explorable.

The second part (Chapter 5) explored the interactive pair plot (IPP) (the code can be found
in [Taka, 2020b]) for visualizing a model’s distribution; that is a scatter plot matrix of a prob-
abilistic model allowing interactive conditioning on the model’s variables. IPP was built on
IPME’s framework inheriting its design elements and most importantly, its interactive condition-
ing’s mechanism and design. Interactive conditioning worked as a brushing-and-linking effect
in IPP highlighting queried information and presenting the conditional marginal distributions of
variables.

A user study investigated whether adding interactive conditioning to classical scatter plot
matrices helped users better understand the relations of variables in a probabilistic model and
ultimately, its structure. It was also investigated whether there were levels of structural detail and
model designs for which interactive conditioning was beneficial. The analysis of the collected
data (the code of analysis and the data are provided in [Taka et al., 2022]) showed that using
interactive conditioning was beneficial in cases of sophisticated model designs in comparison to
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a static scatter plot matrix. The difference in response time between the interaction and static
group of participants became less important in higher levels of structural detail. Participants
using interactive conditioning were more confident about their responses overall with the effect
being stronger in tasks of lower level of structural detail.

The third part (Chapter 6) proposed a pipeline to generate simulated probabilistic data from
interventions applied on causal structures that are expressed in PPLs. A concrete implementation
of this pipeline in Python using PyMC3 is provided in [Taka, 2023c]. This pipeline outputs the
simulated data before and after interventions in a standardized format which is used as an input
to the Visualizer of Causal Assumptions and Uncertainty-Aware Simulations of Interventions

(vicausi).
vicausi is a proposed visualization tool for visualizing and exploring simulated proba-

bilistic data before and after interventions applied on causal structures. The main visualization
elements used in this tool were the scatter plot matrix and the causal diagrams; the first is used
for presenting the simulated interventional data of the variables in pairs, and the second for pre-
senting hypothesized causal models that could have generated the presented data according to
an analyst or researcher. The tool is provided in the form of a Python module in [Taka, 2023d].

Two target tasks were determined and the design of this tool was informed by a set of ob-
jectives set to facilitate these two target tasks. These target tasks were the identification of the
causal model of the presented data given a specific intervention, and the determination of inter-
ventions that provide sufficient information to identify the causal model of the presented data.
Three different ways of showing the simulated data after an intervention were included in the
design of the tool. In the first the simulated data after the intervention were shown as slices of
continuous ranges of the intervened variable statically. IN the second interaction was used to
query the slice of simulated data to be shown. In the third way an animation of all sequential
slices that cover the range of the intervened variable was shown.

A user study was designed and conducted to evaluate the design of vicausi on the basis
of the two target causal reasoning tasks. The effect of interactive and animated presentations
of the simulated interventional data in vicausi on participants’ ability to reason causally was
investigated. The visual exploration strategies used by participants to exploit the information
provided by the scatter plot matrix were analysed. Participants’ experience wiht using the tool
was also captured by this user study.

The findings from the analysis of the collected data (the code of the analysis and the data
can be found in [Taka, 2023b]) suggest that participants using vicausi were able to identify
the causal model of the presented data either given a single intervention or by exploring vari-
ous interventions. On the other hand, their performance in identifying sufficient interventions
was poor. It was found that participants did not rely on the sufficient interventions to identify
the causal model in the case of multi-interventional tasks. They might have relied more on
combining information from multiple interventions to draw their conclusions.
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In terms of vicausi’s design, no strong effect of any of the visualization modes used for
presenting the interventional data was found. It was found that there were mainly three different
visual exploration strategies of the information in the scatter plot matrices which participants
followed; rougly 1/3 of them relied on both the scatter and KDE plots, another 1/3 of them
relied more on the scatter plots, and the last 1/3 of them relied more on the KDE plots. Those
who followed the last strategy had a better performance in identifying the causal model given a
specific intervention. Finally, most participants judged the design of the visualization positively
with many mentioning that they found it informative.

In summary, the research presented in this thesis focused on KDE plots combined with rug
plots for the univariate marginal distributions of models’ variables and on scatter plots for the
pairwise distributions of the variables. Interactive conditioning implemented as a brushing-and-
linking effect and other common interactive graphical elements (i.e., drop-down menus, sliders,
radio buttons, buttons) were included in the designs of the proposed visualizations. Regarding
animation, direct animation without animated transitions was investigated in the last part of the
thesis.

7.4 Conclusions & Future Directions

The research presented in this thesis presented visualization tools (IPME, IPP, and vicausi)
designed to integrate interaction or animation to make probabilistic models and Bayesian infer-
ence more explainable and support tasks like model validation and refinement, desicion-making,
and causal reasoning. The intention was to communicate the structure of a probabilistic model
through visual means in a way to illustrate the “essence” of the models’ mathematical definitions
intuitively; what variable in a model is linked to what other variable, what the effect of a change
in the value of one variable might be on other variables in the model.

The “essence” of the models’ mathematical definitions is often difficult to extract from the
typical textual or mathematical descriptions of probabilsitic models. Complex mathematical
transformations or equations, deep hierarchical structures, or other sophisticated formulations
might be involved in these definitions, which are difficult to grasp without a strong statistical
background. By simply looking at definitions of probabilistic models like probabilistic state-
ments the effects of parameters on each other or on the predictions of the model cannot be easily
inferred in cases of such complex models even if users acquire a good statistical background.
Chapter 4 and 5 focused on the proposal of ways to communicate this aspect of model’s struc-
ture visually and interactively. To achieve this, visualizations of the distributional information
of the model were employed in combination with a mechanism to specify and report visually
conditional queries in the sample space of the model (i.e., the interactive conditioning).

A user study was conducted in Chapter 5 to collect evidence in regard to what extent (level
of detail of relations or model designs) visual means like graphs and interactive conditioning of
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a probabilistic model’s distribution could facilitate people’s comprehension of model’s structure
without conveying details about the mathematical definition of the model. The results seem to
suggest that visualizing model’s distributional information and interactive conditioning is a way
to achieve a comprehensive communication of variables’ relations in a probabilistic model.

Up to this point the research in this thesis focused on the communication of variables’ re-
lation within the context of a model. Nevertheless, as it was discussed in Chapter 1, a model
does not usually describe the exact actual data generating mechanism, but it is used to approx-
imately capture interesting aspects of it. Thus, all efforts to this point concern how users can
conceive the structure of these proxy data generating mechanisms through visualization. Chap-
ter 6 takes a step further to investigate how visualization could be used to conceive and explore
possible actual data generating mechanisms described by probabilistic models. Visualization of
model’s distribution is employed to communicate the results of simulations from interventional
experiments to help people realize what the possible implications of certain interventions on a
system might be (e.g., what variables will be affected by the intervention and how) under certain
assumptions. These explorations could be really useful to make more informed decisions as to
which interventional experiments might be more informative to conduct (i.e., help retrieve the
causal relations of the variables in the model).

In a user study conducted in Chapter 6, the results seem to suggest that visualizations of
probabilistic models’ distribution when these reflect causal assumptions were generally helpful
for participants to identify variables’ causal relations after a simulation of interventional exper-
iments based on specific assumed causal structures of data. This is an interesting finding and
aligns with those from the previous user study; visualizations of models’ distributional informa-
tion seems to be able to support people in inferring the relations of variables’ relations within
the context of probabilistic models. On the other hand, participants in the user study in Chapter
6 did not generally perform well in identifying interventional experiments that could sufficiently
reveal the causal relations of the variables based on the proposed visualizations. There is need
for further investigation towards this direction as to how visualization could support users in
making more informed decisions when they need to design interventional experiments.

New directions are also opened for future research as to how simulation and visualization
could be combined and used to support causal reasoning and more complex causal reasoning
tasks like the design of interventional experiments. As the computational power of computers
improves, and simulation algorithms become more efficient, simulation approaches will become
more and more popular as they would offer “inexpensive” alternatives. Then, visualization could
play an important role in the presentation and exploration of the simulated data.

There is enormous potential in interactive exploratory tools for probabilistic models that
support the elicitation, validation and presentation of Bayesian probabilistic models. As the tools
for Bayesian modeling and efficient Bayesian inference improve and become more accessible
to a broader audience, there will be increased need for such tools. Users’ engagement with the
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tools could play an important role in the design of tools to make Bayesian probabilistic models
more explainable. Interaction and animation could be employed to exploit user’s engagement
and evaluated for its effectiveness more systematically.



Appendix A

Examples of Models

A.1 Average Minimum Temperature in Scotland

A very simple model that could predict the average minimum temperature in Scotland for the
month November could be described as:

µ ∼ Normal(µ = 2,σ = 10) (A.1)

σ ∼ Half-Normal(µ = 0,σ = 10) (A.2)

y∼ Normal(µ = µ,σ = σ) (A.3)

This model was implemented in PyMC3 using the NUTS [Homan and Gelman, 2014] MCMC
sampler for the computation of the posterior. The model definition in PyMC3 is given by the
following lines of code:

import pymc3 as pm

#DATA: mean min temperature in Scotland for November 1884-2020

t = [1.0,1.1,2.5,0.8,2.7,2.9,1.4,1.1,2.2,0.3,3.6,1.7,

2.1,3.5,1.5,4.6,2.3,1.2,3.5,1.8,1.3,1.2,3.7,1.4,2.9,

-0.3,-1.1,1.1,1.6,3.2,1.9,-1.3,3.2,3.1,0.8,-1.6,3.6,

0.7,2.1,-0.5,3.5,-0.0,1.1,1.8,2.7,2.0,0.6,3.6,1.8,

1.7,1.5,1.7,1.3,1.5,3.8,3.0,1.9,1.7,1.0,2.2,0.4,3.4,

2.7,1.6,3.0,2.4,0.6,3.4,-0.3,4.0,1.6,3.5,2.6,2.8,2.2,

2.9,1.7,1.1,1.5,2.2,2.3,-0.2,0.5,1.5,1.7,-0.8,1.9,

1.7,0.9,0.9,1.7,1.8,1.5,0.9,3.1,1.2,1.9,2.5,2.2,3.0,

3.3,-1.1,2.5,2.6,1.7,2.0,2.0,2.0,1.5,0.4,5.2,3.0,0.2,

4.6,1.3,2.9,1.8,3.0,3.8,3.4,3.3,1.5,3.4,3.4,2.0,2.8,

0.0,4.8,1.7,1.1,3.8,3.6,0.3,1.5,3.6,1.1]
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samples = 1000

chains = 2

tune = 1000

model = pm.Model()

with model:

#PRIORS

mu = pm.Normal('mu', mu = 2,sd = 10)

sigma = pm.HalfNormal('sigma',sd = 10)

#OBSERVED VAR

y = pm.Normal('y', mu = mu, sd = sigma, observed = t)

#INFERENCE

trace = pm.sample(draws = samples, chains = chains, tune = tune)

The data provides the average minimum temperature in Scotland in month November for the
years 1884−2020 and it was retrieved by metoffice.gov.uk 1.

A.2 The Eight Schools Model

The aim of the eight schools model is to predict the effect of coaching programs on the scholastic
aptitude test (SAT) for the admission to college in the US. The SAT was designed to reflect the
knowledge that was acquired over a long-term effort rather than short-term efforts like short-
term coaching before the test. The study conducted by Rubin [1981] recorded the change in
SAT scores in eight different schools after providing to students short-term coaching before
taking the test.

A hierarchical model for the prediction of the change in the SAT scores of the eight schools
is specified in probabilistic statements as following:

µ ∼ Normal(µ = 0,σ = 5) (A.4)

τ ∼ Half-Cauchy(x0 = 0,γ = 5) (A.5)

θi ∼ Normal(µ = µ,σ = τ) (A.6)

yi ∼ Normal(µ = θi,σ = σi) (A.7)

where i∈ {1, ...,8}, yi are the observed changes in the SAT scores, and σi are the standard errors
of the observed scores’ changes.

The model’s definition in PyMC3 is given by the following lines of code. In this example, the

1https://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/Tmin/
date/Scotland.txt
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arviz_json module is used to export the PyMC3 model into the standardized structure described
in Appendix B. For brevity, the steps to do this are omitted from the presentation of the rest
models. The only thing that changes in the application of these steps to the rest of the models is
the definition of the indexing dimensions and coordinates. This will be included in the code of
the rest models.

import pymc3 as pm

import numpy as np

import arviz as az

from arviz_json import get_dag, arviz_to_json

#DATA

J = 8

obs = np.array([28., 8., -3., 7., -1., 1., 18., 12.])

sigma = np.array([15., 10., 16., 11., 9., 11., 10., 18.])

#DIMENSIONS

coords = {"school": ["A","B","C","D","E","F","G","H"]}

samples = 4000

chains = 2

tune = 1000

fileName = "inference_8_schools_centered"

centered_eight = pm.Model(coords=coords)

with centered_eight:

#PRIORS

mu = pm.Normal('mu', mu = 0, sigma = 5)

tau = pm.HalfCauchy('tau', beta = 5)

theta = pm.Normal('theta', mu = mu, sigma = tau, dims = 'school')

#OBSERVED VARS

y = pm.Normal('y', mu = theta, sigma = sigma, observed = obs,

dims = 'school')

#INFERENCE

trace = pm.sample(samples, chains = chains, tune = tune)

prior = pm.sample_prior_predictive(samples = samples)

posterior_predictive = pm.sample_posterior_predictive(trace,

samples = samples)

#STEP 1: inference results into ArviZ InferenceData object

data_c = az.from_pymc3(trace = trace_c, prior = prior_c,
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posterior_predictive = posterior_predictive_c)

#STEP 2: extract model graph & attach it to InferenceData object

dag_c = get_dag(centered_eight)

data_c.sample_stats.attrs["graph"] = str(dag_c)

#STEP 3: save data

arviz_to_json(data_c, fileName+'.npz')

The PyMC3 model specification presented here for the eight schools problem refer to the
corresponding PyMC3 example available on-line2 in the PyMC3 on-line documentation.

A.3 Drivers’ Reaction Time Models

The observed data used in the models of the drivers’ reaction time problem are retrieved from
a study carried out by Belenky et al. [2003]. The purpose of this study was to measure the
effect of sleep deprivation on cognitive performance. Eighteen lorry drivers were chosen and
were restricted to 3 hours of sleep per day during the trial. Their reaction time to a visual
stimulus was measured on each day of the experiment for 10 days. A simple model that could
model the variation in reaction times of the lorry drivers across the days of the sleep-deprivation
is a linear regression model of the following form: the reaction time for a driver i,i ∈ [0,17]
on day t,t ∈ [0,9] would follow a normal distribution with a mean value floating on a straight
line of the form ai + t · bi. A greater reaction time on every next day of the sleep-deprivation
trial is anticipated. Thus, a straight line with positive slope would be an appropriate model for
modelling the reaction time of the drivers across the days of sleep-deprivation.

The homogenous model is described by the following probabilistic statements:

a∼ Normal(µ = 100,σ = 250)

b∼ Normal(µ = 10,σ = 250)

sigma∼ Half-Normal(µ = 0,σ = 250)

y_predi ∼ Normal(µ = a+ t ·b,σ = sigma)

The homogenous model’s definition in PyMC3 is given by the following lines of code:

import pymc3 as pm

import pandas as p

#DATA

DATAPATH = './evaluation_sleepstudy.csv'

2https://www.pymc.io/projects/docs/en/v3/pymc-examples/examples/
diagnostics_and_criticism/Diagnosing_biased_Inference_with_Divergences.html
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reactions = pd.read_csv(DATAPATH,usecols=['Reaction','Days','Subject'])

driver_idx, drivers = pd.factorize(reactions["Subject"], sort=True)

day_idx, days = pd.factorize(reactions["Days"], sort=True)

#DIMENSIONS

coords = {"driver": drivers,"driver_idx_day":reactions.Subject}

samples = 4000

chains = 2

tune = 2000

with pm.Model(coords = coords) as fullyPooled_model:

#PRIORS

a = pm.Normal("a", mu = 100, sd = 250)

b = pm.Normal("b", mu = 10, sd = 250)

sigma = pm.HalfNormal("sigma", sd = 200)

#OBSERVED VARS

y_pred = pm.Normal('y_pred', mu = a + b*day_idx, sd = sigma,

observed = reactions.Reaction,

dims = "driver_idx_day")

#INFERENCE

trace_p = pm.sample(samples, chains = chains, tune = tune)

prior_p = pm.sample_prior_predictive(samples = samples)

posterior_predictive_p =

pm.sample_posterior_predictive(trace_p, samples = samples)

Each lorry driver has his individual characteristics that define their driving practices and per-
formance like skills, experience, and endurance. On the other hand, all lorry divers have some
common driving-related characteristics. For example, they are all professional drivers that un-
derwent similar training or they are all used to driving under sleep-deprivation conditions. Thus,
the model that will model the data generation mechanisms of lorry drivers’ reaction times should
be able to reflect both the individual and common characteristics of the lorry drivers. A hierar-
chical probabilistic model would be able to capture the uncertainty of the overall reaction time
estimation of the lorry drivers taking into consideration the uncertainty of the individual driver’s
reaction behavior, at the same time. Inferences at the individual driver level and estimations at
the whole population of lorry drivers level will be enabled through the hierarchical model.

The hierarchical model is described by the following probabilistic statements:

mua ∼ Normal(µ = 100,σ = 250)

sigmaa ∼ Half-Normal(µ = 0,σ = 250)
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mub ∼ Normal(µ = 10,σ = 250)

sigmab ∼ Half-Normal(µ = 0,σ = 250)

sigmasigma ∼ Half-Normal(µ = 0,σ = 200)

ai ∼ Normal(µ = mua,σ = sigmaa)

bi ∼ Normal(µ = mub,σ = sigmab)

sigmai ∼ Half-Normal(µ = 0,σ = sigmasigma)

y_predi ∼ Normal(µ = ai + t ·bi,σ = sigmai)

The hierarchical model’s definition in PyMC3 is given by the following lines of code:

import pymc3 as pm

import pandas as p

#DATA

DATAPATH = './data/evaluation_sleepstudy.csv'

reactions = pd.read_csv(DATAPATH,usecols=['Reaction','Days','Subject'])

driver_idx, drivers = pd.factorize(reactions["Subject"], sort=True)

day_idx, days = pd.factorize(reactions["Days"], sort=True)

#DIMENSIONS

coords = {"driver": drivers,"driver_idx_day":reactions.Subject}

samples = 4000

chains = 2

tune = 2000

with pm.Model(coords = coords) as hierarchical_model:

#HYPER-PRIORS

mu_a = pm.Normal('mu_a' ,mu = 100, sd = 250)

sigma_a = pm.HalfNormal('sigma_a', sd = 250)

mu_b = pm.Normal('mu_b',mu = 10, sd = 250)

sigma_b = pm.HalfNormal('sigma_b', sd = 250)

sigma_sigma = pm.HalfNormal('sigma_sigma', sd = 200)

#PRIORS

a = pm.Normal("a", mu = mu_a, sd = sigma_a, dims = "driver")

b = pm.Normal("b", mu = mu_b, sd = sigma_b, dims = "driver")

sigma = pm.HalfNormal("sigma", sd = sigma_sigma,

dims = "driver")

#OBSERVED VARS
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y_pred = pm.Normal('y_pred',

mu = a[driver_idx]+b[driver_idx]*day_idx,

sd = sigma[driver_idx],

observed = reactions.Reaction,

dims = "driver_idx_day")

#INFERENCE

trace_hi = pm.sample(draws = samples, chains = chains,

tune = tune)

prior_hi = pm.sample_prior_predictive(samples = samples)

posterior_predictive_hi =

pm.sample_posterior_predictive(trace_hi, samples = samples)

The hierarchical and homogenous models of the lorry drivers reaction times refer to prob-
lems included in the book of Lambert [2018a]. The problem set questions and answers and the
data could be found on-line [Lambert, 2018b].

A.4 Stochastic Volatility Model

The aim of the stochastic volatility model is to model the day returns of assets. Assets prices
are variable and they have a time-varying volatility. There are periods, when returns are highly
variable, while in other periods they are more stable. This variability is modeled by using a
latent volatility variable. The following probabilistic statements describe the model:

step_size∼ Exp(λ = 50) (A.8)

ν ∼ Exp(λ = 0.1) (A.9)

volatilityi ∼ Normal(µ = volatilityi−1,σ = step_size−2) (A.10)

log(returni)∼ StudentT(ν = ν ,µ = 0,λ = exp(−2 ·volatilityi)) (A.11)

where log(returni) is the log of the return on date i, and volatilityi is the latent volatility variable
on date i. The actual observations of the model are the daily returns of the S&P 500 from May
2008 to November 2019.

The code for the PyMC3 definition of this model is the following:

import pandas as pd

import pymc3 as pm

#DATA

returns = pd.read_csv(pm.get_data('SP500.csv'), parse_dates=True,

index_col = 0)
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dates = returns.index.strftime("%Y/%m/%d").tolist()

#DIMENSIONS

coords = {"date": dates}

samples = 2000

tune = 2000

chains = 2

with pm.Model(coords = coords) as model:

#PRIORS

step_size = pm.Exponential('step_size', 10)

volatility = pm.GaussianRandomWalk('volatility',

sigma = step_size, dims = 'date')

nu = pm.Exponential('nu', 0.1)

#OBSERVED VARS

returns = pm.StudentT('returns', nu = nu,

lam = np.exp(-2*volatility),

observed = data["change"], dims = 'date')

#INFERENCE

trace = pm.sample(draws = samples, chains = chains, tune = tune)

prior = pm.sample_prior_predictive(samples = samples)

posterior_predictive =

pm.sample_posterior_predictive(trace, samples = samples)

The PyMC3 model specification presented here for the stochastic volatility problem refers
to the corresponding PyMC3 example available on-line3 in the PyMC3 on-line documentation.

A.5 The Coal Mining Disasters’ Model

The aim of the coal mining disasters model is to predict the time point in the past when the
number of the recorded coal mining-related disasters in the UK started to decline. It is assumed
that the decline in the number of the coal mining-related disasters was linked to changes in the
safety regulations. The dataset used provides the time series of recorded coal mining disasters
in the UK from 1851 to 1962 [Jarrett, 1979]. The following probabilistic statements describe

3https://www.pymc.io/projects/docs/en/v3/pymc-examples/examples/case_
studies/stochastic_volatility.html
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the model:

disasterst ∼ Poisson(λ = ratet), ratet =

early_rate if t ⩽ switchpoint

late_rate if t > switchpoint
(A.12)

switchpoint∼ Uniform(a = tl,b = th) (A.13)

early_rate∼ Exp(λ = 1) (A.14)

late_rate∼ Exp(λ = 1) (A.15)

where disasterst is the number of disasters in year t, ratet the rate parameter of the Poisson
distribution in year t, switchpoint is the switch-point, namely the year, when the change in the
safety regulations occurred and there was a switch in the rate rate, early_rate is the rate parameter
before the switch-point, and late_rate is the rate parameter after the switch-point.

The code for the PyMC3 definition of this model is the following:

import pandas as pd

import pymc3 as pm

#DATA

disaster_data = pd.Series([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0,

2, 6,

3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4,

2, 5,

2, 2, 3, 4, 2, 1, 3, np.nan, 2, 1, 1, 1,

1, 3, 0, 0,

1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1,

1, 1,

0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1,

0, 2,

3, 3, 1, np.nan, 2, 1, 1, 1, 1, 2, 4, 2,

0, 0, 1, 4,

0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,

1])

years = np.arange(1851, 1962)

years_missing = [1890,1935]

#DIMENSIONS

coords = {"year": years}
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samples = 10000

tune = 10000

chains = 2

with pm.Model(coords = coords) as disaster_model:

#PRIORS

switchpoint = pm.DiscreteUniform('switchpoint',

lower = years.min(), upper = years.max(), testval = 1900)

early_rate = pm.Exponential('early_rate', 1)

late_rate = pm.Exponential('late_rate', 1)

rate = pm.math.switch(switchpoint >= years, early_rate,

late_rate)

#OBSERVED VAR

disasters = pm.Poisson('disasters', rate,

observed = disaster_data, dims = 'year')

#INFERENCE

trace = pm.sample(samples, chains = chains, tune = tune)

prior = pm.sample_prior_predictive(samples = samples)

pm.sample_posterior_predictive(trace, samples = samples)

The PyMC3 model specification presented here for the coal mining disasters problem refers
to the corresponding PyMC3 example available on-line4 in the PyMC3 on-line documentation.

4https://pymcmc.readthedocs.io/en/jss-gp/tutorial.html
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arviz_json Package

The arviz_json [Williamson, 2019] Python package exports ArviZ InferenceData objects into
a zip file containing JSON metadata and a collection of npy1 format arrays of data from the
InferenceData object. There are two JSON structures that comprise the JSON metadata. The
first one captures the graph-related information of the PyMC3 models and the second one links
the model’s variables to the data arrays and provides information about the type of the samples
(prior, posterior), the dimensions and coordinates. In this section, the JSON format of these
structures is described.

B.1 Graph JSON Structure

A prototype JSON structure captures the model-related information that is necessary for the
construction of an informative DAG of the model. The JSON structure is according to the
following scheme:

{<var_name>:{"name" : <var_name>,

"type" : <var_type>,

"parents" : [],

"size" : 0,

"dims" : [],

"coords" : {},

"distribution" : {"dist" :<dist_name>,

"type" :<dist_type>,

"shape" : []

}

}

}

1https://numpy.org/devdocs/reference/generated/numpy.lib.format.html
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where <var_name> is a string of the variable’s name based on the PyMC3 model specification,
<var_type> is a string in the set {“free”,“observed”,“deterministic”}, <dist_name> is a
string of the prototype distribution name of the variable according to PyMC3 distributions class
names2, <dist_type> is a string of the type of the distribution in the set {“continuous”,“discreet”,“”}.
The field "parents" takes a list of strings with the variables’ names of the parent nodes.
The field "size" has to do with the free variables of the model and captures the overal size
of the variable, i.e, product of the "shape" array. This value defines the number of draws
from the distribution for each MCMC sample. The field "shape" captures the shape of
the MCMC samples array for the corresponding parameter. The field "dims" takes a list
of strings indicating the names of the variable’s dimensions. Finally, the field "coords"

takes a dictionary, where each entry corresponds to an indexing dimension and is of the form:
{<idx_dim>:[]}, <idx_dim> is an element in "dims" and its value is a list of the coor-
dinates of each <idx_dim>.

At this point, it’s worth raising two points that are very important for the creation of visual-
ization tools based on PPLs’ outputs. There is some confusion about the definition of variables’
shape by the various PPLs. The shape of a variable’s MCMC samples arrays cannot easily be
interpreted. For example, a shape (2,) could be interpreted as either getting 2 draws from a
uni-variate distribution, or 2 draws from 2 separate uni-variate distribution, or finally, one draw
from a bi-variate distribution.

The second point that should be highlighted here is the definition of the indexing dimensions
of the variables. The semantic definition of model’s indexing dimensions and coordinates is
necessary for the creation of interactive widgets by the IPME tool. Current implementations
of PPLs do not always provide this possibility. In those cases, we should manually provide a
semantic definition of the indexing dimensions to ArviZ and arviz_json, which is an inevitable
extra step that we hope will be taken in the probabilistic programming-level during the model
specification process.

B.2 ArviZ InferenceData Export Into npy Arrays and Meta-
data File

The ArviZ library provides an API for exporting inference data of different inference back-ends
and programming languages into ArviZ InferenceData3 data structures. Fig. B.1(a) presents
the groups that the InferenceData object creates to organize the inference data of the PyMC3
hierarchical model for the eight schools’ problem. Fig. B.1(b) presents the xarray.Dataset for
the posterior group of the InferenceData object of the eight schools’ model.

The arviz_json package transforms the ArviZ InferenceData object into a collection of npy

2https://docs.pymc.io/api/distributions.html
3https://arviz-devs.github.io/arviz/schema/schema.html
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(a)

(b)

Figure B.1: The ArviZ InferenceData data structure of the PyMC3 hierarchical model of the
eight schools’ problem. (a) The groups in which inference data is organized in the InferenceData
data structure. (b) The xarray.Dataset that corresponds to the posterior group of the Inference-
Data object.

arrays and a JSON metadata structure to provide links between the model’s variables and the data
arrays and to provide information about the type of the samples (prior, posterior), the dimensions
and the coordinates. This JSON structure is according to the following scheme:

{"inference_data":{

"observed_data" :<sub_structure_1>,

"posterior" :<sub_structure_1>,

"posterior_predictive" :<sub_structure_1>,

"prior" :<sub_structure_1>,

"prior_predictive" :<sub_structure_1>,

"sample_stats" :<sub_structure_1>,

"log_likelihood" :<sub_structure_1>

}

}
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<sub_structure_1> is defined as:

{"array_names": {<var_name>: <array_name>},

"attrs" : <attrs_structure>,

"dims" : <dims_structure>,

"coords" : <coords_structure>,

"vars" : <vars_structure>

},

where <var_name> is a string of the variable’s name according to the PyMC3 model speci-
fication, <array_name> is a string of the npy data array name that holds the corresponding
MCMC samples of the variable. All the variables of the model that are encountered within the
corresponding group, e.g. posterior, are included here and linked to their data array. The field
"attrs" captures metadata that has to do with version of the ArviZ used and the inference
library, the field "dims" captures all the different indexing dimensions that are encountered
in this group’s variables, the field "coords" captures the coordinates of each encountered di-
mension, and the field "vars" captures information related to dimensions, coordinates, shape,
and name of data array for each variable.

<attrs_structure> is defined as:

{"arviz_version" : "0.7.0",

"created_at" : <timestamp>,

"inference_library" : "pymc3",

"inference_library_version": "3.8"

}

where the field "arviz_version" takes a string of the ArviZ version that was used to export
the inference data into an ArviZ InferenceData object, e.g. version 0.7.0, <timestampe>
is a string of timestamp when the inference data was exported to ArviZ InferenceData, the
field "inference_library" takes a string of the PPL that was used for the inference, e.g.
PyMC3, and the field "inference_library_version" takes a string of the inference
library version, e.g. version 3.8.

<coords_structure> is defined as:

{"chain" : [1,2],

<dim_name> : ["A","B","C"],

"draw" : [1,2,3,...,100]

}

where each field corresponds to each dimension that is encountered within this group (e.g. pos-
terior), and takes a list of the corresponding dimension’s coordinates. The fields "chain"
and "draw" are fixed and common for all variables. The field "chain" takes a list of in-
tegers indicating the incremental indexes of the MCMC chains of samples that the sampler
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retrieved, e.g. [1,2] for two chains, the field <dim_name> is a string of the name of the
indexing dimension – extra fields of this type are added for any extra indexing dimension
present in this group – and takes a list of the actual semantic coordinates of this dimension.
The field "draw" takes a list of incremental indexes for each MCMC sample. The length
of this list equals the number of the samples drawn from the (prior) posterior (predictive)
distribution and is defined in the pm.sample(), pm.sample_prior_predictive(),
pm.sample_posterior_predictive() PyMC3 methods, for example 100 samples.

<dims_structure> is defined as:

{"chain" : 2,

<dim_name> : 3,

"draw" : 100

}

where there is one field per dimension and each field takes an integer indicating the number of
coordinates each dimension has.

<vars_structure> is defined as:

{<var_name>:{"array_name" : <array_name>

"attrs" : {},

"dims" : ["chain","draw",<dim_name>],

"dtype" : "<f8",

"shape" : [2, 100,3]

}

}

where the field "dtype" captures the data type (floating point, integer).



Appendix C

User Study 1

C.1 Participants’ Training

The training part of the user study comprised of four training videos. The training videos were
same for both groups of participants; the static (SG) and interaction (IG) group, with some slight
differences based on the visualization condition. Participants could ask questions once they had
watched the videos.

The first training video (IG: https://youtu.be/6yrBrL6amiQ, and SG: https://
youtu.be/zeonqIgHspk) was introducing the researcher and provided her contact details,
explaining the freedom to withdraw and the purpose of the user study, and provided a description
of the tasks and structure of the user study.

The second training video (IG: https://youtu.be/iPf8bwdxKy8, and SG: https:
//youtu.be/q0ZCM5KOxbI) was making an introduction to basic probabilistic concepts
such as random variables, probability, (joint) probability mass function/density, sampling, den-
sity/scatter/rug plots.

The third training video (IG: https://youtu.be/zQhy-LYJGQ4, and SG: https:
//youtu.be/ow86A6cvHjE) was presenting and demonstrating the use of the IPP tool.

The fourth training video (IG: https://youtu.be/9mfhepxCeRU, and SG: https:
//youtu.be/uDcqwLqQFDA) was presenting example tasks (one per Task Type) and how
the presented visualizations could be used to answer the questions. For example, participants in
the SG were shown how they can interpret the shape of a pair plot in terms of relations between
variables when they think of it on the basis of conditioning.

224
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C.2 Task Models

C.2.1 Model 1

The first model was designed to predict the mean November temperature (�C) in Scotland.
The model consists of an observed random variable for the predicted temperature and a set of
unidentified parameters a, b, and c. The mean value of the prior distribution for the mean value
of temperature’s distribution was set to 2 because out of prior experience of living in Scotland,
the temperatures at this time of the year are usually nearly above 0. The standard deviations of
the prior distributions were set to 10 to make them weakly informative.

a∼ Uniform(lower = 80,upper = 100)

b∼ Normal(µ = 2,σ = 10)

c∼ Half-Normal(σ = 10)

temperature∼ Normal(µ = b,σ = c)

The PyMC3 code of the model can be found in https://github.com/evdoxiataka/
ipme/tree/master/examples/user_study/min_temperature. The prior sam-
ples from the model used in the study could be found in the file study_analysis\data\
min_temperature.npz in [Taka et al., 2022]. The data used for the definition of the likeli-
hood was the average minimum temperature in Scotland in month November for the years 1884-
2020 (retrieved from https://www.metoffice.gov.uk/pub/data/weather/uk/

climate/datasets/Tmin/date/Scotland.txt).

C.2.2 Model 2

The second model was designed to predict the output of an engine that generates random real
numbers. The model consists of an observed random variable for the predicted random_number
and a set of unidentified parameters a, b, and c. For the parameterization of the uniform likeli-
hood’s bounds, we subtract a positive number c (sampled from a half-normal distribution) from
a number a (sampled from a normal distribution centered around 0) to set the lower bound and
we add it to a to set the upper bound.

a∼ Normal(µ = 0,σ = 10)

b∼ Half-Normal(σ = 10)

c∼ Half-Normal(σ = 20)

random_number∼ Uniform(lower = a−c,upper = a+c)
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The PyMC3 code of the model can be found in https://github.com/evdoxiataka/
ipme/tree/master/examples/user_study/random_number_generator. The
prior samples from the model used in the study could be found in the file study_analysis\
data\transformation.npz in [Taka et al., 2022]. The data used for the definition of the
likelihood was synthetically created.

C.2.3 Model 3

The third model was designed to predict the reaction time (in msec) of lorry drivers under
sleep deprivation conditions. The model consists of observed random variables for the pre-
dicted reaction_time of each lorry driver (i ∈ 1,2, ...,18), a set of priors a, b, sigmai and d, and
a set of hyper-priors c, e, f, g and h. The day variable takes values in the day ∈ 1,2, ...,10. The
visualizations of the tasks in the user study regarding this problem included only the parameters
a, b, c, d, and the reaction_time observed variable.

For setting the prior for parameter a, namely the intercept of the reaction_time’s mean value,
we set a hyper-prior for the mean value of its prior distribution with mean value equal to 100
msec (0.1 sec) and standard deviation 150 msec (0.15 sec). Crudely, this would represent the
mean value and standard deviation of the drivers’ reaction time on day 0. We were expecting
the drivers to have some small reaction time above 0 on day 0 of driving, because they were
well-rested, and this reaction time to increase as the days pass by and the drivers become sleep-
deprived. For setting the prior for parameter b, namely the slope of the reaction_time’s mean
value that represents the amount of time in msec that the reaction time of the driver increases in
each day, we set a hyper-prior for the mean value of its prior distribution with mean value equal
to 10 msec (0.01 sec) and standard deviation 100 msec (0.1 sec). We were expecting that the
drivers’ reaction time would increase with day, but we had no previous knowledge of how much
this increase could be.

We set the standard deviation of the a parameter to a higher value (150 msec) than the stan-
dard deviation of the b parameter (100 msec), as were expecting more variation to the drivers’
reaction times at rest as this could reflect their individual traits, than to the effect of sleep de-
privation on drivers (we thought that tiredness more or less affects drivers in the same ways).
Finally, for the prior distribution for the standard deviation of the reaction_time}’s likelihood a
hyper-prior was set with standard deviation equal to 200 msec to account for bigger variations
among drivers and days.

c∼ Normal(µ = 100,σ = 150)

e∼ Half-Normal(σ = 150)

f∼ Normal(µ = 10,σ = 100)
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g∼ Half-Normal(σ = 100)

h∼ Half-Normal(σ = 200)

ai ∼ Normal(µ = c,σ = e)

bi ∼ Normal(µ = f,σ = g)

sigmai ∼ Half-Normal(σ = h)

d∼ Normal(µ = 0,σ = 10)

reaction_timei ∼ Normal(µ = ai+day ·bi,σ = sigmai)

The PyMC3 code of the model can be found in https://github.com/evdoxiataka/
ipme/tree/master/examples/user_study/reaction_times. The prior samples
from the model used in the study could be found in the file study_analysis\data\

reaction_times_hierarchical.npz in [Taka et al., 2022]. The data used for the defi-
nition of the likelihood was taken from the study presented in [Belenky et al., 2003].

C.3 Analysis

The Bayesian models used for the analysis of the user study’s collected data were designed and
interpreted in PyMC3. The code for the models’ specification is presented here and could be
found as Python Jupyter Notebooks along with the collected data from the user study in [Taka
et al., 2022]. Please note that the variables’ names are slightly different in the presented code
below to be in alignment with Kruschke-style diagrams of the models presented in Fig. 5 of the
paper.

C.3.1 Accuracy’s Model

Two separate models were used for the analysis of accuracy; one for T1 tasks and the other
for the T2-T3 tasks. The models were different in the likelihood used for the accuracy. A
binomial likelihood was used for T1 tasks because multiple selections were allowed. A Bernoulli
likelihood was used for the rest of tasks because only a single selection was allowed.

Beta priors with α = 1.0 and β = 1.0 were set in both models for the probabilities of success
(thetaIG and thetaSG). These priors correspond to a uniform distribution with bounds between
0 and 1 and is a reasonable uninformative option in this case.

C.3.1.1 Model for T1

import pymc3 as pm

import numpy as np
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coords = {"task": t_ids}

with pm.Model(coords=coords) as model:

#priors

thetaIG = pm.Beta("thetaIG", alpha = 1.0, beta = 1.0,

dims = 'task')

thetaSG = pm.Beta("thetaSG", alpha = 1.0, beta = 1.0,

dims = 'task')

#likelihood

accuracyIG = pm.Binomial("accuracyIG", n = n_i,

p = thetaIG[t_indices_i],

observed = answers_i)

accuracySG = pm.Binomial("accuracySG", n = n_s,

p = thetaSG[t_indices_s],

observed = answers_s)

#comparisons

diff_of_thetas = pm.Deterministic("difference of thetas",

thetaIG - thetaSG,

dims='task')

#inference

trace = pm.sample(2000)

C.3.1.2 Model for T2-T3

import pymc3 as pm

import numpy as np

coords = {"task": t_ids}

with pm.Model(coords=coords) as model:

#priors

thetaIG = pm.Beta("thetaIG", alpha = 1.0, beta = 1.0,

dims = 'task')

thetaSG = pm.Beta("thetaSG", alpha = 1.0, beta = 1.0,

dims = 'task')
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#likelihood

accuracyIG = pm.Bernoulli("accuracyIG", p = thetaIG[t_indices_i],

observed = answers_i)

accuracySG = pm.Bernoulli("accuracySG", p = thetaSG[t_indices_s],

observed = answers_s)

#comparisons

diff_of_thetas = pm.Deterministic("difference of thetas",

thetaIG - thetaSG,

dims='task')

#inference

trace = pm.sample(2000)

C.3.2 Response Times’ Model

The response times of the participants were continuous values and we assumed a normal like-
lihood to model them. A normal prior distribution was set for the µ and a half-normal prior
distribution for the σ parameter of the response times’ likelihood. The user study was designed
so that each participant spends 2-3 min on average on each task. So, we set µ = 120 sec for
the priors and allowed for a variance of 60 sec to account for the fact that some tasks could be
completed in less or more time depending on the complexity of the presented structure.

import pymc3 as pm

import numpy as np

coords = {"task": t_ids}

with pm.Model(coords=coords) as model:

#priors

groupIG_mean = pm.Normal("groupIG_mean", mu = 120, sd = 60,

dims = 'task')

groupIG_std = pm.HalfNormal("groupIG_std", sd = 90,

dims = 'task')

groupSG_mean = pm.Normal("groupSG_mean", mu = 120, sd = 60,

dims = 'task')

groupSG_std = pm.HalfNormal("groupSG_std", sd = 90,

dims = 'task')
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#likelihood

rtIG = pm.Normal("rtIG", mu = groupIG_mean[t_indices_i],

sd = groupIG_std[t_indices_i],

observed = times_i)# sec

rtSG = pm.Normal("rtSG", mu = groupSG_mean[t_indices_s],

sd = groupSG_std[t_indices_s],

observed = times_s)# sec

#comparisons

diff_of_means = pm.Deterministic("difference of means",

groupIG_mean - groupSG_mean,

dims = 'task')

effect_size = pm.Deterministic("effect size",

diff_of_means / np.sqrt((groupIG_std ** 2 +

groupSG_std ** 2) / 2),

dims = 'task')

#inference

trace = pm.sample(2000)

C.3.3 Confidence’s Model

Although the structure of the model used for the analysis of confidence is the same as that
used for the response times, the values of the parameters of priors were different. The recorded
confidence levels of the participants were mapped to a [−2,2] scale. Thus, we centered the prior
for the µ of the likelihood around 0, as we had no previous experience or knowledge about how
high users’ confidence would be, and allowed for a variance of 1 to create uninformative enough
priors.

import pymc3 as pm

import numpy as np

coords = {"task": t_ids}

with pm.Model(coords=coords) as model:

#priors

groupIG_mean = pm.Normal("groupIG_mean", mu = 0, sd = 1,

dims = 'task')

groupIG_std = pm.HalfNormal("groupIG_std", sd = 1,

dims = 'task')
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groupSG_mean = pm.Normal("groupSG_mean", mu = 0, sd = 1,

dims = 'task')

groupSG_std = pm.HalfNormal("groupSG_std", sd = 1,

dims = 'task')

#likelihood

confIG = pm.Normal("confIG", mu = groupIG_mean[t_indices_i],

sd = groupIG_std[t_indices_i],

observed = conf_i)

confSG = pm.Normal("confSG", mu = groupSG_mean[t_indices_s],

sd = groupSG_std[t_indices_s],

observed = conf_s)

#comparisons

diff_of_means = pm.Deterministic("difference of means",

groupIG_mean - groupSG_mean,

dims = 'task')

effect_size = pm.Deterministic("effect size",

diff_of_means / np.sqrt((groupIG_std ** 2 +

groupSG_std ** 2) / 2),

dims = 'task')

#inference

trace = pm.sample(2000)

C.4 Tasks

Fig. SC.1-SC.19 present the study questions as they were presented to participants during the
study in exactly the same order.
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Figure C.1: Model 1 - Task t1 (T1).

Figure C.2: Model 1 - Task t2 (T2).
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Figure C.3: Model 1 - Task t3 (T2).

Figure C.4: Model 1 - Task t4 (T2).



APPENDIX C. USER STUDY 1 234

Figure C.5: Model 1 - Task t5 (T3).

Figure C.6: Model 2 - Task t6 (T1).
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Figure C.7: Model 2 - Task t7 (T2).

Figure C.8: Model 2 - Task t8 (T2).
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Figure C.9: Model 2 - Task t9 (T2).

Figure C.10: Model 2 - Task t10 (T3).
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Figure C.11: Model 2 - Task t11 (T3).

Figure C.12: Model 3 - Task t12 (T1).
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Figure C.13: Model 3 - Task t13 (T1).

Figure C.14: Model 3 - Task t14 (T2).
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Figure C.15: Model 3 - Task t15 (T2).

Figure C.16: Model 3 - Task t16 (T2).
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Figure C.17: Model 3 - Task t17 (T2).
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Figure C.18: Model 3 - Task t18 (T3).
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Figure C.19: Model 3 - Task t19 (T3).



Appendix D

User Study 2

D.1 Generation of Synthetic Observations for the Insomnia-
Anxiety-Tiredness Problem

Synthetic observations were generated for the insomnia-anxiety-tiredness problem based on the
common cause model presented in Fig. D.1.

Figure D.1: Common cause model of the insomnia-anxiety-tiredness problem considered in the
user study.

The Python code for generating the synthetic observations is shown below and can be found
in [Taka, 2023c].

import numpy as np

import random

random.seed(10)

N = 7

insomnia = np.random.normal(size = N)

anxiety = np.random.normal(loc = 3*insomnia+1, size = N)

tiredness = np.random.normal(loc = 2.*insomnia, size = N)

The causal structure of the model is encoded in a Python dictionary as following:

causal_dag = {"insomnia":[],

243
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"anxiety":["insomnia"],

"tiredness":["insomnia"]}

D.2 Participants’ Training

The training part of the user study comprised of six pages presented to participants through the
web interface of the user study. It consisted mainly of reading and comprehension and demon-
stration of the vicausi tool. The training was similar in all conditions; only the presented visu-
alization mode of the vicausi tool varried among the static (SG), interaction (IG), and animated
(AG) group. Fig. D.2-D.7 present the content of these six pages as presented in the SG.

Figure D.2: Page 1 of training.

D.3 Tasks

Fig. D.8-D.23 present the screenshots of the user study tasks t1-t16.
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Figure D.3: Page 2 of training.

Figure D.4: Page 3 of training.
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Figure D.5: Page 4 of training.
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Figure D.6: Page 5 of training.
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Figure D.7: Page 6 of training.

Figure D.8: Task t1 (TT1).
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Figure D.9: Task t2 (TT1).

Figure D.10: Task t3 (TT1).
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Figure D.11: Task t4 (TT1).

Figure D.12: Task t5 (TT1).
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Figure D.13: Task t6 (TT1).

Figure D.14: Task t7 (TT1).
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Figure D.15: Task t8 (TT1).

Figure D.16: Task t9 (TT1).
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Figure D.17: Task t10 (TT1).

Figure D.18: Task t11 (TT2).
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Figure D.19: Task t12 (TT2).



APPENDIX D. USER STUDY 2 255

Figure D.20: Task t13 (TT2).
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Figure D.21: Task t14 (TT2).
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Figure D.22: Task t15 (TT2).
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Figure D.23: Task t16 (TT2).
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