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Abstract

Bayesian probabilistic models’ structure (determined by the mathematical relations of the model’s
variables) and outputs (i.e., the posterior distributions inferred through Bayesian inference) are

complex and difficult to grasp and interprete without specialized knowledge. Various visual-

izations of probabilistic models exist but it is very little known about whether and how they

support users’ comprehension of the models. The aim of this thesis is to investigate whether

adding interaction or animation to visual representations of probabilistic models help people

better understand the structure of models and interprete the (causal and non-causal) relations of

the variables.

This research presents a generic pipeline to transform a probabilistic model expressed in
a Probabilistic Programming Language (PPL) and associated inference results into a standard-
ized format which can then be automatically translated into an interactive probabilistic models
explorer (IPME). IPME provides at-a-glance communication of a model’s structure and uncer-
tainty, and allows interactive exploration of the multi-dimensional prior or posterior MCMC
sample space. A collapsible tree-like structure represents the structure of the model in IPME.
Each variable is represented by a node that presents graphically the prior or posterior distribution
of the variable. Slicing on indexing dimensions or forming conjunctive restrictions on variables
by interacting with the distribution visualizations is supported. Each user interaction with the
explorer triggers the reestimation and visualization of the model’s uncertainty. This closed-loop
exchange of responses between the user and the explorer allows the user to gain a more intuitive
comprehension of the model. IPME was designed to enhance informativeness, transparency and
explainability and ultimately, the potential of increasing trust in models.

This research investigates also whether adding interactive conditioning to classical scatter
plot matrices that present samples from the prior distribution of probabilistic models helps users
better understand the models, and if there are levels of structural detail and model designs for
which it is beneficial. A user study was conducted. The analysis of the collected data showed that
interactive conditioning is beneficial in cases of sophisticated model designs and the difference
in response time between the interaction and static group becomes less important in higher levels
of structural detail. Participants using interactive conditioning were more confident about their
responses overall with the effect being stronger in tasks of lower level of detail.

This research proposes a pipeline to generate simulated probabilistic data from interven-
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tions applied on causal structures that are expressed in PPLs using probabilistic modeling and
Bayesian inference. An automatic visualization tool for visualizing the simulated probabilistic
data generated by this pipeline was developed. A user study to evaluate the proposed tool was
conducted. How effectively and efficiently people identify the causal model of the presented
data and make decisions on interventional experiments when the uncertainty in the simulated
data of interventions was presented using static, animated, or interactive visualizations was in-
vestigated. The findings suggested that participants were able to identify the causal model of
the presented data either given a single intervention or by exploring various interventions. Their
performance in identifying sufficient interventions was poor. Participants did not rely on the suf-
ficient interventions to identify the causal model in the case of multi-interventional tasks. They
might have relied more on combining information from multiple interventions to draw their
conclusions. There were three different visual exploration strategies of the information in the
scatter plot matrices which participants followed; roughly 1/3 of them relied on both the scatter
and KDE plots, another 1/3 of them relied more on the scatter plots, and the last 1/3 of them
relied more on the KDE plots. Those who followed the last strategy had a better performance in
identifying the causal model given a specific intervention. Most participants judged the design

of the visualization positively with many having mentioned that “it was informative”.
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Chapter 1

Introduction

1.1 Summary

The main focus of the research presented in this thesis is how visualization could be used to rep-
resent probabilistic models and their outputs more effectively and efficiently for the users. Prob-
abilistic models constitute the focal point of all visualization-related research efforts presented
in this thesis. Section 1.2 explains what probabilistic models are. It discusses the advantages of
probabilistic modeling and the obstacles in becoming widely adopted as a modeling and analy-
sis approach. Section 1.3 presents how probabilistic models and their outputs are communicated
(visually) based on the currect practices and discusses the challenges in using visualization to
achieve this. Finally, Section 1.4 presents the research scope, aims, contributions, and research
challenges of this work in regards with visualizing probabilistic models. It also provides the

outline of the thesis.

1.2 Probabilistic Models: Opportunities and Obstacles

1.2.1 Opportunities
1.2.1.1 Modeling Data Generating Mechanisms

Probabilistic models are models describing data generating processes. They are similar in pur-
pose to any other type of model used in science, engineering, industry etc. A simple and straight-

forward description of what a model is, is given by Martin [2018, Chap.1]:

Models are simplified descriptions of a given system or process that, for some rea-
son, we are interested in. Those descriptions are deliberately designed to capture
only the most relevant aspects of the system and not to explain every minor detail.

This is one reason a more complex model is not always a better one.
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Models are designed to capture only the “relevant aspects of the system” that are of interest.
A set of variables and relations (i.e., mathematical associations) are defined appropriately to
describe these “relevant aspects of the system”. A model consists of two types of variables; the
directly observed or measured variables called observed, and the unobserved hidden variables
called latent. The latter are often referred as parameters. Parameters define the behaviour of
the model through the mathematical associations relating them to each other or to the observed
variables. In cases when more than one observed variables are considered in the model, these
can also be associated to each other.

Box 1.1 presents a simple linear (non-probabilistic) regression model that consists of two
parameters, a and b, and two observed variables, rt and n. The parameters are independent
(one cannot be used to predict the other) of each other and are used to define the observed
variable rt. The observed variable n is also used to define rt. This model can be modelled in

a probabilistic way, as well, as it will be shown in Section 1.2.1.2.

Box 1.1 Linear regression model

An important task in a logistics company is the allocation of routes to drivers. The com-
pany wants to minimize the risk of accidents when allocating long routes to drivers that
are susceptible to tiredness under sleep-deprivation conditions, and thus, wants to model
drivers’ reaction time in regards with the number of consecutive days of driving under sleep-
deprivation. Assuming that the reaction time of drivers increases linearly with the number
of driving days under sleep deprivation, a linear regression model could be used for the

prediction of drivers’ reaction time.
rt = b-n+a, (1.1)

where a is the intercept and b the slope of the regression line, n is the predictor (independent
variable) representing the number of consecutive days of driving under sleep-deprivation
with n € {0,1,2,...,9}, and rt is the dependent variable to be predicted representing the
reaction time in milliseconds after n consecutive days of driving under sleep deprivation

conditions.

All models do not necessarily define causal associations between variables, namely relations
that determine which variable causes the other (which variables are the cause of others and which
variables are the effects of others), based on the actual data generating mechanism that governs
the modelled system. For example, in the linear regression model in Box 1.1 the independent
variable (n) is used as a predictor for the dependent variable (rt). This association does not
necessarily mean that n causes rt. It simply expresses the belief of the modeller that some kind
of predictive relation exists between these two variables. Hence such variables’ relations in a
model reflect simple predictor-predicted relations. These relations are used to compose a proxy

for a data generating process with the aim to approximate the actual process as to the “relevant
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aspects of the system”. The aim of such models is usually prediction or forecasting, in which
cases a proxy for the data generating process suffices.

There are special types of models called causal models that can be used to model the cause-
effect relations of observed variables. These can be graphical or mathematical models defining
the causal relations among observed variables. The aim of these models is to explain the actual
data generating mechanism. Box 1.2 presents a graphical causal model called causal diagram.
This consists of a Directed Acyclic Graph (DAG) where variables are represented by nodes and
the direct causal relations by directed edges starting from a variable-cause and pointing to a
variable-effect.

Regression models can be used as mathematical models to describe the causal relations of
variables under some assumptions [McElreath, 2020a, Chap. 5,6;McElreath, 2021; Westreich
and Greenland, 2013; Bulbulia et al., 2021; Textor and Gilthorpe]. The independent observed
variables would represent the causes of the dependent observed variable. In Box 1.2 a causal
model of three variables is expressed mathematically by a set of two linear (non-probabilistic)

regression models.

Box 1.2 A causal model

The causal diagram in Fig. 1.1 is a graphical causal model describing the causal relations
among three observed variables; insomnia, anxiety, and tiredness.

The linear regression models 1.2 can be used as a mathematical model to describe the
causal relations of these three observed variables (under some assumptions). Both models
describe the following causal relations: insomnia causes anxiety and tiredness,

and anxiety causes tiredness.
insomnia

. tiredness
anxiety,

Figure 1.1: Causal model of insomnia, anxiety, and tiredness.

anxiety = Dbanx ins-insomnia—+aanx
(1.2)
tiredness = Dbtir ins-insomnia—+ btir anx-anxiety-+acir.

1.2.1.2 Modeling Uncertainty

An advantage of probabilistic models is that they account for uncertainty. Uncertainty encom-

passes phenomena in a system or process from the natural processes of their occurence or evo-
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lution (e.g., is the weather going to get colder?) to the measuring and modeling of them (e.g., is
there noise in the measurement of temperature? is the linear regression model a proper model for
predicting the temperature?). In existing literature uncertainty is mainly categorised as aleatoric
or epistemic [Alleman, 2013; Gelman, 2022; Spiegelhalter and Riesch, 2011].

Aleatory uncertainty is part of the naturally occuring stochastic processes [Alleman, 2013].
For example, the uncertainty about the outcome of a coin flip (heads or tails) is aleatoric. Epis-
temic uncertainty is the result of lack of knowledge deriving from various sources like the in-
complete knowledge or understanding of the underlying processes of the phenomena, or the im-
precise evaluation of their related characteristics (e.g., noisy measurements) [Alleman, 2013].
While aleatoric uncertainty is irreducible because it refers to the inherent uncertainty of random
processes, epistemic uncertainty can be reduced if additional information about the underlying
processes (e.g., more measurements) becomes available.

Both types of uncertainty can be modelled by a probabilistic model. The aleatoric uncer-
tainty expressed as “naturally occuring variances” in the observations of a system [Alleman,
2013] is modelled in a probabilistic model “by placing a distribution over the output of the
model” [Kendall and Gal, 2017]. The output of a probabilistic model is represented by a random
variable. These types of variables do not take a fixed value like the variables in non-probabilistic
models, but may take any value within a range with some probability.

The definition of the term “probability” has a long story, which will be narrated in Chapter 2
(Section 2.2.1). For the moment the Bayesian definition of it is given: probability is a measure
of belief that a possible event (or outcome) will happen in a scale from O (no belief) to 1 (max-
imum belief) [Lambert, 2018a, Chap. 2; Martin, 2018, Chap. 1]. A random variable follows
a probability distribution which assigns a probability to each possible value of the variable so
that the sum of all probabilities or the area under the distribution is 1 depending on whether the
random variable is discrete or continuous, respectively.

In Box 1.3 the linear regression model described in equation 1.1 (that was a non-probabilistic
model) is rewritten in a probabilistic way to account for aleatoric uncertainty. The following

paragraph describes how probabilistic models can account for epistemic uncertainty.
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Box 1.3 Probabilistic linear regression model

In a probabilistic approach, the reaction time in the drivers’ reaction time problem could
be viewed as a random variable distributed according to a normal distribution. The mean
() of this normal distribution would be provided by the linear predictor u = b - n + a, with
some standard deviation (o) such as 6 = s. Equation 1.1 can be written in a probabilistic

way as following:

t ~N 1(u,0) =
r ormal(y,o) (1.3)

rt ~Normal(b-n+a,s).
Probabilistic statement 1.3 quantifies aleatoric uncertainty. For any 4-tuple of values
(a,b,s,n), a normal distribution of drivers’ reaction time (rt) is defined. This normal

distribution quantifies the aleatoric uncertainty.

1.2.1.3 Incorporating Prior Knowledge

Placing a prior distribution over a model’s parameters, and then capturing how much these
parameters vary given some data accounts for epistemic uncertainty [Kendall and Gal, 2017].
These prior distributions are the probability distributions of the model’s parameters. They quan-
tify any prior (incomplete) knowledge of the modeller or expert about the underlying data gen-
erating process of the modelled system before observing any data. Box 1.4 shows how priors

could be set for the parameters of the drivers’ reaction time problem.
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Box 1.4 Definition of priors for the drivers’ reaction time problem

An expected reaction time of a driver under normal conditions might be known to be
around 100 ms with a standard deviation of 100 ms. This knowledge could arise from
previous studies or experience. This forms a prior belief in the form of a distribution for
the intercept a. The intercept equals the reaction time of a driver on the first driving day;

rt =Db-0+ a = a. Based on this information, the prior distribution of a takes the form:

a~Normal(100, 100). (1.4)

The more days a driver drives under sleep deprivation conditions, the more tired he is
expected to get. Hence, the slope of the regression model is expected to be positive. The
bigger the slope of the regression line is, The more tired (bigger reaction times) the drivers
get after consecutive days of driving, the bigger the slope of the regression line becomes. It
is not known though how sharp this slope could be. For this reason, a wide prior distribution
is set for the slope of the regression line: a normal distribution with mean value 10 and a

standard deviation 10. This forms the prior distribution of parameter b:
b ~Normal(10, 10). (1.5)

The standard deviation of the drivers’ reaction time cannot be judged a priori, but it is
known to be a positive number. Thus, a wide prior distribution is set for parameter s such

that it is defined over positive values:

s ~HalfNormal(50). (1.6)

The prior distributions express how much or little is known about the system’s underly-
ing data generating process before observing any data. A prior is more informative (i.e., the
distribution is tighter) when there is more known and hence, the epistemic uncertainty is less.

Otherwise, it is less informative.

1.2.1.4 Estimating Uncertainty through Bayesian Inference

The epistemic uncertainty can be reduced in the presence of observations especially in the case of
less informative prior distributions. Bayesian inference is the mechanism that describes how this
reduction of uncertainty can take place in the presence of observations in probabilistic modeling.
In Bayesian inference, the prior beliefs about the value of the model’s parameters get updated
in the light of the observations and are turned into posterior beliefs. The update mechanism of
prior beliefs in the light of observations is described mathematically by the Bayes’ rule as it will
be explained in detail in Section 2.2.

Box 1.5 explains why the observations can cause an update in the prior beliefs.
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Box 1.5 Uncertainty reduction in the drivers’ reaction time problem

Let us assume that a dataset of drivers’ observed reaction times is available in the database
of the logistics company. The data of one of the drivers is shown in Table 1.1.

Driver 330’s reaction time on day O is 321 ms. Observing this data-point, the model
might want to change the prior belief about the regression line’s intercept (initially centered
around 100 ms in statement 1.4) and shift it to higher values. This mathematically is
interpreted as an assignment of more probability density to higher values of the parameter

a in the posterior distribution.

Table 1.1: The reaction times of a driver after n consecutive days of driving under sleep-
deprivation conditions. The dataset is from [Belenky et al., 2003] and can be retrieved from
[Lambert, 2018b] for all 18 available drivers.

Driver ID Days of Driving (n) Reaction Time (rt)

330 0 321
330 1 300
330 2 283
330 3 285
330 4 285
330 5 297
330 6 280
330 7 318
330 8 305
330 9 354
330 6 280
330 7 318
330 8 305
330 9 354

The observed data of a system can be used to estimate the values of the parameters and
consequently to generate predictions. The approach followed in the case of non-probabilistic
modeling is to apply some algorithm to fit the parameters of a model to observations. For exam-
ple, Ordinary Least Squares (OLS) is a commonly used algorithm for fitting linear regression
models to observations. It fits the parameters of the regression model to the data by minimizing
the sum of square differences between the observed and predicted values of the dependent vari-
able. Such modeling approaches would generate fixed-value estimates for the parameters of the
model. The predicted data would be fixed-valued given the value of the model’s parameters.

The parameters of a probabilistic model are random variables defined by a probability dis-

tribution. The outcome of a probabilistic model is also represented by a random variable. A
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probabilistic model produces predictions for the outcome with a confidence (or uncertainty) at-
tached to them in contrast to non-probabilistic models that produce a prediction with certainty.
The probability distributions of the parameters and observed variables in a probabilistic model
can be inferred by Bayesian inference through the observations. Starting from a prior distribu-
tion that gets updated in the light of observation, a posterior distribution can be inferred through
Bayesian inference, with the epistemic uncertainty being reduced as the observations accumu-
late.

Box 1.6 demonstrates how the outputs of a non-probabilistic and a probabilistic model differ
within the context of the drivers’ reaction time problem. The Python code for the modeling
of the drivers’ reaction time problem in this and the following chapter can be found in Taka
[2023a]. Fig. 1.2 presents the outputs of both models. The parameters’ estimates and the pre-
dicted reaction time take fixed values in the case of the non-probabilistic model, while they can
take any value from a range of possible values in the case of the probabilistic model according to
the estimated posterior distribution. The figure presents also the prior distributions of the param-
eters. The uncertainty included in the prior distributions is reduced in the posterior distributions
in the light of data.

Modeling uncertainty is a valuable modeling attribute to achieve realistic predictions. For
example, both the non-probabilistic and probabilistic models in Box 1.6 can predict the drivers’
reaction time after n consecutive days of driving under sleep-deprivation conditions. Based on
the non-probabilstic model all drivers would have the exact same reaction time if they all drive
3 consecutive days under sleep-deprivation conditions. These types of events are unlikely based
on the human experience, while they are certain events based on this model. The probabilistic
model estimates the distribution of the predicted reaction time. Based on this estimate the pre-
dicted reaction time will not be the exact same value for all drivers for any specific number of

days driving under sleep-deprivation conditions.
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Box 1.6 Estimation of parameters’ value and generation of predictions in the drivers’
reaction time problem

For the non-probabilistic linear regression model of equation 1.1, OLS is used to fit the
parameters to the available observed data (found in [Lambert, 2018b]). The values of the
parameters a and b are estimated; a = 251.41andb = 10.47. The estimated values
of the parameters can then be used in equation 1.1 to predict the reaction time of a driver
after 3 consecutive days of driving,n = 3;rt = 10.47-3+251.41 = 282.82 ms.

For the probabilistic linear regression model of statement 1.3, the priors given in state-
ments 1.4-1.6, and the available observed data are used to conduct Bayesian inference and
infer the posterior distributions of the parameters a, b, and s and the posterior predictive

distribution of rt.
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Figure 1.2: Parameter estimates and reaction times’ predictions from the probabilistic and
non-probabilistic model of the drivers’ reaction time problem.

1.2.1.5 Accounting for Uncertainty when Modeling Causal Relations

As it was discussed in Section 1.2.1.1, the relation of two observed variables in a model is not
necessarily truly causal, unless the model is a causal model or is designed under a causal model.
For example, the observed variable days of driving n used as a covariate in the non-probabilistic
and probabilistic regression models to predict the reaction time variable rt in Box 1.1 and
1.3, respectively, is not necessarily a cause of drivers’ reaction time. On the other hand, the
insomnia variable used as a covariate in the non-probabilistic regression models in Box 1.2
is a cause of the anxiety and tiredness variables. This is because the insomnia-anxiety-
tiredness model in Box 1.2 was designed under a causal model represented by the causal diagram
shown in Fig. 1.1.

Probabilistic models designed under a causal model can model the causal relations of ob-
served variables in a probabilistic way. Box 1.7 demonstrates how the insomnia-anxiety-tiredness
model shown in Box 1.2 is modelled probabilistically through probabilistic linear regressions.
Appropriate priors could be set for the b, a, and o parameters and Bayesian inference could be

used to infer the posterior distributions of the parameters and the posterior predictive distribu-
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tions of the observed variables.

Box 1.7 Modelling causal relations probabilistically

Fig. 1.3 replicates Fig. 1.1 to show again the causal diagram of the insomnia-anxiety-
tiredness causal model here. The linear regression models 1.2 shown in Box 1.2 are rewritten
below in a probabilistic way to account for uncertainty.

The insomnia, anxiety, and tiredness are assumed to be continuous random
variables and linearly related. anxiety and tiredness are assumed to follow a nor-
mal distribution with mean U nx = Dbanx _ins-insomnia4aanx and Ueir = Drir ins:
insomnia+ Dtir anx-anxiety+acir and standard deviation Ganx and O ; ., respec-

tively.
insomnia

. tiredness
anxiety;

Figure 1.3: Causal model of insomnia, anxiety, and tiredness.

anxiety ~ Normal(banx ins-insomnia+ aanx,Canx)

tiredness ~Normal(btir ins-insomnia+Dbiir anx-anxiety+acir,Otir)-

(1.7)

The regression coefficients b (the parameters that multiply the independent variables) in a
linear regression model describe the correlation between the independent and dependent vari-
ables. When the independent variables are causes of the dependent ones, the regression co-
efficients b describe the causal effect the independent variables have on the dependent ones
[Bulbulia et al., 2021; McElreath, 2021; Textor and Gilthorpe]; that is a measure of how much a
variable-effect would change by a change in its variable-cause.

Using probabilistic models to model causal relations of variables can account for the uncer-
tainty about the value of their causal effects and the predicted data. Estimations of the uncer-
tainty about the size of causal effects or the values of predicted data could be valuable informa-
tion in many settings of crucial decision-making. A simplistic example could be a doctor, who
needs to decide which treatment to give to a patient. The effect of the possible treatments on
the disease are not expected to be the same for all patients but to present variability. A more
informative decision could be made if the uncertainty about the size of each treatment’s effect

on the disease is known.



CHAPTER 1. INTRODUCTION 11

1.2.2 Obstacles

The roots of Bayesian inference go back to the work presented by Thomas Bayes in 1763 [Bayes
and Price, 1763] but Bayesian inference had remained in obscurity for a very long time since
then and was mainly used within academia. A reason for this was the computational challenges
in applying Bayes’ rule for the computation of the posterior distribution when the complexity of
the probabilistic models was increased. As the number of the parameters in the model increases,
some components of Bayes’ rule become intractable. This will be explained through concrete
examples in Section 2.2.3. Alternative estimation techniques could be used for the calculation
of the posterior in certain cases but these required specialized statistical knowledge.

The foundations of a wider adoption of Bayesian statistics were laid in early 1990’s, when in-
direct estimation methods of the posterior were introduced; Markov Chain Monte Carlo MCMC)
algorithms [Spiegelhalter and Rice, 2009] and a decade later the Probabilistic Programming
Languages (PPLs) [Poole and Wood, 2022]. The creators of PPLs started working on integrat-
ing semantically the inference in a programming language to hide the mathematical details and
automate the inference process. They also incorporated powerful MCMC algorithms for the
estimation of the posterior [Poole and Wood, 2022].

Bayesian probabilistic modeling has many advantages; it accounts for uncertainty system-
atically; it allows precise incorporation of prior expert knowledge; and the intrinsic structure
of models is well-defined in terms of relations among random variables: the mathematical and
statistical dependencies are explicitly stated. Bayesian probabilistic models can be implemented
via PPLs, which provide automatic inference via efficient MCMC sampling algorithms. Never-
theless, probabilistic models and Bayesian inference are still not widely adopted.

From the perspective of an analyst, building a probabilistic model still requires some statis-
tical knowledge. For example, the specification of the probability distributions for the priors can
be a difficult task especially if the analyst has poor background in statistics [Phelan et al., 2019;
Sarma and Kay, 2020]. Many analysts might avoid probabilistic modeling and Bayesian infer-
ence because they are not able to specify appropriate priors. Validating how well an analyst’s
prior knowledge aligns with the probability distribution of a prior or refining the model to more
accurately capture the “relevant aspects of the system” are tasks that cannot be easily done by
novices. Comprehension of the statistical context of the model is required for the validation or
refinement of probabilistic models.

From the perspective of a user of a probabilistic model, parameter tuning and decision-
making under uncertainty are tasks that require comprehension of model’s structure and insight
into the uncertainty of parameters’ value and predicted data. Users need to know how variables
in a model are related, namely which variable affects the other and how, to tune a parameter
appropriately, or make a decision for an intervention on a variable that might affect other vari-
ables in the model. Insight into variables’ uncertainty could help decision-makers make better

assessment of the risk over all possible outcomes and thus, make more informed decisions.
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Textual representions of probabilistic models like probabilistic statements or PPLs hide most
of the mathematical details of probabilistic models but still require some statistical knowledge to
infer variables’ relations. The complexity of the model plays also an important role in the ability
of users’ to comprehend model’s structure and uncertainty. A very simple probabilistic model
with few parameters could allow a user to contemplate the entire model at once and comprehend
how parameters interact with each other and the predictions of the model. This becomes chal-
lenging as the model becomes more complex, perhaps with multivariate distributions, complex
inter-dependencies and increasingly abstract latent states.

Communication of uncertainty has challenges, too. The uncertainty in a probabilistic model
can be complex and multidimensional (one dimension per parameter in the model) and is de-
picted in two types of distributions, the prior and the inferred posterior. Communicating uncer-
tainty and especially a complex distribution may confuse people if the design of its representa-
tion does not account for the needs of a specific application [Fernandes et al., 2018; Greis et al.,
2017; Kay et al., 2016a] or for the ways that people naturally reason about probability [Belia
et al., 2005; Cosmides and Tooby, 1996; Gigerenzer and Hoffrage, 1995; Joslyn and LeClerc,
2013].

1.3 Communicating Probabilistic Models through Visualiza-
tion

This section presents the current practices in using visualization to communicate probabilis-
tic models given the available tools (Section 1.3.1) and discusses the challenges in visualizing

probabilistic models (Section 1.3.2).

1.3.1 How is Visualization Used to Communicate Probabilistic Models?

A probabilistic model consists of the following components:

 a structure; this reflects the relations (i.e., the statistical and mathematical associations) of

the variables in the model;

* inference results; these consist of the prior and posterior distributions of the parameters

and the (prior and posterior) predictive distributions of the observed variables.

Both these aspects of a probabilistic model need to be communicated to users to help them draw
a complete picture of the model. In this way users would be able to perform tasks like check-
ing the validity of the model, refining it, using it to make decisions, or tuning its parameters.
The following subsections discuss the existing practices in representing the structure and the

inference results of probabilistic models visually.
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1.3.1.1 Visualizing the Structure of Probabilistic Models

Graphs are a common way of representing a probabilistic model’s structure visually. The nodes
correspond to model’s variables. The edges are directed arrows from one variable to another
indicating the direction of their dependency based on the definition of the model; the arrow starts
from the independent variable and points to the dependent variable. An informationally minimal
graph is the Bayesian network [Koller and Friedman, 2009] (Fig. 1.4(a)). More informative
versions of graphs are provided by the graphical tools of some PPLs. For example, in the
DoodleBUGs’ graph [Spiegelhalter et al., 2003], nodes contain information about variables’
dimensions (Fig. 1.4(b)). In PyMC’s graphs [Ellson et al., 2004], nodes also contain the name of
the prototype distribution of the variables (Fig. 1.4(c)). The Kruschke-style diagram [Kruschke,
2015, Chap. 8] (Fig. 1.4(d)) elaborates the graph with the iconic “prototypes” of the variables’
distribution on each node and annotations for the parameters of distributions being set by other

parameters in the model.
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Figure 1.4: Various graphical representations of the probabilistic model of the drivers’ reaction
time problem (Box 1.3 and 1.4). (a) Bayesian network, (b) DoodleBUGs’ graph, (c) PyMC’s
graph, and (d) Kruschke-style diagram.

Diagrammatic representations of probabilistic models like these ones could provide a “com-
prehensive overview of the relations between parameters and their meanings with respect to each
other and to the data” [Kruschke, 2018a]. Sketching out a diagram of the probabilistic model
could facilitate tasks like model validation or specification in PPL code [Kruschke, 2018a].

1.3.1.2 Visualizing the Inference Results

Although the diagrammatic representations of probabilistic models are useful in communicating
the structure of the models, Bayesian modeling needs more than this. For example, Gabry et al.
[2019] highlight the importance of visualization in all the stages of a Bayesian workflow that
comprise of an iterative process of model building, inference, model checking and evaluation,
and model expansion.

The most common practice in reporting the inference results of Bayesian analysis is tables

that present summary statistics of the posterior distributions. For example, Table 1.2 presents the



CHAPTER 1. INTRODUCTION 14

summary statistics of the posterior distributions of the parameters in the drivers’ reaction time
probabilistic model (Box 1.3 and 1.4). The mean value, standard deviation, and Highest Den-
sity Interval (HDI) of the posterior distributions are reported in this table. The HDI (sometimes
encountered as Highest-Posterior Density (HPD) in the literature when referred to the poste-
rior distribution) is a measure of spread of the distribution and designates the shortest interval

containing a given portion of the probability density (e.g., 94%).

Table 1.2: Posterior statistics in a tabular format for the drivers’ reaction time probabilistic
model. The 97% HDI is included in the statistics: the left end of the interval shown in column
HDI_1.5% is represented by the value below which 1.5% of the posterior falls and the right end
of the interval shown in column HDI_98.5% is represented by the value above which 1.5% of
the posterior falls.

mean std HDI 1.5% HDI 98.5%

a 251 6.6 237 265
b 11 1.2 8 13
S 48 2.6 43 54

The inference results of a probabilistic model could be represented visually through uncer-
tainty visualizations. Depending on the type of uncertainty visualization used (e.g., error bar,
Box plot, Kernel Density Estimate (KDE) plot), this way of communicating the inference results
could be more or less informative in comparison to the tables of summary statistics. The use of
visual means like color, transparency, gradient, etc., could make the uncertainty in the inference
results of a probabilistic model more intuitively comprehensible.

A common uncertainty visualization used for the communication of inference results is the
Kernel Density Estimate (KDE) plot. This can be used to communicate visually a smoothed
summary of a parameter’s prior or posterior distribution. The width of the KDE plot indicates
the range of possible values that the variable can take and its height at each value point how
probable that value is.

Fig. 1.5 presents the Kruschke-style [Kruschke, 2015] posterior distributions of the param-
eters in the drivers’ reaction time probabilistic model (Box 1.3 and 1.4) in the form of KDE
plots. The Kruschke-style representation of the posterior distributions is a quite informative vi-
sual representation as it provides information about the exact statistics of the distributions (the
mean value and HDI) in the form of annotations.

There are various visualization tools that can represent the inference results visually. Many
of them are suitable for Bayesian analysis as they can accept the outputs of various PPLs. The
most common are ArviZ [Kumar et al., 2019] in Python, and bayesplot [Gabry and Mahr, 2020],
tidybayes [Kay, 2020], and shinystan [Stan Development Team, 2017] in R. The ArviZ API was
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Figure 1.5: Kruschke-style parameters’ posterior distributions of the probabilistic model of the
drivers’ reaction time problem.

used to generate Table 1.2 (arviz.summary) and the Kruschke-style KDE plots in Fig. 1.5

(arviz.plot_posterior).

1.3.2 Challenges in Visualizing Probabilistic Models

Although the means for the communication of probabilistic models seem to exist, very little
is known about how effective they can be in improving users’ comprehension of and trust in
probabilistic models, and helping them in tasks. For example, diagrammatic representations of
probabilistic models like graphs can help users view the relations among variables in a model
at a glance (through the existence or absence of edges). In the case of the more informed
graphs like Kruschke-style diagrams, users could even observe the exact statistical associations
or mathematical equations. But inferring what exactly the effect of one variable on another is,
is still very much dependent on the ability of the users to understand the mathematical details.

Similarly, interpreting representations of inference results in the form of tables of summary
statistics or KDE plots depends on users’ level of statistical knowledge. The numerical data pre-
sented are usually statistics like mean, standard deviation or confidence intervals, which could
mislead or overwhelm unfamiliar users. A static representation of the inference data in summary
tables or uncertainty visualizations could not communicate the sensitivity of the parameters,
which would allow a decision-maker to assess the impact of parameter inter-dependencies and
associated risks.

The efficiency of the existing communication means of probabilistic models can also be
questioned especially in cases of complex models. The tables of summary statistics or the un-
certainty visualizations of the parameters’ posterior distributions can become unwieldy when
the number of the parameters in the model increases. The limited capacity of human cognition
could be a hurdle for users to grasp the uncertainty presented and make required assessments
of the risk. Communicating the prior would imply communicating a second table of similar
complexity or as many KDE plots. Thus, the priors or many of the posteriors might be omitted
in reports of Bayesian analysis leaving the reader with an incomplete picture of the analysis and

findings.
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1.4 This Work

1.4.1 Thesis Statement, Aims and Scope

The hypothesis investigated in this research is that interactive animated visualizations of Bayesian
probabilistic models and their outputs aid end-users in better understanding probabilistic models

and causality in data. Specifically, it is investigated whether adding interaction and animation

to visual representations of a probabilistic model helps people better understand the structure of

the model and interprete the (causal and non-causal) relations of the variables within the context

of the model. This is investigated through user studies.

To that end, novel and automated tools for visualizing Bayesian probabilistic models and
their outputs are proposed and created in this research. The proposed visualizations incorporate
structural information about the model and its sample-based (MCMC) inference and integrate
interaction and animation. The communication and exploration of variables’ prior and posterior
distributions and relations is facilitated through the proposed visualizations. The ultimate aim
is the proposed visualization tools to help make Bayesian analysis and its outputs more intuitive
and interpretable for non-experts.

The created visualization tools are offered to the research community in the form of pack-
ages or libraries. Also anything related to the user studies conducted within the context of this
research (collected data, analysis code, training material) is published along with the findings to
encourage replication or meta-analyses.

The targets of this research are summarized by the points below:

1. The creation of novel and automated tools for visualizing Bayesian probabilistic models
to:
(a) communicate variables’ distributions;
(b) explore the prior and posterior MCMC sample space of the inference;
(c) visualize variables’ (causal and non-causal) relations (dependencies) in a probabilis-

tic model.

2. The investigation of whether animation and interaction improve the understanding of a

model’s structure and its variables’ dependencies.

3. The investigation of whether animation and interaction improve the understanding of vari-

ables’ causal relations in probabilistic models that model a causal structure.

1.4.2 Contributions

The research presented in this thesis consists of three parts which all focus on the visualization

of probabilistic models and their outputs but from a different perspective.
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The first part (Chapter 4) investigates two things; first, how an automated visualizer of prob-
abilistic models that are expressed in any PPL and their outputs can be designed, and second
how interaction could be incorporated to this design to make sample-based (MCMC) inference
results more intuitive and easily explorable. A concrete implementation of such a tool is pre-
sented.

The second part (Chapter 5) investigates whether interactive conditioning when used to ex-
plore samples from the prior distributions of probabilistic models’ variables helps users better
understand the structure of the probabilistic model, namely the relations among the variables’ of
the model. The design of a concrete visualization presenting these distributions and integrating
interactive conditioning is presented. The results from the analysis of data collected through a
user study using the suggested interactive visualization as a visualization instance are presented
and discussed.

The third part (Chapter 6) investigates two things; first, how probabilistic models and exist-
ing PPLs can be used to simulate causal models and interventions on them, namely to generate
data with uncertainty from specific causal structures before or after an external change imposed
on variables of the model. The second thing that is investigated is whether interaction or an-
imation when used in visualizing simulated data from these models and interventions applied
on them helps users better understand their structure or make decisions about the design of ac-
tual interventional experiments. The conduction of actual interventional experiments could help
users (e.g., researchers, doctors, psychologists) infer the causal relations of observed variables
of interest. The design of concrete visualizations presenting the simulated data of causal models
and integrating interaction and animation are presented. The results from the analysis of data
collected through a user study using the suggested visualizations as visualization instances are

presented and discussed.

1.4.3 Research Challenges

The research on the visualization of probabilistic models presented in this thesis entails many
challenges from a research, technical and dissemination perspective. The identified challenges
are discussed in this subsection to give the reader an initial idea of the breadth and depth that
this research could reach.

The challenges from the research perspective are mainly two-fold; how to design the visual
representations and how to investigate their effectiveness. The communication of uncertainty
in complicated multi-parameter models should employ visualization designs that account for
people’s ability to interpret uncertainty and in fact doing this in many dimensions, one per pa-
rameter. The incorporation of interaction and animation in these designs with the aim to make
model’s structure and output more intuitive rather than confusing for the naive users constitutes
the main research challenge in this thesis. The design of appropriate evaluation protocols for

the user studies is another challenge. Decisions like whether participants should get trained and
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how, how the questions and training could be simplified to enable participants of any statistical
background to take part in the user studies, what modeling choices (e.g., hierarchical modeling,
sophisticated parameterizations for setting the parameters of variables’ distribution etc.) to be
investigated to ensure a broad enough range is included should be made.

The challenges from the technical perspective are of lower importance but are there for cre-
ating limitations to how far the designs of the suggested visualizations could go. The use of
animation and interaction imply the need for a real-time retrieval, presentation, and update of
information in the visualizations which sets many technical challenges in terms of implemen-
tation especially as the models complexity increases and the visualizations need to scale up.
The capabilities that existing development tools (e.g., existing visualization libraries for inter-
action) could offer sometimes put restrictions on the flexibility that the visualization designs
could have. The creation of shareable code in the form of packages or libraries sets also certain
technical specifications that should be met.

The challenges from the dissemination perspective are great. The aim of this research is to
create tools that will be useful and helpful not only for the experts or already users of Bayesian
analysis, but also for the less familiar audience. The communication of this research to a broader
audience with possibly limited background in statistics is challenging both within the context of
the evaluation user studies and generally for purposes of research dissemination. The definition
of a set of appropriate models and applications for explaining and demonstrating the impact
of this research is required. The context of the applications should be comprehensible and
interesting to the broader audience and enable them to understand the benefits they can get
by utilizing visusalization means in Bayesian analysis. The technical and mathematical details
should be simplified.

1.4.4 Thesis Outline

Chapter 2 explains the theoretical background to the work by expanding on the themes pre-
sented above. The technicalities of Bayesian inference and PPLs that are relevant to the context
of the thesis are explained. Why modeling causal relations requires extra methodologies is ex-
plained. The relevant theories of visual perception are also presented in this chapter.

Chapter 3 presents the existing work in the field of uncertainty visualization; the existing
approaches, the challenges in communicating uncertainty, the evaluation of uncertainty visu-
alization, the uncertainty visualization in Bayesian reasoning, and the decision-making under
uncertainty.

Chapter 4 presents the first part of the research presented in this thesis, which focuses on
the design and creation of an automated interactive visualizer of probabilistic models that are
expressed in any PPL and use sample-based (MCMC) inference.

Chapter S presents the second part of the research presented in this thesis, which focuses

on the investigation of the role of interactive conditioning in the comprehension of variables’
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relations in a probabilistic model.

Chapter 6 presents the third part of the research presented in this thesis, which focuses on
the simulation of causal models and interventions by using probabilistic modeling and PPLs, the
design of appropriate visualizations for representing the simulated data, and the evaluation of
these designs.

Chapter 7 discusses the conclusions drawn from the thesis, and the dimensions that this

work could take in the future.



Chapter 2

Theory

2.1 Summary

This chapter expands on the theoretical background of key themes encountered in this thesis.
Bayesian inference is the main theoretical concept that readers need to know to follow the work
presented in this thesis. All visualizations proposed and evaluated in this work present the out-
puts of sample-based (MCMC) Bayesian inference. Section 2.2 presents useful concepts from
probability theory and explains Bayes’ rule. The difficulties with the computation of Bayes’
rule and the alternative methods to conduct Bayesian inference are discussed. The algorithm
to generate predictions from the inferred distributions is presented. An example of outputs of
Bayesian inference is provided. A discussion about why to use Bayesian statistics to analyse
data is also provided.

PPLs are automated tools enabling the definition of probabilistic models and the conduction
of Bayesian inference. A part of this research focuses on the automatic transformation of PPLs’
outputs into interactive visualizations. For this reason, Section 2.3 discusses the purpose that
PPLs want to serve, how a probabilistic model is expressed in PPL code and the advantages of
doing this, and finally, how this code leads to arrays of samples within the context of a PPL.

Probabilistic models can be used to model variables’ causal relations under a causal model
(i.e., a model that explains which variable causes which other variables) as it was explained in
Chapter 1. A systematic way to do this and to simulate interventions using PPLs is presented
in Chapter 6. But before presenting this work in Chapter 6, it is important for the reader to
understand why extra information, like that provided by causal models, is required to model
causal relations of variables. Section 2.4 explains the reasons through illustrative examples and
presents some well-known causal modeling methodologies.

Finally, there are various theories or empirical knowledge of the role that human visual
perception plays in the effectiveness of visualization. This is a very relevant topic to the subject
of this thesis as it sets the theoretical background of this research: why to use visualization to

communicate probabilistic models? why to expect them to be effective? how should they be

20
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designed? Section 2.5 introduces the reader to the relevant theories and empirical knowledge in
human visual perception to provide the context in which this research is developed and for which
it is purposed. It explains why it is important to understand how people perceive information
visually. It discusses the most relevant theories of visual perception of uncertainty, animation,

and interaction that constitute main research focuses in this thesis.

2.2 Bayesian Inference

2.2.1 Schools of Statistical Inference and Definition of Probability

A definition of statistical inference is given by Johnson et al. [2012]: “Statistical inference is
the process through which inferences about a population are made based on certain statistics
calculated from a sample of data drawn from that population.” The notion of “probability” plays
a leading role in a statistical inference process. Specifically, the aim of statistical inference is
the computation of the probability of a hypothesis about the population given the observed
sample data, Pr(hypothesis|data) with Pr denoting the probability [Lambert, 2018a,
Chap. 2.8].

The definition of probability varies depending on the school followed for the conduction
of statistical inference. There are mainly two schools of statistical inference: the frequentist
and the Bayesian. In frequentist statistics, the probability represents the frequency of an event
occurring in an infinite number of repetitions of an experiment [Lambert, 2018a, Chap. 2.5]. In
Bayesian statistics, probability is a measure of certainty about subjective beliefs, which can be
updated in the light of data [Lambert, 2018a, Chap. 2.6]. Triggered by the different approaches
in defining the notion of “probability” and for reasons of reference later in the thesis, a short
discussion about the main differences between the two schools of statistical inference will be
provided here, although the main focus of this work is on Bayesian inference.

The two schools of statistical inference differ in their approach of computing the probability
Pr(hypothesis|data). Given some hypothesis about the population the frequentist statis-
tics assumes that this hypothesis is true, collects sample data from the population, and estimates
the probability of this data occuring given the hypothesis is true, Pr(datalhypothesis), and
if this probability is very small (smaller than an arbitrary threshold), the hypothesis is rejected:
Pr(hypothesis|data) = 0. Frequentist statistics focuses on estimating the probability of
obtaining the sample data given the hypothesis is true to infer the probability of the hypoth-
esis is true given the sample data through a hypothesis testing. Estimating the probability of
obtaining the sample data given the hypothesis is true, Pr(datalhypothesis), requires that
the data is considered random and the parameters of the model fixed to reflect the hypothesis
[Lambert, 2018a, Chap. 2.5].

Bayesian statistics can directly estimate the probability of the hypothesis is true given the
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sample data, Pr(hypothesis|data). This is possible through Bayes’ rule, which is the
mathematical tool to invert the probability of obtaining the sample data given the hypothesis is
true, Pr(datalhypothesis), and compute the intented probability of the hypothesis is true
given the sample data, Pr(hypothesis|data). Estimating the Pr(hypothesis|data) re-
quires that the parameters are considered to vary and the data is considered to be fixed [Lambert,
2018a, Chap. 2.6]. Section 2.2.3 presents Bayes’ rule and how it can be used for the estimation
of this probability.

2.2.2 Summary of Useful Probabilistic Concepts

This section gives a very brief summary of the probabilistic concepts from the probability theory
that will be encountered in this thesis. More details on any of these concepts could be found in
any relevant textbook [Papoulis and Pillai, 2002; Rotondi et al., 2022; Speegle and Clair, 2021].

A random variable x is discrete when it takes one value from a countable set of values, or
continuous when it takes values from a continuous range of values. A discrete random variable
follows a valid probability distribution when its probability mass function (PMF) p (x) assigns
a probability value from 0 to 1 to each possible value of the variable so that the sum of the

probabilites of all possible values equals 1:

Zp(x) = ZPr(x:Xi):l, (2.1)
xeX xeX
withx={X;}and 1 €{0,1, ..., n}. Acontinuous random variable follows a valid probabil-
ity distribution when its probability density function (PDF) p (x) assigns a probability density
to each possible value of the variable so that the integral of the probability densities over the

range of the variable equals 1,
/p(x)dx:l. (2.2)

Well-known discrete probability distributions are the Poisson, binomial, Bernoulli distributions,
and continuous are the normal, uniform, Cauchy distributions.

Given a set of random variables x1, ..., x,,, the joint probability distribution of these variables
can be defined as p(x1,...,xp). If the random variables are independent (none of the variables
help to predict another), x1 L ... 1l x,, the joint distribution of the variables is computed by the
product of the distributions of the individual probabilities: p(x1,...,x,) = [I; p(x1). In case
the random variables are not independent their joint probability distribution can be expressed
in terms of the conditional probabilities of the variables based on the chain rule. For example,
assuming n = 2 and x7 /I x5! p(x1,%2) = p(x1|x2)p(x2) = p(%2|%1)p(x1). For more than
two variables, p(x1,...,Xn) = P(Xn|X1, .00y Xn—1 )P(X1yeeey Xn—1)-

The distribution of a random variable can be calculated by the joint distribution of this vari-

able with other random variables by calculating the marginal distribution for this variable. For
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example, the marginal distribution of % is p(x,) = Y., ... X%, P(X1,...,%,) in the discrete
case and p(x,) = .

e fxn_1 p(X1,...,Xn)dx,—1...dx1 in the continuous case.

2.2.3 Bayes’ Rule

The aim of Bayesian inference is the computation of the probability of a hypothesis being
true given some sample data, Pr(hypothesis|data), as it was explained in Section 2.2.1.
Let us denote as 0 the vector with the parameters of the model that describe the hypothesis and as
data the list of observations. In Bayesian inference the value of the parameters is considered to
vary and thus, the parameters are represented by random variables. The probability distribution
of the parameters given the list of the observations, p(@|data), can be computed with Bayes’

rule according to the following formula:

p(datal0)o(8)

p(@|data) = (data)

(2.3)

The p(0) is a valid probability distribution called prior distribution. The prior distribution
represents the analyst’s prior belief about the parameters @ and expresses his pre-data uncer-
tainty for the parameters’ true value based on his knowledge, experience and expertise in the
specific problem or context, or on potential previous analyses [Lambert, 2018a, Chap. 5.3]. The
prior distribution p(0) is a k-variate joint distribution with k denoting the number of parameters
in the model.

The p(datal@) is called likelihood and is a function of the parameters 6 as the data is
fixed [Lambert, 2018a, Chap. 4.4]. The likelihood models the distribution of the data for the
various values of the parameters @ and it is not a valid probability distribution, as the value of
the parameters varies. If the value of the parameters is fixed, a valid probability distribution is
retrieved. This is often encountered in the literature as sampling distribution.

The p(@|data) is a valid probability distribution called posterior distribution. The poste-
rior distribution represents the posterior belief about the parameters @ after updating the pre-data
(prior) belief about them in the light of the data [Lambert, 2018a, Chap. 7.4]. The posterior dis-
tribution p(@|data) is a k-variate joint distribution with k denoting the number of parameters
in the model like in the case of the prior distribution. The posterior distribution is the result of
combining the likelihood and the prior and usually has less uncertainty than the prior because it
includes the extra information from the observed data.

The denominator of Bayes’ rule, p(data), is a normalising factor used to ensure the poste-
rior is a valid probability distribution [Lambert, 2018a, Chap. 6.3]. The denominator of Bayes’
rule is calculated by summing (for discrete variables) or integrating (for continuous variables)
out all the parameter dependencies in the numerator, namely the product of the likelihood and

priors. In the discrete case, that is:
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p(data) :Zp(data,e) :Zp(data|9)p(6), (2.4)
?] 6

and in the continuous case, that’s:

p(data) = /

ep(data,e)de:/ep(datale)p(e)de. (2.5)

In the case of a single-parameter model where 0 consists of a single parameter, equations 2.4
and 2.5 consist of a single sum or integral, respectively, while in the case of multi-parameter
models where 0 consists of a vector of parameters, the single sum or integral is replaced by a
number of summations or integrals, respectively, one for each parameter in .

Having explained the components of Bayes’ rule, it is clearer now what an analyst needs
to do to compute the Pr(hypothesis|data) using Bayesian inference. He needs to have
a list of observed data, place a prior distribution over every parameter of the model, define a
likelihood for the observed data, and finally, apply the Bayes’ rule to estimate the posterior
distribution p(@|data). Having done so, he can then estimate the probability of the parameters

to take the specific values of the hypothesis.

2.2.4 Difficulty with the Computation of Bayes’ Rule
2.2.4.1 Explaining Complexity of Bayes’ Rule Components

Bayes’ rule is a valuable tool for conducting statistical inference. Nevertheless, its components
can easily lead to high-dimensional distributions that are hard to calculate as the model increases
in complexity, i.e., the number of parameters or the coordinates of the indexing dimensions of
the parameters increases. Let us demonstrate in which ways the complexity of the components in
Bayes’ rule can be increased through a concrete example. Three different types of probabilistic
models for the drivers’ reaction time problem discussed in the previous chapter are considered;
a homogeneous, heteregonous, and hierarchical model.

A homogeneous model is the probabilistic model of the drivers’ reaction time problem pre-
sented in Chapter 1 (Box 1.3 and 1.4). Box 2.1 presents again the definition of this model as
it was presented in Boxes 1.3 and 1.4. This model uses a global set of parameters to model all

drivers.
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Box 2.1 Homogeneous probabilistic model of the drivers’ reaction time problem
The homogeneous model assumes all drivers are modelled with a global set of parameters.

The inferred posteriors of the parameters are common for all 18 drivers in the dataset.

a~Normal(100,100) (2.6)
b ~Normal(10,10) 2.7)

s ~HalfNormal(50) (2.8)
rt ~Normal(b-n+a,s), (2.9)

The whole set of the observations data is used for the inference of the parameters’ poste-

riors.

In a homogeneous probabilistic model, data is pooled together for inference and a single pos-
terior distribution is estimated for each parameter in the model. An inferred posterior in a ho-
mogeneous model is common for all subjects in the dataset. This model is good for modeling
the uncertainty in the predictions. It also accounts for the common characteristics of the sub-
jects in the dataset. For example, the homogeneous probabilistic model in Box 2.1 accounts for
the common characteristics of the drivers in the dataset; all drivers are professional drivers that
underwent similar training and are used to driving under sleep-deprivation conditions.

A homogeneous model does not account for the individual characteristics of the subjects.
This could be achieved by conducting a separate inference for each subject and inferring a
separate posterior distribution of the model’s parameters based on the observed data of each
subject. A heterogeneous model can be used in this case. This type of model indexes the
parameters by numbers corresponding to each one of the subjects in the dataset. The indexing
dimensions of the parameters in a heterogeneous model depends on the number of the subjects
in the dataset. Box 2.2 presents the definition of the heterogeneous probabilistic model for the
drivers’ reaction time problem. The parameters in this model are indexed by numbers indicating
a driver in the dataset. A heterogeneous model accounts for the individual characteristics of
the subjects but does not account for their common characteristics as the homogeneous model
does. For example, the heterogeneous probabilistic model in Box 2.2 accounts for the individual
characteristics of the drivers; drivers might vary in skills, experience, and endurance.

Probabilistic modeling offers the option of hierarchical modeling [Gelman, 2006; Kruschke,
2012a]; a more realistic modeling approach that would account for both aspects of subjects’
characteristics. A hierarchical probabilistic model captures the uncertainty of predictions for
subjects overall taking into consideration the uncertainty of the individual subjects’ behavior, at

the same time.
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Box 2.2 Heterogeneous probabilistic model of the drivers’ reaction time problem
The heterogeneous model assumes that each driver is modelled with a separate set of
parameters. The inferred posteriors of the parameters are unique for each one of the 18

drivers in the dataset.

aj; ~Normal(100,100) (2.10)

b; ~Normal(10,10) (2.11)

si ~HalfNormal(50) (2.12)

rt; ~Normal(bi-n+aj,si), (2.13)

where 1 € {1, 2, ..., 18} for each one of the 18 drivers included in the dataset of obser-

vations. Only the data; subset of the observations corresponding to the i-th driver is used

for the inference of the i-indexed parameters.

Hierarchical modeling enables inferences at both the individual and the whole population
level at the same time. This is achieved by adding extra parameters in the model, the hyperpa-
rameters. Instead of fixing the parameters of the model’s priors to constant numbers, they are es-
timated directly from the data by placing shared hyperpriors over them. Hyperpriors are inferred
on the level of the population and thus, are common for all subjects. The priors are inferred on
the level of the individual subjects like in heterogeneous modeling. The complexity of the model
is further incresed in hierarchical modeling by the addition of the extra (hyper)parameters. Box
2.3 presents the definition of the hierarchical probabilistic model for the drivers’ reaction time
problem.

The dimensionality of the distributions in Bayes’ rule increases in line with the complexity
of the probabilistic model. From k = 3 dimensions in the case of the homogeneous model
of the drivers’ reaction time problem, we move to k = 3-18 = 54 dimensions in the case of
the heterogeneous model, and k = 3-18 4 5 = 59 dimensions in the case of the hierarchical
model. This k determines the dimensionality of the vector 8 of the parameters used in Bayes’
rule formula. The vector @ of the parameters for each one of the homogeneous, heterogeneous,

and hierarchical model takes the following form:

0om = (a,b,s) (2.14)
0ot = (ay,...,a18,b1,...,b13,51,...,518) (2.15)
Oh,- = (ﬂa,O'a,ub,Gb,Gs,al,...,alg,bl,...,blg,sl,...,slg) (2.16)

The dimensionality of the prior p(8), posterior p(0|data), and likelihood p(data|@) is de-

termined by the dimension of the @ vector.
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Box 2.3 Hierarchical probabilistic model of the drivers’ reaction time problem

The hierarchical model assumes that all drivers are modelled with a global set of hy-
perparameters and each driver is modelled with a separate set of parameters. The inferred
posteriors of the hyperparameters are common for all 18 drivers in the dataset and the in-

ferred posteriors of the parameters are unique for each one of the 18 drivers in the dataset.

Ua ~Normal(100,100) (2.17)

0. ~HalfNormal(100) (2.18)

Up ~ Normal(10,10) (2.19)

Op ~ HalfNormal(10) (2.20)

0s ~HalfNormal(50) (2.21)

a; ~Normal(l,, o) (2.22)

b; ~ Normal (U, Op) (2.23)

si ~HalfNormal(oy) (2.24)

rt; ~Normal(bi-n+ai,si), (2.25)

where 1 € {1, 2, ..., 18} for each one of the 18 drivers included in the dataset of obser-

vations. Only the data; subset of the observations corresponding to the i-th driver is used
for the inference of the i-indexed parameters.

Assumptions:

* The parameters of each driver are independent, a; Ll ... 1l a;g 1l by 1l ... Il byg L
Lsydl... 1l sq35.

The hyperparameters are independent, u, I o, Ll u, 1l o, 1l os.

Drivers’ observations and the observations of each driver are independent; data; L
and datajq; 1L ... 1l datajy.

The data depends on the hyperparameters only through the parameters; the
data is independent of the hyperparameters given the parameters: data; L
WUa, 0=, Uy, Ob, Os|ai,bi,s; [Hyvonen and Tolonen, 2019, Chap.6.1].

The complexity of the denominator of Bayes’ rule p(data) is also determined by the di-
mensionality of the @ vector. In equations 2.4 and 2.5 the single sum or integral is replaced by a
number of summations or integrals, respectively, one for each parameter in 8. For example, in

the case of the homogeneous model of the drivers’ reaction time problem this expression for the
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calculation of the denominator consists of 3 integrals, in the case of the heterogeneous model it

consists of 54 integrals, and in the case of the hierarchical model it consists of 59 integrals.

2.2.4.2 The Difficulty with the Denominator

The calculation of Bayes’ rule’s denominator for a single or double-parameter models with
continuous parameters is possible, but in cases of multi-parameter models the integral in the
expression 2.5 becomes multi-dimensional and its analytical solution can become intractable.
Doing Bayesian statistics involves the solution of analytically intractable expressions like the
denominator of Bayes’ rule for the computation of the posterior distribution [Lambert, 2018a,
Chap. 12].

Various methods were suggested through the years to give a solution to this problem and
allow the use of Bayesian analysis for more complex models. The main tool to do Bayesian
statistics for many years was conjugate priors, which allows the problem to be solved analyti-
cally. With conjugate priors the mathematical form of the prior and likelihood are jointly chosen
to ensure that the posterior is in the same family of distributions as the prior [Lambert, 2018a;
Spiegelhalter and Rice, 2009]. However, conjugate priors only allow the use of particular com-
binations of likelihoods and priors and therefore, they are often very limiting and too simple for
most real life examples [Lambert, 2018a, Chapter 9.7].

In 70s and 80s, numerical integration methods based on analytic approximations or quadra-
ture were developed [Spiegelhalter and Rice, 2009] providing more flexibility in the selection
of prior distributions and likelihoods, but unfortunately, these methods suffer from the curse
of dimensionality and do not scale well for models with many parameters [Lambert, 2018a,
Chap. 12.4,12.5].

2.2.4.3 Markov Chain Monte Carlo

In early 90s, Markov Chain Monte Carlo (MCMC) became a promising indirect method for
doing Bayesian statistics offering a solution to the aforementioned problems [Spiegelhalter and
Rice, 2009]. MCMC algorithms are based on dependent sampling to produce an estimation of
the posterior distribution’s form by skipping the calculation of the denominator. As Lambert
[2018a, Chap. 12.8] explains very eloquently, sampling the posterior based on the relative pos-
terior density of pairs of points in the posterior space results in a histogram that proxies for the
posterior distribution’s PDF.

For example, assume two points in the posterior parameter space, J; and Vs, and a ratio of
p(91|data)
p(¥2|data)
times the first point is all that is needed. The use of the relative posterior densities removes the

the posterior at these two points = % Creating a sampler that samples twice as many

need for calculating the denominator based on the following equations:



CHAPTER 2. THEORY 29

p(dataldi)p(¥1)

p(%|data) _ " p(data) _ p(dataldi)p(d) (2.26)
p(9z]data) w p(datalds)p(Va) '
p(data

MCMC algorithms consisted of very simple steps of low computational complexity making
them an implementable tool based on the technological means of that time. However, MCMC
required specialized knowledge to implement and use and it remained a tool used mainly by
academics for many years. The wide adoption of Bayesian statistics was inhibited for a long
time, as well, because of the practical engineering challenges of the computational methods and
the highly specialized knowledge that they required [Coyle, 2018].

2.2.5 Predictions

So far what has been discussed is how the parameters of a probabilistic model can be infered by
the data using Bayesian inference. The capabilities of Bayesian inference are not limited to that.
Bayesian inference provides the tools for producing predictions for the observed variables of the
probabilistic models which is the ultimate aim of any prediction or forecasting problem. Using
random sampling from the posterior and sampling distribution of the model an approximation of
the posterior predictive distribution can be obtained. This distribution represents the probability
distribution of a new data sample, dat a/, given the current data sample, data [Lambert, 2018a,
Chap. 7.8].

The following algorithm is used to retrieve a set of posterior predictive samples. These
samples are used to graph the histogram of dat a’, which will consist the estimation of the

posterior predictive distribution.

Algorithm 1 Sampling posterior predictive samples

Require: k,n >0
I: fori<«+ 1, kdo

2 ¥; ~p(O]data)

3 for j<— 1, ndo

4: data/ij ~ p(datald;)
5 end for

6: end for

In step 2 a value of the parameters is sampled from the posterior distributions. In step 4
a value of the observed variable is sampled from the sampling distribution conditional on the

value of the parameters that was sampled in step 2.

2.2.6 Example of Bayesian Inference

This section demonstrates the differences in the estimates of the regression line among the ho-

mogeneous, heterogeneous, and hierarchical probabilistic models of the drivers’ reaction time



CHAPTER 2. THEORY 30

model presented in Boxes 2.1, 2.2, and 2.3, respectively. Sample-based Bayesian inference was
conducted based on MCMC sampling.

Box 2.4 presents a comparative graph with the estimates of the regression line of these prob-
abilistic models and includes the corresponding estimate of the homogeneous non-probabilistic
model presented in Chapter 1 (Box 1.1). The inferred posteriors for the intercept a and slope
b parameters are same for all drivers in the case of the homogeneous models, while they are
unique for each driver in the case of the heterogeneous and hierarchical models.

A phenomenon that is confirmed by the presented data in Fig. 2.1 is the shrinkage [Arnold;
Kruschke, 2012a] of the hierarchical models’ posteriors towards the overall mean of the corre-
sponding posterior of the homogeneous model. The parameters whose posterior estimates have
the highest uncertainty and lie furthest away from the overall mean, see their posterior to shrink
the most in hierarchical models. For example, the posteriors of parameters a and b for driver
351 are shrunk towards the overall mean, and are between those of the homogeneous and hetero-
geneous model. The same happens with the posterior of parameter b for driver 308. Shrinkage
is not observed for the posteriors of the hierarchical model in the case of driver 309 though,
although they are further away from the overall mean. This happens because the posteriors of

the parameters for this driver are quite certain (i.e., tight).
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Box 2.4 Homogeneous, heterogeneous, and hierarchical estimations of regression line
Fig. 2.1 presents the estimations of the intercept a and slope b parameters of the regres-
sion line for four different drivers from the dataset [Lambert, 2018b]. The estimations of
the homogeneous non-probabilistic, and the homogeneous, heterogeneous, and hierarchical
probabilistic model are presented in a different color.
The last row of the figure shows the observed reaction times of each driver, the regres-
sion line estimated by the homogeneous non-probabilistic model, and the 97% HDI of the

regression line estimated by the probabilistic models.
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Figure 2.1: Homogeneous, heterogeneous, and hierarchical estimations of the regression
line in the drivers’ reaction time problem.

2.2.7 Why to Use Bayesian Statistics for the Analysis of Research Data?

In the field of analysis of experimental results, the frequentist and Bayesian statistics are the
most common analysis approaches. Bayesian statistics came to the forefront as an alternative
to the most common method used for the analysis of experimental data, frequentist analysis,
after the breakout of the replication crisis in the 2010s. The replication crisis is an "ongoing
methodological crisis in which it has been found that many scientific studies are difficult or
impossible to replicate or reproduce” [Wikipedia:ReplicationCrisis].

Shrout and Rodgers [2018] reviewed the questionable methodological research practices in
psychology and designated frequentist statistics as one of the sources of questionable practices.
Colling and Sziics [2018] argued that one of the main problems is the misinterpretation of the

frequentist statistics’ concepts by researchers. Greenland et al. [2016] presented a list of 25
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common misconceptions of statistical concepts in statistical interpretation and reporting like
p-values, confidence intervals, and power.

Cumming [2014] advocated a shift of emphasis from the hypothesis testing of the frequentist
approach to the estimation of the Bayesian approach and proposed the term “new statistics” to
infer all the substantial changes in the analysis of research data. Kruschke and Liddell [2018]
explained how Bayesian methods achieve the goals of “new statistics” better than frequentist
methods. Colling and Sziics [2018] explored the benefits of the Bayesian statistics as an al-
ternative to frequentist statistics and summarized them into the Bayesian statistics’ “immunity”
to researchers’ intentions and its dependency only on the observed data. Shrout and Rodgers
[2018] reviewed the potential of Bayesian analysis for understanding the variation in the repli-
cation of an analysis. Researchers from other fields outside psychology advocate the Bayesian
statistics, as well. Kay et al. [2016b] argued that Bayesian statistics was more appropriate for
the data analyses of experimental data in HCI than the statistical significance testing. Buchin-
sky and Chadha [2017] encouraged the use of Bayesian statistics over the traditional frequentist
statistics in otolaryngology research.

Bayesian inference is an iterative process of updating the prior beliefs by observing every
incoming datapoint and estimating the posterior beliefs about the model’s parameters. Bayesian
inference is possible for small datasets that may even contain a single datapoint (a single it-
eration of priors’ update will take place in this case). This attribute of Bayesian inference is
valuable because most existing ML methods rely on the amount of available data for making
predictions making them inappropriate for applications with only a limited amount of data or
one-off problems such as the prediction of the outcome of an election. In such cases, Bayesian
inference in comparison to other machine learning or statistical approaches, whose credibility is
heavily dependent on the sample size [Jenkins and Quintana-Ascencio, 2020] could easily give
an estimation of the outcome.

A problem that is often discussed as a criticism of Bayesian inference is the effect that
the priors can have on the inferences [Martin, 2018, Chap. 1;Depaoli et al., 2020;Kruschke,
2018b] and the “subjectivity involved in choosing a prior” [Lambert, 2018a, Chap.5.2]. The
more informative a prior is and the fewer the observed datapoints are, the stronger the effect of
the prior on the posterior distribution is. A prior distribution is informative when the uncertainty
it implies for a parameter is small. For example, tight distributions implying small ranges for a
parameter are informative priors expressing a strong belief of the modeller about the parameter.

This topic has been extensively discussed in the existing literature with many researchers
providing suggestions about the choice of priors [Gelman, 2020]. The use of uninformative
(known also as flat or vague) priors, although it would have the least possible impact on the
posterior, are not usually recommended [Gelman, 2020]. The use of weakly-informative pri-
ors is often suggested when restrictions of the parameters or some information on the scale of

the parameters for the order of magnitude of the outcomes are known for a specific likelihood
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[Martin, 2018, Chap. 1;Gelman et al., 2017;Kruschke, 2018b]. The use of informative priors is
suggested only in the cases that strong prior knowledge or evidence is available through years
of research and previous literature [Martin, 2018, Chap. 1]. In cases when the conclusions of a
research might differ by a slight change in the priors, this should be reported by the researchers
[Lambert, 2018a, Chap. 2.10] who are encouraged to conduct a sensitivity analysis of their priors
[Depaoli et al., 2020; Kruschke, 2018b].

2.3 Probabilistic Programming Languages

2.3.1 Purpose

PPLs are a new “breed” of programming languages that are designed to enable inference through
probabilistic models [Quddus, 2019]. PPLs can be an either entirely new languages like JAGs
[Plummer, 2017], BUGs [Spiegelhalter et al., 2003], Church [Goodman et al., 2008], Stan [Stan
Development Team] with some of them offering interfaces to other popular programming lan-
guages or hosted in an existing programming language like Edward [Tran et al., 2016] or PyMC
[Salvatier et al., 2016] in Python or Webppl [Goodman and Stuhlmiiller, 2014] in Javascript.

PPLs are designed to enable inference with general purpose representations. These include
semantics for defining a random variable as observed and specifying a likelihood for it. PPLs’
predecessors, simulation languages like Simula [Dahl and Nygaard, 1966], lacked the possibility
of defining observed variables and indicating the conditioning over observed data syntactically
[Poole and Wood, 2022].

The notion of interpretation for the probabilistic models specified in a simulation language
differs between the predecessors of PPLs and PPLs themselves. When a probabilistic program
specified in such simulation languages was interpreted, a set of random samples was generated
from the specified random variables (unconditionally) based on the built-in random number gen-
erators. When a probabilistic program specified in a PPL is interpreted, the posterior distribution
conditioned on the observed data is computed. The main purpose of PPLs is to offer an environ-

ment that automates the interpetation of probabilistic programs into posterior distributions.

2.3.2 Expressing a Probabilistic Model in a PPL

In Section 2.2.4.1 probabilistic statements were used for the definition of the homogeneous,
heterogeneous, and hierarchical models of the drivers’ reaction time problem. This is a form of
textual language used often to hide the many mathematical details involved in the definition of
a probabilistic model and offer a level of abstraction.

PPLs are designed to include semantics equivalent to these of probabilistic statements in
their syntax as well as indicating conditioning on observed data. The aim is to make the def-

inition of the model more intuitive, hiding the mathematical details and offering flexibility in
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dataFile = 'evaluation_sleepstudy.csv'
reactions = pd.read_csv(dataFile,
usecols = ['Reaction', 'Days', 'Subject'])
with pm.Model() as homogenous_model:
## priors

a ~ Normal(100,100) a = pm.Normal("a", mu = 100, sd = 100)

b = pm.Normal("b", mu = 10, sd = 19)
b ~ Normal(10,10) s = pm.HalfNormal("s", sd = 50)
s ~ HalfNormal(50) ## Likelihood

rt = pm.Normal("rt",mu = a + b*reactions.Days,
rt ~ Normal(b-n+3a,s) sd = s,

observed = reactions.Reaction)
(a) (b)

0=100 / \0=10 * 0=50
u=100 /u=10

normal normal half-normal
a b S
- n +
(e)
w
normal
rt
()

Figure 2.2: Definitions of the homogeneous probabilistic model of the drivers’ reaction time
problem in (a) probabilistic statements, (b) PPL code (PyMC), and (c) Kruschke-style diagram.

the specification of models. As Tejas D. Kulkarni, one of the pioneers in introducing proba-
bilistic programming in computer vision, says “When you think about probabilistic programs,
you think very intuitively when you’re modeling. You don’t think mathematically. It’s a very
different style of modeling.” [Kurzweil, 2015].

Fig. 2.2 presents the definition of the homogeneous probabilistic model of the drivers’ reac-
tion time problem in probabilistic statements, in PPL code (PyMC) and through a Kruschke-style
diagram side by side. There is a one-to-one correspondence among the lines of the probabilistic
statements, the lines of PPL code and the nodes of the diagrammatic representation. This is
an important attribute of PPLs because the definition of probabilistic models becomes simple,

intuitive and more easily comprehensible.



CHAPTER 2. THEORY 35

2.3.3 From the Definition of a Model to a Trace of Samples

PPLs automate the specification of probabilistic models and inference benefiting users who only
need to use minimal problem-specific engineering [Kulkarni et al., 2015]. As Kulkani says:
“The whole hope is to write very flexible models [...] as short probabilistic code, and then not
do anything else. General-purpose inference schemes solve the problems.”

An important advantage of PPLs is that they offer interfaces to efficient and well-tested im-
plementations of MCMC algorithms. Writing a MCMC algorithm and optimizing it requires
specialized knowledge. PPLs automate the inference of probabilistic models with their inter-
faces to MCMC sampling algorithms; the inference can literally be conducted by the push of a
button [Martin, 2018, Chap. 2].

Many contemporary PPLs like PyMC and Stan offer ready-made diagnostics tools for the
users to check the convergence of the MCMC samplers. Such diagnostics include the Gelman-
Rubin statistic [Gelman and Rubin, 1992] using multiple chains and computing the Rhat statistic
to check for lack of convergence, autocorrelation, or prior and posterior predictive checks.

The output of a sample-based (MCMC) PPL inference is the trace, the set of samples re-
sulting from the inference with an MCMC sampler; the output from “running” the model. The
trace can be a complex object containing samples from the prior, posterior, prior predictive and

posterior predictive distributions of the model.

2.4 Why Does Modeling Causal Relations Require Extra Mod-
eling Methodologies?

The definition of a probabilistic model determines the relations of the variables and ultimately,
the structure of the model; some variables are independent and others are used to determine the
distribution parameters of other variables generating a set of hierarchical parent-child relations.
Section 1.2.1.1 discussed that the relation of two variables in a model is not necessarily truly
causal, unless the model is a causal model or is designed under a causal model. Extra information
like this provided by a causal model is required to judge whether the relation of two variables
is causal and to model this relation as causal. The fact that correlation is not causation could
explain why this extra information is required to model causal relations.

This section explains why correlation is not always causation (Section 2.4.1) and how a
correlation could be identified as a true causal relation (Section 2.4.2). Finally, it presents well-

known existing methodologies for causal modeling (Section 2.4.3).

2.4.1 Correlation is not Always Causation

A research question often encountered in various fields (e.g., sociology, anthropology, medicine)

is whether an observed correlation between two variables is a true causal effect: does one of the
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variables causes the other?

Let us assume x and y are two variables of interest. Some observed data of these variables
are available based on which the two variables appear to be positively correlated (Fig. 2.3(a);
figure retrieved from Huszar [2019]); when one increases the other increases, too. This informa-
tion is not enough to tell us which of the two is true: an increase in x is because of an increase
in y, or an increase in y is because of an increase in x? Which variable causes the other? In
reality, there is a third possible scenario; none of the variables causes the other, they simply

appear correlated for other reasons. Why?

°
pearsonr = Oal, p=25e-34

-2 0 2
X

(a)

(b) (c) (d)

Figure 2.3: Correlation of the x and y variables and the causal diagrams of the three basic
three-variable causal primitives of the x, y, and z variables with z being a (b) confounder, (c)
mediator, or (d) collider.

Fig. 2.3(b), (c), and (d) present the causal diagrams of three different causal models of the
same three variables, x, y, and z. The arrows on a causal diagram represent direct causal links
with the direction of the arrow indicating the directionality of causality starting from a cause
and pointing to an effect. Two variables in a causal diagram are adjacent if they are directly
connected by an edge; e.g., x is adjacent with z but not with y in Fig. 2.3(b). According to
Greenland et al. [1999] a path through the graph is “any unbroken route traced out along or
against arrows or lines connecting adjacent nodes”. Correlation flows across paths on a causal
diagram, sometimes even against arrows.

A correlation between two variables could be spurious due to the existence of confounding,
namely a third variable (z) that intercepts the path from one to the other being a common cause
of the two variables [McElreath, 2020a,b, Chap. 6]. Every time that the value of this third
variable changes, the values of the two variables change at the same time and thus, they appear
correlated, although they may not even have a causal link (arrow) between them (Fig. 2.3(b)).

Confounding creates a bias in the observed correlation of the two variables.
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In the absence of confounding, the correlation would express either a direct causal effect
between the variables if a direct link exists between them or an indirect one through a mediator
(Fig. 2.3(c)) [McElreath, 2020a,b, Chap. 6]. This is a third variable (z) intercepting the path
from one variable to the other without changing the direction of the path (all arrows in the
path follow the same direction). In the case of a confounder or mediator, the path is open for
correlation to flow.

Collider is a third case of causal primitive that could associate two variables. The collider is a
variable that intercepts the path of the two variables being the common effect of the two variables
(Fig. 2.3(d)). The existence of a collider in a causal model blocks the correlation between its two
causes; its two causes will not appear correlated unless they have a direct causal link, a common
cause, or a mediator. A path between two variables is blocked if it has one or more colliders and
does not allow correlation to flow from one variable to the other; otherwise it is unblocked. In the
case of collider another type of bias, the selection (Berkson’s) bias [Berkson, 1946; Greenland
and Pearl, 2017], could cause observed correlation between the two independent ancestors of a
common descendent when a selection from the population of the collider is done based on some

criteria.

2.4.2 How can I tell if a correlation is a true causal effect?

To ensure that an observed correlation is a true causal effect, confounder paths should be closed
and collider paths open to avoid biases such as confounding or selection bias. There are various
methodologies for dealing with these biases. Conducting interventional experiments is one such
way; an intervention is applied on a variable to externally force it to take a specific value. An
intervention on a variable prevents any causes of the variable from affecting it because its value
is completely determined externally. This approach is effective for confounding bias because the
confounding path is blocked when the intervention is applied on a descendant of a confounder.
Interventional experiments need attention with colliders; intervening on a collider opens the path
and introduces selection bias.

In cases when interventions might not be possible or ethical (e.g., forcing people to smoke to
investigate the effect of smoking on health) and only observational studies are possible, different
approaches should be followed to make causal inference based on the observed data. One way
is statistically controlling for confounders by applying stratification or conditioning on them
or including them as a covariate to a multivariate (regression) model [Pourhoseingholi et al.,
2012]. Attention is again required with the colliders; colliders should not be controlled for to
avoid selection bias. The problem with the observational studies is that unless there is well-
established prior knowledge about which variables can be colliders, which is usually not the
case, it is not possible to know with certainty which variables can be safely controlled for.

A more modern approach involves simulating interventional experiments in cases when ob-
served data is available [Han et al., 2018; Herd and Miles, 2019; Huszér, 2019; Ibeling, 2018;
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Sofrygin et al., 2017; Witty et al., 2019] along with some assumptions about the possible un-
derlying causal structures. Huszar [2019] presents a toy example of simulating an intervention
on variable x probabilistically and using visualization to observe the effect of this intervention
on another variable y in three different cases of causal models. Fig. 2.4 from [Huszar, 2019]
demonstrates this example.

Three different Gaussian samplers are created for the two random variables, x and y, which
have a similar joint distribution (first row of Fig. 2.4(a)). Each one reflects a different causal
structure for the two variables presented. These causal structures are represented by causal
diagrams shown in the first row of Fig. 2.4(c). The three simulators are run and observations are
generated for the two variables. These observations are plotted in the scatter plots in the second
row of Fig. 2.4(a).

The samplers are altered to include an intervention on variable x: x = 3 (first row of
Fig. 2.4(b)). The causal diagrams are altered to depict the intervention in the second row of
Fig. 2.4(c); any incoming arrow to x from its causes is removed because the causes of x cease
affecting it after the intervention (these pruning operations applied on a causal diagram after an
intervention are often encountered in the literature as mutilation of the causal diagram). The
simulators are run again and the samples of y after the intervention are plotted in the scatter
plots in the second row of Fig. 2.4(b).

The distribution of y changes after the intervention in the first simulator (the distribution’s
value range from [—4, 6] became [-1, 8]), while it remains the same in the second and third
simulator (the distribution’s value range remains [-4, 6]). This happens because in the first
causal model vy is a descendant of x and is affected every time x’s value changes, while in the
second and third causal model y becomes independent of x after the intervention (the inter-
vention blocked the path from one to the other) and does not get affected by x when its value

changes.

2.4.3 Causal Modeling Methodologies

The difficulty of interpreting the correlations in observed data as causal or non-causal relations
leads to the need for methodologies of causal inference from observed data; how could observed
data be used to infer whether the relations of variables are causal? The approaches to causal
inference may be broadly divided into two schools of thought; the potential outcomes and the
causal graphical models. The potential outcomes framework roots back to the work of Hume
[1748], was first proposed by Neyman [1923], and extended into a general framework for causal
inference by Rubin [Sekhon, 2007]. The causal graphical models were first used by Wright in
his path analyses [Wright, 1921] and Pearl was instrumental in extending them into a general
unified framework for causal inference [Larsen, 2021; Pearl, 2010].

The two schools differ in how they define the notion of causal effect. According to Rubin

[1972] the causal effect is defined as following:
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Figure 2.4: Toy example from Huszar [2019] demostrating the effect of simulated interven-
tions in three similarly-correlated two-variable (x and y) systems. (a) Three simulators for the
similarly-correlated two-variable systems and scatter plots of the x-y simulated observations,
(b) the simulators altered to reflect the x = 3 intervention and the x-y scatter plots after the
intervention, and (c) the underlying causal structure of each system before (upper row) and after

the intervention (lower row).
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Intuitively, the causal effect of one treatment, E, over another, C, for a particular
unit and an interval of time from t; to t, is the difference between what would
have happened at time t if the unit had been exposed to E initiated at t; and what
would have happened at t, if the unit had been exposed to C initiated at t1: ’If
an hour ago I had taken two aspirins instead of just a glass of water, my headache
would now be gone,” or *because an hour ago I took two aspirins instead of just a
glass of water, my headache is now gone.” Our definition of the causal effect of the

E versus C treatment will reflect this intuitive meaning.

Based on this school of thought a causal effect of a “treatment” on a unit exists when the differ-
ence of the two potential outcomes of the “treatment” on the unit is not zero.Then, it could be
said the “treatment” and the unit have a causal relation.

The “fundamental problem of causal inference” [Holland, 1986] is that it is impossible to
observe both potential outcomes on a single unit and estimate the causal effect of the treatment;
you either take the aspirin now or you don’t. Thus, the problem of causal inference according
to the potential outcomes framework is reduced to a problem of missing data (counterfactuals).
Then, given some assumptions various statistical tools could be used for the estimation of the
missing information. Rubin contributed to the expansion of various statistical techniques for the
conduction of causal inference within this context, like instrumental variables [Angrist et al.,
1996].

Judea Pearl advocated that causal inference “requires new mathematics and that causal ques-
tions cannot be solved within existing paradigms for probabilistic inference” [Lattimore and
Rohde, 2019b]. He introduced the do-calculus [Pearl, 1995], a graphical inference tool com-
prising a set of rules to express the conditional probabilities of the variables given the interven-
tions, P(y|do(X))!, in terms of the observed conditional probabilities of the variables, p(y|x),
through querying causal diagrams. According to Pearl, the causal effect of x on vy is determined
by whether the post-intervention distribution P(y|do(X)) differs from the pre-intervention dis-
tribution p(y|x); if they are the same, it means that x affects y causally.

In Huszar [2019]’s example the mutilated causal diagrams after the intervention in the sec-
ond row of Fig. 2.4(c) were generated after applying the rules of do-calculus. The third row
Fig. 2.4(c) presents how the conditional distribution of y given the intervention on x, P (y|do(X)),
is expressed based on the observed, conditional and non-conditional, probabilities of y in each
one of the three causal models. The post-intervention conditional distribution P(y|do(X)) is
the same with the pre-interventional conditional distribution p(y|x) only in the case of the first
causal model. This means that only based on the first model x affects y causally.

Causal diagrams and do-calculus gave rise to specialized algorithms for automatic causal
discovery, which try to learn the causal structure of data by applying do-calculus given some

assumptions [Glymour et al., 2019]. These estimates, albeit incomplete, can be used by users to

IThe symbols P and p are used to denote the post- and pre-intervention probability distributions, respectively.
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decide upon the variables they can control for or intervene on.

2.5 'Theories of Human Visual Perception

2.5.1 Why is it Important to Understand Human Visual Perception?

Visualization is an “external artifact” functioning as a cognitive tool for humans [Ware, 2012]
who use it in tasks like making decisions or forming beliefs and judgements. The ways that
humans perceive visual information and turn it into cognitive actions play an important role in
visualization. Visualization cannot alone generate human actions without the intervention of
human’s perception that will receive information, process it, draw conclusions from it, and then
decide what it will do with it.

Understanding the ways humans perceive (process) the visual information is vital when de-
signing visualization tools if the aim is to maximize the “cognitive throughput”, namely the
amount of valuable cognitive work done per unit of time [Ware, 2012, Chap. 11]. As Shneider-

man [1996] states very eloquently

the bandwidth of information presentation is potentially higher in the visual domain
than for media reaching any of the other senses. Humans have remarkable per-
ceptual abilities, that are greatly under-utilized in current designs. Users can scan,
recognize, and recall images rapidly, and can detect changes in size, color, shape,
movement, or texture. They can point to a single pixel, even in a megapixel display,

and can drag one object to another to perforrn an action.

Designing visualizations that exploit humans’ perceptual and cognitive capabilities could lead
to really powerful cognitive tools.

The field of visual perception has extensively been studied especially by psychologists.
Many theories exist and much specialized knowledge is involved. There is also extensive em-
pirical work which investigated how people perceive information visually and established new
or confirmed existing theories. This section focuses on theories of visual perception that are
relevant to the context of this thesis; Section 2.5.2 discusses theories of visual perception of un-
certainty, Section 2.5.3 discusses the visual perception of animation, and Section 2.5.4 discusses

the visual perception of interaction. Most of these topics will be revisited in Chapter 3.

2.5.2 Visual Perception of Uncertainty
2.5.2.1 Heuristics and Biases When Judging Probabilities

The ways that people reason about uncertainty have extensively been studied in literature. It has

been found that people have difficulty reasoning about uncertainty based on standard probability
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formats (e.g., probability, percentile, odds). They tend to rely on heuristics or rules of thumb to
make judgments about probabilities rather than apply a correct mathematical solution to make
rational choice.

Tversky and Kahneman [1974] have systematically studied the heuristics people use to make
judgments about uncertainty. For example, they found that people tend to rely on representative-
ness (i.e., the degree to which an event (individual) is representative of a process (population))
to judge the probability of an event to originate from a process. The representativeness heuristic
make people to be insensitive to prior probability or sample size.

Kahneman and Frederick [2002] talked about substitution, an unconscious strategy people
often employ when they have to deal with difficult information; people tend to substitute a
difficult mental computation with an easier one. The substitution heuristic can lead to quick
decisions which might also be correct if the judgment is detrimental (e.g., the “deterministic
construal error” occuring when people try to substitute visual uncertainty information for deter-
ministic information [Joslyn and LeClerc, 2012]). However, this heuristic was not found to be
always effective [Belia et al., 2005].

Another heuristic that Tversky and Kahneman [1974] found is the availability according
to which people assess a probability of an event by the ease with which it can be brought to
mind [Tversky and Kahneman, 1974]. A characteristic example that Tversky and Kahneman
[1974] give is that “a class whose instances are easily retrieved [e.g., because they are more
easily memorable] will appear more numerous than a class of equal frequency whose instances
are less retrievable”. All these heuristics, although they might benefit judgments of probability
up to a point, they lead to “predictable biases” [Tversky and Kahneman, 1974] making some

researchers argue that “human logic is systematically flawed” [Padilla et al., 2021b].

2.5.2.2 Frequency Framings of Probability Improve Probability Judgments

In response to the theories of systematic flaw in people’s judgments of probabilities, Gigerenzer
[1996] suggested that this systematic flaw in people’s judgments of probabilities is influenced
by the format in which probabilities are communicated; confusing formats to express proba-
bility (e.g., as a percentile) that people cannot easily understand could be replaced by formats
that naturally express probability in ways “how people experience probability throughout their
lives (e.g., changing 10% to 1 out of 10)” [Padilla et al., 2021a]. Hence, Gigerenzer [1996]
suggests expressing probabilities as frequencies to make probabilistic judgments more intuitive
and less reliant on heuristics [Gigerenzer, 1996; Gigerenzer and Hoffrage, 1995; Hoffrage and
Gigerenzer, 1998].

This theory gave rise to many visualization designs that present distributional information
framed as frequency, e.g., quantile dotplots [Kay et al., 2016a] or Hypothetical Outcome Plots
(HOPs) [Hullman et al., 2015] (these will be explained in detail in Chapter 3). Extensive empir-

ical research has been conducted to evaluate such visualization designs [Fernandes et al., 2018;
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Hullman et al., 2015; Kale et al., 2019; Kale et al., 2021; Kay et al., 2016a] and has found that
frequency-framed uncertainty shown in visualizations can improve viewers’ accuracy and recall
compared to visualizations that show only probability distributions or summary statistics (e.g.,
intervals, mean, median) [Padilla et al., 2021a]. The frequency-framed uncertainty visualiza-
tions require that the viewer exploits their cognitive mechanisms to acquire an intuitive sense of
the underlying distribution and according to Kale et al. [2021] they do not “allow the viewer to
fixate on summary information such as a mean” [Padilla et al., 2021a]. Hence, presenting prob-
ability framed as frequency in visualizations is recommended as a best practice by researchers
in literature.

More about the theories of uncertainty visualization can be found in [Padilla et al., 2021a].

2.5.3 Visual Perception of Animation

Moving patterns can be used to represent motion in dynamic systems like vector fields or motion
can be used to display dynamic data [Ware, 2012]. For example, animation could be used to
convey causality by exploiting the “temporal cue” an intervention produces when applied on
a system: the intervention is the most likely cause of any subsequent changes [Lagnado and
Sloman, 2004].

Animation can offer a rich “vocabulary of expressive motion” [Ware, 2012] that could be
exploited for the communication of other aspects of data than its timely evolution. Ware [2012]
argues that “the perception of dynamic patterns is not understood as well as the perception
of static patterns, but we are very sensitive to patterns in motion, and if we can learn to use
motion effectively it may be a good way to display certain aspects of data”. The visual system’s
ability to “form gist representations from experience” [Kale et al., 2019] could be exploited to
communicate difficult to grasp concepts like probability. For example, animation has been used
to communicate samples from distributions [Hullman et al., 2015; Kale et al., 2019].

Tversky et al. [2002] was skeptical about the superiority of animation over static visual-
izations. The animated and static versions of visualizations often compared in studies are not
informationally equivalent [Kim et al., 2019]. Tversky et al. [2002] suggested two high-level
principles for effective animation; the Congruence Principle states “the content and format
of the graphic should correspond to the content and format of the concepts to be conveyed”
and the Apprehension Principle states that “graphics should be accurately perceived and ap-
propriately conceived”. According to the first principle studies comparing animated with static
visualizations should ensure “equivalence between animated and static graphics in content or
procedures”. According to the second principle animations should not be “too complex or too

fast to be accurately perceived”.
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2.5.4 Visual Perception of Interaction

An interactive visualization usually exploits various interactive graphical elements like sliders,
drop-down menus, radio buttons to enable the exploration and query of data according to the
users’ demands. Ideally information should be displayed as needed and disappear when not
needed for an interactive visualization to support users’ thinking processes [Ware, 2012]. The
need for drilling down and finding data according to users’ demands requires visualizations that
would be appropriately designed. Shneiderman [1996] developed the Visual Information Seek-
ing Mantra to be used as a guideline for designing interfaces that would support “information-
seeking behaviors” [Ware, 2012] more effectively: “Overview first, zoom and filter, then details
on demand”.

According to Ware [2012] interactive visualization consists of three levels of “interlocking
feedback loops”. In the data manipulation loop users select or move objects using basic eye-
hand coordination skills. In the exploration and navigation loop users explore the data space,
form a cognitive model for it, and try to navigate the data space to “find their way” to the
information they need. In the problem-solving loop users form hypotheses about the data and
refine the view of the data to confirm or reject their hypotheses.

These feedback loops depending on the application create requirements that should be ac-
counted for by the designs of the visualization (see Ware [2012] for a detailed discussion about
this topic). Human cognitive capacity is limited. The human “working memory” cannot store in-
formation for long or cannot support high cognitive load to conduct complicated “calculations”.
An implication of this is that delays in the feedback loops or increase of the cognitive load can
lead to low rates of information uptake [Ware, 2012]. Another implication is that the “cognitive
context” users form by perceiving the presented information and processing can be easily lost
when users need to switch attention between thinking and interacting with the interface in a
feedback loop [Ware, 2012]. All these reveal the difficulties and the precision that is required

for designing interactive visualizations.
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Literature Review

3.1 Summary

This chapter presents the literature review of existing work in topics relevant to the research
presented in this thesis. Uncertainty is a cornerstone of probabilistic models; it is encountered
in the prior and the posterior distributions. When probabilistic models need to be communi-
cated uncertainty cannot be omitted. Section 3.2 reviews the existing work as to uncertainty
visualization approaches and empirical evidence about their effectiveness. Static, animated, and
interactive visualization approaches are considered. The emphasis is primarily on univariate
uncertainty representations as they are required for representing the (univariate) probability dis-
tributions of variables in a probabilistic model (i.e., the marginal distributions of the model’s
joint distribution).

Probabilistic models have a structure that is determined by the associations of their variables.
This structure presents the order of the operations in the modelled data generating process. The
structure of a probabilistic model should be communicated along with the uncertainty to provide
a complete picture of the model. Section 3.3 explains how Bayesian network (i.e., a graphical
representation) can be used to represent the structure of probabilistic models. It reviews the
existing tools for generating such a graphical representation.

The structure of a probabilistic model does not necessarily reflect the cause-effect relations
of the variables, unless it is designed under a causal model. Section 3.3 explains also how the
structure of causal models is presented graphically. It reviews existing tools for graphically pre-
senting, exploring, and validating learned causal structures of data. It reviews existing evaluation
work of visualization in causal reasoning (i.e., how visualization can be used to help people rea-
son about which variable causes which other variable). This last part in Section 3.3 is related to
the last part of the research presented in this thesis (Chapter 6). A main focus of this research
was how visualization could support causal reasoning.

Interaction is not often used for the communication of uncertainty in literature. Thus, Sec-

tion 3.4 presents interesting ideas on interactive visualization from the literature that served as
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inspiration for the work presented in this research.

3.2 Visualization of Uncertainty

The perception of uncertainty by people contains many misconceptions or biases leading to in-
correct or imprecise judgements of uncertainty [Belia et al., 2005; Gigerenzer, 1996; Kahneman
and Tversky, 1974; Tversky and Kahneman, 1971, 1973, 1974]. This fact makes many analysts
sceptical about whether uncertainty should be communicated [Hullman, 2020]. However, hid-
ing uncertainty from people could lead to uninformed decisions. This could prove disastrous
in crucial decision-making occasions like in healthcare, or stock-market trading where the risk
which a decision entails should be considered.

For this reason, there was a huge research effort conducted in the last decades about whether
and how visualization could be used to communicate uncertainty effectively. This section re-
views the most relevant work presented in this field. Section 3.2.1 presents the existing ap-
proaches in the visualization of uncertainty categorized as static, animated, and interactive. Sec-
tion 3.2.2 presents the relevant experimental work in the evaluation of uncertainty visualizations.
Section 3.2.3 provides a discussion about the challenges in designing and evaluating uncertainty

visualizations overall.

3.2.1 Existing Approaches

The existing uncertainty visualization approaches that will be presented in this subsection are
categorized in three categories; static, animated, and interactive. Static uncertainty visualiza-
tions rely on static graphics and visual encodings to communicate uncertainty. Animated un-
certainty visualizations rely on animation to communicate uncertainty. Interactive uncertainty
visualizations rely on interaction techniques and interactivity to communicate uncertainty.

The basis of this categorization is the level of user engagement required to exploit the pro-
vided uncertainty visualization for making a judgement or decision. Static visualizations lacking
any motion or interaction require users to passively preceive the presented information. Ani-
mated visualizations use motion to add movement to static graphics and require users to more
actively engage their mental mechanisms. Interactive visualizations require users to come into
a closed-loop with the visualization by interacting with it, querying the information they need,
wait until it is displayed, perceive it, process it, and query a new piece of information to refine
the perceived “picture” of the information [Ware, 2012, Chap. 1,10].

This categorization serves the scope of this research: the use of interaction and animation
in the communication of uncertainty in probabilistic models to increase user engagement and
make difficult and unintuitive mathematical formulations more easily understood. The uncer-

tainty visualization approaches suggested or investigated in empirical studies in the literature
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are presented in this subsection. The related empirical work will be presented in the following

subsection.

3.2.1.1 Static Visualisations of Uncertainty

Various visual attributes of graphics that can be interpreted by human visual perception encode
uncertainty-related information; the position, shape, size, color, number of presented shapes,
density of glyphs, etc. The existing uncertainty visualizations presented here are categorized
based on the visual attributes they rely on to encode uncertainty.

Size and Position. Typical uncertainty visualizations that encode uncertainty in their size (i.e.,
width, height) and position are error bars, bar charts with error bars, and Box plots. These
plots are called often interval plots because they encode some statistical interval (confidence or
credible interval, interquartile range, standard error, standard deviation) in their size.

An error bar is a line passing from a point representing a measure of central tendency (e.g.,
mean or median) of a univariate variable and is drawn parallel to the axis corresponding to this
variable. The two ends of the line can correspond to various statistics describing the variation in
the observed data: e.g., a particular confidence interval of the variable’s distributions, the mean
value plus/minus the standard deviation, or the mean value plus/minus the standard error.

A bar chart with an error bar consists of a bar plot whose height represents some aggregation
measure like the mean value, and an error bar drawn vertically to the top edge of the bar plot
and passing from the center of it.

The Box plot [Frigge et al., 1989; Haemer, 1948; Spear, 1952; Tukey, 1977] is a more
informed representation of uncertainty as it presents a five-number summary of the variable’s
data distribution. It is represented by a box with whiskers. The first (Q1) and third quartile (Q3)
of the observed data correspond to the left-right or bottom-top edges of the box depending on
the orientation of the box; horizontal or vertical, respectively. The whiskers are usually drawn
within the 1.5 interquartile range (IQR = Q3 - Q1) but can stand for several other things; the
minimum and maximum observed values, one standard deviation above and below the mean of
the data, the 95% central quantile. A line enclosed in the box and drawn parallel to the Q1 and
Q3 edges represents the median (Q2).

Shape. Various uncertainty visualizations use the shape of the presented graphic to encode
the density of the distribution. These visualizations are often called density plots because they
encode the density of the distribution.

In the case of continuous variables, Kernel Density Estimate (KDE) plots depict the PDF
of continuous variables in the shape of the presented curve. In the case of discrete variables,
histograms can be used instead to depict the PMF of discrete variables. KDE plots and his-
tograms can be used to depict uncertainty in 2D, as well. Enhanced Box plots like hist plots
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[Benjamini, 1988], vase plots [Benjamini, 1988], Box-percetile plots [Esty and Banfield, 2003],
or violin plots [Hintze and Nelson, 1998] encode probability density in their shape. Another
extended Box plot that encodes uncertainty information in its shape is proposed by Potter et al.
[2010]; Potter’s summary plot incorporates higher order descriptive statistics. Potter et al. [2010]

presents also an extension of this to two-dimensional distributions.

Color Intensity. Various uncertainty visualizations use the color intensity to encode probabil-
ity density. These visualizations are often called gradient plots.

A density strip [Jackson, 2008] is a strip of a usually single-hue colormap; the darkness level
is proportional to the probability density at each point.

Correll and Gleicher [2014] present a version of gradient plot. A distribution is represented
by a box whose left-right or bottom-top edges (depending on the orientation of the box) corre-
spond to the 100% confidence interval. A solid enclosed line parallel to the confidence interval
edges represent the median. The box contains densily stacked lines parallel to the median line.
Within the 95% confidence interval the lines are fully opaque. Outside the 95% confidence in-
terval the opacity decays with respect to the cumulative probability for the absolute value of the
variable based on an underlying t-distribution, until the lines at the edges of the box become

completely transparent.

Density and Spatial Arrangement. The uncertainty visualizations in this category present
discrete outcomes (samples from distributions) and are often called discrete plots.

The rug and strip plots [Feigelson and Babu, 1992; Yi] represent the observations of a uni-
variate variable as tick or dot markers, respectively, across their axis. Scatter plots can be used
to represent two-dimensional observations on a 2D plane. The density of the markers in these
plots encodes the probability density of the variable.

Dot plots [Wilkinson, 1999] are used to represent individual observations on a continuous
scale using dots that are locally displaced in a direction orthogonal to their axis to prevent over-

lapping. Dot plots could be considered as a discrete analog of the KDE plot.

Number of Presented Shapes. The uncertainty visualizations in this category present uncer-
tainty as discrete outcomes (i.e., draws from a probability distribution) and allow probability
estimation through counting. They encode uncertainty in the number of presented shapes using
a frequency framing for it (i.e., they represent a percentile 10% as a ratio, e.g., 1 out of 10).
These visualizations are often called frequency-framed (discrete) plots.

Icon arrays use a shape or small picture that is repeated as many times as the denominator
of the ratio with a number of them corresponding to the numerator altered usually by colour.

Quantile dotplots [Kay et al., 2016a] represent distributions where dots are sampled pro-

portional to the quantiles of the distribution. Icon arrays are appropriate for a small number
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of discrete possible outcomes, while quantile dotplots can be used as an “frequency-framed al-
ternative for displaying uncertaintyfor a continuous variable” [Padilla et al., 2021a]. Quantile

dotplots could be considered as a discrete analog of the KDE plot.

3.2.1.2 Animated Visualisations of Uncertainty

Communicating Uncertainty Through Animation of Simulated Data. In geospatial appli-
cations, Ehlschlaeger et al. [1997] suggested the use of animation to present the uncertainty in
spatial data, which resulted from coarse coverage of the area in sampling. Spatial uncertainty is
modelled by specialized stochastic models, which generate “many potential realizations” of the
spatial data (e.g., surfaces). Ehlschlaeger et al. [1997] suggested the use of random and serial
animation of these “potential realizations” visualizations. Animation could help researchers get
a better insight into the uncertainty in spatial analysis and recognize spatial autocorrelation.

Evans [1997] suggested the use of “flickering” to present the reliability of data in land cover
maps; a frame showing a map that presents all the data alternates with a frame showing a bivarate
map that presents only highly certain data (color-on cells show highly certain data, color-off cells
show highly uncertain data).

Kwock et al. [2010] proposed the use of animation to present the statistically modeled uncer-
tainty about a large dataset in density plots instead of the actual PDF of the datapoints. The aim
was to provide visual summaries of large datasets instead of conducting expensive computations
of high quality density plots. They proposed the probabilistic plots which present a set of ani-
mated frames showing a scatter plot or a parallel coordinate plot. In each frame the plots present
a different set of random samples from the underlying distribution. In these animated plots the
regions of high probability density remain stable, while the outliers “intermittently flicker in and

out of existence” [Kwock et al., 2010] drawing viewers’ attention to them.

Animated Frequency-framed Plots. Hullman et al. [2015] inspired by the ideas of using
simulated data to communicate uncertainty introduced the Hypothetical Outcome Plots (HOPs),
a form of animated frequency-framed plot. HOPs present a set of frames each of which shows
a random draw from a distribution and is displayed for a short time (i.e., <500ms). Viewers of
HOPs need to use their cognitive mechanisms to acquire an intuitive sense of the underlying
distribution (i.e., estimate the mean value or identify the less possible outcomes). HOPs force

users to “account for uncertainty in their understanding of the data” [Padilla et al., 2021a].

Animated Transitions for Statistical Data Grahpics. This category of visualizations ex-
ploits animated transitions to tranform a graphic into another by possibly applying some opera-
tion to the underlying data. Transitions can be thought of as “state changes” [Heer and Robert-
son, 2007]. Heer and Robertson [2007] describe the process of transition and explain what the

challenge in designing animated transitions is:
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Analytic operators make changes to the semantic model of the data graphic, editing
the data schema, data values, or visual mappings. This in turn results in changes
to the graphical syntax. In static transitions, the original syntactic form is simply
replaced with the new one. The challenge of designing animations is to visually
interpolate the syntactic features such that semantic changes are most effectively

communicated.

Heer and Robertson [2007] created the DynaVis, a visualization framework supporting ani-
mated transitions for statistical data graphics like bar charts, pie charts, and scatter plots.

Kim et al. [2019] suggested the use of animated transitions to communicate the meaning
of aggregation operations (i.e., min, max, mean, median, count, standard deviation, interquar-
tile range) over univariate distributions. The original design concerned the transitioning from
unaggregated to aggregated dot plots. They provide an example that illustrates the animated
transitions for the arithmetic mean: individual dots shift along a horizontal line representing the
average, and transform to residual lines, which then collapse synchronously in a way that the
upper and lower parts cancel out to form the average. They extend their design to transitions to
depict the construction of box plots, histograms, and means and confidence intervals calculated

via bootstrapping.

3.2.1.3 Interactive Visualisations of Uncertainty

Although interaction is broadly used in the communication of complex data or ideas [Faith,
2007; Nguyen et al., 2020; Sankaran and Holmes, 2018], it is not often encountered in the
designs of uncertainty visualizations. The effect of interaction was investigated in tasks like
Bayesian reasoning [Khan et al., 2018; Mosca et al., 2021; Tsai et al., 2011], or graphical pre-
diction of uncertainty or trends in data [Collective, 2019; Hullman et al., 2018; Kim et al., 2017,
2018]. The following paragraphs present the ways to use interaction in Bayesian reasoning and

graphical prediction that were explored in the literature.

Interaction in Bayesian Reasoning. Tsai et al. [2011] suggested the use of an interactive fre-
quency box diagram to present the different components of a conditional probability in Baysian
reasoning problems. The frequency box diagram is suggested to accompany the frequency-
framed textual description of the problem. The frequency box diagram consists of a large box
that is subdivided into small squares that symbolize the entire population (each small square rep-
resents one person in the population). A set of checkboxes is provided for toggling on or off the
components of a problem (subpopulations) in any order or combination using a different color
to highlight each component. Improvent in performance of participants who used the interactive
frequency box diagram was found in comparison to participants who only relied on the textual

descriptions of the problem.
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Khan et al. [2018] explored the effect of adding interaction to the double-tree diagram [Khan
et al., 2015] on people’s performance in a Bayesian reasoning task. The double-tree diagram
can be used to visualize the “double branching structure of a Bayesian problem”; “the false-
positive/true-positive and false-negative/true-negative symmetry of the problem” is directly rep-
resented [Khan et al., 2018]. Khan et al. [2018] asked participants in a user study to construct the
double-tree diagram using drag-and-drop based on the textual description of the problem before
responding to the questions of the task. The results showed that interactively constructing the
double-tree diagram was not beneficial for participants’ performance.

Mosca et al. [2021] explored the effect of adding interaction to the stimulus used in a
Bayesian reasoning problem concerning a disease in population. The stimulus was an icon
array showing the subpopulations: “Have Disease”, “Do Not Have Disease”, “Test Positive”,
and “Test Negative”. They experimented with adding checkboxes or drag and drop to hide or
show subpopulations in the icon arrays. They also tested an implementation of hover in which
users hovering their mouse over an area of text describing a subpopulation in the description of
problem, the text and corresponding subpopulation in the icon array were highlighted. Finally,
they tested tooltips showing up in the icon array when users hovered over a subpopulation and
stating the part of the textual description of the problem. None of these interactions seemed to

be beneficial in participants’ performance in a user study conducted.

Interactive Graphical Prediction of Uncertainty or Trends in Data. Hullman et al. [2018]
suggested a novel interactive, graphical uncertainty prediction technique for communicating
uncertainty in experiment results. With this technique users can predict the uncertainty in exper-
iment replications graphically before they see the true sampling distribution. They can sketch
their prediction of the uncertainty either as a probability density plot or a quantile dotplot. Hull-
man et al. [2018] argue that graphically predicting replication uncertainty is an effective way to
communicate uncertainty in experimental science.

Kim et al. [2017] suggested the interactive graphical elicitation of users’ prior expectations
about trends in data to improve users’ recall of the data. Users who draw their predictions, view
their expectations against the actual data, and try to self-explain data are benefited. This interac-
tion with their “internal representations” of the expectations about the data support learning and
deepen users’ understanding of data [Kim et al., 2017]. Kim et al. [2018] showed that presenting
users’ expectations against others’ expectations is also beneficial to the recall of data.

The results of these studies led to the creation of TheyDrawlt!, a publicly available authoring
tool for eliciting people’s prior beliefs about the data in an interactive way [Collective, 2019].
TheyDrawlt! enables users to create line charts, sketch their beliefs about the trend in data, and

view other users’ beliefs.
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3.2.2 Evaluation of Uncertainty Visualizations

A multitude of experimental work on evaluation of uncertainty visualization exists in the liter-
ature. All these studies vary in the methodologies and evaluation strategies. Evaluating uncer-
tainty visualizations involves many design-related decisions for the experiment like the evalua-
tion goal, behavioral targets, expected effects, measures etc. Hullman et al. [2019] reviewed and
analysed the evaluation decisions made in 86 studies of uncertainty visualization to define the
more or less common decisions in the literature.

Most studies aimed at comparing multiple uncertainty visualizations or investigating the
impact of uncertainty by evaluating at least one visualization that does not contain uncertainty.
Aspects like how or why a visualization works or how it could interact with user characteristics
were less often investigated. The greatest part of the user studies focused on the evaluation
of the participants’ performance and mostly by investigating effects on users’ accuracy (i.e.,
the difference from a ground truth). Evaluation of user experience and effects on confidence,
confidence/accuracy alignment, response time, decision quality, memorability etc. were not so
commonly encountered.

In this subsection a relevant part of the existing literature on the evaluation of uncertainty
visualization is presented: the evaluation of decision-making under uncertainty (does presenting
uncertainty lead to better decisions than omitting it?); the evaluation of uncertainty visualization
through comparisons of different designs, most of which presented in the previous subsection
(are there particular designs of uncertainty visualizations that are more beneficial in specific
tasks?); the evaluation of uncertainty visualization in Bayesian reasoning (is uncertainty visual-

ization beneficial for people’s performance in Bayesian reasoning tasks?).

3.2.2.1 Evaluation of Decision-Making Under Uncertainty

Uncertainty - No Uncertainty. The effect of communicating uncertainty in various decision-
making contexts was evaluated in the existing literature.

One of these contexts was the communication of weather uncertainty information. Two stud-
ies evaluated people’s decisions on taking precautionary measures for adverse weather condi-
tions (salting the roads overnight). Nadav-Greenberg and Joslyn [2009] and Joslyn and LeClerc
[2012] found that people made more optimal decisions when the uncertainty of the wheather
forecasts was communicated to them. Joslyn and LeClerc [2012] also found that displaying
uncertainty increased people’s trust in the forecast.

In transportation scenarios, Jung et al. [2015] argued that displaying the uncertainty of the
remaining range in an electrical vehicle improved drivers’ driving experience and behavior in
regards to road and remaining range conditions in comparison to a single point estimate. Fernan-
des et al. [2018] found that some displays presenting uncertainty information about bus arrival
times led to more accurate and consistent real-time transit decisions compared to displays with

no uncertainty.
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Conclusion. Communicating uncertainty helps people make more optimal decisions in com-

parison to point estimates according to the findings of empirical studies.

3.2.2.2 Evaluation of Uncertainty Visualization Through Comparison of Different De-

signs

Interval - Density - Gradient Plots. Uncertainty visualizations that display intervals have
been found to be confusing or misinterpreted [Belia et al., 2005; Correll and Gleicher, 2014;
Stock and Behrens, 1991]. Belia et al. [2005] found that interval plots like error bars are hard
to interpret correctly for both naive and expert users. [Stock and Behrens, 1991] found that
viewers of Box plots underestimate the length of the whiskers for larger boxes and overestimate
for smaller boxes. This was attributed to a visual perceptual illusion. Correll and Gleicher
[2014] found that bar plots with error bars suffer from perceptual issues. The bar provides a
false metaphor of containment; values within the bar are seen as likelier than those outside the
bar. Viewers tend to adopt a binary interpretation in regards with the error bar; values are within
the margins of error, or they are not. This leads to overestimated effect sizes.

Ibrekk and Morgan [1987] evaluated nine different representations of uncertainty including
interval, density, or gradient plots (an error bar showing a certain confidence interval, discretised
representations of the probability density function as a histogram and pie chart, a conventional
probability density plot, violin plot, horizontal bar encoding density in the shading using either
dots or vertical lines, a predecessor design of the modern Box plot (Tukey box), CDF plot)
through a survey. Participants were asked to determine the location of the “best estimate” based
on the presented visualization. No statistical differences were found but Cummulative Density
Function (CDF) plots were found to be confusing when used to estimate the mean value.

Correll and Gleicher [2014] compared interval plots (i.e., bar plots with error bars and box
plots) with density and gradient plots (i.e., violin and gradient plots) through a user study. The
findings suggested that gradient and violin plots helped participants better understand uncer-

tainty.

Conclusion. Overall density and gradient plots are preferred over interval plots according to
the findings of the empirical studies. According to [Padilla et al., 2021a]: “More expressive
visualizations provide a fuller picture of the data by depicting more properties, such as the

nature of the distribution and outliers, which can be lost with intervals.”

Static Frequency-framed - Conventional Uncertainty Plots. The frequency-framed uncer-
tainty visualizations were suggested in the literature on the basis that people were found to better
understand and reason more accurately about uncertainty when this is framed as a frequency
(e.g., 1 out of 10) instead of probability (e.g., 0.1) or percentile (e.g., 10%).This hypothesis was
formulated and investigated by Gigerenzer [Gigerenzer, 1996; Gigerenzer and Hoffrage, 1995;
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Hoffrage and Gigerenzer, 1998]. Gigerenzer argued that people reason more naturally about un-
certainty when it is framed as frequency because this is how they experience probability in the
world around them. Visualizations that implement frequency framing of uncertainty information
have been suggested in the literature (e.g., icon arrays, quantile dotplots, HOPs). The evaluation
work on the comparison of static frequency-framed uncertainty visualizations and other more
conventional static designs is presented here.

Kay et al. [2016a] compared quantile dotplots with density plots in the context of realtime
transit prediction scenarios. They found that the quantile dotplots reduced the variance of peo-
ple’s probabilistic estimates compared to density plots and facilitated more confident estima-
tions.

Fernandes et al. [2018] compared displays with textual uncertainty, uncertainty visualiza-
tions (quantile dotplots, interval plots, density plots, and complementary CDF plots), or no-
uncertainty in the ability of users’ make optimal decisions in realtime transit scenarios. They
found that low-density quantile dotplots and CDF plots led to better decisions and more accurate
estimations of probability intervals.

Hullman et al. [2018] compared quantile dotplots with probability density plots when used
in a graphical prediction interface for communicating uncertainty in experiment results. They
found that quantile dotplots improved recall of a sampling distribution from a single experiment

in comparison to the density plot.

Conclusion. Overall static frequency-framed plots are preferred over interval or density plots

according to the findings of the empirical studies.

Staged Animated - Interpolated Animated - Static Transitions for Statistical Data Graph-
ics. Heer and Robertson [2007] evaluated the effectiveness of static, interpolated animated,
and staged animated transitions for common statistical data graphics (i.e., bar charts, pie charts,
and scatter plots) in object tracking and value change estimation tasks. In static transitions the
final chart replaces the intial one in a single step. In interpolated animated transitions the final
chart replaces the intial one in a number of steps that show (usually linear) interpolations of the
marks in the initial chart to its final state. This is a kind of direct animation [Heer and Robertson,
2007] and is different from staged animated transitions. In staged animated transitions the final
chart results after a row of visual transitions in the position or value of the presented graphics
(position and value might change synchronously or asynchronously).

Some of the transitions tested were “bar chart to donut chart (visualization change), stacked
to grouped bars (drilldown), and sorting a bar chart (ordering)”. The analysis of the collected
data showed that participants’ graphical perception was significantly improved when animated
transitions were used in both types of tasks. Participants also reported strong preference for

animation as they found it more helpful and engaging.
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Kim et al. [2019] evaluated people’s performance in identifying the aggregation performed
over a distribution when animated transitions were used. They compared views with staged
animated (the aggregated chart results after a row of visual transitions in the position or value
of presented graphics), static (the aggregated chart replaces the unaggregated one) or interpo-
lated animated transitions (interpolated transitions linearly interpolate marks in the unaggre-
gated charts to their final values). Participants were asked to perform “binary identification
tasks” to indicate whether a presented transition matches a provided aggregation. They found
that the staged animated transitions improved participants’ performance in identifying the ag-

gregation performed and disambiguating the average and median, or stdev and iqr operations.

Conclusion. Overall animated transitions are more beneficial in comparison to static transi-

tions according to the findings of the empirical studies.

Animated - Static Representation of Data Reliability in Cartography. Evans [1997] eval-
uated the use of animation in presenting the reliability of data shown in land cover maps. They
compared a static composite bivarate map that presented only highly certain data with a “flicker-
ing” land cover map (animated alterations of the all-data and the high-certainty-data map). Both

representations were found to be helpful according to participants’ opinions.

Conclusion. Animated alterations of all-data and high-certainty-data maps were not found to

be superior to the static high-certainty-data maps in cartography.

Animated Frequency-framed - Conventional Uncertainty Plots. The extisting work in the
evaluation of animated frequency-framed uncertainty visualizations in comparison to other more
conventional static designs is discussed here.

Hullman et al. [2015] found that HOPs supported more accurate probability estimates than
static alternatives (violin plots and error bars). Higher precision in participants’ inferences came
at a cost of time. Hullman et al. [2015] argued that HOPs required little statistical background to
interpret as only simple mental processes were required to infer properties of the distributions.

Kale et al. [2019] compared the effectiveness of HOPs, error bars, and line ensembles (this
is a form of discrete plot) as to users’ ability in defining a trend in ambiguous data. They found
that participants were able to correctly infer the underlying trend in presented data of lower level

of evidence when using HOPs rather than static aggregate uncertainty visualizations.

Conclusion. Overall HOPs are preferred over interval, density, or discrete plots. According
to Kale et al. [2019] the greater effectivenes of HOPs could be attributed to the fact that the
sampling-oriented visualizations of uncertainty are in alignment with visual system’s ability to

“form gist representations from experience”.
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Interactive Graphical - No Prediction of Uncertainty or Trends in Data. Hullman et al.
[2018] evaluated the effect of sketching one’s predictions about uncertainty in the replications of
an experiment prior to viewing the sampling distribution. They compared three conditions; in the
first, participants were asked to graphically predict what would happen when an experiment was
replicated; in the second, participants viewed the true sampling distribution for an experiment
in a discrete representation; in the third, participants were asked to complete a rule training task
about sampling distributions. Participants recall of the sampling distribution and accuracy in
estimating the replication uncertainty in a transfer task were evaluated. The findings suggested
that users were able to make better predictions about replications of new experiments when they
graphically predicted the replication uncertainty in an experiment.

Kim et al. [2017] evaluated the effect of interactive graphical elicitation of users’ prior beliefs
about trends in data. Users’ recall of the data was evaluated. Five conditions were investigated;
no prior prediction and simple observation of data (control group); self-explanation of presented
data typed in a text box; prior prediction of omitted data, comparative observation of prediction
and actual data, and self-explanation of the gap between the prediction and the actual data; prior
prediction of omitted data and comparative observation of prediction and actual data; prior pre-
diction of omitted data, comparative observation of prediction and actual data, and observation
of textual and visual annotation of the gap between the prediction and the data. For each one
of these conditions there was one of two types of data representation; text and visualization.
Participants who predicted the trend in data graphically and were prompted to self-explain data
outperformed the control group in recall and comprehension. The effects were observed when
visualization was used instead of text and persisted for participants with moderate or little prior
knowledge on the datasets.

A relevant user study was conducted by Kim et al. [2018]. Although this study did not com-
pare interactive and static conditions, it is interesting because it adds value to the findings of
Kim et al. [2017]. Kim et al. [2018] used a similar interactive graphical elicitation interface
and evaluated the effect of showing partipants predictions against other users’ predictions. Par-
ticipants recall of the data was evaluated. Participants recalled the data more accurately when
other users’ predictions had high degree of consensus in comparison to participants who only
viewed the data. Participants showed less trust in the validity of data and were more likely to
maintain their initial expectations when other users’ expectations aligned with their own initial

expectations but not with the data.

Conclusion. Interactive graphical prediction of the replication uncertainty in an experiment
help users make better predictions about the replications of new experiments. Also interactive
graphical prediction of trends in data improves viewers’ recall of the data when their predic-
tions are presented against the actual data and the predictions’ of other people who present high

consensus.
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3.2.2.3 Evaluation of Uncertainty Visualization in Bayesian Reasoning

Existing work in human Bayesian reasoning found that people perform poorly in Bayesian rea-
soning tasks, where they need to calculate the conditional probability of a hypothesis by up-
dating their prior beliefs in the light of data (apply Bayes’ rule). It was found that people’s
difficulty to perform well in Bayesian reasoning tasks is attributed to various cognitive biases
[Cole, 1989; Gigerenzer and Hoffrage, 1995; Tversky and Kahneman, 1974] like the base rate
neglect [Tversky and Kahneman, 1974]. Many research efforts in the literature focused on sug-
gesting problem descriptions including visualization for debiasing people’s Bayesian judgments
and improving their performance. The evaluation work conducted in this direction is reviewed

in this subsection.

Graphical Displays - Textual Descriptions. People’s performance in Bayesian reasoning
seemed to have been benefited when graphical displays (contingency tables, signal detection
bar, detection bar, probability map or double-tree diagram) [Cole, 1989; Khan et al., 2018] or
iconic pictorial representations [Brase, 2009] or interactive frequency grids with check boxes
[Tsai et al., 2011] were combined with a textual description of the Bayesian reasoning problem.
Expanding the sample through crowd-sourcing [Micallef et al., 2012; Ottley et al., 2012] led to
inconsistent findings with previous work possibly because the wording of textual descriptions
could significantly impact users’ accuracy [Ottley et al., 2016]. Ottley et al. [2016] showed that
(text-only or) visualization-only designs were more effective than those which blend text and

visualization.

Conclusion. Text-only or visualization-only designs seem to be more beneficial for people’s

Bayesian reasoning.

Interactive - Static Representations. There are few studies having investigated the effect of
interaction on users’ performance in Bayesian reasoning, and the findings were unexpected.

Mosca et al. [2021] found no improvement in people’s Bayesian reasoning by adding inter-
action (checkboxes, drag and drop, hover, tooltips) to static icon arrays to show or hide subpop-
ulations or link the textual description to the visualization. Khan et al. [2018] found that interac-
tively constructing the double tree diagrams [Khan et al., 2015] through dragging-and-dropping
led to worse performances in the Bayesian reasoning tasks. Khan et al. [2018] suggested that
people’s worse performance when using interaction might result from the cognitive overload
caused to them by interacting. Khan et al. [2018] argues that these findings arise the need for
future research in the effects of interaction on cognitive load.

Conclusion. The existing work about the added value of interaction on static visualizations is

little and thus, conclusions about this contradiction cannot be easily drawn.
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3.2.3 Challenges in Designing and Evaluating Uncertainty Visualizations

Challenges in Designing Uncertainty Visualizations. Although the presented literature sug-
gests that communication of uncertainty helps people make better and more informed decisions,
it may also confuse them if the design of the uncertainty visualization does not account for 1)
the needs and 2) the ways that people naturally reason about probability. These two important
parameters should be considered in the process of designing uncertainty visualizations.

Regarding the first parameter, Greis et al. [2017] emphasized the importance of developing
general design guidelines as to how to design for and with uncertainty in HCI. The lack of
general design guidelines is a serious problem often leading designers to omit uncertainty. In
many instances though the application may set design specifications for the representation of
uncertainty. For example, in the case of designing visualizations for a transit prediction mobile
application by Fernandes et al. [2018]; Kay et al. [2016b], users had to make quick, in the
moment-decisions. The representations of uncertainty had to be glanceable and compact for the
mobile phone display. That was a helpful cue for the designer to create appropriate displays of
uncertainty.

Regarding the second parameter, the ways that people reason about uncertainty depend on
various factors. The statistical literacy of viewers of uncertainty visualization is one such fac-
tor. Many typical uncertainty representations like error bars are misunderstood or misinterpreted
especially by non-experts or researchers unfamiliar with statistical concepts like confidence in-
tervals and standard error [Belia et al., 2005]. Another factor is cognitive biases in people’s
judgments under uncertainty because of the reliance on judgmental heuristics [Tversky and Kah-

neman, 1974]. According to [Hullman, 2016], people often employ

a form of intuition that provides a mental shortcut for hard decisions. Most heuris-
tics work by substituting a simple but less accurate representation to turn a difficult
decision about a situation with multiple parameters and uncertainties into an easier

one.

The ways that people more naturally reason about uncertainty is another factor. For exam-
ple, people more accurately understand frequency formats than probabilities [Gigerenzer, 1996;

Gigerenzer and Hoffrage, 1995; Hoffrage and Gigerenzer, 1998].

Challenges in Evaluating Uncertainty Visualizations. The process of designing the evalu-
ation of uncertainty visualizations needs attention. Hullman [2016] argued that this process is
usually error-prone and categorizes the factors she believes influence the effect of evaluating

uncertainty visualizations into three categories:

* the nature or definition of probability and subjective probability distributions (e.g., should

participants’ subjective uncertainty be compared to statistical uncertainty?);
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* the sensitivity of participants’ responses to the elicitation method (e.g., response modes as

numeric responses, decisions between alternatives, Likert scale ratings, etc.);

* the use of heuristics in the judgements of probability by users who try to make their

responses resemble normative ones.

She also suggested some good practices to be followed in the design of the evaluation routine.
Hullman et al. [2019] presented a taxonomy of six levels of decisions that should be made
in the designing of an uncertainty visualization evaluation experiment: the behavioral targets
of the study, expected effects from an uncertainty visualization, evaluation goals, measures,
elicitation techniques, and analysis approaches. They reviewed existing work in the evalua-
tion of uncertainty visualization and analysed the design decisions made for the evaluation of
such visualizations. Based on this analysis they suggested a set of recommendations designed
“to encourage more transparent evaluations aligned with the state of the art in knowledge on

uncertainty comprehension”.

3.3 Visualization of Models’ Structure

Uncertainty is inherent in probabilistic models (found in the prior distributions of the mod-
els” parameters) and their outputs (found in the posterior distributions of the models’ parame-
ters). Nevertheless, communicating only the uncertainty of parameters or predictions is often
not enough. In tasks like model refinement, parameter tunning, or decisions of interventions on
a variable a good comprehension of the dependencies of the model’s variables in the model is
required. For this reason the structure of the model should be communicated to users along with
the uncertainty.

A common way to represent the structure of a model visually is through directed graphs.
This section presents the existing work in presenting the relations of variables in a model graph-
ically. Section 3.3.1 presents the Bayesian network, a “skeleton” for representing a probabilistic
model’s joint distribution in a factorized way [Koller and Friedman, 2009], and the available
tools for generating such representations. Section 3.3.2 presents the causal diagram, a graphical
representation of the causal relations among the variables in a model. It presents the existing
tools suggested in literature for visualizing graphically the causal relations in datasets recov-
ered by causal discovery algorithms. Finally, it reviews the evaluation work in the effects of

visualization in causal reasoning.
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3.3.1 Probabilistic Models
3.3.1.1 Bayesian Network

A common visual representation of the structure of a probabilistic model is the Bayesian net-
work [Koller and Friedman, 2009] (see Fig. 3.1(a) which replicates Fig. 1.4 shown in Chapter
1). A Bayesian network comprises a Directed Acyclic Graph (DAG) with nodes correspond-
ing to random variables and edges indicating the direction of the “influence” of one node on
another. The Bayesian network apart from presenting an at-a-glance overview of the model’s
variables and their dependencies, provides a framework for compactly representing the model’s
joint distribution by factoring out independencies.
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Figure 3.1: Various graphical representations of the homogeneous probabilistic model of the
drivers’ reaction time problem (Box 2.1). (a) Bayesian network, (b) DoodleBUGs’ graph, (c)
PyMC'’s graph, and (d) Kruschke-style diagram.

The dimensionality of the joint distribution of a probabilistic model depends on the num-
ber of its parameters (i.e., it increases with the complexity of the model) (explained in Sec-
tion 2.2.4.1). Expressing a multi-dimensional joint distribution in terms of the simpler marginal
distributions of the model’s parameters is straight-forward when the model’s parameters are
independent (the joint distribution equals the product of the marginal distributions of the param-
eters) but becomes challenging when the parameters present dependencies like in hierarchical
models.

A Bayesian network encodes a set of conditional dependence and independence assumptions
among model’s random variables. The conditional dependencies are represented as edges, while
the conditional independencies as missing edges in the DAG. Bayesian networks satisfy the local
Markov property, which states that a node is conditionally independent of its non-descendants
given its parents. As Koller and Friedman [2009] very precisely state in their book, there are
two equivalent ways that a Bayesian network can be viewed; “a skeleton for representing a joint
distribution compactly in a factorized way”, and “a compact representation for a set of condi-
tional independence assumptions about a distribution”. Box 3.1 demonstrates how the Bayesian
network of a hierarchical model can be interpreted into a set of conditional independence as-

sumptions and used to factorize the joint distribution of the model.
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The Bayesian network is a specific instance of a probabilistic graphical model representing
the model’s joint distribution. There may be multiple valid probabilistic graphical models for
a joint distribution because there may be more than one ways to factorize it. For example, any
joint distribution of two variables (X, y) that are not independent may be represented by both
X — y or X < y [Lattimore and Rohde, 2019a]. The direction of the arrows in probabilistic
graphical models do not necessarily indicate the order of the operations in the modelled data
generating process (e.g., the order of operations as determined by the definition of the model
e.g., in probabilistic statements) but in Bayesian networks they do. Thus, Bayesian networks

provide a natural representation of the model’s joint distribution.
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Box 3.1 Bayesian network of the hierarchical model of the drivers’ reaction time prob-
lem

Fig. 3.2 presents the Bayesian network of the hierarchical model of the drivers’ reaction
problem defined in Box 2.3 in Chapter 2.

Conditional dependencies among variables in Bayesian networks are represented by the
directed edges. For example, the (uy,b;) edge expresses the conditional probability dis-
tribution p(b; |1y, ). Bayesian networks satisfy the local Markov property: a node is condi-
tionally independent of its non-descendants given its parents. For example, the conditional
probability of node rt; given its parent nodes a;,b;,s; is conditionally independent of

the hyperparameters’ nodes, U5, 05, Uy, Op, Os:

p(rti|ai7bi7Si?l'taadaaubacb?GS) = p(rti|ai7biasi)- (31)

The joint distribution of the model can be expressed as a product of the variables’ con-
ditional probability distributions based on the chain rule of probability, the local Markov
property, and the independence assumptions of the model’s variables (see Box 2.3 for the

assumptions):

p(rti7a—i7bi7 Si;ﬂaacaa“b76bacs) —
p(rtilai)-p(rtilbi)-p(rtisi)-p(ailta) plai|os) p(oi|ty) -p(bilop) p(si|os)-

P(Ha) - P(0a) - P(Hs) -p(05) -p(0s)

(3.2)

Equation 3.2 shows how a Bayesian network can provide a factorized representation of the
model’s joint probability distribution such that each factor in the factorized representation

is represented by an edge in the DAG.
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Figure 3.2: Bayesian network of the hierarchical model of the drivers’ reaction time problem
defined in Box 2.3.

3.3.1.2 Existing Tools for Graphical Representation of Probabilistic Models

The existing tools that can generate a graphical representation of a probabilistic model in the
spirit of Bayesian networks are reviewed in this section. There are few tools that could automat-

ically transform a specification of a probabilistic model into a graphical representation. There
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are two PPLs that provide some form of graphical model interface; BUGS (via DoodleBUGS)
and PyMC3.

DoodleBUGS is a software component of WinBUGs [Spiegelhalter et al., 2003] that provides
a Doodle editor for creating probabilistic graphical models as DAGs and automatically transcrib-
ing DAGs into BUGs language [Lunn et al., 2009]. However it cannot do the opposite, namely
transform a model written in BUGS into a DAG. Fig. 3.1(b) presents the graphical probabilis-
tic model of the drivers’ reaction time homogeneous model that was created with DoodleBUGs.
PyMC [Salvatier et al., 2016] provides a method that converts a probabilsitic model expressed in
PyMC code into a graphviz Digraph (pymc.model_graph.model_to_graphviz) using
the Graphviz graph visualization software [Ellson et al., 2004]. Fig. 3.1(c) presents the graphi-
cal model of the drivers’ reaction time homogeneous model that was generated through PyMC’s
interface.

Kruschke [2015] introduced a more informative DAG that shows iconic “prototypes” of the
distributions on each node of the diagram. Kruschke [2012b] argues that this type of diagram
(in comparison to the ones created with DoodleBUGS) has “a much more direct correspondence
to lines of code in JAGS/BUGS: (Usually) each arrow in this diagram corresponds to a line
of code in the JAGS/BUGS model specification.” Kruschke [2012b] explains that this type of
diagram indicates which parameters participate in the same distribution, which is not visible in
DoodleBUGs graphs. There is no automatic tool for the creation of this Kruschke-style diagram,
but Kruschke [2013] presents two drawing tools that were created specifically for the creation of
this type of diagram; a set of distribution and connector templates in LibreOffice Draw and R;
and LaTeX/TikZ scripts. Fig. 3.1(d) presents the Kruschke-style diagram of the drivers’ reaction

time homogeneous model created with the LibreOffice Draw template.

3.3.2 Causal Models
3.3.2.1 Causal Diagrams

A probabilistic graphical model in which a link x — y is assumed to mean x causes y [Lattimore
and Rohde, 2019a] represents a causal model. Causal models are “mathematical models repre-
senting causal relationships within an individual system or population” [Stanford Encyclopedia
of Philosophy, 2018]. The probabilistic graphical models that represent causal models are called
causal diagrams.

Causal diagrams were first introduced by Wright [1921]. Causal diagrams are used for com-
municating causal models and facilitating causal reasoning (i.e., reasoning about what variable
affects what other variable). They are also used for causal inference, namely for quantifying
the causal effects among variables [Greenland et al., 1999; Pearl, 1995; Pearl and Mackenzie,
2018].

In this thesis the focus is more on how causal diagrams can be used as visual aids for causal
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reasoning. The relevant existing work is reviewed in this section. First, existing visualization
tools in literature that present graphically learned causal structures by automatic causal discovery
algorithms are presented. Then, a review of relevant work in the evaluation of visualization in

facilitating people’s causal reasoning follows.

3.3.2.2 Existing Visualization Tools for Causal Reasoning and Exploration

Various algorithms have emerged recently that can learn the causal structure from observational
data, as well as experimental data [Glymour et al., 2019; Malinsky and Danks, 2018]. The
learned causal structure informs about whether the variables in a dataset have a cause-effect
relation and sometimes even about the direction of this relation (which variable is the cause, and
which one is the effect). Various visualization tools have been suggested in the existing literature
for the visualization, exploration, and validation of these learned causal structures.

Dang et al. [2015] presented the “ReactionFlow”, an interactive visualization tool for causal-
ity analysis amongst proteins, complexes, and biochemical reactions in biological pathways.
That tool enabled users to interactively filter, cluster, and select pathway components across
linked views, or use animation to view the flow of activity through a pathway. Xie et al. [2020]
presented the “Causality Explorer”, a visual analytics tool for validating causal relations and ex-
ploring causal effects through simulations of interventions and stratification of variables. Ge
et al. [2020] presented the first web-based causal discovery tool that presents the graphical
models of the learned causal models and provides interactive features for the exploration and
annotation of the causal relations among the variables.

There are cases when automatic causal discovery algorithms are not able to determine the
direction of the causal relation between variables (discriminate between a cause and effect)
solely based on the observed data. In these cases, causal assumptions inferred through the
analyst’s or expert’s experience and expertise could be valuable. Existing literature presents
some notable causality elicitation and visualization tools that can bring the analyst in a closed-
loop with the causal analysis tool.

Wang and Mueller [2015] presented the “Visual Causality Analyst”, an interactive visual
tool that enables domain experts to verify and edit the causal links on the estimated causal
model and explore causal effects by controlling for variables through stratification and condi-
tioning or regression models. Wang and Mueller [2017] extended this work by developing more
features which were integrated into a new tool called the “Causal Structure Investigator”. The
new visualization tool had many advantages in comparison to the previous tool; among others, it
presented the causal relations in path diagrams laid out using spanning trees to better expose the
flow of causal dependencies, used a scoring function and corresponding visual hints to compare
alternative causal models, and provided interactive facilities for the exploration of data subdivi-
sions, which might imply different associations among variables depending on how the data is
subdivided (this is described as the Simpson’s Paradox [Simpson, 1951]).
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3.3.2.3 Evaluation of People’s Causal Reasoning with Visualization

Existing visual analytics tools aim at facilitating the exploration of causality in data through the
use of visual means (e.g., graphs, interaction, annotations, bar/pie charts etc.) but there is very
little known about how well people can infer the causal structure of data through visualization.
The existing work is still quite poor in this field.

Kale et al. [2022] evaluate the quality of people’s causal reasoning based on visualizations.
They assessed the ability of users to detect a treatment effect and a confounding relationship
in visualized count data. They tested their hypotheses for non-interactive visualizations (text
contingency tables, faceted icon arrays, and faceted bar charts) and two interactive designs;
aggregating bars with similar design to the faceted bar charts whose faceting could be interac-
tively toggled, and cross-filtering bars, which were linked bar charts that could be interactively
cross-filtered by clicking on the bars. The analysis of the collected data did not show any re-
liable improvement in participants’ performance when they used the common visualizations in
comparison to textual contingency tables.

Yen et al. [2019] evaluated people’s performance, strategies, and pitfalls in identifying me-
diators in a dataset using bar charts. They compared an interface presenting data in bar charts
with a similar design that included a component allowing an interactive graphical representation
of the variables’ causal relations. They found that participants’ performance in identifying the
mediator significantly decreased when a confounding variable influenced the variable being ana-
lyzed. Participants’ individual visualization exploration strategies and the design of the interface
seemed to have influenced participants’ reasoning performance.

Lagnado and Sloman [2004] evaluated the ability of people to identify a causal chain model
(a three-variable causal model that included a mediator) when simulated data was presented to
them. The participants were either presented with observational data or were able to interactively
intervene on one of the variables and set its value and then view the values of the other two
variables. They found that interveners’ performance was better than observers’ having ruled out
as possible explanation for this any informational differences between the two conditions. The
experimental evidence confirmed that the advantage of interveners was driven by a temporal
signal: “interveners exploited the cue that their interventions were the most likely causes of any

subsequent changes”.

3.4 Inspiring Ideas From the Literature on Interactive Visu-

alization

Exploiting interaction for communicating complex ideas, methods, and results in science, re-
search, or education is well-established in the research literature. Various interactive visualiza-

tion techniques have been developed to either reveal dimensions of the information that cannot
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be conveyed through static visualizations or to enhance comprehension of the presented infor-
mation.

For example, there is an extensive literature on interactive projection of high dimensional
data [Faith, 2007; Sankaran and Holmes, 2018]. These occur in Bayesian probabilistic models
with many parameters in the joint distribution. Some studies focused on the importance of inter-
action for comprehension and engagement [Hullman et al., 2018; Kim et al., 2017, 2018; Tsai
etal., 2011]. A novel interactive reporting method for scientific and research results brings inter-
action in the center of attention for statistical reporting. Dragicevic et al. [2019] presented a new
approach to statistical reporting where readers of research papers can explore alternative anal-
ysis options by interacting with the paper. The “explorable multiverse analysis reports” allow
authors to report the outcomes of many different statistical analyses and readers to dynamically
change some elements of the analysis and get new “versions” of the paper based on the new
produced results.

The “explorable multiverse analysis reports” rely on two key concepts. The first is the “mul-
tiverse analysis” in statistical reporting [Steegen et al., 2016], where all processed data sets that
are generated from raw data based on different choices of processing are analysed to produce a
multiverse of statistical results. This multiverse reveals the fragility of the results across various
processing options. The second is the idea of “explorable explanations” [Victor, 2011a], which
aims at encouraging active reading through active engagement of the readers with a new form
of interactive narratives (e.g. reactive documents, explorable examples, contextual information)
that could allow readers dynamically change some elements and get a new “version” of the
narrative.

Victor has also expounded how interaction, simulation and visualization could be used for
simplifying abstract ideas to provide an intuitive understanding. For example, he suggests the
creation of a high-level mathematical tool that could become ‘“‘as ubiquitous as the pocket cal-
culator”, which would transcribe mathematical problems into software simulations of simple
physical models instead of abstract equations and symbols [Victor, 2009]. He argues that this
kind of software could introduce a new form of practical mathematics that could “provide a
broader context, allowing a deeper understanding of the problem; easily handle problems which
are difficult or impossible to solve analytically; and be used to actively create, not just passively
understand”. An illustrative example was the scrubbing calculator [Victor, 2011c] that inter-
actively explores parameter spaces of algebraic problems by scrubbing over numbers until the
desired result is reached.

Finally, Victor [2011b] highlights the importance of a “ladder of abstraction”. By moving
between levels of abstraction starting from the lower one that indicates a concrete working sys-
tem and stepping down to the higher one that indicates abstract equations or aggregate statistics,
the system designers’ intuition and their design develop “side-by-side”. Victor [2011b] argues

that interaction in this iterative process of exploring a system design is an essential element to
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move around the “ladder of abstraction”.
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Chapter 4

Using Interaction for Visualizing

Probabilistic Programming Models

4.1 Summary

This chapter presents the first of the three parts of this research. The focus of this part is on
the design and implementation of a novel interactive graphical representation of a probabilistic
model’s structure at varying levels of granularity, with seamless integration of uncertainty vi-
sualization. The probabilistic model is assumed to be expressed in any PPL and the intention
is to achieve an automatic transformation of the probabilistic model expressed in a PPL into
this interactive graphical representation. This interactive graphical representation supports the
exploration of the prior and posterior MCMC sample space.

Section 4.2 discusses the purpose of this work in more detail, Section 4.3 presents the typical
tasks that users of Bayesian probabilistic models need to undertake and could be supported by
the proposed tool, Section 4.4 presents the main aspects of the design and implementation of
the proposed tool, Section 4.5 provides a comparative presentation of the proposed tool and
other existing relevant tools, Section 4.6 demonstrates illustrative examples of use, and finally,
Section 4.7 discusses the contributions and limitations of this work and the potential future

endeavours in the field.

4.2 Purpose

Bayesian probabilistic modeling has many advantages; it accounts for uncertainty, incorporates
prior expert knowledge, has a well-defined intrinsic structure in terms of relations among ran-
dom variables: the mathematical and statistical dependencies are explicitly stated. Extremely
flexible Bayesian probabilistic models can be implemented via PPLs, which provide automatic
inference via efficient MCMC sampling. Nevertheless, Bayesian probabilistic models’ structure

and inference results can be challenging to communicate as the model becomes more complex,
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perhaps with hierarchical structure, multivariate distributions, complex inter-dependencies and
increasingly abstract latent states. Communicating uncertainty has challenges, too. Bayesian
reasoning is closely tied to reasoning about conditional probabilities. People with a weaker
background in statistics can have difficulty reasoning about (conditional) probabilities [Diaz
and Inmaculada, 2007; Gigerenzer and Hoffrage, 1995; Kahneman and Tversky, 1974; Koller
and Friedman, 2009; Tversky and Kahneman, 1973, 1974]. For example, people find it diffi-
cult to distinguish conditional and joint probabilities, and recognize that conditional probability
involves a restriction in the sample space [Diaz and Inmaculada, 2007]. But even in cases that
people are fully aware of these issues in theory, it is practically difficult to reason about the
conditional probabilities of a complex model.

There are visualization tools that seek to communicate the structure of a probabilistic model
or its inference results to users in a compact and relevant way. For example, ArviZ [Kumar
et al., 2019] is a unified library in Python that provides tools for diagnostics and visualizations
of Bayesian inference for various PPLs. A very simple probabilistic model with few parameters
could allow a human user to contemplate the entire model at once and comprehend how param-
eters interact with each other and the predictions of the model. However, a complex Bayesian
model could result in a high-dimensional posterior distribution that would require unwieldy ta-
bles to present summary statistics or a multitude of uncertainty visualizations, one per marginal
distribution, that are difficult to grapple with (as explained in Section 1.3.1). Also the more
complex a Bayesian probabilistic model becomes, the more error-prone the specification and
validation process of a Bayesian probabilistic model becomes given the existing ways to repre-
sent probabilistic models’ structure and inference results.

Another difficulty users usually encounter is that most existing visualization tools for Bayesian
analysis are PPL-dependent as they require the model- or inference-related information to be
provided in formats (structures) compatible with the specific PPL they were built for. This
might not allow the exploitation of the available representation possibilities of all existing visu-
alization tools by the users of a specific PPL or might require users to switch from one PPL to
another to be able to benefit from a certain visualization offered for a specific PPL backend.

There is need for tools that would automatically synthesize user interfaces to PPL inference
results independently of the PPL used for the inference, creating a compact graphical represen-
tation that would convey model- and inference-related information in conjunction. These tools
could exploit interactivity to vary the granularity of the presented information and facilitate the
exploration of complex probabilistic models’ structures and inference results. Such tools could
replace large tables of statistics with interactive graphical representations which would integrate
the structural relation of parameters along with their inferred distributions to convey uncertainty
accurately. Such tools could also support interactive sensitivity analysis of the model’s parame-
ters.

In this chapter, one realization — design and implementation — of such a tool is presented; the
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interactive probabilistic models explorer (IPME). The objectives of its design are:

1. automatic synthesis of a graphical representation of a model independently of the PPL

used;

2. seamless integration of uncertainty visualization into the graphical representation of the

model;

3. inclusion of both prior and posterior distributions of the model’s parameters, and the cor-

responding predictive ones for the observed variables;
4. interactive exploration of inference MCMC sample space;
5. interactive sensitivity analysis of model’s parameters;
6. granularity in the presented visual information according to user’s choices and needs;
7. inclusion of predictive checks.

These objectives are set to support a series of probabilistic models-related tasks that might
not be well supported by existing tools. Real users like model builders, decision-makers, or
researchers need to rely on probabilistic models to conduct Bayesian analysis or interpret the
results of Bayesian inference. These users need to be supported in their tasks. This chapter
identifies and describes a number of cognitive and practical probabilistic models-related tasks
that people dealing with probabilistic models and Bayesian inference usually need to undertake.
Some of these tasks require new IPME-like tools to be supported. A comparison of existing
visualization tools with the new suggested tool is presented in this chapter to emphasize the
identified gap in the availability of such tools. Concrete use case scenarions demonstrating the
use of IPME in a variety of scenarios (and probabilistic models) to support such tasks are also
presented in this chapter.

4.3 Congitive and Practical Tasks that Users of Bayesian Prob-
abilistic Models Undertake

The purpose of this section is to present the main cognitive and practical tasks that most users
(i.e., modelers, decision-makers, or researchers) are usually required to undertake when they
have to deal with probabilistic models and Bayesian inference. Some of these tasks might be
supported by existing visualization tools, but possibly not efficiently or effectively, while others
are not supported at all. These tasks informed the design of IPME, which will be presented in the
next section. The identified tasks are categorized in four categories, each indicating a different

user intention.
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Distributional Information Comprehension. The comprehension of the distributional in-
formation contained in the prior and posterior joint distribution of a Bayesian probabilistic model
is critical for any relevant task, from building and validating the model to interpreting the in-
ference results and making decisions based on them. The prior and posterior distributions of
a Bayesian probabilistic model are multi-dimensional joint distributions (as explained in Sec-
tion 2.2.4.1). The marginal distributions of the prior and posterior distributions of the model are
slices which reveal the uncertainty of a subset of (usually one of) the model’s parameters. PPLs’
typical output consists of a frace, a set of samples from the posterior distribution resulting from
inference with a MCMC sampler; that’s, the output from “running” the model (as explained in
Section 2.3.3). PPLs can also produce a set of independent samples drawn from the prior joint
distribution of the model. The marginal (prior or posterior) distribution of each parameter in a
model can be easily estimated from these (MCMC) samples.

Fig. 4.1(b) in Box 4.1 presents the posterior MCMC samples of a two-parameter model and
Fig. 4.1(c) shows the estimated 3D posterior distribution along with the 2D marginal distribu-
tions of the parameters (in dark blue). The distributional information of the prior or posterior
joint distribution of a model is usually communicated in the form of summary statistics or un-
certainty visualizations (e.g. KDE plot, error bar, Box plot, CDF plot, quantile dotplot) of the
marginal distributions of the model’s variables. The complexity of the model (i.e., number of
parameters and number of variables’ indexing dimensions) determines the number of the un-
certainty visualizations or rows in the tables of summary statistics. Thus, as the complexity
of the model increases, the distributional information of the model’s variables becomes harder
to communicate, explore, and ultimately, comprehend. Some representation that would allow
granularity of the presented information and some mechanism of requesting the information of
interest from the outputs of probabilistic models expressed in a PPL would be really useful.

The density of the joint samples of the model’s prior or posterior usually is not uniformely
distributed in the corresponding sample space. Understanding how the distribution of this den-
sity might vary given that a parameter or a subset of parameters take a specific value or values
in a specific subrange is useful when users need to estimate conditional probability densities of
the form p(Y|X = x), where X and Y are two random variables and it is observed that variable X
takes the value x. For example, this could be particularly useful for decision-makers who would
like to have estimates of a parameter’s uncertainty under some specific conditions, which could
represent a worst case scenario.

Estimating conditional probabilities from the output of a PPL leads to some form of querying
the results of the MCMC process; for example, a conjunctive restrictionlike (1.6 < u < 2.0)
AND (1.0 < o < 1.4) forthe mean and standard deviation of the average minimum tem-
perature of the example in Fig. 4.1. The sample space of the (prior) posterior distribution can be
restricted by setting bounds to the range of values of the individual parameters. Each restriction

on the value range of a parameter defines a slice on the distribution. All the MCMC samples that
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belong to the subset of the restricted sample space determine the distribution of the model within
this subset of the sample space. In a conjunctive query, if we restrict the value range of more
than one parameters, then the resulted subset of the sample space of the (prior) posterior joint
distribution is defined by the intersection of all the restricted value ranges of the parameters. For
example, Fig. 4.1(b) presents the MCMC samples that lie in the intersection of two value ranges
restrictions in orange and Fig. 4.1(c) presents the re-estimated posterior distribution within the
restricted sample space.

Such queries could be specified and reported visually if the user could interactively set value
ranges and get the updated uncertainty visualizations for the entire model’s joint distribution
within the defined subset of the sample space. At the moment, it does not seem that tasks like
these are supported by existing tools and libraries for representing and visualizing the outputs of

Bayesian inference.

Box 4.1 Average Minimum Temperature in Scotland

This example presents a two-parameter Bayesian model modeling the average
minimum temperature in Scotland for the month November. The average minimum
temperature in Scotland in month November for the years 1884-2020 is available in a
dataset. PyMC3 is used for the inference (see Appendix A.l for definition of model
in PyMC3 and link to the dataset). The inference results are explored by setting two
value range restrictions; u € [1.6,2.0] and ¢ € [1.0,1.4]. The posterior marginal distri-
bution of i (in orange) in the subset of the posterior space became slightly tighter and
shifted towards lower values of u, which lead us to less uncertainty about expecting

lower average temperature in Scotland for November given this particular conditioning.

=10

normal halfNormal

1~ Normal(2,10)
o ~ HalfNormal(10)
l y ~ Normal(p,c)

(a)

Figure 4.1: (a) Kruschke-style diagram of the two-parameter Bayesian model. (b) Posterior
MCMC samples of the model’s parameters. The samples that lie within the intersection of
the value range restrictions are colored in orange. (c) The estimated posterior distributions
and marginal distributions based on the entire posterior MCMC sample set (dark blue) and
the restricted sample set (orange).

Inference Results Comprehension. Comprehending simply the distributional information

of the posterior distribution might not suffice to achieve comprehension of the inference results.
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For example, some users might want to investigate the sensitivity of inference results to the prior
distributions chosen. This task would require a comparison between the prior and posterior dis-
tribution; the users would need to observe both in parallel and in a direct and explicit way. This
kind of comparison between the prior and posterior distribution could also help users to get a
profounder understanding of how their prior knowledge changes in the light of the data: e.g.,
does the posterior distribution become wider or shift in the posterior space given the actual ob-
servations? (for example see example in Box 1.6 in Chapter 1). These tasks could be facilitated
by presenting the uncertainty visualizations or tables of summary statistics of the distributions
of model’s variables side-by-side. The complexity of the model could be a hurdle, though, in
this case, as well.

Model Comprehension. In many tasks like decision-making in crucial areas like healthcare
or stock market investments, going a step further and acquiring a profounder understanding of
the structure of the model might be critical. Understanding whether and how one parameter
might affect another in a probabilistic model could enable decision-makers to account for any
possible risk entailed by the produced predictions of such models. Aspects of the structure of
such models that are usually useful to be well-understood are the parameters’ associations (e.g.,
which parameters are used to set the parameters of the distribution of another variable; that’s,
the parent-child relations of the variables in a model), the hierarchies (e.g., which parameters
are hyper-parameters and how deep in the model’s hierarchy they lie), and the dimensions of the
parameters (e.g., which parameters are global or model groups of samples).

The parent-child relations of variables in a probabilistic model, and the hierarchy and dimen-
sion of the parameters are glanceable in the definitions of the models in probabilistic statements
or any existing graphical representation of the model (in the form of a DAG). Nevertheless, un-
derstanding the effect that one parameter might have on the distribution of another parameter
in a probabilistic model (e.g., how does the distribution of one parameter change if another pa-
rameter takes a certain value? how sensitive is one parameter to changes in the value of another
parameter?) given these means of communicating the model’s structure relies on the ability of
the user to interprete the mathematical details of the model’s definition.

Existing visualization libraries or tools do not seem to offer an alternative representation
that could facilitate the communication of the effects one parameter has on others within the
context of a probabilistic model in ways to alleviate users’ potential inability to deal with statis-
tical/mathematical details. One way to explore the sensitivity of parameters in the model could
be setting range restrictions on one parameter and observe how the uncertainty visualization of
others is affected. By restricting the value range of one or more parameters the influence on the
remaining parameters can be observed, because only the MCMC samples of the prior or poste-
rior joint distribution that satisfy the constraints are included. For example, setting parameter (
in increasing value ranges and observing how the posterior predictive distribution of y changes

in the probabilistic model shown in Fig. 4.1(a) could help people interprete the effect of param-
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eter mu on the mean value of the distribution of y. Through such exploration the parameters that
are strongly coupled or, conversely, are wholly independent could be identified. This could be
critical for decision-makers, who in the process of assessing the risk, would like to know how
fragile the estimation of crucial parameters is.

Model Check. A common task especially for model builders is checking and validating the
model. For example, one type of model validation is checking whether the prior (predictive) dis-
tributions capture effectively the prior knowledge (e.g., expected value ranges for parameters).
Another type of model validation is checking whether the predictions of the model capture
sufficiently aspects of the observed data that are of interest. These kind of checks are called
predictive checks [Lambert, 2018a, Chap. 10.3; Sinharay and Stern, 2003]. Through predictive
checks statistics of the observed data are tested against the predictions of the model. The aspects
of the observed data that are usually investigated could be defined as statistical metrics over the
data. For example, the extreme observed values could be interpreted as the min and max value
of the observations. Other common aspects of the data that could be checked are the mean and
std (standard deviation) values.

A common metric for checking how well these statistics of the observed data are repre-
sented by the predictions of the model is the predictive (Bayesian) p-value [Lambert, 2018a,
Chap. 10.3; Sinharay and Stern, 2003]; the probability Pr(metric(ys) > metric(obs)),
where j € {0,1,..,N} and N is the number of coordinates of the indexing dimension of the
observed variable y, vy indicates the set of predictive samples of the model for the j-th co-
ordinate of the indexing dimension and obs the set of actual observed data, and metric
€ {min,max,mean, std} or any other statistical metric considered [Sinharay and Stern, 2003].
The p-value represents the proportion of the N replicated datasets from the model (resulting from
the sampling happening in the loop in line 3 of Algorithm 1 shown in Section 2.2.5) for which
metric(y;y) > metric(obs). If none of the p-values of the test statistics is too high or low,
the model is considered to generate “replicate data” similar to actual observed one based on the
criteria of the provided test statistics.

Validating the priors of a model could be conducted by visualizing the priors with any typical
uncertainty visualization, but conducting predictive checks visually is not that straight-forward.
Histograms of the N calculated values of each statistical metric for the predicted samples are
commonly used for conducting predictive checks [Lambert, 2018a, Chap. 10.3; Sinharay and
Stern, 2003] to compare the distribution of the metric’s values for the predicted samples with the
value of the metric for the observed data. Existing visualization tools do not generally support
automatic creation of such visualizations from the definition of a model or its PPL output.

There is need for new tools to support users in probabilistic models-related tasks. These

tools could support:

1. decision-makers seeking to interpret inference results or make predictions;

2. experts seeking to effectively express their prior beliefs and the implications of their be-
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liefs on inference;

3. data-scientists and statisticians seeking to refine and validate an inference process (debug-

ging a PPL program such that it runs effectively).

The next section presents the design and implementation of one such tool, as proposed in this

thesis, the interactive probabilistic models explorer (IPME).

4.4 Interactive Probabilistic Models Explorer

This section discusses the design and implementation of the IPME tool. The discussion is split
into two parts. The first part presents the challenges of encoding any PPL model and associated
inference results into a coherent PPL-independent structure. This structure could be given as
an input to graphical tools like IPME. The realization of a pipeline to create such a structure is

shown. The second part focuses on the design and implementation of the IPME itself.

4.4.1 PPL Model Encoding

The automatic transformation of a PPL model into an interactive graphical representation is not

technically straight-forward. There are two types of information required:

e Model-related information: some transformation of the PPL source code (i.e. the lines

of code) that defines the model into model-related information;

* Inference-related information: the fraces of the model’s inference results (see Sec-
tion 2.3.3).

This research restricts to MCMC approaches to inference, and so it always deals with collections
of definite, (hopefully) independent samples representing possible model configurations. The
traces can include samples from the prior, posterior, prior predictive and posterior predictive
distributions.

A pipeline to encode a PPL model and its inference results into a unified PPL-independent
structure is shown in Fig. 4.2 (this pipeline was suggested and implemented by Williamson
[2019]). Fig. 4.2 presents the steps that a modeler should take to export a PPL model and its
inference results into a form tha can be accepted as input by the IPME tool. The following
subsections describe the model- and inference-related information encoded in this structure and

how this structure is generated by the pipeline shown in Fig. 4.2.

4.4.1.1 Model-related Information

Model-related information is necessary for the construction of the graphical representation (DAG)

of the model. The construction of a DAG requires, at minimum, the names of the nodes and
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Figure 4.2: Flowchart showing the steps that a modeler should take to export the PPL-specified
probabilistic model and the inference data into a standardized output, which will then be used as
an input to the IPME module. The presented pipeline adds three new steps to the typical model
specification and inference running routine; the export of the PPL model graph into a JSON
structure; the export of the inference data into an ArviZ InferenceData object, where the
structured description of the graph from the previous step is attached; and finally, the export of all
these into a collection of . npy arrays and metadata in a zipped file. A concrete implementation
of this pipeline is provided by the arviz_ json module [Williamson, 2019], which was created
for providing a standardized output for the PyMC3 models and inference data.

their associations that define the edges. Therefore, the input of the IPME tool should include
the names of the model’s variables and a list of the parent nodes for each variable. We would
also expect to be able to extract annotations for each parameter, including the distribution type
(Gaussian, Poisson, binomial, Dirichlet etc.), data type (floating point, integer), tensor shape
(univariate, N-d vector, MxN matrix, etc.), and inferential type (observed, free, deterministic).
In a tree-like structure like the DAG of a Bayesian network, the lowest level of nodes consists
of observed variables (see Section 3.3.1.1). The DAG is “rooted” at the top with non-stochastic
nodes with known, fixed values (e.g., constants used in specifying prior distributions). Unob-
served variables could either be free parameters defined by prior distributions or they could be
deterministic variables constituting transformations of other parameters or observed variables.
Each node in the DAG should provide some minimum information about the corresponding
variable. This could include the name of the variable and the type of the variable’s distribution;
this is sufficient to arrive at a graph similar to those of Kruschke [2015]. The last model-related
information needed is the dimensions and coordinates of the probabilistic model’s variables;
i.e. the tensor shape and its semantic structure. Interpreting tensor shapes in probabilistic pro-
gramming is subtle [Ma, 2019] and may require additional annotation. The dimensions of a
probabilistic model’s variables usually correspond to dimensions of the observed data and they
can be used to model groups of parameters (like in the case of a heterogeneous models as ex-

plained in Section 2.2.4.1). A variable might have multiple dimentions because it is distributed
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according to a multivariate distribution. IPME supports variables with univariate distributions,
depicts their distribution using 2D visualizations, and enables the user to define the coordinates
of the variables’ dimensions corresponding to observed data.

PPLs usually provide an API for users to access this model-related information, though
the form this information is provided in, varies significantly. A prototype (JSON) structure that
encodes the model-related information has been used to formulate the input of IPME (see details
about the JSON structure in Appendix B). The fields of this structure are vastly determined by
the model-related information that IPME needs to create the graphical representation of the
model. A modeler could access the model-related information using the corresponding API of
any PPL and produce the prototype structure of the model’s graph. A Python package called
arviz_json was developed by Williamson [2019] to provide an API for the transformation
of PyMC3 [Salvatier et al., 2016] model objects into these structures.

4.4.1.2 Inference-related Information and Data

PPLs store inference results in different ways, which are usually backend-specific. For example,
PyMC3 stores the MCMC samples in PyMC3 MultiTrace [MultiTrace] objects, whereas
PyStan stores inference results in PyStan Fit objects [Fit]. Thus, there is a need for a stan-
dardized backend-agnostic way of organizing and storing the inference-related information and
results before forwarding it to a tool that would synthesize an interactive graphical representa-
tion of the model. The samples for estimating the prior and posterior (predictive) distributions of
the model’s variables should be stored in standardized structures and linked to the PPL model’s
variable names.

One solution to this problem is provided by the ArviZ library [Kumar et al., 2019], which
provides an API for transforming the inference data of different inference back-ends and pro-
gramming languages (PyMC3, PyStan, CmdStanPy, Pyro, NumPyro, emcee, and TensorFlow
Probability objects) into ArviZ InferenceData! data structures. These are standardized data
structures for storing MCMC-based inference results that are dependent on xarray’ s? multi-
dimensional array structures that introduce “labels in the form of dimensions, coordinates and
attributes on top of raw NumPy-like multidimensional arrays”. The InferenceData objects
group various data sets that could be produced by a Bayesian analysis (prior or posterior sam-
ples, prior or posterior predictive samples, sample statistics etc.). ArviZ provides an API for
exporting the InferenceData data structures in net cdf> files. The arviz_json pack-
age is used for exporting ArviZ InferenceData objects into a zip file containing the model’s
DAG structure and inference results in a collection of npy* format arrays corresponding to those
of the InferenceData object. JSON metadata that link the model’s variables to the data ar-

"https://arviz—devs.github.io/arviz/schema/schema.html
2https://xarray.pydata.org/en/stable/why—xarray.html
3https://www.unidata.ucar.edu/software/netcdf/
‘https://numpy.org/devdocs/reference/generated/numpy.lib. format.html
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rays and provide information about the type of the samples (prior, posterior), the dimensions

and the coordinates are also included (see details in Appendix B).

4.4.2 Design and Implementation of IPME

IPME was created as a Python module that takes as an input the model- and inference-related
information in the standardized format presented in the previous section, and more concretely,
the output of the arviz_ json module. IPME creates the interactive graphical representation
of the model. For the developement of the IPME’s components Bokeh?, a Python interactive vi-
sualization library for modern web browsers, and Pane 19, a Python library for interactive web
apps and dashboards were used. The IPME tool provides a web-browser-based visualization of
the interactive probabilistic models explorer and thanks to Bokeh that affords high-performance
interactivity over large datasets, it provides a low-latency interactivity with the MCMC sam-
ple set. The code of the IPME tool and videos demonstrating the tool can be found in [Taka,
2020a,c]. I recommend the reader watches these videos as they read through the following de-
scriptions of the tool because the interactive aspects of the tool cannot be easily demonstrated in
the static form of figures shown.

Box 4.2 presents a hierarchical model that is used as a reference example in this chapter.

Fig. 4.3 presents the IPME representation of this model.

Box 4.2 The Eight Schools’ Hierarchical Model

This example presents a hierarchical model for predicting the effect of coaching pro-
grams on the scholastic aptitude test (SAT) for the admission to college in the US (see
Appendix A.2 for details about the model, and its specification in PyMC3). Observed data
from eight different schools is available. The eight schools’ hierarchical model is described

by the following set of probabilistic statements:

U ~Normal(ug=0,0=5) 4.1)

T~ Half-Cauchy(xg=0,y=05) 4.2)

0; ~Normal(U =U,0=T) (4.3)

y; ~Normal(u =6;,06 =0;) (4.4)

where 1 € {1, ..., 8}, y; are the observed changes in the SAT scores, and o; are the

standard errors of the observed scores’ changes.

IPME presents the model’s DAG in a tree-like structure. The tree is simplified into rows of
nodes ordered vertically from hyperpriors down to observed values. This format is a vertically

ordered representation which orders nodes such that constant values (which are not shown)

Shttps://docs.bokeh.org/en/latest/
Shttps://panel.holoviz.org/index.html
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Figure 4.3: The IPME representation of the hierarchical model of the eight schools problem
presented in Box 4.2. The KDE plots shown present the prior marginal distributions of the
model’s variables. PyMC3 was used for the model’s specification and inference.

would be placed at the very top of the graphical representation and the lowest nodes in the
graph are observed variables. Parameter nodes are organised such that child nodes appear on
rows lower than their parent prior distributions. In most hierarchical models, which have well-
separated hyperpriors, this leads to a neat separation of the graph into rows and an obvious
reading of the graph from top to bottom. There are, of course, graphs which are hard to arrange
well in this format. Each node is a cellina Panel GridSpec’ object. Each node of the graph
has a toggle button, some text and a KDE distribution plot. The toggle button label presents the

variable’s name, the tilde (~) symbol and the variable’s distribution name. The text below the

"https://panel.holoviz.org/user_guide/Components.html
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toggle button states the parent nodes and the dimensions of the variable. The KDE curve can be
hidden with the toggle button (Fig. 4.4).

prior  posterior y_prior_predictive_checks y_posterior_predictive_checks

school tau ~ HalfCauchy mu ~ Normal

A
parents: [] parents: []

dims: [] dims: []
Reset Diagram

theta ~ Normal

parents: ['tau’, 'mu’]
dims: ['school]

y ~ Normal

parents: ['theta']
dims: ['school']

Figure 4.4: The collapsed IPME representation of the hierarchical model of the eight schools
problem presented in Box 4.2. The toggle buttons were used to hide the KDE plots.

The variables’ distribution is presented using a kernel density estimation® (KDE) algorithm,
computed based on the corresponding variable’s (MCMC) samples, using Silverman bandwidth
estimation [Silverman, 1986]. The KDE curve of the non-observed variables is estimated based
on the (MCMC) samples of the (posterior) prior marginal distribution of the variable, while
the KDE curve of the observed variables is estimated based on the (posterior) prior predictive
(MCMC) samples. A rug plot is presented below the KDE curve to display the corresponding
(MCMC) samples as tick markers. Two views of the DAG are presented, one showing the
model’s distribution in the prior and one in the posterior sample space, in separate tabs so that
users can compare both quickly.

IPME uses the dimensions’ and coordinates’ information to automatically create a widget
box on the left-side of the graphical representation. Each indexing dimension in the model is
converted into a drop-down menu presenting the semantically meaningful coordinates of the
indexing dimension. Users can select the value of the coordinate for each indexing dimension
and get a different view of the data. The range of the x-axis of each variable’s KDE plot is
fixed across all coordinates of the indexing dimensions in each one of the prior or posterior
sample space to enable immediate comparisons among the various coordinates of an indexing
dimension. These ranges are calculated by taking the widest distribution in each sample space
(prior or posterior).

Users can apply a value range condition to any variable in the model interactively by drawing
a variable-width and fixed-height selection box on the corresponding KDE plot of the variable
(Fig. 4.5). The part of the KDE curve that is enclosed into the selection box is highlighted
in green and a second KDE curve that is computed based on the restricted (MCMC) sample
set is drawn in orange. The rug plot is updated accordingly to give a better perception of the

conditioning process on the sample space. The color palette of the arviz-darkgrid style

8https://en.wikipedia.org/wiki/Kernel_density_estimation



CHAPTER 4. INTERACTIVE PROBABILISTIC MODELS EXPLORER 81

was used because it was designed to be color-blind friendly and it would add a tone of familiarity
for the users of the ArviZ library. The user can update their initial selection by drawing a new
selection box or can draw additional selection boxes on other distributions to add constraints to

the query.

prior  posterior

school tau ~ HalfCauchy mu ~ Normal

A parents: [] parents: []

dims: [] dims: []

theta ~ Normal

parents: ['mu’, 'tau’]
dims: []

Imﬂlﬂ |

-20 0 20
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y ~ Normal

parents: ['theta']
dims: ['y']

Figure 4.5: The IPME representation of the hierarchical model of the eight schools problem
presented in Box 4.2. The KDE plots shown present the posterior marginal distributions of the
model’s variables.

Every time the user draws a selection box, both the prior and the posterior spaces are re-
stricted to include only samples that lay within the selected subset. The user can restrict the
value range of any parameter at any coordinate of any indexing dimension and the restriction
to the sample space will be reflected in both the prior and posterior, as well as to the prior and

posterior predictive histograms. This kind of interaction allows the user compare the changes in
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the uncertainty in the restricted space between the prior and posterior beliefs about the model
parameters. The user can also remove the restriction of a parameter by clicking on the “x” button
that accompanies the updated KDE curve. Finally, the user can reset all the uncertainty visual-
izations by globally removing all the restrictions by clicking the “Reset Diagram” button on the
left-hand side of the graph.

IPME provides an interface for predictive model checking with predictive p-values (Fig. 4.6).
The prior and posterior histograms of four statistical metrics (min, max, mean, std) over the
prior and posterior predictive samples, respectively, are presented in two extra separate tabs.
The actual observed value of each test statistics is indicated by a vertical black line on the
corresponding histogram. The (Bayesian) p-values are also noted in the legend above each
histogram. For the predicted data to capture sufficiently the test statistics of the observed data we
expect the probability of the corresponding test statistic of the observed data to have a sufficiently
big probability given the distribution of the test statistic of the predicted data. Usually the

application might set a specific requirement as to the size of this probability.
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Figure 4.6: The posterior predictive test statistics (min, max, mean, std) of the model of the
eight schools problem presented in Box 4.2.
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4.4.3 Objectives of IPME

IPME was designed to fulfil a set of objectives that were identified to support the tasks that users
of Bayesian analysis typically undertake. These objectives were summarized in Section 4.2 and

are repeated here:

1. automatic synthesis of a graphical representation of a model independently of the PPL

used;

2. seamless integration of uncertainty visualization into the graphical representation of the

model;

3. inclusion of both prior and posterior distributions of the model’s parameters, and the cor-

responding predictive ones for the observed variables;
4. interactive exploration of inference MCMC sample space;
5. interactive sensitivity analysis of model’s parameters;
6. granularity in the presented visual information according to user’s choices and needs;

7. inclusion of predictive checks.

Let us discuss now how IPME meets these objectives.

Objective 1. The transformation of a PPL model — some lines of code of a PPL, potentially
alongside some observed data — into a graphical representation of the model is the purpose of
this objective. The intention is to transform PPL models independently of the PPL and structure
of the specific model implemented. IPME was designed to accept as an input the model- and
inference-related information encoded in a standardized format as explained in Section 4.4.1.
This allows the automatic synthesis of a graphical representation of a model independently of
the PPL used. By the term “graphical representation” a coherent graph-like representation of
the probabilistic model is meant, which reveals the internal structure of dependencies among the
model’s parameters. IPME presents the model’s graph in a tree-like structure with each node
representing a variable in the model. The nodes contain annotations to indicate the parent-child
relationships of the model’s variables.

Objective 2. The integration of parameters’ distribution into the graphical representation
of the model is the purpose of this objective. In IPME the distributional information of each
model’s variable is integrated into the graphical representation of the model by including an
uncertainty visualization (i.e., a KDE plot) into the node of the variable. A Bayesian model
can simulate drawing samples in the space of observations, which is sometimes the ultimate
task (e.g., in prediction), is sometimes essential for validation and calibration (e.g., in prior pre-

dictive checks), and is sometimes the most relevant way to explain consequences to users. The
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prediction of an observed variable’s value by Bayesian probabilistic models is a distribution over
possible (prior or posterior) observations and not just a single point estimate (the MCMC pre-
dictive sampling was explained in Section 2.2.5). Thus, nodes that represent observed variables
also include an uncertainty visualization to present the predictions’ uncertainty in IPME.

Objective 3. The integration of both prior and posterior distributional information of model’s
variables into the graphical representation of the model is the purpose of this objective. Bayesian
probabilistic models can provide estimations of the model’s uncertainty both before and after
seeing the observed data. Two visual representations should be incorporated in each node of the
graphical representation, one for the prior and one for the posterior distribution of the associated
variable. In IPME there is a tab bar at the top which allows the user to switch between the prior
and posterior view of the graphical representations.

Objectives 4 - 5. The interactive exploration of the variables’ (prior and posterior) sample
space and sensitivity analysis of model’s parameters is the purpose of these two objectives.
IPME enables users to apply value range conditions to model’s variables by dragging a fixed-
height selection box on the KDE plot of the variable. Appropriate highlighting in the form of
brushing-and-linking is applied on the KDE curves and rug plots of all variables of the model
both in the prior and posterior sample space to indicate the sample subset belonging to the
restricted sample space. The KDE curves of all variables in this restricted sample space are
drawn.

Objective 6. Adjustable granularity is the purpose of this objective. Some users may wish to
have a simplified summary view; while others may be involved in tasks like validating sampling
and require detailed interactive visualisations. It therefore makes sense the nodes of the model’s
graphical representation to be collapsible in some way, and the user is able to interactively
select the information to be revealed. In IPME the toggle buttons used as headers in the nodes
of model’s variables serve this purpose: hide the variable’s KDE plot when clicked.

Objective 7. The inclusion of prior and posterior predictive checks is the purpose of this
objective. In IPME users can use the tab bar to switch between the prior and posterior predictive
checks view where the prior and posterior histograms, respectively, have been calculated for the
test statistics of the predictive samples and shown along with the test statistic of the observed

data and the corresponding predictive p-value.

4.5 What Makes IPME a Unique Tool

This section discusses how other PPL-linked available tools display the graph structure of prob-
abilistic models and compares this with IPME (Section 4.5.1). It also compares the way that
inference results are presented using typical presentation practices with the way IPME achieves
this, and discusses how IPME was designed to provide a more compact and flexible presentation

of the inference results (Section 4.5.2). This section presents also a comparison of IPME with
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existing visualization libraries for Bayesian analysis (Section 4.5.3) based on a set of indicative

visualization features.

4.5.1 Presentation of the Probabilistic Programming Model’s Graph

Fig. 4.7(a) presents the graphical representation of the hierarchical model of the eight schools
problem (shown in Box 4.1) created with DoodleBUGS [Spiegelhalter et al., 2003]. Fig. 4.7(b)
presents the graphical representation of the same model using the PyMC Graphviz interface
(pymc.model_to_graphviz). Although both ways present the structure of the probabilis-
tic model as a graph providing an at-a-glance representation of the model’s parameters and
dependencies derived from the PPL specification of the model, they both lack the presentation
of the parameters’ distribution. Fig. 4.7(c) presents (a manually created) Kruschke-style dia-
gram of the same model, which is more informed since it presents the prototypes of the prior
distributions of the model’s parameters. But still, this representation of the probabilistic model
does not provide any indication of the actual distribution of latent parameters.

Using the framework presented in Fig. 4.2, the IPME representation of the eight schools’
hierarchical model was created. Fig. 4.7(d) presents the IPME representation for the posterior
space as an expanded DAG (Fig. 4.4 presents its collapsed form). IPME seamlessly integrates
the actual uncertainty estimations into the graph’s nodes and provides variable granularity by
allowing users to collapse certain elements. The widget box on the left-hand side contains
one widget per indexing dimension and allows selecting different views of the inference data.

Finally, the tab bar at the top enables switching between prior and posterior.

4.5.2 Presentation of the Inference Results

The most common practice in reporting of inference results in Bayesian analysis is the creation
of tables that present summary statistics of the posterior distributions. As the number of model
parameters or coordinates of indexing dimensions increases, these tables become unwieldy. For
example, Silva et al. [2015] use a rather massive table of summary statistics when analyzing data
of wildfires in Portugal between 1990-1994. The limited capacity of human cognition could be
a hurdle for users like decision-makers to grasp the uncertainty presented in tables of this sort
and assess the risk appropriately. The numerical data presented are usually statistics like mean,
standard deviation or confidence intervals, which could mislead or overwhelm unfamiliar users.

A static representation of the inference data in summary tables cannot communicate sensi-
tivity of the parameters, which would allow decision-makers to assess the impact of parameter
inter-dependencies and associated risks. Communicating the prior would imply communicating
a second table of similar complexity, which is often omitted in reports of Bayesian probabilistic
models. For example, Table 4.1 presents the summary statistics of the posterior of the eight

schools’ hierarchical model. The ArviZ API (arviz.summary) was used to produce this
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Figure 4.7: Graphical representations of the eight schools model.(a) DoodleBUGs graph, (b)
PyMC graph using the Graphviz interface, (c) Kruschke-style diagram, (d) IPME representation.

table.

Another way of communicating inference results is by generating an uncertainty visualiza-
tion to show the marginal distribution for each model’s parameter independently. This solution
is not very common, although it is more informative than the tables of summary statistics. The
reason for this is that it leads to a large number of visualizations in the case of many-parameter
models, which are difficult to communicate in a concise way. For example, Fig. 4.8 presents the
posterior densities for the parameters of the eight schools’ hierarchical model. Although, this
is a rather simple model, we see that it produces 10 different uncertainty visualizations. This
number could rise even more if the parameters of the model had more indexing dimensions or

the indexing dimensions more coordinates.
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Table 4.1: Posterior statistics in a tabular format for the eight schools’ hierarchical model. This
is a rather simple model and the table only consists of ten rows. This number could rise im-
mensely if the model had more parameters or the parameters had more (multi-valued) indexing
dimensions.

mean std HDI 5% HDI 50% HDI_95%

mu 4479 3.392 -1.090 4.562 10.012
theta[0] 6.524 5.849 -1.590 5.937 16.632
theta[1] 5.128 5.001 -2.892 5.104 13.255
theta[2] 3.991 5.589 -5.179 4.226 12.165
theta[3] 4.923 5.094 -3.503 4914 13.160
theta[4] 3.519 4.934 -5.189 3.895 10.993
theta[S] 4.142 4973 -4.137 4311 11.903
theta[6] 6.697 5.294 -0.998 6.197 16.067
theta[7] 5.026 5.667 -3.804 4.877 13.716
tau 4.127 3.144 0.937 3.281 10.151

IPME presents an overview of the model’s parameters in two similar tree-like structures for
the prior and posterior that are as big as the number of the model’s parameters. The number
of indexing dimensions or coordinates does not affect the size of the graphical representation,
in comparison to the summary statistics tables or uncertainty visualizations where each extra
coordinate results in an extra row in the table or an extra graph, respectively. The presentation
of inference results with IPME becomes more compact and concise. Users have more flexibility
in the exploration of inference results with IPME; they can define the coordinates of the indexing

dimensions, expand the nodes of interest and collapse the rest, compare priors to posteriors.
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Figure 4.8: The posterior densities of the eight schools’ hierarchical model presented in the
style introduced by Kruschke [2015]. Although, this is a rather simple model, we can see that
it can produce 10 different uncertainty visualizations. This number could rise even more if the
parameters of the model had more (multi-valued) indexing dimensions.

4.5.3 Comparison of IPME with Existing Visualization Libraries for Bayesian

Analysis

There are various existing visualization libraries specialised for presenting the outputs of Bayesian

analysis. The aim of this section is to present the main visualization features the most commonly

used such libraries offer and compare them to the proposed IPME tool. Table 4.2 provides a com-

parative summary presentation of these tools including the IPME, based on a set of visualization
and analysis means for inference results in Bayesian analysis.
Kumar et al. [2019] created ArviZ, a unified Python tool for exploratory analysis, processing

and visualization of the inference results of probabilistic programming models. ArviZ integrates
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Table 4.2: Comparative presentation of existing Bayesian analysis visualization libraries includ-
ing IPME. IPME offers unique features that are not encountered in any other of the existing
tools; the interactive exploration of the (MCMC) sample space and the graphical analysis of the
model.

ArviZ bayesplot tidybayes shinystan IPME

Visual summaries of parameters yes yes yes yes yes
Numerical summaries of parameters yes no yes yes no
PPL/MCMC-algorithm independent yes yes no no yes
input

MCMC diagnostics yes yes no yes no
Predictive test statistics yes yes no yes yes
Semantic definition of indexing di- yes no yes no yes

mensions and coordinates

Interactive customization of visu- no no no yes yes
al/mumerical summaries

Interactive exploration of MCMC no no no no yes
sample space

Graphical analysis of model no no no no yes

seamlessly with various established PPLs, which makes it a very powerful tool in the field of
Bayesian data analysis. While it has sophisticated tools for visualising trace statistics and model
diagnostics, it does not analyse the model graph, nor does it offer interactive visualisation tools.
A corresponding tool in R is bayesplot [Gabry and Mahr, 2020], which provides a variety of
plotting functions and MCMC diagnostics for users working with a variety of R packages for
Bayesian modeling, such as RStan or packages powered by RStan, such as rstanarm or brms
packages. Another visualization tool of Bayesian analysis in R is tidybayes [Kay, 2020]. Tidy-
bayes extracts, manipulates, and visualizes prior and posterior samples from Bayesian models
of a range of PPLs and Bayesian analysis packages (JAGS, Stan, rstanarm, brms, MCMCglmm,
coda) in a tidy data format. Common visualization primitives (ggplot geometries) are exploited

for the visualization of priors and posteriors like quantile dotplots, eye plots, point/interval sum-
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maries, and fit curves with multiple, arbitrary uncertainty bands.

Shinystan [Stan Development Team, 2017] is a web-based interactive Bayesian exploratory
tool in R, which is PPL-agnostic and offers “customizable visual and numerical summaries of
model parameters and convergence diagnostics for MCMC simulations”. This tool, although
it exploits interactivity to customize the visual presentation of the data, it does not offer the
possibility of exploring prior and posterior sample space through interactive conditioning or any

analysis of the model’s graph.

4.6 Use Case Scenarios

This section presents use case scenarios, where IPME is used in realistic modeling problems.
IPME could assist modelers in model checking and validation. IPME provides two possibilities
for checking the model. The first arises through the prior interactive graphical representation,
where users could explore and observe the prior beliefs that were set during the model defini-
tion process and the prior predictive distributions along the various coordinates of the indexing
dimensions. The consistency of the model’s priors with prior knowledge and experience could
be investigated in this way. The second arises from the prior and posterior predictive model
checking with predictive p-values. Users could observe how well aspects of the observed data
are represented in the predictions of the model.

IPME could also help users acquire a more intuitive comprehension of various aspects of the
model and inference results. This could be achieved through interactivity. IPME offers two types
of interactivity; the interaction with the indexing dimensions that allows the exploration of the
data from different viewpoints, and the interactive conditioning on the sample space that allows
the exploration of the prior and posterior sample spaces. The first type of interactivity could
reveal similarities or differences between groups of data. The second type of interactivity could
reveal associations between parameters, changes in the parameters and predictions uncertainty
under certain circumstances (conditions), or the effects of priors on posteriors. The following

use case scenarios illustrate all the above.

4.6.1 Drivers’ Reaction Time

The first use case is based on the drivers’ reaction time problem used in Chapters 1, 2, and 3.
The data scientist of the logistics company created a homogeneous and hierarchical probabilistic
linear regression model to predict the reaction times of the drivers on each day of driving (see
models’ definition in Box 4.3). The bigger the slope of the regression line is, the more tired
(bigger reaction times) the drivers get after consecutive days of driving. The data scientist used
PyMC3 for the specification of the model and the inference, arviz_ json to export the models
in a standardized format, and IPME to visualize the models and their outputs (Python code can
be found in Appendix A.3).
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Box 4.3 The Drivers’ Reaction Time Models Defined by the Data Scientist
The data scientist of the logistics company specified the following probabilistic regression
models for the drivers’ reaction time problem. The homogeneous model is described by the

following probabilistic statements:

a~Normal(u=100,0=250) 4.5)

b~ Normal(yg=10,0=250) (4.6)

sigma ~Half-Normal(u =0,0 =250) 4.7)
y_pred; ~Normal(u=a+t-b,0=sigma), (4.8)

where 1 € [0, 17] indexing the drivers, t € [0, 9] indexing the days of driving, and
yv_pred; denotes the predicted reaction time of driver i.

The hierarchical model is described by the following probabilistic statements:

muy ~ Normal(u=100,0 =250) 4.9
sigma, ~Half-Normal(u =0,0=250) (4.10)
mup ~ Normal(u =10,0 =250) 4.11)
sigmay ~ Half-Normal(u =0,0=250) (4.12)
sigmagigma ~ Half-Normal(y = 0,06 =200) (4.13)
a; ~Normal( =mu,,0 = sigma,) (4.14)

b; ~Normal(y =mup,0 = sigmay) (4.15)

sigma; ~Half-Normal(y = 0,0 = sigmag;gma) (4.16)
y_pred; ~Normal(g =a;+t-bj,0 =sigma;) 4.17)

where i € [0, 17] indexing the drivers, and t € [0, 9] indexing the days of driving, and

y_pred; denotes the predicted reaction time of driver 1.

4.6.1.1 Model Check

The data scientist uses the IPME first to check the models. Both models predict a priori negative
slopes (Fig. 4.9 and 4.10) meaning that drivers could have faster reaction times as days pass by.
This is not realistic, but could happen with a small probability. The models also predict negative
reaction times meaning that drivers could react before even they see a stimulation. Very big
reaction times, close to tens of seconds, are also predicted as we move closer to the 1 Qth day. It

seems that the priors might not fit well the prior knowledge about the problem.
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Figure 4.9: The prior IPME representation of the homogeneous drivers’ reaction time model.
The model predicts negative slopes, negative and very big (tens of seconds) values of reaction
times a priori, which indicates that the priors might not fit well with the prior knowledge about
the problem.
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The data scientist wonders which model of the two is the most appropriate, and thus, ob-
serves the posterior predictive test statistics of both models. Fig. 4.11(a) and (b) present the
four histograms for the homogeneous and hierarchical model, respectively. The homogeneous
model gives a very low posterior p-value for the min test statistics, which is improved in the
hierarchical model. The hierarchical model improves the p-values of the min, max, and std

test statistics of the observations in the predictions.
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Figure 4.11: The posterior predictive test statistics of the (a) homogeneous and (b) hierarchical
drivers’ reaction time model. The hierarchical model improves the representation of the min,
max, and std test statistics of the observations in the predictions.
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4.6.1.2 Interactivity

Using the interactive drop-down menus, the data scientist observes the posterior predictive dis-
tribution of each driver on the same day of driving and realizes that the homogeneous model
does not present significant differences in the uncertainty of the predicted reaction times among
drivers in contrast to the hierarchical one, which actually does (Fig. 4.12 and 4.13) (this topic
was discussed in Sections 2.2.4.1 and 2.2.6). The data scientist chooses the hierarchical model

and passes it over to the logistics’ manager.

prior  posterior y_pred_prior_predictive_checks y_pred_posterior_predictive_checks
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Figure 4.12: The IPME representation of the drivers’ reaction time models, where we set the
driver to 308 and observe the posterior predictive distribution of the reaction times for the ho-
mogeneous and hierarchical model. The posterior predictive distribution of the reaction times
for driver 308 and the (a) homogeneous and (b) hierarchical model. The homogeneous model
does not reveal significant differences among drivers.
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Figure 4.13: The IPME representation of the drivers’ reaction time models, where we set the
driver to 309 and observe the posterior predictive distribution of the reaction times for the ho-
mogeneous and hierarchical model. The posterior predictive distribution of the reaction times
for driver 309 and the (a) homogeneous and (b) hierarchical model. The homogeneous model
does not reveal significant differences among drivers.
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The logistics’ manager has to choose between two available drivers, driver 310 and 335,
who would take over an urgent shipping of a cargo that had to be delivered in 6 days, although it
would normally require 9. Using the drivers drop-down menu, the logistics’ manager observes
the uncertainty of the predicted reaction times for both drivers on the 61" day of driving (Fig. 4.14
and 4.15); driver 310 has a wider distribution (more uncertainty), but centered to lower reaction
times, whereas driver 335 has a tighter distribution (less uncertainty), but centered to higher
reaction times.

The logistics’ manager would like to see how the uncertainty of the predicted reaction times
would look like in the worst case of the model’s predictions; the bigger values of slope. He sets
a condition on the hyperprior of the mean value of the slopes to restrict the posterior sampling
space to higher values of slopes (Fig. 4.14 and 4.15). The distribution of driver 310 becomes
wider with a slight shift to lower reaction times, whereas the distribution of driver 335 becomes
again wider with a slight shift to higher reaction times. It seems that driver 310 is more ro-
bust to the worst case conditioning, although initially he was having more uncertainty over his
predictions in comparison to driver 335.

A video demonstrating a similar scenario can be found in the talk Taka [2020c].
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