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Abstract 

Background 

Nutrition is essential for human growth and health maintenance throughout all life stages. 

Noncommunicable diseases (NCDs) are responsible for 74% of global deaths each year, and 

nutrition is a leading modifiable risk factor for their development. The natural aging process 

increases the risk of disease, and dietary associations can vary depending on an individual's 

developmental stage. However, current nutritional research often focuses on individual nutrients 

rather than underlying complex associations. Therefore, this thesis aims to investigate the 

association of macronutrients with NCDs and aging throughout the lifespan using a multi-nutrient 

approach known as the Geometric Framework for Nutrition. 

Aims 

 This thesis aims to explore the impact of dietary macronutrient composition on the risk of 

NCDs and aging. Six studies were conducted to explore the following aims at varying stages of 

the life course: 

1) How is macronutrient composition associated with NCDs? 

2) Is dietary macronutrient composition associated with markers of biological aging? 

3) What role do diet quality, food groups, and other factors such as the microbiome play in 

the relationship of dietary macronutrients with NCDs, and aging? 

Results 

 Findings from this thesis revealed a complex nonlinear relationship for macronutrients with 

aging (Chapters 4, 6), metabolic health (Chapters 4, 5), and disease outcomes (Chapter 7). These 

relationships suggest that there is no single optimal macronutrient composition for all outcomes. 

Notably, the microbiome was shown to play a potential effect-modifying role in how diet impacts 
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cardiometabolic health (Chapter 8). Furthermore, the final study revealed that macronutrient 

composition associations with NCDs widely differ according to diet quality (Chapter 9). 

Conclusions 

 The results demonstrate that dietary macronutrient composition has a complex relationship 

with metabolic health, aging, and the risk of NCDs. These associations differ according to diet 

quality, the stage of the life course, and may be modified depending on other factors, such as the 

microbiome. The findings emphasize the need for a comprehensive and standardized approach to 

nutritional research that considers each of these aspects before providing dietary guidance or 

making public health recommendations. 
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Chapter 1: Introduction 

The Role of Nutrition on Aging and Disease Throughout the Life Course 
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1.1 Human Nutrition 

Nutrition underpins the development and function of human health at all stages throughout 

the life course [1]. Human nutrition is fundamentally important to the development and 

sustainability of humans on a physiological level. Nutrition can ultimately be defined as the 

complex molecular process by which an organism obtains the necessary nutrients needed for 

function from foods [2]. From a global perspective, the World Health Organization supports the 

position that nutrition is a critical factor in healthy development from birth through late adulthood 

and provides a modality for lowering the risk of disease [3]. This includes the “double burden” of 

nutrition from both undernutrition and overnutrition, which have become global issues of 

importance. The issues of nutrition have complex interactions with multiple components of society 

including geographical region, socioeconomic status, and social difference which can collectively 

drive changes in nutritional behaviors. The interaction between humans and the environment has 

become increasingly apparent as pollution, non-sustainable farming practice, and the destruction 

of land has led to changes in plant and animal populations along with global climate shifts [4]. The 

United Nations created the Sustainable Development Goals of 2015, including 17 key domains of 

improving health, well-being, and our environment [5].  

On an individual level, human nutrition is derived via dietary patterns which are a 

culmination of varying quantities and foods habitually consumed by individuals. Dietary patterns 

are often shaped by geographical region, socioeconomic status, and personal preference. An 

example of a dietary pattern may include a plant-based diet where certain food groups or sources 

are prioritized such as the intake of vegetables, fruits, nuts, and legumes, while the intake of meat, 

eggs, and dairy is often reduced [6]. Usually, nutritional recommendations are made to follow 

specific dietary patterns as a way of reducing the risk of disease and achieving an optimal intake 
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of nutrients. For example, the American Heart Association (AHA) recommends following a 

primarily plant-based dietary pattern in order to reduce the risk of cardiovascular diseases [7]. 

Furthermore, the AHA and US dietary guidelines detail specific foods and food groups that should 

be consumed more frequently or in moderation. This often includes highlighting increased 

consumption of fruits, vegetables, nuts, legumes, and seafood, while reducing the intake of ultra-

processed foods, added sugar, and alcohol [8]. 

 Nutrition Throughout the Life Course 

Maternal nutrition presents an essential feature in development given it is the primary 

source of nutrients for the developing fetus [9]. This stage is particularly important as the fetus is 

more vulnerable to nutrient deficiencies, overconsumption, or detrimental toxins. In utero, these 

exposures have been shown to lead to both developmental and genetic programming of metabolism 

[10]. In the case of maternal undernutrition, the fetus often does not meet requirements for nutrients 

such as amino acids and essential fatty acids which can lead to Intrauterine Growth Restriction 

(IUGR) [11]. IUGR can manifest as numerous abnormalities in offspring including 

underdeveloped organs, abnormal body composition, and fetal programming [12]. Collectively, 

undernutrition can raise the risk of metabolic disorders and the development of noncommunicable 

diseases for newborn offspring [13]. Similarly, maternal overnutrition resulting in obesity can 

expose the fetus to a detrimental environment such as hyperglycemia, hyperinsulinemia, 

hyperlipidemia, and pro-inflammatory cytokines [14]. In the case of long-term maternal 

overnutrition, the fetus can also develop abnormal deposits of adiposity along with epigenetic re-

programming of the metabolic regulation of lipids and glucose [15]. Maternal obesity can also lead 

to abnormal neurological programming of appetite hormones via the hypothalamus, predisposing 

the offspring to obesity [16]. 
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Early life as a newborn offers an extension of the time frame where nutrition carries a 

heightened level of importance. During this time, the developing newborn has higher needs for 

particular nutrients including total energy, amino acids, fatty acids, vitamins, and minerals [17]. 

Human breast milk not only offers this uniquely designed composition of nutrients needed for 

newborns, but also contains microbiota that can help establish the microbiome in the offspring 

[18]. This has several implications including the development of a functioning immune system 

[19] and anti-inflammatory properties [20]. Newborn formula is also provided in some cases in 

combination or when breastfeeding is not feasible [21]. Most formulas have been industrially 

designed to provide a similar nutrient profile to infants, however, these often do not include the 

same bioactive components in natural breast milk [22]. With each progressive stage of 

development, the nutrient requirements during early life change. Progression into adolescence is 

commonly associated with increased nutritional needs for the development of bone mass, organ 

development, and muscle mass [23]. During adolescence, nearly 50% of the physiologically 

functional mass is developed, often raising the need for total energy, water, amino acids, iron, 

vitamin D, calcium, and essential fatty acids [24]. Malnutrition during adolescence can result in 

anemia, growth stunting, hormone dysfunction, and delayed brain development [25]. Inadequate 

nutrition is heavily influenced by both the quality of foods consumed and the activity level during 

development. Moreover, diet quality and lifestyle during development should be continuously 

evaluated to avoid under- or overnutrition. 

During adulthood, nutritional needs are often slightly lower than during adolescence. With 

the full maturation of organs and bone mass, nutrients are needed to sustain cellular function while 

providing enough energy for day-to-day functions. In the United States, 74% of adults are 

overweight or obese, so maintaining an appropriate level of energy consumption is emphasized in 
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the US dietary guidelines [26]. Recommendations for total energy intake and specific 

macronutrient requirements are commonly made mass specifically and can also depend on an 

individual’s level of activity [26]. Despite frequent excess dietary intake, micronutrient 

deficiencies are widely observed in adulthood including iron, calcium, vitamin D, vitamin B12, 

and fiber. Many nutritional deficiencies in adults can manifest as a result of specific dietary 

patterns. For example, deficiencies often occur due to low diet quality and low intake of fruits, 

vegetables, and whole grains. Alternatively, vegetarian diets often do not contain sufficient 

amounts of dietary iron and B12 as they are often both more concentrated and bioavailable in 

animal products [27]. Furthermore, adult diets should be evaluated to ensure they are providing 

both sufficient macro- and micronutrients.  

Progression into late adulthood is often defined as individuals beyond the age of 65 years.  

Many physiological changes occur during the aging process that can impact nutritional intake 

including changes in olfaction, taste, and functional difficulties in consuming food [28]. In many 

cases, chewing and swallowing difficulties can lead to underconsumption of energy and ultimately 

weight loss [29]. Additionally, older adults often have slightly higher protein and calcium 

requirements which can lead to sarcopenia and osteoporosis [30]. In the US, 50% of women and 

30% of men older than 71 years of age fail to meet their daily protein requirements [26]. In some 

cases, food is adequately consumed but malabsorption can be the culprit for undernutrition. This 

is often the case for vitamin B12, where the absorption rate naturally declines with age and 

interference from medications [26]. Conversely, in the aging process there is often a steady decline 

in metabolic rate, hormonal disruption, and reduced physical activity thus making individuals more 

susceptible to overconsumption of energy intake [31]. This is thought to partially shape the 

increase in adiposity and body weight observed throughout the aging process.  
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 Nutrition and Cardiovascular Disease 

 According to the World Health Organization, noncommunicable diseases account for 74% 

of deaths globally annually [32]. Of these, 17.9 million are attributed to CVD (42.6%) and 9.3 

million to cancer (22.1%). Human nutrition is a direct and indirect modifiable risk factor for 

reducing the burden of these diseases. However, the relationship between nutrition and 

noncommunicable diseases is complex and involves many layers of metabolic markers. For many 

developed countries, this stems from the overconsumption of calorically rich foods leading to a 

massive rise in obesity [33]. Processed foods and the industrialization of the food industry has 

made highly palatable refined foods readily available and affordable. Over time, these foods have 

slowly occupied a greater proportion of diets, replacing items such as fruits, vegetables, and whole 

grains [34]. 

CVD is a complex disorder and includes a variety of diseases including coronary artery 

disease, cerebrovascular disease, and peripheral artery disease [35]. From a risk perspective, 

obesity, and higher levels of adiposity interconnect with many risk factors associated with CVD 

including poor glycemic control, dyslipidemia, and hypertension [36, 37]. Abnormal glycemic 

control such as that seen in type II diabetes can result in numerous factors involved in CVD risk. 

Insulin resistance and hyperglycemia can lead to low-grade inflammation, vascular dysfunction, 

and cardiomyopathy [38]. Dyslipidemia is also common in individuals with poor glycemic control 

and is well-regarded as a risk factor for CVD [39]. High levels of triglyceride (TG), low-density 

lipoprotein (LDL), total cholesterol (TC), and low levels of high-density cholesterol (HDL) have 

been thoroughly documented as risk factors for the development of CVD [38]. 

Hypertriglyceridemia can lead to higher amounts of oxidative stress and preclude normal 

endothelial function raising [40, 41]. Additionally, LDL cholesterol is shown to play an influential 
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role in the pathogenesis of atherosclerosis or the development of plaque in arterial walls [42]. 

Conversely, HDL cholesterol is involved in reverse cholesterol transport thus higher HDL is often 

favourable for CVD risk. Lastly, hypertension presents the leading risk factor for the development 

of CVD and is noted to be present in 31.6% of the global population [43]. Hypertension can put 

enormous stress on organs including the kidneys, heart, and brain [44]. Over time, hypertension 

ultimately leads to a reduction in overall vascular health and raises the risk of various CVDs 

including congestive heart failure, stroke, and myocardial infarction [44]. 

Nutrition is a major modifiable risk factor for the development of CVD and can drastically 

impact the overall cardiometabolic health of an individual. Diets higher in protein, fiber, and 

polyunsaturated fatty acids have been previously shown to blunt both fasting and postprandial 

hyperlipidemia [45]. Dietary quality is influential in cardiometabolic health as the consumption of 

ultra-processed high-fat foods can create acute spikes in triglycerides [45]. Interestingly, dietary 

cholesterol has mixed support with respect to its relationship with serum cholesterol level [46]. In 

general, LDL cholesterol and HDL cholesterol are more likely to be influenced by other 

characteristics of the diet such as saturated fat, dietary fiber, and added sugar [7]. Hypertension is 

often considered to be a result of several dietary factors including high sodium intake, low 

potassium intake, alcohol consumption, and over-energy consumption. Dietary patterns like the 

Dietary Approaches to Stop Hypertension (DASH) diet, Mediterranean diet, and diets mostly 

composed of plant foods have been shown to largely improve the aforementioned CVD risk factors 

[47, 48].  

 Nutrition and Cancer 

In relation to cancer, human nutrition is involved in several influential characteristics 

including inflammation, cellular function, DNA repair, and hormone regulation. Generally, several 
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site-specific forms of cancer are noted as being more heavily influenced by dietary intake including 

intestinal, liver, prostate, and breast cancer. Maintaining a healthy weight is instrumental in 

reducing the long-term risk of developing cancer [49]. More specifically, higher levels of adiposity 

is also a known risk factor as it is involved in the production of pro-inflammatory cytokines [50]. 

Overconsumption of energy intake and poor glycemic control can also lead to hyperinsulinemia 

which can raise the risk of further cellular aberrations [51]. Obesity can cause hormone 

irregularities which can influence the development of certain cancers. Obesity collectively causes 

14% of cancer deaths for men and 30% for women [52]. Diet quality is also a significant 

contributor to the risk of developing various forms of cancer. Fruits and vegetables contain a milieu 

of antioxidants, polyphenols, vitamins, and minerals that can aid cellular repair and reduce cellular 

damage from oxidative stress [53, 54]. Oxidative stress is present in all humans and is commonly 

referred to as the body's level of reactive oxygen species (ROS). ROS are produced naturally and 

elicited from the environment from alcohol consumption, smoking, and obesity [55]. Excessive 

ROS can damage cells, proteins, and lipids in the body [56]. Vitamins such as vitamin B2, B6, 

B12, and folate play an influential role in cellular synthesis, methylation, and repair of DNA [57]. 

Other vitamins and minerals act to provide protection from damage via antioxidative capacity. 

Notably, vitamins A, C, and E have been well-supported potent antioxidants [58]. Other dietary 

components such as fiber are also heavily protective against gastrointestinal cancers such as 

colorectal cancer [59]. Furthermore, other food items have been shown to raise the risk of certain 

cancers including red meat, processed meat, and ultra-processed foods [60]. Red meat and 

processed meat are most notably associated with an increased risk of colon and colorectal cancers 

[61]. A 10% increase in the intake of ultra-processed foods has been noted to increase the risk of 

all-site cancer risk by 12% and breast cancer risk by 11% [62] 
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 Nutrition and Aging 

 Aging is a natural process that occurs during the human life span and involves the slow 

loss of function and degradation of cells throughout the body [63]. Mechanisms of aging are most 

commonly described on a cellular level and include items such as telomere attrition, epigenetic 

changes, and cellular senescence [64]. Telomeres are often referred to as the DNA “caps” existing 

on the terminal ends of chromosomes and function to maintain the integrity of the DNA and 

provide the necessary information for replication. In 1970, it was proposed that each time cell 

replication occurs, the telomere loses a portion of genetic material, resulting in a shortening effect 

[63]. The progressive shortening of telomeres is thought to increase the number of replication 

errors and the risk of noncommunicable diseases such as CVD and cancer [65, 66]. Epigenetic 

changes generally refer to modifications to genetic material without directly manipulating the 

sequence of DNA [67]. The most common epigenetic changes occur via methylation or histone 

modifications that directly influence how specific genes function. Epigenetic modifications often 

result from oxidative stress [68], inflammation [69], and insufficient nutrition [70]. Throughout 

the aging process, epigenetic changes occur causing shifts in cellular function. Lastly, cellular 

senescence is often used to describe the final cessation of cellular replication [71]. Cellular 

senescence occurs naturally as the body is additively exposed to various damaging agents (Figure 

1). This phenomenon occurs ubiquitously in all tissues and is the basis for many symptoms of 

aging such as neurodegeneration, organ dysfunction, and frailty [71]. 

 In recent decades, the various markers of biological aging have been used as alternative 

measures to describing an individual’s biological age [72]. For example, an individual of the same 

chronological age but with a shorter overall telomere length could be potentially “biologically 

older,” predisposing them to various noncommunicable diseases. Applying this ideology, the 
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construct of various biological clocks has been of interest to further characterize the relationship 

between humans, nutrition, and aging. From an epigenetic perspective, much of DNA methylation 

occurs on specific cytosine-guanine connection sites also known as CpG sites which have been 

used to create epigenetic clocks [73]. The specific CpG sites used can differ depending on the 

specific tissue and some sites are chosen to better describe certain age ranges. For example, the 

Horvath clock is a multi-tissue epigenetic clock that includes 353 individual CpG sites and has 

high accuracy in children [74]. Taken together, epigenetic clocks have been recently shown to be 

heavily predictive of numerous noncommunicable diseases and overall life expectancy [75, 76]. 

Over time, the environment which cells are exposed to including toxins, exercise, nutrition, 

and metabolic metabolites can accelerate many of these aging processes. Undernutrition and 

overnutrition have even been shown to play a role in natural aging before birth. Evidence now 

supports that maternal nutrition plays a crucial role in the fetal programing of epigenetic clocks 

[77]. A lack of consumption of methyl donors including folate, B6, and B12 can lead to accelerated 

aging. Protein restriction is also a significant contributor to abnormal offspring outcomes and in 

animal models has been shown to accelerate markers of aging [78]. Conversely, maternal obesity, 

metabolic disorders, and poor diet quality can negatively influence the epigenome of the fetus [79]. 

These factors appear to have a similar effect throughout the life course, shaping the overall 

biological clock of an individual [77].
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Figure 1. Cellular Compositional Change as it Relates to DNA Methylation Aging 

Throughout the Life Course. Adapted from Horvath and Raj Nature Genetics Review 2018 [73].  
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1.2 Dietary Recommendations 

 The first US dietary recommendations were created in 1977 as “Dietary Goals.” This 

included recommendations to increase natural carbohydrate intake from 28% to 48%, reduce fat 

intake from 40% to 30%, reduce salt intake, and reduce saturated fat intake [80, 81]. Shortly 

thereafter in 1980, the first Dietary Guidelines for Americans was created. These guidelines had 

very similar recommendations to that seen in the initial Dietary Goals with a particular emphasis 

on adult nutrition. The initial Dietary Guidelines later evolved to provide more recommendations 

for specific foods and food groups that should be included as a part of a healthy diet [81]. Over 

time, the Dietary Guidelines progressed to describe nutritional recommendations from primarily a 

food-based and dietary pattern focused perspective. The most recent Dietary Guidelines for 

Americans created in 2020 heavily emphasized creating a healthy dietary pattern by cohesively 

incorporating various food groups. Additionally, the current Dietary Guidelines provide nutritional 

recommendations using a life course approach where guidance for pregnant and lactating women, 

infants, toddlers, adolescents, adults, and older adults is provided in detail [26]. 

 Dietary Scores 

As an approach to quantify the accordance with specific dietary patterns, various dietary 

scores have been created to grade the foods consumed on an individual level. For example, the 

Healthy Eating Index (HEI) has been created to score how well individual food consumption aligns 

with the US dietary guidelines [82]. The 2015 HEI is calculated on a 100-point scale comprised of 

nine adequacy components and four components to be consumed in moderation. These 

components include intake of fruit (5), vegetables (5), greens and beans (5), whole grains (10), 

dairy (10), total protein foods (5), seafood and plant protein (5), fatty acid composition (10), 

refined grains (10), sodium (10), added sugars (10), and saturated fat (5). Other scores such as the 
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plant-based dietary indices (PDI), have been aimed at capturing the alignment of food with the 

intake of plant-based foods [83]. However, the PDI alone cannot capture the intake of the quality 

of plant-based foods (e.g., refined vs. unrefined). This led to the development of indices such as 

the unhealthy PDI (uPDI) and the healthy PDI (hPDI) [83]. In addition to the adherence to plant-

based foods, these dietary indices further distinguish the intake of whole fruits, vegetables, nuts, 

legumes in the hPDI, and intake of sweetened beverages, refined grains, and desserts in the uPDI. 

Numerous other dietary scoring indices have been created to assess dietary patterns that improve 

metabolic health including the DASH diet [84] and the Mediterranean Diet Score [85]. 

 Dietary Macronutrients 

Essential nutrition components often include protein, carbohydrates, fat, vitamins, 

minerals, fiber, and water [86]. Although common dietary guidelines take a food or dietary pattern 

approach, much of the nutritional literature takes a reductionist view detailing the relationship 

between specific nutrients or food components with disease [87]. This view point has furthered 

our understanding of much of the nutrient-disease relationship and allowed progression in disease-

specific nutritional recommendations. Although the US dietary guidelines do not provide a 

recommended macronutrient range, the Institute of Medicine provides the acceptable 

macronutrient distribution range (AMDR) which recommends consuming 10-35% of energy from 

protein, 45-65% carbohydrate, and that 20-35% of total daily energy be derived from fat [88]. 

Many countries, including Australia, provide similar recommendations for macronutrient intake. 

Protein, carbohydrates, and fat can be classified into subtypes depending on their molecular 

makeup. Amino acids serve as the building blocks for the growth and development of hair, muscle, 

and tissue throughout the body [89]. Amino acids provide the necessary substrates for 

physiological functions, including cell-signaling, hormones, enzymes, and an adequate immune 
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system [90]. Moreover, protein is comprised of twenty amino acids that can be classified as non-

essential or essential. Non-essential amino acids account for nearly half of the amino acids and can 

be endogenously produced via other nitrogen-containing compounds. Conversely, essential amino 

acids cannot be endogenously produced, and thus must be externally derived via the consumption 

of specific foods. Animal sources of foods such as fish, poultry, dairy, and eggs serve as a complete 

protein source where all essential and non-essential amino acids are provided. Conversely, plant 

sources of protein often only provide a partial source of amino acids and are suggested to be 

consumed with complementary sources of protein to achieve all amino acids sufficiently [91]. To 

score protein quality, a scale known as the Digestible Indispensable Amino Acid Score (DIAAS) 

was established for assigning the protein quality to various food sources depending on amino acid 

content and bioavailability [92]. 

Carbohydrates have the highest recommended range of recommended dietary 

macronutrient composition and are suggested to be the primary source of energy. Carbohydrates 

are often categorized as monosaccharides, disaccharides, or polysaccharides which denotes the 

sugar units each molecule carries [93]. Monosaccharides also known as simple sugars include 

fructose, glucose, and galactose [94]. Disaccharides contain two sugar units and include sucrose 

and lactose which both organically exist and are commonly added as refined sugars to processed 

foods. Lastly, polysaccharides or “complex carbohydrates” can be both starch or non-starch where 

non-starchy carbohydrates can include dietary fiber and cannot be readily metabolized for energy 

[95]. However, microbial bacteria can further break down non-starchy carbohydrates such as 

cellulose and release energy in the form of short-chain fatty acids [96]. Dietary carbohydrate 

quality can be inferred in various ways; commonly, the glycemic index (GI) is used as a metric for 

describing the degree to which various sources of carbohydrates cause a rise in blood glucose 
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levels [97]. Generally, more refined carbohydrates such as bread, sugar-sweetened beverages, and 

pastries score higher on the GI, ultimately increasing the risk for metabolic derangements [98]. To 

address this, the most recent Dietary Guidelines for Americans now recommends that only 10% 

of total carbohydrates be derived from added sugars [26]. 

Dietary fatty acids are commonly classified by the chemical structure of the fatty acid 

chains. In saturated fatty acids (SFA), all the carbon atoms in the fatty acid chains are single 

bonded to each other. Monounsaturated fatty acids (MUFA) have one double bond between two 

carbon atoms in the chain, while polyunsaturated fatty acids (PUFA) contain two or more double 

bonds between carbon atoms in the chain. SFA are often synthetically produced via hydrogenation 

and incorporated into processed food products to increase shelf-life and improve palatability [99]. 

Moreover, SFA are also commonly found in animal-based food products such as cheese, milk, 

eggs, and processed meats [100]. SFA have a range of evidence in both animal and human models 

supporting a positive relationship between dyslipidemia [101] and CVD risk [102]. Accordingly, 

the current Dietary Guidelines for Americans recommends that only 10% of dietary fat consumed 

is derived from SFA [26]. Conversely, unsaturated fatty acids are recommended to be consumed 

in replacement of SFA. Unsaturated fatty acids can provide various health benefits, including 

improved blood lipid profile and reduced inflammation [103]. These unsaturated fatty acids can 

be further classified by the location of the bond. For example, omega−3 fatty acids denote the 

unsaturated carbon bond that exists three atoms from the terminal end of the fatty acid. Omega−3 

fatty acids can be classified as a-linolenic (ALA), eicosapentaenoic acid (EPA), and 

docosahexaenoic acid (DHA). While ALA is an essential fatty acid that humans cannot synthesize 

and must obtain from the diet, EPA and DHA can be endogenously produced from ALA in limited 

amounts. However, due to the low efficiency of this conversion, direct dietary intake of EPA and 
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DHA is often recommended [104]. Omega-3 fatty acids act as a substrate for the many 

prostaglandins in the body which regulate inflammation, insulin sensitivity, and vascular health 

[105]. Conversely, omega-6 fatty acids appear to have the opposite effect acting as a precursor to 

many inflammatory pathways [106]. Furthermore, both dietary fat and specific dietary fatty acids 

play an influential role in the regulation of human metabolic health. 

1.3 The Geometric Framework for Nutrition 

 Nutrition research in relation to human health has dramatically evolved over recent 

decades. Nutritional literature has evolved to include research on dietary macronutrients, food 

groups, and dietary patterns in relation to human health. However, exploring specific nutrients or 

food components over time has created dissonance in much of the nutritional community. This 

mixture of nutritional messages led to the generalisation of each macronutrient's unique properties, 

such as the influence of carbohydrates on glycemic control or the high energy density of fat. This 

can be exemplified by the large demonization of specific macronutrients in the realm of public 

health where “low-fat” or “high-carbohydrate” diets, which were highly promoted in the past, have 

been heavily targeted by the media as being deleterious [107]. As a result, traditional 

epidemiological techniques have often favoured taking a univariate approach toward 

understanding the macronutrient relationship with diseases. However, this approach does not 

account for complex nutrient-nutrient tradeoffs that may exist when isocaloric substitution of 

nutrients occurs. Additionally, macronutrient composition does not fully take into consideration 

diet quality and other components of specific foods and food groups that may influence these 

associations. 

 The Geometric Framework for Nutrition (GFN) also commonly referenced as Nutritional 

Geometry has taken a multidimensional approach toward unraveling this complexity [108]. The 
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GFN was first introduced in 1993, as an approach to understanding how organisms consume 

various foods to reach an optimal nutrient profile [109, 110]. Moreover, the intake of foods was 

described in the context of a nutrient space that utilizes two or more axes to visualize the 

relationship between nutrients and health outcomes (Figure 2). This stems from the idea that 

nutrients are often needed in combination and food choices systematically drive the balance of 

these nutrients. The GFN has been applied in numerous settings including slime molds, insect 

models, animal models, and human models, notably exploring the relationship of macronutrients 

with obesity [111], reproduction [112], metabolic health [113], and aging [114]. Much of the 

current research has been applied in mouse models where macronutrient composition has been 

shown to dictate appetite, metabolic health, and longevity. Solon-Biet et al. demonstrated this in 

2014, where appetite and food intake were primarily driven by protein and carbohydrate intake. 

Specifically, in the case of insufficient protein intake, the animals would continue to consume 

energy until meeting protein targets [113]. However, this study uncovered many tradeoffs such 

that high protein was associated with lower adiposity while simultaneously a reduced lifespan. 

Alternatively, lower protein intake and higher carbohydrate intake was positively associated with 

lifespan and adiposity. In addition to a reduction in life, further analyses from this cohort of animals 

revealed a tissue-specific reduction of telomere length, suggesting accelerated biological aging 

[115, 116]. This tradeoff between protein and carbohydrates has been described as protein-

leverage and similar findings have been revealed for the ratio of these macronutrients in various 

models [117].  
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Figure 2. Interactions of Appetite with Protein Leverage. The large red-filled circle represents 

the regulatory target for P and NPE, and lines radiating from the origin are nutritional rails, each 

representing the P to NPE ratio of a diet (high at the bottom right and low at the top left). Vertical 

blue arrows represent appetite trajectories for NPE, and horizontal red arrows are for P. Thickness 

of the arrows represents appetite strength. Black arrows are intake trajectories arising from the 

interaction between the appetite systems, and black lines with end bars represent intake inhibition. 

NPE+ and NPE− refer to ingested excesses (incidental augmentation) and deficits (incidental 

restriction) relative to the target of NPE, respectively, and P+ and P− represent excesses and 

deficits of protein. On this basis, the nutrient space can be partitioned into four quadrants, in which 

both nutrients are deficient (NPE−, P−), both nutrients are ingested in excess (NPE+, P+), or one 

is ingested in excess and the other is deficient (NPE−, P+ and NPE+, P−). The fact that the intake 

points align vertically indicates a regulatory pattern called complete PL, in which the strong P 

appetite (thick red arrows) completely overrides weak regulation for N (thin blue arrows). NPE, 

nonprotein energy; P, protein. Adapted from Raubenheimer and Simpson Obesity 2019 [118].  
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More recently, GFN has begun to be applied in evaluating both human clinical data and 

population-level dietary data [119-123]. From a clinical perspective, Wali et al. described how the 

ratio of protein and carbohydrates plays a role in calorically restricted weight loss trials [122]. 

Herein, diets higher in protein promoted a lower total energy intake and ultimately a higher degree 

of weight loss across the 13 studies included. Using dietary data collected from mothers during 

gestation, the GFN was previously used by Blumfield et al. to explore how macronutrient 

composition and fatty acids were associated with offspring adiposity [124]. This study revealed 

the maternal dietary protein carbohydrate ratio and PUFA produced the largest variations in fetal 

adiposity. Population-level surveillance data revealed additional support for the protein leverage 

hypothesis such that lower protein yields higher energy intake [120]. However, the complexity 

expands when other areas of GFN application such as mortality and metabolic health are explored. 

For example, the relationship between macronutrients and mortality varies throughout the life 

course when global associations of macronutrient supply are explored. Specifically, in early life, 

a diet composed of 40-45% fat and 16% protein had the lowest mortality, while in later life, lower 

protein of 11% and replacing fat with carbohydrates (65%) was associated with lower age-specific 

mortality [121]. Other cohort data has revealed the relationship between diet and aging may also 

include interactions of macro- and micronutrients [119]. 

Collectively, these studies have facilitated a major advancement of the GFN to the forefront 

of population-level analyses. However, many gaps exist in the current application of these 

analyses. Firstly, although the GFN has been used to explore the relationship between maternal 

diet and the body composition of newborns, this specific point in the life course has not been 

evaluated for its relationship with markers of aging or metabolic health. On a clinical level, 

cardiometabolic health has been examined from weight loss challenges; however, ad libitum 
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consumption of macronutrients has not been explored. In the context of mortality and 

noncommunicable diseases, population-level mortality, and the relationship between 

macronutrient composition with specific diseases such as CVD or cancer has yet to be elucidated 

using this technique. Lastly, many methodological challenges surface when exploring these 

questions. Notably, the GFN has not yet been used to explore how macronutrient compositional 

associations differ across various dietary quality markers or dietary patterns.  

1.4 Aims 

 I sought to explore several aims to address these questions and build a more cohesive 

picture of the complex relationship between human nutrition, aging, metabolic health, and the 

development of noncommunicable diseases. The first general aim was to improve the current 

understanding of the relationship between dietary macronutrient composition and 

noncommunicable diseases. A specific goal of this aim was to address how macronutrient 

composition is related to metabolic health to help understand potential mechanisms driving disease 

development. To confirm this relationship and garner a more comprehensive understanding of the 

macronutrient-disease relationship, this thesis also explored endpoint incidence of diseases such 

as cardiovascular, cancer, and all-cause mortality. 

The second aim was to explore how dietary macronutrient composition is related to 

biological aging. One goal of this aim was to determine if specific macronutrient compositions 

may be related to accelerated aging. A second goal of this aim was to examine if other dietary 

components may be driving some of the associations between macronutrients and aging. For 

example, are specific fatty acids or diet quality driving the observed associations? 

The final aim was to explore the interrelationship between dietary quality and 

macronutrient composition for noncommunicable diseases and aging. The first goal within this 
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aim was to determine if macronutrient associations with noncommunicable disease remain the 

same across a spectrum of diet quality. This included assessing whether specific dietary 

components or food groups may explain the underlying associations observed or if other factors 

such as the gut microbiome modify this relationship. For each of these aims, I sought to explore 

the relationships at various development stages to better understand how nutrition influences 

health outcomes throughout the life course.  

 

Aim 1: How is macronutrient composition associated with noncommunicable diseases? 

Goal 1: Explore the relationship between dietary macronutrients and metabolic health. 

Goal 2: Explore the relationship between dietary macronutrients with the incidence of 

noncommunicable diseases and mortality. 

Goal 3: Assess whether the associations differ across the life course. 

Hypothesis: Macronutrient composition will be associated with the risk of noncommunicable 

diseases and mortality in a complex nonlinear fashion. 

 

Aim 2: Is dietary macronutrient composition associated with markers of biological aging? 

Goal 1: Explore the relationship between dietary macronutrients with varying markers of 

biological aging. 

Goal 2: Examine the role of diet quality in the association between dietary macronutrients and 

aging. 

Goal 3: Assess whether the associations differ across the life course. 
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Hypothesis: The associations of dietary macronutrient composition and aging will differ 

depending on the diet quality and stage of development of the individual. 

 

Aim 3: What role do diet quality, food groups, and other factors such as the microbiome play in 

the relationship of dietary macronutrients with noncommunicable diseases, and aging? 

Goal 1: Examine how macronutrient associations with noncommunicable diseases and aging differ 

across markers of dietary quality. 

Goal 2: Explore the degree to which other factors such as the microbiome play in the relationship 

between diet quality and human health. 

Goal 3: Assess whether the associations differ across the life course. 

Hypothesis: Diet quality and food groups will be the primary drivers of the observed 

macronutrient associations. Moreover, the microbiome will act as a direct effect modifier for this 

relationship. 
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Chapter 2: Thesis Outline 
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2.1 Overview of Thesis Outline 

The purpose of this chapter is to provide an overview of the specific details regarding the 

dataset, analysis, and findings covered in each subsequent chapter as they relate to the outlined 

aims of this thesis, which are: 

1) To enhance our current understanding of the relationship between dietary macronutrient 

composition and noncommunicable diseases. 

2) To investigate the relationship between macronutrient composition and biological aging. 

3) To explore the interrelationship between dietary quality, potential effect modifiers, and 

macronutrient composition in relation to noncommunicable diseases and aging. 

2.2 Introduction 

Chapter 1 serves as the introduction to this thesis, offering valuable insights into the impact 

of nutrition on aging and disease across different stages of life. It aims to establish the necessary 

context by exploring the relationship between diet and various health conditions, including 

cardiovascular disease, cancer, and markers of biological aging. This chapter also presents a 

comprehensive overview of the evolution of nutrition guidance, encompassing dietary scores, and 

guidelines for macronutrient intake. Lastly, it provides essential background information on the 

Geometric Framework for Nutrition (GFN), the principal methodology employed throughout this 

thesis. 

2.3 Methods 

Chapter 3 presents a comprehensive overview of the specific statistical and methodological 

approaches employed in this thesis. This chapter delves into both the statistical and software 

protocols utilized, providing a thorough understanding of their strengths and limitations within the 
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context of this study. Additionally, the chapter highlights the methodological contributions that 

have emerged from the projects conducted in this thesis, shedding light on their significance in the 

field. Lastly, this chapter provides essential background information regarding the datasets utilized 

throughout this thesis, offering a detailed description of their origin and relevance. 

2.4 Maternal Nutrition and Offspring Health  

Chapter 4 aimed to explore the relationship between maternal dietary macronutrients and 

fatty acids with newborn markers of cardiometabolic health and aging. In relation to the aims of 

the thesis, this project was designed to address how macronutrient composition during gestational 

development impacts risk factors for noncommunicable diseases and markers of biological aging. 

In the analysis section, maternal dietary intake of macronutrients and fatty acids was collected 

postpartum via a validated 80-item food-frequency questionnaire (FFQ). A GFN approach was 

then applied to explore how dietary macronutrient and fatty acid composition is related to newborn 

body fatness, aortic intima-media thickness, heart rate variability, and epigenetic age acceleration. 

In this study, the key finding was that dietary fatty acid composition was significantly associated 

with newborn epigenetic age acceleration. Furthermore, omega-3 fatty acids appeared to have a 

protective effect on biological aging while omega-6 fatty acids appeared to accelerate epigenetic 

aging.  

• Koemel NA, Senior AM, Dissanayake HU, Ross J, McMullan RL, Kong Y, Phang M, 

Hyett J, Raubenheimer D, Gordon A, Simpson SJ, Skilton MR. Maternal Dietary Fatty 

Acid Composition and Newborn Epigenetic Aging – A Geometric Framework 

Approach. American Journal of Clinical Nutrition (2022), 115(1), 118-127. 

https://www.sciencedirect.com/science/article/pii/S0002916522001162
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2.5 Adult Nutrition and Metabolic Health 

 Chapter 5 examined the relationship between dietary macronutrient composition and 

cardiometabolic health in the National Health and Nutrition Examination Survey (NHANES). This 

project was designed to help address the thesis aim of how dietary macronutrient composition is 

related to the development of noncommunicable diseases. This cross-sectionally collected dataset 

explores the foods and nutrients consumed by Americans each year and for a subset of individuals, 

various markers of health are collected including cardiometabolic health. In this study, we applied 

a GFN approach to explore associations of dietary macronutrients with lipid profile, glycemic 

control, blood pressure, and body composition. The main findings revealed that even with 

adjustment for dietary quality, significant associations exist for macronutrient composition with 

each of these markers of cardiometabolic health. Unique tradeoffs were uncovered for dietary 

macronutrients for blood lipids. Additionally, we revealed notable sex differences for the 

association between dietary macronutrients and cardiometabolic health markers. 

• Koemel NA, Senior AM, Laouali N, Celermajer DS, Grech A, Parker HM, Simpson 

SJ, Raubenheimer D, Gill TP, Skilton MR. The impact of dietary macronutrient 

composition on cardiometabolic health: data from NHANES 1999-2014. Prepared for 

Submission. 

2.6 Dietary Macronutrient Composition in Adulthood and Aging 

Chapter 6 uses NHANES data to examine how macronutrient composition is related to  

telomere length in adults. This project was focused on further understanding how macronutrient 

composition is related to markers of biological aging in adulthood. Diets lower in protein (5-10%), 

higher in carbohydrates (75%), and lower in fat (15%) were associated with the longest telomere 

length. Conversely, diets lowest in protein (5%) and carbohydrate (40%), while highest in dietary 
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fat (55%) had the lowest telomere length. When telomere length was converted to years of aging, 

the diets higher in carbohydrates revealed 7.7 biological years of slower aging, while diets lower 

in protein and high in fat reflected 4.4 years of accelerated aging. 

• Koemel NA, Laouali N, Senior AM, Celermajer DS, Grech A, Solon-Biet SM, Simpson 

SJ, Raubenheimer D, Gill TP, Skilton MR. The relationship of dietary macronutrient 

composition with telomere length among US adults. Under Review. 

2.7 Relationship Between Dietary Macronutrient Composition in Adulthood with 

Noncommunicable Diseases and Mortality 

 Chapter 7 used the NHANES data to explore how macronutrient composition was 

ultimately related to all-cause, cardiovascular, and cancer mortality in adults aged 20 years and 

over. Herein, a geometric framework approach was used to visually explore the mortality risk on 

the survival function scale. The main findings showed a significant association between 

macronutrients with mortality such that the highest risk of mortality was revealed in a high caloric 

diet composed of moderately high protein (20%), moderate fat (30%), and moderate carbohydrate 

(50%). Conversely, a lower mortality risk was observed in two separate regions consisting of 

higher protein (30%), higher carbohydrate (60%), and lower fat levels (10%) or lower protein 

(10%), moderate carbohydrate (45%), and higher fat levels (45%). 

• Koemel NA, Senior AM, Celermajer DS, Grech A, Gill TP, Raubenheimer D, Simpson 

SJ, Skilton MR. Multi-nutrient analysis of dietary macronutrients with all-cause, 

cardiovascular, and cancer mortality: data from NHANES 1999-2014. Nutrients (2023), 

15(2), 345. 

https://www.mdpi.com/2072-6643/15/2/345


Thesis Outline  

58 

2.8 The Role of the Gut Microbiome in the Relationship between Diet Quality and Metabolic 

Health  

In Chapter 8, we used the NHANES dataset to explore the relationship between diet quality 

and cardiometabolic health in adults. This project applied a multidimensional approach to address 

the aim of how potential moderators may affect the relationship between diet quality and 

cardiometabolic health. Specifically, we aimed to examine to what extent the microbiome 

moderates the relationship between diet quality and blood lipids, glycemic control, adiposity, and 

blood pressure. In the absence of more specific microbial species or microbiome health, we used 

a marker of microbial function known as enterolignans (e.g., enterolactone, enterodiol). These 

markers were collected in a subsample of 4,685 US adults. Instead of using multi-dimensional 

macronutrient models, we explored multidimensional models of enterolignans, cardiometabolic 

biomarkers, and total energy intake. Interestingly, we found support for an effect of the 

microbiome on the relationship between diet quality and all the cardiometabolic markers. 

However, glucose and fasting triglycerides revealed evidence for the greatest potential moderating 

effect.  

• Koemel NA, Senior AM, Benmarhnia T, Holmes A, Okada M, Oulhote Y, Parker HM, 

Shah S, Simpson SJ, Raubenheimer D, Gill TP, Laouali N, Skilton MR. Diet Quality, 

Metabolites of Microbial Lignan Metabolism, and Cardiometabolic Health Among US 

Adults. Nutrients (2023); 15(6):1412. 

2.9 Dietary Quality, Macronutrient Composition, and Breast Cancer 

 Chapter 9 was designed to explore how the associations of macronutrients with breast 

cancer differ across varying levels of dietary quality defined by plant-based dietary indices. This 

project was tailored to address the aim of how diet quality is interrelated to the macronutrient 

https://www.mdpi.com/2072-6643/15/6/1412
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associations with chronic diseases. The analysis used dietary data from the French E3N study, 

which included approximately 100,000 women. This survey included two separate FFQs which 

were collected 12 years apart and the incidence of breast cancer was reported over a 21-year 

follow-up using a data linkage program. A GFN approach was used to map the association of 

macronutrient composition across the hPDI, uPDI, and PDI. The main findings revealed that the 

hPDI had the highest ability to characterize the relationship between macronutrient composition, 

plant-based diet quality, and breast cancer. Generally, diets with lower plant-based diet quality and 

higher fat had the highest risk of breast cancer. Notably, this relationship differed in high quality 

diets where BC risk was generally positively associated with dietary protein intake. These findings 

also revealed unique relationships with specific food groups such as meat, vegetable, fruit, grain, 

dairy, and discretionary foods, which partially explains the observed findings.  

• Koemel NA, Shah S, Senior AM, Severi G, Mancini FR, Gill TP, Simpson SJ, 

Raubenheimer D, Boutron-Ruault MC, Laouali N, Skilton MR. Macronutrient 

Composition of Plant-Based Diets and Breast Cancer Risk: The E3N Prospective Cohort 

Study. Under Review. 

2.10 Conclusion  

Chapter 10 serves as the concluding chapter of this thesis, providing an in-depth 

exploration of the key findings from each project and their relationship to the existing literature. It 

thoroughly examines the interplay between nutrition, aging, and the development of diseases, 

highlighting potential crosstalk between the various chapters. Moreover, this chapter concludes by 

outlining future directions for this research, including the extension of these findings to new 

geographical regions and the incorporation of other lifestyle factors such as sleep and physical 
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activity. By doing so, this chapter paves the way for further exploration and advancements in this 

field of study. 
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Chapter 3: Methods 
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3.1 Overview of Methods 

This thesis is based around 6 studies. These studies applied a novel statistical approach 

known as the Geometric Framework for Nutrition (GFN) or Nutritional Geometry to previously 

collected cross-sectional and cohort data. This Chapter aims to provide detailed information 

regarding the primary mode of analysis, including methods of dietary data collection, statistical 

framework, details of the analysed datasets, contributions to the field, and potential limitations of 

this methodology. 

3.2 Dietary Data Collection 

Dietary data is a complex and difficult process to collect given the variability of the human 

diet. Many approaches exist to estimate dietary intake of nutrients, foods, and food groups but each 

avenue of collection poses unique advantages and disadvantages. One commonly employed 

technique in epidemiological studies includes self-recorded dietary food records over a pre-

determined period of time. The most common technique for this is the 24-hour recall where 

individuals recall all foods and beverages consumed in the previous 24-hour period [1]. Often, a 

trained dietitian or nutritionist assists in completing the 24-hour recall. However, it's important to 

note that these recalls can be prone to recall bias, which may result in both underreporting and 

overreporting of dietary intake [2]. Additionally, 24-hour recalls only capture a limited snapshot 

of dietary intake, which can vary seasonally and across the lifespan. 

Another approach often used to estimate dietary intake includes food frequency 

questionnaires (FFQs). FFQs estimate dietary intake by questioning participants on the frequency 

of consumption of food or food-related items from a predetermined list [3]. One advantage of this 

approach is that it targets the estimation of dietary intake over longer periods of time, such as the 
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past month or year. However, like other self-reported measures of dietary intake, FFQs are 

susceptible to recall bias. Moreover, FFQs are often criticized for not providing precise 

information about portion sizes and may miss specific food items that are not included in the 

questionnaire [4]. To more accurately capture dietary data, studies often conduct repeated 

measurements or a combination of these techniques. 

3.3 Geometric Framework for Nutrition 

Nutrition exists as a complex interaction between foods, nutrients, the environment, and 

the metabolism. While much of the nutritional literature has explored the impact of specific 

nutrient exposures on health outcomes, this approach does not capture the entirety of how nutrients 

function interactively with the organism. The GFN core design involves using a nutrient space to 

help visualize more complex nutrient interactions with health outcomes [5, 6]. This nutrient space 

provides an arena for multiple nutrients to act as exposures and foods or food components can be 

plotted in accordance with the nutrient mixture. These often include the assessment of specific 

macronutrients but are not necessarily limited to these nutrients. Moreover, these plots often 

explore the absolute intake of two macronutrients (e.g., protein; carbohydrate) where nutrient 

‘rails’ are plotted as a theoretical target intake ratio. However, over time these expanded to more 

frequently include more complex three dimensional geometric plots that incorporate all three 

macronutrients [7].  

 Right-Angle Mixture Triangles 

In addition to using absolute intake, an alternative form of GFN analysis has been 

incorporated that uses right-angle mixture triangles (RMTs). The RMT approach provides an 

environment where the complexity of the absolute models can be refined into a single plot on a 
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percentage scale of total macronutrient energy [8]. The RMTs are designed to present two 

macronutrients on the x and y-axis while the third variable is inferred by subtracting the sum of x 

and y from 100. The relative intake of the third nutrient can thus be inferred by finding the 

difference (100-(x+y)). A key strength of this tool within the GFN is that the total number of figures 

can be reduced to consolidate information for readers. These plots also allow dimensional 

flexibility for all three macronutrients, so specific foods and food components can be plotted 

(Figure 3). As the application of RMTs progressed, the mixexp package in R statistical software 

was used to create a coloured contour plot on the surface of the RMT [9]. As described in Lawson 

and Wilden [10], the mixexp package allows testing of what model complexity best describes the 

data. Model 1 represents the null model (no dietary association), Model 2 represents linear 

associations, Model 3 represents quadratic associations, and Models 4 and 5 reflect cubic 

associations. However, one fundamental limitation of the mixexp package is that this model 

technique was unable to control for covariates.



Methods  

65 

 

Figure 3. Macronutrient Composition at Varying Eating Times. Cumulative proportion of 

macronutrients from Eating Period 1 (EP1) to EP3 by reported protein density below, within, or 

above the AMDR at EP1. The day was divided into three intervals; EP1 between midnight and 

11AM; EP2 between 11:00AM and 4:00PM; and EP3 after 4:00PM, indicated as 1, 2, 3 on the 

figure. Positions at 3 indicate the macronutrient proportions over the day, that is, from the start of 

the day to the end of the day. Shaded polygon area: Acceptable Macronutrient Distribution Range 

(AMDR) for Australians and New Zealanders. Figure adapted from Grech et al. Obesity 2022 [11]. 
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3.4 Statistical Foundation 

 Generalised Additive Models 

Generalised additive models (GAMs) are a form a multivariable linear regression in which 

the predictor variables are flexible and can conform to more complex nonlinear shapes by denoting 

variables as a “smooth term” in the R statistical software package mgcv (v. 1.8-41; R Core Team; 

Vienna, Austria) [12, 13]. Smooth terms are flexible such that they can adapt to the complexity of 

the data or can default to a linear model if more suitable to the data. In GAMs, a variety of 

distributions can be assumed for the response variable by changing the model “family” including 

Gaussian, gamma, binomial, and multi-variate normal. Another type of model includes ‘cox.ph’ 

which changes the model to operate as a Cox proportional hazards model. The Cox proportional 

hazards model in mgcv provides outcomes on the survival function scale which can be interpreted 

as the probability that an event will occur beyond a specified time point. Taken together, GAMs 

are very flexible and can be fitted to a variety of distributions and model types.  

 Model Parameters 

Several model parameters exist for GAMs given their unique flexibility. As models are 

most often applied for nonlinear outcomes, models are often described by the number of basis 

functions or the “knots” (Figure 4). The number of knots in the model often describes how 

“wiggly” the model outcome is and can be specified by the user. However, this is often subject to 

user error, so using a form of smoothing is often recommended. Smoothing parameters can be 

included in the model and aim to conservatively auto-select the number of basis functions for the 

model. For example, the restricted maximum likelihood method (REML) and the generalised 

cross-validation (GCV) methods are commonly applied to prevent over or under-smoothing the 
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model. Similar to linear models, GAMs also provide a metric for how well the predictors fit the 

outcome of interest via the deviance explained (DE). The deviance explained by the model is 

synonymous to the unadjusted R2 value in linear models. Instead of presenting a numerical value 

for correlation, the models produce an effective degree of freedom (EDF) value which is a metric 

for describing the wiggliness of the model where a value of 1 reflects a linear model and higher 

values are wigglier. 

 Three-dimensional Generalised Additive Models 

Alternatively, GAMs also offer the unique ability to combine multiple predictor variables 

into a single smooth term (e.g., s(protein, carbohydrate, fat)). In more sophisticated multi-

dimensional models, the relative association between the predictor variables and the outcome of 

interest is most easily examined visually. Like traditional multivariable regression, additional 

smooth terms and categorical terms can be included in the model to act as covariates. However, 

when including multiple covariates, it is often suggested to test for concurvity as over-fitting the 

data often occurs in more complicated models. Models including three dimensions are often 

visualized using a cube (Figure 5). However, given the complexity of these shapes, holding one 

variable constant or taking a ‘slice’ from the cube can allow for more readily interpretable 

information. Within the context of GFN, initial three-dimensional models of macronutrients were 

used to explore macronutrient composition via the specified raw energy content consumed (i.e., 

kcal/day). 

 Model Selection Process 

Model comparison of GAMs is often described by the relative change in DE or comparing 

model metrics from the ‘gam.check’ function in mgcv. However, the Akaike Information Criterion 
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(AIC) is often used when comparing models of varying complexity or with the inclusion of 

covariates. A model's AIC value is generally classified as an estimate of prediction error and, by 

extension, provides a marker of model quality. The AIC values add the unique benefit of taking 

into consideration the complexity of the model thus incorporating the risk of under- and over-

fitting when directly comparing models. 
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Figure 4. Models with varying numbers of basis functions. Adapted from the DataCamp training series on Nonlinear Modeling with 

Generalised Additive Models in R [14]. 
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Figure 5. Three-dimensional Generalised Additive Model Visualized. Figure A shows a generalised additive model with three 

smooth terms. Figure B shows a slice of this cube holding one predictor variable constant as a ‘slice’. Adapted from Québec Centre for 

Biodiversity Science: Workshop 8: Generalised Additive Models [15]. 
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3.5 Methodological Contributions 

 Transformation Analysis 

A byproduct of attempting to apply RMTs in a more complex nutritional epidemiological 

setting is the need to incorporate covariate adjustment. Given the limitation of mixexp in being 

unable to adjust for covariates, transformation analysis was needed to adjust for necessary 

covariates in the GAM models. This included detailing the specified GAM model where the 

appropriate covariates were defined. Covariates were often established through the combination 

of a priori assumptions and preliminary data exploration. Once the GAM is defined, the ranges of 

the macronutrient intakes (as a percentage) can be used to create a matrix of values for possible 

macronutrient combinations. The combinations can then be reduced to the combinations that sum 

to 100 as this is needed for the RMT (Figure 6). Thereafter, these combinations can be multiplied 

by a specified caloric intake (e.g., 25th, 50th, 75th percentile of total energy intake) to predict 

macronutrient combinations across energy intake thresholds. After predictions are made, the 

absolute intake can then be back-transformed to percentages to plot the matrix of potential 

macronutrient combinations. This process which used the package ggplot2 in R statistical software 

was applied to map the coloured contour plot onto the RMT (v. 3.3.5; R Core Team; Vienna, 

Austria) [16]. This transformation process allows for covariates such as age, physical activity, and 

body mass index (BMI) to be introduced in the prediction step using a specific value or categorial 

term (e.g., mean) in the GAM. 
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Figure 6. Dietary Macronutrient Composition and Cardiometabolic Health Markers. 

Cardiometabolic health response surfaces on right-angled mixture triangles were generated as 

predictions from absolute macronutrient intake at the 50th percentile of total energy intake (1846 

kcal/day). Response values are coloured such that warm colours show higher values and cooler 

colours show lower values. Macronutrient intakes were transformed to a percentage of energy to 

visualize and interpret associations compositionally. The percentage of fat can be inferred as 

decreasing moving away from the origin, such that each point on the triangle can be summed to 

equal 100% of energy from protein, carbohydrates, and fat. Response surfaces have been adjusted 

for age, sex, household income, physical activity, and Healthy Eating Index. Adapted from Koemel 

et al. European Society of Cardiology 2022 [17].
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 Nutrition Geometry with Dietary Fatty Acids 

Macronutrients have been the primary focus in much of the Nutritional Geometry research. 

This reasoning often stems from both the fact that macronutrients occupy the majority of total 

energy intake, and that protein is observed as a primary regulator of feeding patterns. However, 

the analysis revealed that maternal dietary fatty acids had a unique relationship with the outcome 

of interest (i.e., epigenetic aging). To advance the utility of the GFN, the models were adapted to 

include dietary fatty acids fatty acids as the primary exposures in the plots. Given that the primary 

fatty acids comprise MUFA, PUFA, and SFAs, I then created an RMT based on the total fat energy 

derived from each specific fatty acid class. This allowed for the visual and statistical analysis of 

how dietary fatty acid composition was associated with offspring outcomes. The absolute analysis 

(kcal/day) was also used to explore how specific dietary fatty acids were associated with epigenetic 

aging. Omega-3 and omega-6 fatty acids were of particular interest and thus included in the final 

manuscript [18].  

 Survival Analysis in Generalised Additive Models 

The current mgcv has many applications and specific “families” that can be specified in the 

model. By specifying a different model type, the user can change the form of the analysis in the 

GAM or the assumed distribution of the data. In the analysis of all-cause, cardiovascular, and 

cancer mortality with the NHANES data, the need for applying survival analysis with the GFN 

became apparent. This created the need to alter the code to function with a Cox proportional 

hazards model. The same survival models were also created for the transformation analysis of 

RMTs to enable the inclusion of model covariates. The survival analysis outcomes are produced 

on the survival function scale (0-1), which denotes the probability of the event occurring beyond 



Methods  

74 

a specified date. For both the absolute and percentage models, the survival score was transformed 

to reflect a raw percentage of risk of the event occurring ((1-Survival score)*100).  

 Analysis of Diet Quality, Microbial Metabolites, and Cardiometabolic Health 

The GAMs offer the unique ability to visualize complex relationships between exposures 

and outcomes. After exploring the association of diet composition with outcomes, the opportunity 

to explore a potential moderator of the relationship was identified in the NHANES dataset. This 

specific marker included two urinary enterolignans which are produced more abundantly in 

individuals with a better functioning gut microbiome. Therefore, the enterolignans enterolactone 

and enterodiol are classified as surrogate markers of gut microbiome health. In the absence of more 

specific microbiome data, the GAM parameters were modified to replace macronutrients with 

enterolignans, diet quality, total energy intake, and the outcome as cardiometabolic health. 

Creating these three-dimensional plots allowed for an indirect measure of the potential moderating 

role of the gut microbiome on the relationship between diet quality and cardiometabolic health.  

 Population Level Adjustments 

All models included in the population level GFN were constructed using a variety of 

sequential modeling techniques. For example, a base model was created and covariates were added 

sequentially. The covariates of interest were dependent on the outcome of interest, dataset 

availability, and supported by the model selection protocol. For example, in the Body Fatness 

Study dataset (Chapter 4) dietary supplement data was collected via a separate medical 

questionnaire with limited questioning to denote supplement dose or consistency in relation to 

pregnancy. Similarly, the NHANES dataset (Chapter 5, 6, 7, 8) dietary supplement information 

differs across cycle years and often has differing supplements and doses. For the E3N cohort 
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(Chapter 9), covariates were selected a priori as an extension of recent work with the exposure 

and outcomes (Appendix 3). Other covariates, often included age, sex, household income, BMI, 

smoking, and alcohol. A major question often raised is the need for the adjustment of total energy 

intake which in these analyses is addressed in several keyways. In the absolute models, energy 

intake is provided continuously for all three macronutrients simultaneously, with slices made for 

each macronutrient at various intake levels. This allows inferences to be made across the spectrum 

of total energy intake via the model itself, making further adjustments for energy redundant. The 

RMTs include compositional analysis as a percentage of total energy which should account for 

some of the influence of total energy intake. However, to create a more thorough investigation, 

each RMT was plotted at varying intakes in the transformation analysis (25th, 50th, and 75th 

percentile of total energy intake) to ensure the robustness of the results.  

 Diet Quality and Food Groups 

Diet quality assessment differed across the varying datasets explored in this thesis. For the 

National Health and Nutrition Examination (NHANES) analyses, diet quality was explored using 

the 2010 and 2015 Healthy Eating Index (HEI). The 2010 and 2015 HEI are both aimed at 

capturing the adherence of individual dietary intake to the US dietary guidelines. The 2010 HEI 

contains nine adequacy components which include whole fruit, total vegetables, greens and beans, 

whole grains, dairy, total protein foods, seafood and plant proteins, and fatty acids. Additionally, 

the score contains three components to be consumed in moderation which include refined grains, 

sodium and empty calories (i.e., calories from solid fats, alcohol, and added sugars) [19]. The only 

difference between the 2010 and the 2015 HEI is that the “empty calories” category was replaced 

with “Added Sugars” and “ Saturated Fats” categories [20]. Both indices provide scores for diet 

quality on a scale from 0-100 with higher values denoting higher diet quality.  
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To explore how macronutrient associations differ across varying diet quality, a four-

dimensional GAM model was created in order to develop RMT predictions at varying plant-based 

diet quality indices. These indices included three widely used scores which rank diet quality on 

plant-based diet quality (PDI), unhealthy plant-based diet quality (uPDI), and healthy plant-based 

quality (hPDI) [21]. These indices include 18 food group categories which distinguish between 

plant and animal products for the PDI while also considering level of refinement for plant-based 

foods in the hPDI and uPDI. All three indices negatively scored diets for containing higher 

amounts of animal fat, dairy, eggs, fish, seafood, meat, and other animal based foods. Healthy 

plant based food groups were comprised of whole grains, fruits, vegetables, nuts, legumes, 

vegetable oils, tea, and coffee. The unhealthy plant-based food components included fruit juices, 

refined grains, potatoes, sugar-sweetened beverages, sweets, and desserts. Using the core 

components of the plant-based indices, RMT predictions were also created based on specific food 

groups previously explored in the Nutritional Geometry literature such as meat (meat; fish; 

seafood), vegetable, fruit, grain (whole and refined grains), dairy, and discretionary foods (sugar-

sweetened beverages, sweets, and desserts) [11]. The examination of macronutrient differences in 

accordance with diet quality and food groups was incorporated in the final chapter of this thesis to 

better capture the relationship between diet composition and human health. This extension of 

Nutritional Geometry aimed to explore macronutrient differences based on diet quality and 

compositional associations with food groups to better understand the complex interplay between 

diet and health outcomes. 

 Limitations 

A major limitation of GAMs and their application to the GFN is the complexity of the 

results. Traditional epidemiological techniques often explore individual nutrients and the relative 
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risk at varying degrees of intake. In complex GAMs, these results are best interpreted visually and 

require significant text to describe the underlying relationship. Additionally, the predictions of the 

response surface do not directly produce confidence intervals, making it difficult to infer the 

relative uncertainty of the model. From an epidemiological standpoint, depending on the data, it is 

often recommended to use survey weights to provide a more generalisable outcome for the specific 

population. However, in GAMs there is currently no way to apply survey weights which precludes 

population level generalisations.  

3.6 Dataset Details 

 Body Fatness Study 

The data for Chapter 3 was derived from a previously conducted study in 2017 (protocol 

no. X14-0356) [22]. The study's primary aim was to examine the relationship of newborn body 

composition with heart rate variability (HRV) and aortic intima-media thickness (aIMT). In this 

study, infants were recruited from the Royal Prince Alfred Hospital in Sydney Australia (n = 224). 

Singleton newborns were eligible for the study if they were born between 37-42 weeks and had 

completed the body composition assessments. Maternal demographic data, health, and pregnancy 

information was collected via standardized questions or available medical records. Maternal 

dietary information was collected via a single food-frequency questionnaire (FFQ) completed after 

delivery from women who were instructed to record dietary habits over the course of pregnancy.  

At the time of birth, saliva samples were collected from the newborns and later examined 

to determine the epigenetic age of the offspring. The primary aim of this study was to explore the 

role of maternal diet on offspring biological aging using newborn epigenetic age acceleration [23]. 

Epigenetic age acceleration was calculated using the Horvath Clock which includes methylation 

levels of 353 CpG sites of the offspring DNA. Methylation of the DNA was computed using an 
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Illumina Human Methylation 850K (“EPIC”) array with DNA isolated from the saliva samples (n 

= 169).  

 NHANES 

The NHANES data is a portion of an annually collected survey in the United States aimed 

at assessing dietary foods, nutrients, and overall health of Americans. The survey is conducted by 

the Centers for Disease Control and Prevention and the National Center for Health Statistics [24]. 

The survey is complex and includes a block design to be inclusive and nationally representative 

so that each demographic is weighted accordingly. Additionally, each year, a random sample of 

individuals undergo testing for specific biomarkers of interest which change annually. This often 

includes items such as blood lipid profile, glycemic control, body fatness, blood pressure, and 

other related disease markers. The laboratory testing is collected via trained professionals and 

details of each specific laboratory technique are readily accessible online [25]. Dietary data was 

collected cross-sectionally using 1-2 separate 24-hour recalls delivered by a trained nutritional 

professional. The initial 24-hr recall was collected in-person and the second 24-hr recall was 

collected via telephone follow-up 3-10 days after the initial visit. Mortality data was collected 

using the data linkage program [26] and includes the specific cause of death using the International 

Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) [27]. 

 E3N 

The Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education 

Nationale or E3N cohort is the French portion of the larger European Investigation into Nutrition 

and Cancer (EPIC) [28]. The cohort began in 1990 with the goal of exploring factors associated 

with cancer and other metabolic diseases in women aged 40-65 (n = 98,995). The cohort includes 
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participants from the national health system where primarily teachers were recruited (protocol no. 

NCT03285230). Participants completed baseline demographic and lifestyle characteristic surveys 

and follow-up surveys were sent out every 2-3 years. Diet history was defined as the habitual 

intake of specific nutrients, specific foods, and food groups over a long period of follow-up. 

Dietary history was collected using a self-administered 208-item FFQ which was collected once 

in 1993 and once again 12 years later in 2005 [29, 30]. Food items and portion sizes were 

determined by participants using visual aids. The reported FFQ was translated into specific nutrient 

and energy quantities using the Database from the French Information Center on Food Quality 

[31]. Specific disease outcomes including cancer incidence and mortality were collected using the 

data linkage to the French health system.   
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ABSTRACT
Background: Maternal nutrition is associated with epigenetic and
cardiometabolic risk factors in offspring. Research in humans
has primarily focused on assessing the impact of individual
nutrients.
Objectives: We sought to assess the collective impact of maternal
dietary MUFAs, PUFAs, and SFAs on epigenetic aging and
cardiometabolic risk markers in healthy newborn infants using a
geometric framework approach.
Methods: Body fatness (n = 162), aortic intima–media thickness
(aIMT; n = 131), heart rate variability (n = 118), and epigenetic age
acceleration (n = 124) were assessed in newborn infants. Maternal
dietary intake was cross-sectionally assessed in the immediate
postpartum period via a validated 80-item self-administered FFQ.
Generalized additive models were used to explore interactive
associations of nutrient intake, with results visualized as response
surfaces.
Results: After adjustment for total energy intake, maternal age,
gestational age, and sex there was a 3-way interactive association of
MUFAs, PUFAs, and SFAs (P = 0.001) with newborn epigenetic
aging. This suggests that the nature of each fat class association
depends upon one another. Response surfaces revealed MUFAs
were positively associated with newborn epigenetic age acceleration
only at proportionately lower intakes of SFAs or PUFAs. We also
demonstrate a potential beneficial association of omega-3 (n–3)
PUFAs with newborn epigenetic age acceleration (P = 0.008). There
was no significant association of fat class with newborn aIMT, heart
rate variability, or body fatness.
Conclusions: In this study, we demonstrated an association between
maternal dietary fat class composition and epigenetic aging in
newborns. Future research should consider other characteristics such
as the source of maternal dietary fatty acids. Am J Clin Nutr
2021;0:1–10.

Keywords: pregnancy, maternal diet, dietary fat, aging, epigenetics,
fatty acids

Introduction
Pregnancy is a crucial time during which metabolic and

environmental exposures significantly impact fetal development.
These intrauterine exposures have been shown to have a lasting
effect on health and disease outcomes through fetal programming
(1). Epigenetic modification is one mechanism that is strongly
implicated as a key contributor to fetal programming (2, 3).
Epigenetics is the modification of specific gene expression
without manipulation of the underlying genetic sequence. In
mammals, the chemical addition of a methyl group to the
5-position of cytosine commonly occurs when the cytosine
is positioned immediately before guanine (known as a CpG
site). This DNA methylation mark can be copied after DNA
synthesis, resulting in heritable changes in chromatin structure
(4). Epigenetic aging is a measure of biological aging that can be
quantified on the basis of variable levels of DNA methylation at
particular CpG sites using previously developed algorithms (5).
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In humans, epigenetic aging is independently associated with all-
cause mortality (6), and risk of noncommunicable diseases later
in life, such as cardiovascular disease (CVD) (7), cancer (8, 9),
and type 2 diabetes (10).

In animal models, there is evidence that the macronutrient
composition of the maternal diet, including protein restriction
(11, 12) and high-fat diets (13, 14), is linked to potential adverse
epigenetic modifications in newborns. However, many epigenetic
consequences are not fully understood. We recently demonstrated
that maternal dietary fat intake was an important and potentially
modifiable driver of human newborn epigenetic aging, and
that different fat classes exhibit differential associations with
epigenetic age acceleration (15). Previous univariate analyses
support this notion (16, 17); however, they do not inform upon
interactions that take place between the 3 major fat classes,
or between fat classes and macronutrients. Complex nutrient
interactions can be examined using the geometric framework,
which allows for a graphical depiction of the interactions between
nutrients as response surfaces mapped to a multidimensional
nutrient space (18). We sought to evaluate the interactions
between macronutrients, the 3 major fat classes, specific fatty
acids, and epigenetic aging in infants. As a secondary analysis,
and to provide a holistic view of overall cardiometabolic health,
we also determined the association of maternal nutrient intake on
newborn cardiovascular health and body fatness outcomes. We
hypothesized that the composition of maternal dietary fat classes
would have a significant net association with newborn epigenetic
aging and cardiometabolic health measures.

Methods

Participants

The mothers and newborns were recruited immediately after
birth at the Royal Prince Alfred Hospital, Sydney, Australia.
Eligibility included singleton newborns (>34 wk gestational
age) who had body composition assessment within 24 h of
birth (n = 224; Supplemental Figure 1). Newborn body fat
percentage was collected via air displacement plethysmography
(PEA POD; COSMED). In brief, this method calculates body fat
percentage by direct measurements of volume and mass using a
densitometric technique previously validated for use in infants
(19). Measurements were collected by healthcare professionals
and the device was calibrated daily per device protocol. All
mothers in this study provided voluntary written consent. Data
collected in this study were approved by the Human Research
Ethics Committee of the Sydney Local Health District (Protocol
no. X14-0356).

Maternal characteristics and environmental exposures

Maternal information, including age, weight, height, medical
history, and pregnancy lifestyle, was collected via a standardized
questionnaire. Maternal dietary data and newborn outcomes
were collected in the immediate postpartum period recorded as
the postnatal age (Table 1) via a validated 80-item electronic
FFQ, which contained 5 domains of dietary intake including:
1) cereal foods, sweets, and snacks; 2) dairy products, meats,
and fish; 3) fruit; 4) vegetables; and 5) alcoholic beverages
(FFQ: Dietary Questionnaire for Epidemiological Studies v2;

Cancer Council Victoria). Mothers were instructed to complete
the self-administered FFQ related to their diet during pregnancy
(n = 213), which we have validated against objective biomarkers
(20). Those with a pregnancy affected by gestational diabetes
or preeclampsia were excluded from the analysis. Dietary intake
of supplements was collected via a separate questionnaire. Food
intake was quantified into total energy intake, macronutrients, and
specific fat classes.

Epigenetic age

Epigenetic age was assessed as previously described (15).
DNA methylation was determined by assessing saliva samples
collected from the newborns (n = 169) using the Oragene
OG-250 kit (Genotek). The Illumina MethylationEPIC Bead-
Chip array was then used to quantify DNA methylation
levels. DNA methylation–estimated age was calculated from
methylation of 353 CpG sites using the Horvath calculator
(https://dnamage.genetics.ucla.edu/). In the MethylationEPIC
design, Illumina removed 19 CpG probes that form part of the
Horvath calculator, so these values were imputed. Our primary
outcome of interest was epigenetic age acceleration residuals
collected from a linear regression model of epigenetic age on
chronological age (epigenetic age minus chronological age).
Here, positive epigenetic acceleration is that of ≥0 wk, and
negative epigenetic acceleration is <0 wk.

Newborn cardiovascular health

Arterial intima–media thickness is a validated method for
assessing subclinical atherosclerosis and is an independent risk
factor for CVD (21). We assessed newborn aortic intima–
media thickness (aIMT) via high-frequency linear probes on the
abdominal aorta (n = 188; EPIQ 5; Philips Medical Systems),
as per best practice guidelines (22). An observer blinded to
participant characteristics evaluated ultrasound recordings with
validated edge-detection software (Carotid Analyzer; Medical
Imaging Applications LLC).

Heart rate variability (HRV) was collected (n = 158)
continuously for 15 min via 3-lead electrocardiogram (ECG)
in the sleeping infant (Powerlab; ADInstruments). Output was
digitized at 500 Hz, and analysis was performed via LabChart
(HRV 1 Module, Version 7; ADInstruments) from 3 epochs of 4
min. Frequency domain analysis of HRV was performed using a
fast Fourier domain analysis (total power) on the R-R interval
waveform (256-point, Hanning window) with 50% overlap in
the range of 0–1.1 Hz (23). Low-frequency band power (0.04–
0.15 Hz), high-frequency band power (0.15–0.4 Hz), and the low-
frequency to high-frequency ratio were recorded.

Statistical analysis

Effects of maternal nutrition were explored in terms of
both diet composition (i.e., percentage of energy from different
sources) and absolute nutrient intake. The mixture model applied
in this article provides a methodology that enables statistical and
visual analysis of complex associations of nutrients with health
markers (24). This includes assessment of nonlinear associations
and nutrient interactions, in a manner that is both complementary
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TABLE 1 Newborn and maternal characteristics1

Mean SD

Maternal
Maternal age, y 33.6 4.5
Prepregnancy BMI, kg/m2 20.8 7.8
Energy intake, kcal/d 1843 813
Protein, kcal/d 370 184
Protein, TEI% 19.5 2.8
Carbohydrates, kcal/d 755 336
Carbohydrates, TEI% 40.8 4.9
Fat, kcal/d 719 335
Fat, TEI% 37.9 4.4
MUFA, kcal/d 255 126
MUFA, TEI% 13.5 1.8
MUFA, FEI% 35.2 2.2
PUFA, kcal/d 96 52
PUFA, TEI% 5.0 1.5
PUFA, FEI% 13.4 4.0
ω-3, kcal/d 12.1 5.5
ω-3, TEI% 0.7 0.2
ω-3, FEI% 1.8 0.5
ω-6, kcal/d 76.8 31.0
ω-6, TEI% 4.4 1.3
ω-6, FEI% 11.7 3.6
SFA, kcal/d 303 140
SFA, TEI% 16.1 3.0
SFA, FEI% 42.3 5.4

Newborn
Gestational age, wk 38.8 1.6
Postnatal age, wk 2.1 1.6
Preterm (%) 18 —
Female (%) 54 —
Birth weight, g 3355 544
Body fatness, % 11.0 4.8
Maximum aortic intima–media thickness, mm 0.61 0.08
Heart rate variability—total power, ms2 1207 835
Heart rate variability—high frequency, ms2 198 266
Heart rate variability—low frequency, ms2 337 276
Heart rate variability—LF:HF ratio 3.2 2.8
Epigenetic age acceleration, wk 1.2 21.3

1Values are shown as means ± SD or (%). n = 162 for all outcomes except for maximum aortic intima–media thickness (n = 131), heart rate variability
(n = 118), and epigenetic age acceleration (n = 124). FEI, fat energy intake; HF, high frequency; LF, low frequency; TEI, total energy intake.

to, and extends, traditional nutritional epidemiology approaches
that focus on either a single nutrient or isocaloric nutrient
replacement. As described by Lawson and Willden (25), 5
mixture models were created to test for linear and nonlinear
associations between percentage energy from macronutrients
(protein, carbohydrate, fat) and newborn outcomes. We also
tested for associations of macronutrients with the percentage
of total energy intake (TEI), percentage of fat energy intake
(FEI), and absolute energy (kilocalories per day) derived from
each of the major fat classes (MUFAs, PUFAs, and SFAs).
Each model from Model 2 up to Model 5 tests for increasingly
complex effects. Model 1 represents the null model (no dietary
association), Model 2 represents linear associations, Model 3
represents quadratic associations, and Models 4 and 5 reflect
cubic associations. The Akaike information criterion (AIC) was
used for model comparison, where models with lower values
receive the most support (24, 26). The effects of diet composition
on outcomes were visualized as surfaces predicted by the

AIC-favored model projected onto a right-angle mixture triangle
(RMT). Response surfaces throughout this article are trimmed
to show predicted values for only data points observed within
this study. Dietary associations can be inferred by assessing the
predicted values in conjunction with the location on the RMT
where all individual points are equal to 100% by summing
protein (x-axis) + carbohydrate (y-axis) + fat. Fat is shown
as diagonal lines with higher intake closer to the origin. The
dietary acceptable macronutrient distribution ranges for adults
recommended by the Institute of Medicine (27) are shown on
the epigenetic age acceleration RMT for reference (Figure 1).
Mixture Models were created using the “MixModel” function
in the R package mixexp (v. 1.2; R Foundation for Statistical
Computing).

To explore the effects of absolute nutrient intake we used
generalized additive models (GAMs). GAMs are a form of
multivariable regression that tests for nonlinear interactive and
additive associations. For each outcome, sets of GAMs were
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FIGURE 1 Right-angle mixture triangle for maternal dietary composi-
tion and newborn epigenetic age acceleration. Response surface shows the
predicted newborn epigenetic age acceleration (n = 124) superimposed onto
a dietary macronutrient composition triangle where cool colors represent the
lowest values and warm colors represent the highest values of epigenetic age
acceleration. All points on the triangle represent 100% of dietary energy,
being the sum of protein (x-axis) + carbohydrate (y-axis) + fat. Fat is shown
as diagonal lines with higher intake closer to the origin. Response surface
has been trimmed to display predictions for values observed in the dataset.
The US acceptable macronutrient distribution range (AMDR) (27) for diet
composition is depicted as a polygon.

created to investigate associations with macronutrient intake and
intake of fat classes. For the 2 groups of nutrients, we fitted intake
of the 3 nutrients as a 3-dimensional smooth term. Additional
models were included to assess associations with differing
PUFAs [i.e., omega-6 (ω-6, n–6) compared with ω-3 (n–3)] and
fatty acids of varying chain length. To consolidate this assessment
we used the fatty acids that revealed the strongest significant
association with newborn epigenetic age in our previous analysis
(15). Each analysis included 1 fatty acid from each fat class
(MUFAs, PUFAs, or SFAs). Specifically, we used palmitoleic
acid (MUFA), palmitic acid (SFA), α-linolenic acid (PUFA:
ω-3), and linoleic acid (PUFA: ω-6). Where the P value for
this term was <0.05 we infer a statistically significant effect
of nutrient intake on the outcome of interest. Because GAMs
estimate nonlinear effects for smooth terms, the predicted effects
must be interpreted visually. To interpret the nature of statistically
significant nutritional terms we created 2-dimensional response
surfaces using macronutrients and fat classes as predictors. On
these surfaces, intakes of individual nutrients are shown on the x-
axes and y-axes, whereas the third nutrient is held constant at the
50th percentile of intake. Typically, intake of the third nutrient
has been shown at the 50th percentile, although we also show
25th, 50th, and 75th percentiles of the third nutrient for maternal
fat class and newborn epigenetic acceleration (Supplemental
Figure 2). Outcome variables are presented on the surfaces with
numeric values shown on the contour lines. Surfaces can be
interpreted by identifying the fat class or macronutrient being
held constant, then visually assessing the relation between the x-
and y-axes to determine associations with the specified outcome.
Surfaces are presented in the unadjusted form. Models were
adjusted for sex, maternal age, and gestational age (preterm or

term delivery). Total energy intake was included as a covariate in
the fat class and fatty acid analyses. All GAMs were implemented
using the mgcv package in R, and estimated by generalized-
cross validation score (v. 1.8–31; R Foundation for Statistical
Computing) (28, 29). Models were checked for concurvity and
overfitting. All other statistical analyses were undertaken with
SPSS (version 27; IBM Corporation).

Results

Maternal and offspring characteristics

Participant characteristics are shown in Table 1. The popu-
lation in this study design included predominantly Caucasian
individuals (60.7%) with the remaining individuals being Asian
(29.5%), Middle Eastern (3.1%), or mixed race (4.9%). There
were 162 participants remaining after removing individuals with
missing health data (n = 15), preeclampsia (n = 10), and
gestational diabetes (n = 37). The average maternal age was
33.6 ± 4.5 y, with a prepregnancy BMI of 20.8 ± 7.8 kg/m2.
Maternal diets consisted of 1843 ± 813 kcal/d, comprised of
370 ± 184 kcal/d protein (19.5 ± 2.8% TEI), 755 ± 336 kcal/d
carbohydrate (40.8 ± 4.9% TEI), and 719 ± 335 kcal/d
(37.9 ± 4.4% TEI) from fat. Average maternal dietary fat class
intake was MUFAs: 255 ± 126 kcal/d (13.5 ± 1.8% TEI;
35.2 ± 2.2% FEI), PUFAs: 96 ± 52 kcal/d (5.0 ± 1.5% TEI;
13.4 ± 4.0% FEI), and SFAs: 303 ± 140 kcal/d (16.1 ± 3.0%
TEI; 42.3 ± 5.4% FEI).

Gestational age was 38.8 ± 1.6 wk (54% female; 46%
male), with 18% of births being preterm. The average newborn
epigenetic age acceleration was 1.2 ± 21.3 wk, with a range
of −31.7 to 86.3 wk and a median of −1.0 wk (n = 124).
Cardiometabolic health included an average birth weight of
3355 ± 544 g, body fatness of 11.0 ± 4.8%, aIMT of
0.61 ± 0.08 mm (n = 131), HRV total power of 1207 ± 835
ms2 (n = 118), HRV low frequency of 337 ± 276 ms2 (n = 118),
HRV high frequency of 198 ± 266 ms2 (n = 118), and HRV low
frequency to high frequency ratio of 3.2 ± 2.8 (n = 118). In the fat
class models, maternal age and total energy intake were positively
associated with newborn epigenetic age acceleration. There were
no differences in newborn epigenetic age acceleration between
sex or the gestational period of birth (Table 2). A sensitivity
analysis detected no significant changes to the overall findings
of this study when incorporating ethnicity as a covariate in the
models.

Epigenetic aging

Among the mixture models testing for effects of diet composi-
tion on epigenetic age acceleration, Model 2 was favored by AIC,
suggesting linear associations of maternal dietary macronutrients
with offspring epigenetic age acceleration (Supplemental Tables
1 and 2). In this model, dietary associations with newborn
epigenetic age acceleration appear to be primarily associated with
dietary fat (P = 0.006). It is apparent from the macronutrient mix-
ture model that the lowest newborn epigenetic age acceleration
was found in the region of the mixture space comprising ∼55%
carbohydrate, 25% fat, and 20% protein, whereas the highest
newborn epigenetic age acceleration was in the region ∼30%
carbohydrate, 50% fat, and 20% protein (Figure 1).
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TABLE 2 Adjusted model GAM output for maternal dietary fat classes and newborn outcomes1

Model EDF Ref.df FS P value Dev.Expl. Scale

Epigenetic age acceleration
s(MUFA, PUFA, SFA) 15.19 16.71 2.66 0.001∗ 35.0% 348.54
s(Maternal age) 1.00 1.00 5.58 0.02∗ NA NA
s(Energy intake) 1.00 1.00 8.21 0.004∗ NA NA
Sex Est: 3.99 SE: 3.53 T: 1.13 0.26 NA NA
Gestation Est: − 5.29 SE: 5.21 T: − 1.02 0.31 NA NA

Aortic intima–media thickness
s(MUFA, PUFA, SFA) 13.94 16.77 0.97 0.52 29.3% 0.005
s(Maternal age) 1.66 2.10 0.65 0.52 NA NA
s(Energy intake) 6.52 7.63 1.64 0.10 NA NA
Sex Est: 0.009 SE: 0.01 T: 0.64 0.53 NA NA
Gestation Est: 0.02 SE: 0.02 T: 1.02 0.31 NA NA

Heart rate variability
s(MUFA, PUFA, SFA) 9.34 10.02 1.04 0.42 17.6% 6.48
s(Maternal age) 1.00 1.00 3.34 0.04∗ NA NA
s(Energy intake) 1.00 1.00 0.15 0.70 NA NA
Sex Est: 15.10 SE: 157.20 T: 0.10 0.97 NA NA
Gestation Est: 669.70 SE: 220.7 T: 3.04 0.003∗ NA NA

Body fatness
s(MUFA, PUFA, SFA) 9.00 9.00 0.43 0.92 11.0% 22.66
s(Maternal age) 1.00 1.00 2.86 0.09 NA NA
s(Energy intake) 1.00 1.00 0.26 0.61 NA NA
Sex Est: 1.82 SE: 0.78 T: 2.35 0.02∗ NA NA
Gestation Est: 2.19 SE: 1.07 T: 2.04 0.04∗ NA NA

1Results for the smooth terms (s) and nonparametric terms for each variable in generalized additive models for newborn body fatness (n = 162);
maximum aortic intima–media thickness (n = 131), heart rate variability (n = 118), and epigenetic age acceleration (n = 124). ∗Denotes statistically
significant term at P < 0.05. Gestation is dichotomized as late preterm or term-born infants. Dev.Expl., deviance explained of the model; EDF, effective
degrees of freedom; Est, estimate; FS, F statistic; GAM, generalized additive model; NA, not applicable; Ref.df, reference degrees of freedom; T, test statistic
value.

Maternal macronutrients were associated with dietary fat class
intake (Figure 2; Supplemental Tables 3 and 4). Model 2
was favored by AIC for all forms of fat class intake except
MUFAs (FEI), suggesting positive linear associations between
macronutrients and total energy from fat (TEI) and absolute
energy (kilocalories per day) from each fat class. Conversely,
higher fat intake was associated with a lower portion of total
fat energy (FEI) derived from PUFAs. SFAs (FEI) appear to be
associated with both protein and fat, where the lowest portion
of SFA (FEI) was associated with a diet mixture of ∼40%
carbohydrate, 30% protein, and 30% fat, and the highest SFA
(FEI) was seen in the area of ∼40% carbohydrate, 15% protein,
and 45% fat. MUFA (FEI) favored Model 4, where there was
a significant 3-way association with macronutrients (P = 0.03).
The highest MUFA (FEI) was associated with diets comprised of
∼50% carbohydrate, 25% protein, and 25% fat. In comparison,
the lowest MUFA (FEI) was found in the area with less than
∼20% protein.

The response surfaces for absolute intake of maternal
macronutrients and epigenetic age acceleration are shown in
Supplemental Figure 3. Based on a visual analysis of the
unadjusted response surface, a higher intake of carbohydrates
appears to be associated with lower epigenetic age acceleration,
whereas higher fat intake had a positive association with
epigenetic age acceleration. These patterns accord with the diet
composition model (Figure 1). However, there was no significant
3-way association of macronutrients in the adjusted or unadjusted
models (Supplemental Tables 5 and 6).

The response surfaces for maternal fat classes and newborn
epigenetic aging are shown in Figure 3A–C. After adjusting for
maternal age, energy intake, newborn gender, and gestational
age (preterm or term delivery), there was evidence of a 3-way
interaction between fatty acid classes and newborn epigenetic
aging (P = 0.001; Table 2). Generally, higher proportions of
PUFAs and SFAs to MUFAs appear to be associated with
lower epigenetic aging, shown in the blue areas of the surface
plot. Visually, maternal PUFA intake is associated with lower
newborn epigenetic age acceleration (Figure 3A). The association
was strongest when coupled with an increase in maternal SFA
intake >250 kcal/d (Figure 3C). MUFAs appear to be positively
associated with newborn epigenetic age acceleration with a
stronger relation occurring when both MUFA intake reached
>150 kcal/d and SFA intake was <350 kcal/d (Figure 3B). Lower
epigenetic age acceleration was seen when maternal intakes of
both MUFAs and SFAs increased simultaneously.

Response surfaces for maternal dietary ω-3 or ω-6 fatty
acids and newborn epigenetic age acceleration are shown in
Figure 4A–D. After adjustment for maternal age, energy intake,
newborn gender, and gestational age (preterm or term delivery),
both ω-3 (P = 0.0008) and ω-6 (P = 0.0003); were statistically
significant when substituted in place of the PUFA fat class
(Supplemental Tables 7 and 8). Visually, ω-3 appears to have
an inverse association with newborn epigenetic age acceleration,
beginning when intake reached approximately >15 kcal/d.
Conversely, ω-6 appeared to have a moderate inverse association
only when coupled with higher SFA intake.
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FIGURE 2 Right-angle mixture triangle for maternal dietary composition and fat class intake. Response surfaces show the predicted maternal dietary fat
class intake (n = 162) superimposed onto a composition triangle where cool colors represent the lowest values and warm colors represent the highest values.
All points on the triangle represent 100% of dietary energy, being the sum of protein (x-axis) + carbohydrate (y-axis) + fat. Fat is shown as diagonal lines
with higher intake closer to the origin. Response surface has been trimmed to display predictions for values observed in the dataset. Fat classes are shown as
a percentage of total energy intake (A–C), absolute intake in kilocalories per day (D–F), and as a percentage of total fat energy intake (G–I). FEI, fat energy
intake; TEI, total energy intake.

Similar findings were revealed for newborn epigenetic age
acceleration when substituting specific fatty acids for each fat
class. A 3-way interaction was detected for maternal dietary
palmitoleic, palmitic, and linoleic acids (Supplemental Figure
4; Supplemental Tables 9 and 10). Palmitoleic acid appears to
have a strong positive association with newborn epigenetic age
acceleration whereas α-linolenic acid had a negative association.
Linoleic acid had a negative association with newborn epigenetic
acceleration only when palmitoleic acid intake was <20 kcal/d.

Mixture models testing for associations between macronu-
trients and fat class ratio [MUFA/(PUFA + SFA)] are shown
in Figure 5. Model 4 was favored by AIC, supporting a 3-
way interaction of macronutrients on fat class composition
(Supplemental Table 11). From the mixture model, the highest
MUFA/(PUFA + SFA) ratio appears at ∼55% carbohydrate, 25%

fat, and 20% protein, whereas the lowest MUFA/(PUFA + SFA)
ratio appears in diets with less than ∼20% protein.

Cardiometabolic outcomes

The surface plots for aIMT, HRV, and body fatness with ma-
ternal macronutrients as predictors are shown in Supplemental
Figures 5–10. There was no evidence of an interaction with
macronutrients and newborn cardiometabolic health (Supple-
mental Tables 6–7 and 12).

The surface plots for aIMT, HRV, and body fatness with
maternal fat class intake as predictors are shown in Supplemental
Figures 5–10. There was no association between maternal
dietary fat class composition and newborn cardiometabolic health
(Table 2; Supplemental Tables 13 and 14). Similarly, there
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FIGURE 3 Newborn epigenetic acceleration and maternal dietary fatty acid classes. Response surfaces for newborn epigenetic age acceleration (n = 124)
with maternal dietary fat classes as predictors in a generalized additive model (A–C). Surfaces show a 2-dimensional nutrient space sliced through the median
value of the third variable. Contour lines represent the predicted values, where cool colors represent the lowest values and warm colors represent the highest
values. Response surface has been trimmed to display predictions for values observed in the dataset.

was no significant association between newborn cardiometabolic
outcomes with maternal dietary ω-3, ω-6, or specific fatty acids
(Supplemental Figures 11–16; Supplemental Tables 7–10).

Discussion
Biological aging in early childhood is associated with maternal

dietary intake of individual macronutrients and fatty acid classes
(15, 30, 31). However, a focus on individual nutrients fails to
capture elaborate dietary interactions and associations. Using
a geometric framework approach, we demonstrate that the
association of maternal nutritional characteristics with epigenetic
aging of the offspring is complex, with evidence of interactions
between fatty acid classes. These findings indicate that the
mix of maternal dietary fatty acid classes has an association
with newborn epigenetic aging and should thus be assessed
collectively.

Epigenetic aging has been proposed as a commonly shared
mechanism for several noncommunicable diseases and predicts
all-cause mortality (32–34). The Horvath epigenetic clock
captures this epigenetic aging across 353 specific CpG sites
identified by elastic net regression as having methylation rate
covary with age across a wide array of tissues. It also models the
observed logarithmic epigenetic aging pattern from age 0 to 20 y,
which settles to a linear relation in adulthood (5). Functionally,
these CpG sites are associated with innate molecular processes
of biological aging (35), and changes in epigenetic age are
associated with a variety of factors including diet, inflammation,
cellular division, and development (35, 36). To understand the
weight (percentage) contribution of particular clock CpG sites to
epigenetic age acceleration for neonates in particular, we have
previously multiplied the IQR of methylation values for each
CpG site by the Horvath clock coefficients for that site (15).

Pregnancy represents a pivotal time during development where
offspring DNA is more susceptible to epigenetic modifications.
Many maternal dietary factors can influence the modification
of the fetal epigenome, including protein restriction (37) and
high-fat diets (38). In line with our previous findings (15),
we demonstrated that maternal dietary fat intake is positively
associated with newborn epigenetic age acceleration (Figure 1).
This could be partially related to intrauterine exposures such

as inflammation, hyperlipidemia, and glycemic control (39, 40).
Despite these unique findings with epigenetic age acceleration
in newborns, we identified no associations of maternal dietary
protein, carbohydrate, and fat composition with cardiometabolic
outcomes, including measures of cardiovascular health and
body fatness. Maternal dietary PUFAs such as ω-3 fatty acids
and specific MUFAs including palmitoleic acid have proposed
cardioprotective effects in newborns (41–43). In line with these
findings, we found some evidence consistent with a beneficial
association of maternal PUFA intake with newborn HRV and
aIMT.

Maternal dietary macronutrients and fatty acids are 2 nutri-
tional exposures that have been previously shown to have an
influential role in newborn health. Fatty acid composition can
differ across the spectrum of macronutrient compositions (44).
To address this, we assessed the relation between macronutrient
composition and fatty acid intake using the geometric framework.
Interestingly, we found that women consuming diets with a
higher proportion of energy from fat appear to consume a lower
proportion of their fat as PUFAs and a higher proportion of their
fat as SFAs, whereas those consuming diets lowest in protein had
the lowest fat energy from MUFAs.

The association of specific dietary fatty acid classes with
epigenetic aging in human and animal models has been previ-
ously studied (16, 45), yet remains insufficiently examined in the
context of maternal diet. In this study, we revealed an underlying
3-way interaction between MUFAs, PUFAs, and SFAs. This
suggests that the effects of each fat class are dependent upon one
another for their association with epigenetic aging. For example,
the response surfaces of absolute intake identified that maternal
diets highest in MUFAs had the greatest newborn epigenetic
acceleration, except when intakes of PUFAs or SFAs were
also proportionally higher. When assessing newborn epigenetic
aging with ω-3 and ω-6 PUFA subtypes, we showed that ω-3
PUFA has an inverse association with newborn epigenetic aging,
whereas ω-6 PUFA appears to have only a moderate inverse
association with newborn epigenetic aging when coupled with
higher SFA intake. Our intergenerational findings align well with
previous literature in individuals suggesting potential deleterious
epigenetic associations with ω-6 PUFA intake and beneficial
epigenetic modifications with ω-3 PUFA intake in both animal
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FIGURE 4 Newborn epigenetic acceleration with maternal dietary omega-3 (ω-3; n–3) and ω-6 (n–6) fatty acid intake. Response surfaces for newborn
epigenetic age acceleration (n = 124) with maternal dietary MUFA, SFA, ω-3, and ω-6 as predictors in a generalized additive model. Surfaces show a 2-
dimensional nutrient space sliced through the median value of either SFA (A, C) or MUFA (B, D). Contour lines represent the predicted values, where cool
colors represent the lowest values and warm colors represent the highest values. Response surface has been trimmed to display predictions for values observed
in the dataset.

models and humans (46). The response surfaces appeared similar
when assessing specific chain-length fatty acids for each fat class
category such as palmitoleic, palmitic, α-linolenic, and linoleic
acids.

When further examining the relation between macronutrients
and fat class as a ratio, we showed that lower dietary protein,
particularly at intakes less than ∼20% of total energy, was
associated with a lower ratio of MUFA to combined PUFA
and SFA. Given the nature of our study population, we are
unable to infer causality, and are unable to directly compare the
associations of maternal macronutrients with those of maternal
dietary fat class. Accordingly, we cannot conclude whether
maternal macronutrient intake or fat class composition is more
important for newborn epigenetic aging.

These findings show that the association of maternal MUFA
intake with offspring epigenetic aging is more nuanced than
our previous work indicated, involving complex interactions.
We propose this could also partially relate to the diverse
dietary sources of MUFAs. Plant sources of fat classes such

as MUFAs likely contain residual confounding effects due to
higher antioxidant, vitamin, and polyphenol content, which can
impact epigenetic modifications during pregnancy (47, 48). Thus,
subsequent research should consider the source of dietary fat
classes and macronutrients when assessing the impact of maternal
nutrition on fetal programming.

Strengths and limitations

One strength of this study is that we used a previously validated
FFQ for pregnancy (49), although it should be noted that there
are inherent limitations of using an FFQ for establishing dietary
associations. An additional key advantage is that we used the
geometric framework method, which allows nutrient associations
to be viewed within a landscape containing several other nutrients
as opposed to assessing nutrients 1 variable at a time (50).
The geometric framework has been recognized as a method
for identifying ecologically relevant associations of nutrients on
aging and cardiometabolic health (51, 52).
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Maternal dietary fat and newborn epigenetic aging 9

FIGURE 5 Right-angle mixture triangle for maternal dietary composi-
tion and fat class ratio. Response surface for maternal dietary fat class ratio
is superimposed onto a dietary macronutrient composition triangle (n = 162)
where cool colors represent the lowest values and warm colors represent the
highest values. All points on the triangle represent 100% of dietary energy,
being the sum of protein (x-axis) + carbohydrate (y-axis) + fat. Fat is shown
as diagonal lines with higher intake closer to the origin. Response surface
has been trimmed to display predictions for values observed in the dataset.
The US acceptable macronutrient distribution range (AMDR) (27) for diet
composition is depicted as a polygon.

This study has several limitations. Notably, our sample
size was relatively small for the full application of GAMs.
This prevented us from fully adjusting each response surface
for continuous covariates. Moreover, in the present study
maternal age was positively associated with newborn epigenetic
acceleration, supporting previous findings noting that not all
methylation patterns are entirely removed during gametogenesis
and fertilization (53). Future studies should explore dietary
associations with newborn epigenetic aging across varying
maternal and paternal age groups. Additionally, family ancestry
is known to play a key role in transgenerational epigenetic
modifications. Although there was no relation between ethnicity
and newborn epigenetic age acceleration, we were not sufficiently
powered to determine whether the observed associations are
consistent across varying ethnicities. Lastly, this analysis was
conducted in healthy individuals to avoid reverse causation in
those who would have received dietary therapy for metabolic
complications of pregnancy (e.g., diabetes), thus limiting the
applicability of these findings to those with adverse health
outcomes during pregnancy.

Conclusions

In this analysis, we identified a unique interactive association
between maternal intake of the major fat classes (MUFAs,
PUFAs, SFAs) and newborn epigenetic age acceleration. Future
studies should take into consideration other characteristics
such as dietary source when establishing complex associations
between dietary fat and epigenetic outcomes.
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Chapter 5: Adult Nutrition and Metabolic Health 

Associations Between Dietary Macronutrient Composition and Cardiometabolic Health: Data 

from NHANES 1999-2014 
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ABSTRACT 

Background: Dietary macronutrients play an influential role in cardiometabolic health and the 

development of noncommunicable diseases. However, most studies explore the relationship 

between individual macronutrients with human health. This study sought to explore the mix of 

dietary macronutrients and its association with cardiometabolic health among US adults. 

Methods: This study was undertaken using the National Health and Nutrition Examination Survey 

from years 1999-2014. Participants included 33,681 US adults (49.7 ± 18.3 years; 52.5% female). 

Dietary data was collected via 1-2 separate 24-hour recalls and cardiometabolic health included 

blood lipid profile, glycemic control, blood pressure, and adiposity collected in a mobile 

examination center. Associations between dietary macronutrient composition and cardiometabolic 

health were statistically and visually examined using generalized additive models.  

Results: After adjusting for age, sex, socio-demographics, lifestyle, and diet quality, we found a 

significant association between macronutrient composition and the following biomarkers: 

triglycerides (P < 0.001), HDL cholesterol (P < 0.001), Total-C (P = 0.01), systolic blood pressure 

(P < 0.001), diastolic blood pressure (P = 0.006), and insulin (P = 0.02). Triglycerides and HDL 

cholesterol were the least optimal in diets containing lower amounts of fat (10%). Total-C was 

highest in either diets composed of higher carbohydrates (75%) coupled with lower amounts of 

protein (5%) or diets with lower carbohydrate content (30%) coupled with moderate protein (25%). 

Systolic blood pressure and insulin were both highest in diets containing lower amounts of fat 

(10%) coupled with moderate protein (25%). Diastolic blood pressure was highest in those 

consuming the upper range of fat (55%).  

Conclusions: This analysis revealed a complex relationship between dietary macronutrient 

composition with numerous cardiometabolic health markers among US adults independent of diet 
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quality. Future research is needed to explore how these relationships differ across dietary patterns 

and age groups. 
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INTRODUCTION 

Noncommunicable diseases (NCDs) account for 71% of all deaths globally, of which 

cardiovascular disease (CVD) and cancer are the primary contributors [1]. Diet and lifestyle play 

an essential role in the prevention and treatment of NCDs [2]. This appears to be at least partially 

mediated by associations of diet with cardiovascular and metabolic risk factors such as blood lipid 

profile, glycemic regulation, blood pressure, and adiposity [3]. Thus, improved nutrition presents 

a key target for reducing the global burden of NCDs. 

Nutritional epidemiology has traditionally focused on the role of individual nutrients in 

human health [4]. However, this does not characterize potential interactive associations between 

nutrient components such as macronutrients. Observational and experimental research often 

explores individual dietary macronutrient composition such as high-carb or high-protein diets 

making it difficult to explore the impact of differences in macronutrient composition [5, 6]. This 

has led to a wide degree of controversy regarding the potential therapeutic and detrimental effects 

of macronutrients [7]. The study of whole foods or dietary patterns is posited to account for such 

interactions [8], but cannot specifically determine the net influence of specific nutrients, or 

partition their effects, on health outcomes.  

The Geometric Framework for Nutrition (GFN) is a multidimensional approach utilized to  

understand the complex nature of nutrition [9]. The GFN uses state-space response surfaces to 

visualize non-linear interactive associations with outcomes of interest [10]. This technique has 

been widely used in animal and human models for understanding the link between macronutrient 

composition, cardiometabolic health, and lifespan [11-13]. More recent work in human 

populations has primarily focused on the impact of macronutrients and micronutrients on healthy 

aging [14, 15], and associations with mortality using population-level data [16]. However, this 
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technique has yet to be broadly applied to understand the relationship of diet composition with 

cardiometabolic health from a population-level perspective. 

Therefore, we sought to determine the associations of dietary macronutrient composition 

with cardiometabolic health among US adults. As a secondary aim, we explored the relationship 

between macronutrient composition with the varying components of the Healthy Eating Index to 

create a more comprehensive understanding of how dietary components and food groups may 

partially explain the relationship between macronutrients and cardiometabolic health. We 

hypothesized that the associations of cardiometabolic health would be complex involving 

interactive effects between macronutrients. 

SUBJECTS AND METHODS 

Study Population 

The National Health and Nutrition Examination Survey (NHANES) is an ongoing research 

program conducted by the National Center for Health Statistics and the Centers for Disease Control 

and Prevention. NHANES focuses on the nutrition and health of individuals in the United States. 

This study evaluated male and female participants aged 20 years or older from 1999-2014. Dietary 

data was collected via 1-2 separate 24-hour dietary recalls recorded by a trained nutrition 

professional. The first recall was collected in-person followed by a second interview that was 

conducted by telephone 3-10 days later [17]. During the years 1999-2002, only a single 24-hour 

dietary recall was collected at the initial examination [17]. Individuals with potentially unreliable 

dietary intake were excluded from the analysis (males with energy intake of <800 or >4200 

kcal/day or females with an intake of <600 or > 3500 kcal/day [18]). Individuals with 

macronutrient intakes 3 standard deviations from the mean were not included in the analysis. 
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Individuals with a minimum of two 24-hour recalls were adjusted using a validated multiple 

system method to reflect the habitual intake of nutrients [19, 20]. All participants provided 

informed consent and the Institution Review Board for the CDC approved data collection and 

public use of all data. 

Cardiometabolic Health 

NHANES participants were randomly selected for collection of a fasting venous blood 

sample to determine their serum glucose, insulin, HbA1c, total cholesterol (Total-C), low-density 

lipoprotein cholesterol (LDL), high-density lipoprotein-cholesterol (HDL), and triglycerides. In 

addition, a specific subset of participants underwent an oral glucose tolerance test (OGTT) where 

they were given a calibrated dose of glucose drink (TrutolTM, Thermo Scientific, Waltham, MA) 

providing an average of 75 grams of glucose. Postprandial glucose levels were measured 2 hours 

after consuming the glucose drink. Bio-electrical impedance was used to estimate body fat 

percentage, while systolic and diastolic blood pressure were measured 3-4 times via 

sphygmomanometer and their average was used for the study. Trained professionals collected 

height and weight using standardized operating procedures, and body mass index (BMI) was 

calculated as weight divided by height in meters squared (kg/m2). Please refer to the NHANES 

page for information on questionnaires and laboratory procedures for further details on the 

methods employed [21]. 

Socio-demographic and Lifestyle Covariates 

Participants self-reported their demographic and lifestyle characteristics. Race/ethnicity 

information was used to categorize individuals as non-Hispanic white, non-Hispanic black, 

Hispanic, or other. Education was grouped into three categories: less than high school, high school, 
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or some college and above. Smokers were defined as individuals who reported smoking more than 

100 cigarettes during their lifetime, while alcohol consumers were those who had consumed a 

minimum of 12 drinks in a year. Physical activity was quantified based on the self-reported 

metabolic equivalents (METs) of moderate to vigorous leisure activities completed each week. 

Dietary quality was assessed using the 2015 Healthy Eating Index (HEI), which measures 

adherence to the 2015-2020 US Dietary Guidelines, and assigns a score ranging from 0 to 100 

points [22]. The 2015 Healthy Eating Index (HEI) measures the intake of various food groups to 

ensure adequate consumption of fruits, vegetables, beans, grains, dairy, protein foods, seafood, 

and plant protein, while also promoting a healthy balance of polyunsaturated (PUFA) and 

monounsaturated (MUFA) fatty acids to saturated fatty acids (SFA) defined at the fatty acid ratio 

((PUFA+MUFA/SFA)). Additionally, the HEI includes a moderation category that takes into 

account consumption of refined grains, sodium, added sugars, and saturated fat. 

Statistical Analysis 

The relationship between dietary macronutrients and cardiometabolic health was analyzed 

using generalized additive models (GAMs). GAMs are a form of multivariable regression that 

enable both visual and statistical assessment of nonlinear associations. GAMs also allow for 

covariate adjustment seen in traditional epidemiological literature [23, 24]. Three separate models 

were created to sequentially adjust for covariates. Model one was the base model and included 

adjustment for age, sex, and household income. Model two was adjusted as per model one, with 

further adjustment for socio-demographic characteristics, specifically ethnicity and education. 

Model three was adjusted as per model two, with further adjustment for lifestyle habits including 

alcohol intake, smoking, physical activity, BMI, and Healthy Eating Index. All GAMs were 

constructed using the ‘gam’ function from the mgcv package in R, estimated by generalized-cross 
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validation (GCV) score, and checked for concurvity or overfitting (v. 1.8-41; R Core Team; 

Vienna, Austria) [25, 26]. The mgcv package does not enable the use of survey weights, thus these 

results are not fully representative of the US population. 

A transformational framework was used to visualize dietary associations with our primary 

outcomes. Here, GAMs modeled the absolute intake of all macronutrients (i.e., protein; 

carbohydrate; fat) simultaneously as 3-dimensional smooth term to predict each outcome of 

cardiometabolic health. Absolute intake of macronutrients were then transformed to reflect a 

proportion of total energy where outcomes were plotted as a response surface on a mixture triangle 

using the ggplot2 package in R statistical software (v. 3.3.6; R Core Team; Vienna, Austria) [27]. 

Macronutrient composition is shown on a mixture triangle where the x and y-axis represent the 

percentage of dietary protein and carbohydrates. Fat intake can be inferred by subtracting the sum 

of protein and carbohydrate from 100, such that every point on a triangle will sum to 100. Each 

outcome is presented on the surface as an RGB spectrum, where warm colors represent higher 

values and cool colors represent lower values, with the addition of contour lines that contain 

numeric values of the specified outcome. Cardiometabolic markers were log-transformed with 

predicted values back-transformed onto the original scale. All thirteen components of the Healthy 

Eating Index were plotted as individual response surfaces at the 50th percentile of energy intake 

and displayed in the Supplementary Material. Saturated fat and added sugars only included the 

years 2003-2014 given the survey during 1999-2002 aggregates these components with alcohol. 

All other statistical analyses were undertaken with SPSS (Version 27; IBM Corporation; Armonk, 

NY). Statistical significance was declared at P < 0.05. 

Subgroup and Sensitivity Analyses 
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Subgroup analyses were undertaken to assess the associations in males and females where 

sequential GAMs were conducted stratified by sex. A pregnancy sensitivity was conducted by 

removing those reported as pregnant in the female stratified analysis. A comorbidity sensitivity 

analysis excluded individuals who reported having hypertension, cardiovascular disease, cancer, 

or were recommended by a doctor to take anti-hypertensive, lipid-lowering, or glucose controlling 

medication. A sensitivity analysis was completed including only individuals who had two 

completed 24-hour recalls. 

RESULTS 

Participant Characteristics 

 Participant demographic and cardiometabolic characteristics for the individuals included 

in this analysis are shown in Table 1. This sample included 33,681 US adults (49.7 ± 18.3 years; 

52.5% female; Supplementary Figure 1). Of these participants, pregnant women were included 

in the primary analysis (n = 1,008). At the time of the interview, individuals who reported having 

comorbidities including diabetes (n = 3,826), cardiovascular disease (n = 3,384), and cancer (n = 

3,068) were excluded from the analysis. Self-reported medication for related comorbid conditions 

included that for diabetes (n = 2,831), hypertension (n = 7,107), and lipid-lowering medications (n 

= 4,325).  

Blood Lipid Profile 

 In the fully adjusted model, there was a significant 3-way interaction for macronutrients 

with triglycerides, HDL cholesterol, and Total-C (All P ≤ 0.01; Figure 1; Table 2). Triglycerides 

was primarily associated with dietary fat where diets lowest in fat (15%) were associated with the 

highest fasting triglycerides. Total-C was highest in diets of lower carbohydrate (30%), higher 
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protein (30%) and moderate fat (40%). Blood HDL values were positively associated with protein 

and fat where the highest values were associated with diets comprised of 30% carbohydrate, 25% 

protein, and 45% fat. The lowest Total-C was associated with a wide range of macronutrients 

primarily in the center of the mixture plot where carbohydrate intake ranged from 30-70%, protein 

5-25%, and fat 15-55%. The highest Total-C was observed in two regions consisting of either 

higher carbohydrate (75%) coupled with lower protein (5%), or higher fat (45%) coupled with 

higher protein (30%). There was no significant association between macronutrient composition 

and LDL cholesterol in the fully adjusted model (Table 2).  

Glycemic Control 

There was a 3-way interactive association between fasting insulin and macronutrient mix 

in the fully adjusted model (P <0.001; Figure 1; Table 2). Fasting insulin was highest in diets 

composed of 30% protein, 55% carbohydrate and 15% fat. The lowest values for insulin were 

generally associated with diets containing higher dietary fat. There was no significant association 

between dietary macronutrient composition and glucose or OGTT in the fully adjusted model 

(Table 3).  

Blood Pressure and Adiposity 

There was a significant 3-way interaction with dietary macronutrients and blood pressure 

in the fully adjusted model (All P <0.001; Figure 1; Table 2). Systolic blood pressure was highest 

in diets composed of higher protein (30%) coupled with moderate carbohydrate (55%) and lower 

fat (15%). All other diet composition regions were associated with a similar systolic blood 

pressure. Diastolic blood pressure was highest across a band of diets with higher fat composition 

(55%). Lower diastolic blood pressure was observed in a region of higher protein (30%), moderate 
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carbohydrate intake (45%), and moderate fat intake (35%). There was no significant association 

between macronutrient composition with body fat percentage in the fully adjusted model (Table 

3).  

Energy Intake 

The relationship between dietary macronutrient composition with cardiometabolic health 

markers across various energy intakes is shown in Supplemental Figure 2-7. Triglycerides, HDL 

cholesterol, Total-C, blood pressure, and insulin show a similar compositional relationship at 

varying energy intakes, but with a higher overall effect size at higher total energy intakes. 

Healthy Eating Index Components 

 Response surfaces for the 13 subcomponents of the Healthy Eating Index are shown in 

Supplementary Figure 8-9 and Supplementary Table 1. Generally, higher protein, higher 

carbohydrate, and lower fat diets had the most optimal scores for fruits, vegetables, greens, and 

beans. Scores for whole grains was most optimal in diets composed of moderate protein, higher 

carbohydrate, and low fat. Protein foods and dairy intake scores were positively associated with 

protein intake while seafood and plant protein scores were highest with a moderate intake of all 

three macronutrients. Dietary fatty acid ratio was most optimal in diets comprised of lower protein, 

moderate carbohydrate, and higher fat.  

For the moderation category, diets lowest in protein, highest in carbohydrate, and lower in 

fat had the most optimal sodium score while moderate protein, higher carbohydrate, and lower fat 

had the most optimal refined grain score. For both sodium and refined grains, the least optimal 

score was found in diets containing higher protein, lower carbohydrate, and higher fat. There was 

no significant association between macronutrient composition with added sugars and saturated fat. 



Adult Nutrition and Metabolic Health 

105 

Sensitivity and Subgroup Analyses 

Stratified sex analyses for markers of blood lipid profile, body measures, and glycemic 

control are shown in Supplementary Tables 2-3. For males, only Total-C, systolic blood pressure, 

and HDL remained significantly associated with macronutrient composition (Supplemental 

Figure 10). Response surfaces for males revealed similar compositional associations, but these 

were lower for overall HDL and higher for overall systolic blood pressure. Females only displayed 

a significant association for macronutrient composition with triglycerides, HDL cholesterol, 

systolic blood pressure, and diastolic blood pressure (Supplementary Figure 11). Female 

response surfaces for triglycerides slightly differed from the pooled analysis such that the 

triglycerides appeared to be more positively associated with carbohydrates as opposed to fat. 

Female stratified response surfaces display similar associations for HDL cholesterol, systolic 

blood pressure, and diastolic blood pressure. Total-C and fasting insulin were no longer significant 

in the sensitivity analysis that excluded pregnant women (Supplementary Table 4) or when 

excluding those with comorbid conditions from the analysis (Supplementary Table 5). No 

cardiometabolic health markers had a significant association with macronutrient composition in 

the dietary recall sensitivity including only those with two completed 24-hour recalls 

(Supplementary Table 6). 

DISCUSSION 

Cardiometabolic health is widely recognized as a fundamental mediator between the 

associations established with nutrition, NCDs, and mortality [28, 29]. Dietary macronutrients serve 

as integral components in the dynamic relationship between diet and cardiometabolic health. In 

the fully adjusted model of our analysis, we revealed cardiometabolic health significantly differed 

across dietary macronutrient composition regardless of dietary quality. Specifically, there was a 
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complex nonlinear relationship between macronutrient composition with blood lipids, blood 

pressure, and fasting insulin.  

 The current findings demonstrate several key trade-offs in the relationship between 

macronutrient composition and blood lipid profile. Diets with higher protein and carbohydrate 

intake were associated with higher blood triglycerides. Alternatively, Total-C and HDL were 

elevated most in diets lowest in overall fat. This is in direct contrast to HDL where the highest 

values were observed in diets contain more dietary fat and protein. Associations with Total-C were 

more complex such that either higher protein coupled with higher fat or lower protein coupled with 

higher carbohydrate were associated with the greatest Total-C. This trade-off relationship of 

dietary macronutrients with blood lipids aligns with a recent meta-analysis of 32 randomized 

control trials assessing the impact of long-term (>12 months) low fat and high fat diets on blood 

lipid profile [30]. Specifically, that high fat diets appear positively associated with HDL and 

negatively associated with triglycerides while no associations were observed for LDL. 

 Poor glycemic control has commonly been associated with the intake of carbohydrates, 

particularly refined carbohydrates with a higher glycemic load [31]. Research examining the 

relationship between dietary fat and glycemic control has often directly compared via isocaloric 

replacement with carbohydrate without exploring differences across protein intake. This analysis 

revealed that those consuming a diet comprised of 25% protein, 65% carbohydrate, and 10% fat 

had the highest overall fasting insulin. Higher protein diets have been shown to stimulate insulin 

secretion, which in the long term has been associated with an increased risk of type II diabetes 

[32]. Additional work is needed to explore how these associations may differ in those with existing 

health conditions related to glycemic control.  
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Previous research has often explored the impact of dietary macronutrient composition on 

weight loss in long-term intervention trials which suggest that higher fat coupled with higher 

protein is beneficial [12]. This effect has been thought to be partially due to the protein leverage 

hypothesis, where experimental and observational evidence supports that protein appetite 

combined with a reduction in protein in the diet drives excess energy intake [33]. Therefore, 

sufficient dietary protein intake could reduce excess energy consumption supporting weight loss 

and ultimately improving overall body composition. In contrast, there was no association between 

macronutrient composition and body fat percentage in the present study. However, much of the 

research exploring the role of macronutrients on body composition is examined in a hypocaloric 

environment which may explain differences observed in the context of long-term effects of ad 

libitum diet composition. Lastly, the current findings also revealed a relationship between 

macronutrient and blood pressure. Higher overall systolic blood pressure was observed for those 

consuming diets higher in protein and lower in fat. Diastolic blood pressure was highest in a band 

of diet compositions at the upper range of dietary fat intake (55%). Limited evidence exists for the 

direct relationship between macronutrients and blood pressure. However, the total effect observed 

in this study was extremely small and may stem from underlying dietary components not fully 

captured in this analysis.  

 In the present study, distinct differences were observed when conducting a sex-stratified 

analysis. When examining associations in males, Total-C was elevated in diets with the upper 

range of reported protein intake (25%), lower amounts of carbohydrate (25%), and higher 

contribution of energy from dietary fat (45%). Conversely, there was no relationship with dietary 

macronutrients and Total-C observed for women. For females, triglycerides appeared to have a 

stronger positive association with carbohydrate intake as opposed to dietary fat in the pooled 
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analysis. This may be partly related to sex-specific influencers of lipid metabolism such as 

hormones, skeletal muscle mass, and distribution of body fat [34].  

Although the current US dietary guidelines do not provide explicit macronutrient ranges, 

the Institute of Medicine (IOM) has outlined a set of acceptable macronutrient ranges consisting 

of 10-35% protein, 45-65% carbohydrate, and 20-35% fat [35]. These ranges are designed to 

reduce the risk of noncommunicable diseases while taking into consideration micronutrient 

requirements. In the present study, these ranges sometimes include both the highest and lowest 

regions for several cardiometabolic health markers even after adjustment for dietary quality. 

Notably, these ranges also suggest lower risk for mortality in those consuming fat below the 

recommended IOM guidelines which should be interpreted with caution given the many 

physiological roles  of dietary fat. These findings support the need to provide a more detailed 

investigation into the association between long-term macronutrient intake and health status and 

evaluation of how these needs differ throughout the life course. 

Strengths and Limitations 

Nutrition research often uses a one-variable-at-a-time approach that overlooks the complex 

relationships between different nutrients. A key strength of this study is that we have taken a 

multidimensional approach to analyze the associations between nutrition and cardiometabolic 

health. These findings represent an important advancement in epidemiological research on the 

relationship between dietary composition and cardiometabolic health. 

An increasing emphasis has been made on improving diet quality by focusing on specific 

foods and dietary patterns [36]. The present study revealed that there was a significant association 

of several cardiometabolic health markers across the spectrum of macronutrient composition. To 
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further test our results, we adjusted for the Healthy Eating Index which acts as a measure of dietary 

quality by quantifying the level of adherence to the US dietary guidelines. Although we have 

adjusted for dietary quality using the Healthy Eating Index, this does not fully capture all aspects 

of diet quality and does not account for individual variation in nutrient needs by age or sex [37]. 

Previous studies have shown that specific dietary patterns can influence many of the 

cardiometabolic health markers reviewed, independent of dietary macronutrient composition [38]. 

To further explore how other components of diet quality may shape these findings, we then 

explored how the food components of the Healthy Eating Index were associated with 

macronutrient composition. Herein, we revealed that nearly all components differed significantly 

in relation to macronutrient composition and thus may potentially influence associations when 

exploring the relationship between either food groups or macronutrients individually with 

cardiometabolic health. Therefore, these results should be viewed as part of a broader continuum 

that considers the interplay between macronutrients, specific foods, and overall dietary patterns. 

Lastly, many of the observations in the study may be partially influenced by inter-

individual variability that exists in how individuals respond to various dietary components and diet 

composition [39]. Particularly, items such as genetics [40] and gut microbial health [41, 42] play 

an integral role in how diet influences cardiometabolic health and due to the nature of this design 

could not be thoroughly investigated. Other limitations of these findings include the inherent risks 

observed in nutritional epidemiology especially with the use of 24 hour recalls such as the risk of 

over and underreporting. Moreover, this study included a summary of cross-sectional nutritional 

data which precludes assuming causality between the identified relationships.  

CONCLUSION 
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The GFN offers a unique perspective on the dynamic relationship between nutrition and 

human health. Our study identified a complex relationship between macronutrient composition  

and several markers of cardiometabolic health. To gain a more comprehensive understanding of 

these associations, future research is needed to investigate how they vary across different dietary 

patterns and age groups.
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Table 1. Participant Characteristics1 

Participant Characteristics Mean SD 

Age (years) 49.7 18.4 

Female sex (n%) 52.5 − 

BMI (kg/m2) 28.8 6.5 

Total Energy (kcal) 1,907 603 

Healthy Eating Index Score 52.7 12.8 

Protein (kcal) 290 106 

Protein (TEI%) 15.2 4.0 

Carbohydrate (kcal) 978 340 

Carbohydrate (TEI%) 51.4 7.3 

Fat (kcal) 639 246 

Fat (TEI%) 33.4 6.2 

SFA (kcal) 219 93 

PUFA (kcal) 149 63 

MUFA (kcal) 241 101 

Fiber (g) 16 7 

Sugar (g) 78 8 

Sodium (mg) 1,469 81 

Race/Ethnicity  

Hispanic (%) 25.7 − 

Non-Hispanic White (%) 46.2 − 

Non-Hispanic Black (%) 20.6 − 

Other (%) 7.5 − 

Family Income to Poverty Ratio 2.5 1.6 

Education Level  

Less than high school (%) 10.2 − 

High school graduate or GED (%) 76.2 − 

Some College or More (%) 13.6 − 

Nondrinker (%) 26.5 − 

Nonsmoker (%) 50.4 − 

Physical Activity (METs) 1,657 2,212 

Lipid Profile  

Triglycerides (mg/dL) 138.6 121.2 

Total Cholesterol (mg/dL) 197.7 42.7 

LDL Cholesterol (mg/dL) 116.6 35.7 

HDL Cholesterol (mg/dL) 52.7 16.0 

Glycemic Control  

Glucose (mg/dL) 106.9 35.5 

Insulin (uU/mL) 13.7 16.3 

OGTT (mg/dL) 121.1 53.3 

HbA1c (%) 5.7 1.1 

Blood Pressure and Adiposity  

Systolic Blood Pressure (mm/Hg) 124.7 19.8 

Diastolic Blood Pressure (mm/Hg) 70.3 12.55 

Body Fat (%) 32.4 10.7 
1Participant Characteristics. Body mass index (BMI); Percentage of total energy intake (TEI%); 

Percentage of total fat intake (FEI%); Standard Deviation (SD).
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Table 2. Associations between Macronutrient Composition and Cardiometabolic Health1 

Outcome Model
1
 Model

2
 Model

3
 

 Dev Exp. P Dev Exp. P Dev Exp. P 

Triglycerides (mg/dL) 4.2% 0.001 6.8% 0.008 12.6% <0.001 

Total Cholesterol (mg/dL) 5.7% 0.03 6.0% 0.007 7.1% 0.01 

LDL Cholesterol (mg/dL) 4.2% 0.06 4.4% 0.07 5.5% 0.13 

HDL Cholesterol (mg/dL) 12.0% <0.001 12.9% <0.001 22.6% <0.001 

Glucose (mg/dL) 12.6% 0.19 13.0% 0.18 17.0% 0.18 

Insulin (uU/mL) 1.3% 0.16 1.8% 0.20 31.8% 0.02 

OGTT (mg/dL) 15.7% 0.09 16.3% 0.13 21.8% 0.12 

HbA1c (%) 14.6% 0.28 15.0% 0.31 19.2% 0.34 

Systolic Blood Pressure (mm/Hg) 25.4% <0.001 25.8% <0.001 27.3% <0.001 

Diastolic Blood Pressure (mm/Hg) 11.3% 0.008 11.5% 0.004 12.1% 0.006 

Body Fat (%) 43.5% 0.15 43.5% 0.15 44.1% 0.39 
1P-value reflects the level of significance for macronutrients as a three-dimensional smooth term for triglycerides (n = 15,087), total 

cholesterol (n = 28,568), Low-density lipoprotein (LDL) cholesterol (n = 14,433); high-density lipoprotein (HDL) cholesterol (n = 

30,713); systolic blood pressure (n = 31,317); diastolic blood pressure (n = 31,150); body mass index (n = 32,080); body fat percentage 

(n = 3,707); glucose (n = 15,241); insulin (n = 14,930); oral glucose tolerance test (OGTT; n = 7,504); hemoglobin A1C (HbA1c; n = 

23,399). Percentage of deviance explained (Dev Exp.) represents is shown for the entire model. Body fat percentage was not adjusted 

for BMI in Model3. 

 

Model1: Adjusted for Age, Sex, Household Income 

Model2: Adjustments as per model 1 + Race/Ethnicity + Education Level  

Model3: Adjustments as per model 2 + Smoking + Alcohol Intake + Physical Activity + BMI + Healthy Eating Index 
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FIGURES 

 
Figure 1. Dietary Macronutrient Composition and Cardiometabolic Health Markers. The mixture triangles shows the model predictions of the 

cardiometabolic health markers with a significant association with macronutrient composition. Predictions were made for the range of macronutrient percentages 

in this dataset. The x and y-axis show protein and carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such 

that each point on the triangle can be summed to equal 100%. Response values are coloured such that warm colours display higher values and cooler colours display 

lower values. Response surfaces were adjusted for age, sex, household income, BMI, physical activity, and Healthy Eating Index.
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Chapter 6:  Dietary Macronutrient Composition in Adulthood and Aging 

The Relationship between Dietary Macronutrient Composition and Telomere Length Among US 

Adults 
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ABSTRACT 

Background: The role of dietary macronutrients and energy intake in the aging process has been 

well-established. However, previous research has mainly focused on the association between 

leukocyte telomere length (LTL) and individual macronutrients, while the effects of macronutrient 

composition on LTL remain unclear. 

Design: This cross-sectional analysis involved 4,130 US adults (44.8 ± 17.0 years; 51% female) 

from the National Health and Nutrition Examination Survey conducted between 1999 and 2002. 

A single 24-hour dietary recall was used to collect dietary intake data. The relationship between 

dietary macronutrient composition and LTL was examined using three-dimensional generalized 

additive models. 

Results: After adjustment for age, sex, ethnicity, education, physical activity, BMI, and dietary 

quality, we revealed a three-dimensional association of macronutrient composition with LTL (P = 

0.02). Diets lower in protein (5-10%), higher in carbohydrates (75%), and lower in fat (15-20%) 

were associated with the longest LTL corresponding to 7.7 years slower biological aging. Diets 

lowest in protein (5%) and carbohydrate (40%), while highest in dietary fat (55%) had the shortest 

telomere length, corresponding to accelerated biological aging of 4.4 years. The associations 

appeared magnified with higher overall energy intake.  

Conclusions: These findings suggest that the composition of macronutrients in the diet is 

associated with biological aging, as measured by LTL. Further studies are needed to investigate 

this relationship throughout the lifespan. 

Keywords: NHANES; Aging; Telomere Length; Diet Composition; Macronutrients; Protein; 

Carbohydrate; Fat
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INTRODUCTION 

Telomeres are a region at the terminal end of chromosomes that shorten in length 

throughout the process of cell division. Accordingly, telomeres play an integral role in the aging 

process and are widely considered a marker of biological aging [1]. Excessive shortening of 

telomeres can preclude cell division, potentiating cellular senescence or apoptosis [2]. Shorter 

telomere length is strongly associated with an increased risk of cardiovascular diseases (CVD) [3, 

4], cancer [5, 6], and all-cause mortality [7].  

Human nutrition has been suggested to play an integral role in the aging process [8]. Cross-

sectional studies in humans have found limited evidence of individual macronutrient associations 

with telomere length [9-11]. Despite these findings, evidence from animal models has 

demonstrated that diets low in protein and higher in carbohydrate intake were associated with 

longer telomere length [12], while high-fat diets led to telomere shortening [13]. The remaining 

literature has primarily focused on how individual nutrients and food components are associated 

with telomere length [14-16]. While studying whole foods or dietary patterns may account for 

interactions between nutrients [17], it cannot provide a precise determination of their net impact 

or differentiate their effects on health outcomes. Furthermore, potential interactive associations 

between aspects of diet with nutrient components, such as macronutrients, have not been fully 

characterized [16].  

Nutritional geometry is a multidimensional approach aimed at understanding the complex 

nature of nutrition [18]. This approach uses state-space response surfaces to visualize the 

association of multiple nutrients simultaneously with outcomes of interest [19]. This technique has 

been widely used in animal models for understanding the role of macronutrient composition on 

metabolic health and aging [20, 21]. More recently, nutritional geometry has been used to explore 
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the impact of macronutrients and fatty acid composition on healthy aging [22], and associations 

with mortality [23, 24] in human populations. 

Therefore, we sought to determine the associations of macronutrient composition with 

telomere length in adults in the United States (US). As a secondary aim, we evaluated the 

relationship between macronutrient composition and telomere length across varying energy 

intakes to better characterize the interplay between nutrition and aging. Taken together, we 

hypothesized that the relationship between telomere length and diet will be dynamic and involve 

complex nonlinear relationships with macronutrients which will differ according to total energy 

intake. 

SUBJECTS AND METHODS 

Study Population 

The National Health and Nutrition Examination Survey (NHANES) is an ongoing research 

program conducted by the National Center for Health Statistics and the Centers for Disease Control 

and Prevention. NHANES is annually conducted and focuses on collecting information related to 

nutrition and health outcomes for individuals in the US. For this current analysis, we focused on 

NHANES healthy adults aged 20 years or older from the years 1999-2002 as telomere length was 

assessed only during this period. Dietary data were collected at the initial interview via a single 

24-hour dietary recall recorded by a trained nutrition professional in a mobile examination center 

[25]. All participants provided informed consent and the Institution Review Board for the CDC 

approved data collection and public use of all collected data.  

Telomere Length 
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 Leukocyte telomere length was measured using the quantitative polymerase chain reaction 

method relative to a standard reference DNA and is presented as the mean of telomere to standard 

(T/S) ratio. Each sample was assayed three times on three separate days using duplicate wells with 

potential outliers identified and excluded (<2% of samples). Further details are available on the 

NHANES website under the laboratory section [26]. To provide a reference to how the telomere 

length corresponds to aging we also transformed the T/S to years by first converting T/S to base 

pairs using the formula 3,274 + 2,413*(T/S) [27]. The base pairs were then converted to estimate 

the age associated rate of change for leukocyte telomere length (14.6 base pairs/year) [27]. 

Socio-demographic and Lifestyle Covariates 

Participants self-reported their demographic and lifestyle characteristics. Race/ethnicity 

information was used to categorize individuals as non-Hispanic white, non-Hispanic black, 

Hispanic, or other. Education was grouped into three categories: less than high school, high school, 

or some college and above. Smokers were defined as individuals who reported smoking more than 

100 cigarettes during their lifetime, while alcohol consumers were those who had consumed a 

minimum of 12 drinks in a year. Physical activity was quantified based on the self-reported 

metabolic equivalents (METs) of moderate to vigorous leisure activities completed each week. 

Dietary quality was assessed using the 2010 Healthy Eating Index, which measures adherence to 

the US Dietary Guidelines, and assigns a score ranging from 0 to 100 points [28].  

Statistical Analysis 

To conduct the primary analysis, certain exclusions were applied. Individuals whose 

reported dietary energy intake was deemed unreliable for males (<800 or >4,200 kcal/day) and 

females (<600 or >3,500 kcal/day) [29] were excluded (n = 1,919). Furthermore, those whose 
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dietary macronutrient intake deviated significantly from the mean (i.e., outliers defined as those 

consuming a macronutrient intake 3 standard deviations from the mean) were excluded from the 

analysis (n = 326). Participants with a self-reported history of diabetes, cancer, stroke, or 

cardiovascular disease were also excluded, as were those who reported taking medication to 

control blood pressure, glucose, or lipid levels. 

We used a mixture framework to explore dietary associations with our primary outcomes. 

This approach consists of generalized additive models (GAMs) which function as an adapted form 

of multiple regression to account for the effect of all macronutrients simultaneously [30, 31]. To 

account for potential confounding, covariates were sequentially included in three separate models. 

Model one was the base model and included adjustment for age, sex, household income, and the 

Healthy Eating Index. Model two was further adjusted for socio-demographic characteristics, 

specifically ethnicity and education. Model three was the final model and included additional 

adjustment for lifestyle habits including alcohol intake, smoking, physical activity, and BMI. 

We first explored the association between individual macronutrient intake (protein, fat, and 

carbohydrates) as a percentage of total energy with telomere length. To visualize compositional 

associations, the predicted outcomes of the GAMs were plotted as a response surface where the 

absolute intake of macronutrients was transformed to express a proportion of energy on a mixture 

triangle using ggplot2 package in R statistical software (v. 3.3.6; R Core Team; Vienna, Austria) 

[32]. To account for potential compositional differences, macronutrient response surfaces were 

then plotted at the 25th, 50th, and 75th percentile of total energy intake. The absolute intake of 

macronutrients (kcal/day) was also plotted where two macronutrient exposures were plotted while 

holding the third macronutrient exposure at the 50th percentile. This creates three separate plots 

provided in the supplement to gain a better understanding of the relationship between 
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macronutrients and telomere length. To further explore the relationship with aging, the telomere 

length transformed to years was plotted as a response surface to denote the relative amount of 

aging (predicted mean telomere length years – predicted telomere length years). To test for 

potential sex-specific associations, a sex-stratified analysis was conducted for each GAM. 

Potential differences across diet quality were examined by plotting response surfaces across the 

25th, 50th, and 75th percentile of HEI. All GAMs were constructed using the mgcv package in R, 

estimated by generalized-cross validation (GCV) score, and checked for concurvity or overfitting 

(v. 1.8-41; R Core Team; Vienna, Austria) [33, 34]. All other statistical analyses were undertaken 

with SPSS with significance declared at p < 0.05 (Version 28; IBM Corporation; Armonk, NY). 

RESULTS 

Participant Characteristics 

Participant characteristics for this analysis are shown in Table 1. Participants included 

4,130 individuals aged 44.8 ± 17.0 (51% female) after removing those who had potentially 

unreliable dietary data, reported being pregnant at the time of the interview, diagnosis of a 

comorbid condition, or prescribed related medications (Supplementary Figure 1). This sample 

of US adults was primarily overweight (BMI: 27.7 ± 5.9) and non-Hispanic white (48.7%). 

Macronutrient Composition and Telomere Length 

 In the individual macronutrient models, there was no significant association for protein, 

carbohydrate, or fat with telomere length in the fully adjusted model (Figure 1; Supplementary 

Table 1). Although not significant, a potential negative association was observed for both protein 

and fat with telomere length. Conversely, carbohydrate had a near significant association with 
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telomere length (P = 0.05) showing a positive association with intakes above approximately 50% 

of total energy. 

Compositionally, macronutrients revealed a 3-way interactive association with telomere 

length in the fully adjusted model (P = 0.02; Table 2). Model coefficients for each level of 

adjustment are presented in Supplemental Tables 2-4. In the fully adjusted model, visually, 

telomere length appears to be the longest in those consuming a diet of low to moderate protein (5-

15%), higher carbohydrate (75%), and lower fat (15-20%). In terms of reduction in the biological 

age, this corresponds to 7.7 years slower aging. Conversely, lowest telomere length was associated 

with diets comprised of lower protein (5%), moderate carbohydrate (40%), and higher fat (55%). 

This correspond to an accelerated biological aging of 4.4 years (Figure 2).  

Response surfaces displaying the association of telomere length with macronutrient 

composition across varying energy intake are shown in Figure 3 (Unadjusted shown in 

Supplemental Figure 2). Across energy intakes, telomere length was longest in diets with a lower 

protein composition (5-10%) while still higher in carbohydrate (75%) and lower in fat (15-20%). 

However, telomere length observed in this region was marginally longer at higher energy intakes 

(75th percentile). Additionally, at the higher energy intake a second region of higher telomere 

length emerged in diets composed of higher protein (25%), lower carbohydrate (30%), and 

moderate fat (45%). The lowest telomere length was associated with diets containing lower protein 

and higher amounts of fat, however, this association became stronger at higher energy intakes. At 

lower energy intake the telomere length appeared to differ less across the response surfaces 

compared to higher energy intakes. The absolute intake models (kcal/day) supported these findings 

(Supplementary Figure 3), with carbohydrate generally showing a positive association with 
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telomere length. Generally, this relationship appeared attenuated when protein or fat intake was 

simultaneously increased.  

Subgroup and Sensitivity Analyses  

 In the sex-stratified models, there was a significant association between macronutrient 

composition and telomere length in females in models 1-2, however, this association was nullified 

in the fully adjusted model (Table 2). No significant association was detected for macronutrients 

and telomere length in males alone. Macronutrient compositional associations were similar across 

the 25th, 50th, and 75th percentile of the Healthy Eating Index with the highest telomere length 

observed in individuals with 70-75% energy from carbohydrates (Supplementary Figure 4). 

DISCUSSION 

Main Findings 

 In the present study, we explored the association of dietary macronutrient composition with 

telomere length, a marker of biological aging. Our analyses identified a complex nonlinear 

relationship between dietary macronutrient composition and telomere length. Visual response 

surfaces revealed a longer telomere length in diets composed of low to moderate protein (5-15%), 

higher carbohydrate (75%), and low to moderate fat (15-20%). Shorter telomere length was 

generally associated with diets composed of lower protein (5%), lower carbohydrate (40%), and 

higher fat (55%). The magnitude of this association in these two regions of both high and low 

telomere length was magnified with higher energy intake.  

Diet Composition and Biological Aging 
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 The relationship between dietary nutrients and specific foods and telomere length have 

been widely explored in nutritional literature [16]. However, few studies have assessed the 

association with direct supply of macronutrients in both sexes. In women, telomere length has been 

shown to be negatively associated with dietary fat and a near positive association with dietary 

carbohydrates [35]. Conversely, other observational human studies have reported no relationship 

between macronutrients and telomere length [36, 37]. The present study revealed that the 

relationship between dietary macronutrients and telomere length involves complex nonlinear 

trade-offs that are not captured when examined using a one-variable at a time approach. 

Specifically, the relationship between each macronutrient depends upon another such that distinct 

combinations of macronutrients were associated with telomere length and this relationship changes 

across total energy intake. Generally, higher amounts of carbohydrate appear to be associated with 

longer telomere length while a higher proportion of protein and fat in the diet is associated with 

shorter telomere length. Mechanistically it has been posited that diets that promote increased 

oxidative stress insulin, inflammatory markers, or mTOR activation such as high-fat or high-

protein diets may accelerate the reduction of telomere length [37]. In support of the current 

findings, a recent analysis by our laboratory revealed that mice on a low protein, high carbohydrate 

diet had the longest hepatic telomere lengths and overall life span [38]. In humans, a population-

level example of this phenomenon exists in those consuming the Okinawan diet which consists of 

very low protein (9%) and high carbohydrate content (85%) [28]. Individuals consuming this diet 

are part of a unique region with one of the longest life expectancies in the world [39].  

In humans, this relationship is extremely complex as diet quality is also strongly associated 

with telomere length [40]. From a diet quality perspective, components such as dietary fiber, 

saturated fat, omega-3 fatty acids, antioxidants, and sugar have some of the best supported 
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associations with telomere length [16]. However, these nutrients are part of a broader spectrum of 

potential nutritional influences, including specific foods, food groups, and dietary patterns [41]. 

Given the wide range of influential dietary characteristics that influence biological aging, these 

findings underscore the importance of investigating the collective impact of both macronutrient 

composition and these core components, rather than studying them in isolation. 

Other research has supported the notion that caloric restriction may slow the cellular aging 

process. In both animals and humans, telomere length appears to be longer in those consuming a 

lower total energy intake [36, 42]. Many possible mechanisms for this has been explored, but 

generally it is thought to be partial to a reduction age-related metabolic markers such as anabolic 

hormones, oxidative stress, and inflammatory markers that accelerate the aging process [43]. 

Caloric restriction is also shown to up-regulate genes involved in cellular repair and free-radical 

regulation. In the present study we revealed that energy intake positively magnified the 

macronutrient composition association such that both the highest and lowest telomere lengths were 

observed in those with high energy intakes. One possible explanation for these findings is that 

diets with these specific macronutrient compositions may contain varying amounts of bioactive 

components, polyphenols, or micronutrients that act to reduce some of the mediators of aging. 

Therefore, higher energy intakes equate to higher absolute intakes of these beneficial compounds. 

Other factors may include certain macronutrient compositions which impact aspects of 

cardiometabolic health that accelerate the shortening of telomeres. Although not tested, these 

factors taken together may explain why a relationship with energy intake was observed.  

 While showing a nearly significant association, no difference in sex was observed when 

examining the relationship between dietary macronutrients and telomere length. These findings 

differ from other research revealing a longer telomere length in females compared to males [44]. 
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Sex differences in telomere length has been postulated to be explained by sex-specific hormone 

differences, where oestrogen has some evidence of providing greater resilience to oxidative stress 

[45, 46]. Ultimately this multidimensional analysis should be applied to other larger population 

level datasets with a greater sample size of men and women to explore this relationship more 

thoroughly. 

Strengths and Limitations 

 This study presents several key strengths. Notably, we used a multi-nutrient approach to 

assess the relationship between diet composition and biological aging. This technique has enabled 

the capture of complex interactive associations of macronutrients both statistically and visually. 

Herein, this analysis demonstrates that exploring the relationship of individual macronutrients with 

telomere length does not fully capture the complexity of the relationship. Additionally, we also 

transform telomere length to years to provide a more informative perspective on the relationship 

between dietary macronutrients and aging.  

However, this study is met with many limitations inherent to epidemiological research. 

Notably, dietary data was derived by a single 24-hour recall and is subject to under and over-

reporting as well as potentially not reflecting individual habitual dietary intake. Therefore, causal 

inferences cannot be concluded from this analysis. Additionally, given the complex generalized 

additive models explored in this study, the application of survey weights was not possible and 

therefore these findings cannot be generalized to the entire US population. Moreover, although 

this study adjusted the compositional association for the Healthy Eating Index as a marker of 

overall diet quality, no formal analysis was conducted to explore the association of specific foods 

that might underpin this relationship.  
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CONCLUSION 

 Our findings support a complex nonlinear relationship between dietary macronutrients and 

biological aging. Diets of higher carbohydrate, moderate protein, and lower fat positively correlate 

with telomere length among US adults. Future analyses are needed to explore specific dietary 

components that may support this relationship and how this differs at other periods throughout the 

life course.  
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TABLES 

Table 1. Participant Characteristics 

Participant Characteristics Mean SD 

Age (years) 44.8 17.0 

Female sex (n%) 51 − 

BMI (kg/m2) 27.7 5.9 

Total Energy (kcal) 2035 723 

Healthy Eating Index Score 49.96 11.42 

Protein (kcal) 302 126 

Protein (TEI%) 14.9 4.0 

Carbohydrate (kcal) 1036 414 

Carbohydrate (TEI%) 51.9 9.3 

Fat (kcal) 667 308 

Fat (TEI%) 32.9 8.0 

SFA (kcal) 217 113 

PUFA (kcal) 137 82 

MUFA (kcal) 249 125 

Fiber (g) 15.4 9.2 

Sugar (g) 129 73 

Sodium (mg) 3159 1514 

Race/Ethnicity  

Hispanic (%) 33.1 − 

Non-Hispanic White (%) 48.7 − 

Non-Hispanic Black (%) 15.3 − 

Other (%) 2.9 − 

Family Income to Poverty Ratio 2.64 1.58 

Education Level  

Less than high school 30.7 − 

High school graduate or GED 22.7 − 

Some College or More 46.6 − 

Nondrinker (%) 27.7 − 

Nonsmoker (%) 52.7 − 

Physical Activity (METs) 1869 2649 

Table 1. Participant Characteristics. Body mass index (BMI); Percentage of total energy intake 

(TEI%); Percentage of total fat intake (FEI%); Standard Deviation (SD).
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Table 2. Generalised Additive Models for Dietary Macronutrient Composition and Telomere Length 

 Model1 Model2 Model3 

 Dev Exp AIC P Dev Exp AIC P Dev Exp AIC P 

Macronutrients 16.4% -597.35 0.01 17.2% -633.17 0.02 17.6% -640.55 0.02 

Males 19.6% -279.90 0.33 20.2% -294.58 0.28 20.9% -296.02 0.32 

Females 14.5% -313.68 0.04 15.9% -332.79 0.045 15.7% -335.71 0.06 

Models 1-3 sequentially adjust for various covariates. Each cell reflects the P value for each macronutrient as a smooth term in a 

generalised additive model. The percentage of deviance explained by the entire model (Dev Exp) is shown in addition to the Akaike 

Information Criterion (AIC) which acts as a measure for model comparison. Models were adjusted for age, sex, race/ethnicity, education, 

household income, physical activity, smoking, and alcohol intake. 

Model1: Adjusted for Age, Sex, Household Income, Healthy Eating Index 

Model2: Adjustments as per model 1 + Race/Ethnicity + Education Level  

Model3: Adjustments as per model 2 + Physical Activity + Smoking + Alcohol Intake
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Figure 1. Individual Macronutrient Associations with Telomere Length. Images display the macronutrient associations for protein, 

carbohydrate, and fat with telomere length (T/S). The P-value is denoted for the individual macronutrient as a percentage of total energy 

derived from a generalised additive model. The x-axis displays the percentage of total macronutrient energy derived from the specified 

macronutrient and all associations are presented as the fully adjusted model with the addition of energy adjustment. 
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Figure 2. Macronutrient Composition and Telomere Length. The mixture triangle shows the model predictions of the telomere 

length ratio (telomere/standard; left) and the telomere length transformed in years relative to the mean (right). The range of macronutrient 

percentages in this dataset. The x and y-axis show protein and carbohydrate respectively. Percentage of fat can be inferred as decreasing 

moving away from the origin, such that each point on the triangle can be summed to equal 100%. Response values are coloured such 

that warm colours show a higher telomere length and cooler colours show a lower telomere length. Response surfaces were adjusted for 

age, sex, diet quality, race/ethnicity, education, household income, physical activity, smoking, alcohol intake, and BMI.
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Figure 3. Macronutrient Composition and Telomere Length. The mixture triangle shows the model predictions of telomere length 

ratio (telomere/standard) for the range of macronutrient percentages in this dataset. The figures show the predictions using the 25th, 50th, 

and 75th percentile of total energy intake. The x and y-axis show protein and carbohydrate respectively. Percentage of fat can be inferred 

as decreasing moving away from the origin, such that each point on the triangle can be summed to equal 100%. Response values are 

coloured such that warm colours show a higher telomere length and cooler colours show a lower telomere length. Response surfaces 

were adjusted for age, sex, diet quality, race/ethnicity, education, household income, physical activity, smoking, alcohol intake, and 

BMI. 
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Chapter 7: Macronutrient Composition, Noncommunicable Diseases, and Mortality 

Multi-nutrient analysis of dietary macronutrients with all-cause, cardiovascular, and cancer 

mortality: data from NHANES 1999-2014 
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Abstract: Macronutrients are a major component of the human diet. However, few studies have
assessed their collective association with mortality. We sought to evaluate the associations of macronu-
trient intake with all-cause, cardiovascular, and cancer mortality in US adults using a multi-nutrient
approach. This prospective cohort analysis used data from the National Health and Nutrition Ex-
amination Survey from the years 1999 to 2014. The participants included 33,681 US adults aged
20–85 years (52.5% female). The maximum follow-up time was 16.8 years, with a total of 4398 total
deaths, including 772 cardiovascular deaths and 952 cancer deaths. The associations between mortal-
ity and dietary macronutrients were explored using three-dimensional generalized additive models,
allowing for visual and statistical inference of complex nonlinear associations. Absolute macronu-
trient intake demonstrated a three-way interactive association with all-cause mortality (p < 0.001),
cardiovascular mortality (p = 0.02), and cancer mortality (p = 0.05), adjusted for age, sex, ethnicity,
socioeconomic status, dietary quality, and lifestyle. Compositionally, a high caloric diet composed of
moderately high protein (20%), moderate fat (30%), and moderate carbohydrate (50%) levels was
associated with the highest mortality risk. Across the total energy intake levels, lower mortality
risk was observed in two separate regions consisting of higher protein (30%), higher carbohydrate
(60%), and lower fat levels (10%) or lower protein (10%), moderate carbohydrate (45%), and higher
fat levels (45%). These findings highlight a complex nonlinear and interactive association between
macronutrients and all-cause mortality such that several distinct dietary compositions are associated
with similarly high or low risk. Future research is needed to explore the drivers of these associations
and whether they differ across varying dietary patterns and populations.
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1. Introduction

Human nutrition is a powerful risk factor for the development of numerous non-
communicable diseases, including cardiovascular disease and some cancers [1–3]. Collec-
tively, non-communicable diseases remain the leading cause of death in the United States [4].
A large body of nutritional research has focused on individual nutrient components such
as macronutrients, fatty acids, fiber, and added sugar, although assessment of individual
nutrients is unlikely to fully capture the impact of diet on disease risk and mortality [5,6].
A recent analysis of the National Health and Nutrition Examination Survey (NHANES)
from the years 1999 to 2014 found no association between diet based on macronutrient
intakes, specifically low carbohydrate and low-fat diets, and all-cause or cause-specific
mortality [7]. Alternatively, the UK Biobank revealed that many of the associations for
macronutrient intake demonstrate a nonlinear relationship with all-cause mortality [8]. For
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example, carbohydrate intake showed no association when comprising 20–50% of the diet
but a positive association with all-cause mortality at 50–70% of intake. These findings align
with a recent multinational meta-analysis of seven cohorts, which revealed a nonlinear
U-shaped association for absolute carbohydrate intake with all-cause mortality [9]. An un-
derlying complexity for the relationship between macronutrients and mortality appears to
exist, supporting the need to evaluate the intake of dietary macronutrients collectively.

Nutritional geometry is a tool that has been applied in both animal models [10,11] and
human studies [12–14] to better understand the relationships between diet composition,
physiology, and health. In contrast to methods which examine the associations of individual
nutrients with outcomes, this approach allows for outcomes to be mapped across a multi-
dimensional nutrient space, thus enabling the analysis and visualizations of nonlinear
associations and interactions. Recently, this approach has been applied to country-level
population data to describe the associations of macronutrients with age-specific mortal-
ity [15]. However, this technique has yet to be applied to individual participant-level data
to describe the associations of macronutrients with all-cause mortality.

Accordingly, we sought to assess the relationship between macronutrient intake with
all-cause mortality using a nutritional geometry approach. As secondary outcomes, we
explored the relationship between macronutrient intake and cardiovascular and cancer
mortality. We hypothesized that there would be a complex association of macronutrients
with all-cause mortality characterized by nonlinear and interactive elements that would
not be detected in the analysis of individual nutrients. Identifying such relationships
is important for directing future research into the links between diet and mortality and
informing interventions for improved health.

2. Materials and Methods
2.1. Study Population

This analysis was undertaken using the NHANES’s annually collected cross-sectional
survey completed by the National Center for Health Statistics to assess dietary intake and
health-related outcomes in the United States. The NHANES study protocol was approved
by the ethics review board of the National Center for Health Statistics, and all data were
made publicly available. We reviewed the NHANES data from 1999 to 2014 for individuals
older than 20 years of age (Figure S1). Dietary data were collected at the initial interview
via two separate 24 h dietary recalls recorded by a trained nutrition professional and
assessed as the average of both recalls. The first recall was collected in person at a mobile
examination center, and the second interview was conducted by telephone 3–10 days
later. During the years 1999–2002, only a single 24 h dietary recall was collected at the
initial examination [16]. To correct for measurement error, individuals with a minimum
of two 24 h recalls were adjusted using a validated multiple system method to reflect the
habitual intake of nutrients [17,18].

Mortality data were ascertained via data linkage to the National Death Index. Cause-
specific mortality was defined using the underlying cause of death codes per the Interna-
tional Statistical Classification of Diseases and Related Health Problems, Tenth Revision
(ICD-10) [19]. Cardiovascular mortality was classified as all deaths related to the circulatory
system (I00–I09, I11, I13, and I20–I51), while cancer mortality included all cancer types
(C00–C97). Survival data were assessed as the follow-up time in years from the exami-
nation, and in cases where censor data were missing, the participants were assumed to
be alive.

2.2. Demographic and Lifestyle Covariates

Demographic and lifestyle covariates including sex (male or female) were self-reported.
Participants who reported their race or ethnicity were categorized as either non-Hispanic
white, non-Hispanic black, Hispanic, or other. Education was categorized as less than
high school, high school, or some college and above. Household income was included as
the ratio of family income to poverty. Smokers were defined as individuals who reported
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smoking 100 cigarettes in their lifetime. Alcohol consumers were classified as those who
drank a minimum of 12 drinks within any given year. Physical activity was calculated as
the self-reported metabolic equivalents of moderate-to-vigorous leisure activity completed
weekly. The body mass index (BMI) was measured as weight in kilograms divided by
height in meters squared. Dietary quality was evaluated using the Healthy Eating Index,
which assesses adherence to the 2015–2020 US Dietary Guidelines with a score ranging
from 0–100 possible points [20].

2.3. Statistical Analyses

For the primary analysis, we excluded individuals with potential over- or under-
reporting for dietary energy intake, which included males <800 or >4200 kcal/day and
females <600 or >3500 kcal/day (n = 9671). Individuals with macronutrient intakes 3 stan-
dard deviations from the mean were not included in the analysis (n = 442).

Associations between dietary macronutrients and mortality were analyzed using gen-
eralized additive models (GAMs). GAMs are a form of multivariable regression that allows
for visual and statistical assessment of nonlinear associations. Macronutrient exposures
were assessed using three-dimensional smooth terms of macronutrients. Such smooth
terms can default to simplistic linear regression coefficients (e.g., in a generalized linear
model), where such a relationship is deemed to be the best fit for the data, but also allow
for more complex nonlinear relationships. GAMs are flexible in that they can account for
different data types via link functions and the specification of model families. Here, we used
GAMs to implement a Cox proportional hazard model for mortality. As with conventional
multiple regression, which is widely used in epidemiology, GAMs can make statistical
corrections for confounding variables through the inclusion of covariates. Model one was
the base model and included adjustments for age, sex, and household income (Table S1).
Model two was adjusted as per model one with further adjustment for sociodemographic
characteristics, specifically race or ethnicity and education (Table S2). Model three was
adjusted as per model two with further adjustments for lifestyle habits, specifically alcohol
intake, smoking, BMI, physical activity, and the Healthy Eating Index (Table S3).

GAMs were implemented using the “gam” function from the mgcv package in R
statistical software and estimated using generalized cross-validation (v. 1.8-31; R Core
Team; Vienna, Austria) [21,22]. The three-dimensional effects of nutrition as estimated by
the GAMs were visualized as response surfaces. Three response surfaces were plotted
for each outcome, with each surface plotted on two macronutrient exposures expressed
for the absolute intake (kcal/day) as the x- and y-axes, while the third macronutrient was
held constant at the 25th, 50th, and 75th percentile of its intake. Colored surfaces spanning
this nutrient space represent mortality risk as a survival function for predicting the mean
survival follow-up time of those included in the analysis. A significant macronutrient
model indicates that the association of each macronutrient with the specified outcome is
dependent upon the relative intake of the other two macronutrients. Given the complex
nonlinearity in these models, specific macronutrient relationships and effect sizes must be
interpreted visually. The current mgcv package does not allow for the inclusion of survey
weights that account for the complex design of the NHANES, and thus findings cannot be
generalized to the US population.

As well as presenting the results of GAMs on the absolute intake scale (kcal/day),
we also transformed the GAM outputs to allow for inference about the macronutrient
composition as a proportion of the total energy. Following transformation from the absolute
intake to a proportion of energy, the GAM outputs were used to map mortality risk on
the survival function scale onto a mixture triangle of macronutrient composition using the
ggplot2 package in R statistical software (v. 3.3.5; R Core Team; Vienna, Austria) [23]. The
survival function scores can be interpreted as the probability that an individual survived
longer than the mean survival time. We used right-angle mixture triangles, which enabled
compositional inference by showing the percentage of dietary protein and carbohydrates
on the x- and y-axes, while fat intake can be inferred for any point within the triangle
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by subtracting the sum of the proteins and carbohydrates from 100 [24]. These response
surfaces of macronutrient composition and mortality were generated for different total
energy intakes: the 25th, 50th, and 75th percentile of caloric intake. Response surfaces in
the absolute and compositional models were adjusted for age, sex, income, Healthy Eating
Index, BMI, and physical activity. The Cox proportional hazard assumptions were checked.

Mixture triangles were also used to visualize the association of dietary macronutrients
with the Healthy Eating Index score and putative dietary confounders, such as the fatty
acid profile and fiber, sugar, and sodium levels. The fatty acid profile was examined by
plotting dietary polyunsaturated, saturated, or monounsaturated fat as a percentage of fat
energy on a macronutrient mixture triangle. Fiber, sugar, and sodium levels were plotted
as the average intake reported from the 24 h recalls.

2.4. Subgroup and Sensitivity Analyses

Subgroup analyses were undertaken to assess the associations in males and females
using sex-specific GAMs and response surface plots. Potential interaction between macronu-
trients and sex was explored in the GAM models, with model comparisons made with
the Akaike Information Criterion (AIC) [25] to compare the model fit with and without
sex-stratified smoothing (using the “by” term in the “gam” function in mgcv). A difference
in the AIC of >2 was considered a significant improvement in model fit and interpreted
as evidence of a sex-specific effect of macronutrient intake on the mortality outcome. Sev-
eral sensitivity analyses were conducted to explore potential limitations in this study.
In females, we conducted a sensitivity analysis removing those pregnant during the ex-
amination or interview (n = 1008). To test for potential reverse causation from chronic
diseases, a comorbidity sensitivity analysis excluded individuals who reported having
hypertension, cardiovascular disease, or cancer or were recommended by a doctor to take
anti-hypertensive, lipid-lowering, or glucose-controlling medication (n = 12,303). A sen-
sitivity analysis was completed including only individuals who had two completed 24 h
recalls. A follow-up sensitivity model was assessed by removing all individuals who died
in the first year of follow-ups (n = 308).

3. Results
3.1. Participant Characteristics

The participant’s characteristics at enrollment are shown in Table 1. After excluding
individuals with potential over- or under-reporting of dietary energy intake, this analysis
included 33,681 US adults (49.7 ± 18.3 years; 52.5% female). The maximum follow-up
time was 16.8 years (8.6 ± 5.3 years) with 4398 total deaths, 772 cardiovascular deaths,
and 952 cancer deaths. Individuals who reported having comorbidities at the time of
the interview included diabetes (n = 3826), cardiovascular disease (n = 3384), and cancer
(n = 3068). Medication for related comorbid conditions included that for diabetes (n = 2831),
hypertension (n = 7107), and lipid-lowering medications (n = 4325).

Table 1. Participant characteristics *.

Participant Characteristic Mean SD

Age (years) 49.7 18.4
Female Sex (%) 52.5 −
BMI (kg/m2) 28.8 6.5

Total Energy (kcal) 1907 603
Healthy Eating Index Score 52.7 12.8

Protein (kcal) 290 106
Protein (TEI%) 15.2 4.0

Carbohydrate (kcal) 978 340
Carbohydrate (TEI%) 51.4 7.3
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Table 1. Cont.

Participant Characteristic Mean SD

Fat (kcal) 639 246
Fat (TEI%) 33.4 6.2
SFA (kcal) 219 93

SFA (FEI%) 36.0 5.2
PUFA (kcal) 149 63

PUFA (FEI%) 24.7 4.9
MUFA (kcal) 241 101

MUFA (FEI%) 39.3 3.3
Fiber (g) 16 7
Sugar (g) 78 8

Sodium (mg) 1469 81
Race or Ethnicity

Hispanic (%) 25.7 −
Non-Hispanic White (%) 46.2 −
Non-Hispanic Black (%) 20.6 −

Other (%) 7.5 −
Family Income-to-Poverty Ratio 2.5 1.6

Education Level
Less than High School (%) 10.2 −

High School Graduate or GED (%) 76.2 −
Some College or More (%) 13.6 −

Non-drinker (%) 26.5 −
Non-smoker (%) 50.4 −

Physical Activity (METs) 1657 2212
* Participant characteristics: Body Mass Index (BMI); percentage of total energy intake (TEI%); percentage of total
fat intake (FEI%); and standard deviation (SD).

3.2. Macronutrients and All-Cause Mortality

Macronutrient intake demonstrated a three-way interactive association with all-cause
mortality in the fully adjusted model (p < 0.001; Table 2). The associations of absolute
macronutrient intake with all-cause mortality are shown in Figure 1 (extended figure in
Figure S2; unadjusted response surface in Figure S3). The coefficients for models 1–3 are
shown in Tables S1–S3. The response surfaces highlight a region of high mortality risk
(i.e., low survivorship), shown in red near the center. This pattern indicates lower survival
scores in those with a moderate intake of all-three macronutrients, with the highest survival
shown in the outer regions of the response surfaces depending on the relative intake of
protein and fat.

When analyzed separately, carbohydrates and fat demonstrated nonlinear relation-
ships with all-cause mortality (Figure S4; Table S3). The macronutrient composition and
all-cause mortality are shown in Figure 2, and the unadjusted models are presented in
Figure S5. The lowest survival scores appeared in a high caloric diet composed of mod-
erately high protein (20%), moderate carbohydrate (50%), and moderate fat levels (30%).
The highest survival scores were identified in a region of higher protein (30%), higher
carbohydrate (60%), and lower fat levels (10%) and the region of lower protein (10%),
moderate carbohydrate (45%), and higher fat levels (45%). This association was similar
across energy intakes, with a higher overall effect size at higher energy intakes.
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Table 2. Generalized additive models for macronutrient intake and mortality *.

Outcome Model 1 Model 2 Model 3

Inc. n Dev Exp p Inc. n Dev Exp p Inc. n Dev Exp p

All-Cause Mortality 4398 33,681 26.9% <0.001 4398 33,681 27.1% <0.001 4398 33,681 28.1% <0.001

Males 2412 15,993 25.3% <0.001 2412 15,993 25.5% <0.001 2412 15,993 26.4% <0.001
Females 1986 17,688 28.0% <0.001 1986 17,688 28.1% <0.001 1986 17,688 29.5% <0.001

Pregnancy Sensitivity 1961 16,680 27.2% <0.001 1961 16,680 27.3% <0.001 1961 16,680 28.8% <0.001
Comorbid Sensitivity 1455 21,378 26.3% <0.001 1455 21,378 26.5% <0.001 1455 21,378 27.1% <0.001

Dietary Recall Sensitivity 1789 20,339 23.4% 0.04 1789 20,339 23.7% 0.03 1789 20,339 25.1% 0.03
Follow-up Sensitivity 4090 33,358 27.2% <0.001 4090 33,358 27.4% <0.001 4090 33,358 28.2% <0.001

Cardiovascular Mortality 772 30,055 31.8% 0.03 772 30,055 32.0% 0.02 772 30,055 33.1% 0.02

Males 468 14,049 28.6% 0.03 468 14,049 28.8% 0.03 468 14,049 30.2% 0.04
Females 304 16,006 36.0% 0.12 304 16,006 36.1% 0.10 304 16,006 37.8% 0.09

Pregnancy Sensitivity 303 15,022 35.0% 0.15 303 15,022 35.2% 0.12 303 15,022 37.0% 0.11
Comorbid Sensitivity 207 20,130 34.7% 0.14 207 20,130 34.7% 0.12 207 20,130 36.1% 0.05

Dietary Recall Sensitivity 302 18,852 24.8% 0.93 302 18,852 25.0% 0.94 302 18,852 26.8% 0.93
Follow-up Sensitivity 699 29,967 32.1% 0.06 699 29,967 32.3% 0.04 699 29,967 33.3% 0.05

Cancer Mortality 952 30,235 21.0% 0.04 952 30,235 21.3% 0.03 952 30,235 22.3% 0.05

Males 557 14,138 25.2% 0.39 557 14,138 23.8% 0.29 557 14,138 24.5% 0.31
Females 395 16,097 16.7% 0.08 395 16,097 16.8% 0.07 395 16,097 17.5% 0.11

Pregnancy Sensitivity 388 15,107 15.9% 0.09 388 15,107 16.0% 0.08 388 15,107 16.7% 0.12
Comorbid Sensitivity 351 20,274 21.2% 0.13 351 20,274 21.4% 0.10 351 20,274 22.0% 0.11

Dietary Recall Sensitivity 391 18,941 16.4% 0.27 391 18,941 16.7% 0.24 391 18,941 17.8% 0.24
Follow-up Sensitivity 878 30,146 21.0% 0.09 878 30,146 21.2% 0.07 878 30,146 22.1% 0.09

* Models 1–3 sequentially adjust for various covariates. The table reflects the incidence of mortality (Inc.), deviance explained (Dev Exp) by the entire model, and the p value for
macronutrients as a three-dimensional smooth term. A significant macronutrient model can be interpreted such that the relationship of each macronutrient with the specified outcome
is dependent upon the relative intake of all three macronutrients. Given the complex nonlinearity in these models, specific macronutrient relationships and effect sizes are best
interpreted visually.
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model predictions of the all-cause mortality survival score for the range of macronutrient percent-
ages in this dataset. (A–C) The predictions using the 25th, 50th, and 75th percentiles of caloric intake 
for the study population. The x and y-axes show protein and carbohydrate levels, respectively. Per-
centage of fat can be inferred as decreasing and moving away from the origin such that each point 
on the triangle can be summed to equal 100%. Response values are colored such that warm colors 
show a higher risk of mortality and cooler colors show a lower mortality risk. Response surfaces 
were adjusted for age, sex, household income, BMI, physical activity, and Healthy Eating Index. 

The sex-stratified associations with macronutrient composition and all-cause mortal-
ity are shown in Figure 3. When stratified by sex, and after full adjustment, the association 
of macronutrient intake with mortality was significant in males and females (Table 2). The 
response surfaces demonstrated sex-specific associations, where males showed lower 

Figure 1. Macronutrient absolute intake and all-cause mortality. Each surface shows the survival
function scale for all-cause mortality in a nutrient space of all three macronutrients. The x and y-axes
represent two macronutrient exposures sliced through the median value of the macronutrient shown
at the top of each figure. Response values are colored such that warm colors show a higher risk of
mortality and cooler colors show a lower mortality risk. Response surfaces were adjusted for age,
sex, household income, BMI, physical activity, and Healthy Eating Index.
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Figure 2. Macronutrient composition with all-cause mortality. The mixture triangle shows the model
predictions of the all-cause mortality survival score for the range of macronutrient percentages in
this dataset. (A–C) The predictions using the 25th, 50th, and 75th percentiles of caloric intake for the
study population. The x and y-axes show protein and carbohydrate levels, respectively. Percentage
of fat can be inferred as decreasing and moving away from the origin such that each point on the
triangle can be summed to equal 100%. Response values are colored such that warm colors show
a higher risk of mortality and cooler colors show a lower mortality risk. Response surfaces were
adjusted for age, sex, household income, BMI, physical activity, and Healthy Eating Index.

The sex-stratified associations with macronutrient composition and all-cause mortality
are shown in Figure 3. When stratified by sex, and after full adjustment, the association
of macronutrient intake with mortality was significant in males and females (Table 2).
The response surfaces demonstrated sex-specific associations, where males showed lower
overall survival scores. At lower energy intakes, males with diets composed of higher
protein levels coupled with lower fat levels appeared to have higher survivability rates.
Conversely, at lower energy intakes, females showed higher survival scores with diets
composed of less protein coupled with more fat. Both sexes appeared to have similar high-
and low-risk regions at higher energy intakes.
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Figure 3. Associations of macronutrient composition with all-cause mortality for males and females.
The mixture triangle shows the model predictions of the all-cause mortality survival score for the
range of macronutrient percentages in this dataset. (A) The predictions using the 25th, 50th, and
75th percentiles of caloric intake for males, and (B) shows this for females. The x and y-axes show
protein and carbohydrate levels, respectively. Percentage of fat can be inferred as decreasing and
moving away from the origin such that each point on the triangle can be summed to equal 100%.
Response values are colored such that warm colors show a higher risk of mortality and cooler colors
show a lower mortality risk. Response surfaces were adjusted for age, sex, household income, BMI,
physical activity, and Healthy Eating Index.

3.3. Macronutrients and Cardiovascular and Cancer Mortality

In the analyses of individual macronutrients in isolation, there was no association of
carbohydrates, protein, or fat with cardiovascular and cancer mortality (Figure S4; Table S4).
The relationship between collective macronutrient intake and cardiovascular and cancer
mortality is shown in Figures S6 and S7, and the response surfaces shown at the 25th, 50th,
and 75th percentiles of energy intake are shown in Figures S8 and S9. There was a significant
three-way interaction for macronutrients with both cardiovascular mortality (p = 0.02) and
cancer mortality in the fully adjusted models (p = 0.05; Table 2). The cardiovascular and
cancer mortality survival scores were lowest with moderate protein consumption coupled
with either moderate fat intake or high carbohydrate intake. The compositional mixture
triangles support these findings such that lower survival scores appeared extending across
a band of moderate fat intake (30%) with higher survivability at either higher protein or
lower protein levels, depending on the relative intake of fat (Figures S10 and S11).

When stratified by sex, and after full adjustment, the association of macronutrient
intake with cardiovascular mortality was statistically significant in males but not in females
(Table 2; Figure S12). For males, the lowest survival scores were associated with lower-
energy diets composed of less protein (5%), more carbohydrates (75%), and less fat (15%).
There was no significant association for macronutrient intake with cancer mortality in the
sex-stratified analysis (Table 2; Figure S13).
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3.4. Other Sensitivity Analyses and Nutritional Correlates

There was no improvement in model fitness of the results when including sex as
an interactive term for all-cause mortality. Cardiovascular and cancer mortality models
without sex as an interactive term were favored by the AIC (Tables S5 and S6). The results
did not differ for females when those who were pregnant at the time of dietary assessment
were excluded (Table 2). When excluding those with comorbid conditions or taking related
medications, the association of macronutrient composition with cancer mortality was no
longer significant in the fully adjusted model (Figure S14; Table S7). Omitting individuals
who did not complete two separate dietary recalls did not change the overall findings for
all-cause mortality, but it did result in non-significant associations of macronutrients with
cardiovascular and cancer mortality (Figure S15; Table S8). There were no major differences
in the follow-up sensitivity except for cancer mortality, which was no longer significant in
the fully adjusted model (Table 2; p = 0.09).

Response surface plots for the Healthy Eating Index scores, fatty acid subtypes, and
fiber, sugar, and sodium levels are shown in Figures S16–S18. The Healthy Eating Index was
higher in diets composed of more protein coupled with less fat. The fatty acid profile varied
across the macronutrient composition and different total energy intakes. The percentage of
fat derived from saturated fat was generally the highest while that for polyunsaturated fat
was the lowest in diets composed of less protein, less fat, and more carbohydrate intake. The
percentage of fat derived from monounsaturated fat was highest in diets composed of more
carbohydrates coupled with moderate protein intake. Dietary fiber intake was the highest
in those consuming a higher-protein, lower-carbohydrate, and higher-fat diet. Sugar intake
was the highest in those consuming a high proportion of energy from carbohydrates and
a low proportion from protein. The sodium level was the highest in those consuming a diet
composed of more protein coupled with lower fat at a higher total energy intake.

4. Discussion

In this study, we applied a method known as nutritional geometry to analyze and
visualize the collective association of macronutrients with all-cause, cardiovascular, and
cancer mortality. Our findings demonstrate a complex association of macronutrients with
all-cause mortality that is not captured by analysis of carbohydrate, fat, and protein levels
separately. In the analyses in which macronutrients were expressed as a proportion of
energy in the diet, we found evidence of both nonlinear associations and macronutrient–
macronutrient interactions. We showed that diets higher in energy and composed of
moderately high protein (20%), moderate carbohydrate (50%), and moderate fat levels
(30%) were associated with the highest mortality risk. Compositional analyses of the intake
of macronutrients revealed similar patterns across energy intakes, although the effect size
was more pronounced at higher overall energy intakes.

This study provides additional insight concerning the relationships between macronu-
trients and all-cause mortality. Many epidemiological studies have examined the rela-
tionships between individual dietary macronutrients and metabolic health [26] and mor-
tality [9,27,28]. When applying a single nutrient approach, our results were consistent
with previous epidemiological findings. However, when we applied a methodology that
could assess the associations of all three macronutrients simultaneously, we observed some
surprising relationships between diet and predicted mortality.

For example, in our analysis of absolute nutrient intakes (Figure 1), we observed a higher
risk of mortality to be associated with diets in which all macronutrients were consumed at
intermediate levels, whereas previous studies suggested that high intake of protein, fat, and
carbohydrates are all individually associated with higher mortality risk [9,29,30]. Likewise,
our analysis of macronutrient composition showed that survival was lowest spanning
across the full range of carbohydrate and fat intake coupled with a protein intake in the
intermediate range of 15–25% of energy. Previous analysis in the same cohort (NHANES)
revealed a U-shaped relationship with carbohydrate intake, where increased mortality
risk was associated with diets composed of <40% carbohydrates [31]. Analysis of the
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UK Biobank revealed nonlinear associations of individual macronutrients with all-cause
mortality [8]. Our findings when examining individual nutrients were consistent with
these associations, with the lowest risk of all-cause mortality being at approximately 50%
carbohydrate intake. When examined using a multi-nutrient approach, however, the results
appeared to be more nuanced. For example, in the compositional analyses (Figure 2),
a moderate intake of carbohydrates (approximately 50% energy) was associated not with
the lowest risk but rather a range of risks of all-cause mortality, dependent on the intake
of fat and protein. Similarly, low-carbohydrate and low-fat diets were both associated
with a range of risks, dependent on the intake of the other macronutrients. McKenzie et al.
investigated macronutrients compositionally using cluster analysis in the UK Biobank and
found that diets composed of 19% protein, 45% carbohydrates, and 29% fat were associated
with a lower risk of all-cause mortality [32]. Conversely, the present study found this region
to be associated with a higher risk of mortality. These inconsistencies may be partially
explained by participant demographics, with the UK Biobank having an older and healthier
population than the NHANES [33].

There was no statistical evidence of an interaction between sex and macronutrients
for all-cause, cardiovascular, or cancer mortality. Stratified analyses identified that the
associations between macronutrients and all-cause mortality displayed unique sex-specific
differences. The response surfaces for men and women identified different regions of
macronutrient intake associated with the highest survival probability at lower energy
intakes. For males with lower energy intake, a diet of more protein coupled with less fat
had the highest survivability. Conversely, females with lower energy intake had the highest
survivability with diets composed of less protein coupled with more fat. At higher energy
intakes, both males and females had the highest survival scores, as seen in the pooled
analysis, although the males had lower scores overall. This may be partly related to specific
nutrient requirements and related diseases that differ for males and females throughout
the course of life [34].

Strengths and Limitations

A key strength of this study was that our approach enabled both statistical analysis and
visual representation of the complex associations of all three macronutrients with mortality
outcomes simultaneously. This multi-nutrient approach provides a novel perspective in
the area of nutritional epidemiology by exploring the associations of diet composition
collectively, rather than taking a one-variable-at-a-time approach.

However, the multi-nutrient approach used in this study provides a graphical repre-
sentation of the associations of macronutrient composition with both cause-specific and
all-cause mortality. This is met with the limitation that specific confidence intervals cannot
be produced for each graphical point. Other limitations include those inherent to most
dietary assessment methods applied in epidemiological research, such as the potential for
misreporting dietary intake, in addition to dietary intake having only been assessed at
a single time point during the course of life. Although data transformation is performed
to reflect habitual intake, the 24 h recall often poorly describes an individual’s habitual
diet. Additionally, both dietary habits and nutrient needs change dynamically through the
course of life, which cannot be readily examined in a cross-sectional design. Taken together,
these analyses were from an observational cohort, and as such, causality cannot be inferred.

The current US dietary guidelines do not define specific compositional recommen-
dations for macronutrients, rather focusing on specific foods, food groups, and dietary
patterns [35]. However, the Institute of Medicine (IOM) recommends maintaining an intake
of 10–35% protein, 45–65% carbohydrates, and 20–35% fat [36], and the dietary guidelines of
several other countries make similar recommendations [37–41]. These recommended ranges
were proposed to minimize the incidence of non-communicable diseases and take into
consideration the optimal macronutrient composition for reducing the intake of detrimental
dietary components without compromising the ability to meet micronutrient requirements.
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In the present study, a macronutrient composition within the range recommended by the
IOM included both areas of high and low risk of mortality within the surface plots.

In common with our study, many studies have focused on the relationships between
dietary macronutrient quantity and health. However, other properties of diets, including
macronutrient quality, dietary fiber, micronutrients, and non-nutritional components such
as phytochemicals, also play a role [42–45]. Examining these in multi-dimensional models
is an important priority, but that was beyond the scope of the present study. However,
to test the robustness of our results, we adjusted the macronutrient models using the
Healthy Eating Index, which is designed to be sensitive to overall diet quality by measuring
compliance with the US dietary guidelines. Provided that this adjustment did not affect
the conclusions, the findings suggest that the macronutrient associations we detected are
robust and warrant more detailed exploration.

Lastly, it should be noted that this study was not sufficiently powered to explore
specific types of cardiovascular mortality or specific cancer sites. Future studies should
determine the relationship between dietary macronutrient composition and specific classifi-
cations of cardiovascular and cancer mortality.

5. Conclusions

In this study, macronutrient composition was significantly associated with all-cause,
cardiovascular, and cancer mortality in a complex and unexpected manner involving
nonlinear and interactive associations. Future research is needed to explore the mech-
anisms driving these relationships and how they differ across varying dietary patterns
and populations.
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Abstract: The gut microbiome has been shown to play a role in the relationship between diet and
cardiometabolic health. We sought to examine the degree to which key microbial lignan metabolites
are involved in the relationship between diet quality and cardiometabolic health using a multidi-
mensional framework. This analysis was undertaken using cross-sectional data from 4685 US adults
(age 43.6 ± 16.5 years; 50.4% female) participating in the National Health and Nutrition Examination
Survey for 1999–2010. Dietary data were collected from one to two separate 24-hour dietary recalls
and diet quality was characterized using the 2015 Healthy Eating Index. Cardiometabolic health mark-
ers included blood lipid profile, glycemic control, adiposity, and blood pressure. Microbial lignan
metabolites considered were urinary concentrations of enterolignans, including enterolactone and
enterodiol, with higher levels indicating a healthier gut microbial environment. Models were visually
examined using a multidimensional approach and statistically analyzed using three-dimensional
generalized additive models. There was a significant interactive association between diet quality
and microbial lignan metabolites for triglycerides, low-density lipoprotein cholesterol, high-density
lipoprotein cholesterol, insulin, oral glucose tolerance, adiposity, systolic blood pressure, and diastolic
blood pressure (all p < 0.05). Each of these cardiometabolic health markers displayed an association
such that optimal cardiometabolic health was only observed in individuals with both high diet quality
and elevated urinary enterolignans. When comparing effect sizes on the multidimensional response
surfaces and model selection criteria, the strongest support for a potential moderating relationship
of the gut microbiome was observed for fasting triglycerides and oral glucose tolerance. In this
study, we revealed interactive associations of diet quality and microbial lignan metabolites with
cardiometabolic health markers. These findings suggest that the overall association of diet quality on
cardiometabolic health may be affected by the gut microbiome.

Keywords: diet quality; Healthy Eating Index; microbiome; gut health; cardiometabolic health;
enterolactone; enterodiol; NHANES

1. Introduction

Cardiometabolic risk factors such as hypertension, elevated fasting blood sugar,
dyslipidemia, and abdominal obesity have increased in prevalence over the past two
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decades [1,2]. Collectively, cardiometabolic disorders were responsible for more than
4.8 million deaths among the US working-age (ages 25–64) population between 1990 and
2017 [3]. A spectrum of modifiable risk factors, including environment, lifestyle, and diet,
have been identified for cardiometabolic disorders. From a nutrition standpoint, there are
many components of diet quality that can impact cardiometabolic health, including fiber,
sodium, fatty acids, added sugars, polyphenols, and antioxidants [4]. Adherence to higher
overall diet quality has been shown to improve overall cardiometabolic health [5,6].

It is well established that diet quality and microbial metabolism interact to influ-
ence multiple processes relevant to cardiometabolic health [7,8]. The gut microbiota is
involved in the production and release of metabolites to systemic tissue, extraction of
nutrients, synthesis of specific vitamins, alteration of gastrointestinal hormones, and nerve
function [9–11]. Microbial metabolites have been further implicated in host metabolic regu-
lation of inflammation [12], lipid metabolism [13], and type 2 diabetes risk [14]. Previous
studies reported that the gut microbiome plays an important role in the protective effects
observed from consuming healthy dietary patterns, such as a Mediterranean diet [13] or an
anti-inflammatory diet [15]. Plant foods are rich sources of polyaromatic compounds via
lignans and flavonoids found in their cell walls [16]. Lignans have been of particular inter-
est as substances responsible for the beneficial effect of consuming nuts, fruits, vegetables,
whole grains and overall plant-based diets. The gut microbiota plays an important role in
this benefit by converting the dietary plant lignans to produce more bioactive enterolignans,
such as enterolactone and enterodiol.

On the other hand, unhealthy foods containing high amounts of saturated fat, refined
sugars, emulsifiers, and sodium have been shown to elicit negative effects on microbial
health [17]. Diets containing large amounts of processed foods have been linked to lower
microbial diversity [18], reduced abundance of beneficial taxa [19], and ultimately a lower
capacity to produce cardioprotective microbial metabolites such as enterolignans [20].
The bidirectional association between both healthy (plant-based) and unhealthy dietary
components with the gut microbiome suggests a complex interplay with cardiometabolic
health. However, the degree to which overall diet quality, gut microbiota function, and
cardiometabolic disorders interact has not been fully defined.

The National Health and Nutrition Examination Survey (NHANES) offers the oppor-
tunity to explore these relationships on a larger scale using a cross-sectional design. In the
absence of microbial taxonomic composition or various other microbial metabolites, we
explored enterolactone and enterodiol, which serve as a surrogate marker of gut microbiota
function. Diet quality was evaluated using the Health Eating Index 2015 (HEI) in order
to capture both healthy and unhealthy components of the diet. To better quantify and
visualize the associations with cardiometabolic health, we applied a multidimensional
approach that has previously demonstrated the ability to capture relationships not achiev-
able by traditional univariate analyses [21–23]. In the present study, we hypothesized that
microbial lignan metabolites would support a potential effect-modifying role of the gut
microbiome on the relationship between diet quality and cardiometabolic health.

2. Materials and Methods
2.1. Study Population

This study examined data from the NHANES dataset collected annually in the US
by the National Center for Health Statistics. This ongoing cross-sectional survey aims
to assess the nutritional intake and overall health of those living in the US. NHANES
data were collected from 1999 to 2010 for participants aged 20 and older. Dietary data
were collected by a trained nutritional professional via two separate dietary recalls. An
initial 24 h recall was collected during the in-person interview and the second recall was
conducted 3–10 days later by telephone. Additionally, participants who reported having
cardiovascular disease (n = 668), cancer (n = 511), diabetes (n = 523), or related medication
(n = 4788), were excluded from the primary analysis (Figure S1).
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2.2. Urinary Enterolignans

Enterolactone and enterodiol were measured from urine samples collected at the initial
interview in those who had fasted a minimum of 9 h and immediately stored at −20 ◦C
until processing. High-performance liquid chromatography was then used to quantify the
concentration of enterolactone and enterodiol in the urine. Antibiotic consumption has
the potential to influence urinary enterolignan concentration by destroying the intestinal
microflora [24], so individuals who reported taking antibiotics within a month of the
collected enterodiol or enterolactone sample were excluded (n = 9) [25]. Enterodiol and
enterolactone values were log-transformed to address skewness.

2.3. The Healthy Eating Index

The most recent HEI was developed in 2015 to measure overall diet quality and
presents a composite measure of conformance to the 2015–2020 Dietary Guidelines for
Americans [26]. The HEI is a 100-point scale, with a higher score indicating better over-
all diet quality. The adequacy components include total fruit (5), whole fruits (5), total
vegetables (5), greens and beans (5), whole grains (10), dairy (10), total protein foods (5),
seafood and plant proteins (5), and fatty acids (ratio of the sum of polyunsaturated and
monounsaturated fatty acids to saturated fatty acids—10). The moderation components
include refined grains (10), sodium (10), added sugars (10), and saturated fats (10).

2.4. Cardiometabolic Health

A sample of participants was selected for measurement of fasting serum glucose,
insulin, hemoglobin A1c (HbA1c), total cholesterol (Total-C), low-density lipoprotein (LDL)
cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. An oral glucose
tolerance test (OGTT) was administered using a calibrated dose of glucose drink (TrutolTM,
Thermo Scientific, Waltham, MA, USA) providing on average 75 g of glucose. Postprandial
glucose was measured 2 h after the consumption of the glucose drink. Body fat percentage
was estimated via bioelectrical impedance. Systolic and diastolic blood pressure was
measured 3–4 times via sphygmomanometer and the average of the measurements used
in the analysis. Height and weight were collected by a trained professional following
standardized operating procedures, with body mass index (BMI) calculated as weight
divided by height in meters squared (kg/m2).

2.5. Demographic and Lifestyle Covariates

All demographic and lifestyle covariates were self-reported via questionnaires. Race
and ethnicity were categorized as either non-Hispanic white, non-Hispanic black, Hispanic,
or other. Level of education was categorized as less than high school, high school, or some
college and above. Socioeconomic status was calculated using household income to poverty
ratio. Participants were classified as smokers if they reported smoking >100 cigarettes in
their lifetime. Alcohol consumption was categorized as “drinkers” and “nondrinkers,”
where those who drank a minimum of 12 drinks within any given year prior to the as-
sessment were considered drinkers. Physical activity was determined using self-reported
metabolic equivalents of weekly moderate to vigorous leisure activity. In the case of a
missing value, the mean value of the covariate was utilized.

2.6. Statistical Analysis

For the present study, individuals with potential over- or underreporting for di-
etary energy intake were excluded (males < 800 or >4200 kcal/day and females < 600 or
>3500 kcal/day; n = 8087). Participants were also excluded if consuming macronutrients
greater or fewer than three standard deviations from the mean (n = 387).

Associations of dietary quality, enterolactone, enterodiol, and cardiometabolic health
markers were explored using generalized additive models (GAMs). GAMs are a dynamic
form of multivariable regression that can be used to test for and visualize complex nonlinear
associations [27]. Models include smooth terms that handle more complex dimensions
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of data and varying scales. For each cardiometabolic marker, a series of GAMs including
additive and interactive associations was implemented to sequentially explore the complex
relationship between HEI score, total energy intake, and either enterolactone or enterodiol
(Table S1). The most complex model contained a three-dimensional smooth term that
included HEI score, total energy intake, and either enterolactone or enterodiol. Total
energy intake was included in the smooth term as an adjustment approach [28] while
simultaneously allowing for us to explore visual differences at varying energy intakes. A
series of models was then designed to sequentially adjust for confounding variables as
additive terms. Model one was adjusted for age, sex, and socioeconomic status. Model
two further was adjusted for sociodemographic characteristics, including race/ethnicity
and education. Model three was the fully adjusted model and further adjusted for lifestyle
factors, such as alcohol consumption, smoking, BMI, and physical activity. All models
were constructed using the “gam” function of the mgcv package in R statistical software
(v. 1.8–41; R Core Team; Vienna, Austria) [29,30].

Associations were visualized using three-dimensional response surfaces, where each
cardiometabolic health marker was plotted as a response surface at the 25th, 50th, and
75th percentile of total energy intake. Response surfaces show the outcome on a scale
with warmer colors denoting higher values and cooler colors denoting lower values. A
statistically significant three-dimensional term for the exposures of interest can be interpreted
such that the association between HEI with cardiometabolic health depends on the urinary
enterolignan and total energy intake. To explore the degree to which cardiometabolic health
outcomes are related to HEI across a spectrum of microbial lignan metabolite levels, we
display the response surfaces at the 50th percentile of total energy intake. Additional figures
are provided in the online supplement presenting the associations at the 25th, and 75th
percentile of total energy intake. Values were estimated using generalized crossed validation
and checked for overfitting. Interaction between sex with each biomarker was explored
using the “by” term in the “gam” function of mgcv. The Akaike information criterion (AIC)
was used as a measure for model comparison, with lower values indicating better fit relative
to the increase in model complexity. A difference in AIC > 2 was considered evidence of a
better overall model fit [31]. Sex-stratified analyses were also undertaken for each of the
cardiometabolic health markers. A sensitivity analysis using waist circumference instead of
BMI was conducted to act as a better indicator of central adiposity.

3. Results
3.1. Participant Characteristics

Participant characteristics are presented in Table 1. This analysis included 4685 US
adults (43.6 ± 16.5 years; 50.4% female). Participants were predominantly non-Hispanic
white (46.6%) and overweight with an average BMI of 28.5 ± 6.5 kg/m2.

Table 1. Participant Characteristics 1.

Participant Characteristics Mean SD

Age (years) 43.6 16.5
Female sex (%) 50.4 −
BMI (kg/m2) 28.5 6.5
Total Energy (kcal) 2101 737
Healthy Eating Index Score 50.9 12.1
Enterolactone µmol/L (log-transformed) 2.54 0.75
Enterodiol µmol/L (log-transformed) 1.59 0.64
Protein (TEI%) 15.0 3.4
Carbohydrate (TEI%) 51.5 7.7
Fat (TEI%) 33.4 6.6
Fiber (g) 15.6 7.8
Sugar (g) 78.0 7.5
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Table 1. Cont.

Participant Characteristics Mean SD

Sodium (mg) 2125 1256.4
Race/Ethnicity

Hispanic (%) 30.3 −
Non-Hispanic White (%) 46.6 −
Non-Hispanic Black (%) 19.0 −
Other (%) 4.1 −

Family Income to Poverty Ratio 2.54
Education Level

Less than high school (%) 28.1 −
High school graduate or GED (%) 23.2 −
Some College or More (%) 48.7 −

Nondrinker (%) 24.6 −
Nonsmoker (%) 49.5 −
Physical Activity (METs) 1811 2363
Lipid Profile

Triglycerides (mg/dL) 135.3 113.3
Total Cholesterol (mg/dL) 200.3 40.7
LDL Cholesterol (mg/dL) 120.2 34.3
HDL Cholesterol (mg/dL) 52.2 15.7

Glycemic Control
Glucose (mg/dL) 99.2 21.6
Insulin (uU/mL) 12.1 9.7
OGTT (mg/dL) 114.8 50.9
HbA1c (%) 5.43 0.67

Adiposity and Blood Pressure
Body Fat (%) 31.9 10.71
Systolic Blood Pressure (mmHg) 121.3 17.6
Diastolic Blood Pressure (mmHg) 70.9 11.4

1 Participant Characteristics. Body mass index (BMI); percentage of total energy intake (TEI%); standard devia-
tion (SD). Low-density lipoprotein (LDL); high-density lipoprotein (HDL); oral glucose tolerance test (OGTT);
hemoglobin A1c (HbA1c).

3.2. Generalized Additive Model Exploration

The series of potential interactive and additive models we used for exploring car-
diometabolic health markers is shown in Table S1. Marginal differences were observed
when comparing deviance explained and AIC values for the various models. Notably,
triglycerides and oral glucose tolerance test were the only biomarkers that favored the
more complex three-way interactive model.

3.3. Blood Lipids

The association of microbial lignan metabolites and HEI with blood lipids at the 50th
percentile of energy intakes is shown in Figure 1 and model coefficients are displayed
in Table 2. Results at the 25th and 75th percentile of energy intakes are displayed in
Figures S2–S5. There was a statistically significant association with enterolactone and
enterodiol displayed for triglycerides (all p ≤ 0.002), LDL cholesterol (all p ≤ 0.04), and
HDL cholesterol (all p < 0.001). Urinary enterolactone levels appeared to be inversely
associated with plasma triglycerides in people with HEI above the mean, with the highest
triglyceride levels being present at <1 µmol/L (log-transformed) enterolactone and the
lowest triglycerides at around 4 µmol/L (log-transformed). Enterodiol showed a potential
interactive association with HEI, evidenced by the bending contour lines particularly
prominent at higher levels of HEI and enterodiol (Figure 1A).



Nutrients 2023, 15, 1412 6 of 15

Nutrients 2023, 15, x FOR PEER REVIEW 6 of 14 
 

 

cholesterol (all p < 0.001). Urinary enterolactone levels appeared to be inversely associated 
with plasma triglycerides in people with HEI above the mean, with the highest triglycer-
ide levels being present at <1 μmol/L (log-transformed) enterolactone and the lowest tri-
glycerides at around 4 μmol/L (log-transformed). Enterodiol showed a potential interac-
tive association with HEI, evidenced by the bending contour lines particularly prominent 
at higher levels of HEI and enterodiol (Figure 1A). 

 
Figure 1. Associations of blood lipids with HEI and enterolignans. Response surfaces show the as-
sociation of triglycerides (A) LDL cholesterol (B) and HDL cholesterol (C) with HEI, enterolignans, 
and total energy intake. Enterolactone and enterodiol are presented as μmol/L (log-transformed). 
The outcome of each response surface is shown at the top of the plot, with warmer colors denoting 
higher values and cooler colors denoting lower values. Response surfaces are predicted at the 50th 
percentile of total energy intake and have been adjusted for age, sex, household income, BMI, phys-
ical activity. Low-density lipoprotein (LDL); high-density lipoprotein (HDL). 

These associations appeared similar across energy intakes, albeit that higher overall 
triglycerides were observed at the 25th percentile of energy intake (Figure S2). LDL cho-
lesterol was primarily associated with HEI for both enterolactone and enterodiol (Figure 
1B). Across energy intakes, the association remained similar, but the lowest LDL choles-
terol values were observed with higher energy intake coupled with higher HEI and enter-
odiol. The inverse was apparent for enterolactone, where the lowest LDL cholesterol was 
evident in those with the lowest energy intake coupled with the highest HEI and enter-
olactone (Figure S3). Visually, HDL cholesterol followed an interactive association for 
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Figure 1. Associations of blood lipids with HEI and enterolignans. Response surfaces show the
association of triglycerides (A) LDL cholesterol (B) and HDL cholesterol (C) with HEI, enterolignans,
and total energy intake. Enterolactone and enterodiol are presented as µmol/L (log-transformed).
The outcome of each response surface is shown at the top of the plot, with warmer colors denoting
higher values and cooler colors denoting lower values. Response surfaces are predicted at the 50th
percentile of total energy intake and have been adjusted for age, sex, household income, BMI, physical
activity. Low-density lipoprotein (LDL); high-density lipoprotein (HDL).

These associations appeared similar across energy intakes, albeit that higher overall
triglycerides were observed at the 25th percentile of energy intake (Figure S2). LDL choles-
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terol was primarily associated with HEI for both enterolactone and enterodiol (Figure 1B).
Across energy intakes, the association remained similar, but the lowest LDL cholesterol
values were observed with higher energy intake coupled with higher HEI and enterodiol.
The inverse was apparent for enterolactone, where the lowest LDL cholesterol was evident
in those with the lowest energy intake coupled with the highest HEI and enterolactone
(Figure S3). Visually, HDL cholesterol followed an interactive association for both entero-
lactone and enterodiol (Figure 1C). This appeared similar across energy intakes, although
at the upper level of energy intake, HEI appeared to have a slightly stronger positive
association with HDL (Figure S4). We did not identify any association with total cholesterol
in the fully adjusted model (Figure S5 and Table 2). When adjusting for waist circumference
instead of BMI, all associations remained the same except for LDL and enterolactone, which
become nonsignificant (Table S2).

Male and female stratified results for cardiometabolic health markers are shown in
Figures S6 and S7; Tables S2 and S3. When formally comparing the AIC values, there
was strong support of a sex difference between blood lipid models. We found a positive
association for enterodiol and triglycerides for both males and females (p ≤ 0.001). Visually,
males and females had a similar response surface to the pooled analysis for the association
of enterolactone with triglycerides; however, this only reached statistical significance in
females (p = 0.008). HDL cholesterol was statistically significant in both males and females
(p < 0.001), with little difference in the response surface compared to the pooled analysis.
Evidence for an interaction with sex was revealed for triglycerides (Table S4).

3.4. Glycemic Control

The relationship between energy intake, microbial lignan metabolites, and HEI with
markers of glycemic control is shown in Figure 2 and model coefficients are displayed in
Table 2. Enterolactone revealed a weak interactive association with HEI for fasting insulin
levels (Figure 2A). The highest fasting insulin appeared in those with the lowest HEI and
enterolactone levels. Enterodiol associations were more complex with the highest insulin at
low HEI and enterodiol, but this became less apparent beyond an enterodiol of 2 µmol/L
(log-transformed). These associations also displayed differences across energy intake, where
the highest fasting insulin was observed at lower energy intake coupled with lower HEI
and lower enterodiol. At higher energy intake, the association became more HEI dominated.
For enterolactone, the highest fasting insulin was apparent at higher energy intakes, but at
lower HEI and lower overall enterolactone (Figure S8). In the fully adjusted model, OGTT
was significantly associated with enterodiol (p = 0.03) and had a near-significant association
with enterolactone (p = 0.08). Enterolactone and enterodiol both displayed a strong negative
association with OGTT responses, with near-vertical contour lines across the enterodiol
and enterolactone spectrum (Figure 2B). For enterodiol and enterolactone, the overall
association was stronger at lower energy intakes (Figure S9). There was no significant
association identified for fasting glucose or HbA1c (Figures S10 and S11; Table 2). For waist
circumference sensitivity, all associations remained the same except the association between
OGTT and enterodiol, which became nonsignificant (Table S2).

In the sex-stratified analysis, there was strong support for a sex difference between models
of glycemic control comparing the model AIC values (Figures S6 and S7; Tables S2 and S3).
Fasting glucose was significant only with enterodiol in males (p = 0.03). The response
surface revealed a robust negative association between enterodiol levels and fasting glu-
cose independently of HEI. Males had a significant association with HbA1c, but only for
enterodiol (p = 0.007). Females had a significant association with both enterolactone and
enterodiol with insulin (p < 0.001), with response surfaces suggesting a strong negative
association with HEI. There was no evidence of an interaction by sex in any of the markers
of glycemic control (Table S4).
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Figure 2. Associations of glycemic control with HEI and enterolignans. Response surfaces show the
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and have been adjusted for age, sex, household income, BMI, physical activity. Oral glucose tolerance
test (OGTT).

3.5. Adiposity and Blood Pressure

The relationship between energy intake, microbial lignan metabolites, HEI with adi-
posity and blood pressure is shown in Figure 3 and model coefficients are displayed in
Table 2. Adiposity had a significant interactive association with HEI and both enterodiol
(p = 0.02) and enterolactone (p = 0.007). Adiposity was lowest in participants who had
high HEI in combination with high levels of enterolactone (Figure 3A). For enterodiol,
adiposity had a stronger HEI association, where the lowest adiposity was observed in
those with the highest HEI (Figure 3B). At lower energy intakes, higher adiposity was
observed in individuals with low enterolactone despite higher HEI scores. However, at
higher energy intake, the association appears to become slightly more HEI-dominated
(Figure S12). A significant interactive association was detected for both enterodiol and
enterolactone with systolic blood pressure (p < 0.001). Visually, systolic blood pressure was
highest in those with low HEI and low enterolactone or low enterodiol. Diastolic blood
pressure was also significantly associated with enterolactone (p = 0.005) and enterodiol
(p = 0.007), displaying a near-identical relationship, as seen with systolic blood pressure
(Figure 3C). Both systolic and diastolic blood pressure showed similar associations across
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energy intakes, but with a stronger association with enterodiol and enterolactone at lower
energy intakes (Figures S13 and S14). There were no significant changes for adiposity and
blood pressure in the waist circumference sensitivity analysis (Table S2).
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Enterolactone 12.0% 40,394.7 0.27 14.0% 40,319.9 0.43 14.0% 40,318.2 0.31 

LDL Cholesterol 
Enterodiol 10.5% 21,114.5 0.007 10.5% 21,118.0 0.006 13.3% 21,068.4 0.01 

Enterolactone 10.4% 21,116.9 0.02 10.4% 21,120.2 0.01 13.2% 21,071.1 0.04 
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Enterodiol 13.8% 36,135.9 <0.001 15.3% 36,048.6 <0.001 26.0% 35,463.1 <0.001 

Enterolactone 13.9% 36,130.5 <0.001 15.3% 36,057.7 <0.001 25.9% 35,466.2 <0.001 

Glucose 
Enterodiol 12.7% 19,190.4 0.046 13.6% 19,166.9 0.12 17.0% 19,089.1 0.24 

Enterolactone 12.4% 19,201.6 0.13 13.4% 19,175.7 0.25 16.8% 19,097.3 0.47 

Insulin 
Enterodiol 2.8% 15,052.2 <0.001 3.6% 15,049.0 <0.001 36.1% 14,016.4 0.02 

Enterolactone 3.8% 15,030.0 <0.001 4.6% 15,029.6 <0.001 36.3% 14,014.4 0.002 

OGTT 
Enterodiol 16.3% 10,335.4 0.03 17.4% 10,324.7 0.04 23.2% 10,263.5 0.03 

Enterolactone 16.2% 10,342.1 0.046 17.2% 10,331.1 0.07 22.9% 10,272.9 0.08 

HbA1c 
Enterodiol 10.3% 4879.4 0.38 11.2% 4851.0 0.51 15.9% 4700.1 0.28 

Enterolactone 10.5% 4869.2 0.11 11.4% 4841.9 0.19 15.6% 4713.7 0.92 

Figure 3. Associations of adiposity and blood pressure with HEI and enterolignans. Response
surfaces show the associations of adiposity (A), systolic blood pressure (B), and diastolic blood
pressure (C) with HEI, enterolignans, and total energy intake. Enterolactone and enterodiol are
presented as µmol/L (log-transformed). The outcome of each response surface is shown at the top
of the plot, with warmer colors denoting higher values and cooler colors denoting lower values.
Response surfaces are predicted at the 50th percentile of total energy intake and have been adjusted
for age, sex, household income, BMI, and physical activity.
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Table 2. Model coefficients for cardiometabolic health, diet quality, and microbial lignan metabolites 1.

Model 1 Model 2 Model 3
Outcome Metabolite DE AIC p DE AIC p DE AIC p

Triglycerides
Enterodiol 10.1% 25,710.0 <0.001 12.5% 25,666.9 0.002 18.2% 25,536.0 0.002

Enterolactone 10.8% 25,684.1 <0.001 13.6% 25,624.2 <0.001 19.1% 25,489.3 <0.001
Total
Cholesterol

Enterodiol 11.9% 40,395.2 0.31 12.0% 40,397.7 0.29 14.0% 40,319.9 0.43
Enterolactone 12.0% 40,394.7 0.27 14.0% 40,319.9 0.43 14.0% 40,318.2 0.31

LDL
Cholesterol

Enterodiol 10.5% 21,114.5 0.007 10.5% 21,118.0 0.006 13.3% 21,068.4 0.01
Enterolactone 10.4% 21,116.9 0.02 10.4% 21,120.2 0.01 13.2% 21,071.1 0.04

HDL
Cholesterol

Enterodiol 13.8% 36,135.9 <0.001 15.3% 36,048.6 <0.001 26.0% 35,463.1 <0.001
Enterolactone 13.9% 36,130.5 <0.001 15.3% 36,057.7 <0.001 25.9% 35,466.2 <0.001

Glucose
Enterodiol 12.7% 19,190.4 0.046 13.6% 19,166.9 0.12 17.0% 19,089.1 0.24

Enterolactone 12.4% 19,201.6 0.13 13.4% 19,175.7 0.25 16.8% 19,097.3 0.47

Insulin
Enterodiol 2.8% 15,052.2 <0.001 3.6% 15,049.0 <0.001 36.1% 14,016.4 0.02

Enterolactone 3.8% 15,030.0 <0.001 4.6% 15,029.6 <0.001 36.3% 14,014.4 0.002

OGTT
Enterodiol 16.3% 10,335.4 0.03 17.4% 10,324.7 0.04 23.2% 10,263.5 0.03

Enterolactone 16.2% 10,342.1 0.046 17.2% 10,331.1 0.07 22.9% 10,272.9 0.08

HbA1c
Enterodiol 10.3% 4879.4 0.38 11.2% 4851.0 0.51 15.9% 4700.1 0.28

Enterolactone 10.5% 4869.2 0.11 11.4% 4841.9 0.19 15.6% 4713.7 0.92

Body Fat (%)
Enterodiol 43.9% 7948.2 0.03 43.8% 7950.7 0.02 44.6% 7940.3 0.02

Enterolactone 44.0% 7946.0 0.01 43.9% 7948.3 0.007 44.7% 7938.1 0.007
Systolic Blood
Pressure

Enterodiol 29.4% 36,898.7 <0.001 29.6% 36,889.1 <0.001 31.8% 36,767.0 <0.001
Enterolactone 29.9% 36,867.8 <0.001 30.1% 36,859.8 <0.001 32.1% 36,745.7 <0.001

Diastolic Blood
Pressure

Enterodiol 11.8% 34,721.3 <0.001 12.3% 34,701.3 <0.001 13.3% 34,653.8 0.005
Enterolactone 11.8% 34,718.8 <0.001 12.3% 34,701.2 <0.001 13.3% 34,655.6 0.007

1 p-value reflects the level of significance for microbial lignan metabolites, HEI score, and total energy intake as a
three-dimensional smooth term for the outcome variable (triglycerides, total cholesterol, low-density lipoprotein
(LDL) cholesterol; high-density lipoprotein (HDL) cholesterol; systolic blood pressure; diastolic blood pressure;
body fat percentage; glucose; insulin; oral glucose tolerance test (OGTT); hemoglobin A1c (HbA1c)). Akaike
information criterion (AIC); percentage of deviance explained (DE) is for the entire model. Body fat percentage
was not adjusted for BMI in model 3.

There was strong support of a sex difference between models of adiposity and blood
pressure when comparing AIC values (Figures S6 and S7; Tables S2 and S3). Systolic blood
pressure was significantly associated with both enterolactone (p = 0.003) and enterodiol for
males (p = 0.04). In females, only enterodiol was significantly associated with systolic blood
pressure (p = 0.04). Only females demonstrated a significant association with diastolic blood
pressure and microbial lignan metabolites (enterolactone: p = 0.04; enterodiol: p = 0.03).
Both markers visually displayed an interactive association similar to the pooled analyses.
There was no evidence of an interaction by sex for adiposity or blood pressure (Table S4).

4. Discussion

Using a large sample of US adults, we explored the potential associations between
diet quality and microbiome lignan metabolites with cardiometabolic health across low,
medium, and high levels of energy intake using three-dimensional visualization. Across all
energy intake levels, gut microbiome metabolites, and the HEI were interactively associated
with most cardiometabolic markers evaluated in this study. Generally, we found that higher
levels of enterodiol or enterolactone in combination with greater adherence to the HEI were
associated with more optimal cardiometabolic health.

Numerous studies have provided evidence that diet quality plays a role in car-
diometabolic health [32,33]. The HEI provides a measure of adherence to the Dietary
Guidelines for Americans and encompasses multiple dimensions of diet quality, including
high-quality plant-based food items and dietary components related to unhealthy foods.
The HEI emphasizes a higher consumption of fruit, vegetables, whole grains, and nuts
and legumes while limiting sodium, refined grains, added sugar, and saturated fat [26].
Adherence to a diet with a high HEI score is associated with protective effects against
obesity, diabetes mellitus, dyslipidemia, and hypertension [34–36].



Nutrients 2023, 15, 1412 11 of 15

Experimental evidence supports that the relationship between both beneficial [13]
and detrimental components [32] of diet quality with cardiometabolic health is partially
mediated through the gut microbiome. Unlike the complex interplay identified in this
analysis, various studies have investigated the independent role of the diet or the gut
microbiome on cardiometabolic health [37]. An altered gut microbiome composition has
been well documented to influence the development of metabolic disorders such as obesity,
diabetes mellitus, dyslipidemia, and hypertension [38–40]. The potential mechanisms
have been summarized recently by Kazemian et al. [41]. Such an association can be
through indirect (via the immune system) and direct (via metabolites such as enterodiol
and enterolactone) pathways [39,40]. Microbial lignan metabolites have several biological
functions, such as antioxidant and ligand activity [42]. This includes increasing hepatic
LDL cholesterol receptor activity [43] and acting as an antagonist of platelet-activating
factor [44]. Together, these metabolites provide several potential mechanisms for reducing
the risk of cardiometabolic diseases.

Understanding the interplay between diet and gut microbiome metabolites on car-
diometabolic diseases is of public health and clinical importance. These results highlight
this importance by demonstrating the potential magnitude to which the gut microbiome
may modify the relationship between diet quality and cardiometabolic health outcomes.
Moreover, gut health may be an influential characteristic to consider when aiming to opti-
mize cardiometabolic health with dietary modifications. In line with our results, Asnicar
et al. revealed numerous relationships between microbes, dietary nutrients, and several
dietary indices, suggesting that the microbiome modulates the effect of the diet on both
fasting and postprandial cardiometabolic health [45]. Moreover, a recent study on overall
dietary lignan intake and cardiometabolic risk in men (n = 911) reported that both gut mi-
crobial species and plasma enterolactone levels accounted for a significant proportion of the
association observed [46]. Of the relationship between dietary lignan intake and metabolic
health, microbial species alone explained 19.8% (95% CI: 7.3–43.6%), while species and
enterolactone levels collectively explained 54.5% (95% CI: 21.8–83.7%) of the relationship.
The interplay of diet quality and gut microbiome metabolites on cardiometabolic health
is biologically plausible, as diet may potentially modulate production of gut microbiome
metabolites by altering the gastrointestinal microbiota composition. Previous studies have
shown an increased gut microbial diversity among people with higher fiber intake [47]. In
contrast, digestible simple sugars inhibit the colonization of beneficial commensal microbial
species in the murine gut and promote the development of obesity [48].

Our findings also identified the potential of sex-specific differences. Specifically, re-
sponse surfaces were slightly different for females and males, suggesting the beneficial
associations between enterolactone and enterodiol with cardiometabolic markers may be
more pronounced in males compared to females. These findings accord with previous stud-
ies that demonstrate an influential effect of biological sex on the physiology and pathology
of cardiometabolic diseases [49]. Other studies have also reported sex differences in the
association between gut microbiome and cardiometabolic disease [50]. The mechanisms are
not fully understood, although studies suggest a complex bidirectional interaction between
the microbial community and sex hormones [51].

Strengths and Limitations

This study has several strengths, including the analysis of a large sample of US adults
and the use of objective laboratory values of urine enterolignan levels and serum car-
diometabolic marker measurements. To our knowledge, this is the first study to incorporate
a multidimensional framework to visualize the relationship between diet, microbial lignan
metabolites, and cardiometabolic health. Unlike traditional epidemiological approaches,
this technique enables us to visually capture the complex relationships and how they differ
in magnitude for each cardiometabolic marker. However, this study also has several limita-
tions. The complex NHANES survey design weights could not be applied in this study
because the R package used does not allow it, thus preventing these results from being
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generalized to the entire US population. However, it has been suggested that weighted anal-
yses can be inefficient due to the large variability in assigned weights [52]. The unweighted
analysis can yield correct estimates when models are adjusted for the auxiliary variables
used to define the weights (i.e., age, sex, and ethnicity). Another limitation is the cross-
sectional design of NHANES such that the results cannot support causal inferences about
the relationships between diet, gut microbiome metabolites, and cardiometabolic health.
In addition, reverse causality is possible given the cross-sectional design. As discussed,
several previous longitudinal studies have demonstrated individual associations between
adherence to the HEI with enterodiol and enterolactone and cardiometabolic diseases.
Diets with a higher HEI score often include more plant-based food items with a greater
overall lignin content. Furthermore, the relationship between HEI and lignin-containing
food items may have partially influenced some of the observed results. In addition, the
dietary consumption data used to calculate the HEI was collected via 24 h recalls and may
not represent the usual dietary intake of individuals, as under- or overreporting frequently
occurs. Lastly, this study did not consider the consumption of dietary supplements.

5. Conclusions

This study applied a novel multidimensional approach to explore the relationship
between diet quality, microbial lignan metabolites, and cardiometabolic health among
US adults. We revealed that enterolactone and enterodiol affect the relationship of diet
quality with blood lipids, glycemic control, adiposity, and blood pressure. Future research
is needed to explore what specific foods or dietary patterns may underpin this relationship.
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Cholesterol with HEI, Enterolignans, and Energy Intake; Figure S5: Associations of Total-C with HEI,
Enterolignans, and Energy Intake; Figure S6: Associations of Cardiometabolic Health Outcomes for
Males; Figure S7: Associations of Cardiometabolic Health Outcomes for Females; Figure S8: Associa-
tions of Insulin with HEI, Enterolignans, and Energy Intake; Figure S9: Associations of OGTT with
HEI, Enterolignans, and Energy Intake; Figure S10: Associations of Glucose with HEI, Enterolignans,
and Energy Intake Table; Figure S11: Associations of HbA1c with HEI, Enterolignans, and Energy
Intake; Figure S12: Associations of Adiposity with HEI, Enterolignans, and Energy; Figure S13:
Associations of Systolic Blood Pressure with HEI, Enterolignans, and Energy Intake; Figure S14:
Associations of Diastolic Blood Pressure with HEI, Enterolignans, and Energy Intake; Table S1: Model
Coefficients for Varying Levels of Interaction for Cardiometabolic Health, Diet Quality, and Micro-
bial Lignan Metabolites; Table S2: Model Coefficients for Waist Circumference Sensitivity Analysis;
Table S3: Male Stratified Model Coefficients for Cardiometabolic Health, Diet Quality, and Microbial
Lignan Metabolites; Table S4: Female Stratified Model Coefficients for Cardiometabolic Health, Diet
Quality, and Microbial Lignan Metabolites; Table S5: Model Coefficients for Cardiometabolic Health,
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https://www.mdpi.com/article/10.3390/nu15061412/s1
https://www.mdpi.com/article/10.3390/nu15061412/s1


Nutrients 2023, 15, 1412 13 of 15

Author Contributions: N.A.K., A.M.S., N.L. and M.R.S. designed the study; N.A.K. and N.L. con-
ducted the study; N.A.K., N.L., A.M.S., T.B., A.H., M.O., Y.O., H.M.P., S.S., S.J.S., D.R., T.P.G. and
M.R.S. analyzed the data; N.A.K. and N.L. wrote the paper. M.R.S. and N.L. contributed equally as
last authors. M.R.S. and N.L. had primary responsibility for final content. All authors have read and
agreed to the published version of the manuscript.

Funding: N.A.K. is supported by the University of Sydney Faculty of Medicine and Health Executive
Dean Stipend Scholarship. S.S. is supported by doctoral funding from l’Ecole Doctorale de Santé
Publique, Ministère de l’enseignement supérieur, de la recherche et de l’innovation. N.L. is supported
by a research fellowship from the Fondation de France. S.J.S. and D.R. are both supported by an
Australian government NHMRC Program Grant (GNT1149976).

Institutional Review Board Statement: The National Health and Nutrition Examination Survey is
annually reviewed by the National Center for Health Statistics Ethics Review Board.

Informed Consent Statement: Informed consent was collected from all participants enrolled in the
National Health and Nutrition Examination Survey.

Data Availability Statement: Data from the National Health and Nutrition Examination Survey are
publicly available online at https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 29 June 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and

control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021,
398, 957–980. [CrossRef]

2. Reed, J.; Bain, S.; Kanamarlapudi, V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis,
Treatments and Future Perspectives. Diabetes Metab. Syndr. Obes. 2021, 14, 3567–3602. [CrossRef] [PubMed]

3. [CDC], Centers for Disease Control and Prevention. Underlying Cause of Death 1999–2018; National Center for Health Statistics:
Hyattsville, MD, USA, 2020.

4. Mozaffarian, D.; Appel, L.J.; Horn, L.V. Components of a Cardioprotective Diet. Circulation 2011, 123, 2870–2891. [CrossRef]
[PubMed]

5. AlEssa, H.B.; Malik, V.S.; Yuan, C.; Willett, W.C.; Huang, T.; Hu, F.B.; Tobias, D.K. Dietary patterns and cardiometabolic and
endocrine plasma biomarkers in US women. Am. J. Clin. Nutr. 2017, 105, 432–441. [CrossRef] [PubMed]

6. McNaughton, S.A.; Dunstan, D.W.; Ball, K.; Shaw, J.; Crawford, D. Dietary quality is associated with diabetes and cardio-metabolic
risk factors. J. Nutr. 2009, 139, 734–742. [CrossRef] [PubMed]

7. Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [CrossRef]
8. Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol.

2012, 9, 577–589. [CrossRef]
9. Ren, Z.; Pan, L.L.; Huang, Y.; Chen, H.; Liu, Y.; Liu, H.; Tu, X.; Liu, Y.; Li, B.; Dong, X.; et al. Gut microbiota-CRAMP axis shapes

intestinal barrier function and immune responses in dietary gluten-induced enteropathy. EMBO Mol. Med. 2021, 13, e14059.
[CrossRef]

10. Purchiaroni, F.; Tortora, A.; Gabrielli, M.; Bertucci, F.; Gigante, G.; Ianiro, G.; Ojetti, V.; Scarpellini, E.; Gasbarrini, A. The role of
intestinal microbiota and the immune system. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 323–333.

11. Jumpertz, R.; Le, D.S.; Turnbaugh, P.J.; Trinidad, C.; Bogardus, C.; Gordon, J.I.; Krakoff, J. Energy-balance studies reveal
associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 2011, 94, 58–65. [CrossRef]

12. McLoughlin, R.F.; Berthon, B.S.; Jensen, M.E.; Baines, K.J.; Wood, L.G. Short-chain fatty acids, prebiotics, synbiotics, and systemic
inflammation: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2017, 106, 930–945. [CrossRef] [PubMed]

13. Wang, D.D.; Nguyen, L.H.; Li, Y.; Yan, Y.; Ma, W.; Rinott, E.; Ivey, K.L.; Shai, I.; Willett, W.C.; Hu, F.B.; et al. The gut microbiome
modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 2021, 27, 333–343.
[CrossRef] [PubMed]

14. Wang, D.D.; Qi, Q.; Wang, Z.; Usyk, M.; Sotres-Alvarez, D.; Mattei, J.; Tamez, M.; Gellman, M.D.; Daviglus, M.; Hu, F.B.; et al.
The Gut Microbiome Modifies the Association between a Mediterranean Diet and Diabetes in USA Hispanic/Latino Population.
J. Clin. Endocrinol. Metab. 2022, 107, e924–e934. [CrossRef]

15. Shivappa, N.; Wirth, M.D.; Murphy, E.A.; Hurley, T.G.; Hébert, J.R. Association between the Dietary Inflammatory Index (DII)
and urinary enterolignans and C-reactive protein from the National Health and Nutrition Examination Survey-2003–2008. Eur. J.
Nutr. 2019, 58, 797–805. [CrossRef]

16. Liggins, J.; Grimwood, R.; Bingham, S.A. Extraction and quantification of lignan phytoestrogens in food and human samples.
Anal. Biochem. 2000, 287, 102–109. [CrossRef] [PubMed]

https://www.cdc.gov/nchs/nhanes/index.htm
http://doi.org/10.1016/S0140-6736(21)01330-1
http://doi.org/10.2147/DMSO.S319895
http://www.ncbi.nlm.nih.gov/pubmed/34413662
http://doi.org/10.1161/CIRCULATIONAHA.110.968735
http://www.ncbi.nlm.nih.gov/pubmed/21690503
http://doi.org/10.3945/ajcn.116.143016
http://www.ncbi.nlm.nih.gov/pubmed/27974312
http://doi.org/10.3945/jn.108.096784
http://www.ncbi.nlm.nih.gov/pubmed/19211825
http://doi.org/10.1136/bmj.k2179
http://doi.org/10.1038/nrgastro.2012.156
http://doi.org/10.15252/emmm.202114059
http://doi.org/10.3945/ajcn.110.010132
http://doi.org/10.3945/ajcn.117.156265
http://www.ncbi.nlm.nih.gov/pubmed/28793992
http://doi.org/10.1038/s41591-020-01223-3
http://www.ncbi.nlm.nih.gov/pubmed/33574608
http://doi.org/10.1210/clinem/dgab815
http://doi.org/10.1007/s00394-018-1690-5
http://doi.org/10.1006/abio.2000.4811
http://www.ncbi.nlm.nih.gov/pubmed/11078589


Nutrients 2023, 15, 1412 14 of 15

17. Zinöcker, M.K.; Lindseth, I.A. The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 2018,
10, 365. [CrossRef]

18. Cuevas-Sierra, A.; Milagro, F.I.; Aranaz, P.; Martínez, J.A.; Riezu-Boj, J.I. Gut Microbiota Differences According to Ultra-Processed
Food Consumption in a Spanish Population. Nutrients 2021, 13, 2710. [CrossRef]

19. Senghor, B.; Sokhna, C.; Ruimy, R.; Lagier, J.-C. Gut microbiota diversity according to dietary habits and geographical provenance.
Hum. Microbiome J. 2018, 7, 1–9. [CrossRef]

20. Martínez Steele, E.; Monteiro, C.A. Association between Dietary Share of Ultra-Processed Foods and Urinary Concentrations of
Phytoestrogens in the US. Nutrients 2017, 9, 209. [CrossRef]

21. Simpson, S.J.; Le Couteur, D.G.; Raubenheimer, D.; Solon-Biet, S.M.; Cooney, G.J.; Cogger, V.C.; Fontana, L. Dietary protein, aging
and nutritional geometry. Ageing Res. Rev. 2017, 39, 78–86. [CrossRef]

22. Koemel, N.A.; Senior, A.M.; Dissanayake, H.U.; Ross, J.; McMullan, R.L.; Kong, Y.; Phang, M.; Hyett, J.; Raubenheimer, D.;
Gordon, A. Maternal dietary fatty acid composition and newborn epigenetic aging—A geometric framework approach. Am. J.
Clin. Nutr. 2022, 115, 118–127. [CrossRef] [PubMed]

23. Koemel, N.A.; Senior, A.M.; Celermajer, D.S.; Grech, A.; Gill, T.P.; Simpson, S.J.; Raubenheimer, D.; Skilton, M.R. Multi-Nutrient
Analysis of Dietary Macronutrients with All-Cause, Cardiovascular, and Cancer Mortality: Data from NHANES 1999–2014.
Nutrients 2023, 15, 345. [CrossRef]

24. Adlercreutz, H. Lignans and human health. Crit. Rev. Clin. Lab. Sci. 2007, 44, 483–525. [CrossRef] [PubMed]
25. Frankenfeld, C.L. Cardiometabolic Risk Factors Are Associated with High Urinary Enterolactone Concentration, Independent of

Urinary Enterodiol Concentration and Dietary Fiber Intake in Adults. J. Nutr. 2014, 144, 1445–1453. [CrossRef] [PubMed]
26. Kirkpatrick, S.I.; Reedy, J.; Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Wilson, M.M.; Lerman, J.L.; Tooze, J.A. Applications of

the Healthy Eating Index for Surveillance, Epidemiology, and Intervention Research: Considerations and Caveats. J. Acad. Nutr.
Diet. 2018, 118, 1603–1621. [CrossRef]

27. Hastie, T.; Tibshirani, R. Generalized Additive Models. Stat. Sci. 1986, 1, 297–310. [CrossRef]
28. Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997,

65, 1220S–1228S, Discussion 1229S–1231S. [CrossRef]
29. Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation; Engineering and Physical Sciences

Research Council: Swindon, UK, 2012.
30. Wood, S.N. Generalized Additive Models: An. Introduction with R; CRC Press: Boca Raton, FL, USA, 2017.
31. Akaike, H.; Petrov, B.N.; Csaki, F. Second International Symposium on Information Theory; Akademia Kiado: Budapest, Hungary, 1973.
32. Juul, F.; Vaidean, G.; Parekh, N. Ultra-processed foods and cardiovascular diseases: Potential mechanisms of action. Adv. Nutr.

2021, 12, 1673–1680. [CrossRef]
33. Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.;

Van Horn, L.; Wylie-Rosett, J. 2021 dietary guidance to improve cardiovascular health: A scientific statement from the American
Heart Association. Circulation 2021, 144, e472–e487. [CrossRef]

34. Shah, B.S.; Freeland-Graves, J.H.; Cahill, J.M.; Lu, H.; Graves, G.R. Diet quality as measured by the healthy eating index and the
association with lipid profile in low-income women in early postpartum. J. Am. Diet. Assoc. 2010, 110, 274–279. [CrossRef]

35. Pasdar, Y.; Hamzeh, B.; Moradi, S.; Mohammadi, E.; Cheshmeh, S.; Darbandi, M.; Faramani, R.S.; Najafi, F. Healthy eating index
2015 and major dietary patterns in relation to incident hypertension; a prospective cohort study. BMC Public Health 2022, 22, 734.
[CrossRef] [PubMed]

36. Morze, J.; Danielewicz, A.; Hoffmann, G.; Schwingshackl, L. Diet Quality as Assessed by the Healthy Eating Index, Alternate
Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: A Second Update of a Systematic
Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2020, 120, 1998–2031.e1915. [CrossRef] [PubMed]

37. Hansen, T.H.; Gøbel, R.J.; Hansen, T.; Pedersen, O. The gut microbiome in cardio-metabolic health. Genome Med. 2015, 7, 33.
[CrossRef]

38. Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with
increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [CrossRef] [PubMed]

39. Nakaya, K.; Ikewaki, K. Microbiota and HDL metabolism. Curr. Opin. Lipidol. 2018, 29, 18–23. [CrossRef]
40. Matey-Hernandez, M.L.; Williams, F.M.K.; Potter, T.; Valdes, A.M.; Spector, T.D.; Menni, C. Genetic and microbiome influence on

lipid metabolism and dyslipidemia. Physiol. Genom. 2018, 50, 117–126. [CrossRef]
41. Kazemian, N.; Mahmoudi, M.; Halperin, F.; Wu, J.C.; Pakpour, S. Gut microbiota and cardiovascular disease: Opportunities and

challenges. Microbiome 2020, 8, 36. [CrossRef] [PubMed]
42. Kitts, D.D.; Yuan, Y.V.; Wijewickreme, A.N.; Thompson, L.U. Antioxidant activity of the flaxseed lignan secoisolariciresinol

diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol. Cell. Biochem. 1999, 202, 91–100. [CrossRef]
[PubMed]

43. Owen, A.J.; Roach, P.D.; Abbey, M. Regulation of low-density lipoprotein receptor activity by estrogens and phytoestrogens in a
HepG2 cell model. Ann. Nutr. Metab. 2004, 48, 269–275. [CrossRef]

44. Hall, A.V.; Parbtani, A.; Clark, W.F.; Spanner, E.; Keeney, M.; Chin-Yee, I.; Philbrick, D.J.; Holub, B.J. Abrogation of MRL/lpr
lupus nephritis by dietary flaxseed. Am. J. Kidney Dis. 1993, 22, 326–332. [CrossRef]

http://doi.org/10.3390/nu10030365
http://doi.org/10.3390/nu13082710
http://doi.org/10.1016/j.humic.2018.01.001
http://doi.org/10.3390/nu9030209
http://doi.org/10.1016/j.arr.2017.03.001
http://doi.org/10.1093/ajcn/nqab318
http://www.ncbi.nlm.nih.gov/pubmed/34591100
http://doi.org/10.3390/nu15020345
http://doi.org/10.1080/10408360701612942
http://www.ncbi.nlm.nih.gov/pubmed/17943494
http://doi.org/10.3945/jn.114.190512
http://www.ncbi.nlm.nih.gov/pubmed/24966407
http://doi.org/10.1016/j.jand.2018.05.020
http://doi.org/10.1214/ss/1177013604
http://doi.org/10.1093/ajcn/65.4.1220S
http://doi.org/10.1093/advances/nmab049
http://doi.org/10.1161/CIR.0000000000001031
http://doi.org/10.1016/j.jada.2009.10.038
http://doi.org/10.1186/s12889-022-13166-0
http://www.ncbi.nlm.nih.gov/pubmed/35418042
http://doi.org/10.1016/j.jand.2020.08.076
http://www.ncbi.nlm.nih.gov/pubmed/33067162
http://doi.org/10.1186/s13073-015-0157-z
http://doi.org/10.1038/nature05414
http://www.ncbi.nlm.nih.gov/pubmed/17183312
http://doi.org/10.1097/MOL.0000000000000472
http://doi.org/10.1152/physiolgenomics.00053.2017
http://doi.org/10.1186/s40168-020-00821-0
http://www.ncbi.nlm.nih.gov/pubmed/32169105
http://doi.org/10.1023/A:1007022329660
http://www.ncbi.nlm.nih.gov/pubmed/10705999
http://doi.org/10.1159/000080462
http://doi.org/10.1016/S0272-6386(12)70326-8


Nutrients 2023, 15, 1412 15 of 15

45. Asnicar, F.; Berry, S.E.; Valdes, A.M.; Nguyen, L.H.; Piccinno, G.; Drew, D.A.; Leeming, E.; Gibson, R.; Le Roy, C.; Khatib, H.A.; et al.
Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 2021,
27, 321–332. [CrossRef]

46. Li, Y.; Wang, F.; Li, J.; Ivey, K.L.; Wilkinson, J.E.; Wang, D.D.; Li, R.; Liu, G.; Eliassen, H.A.; Chan, A.T.; et al. Dietary lignans,
plasma enterolactone levels, and metabolic risk in men: Exploring the role of the gut microbiome. BMC Microbiol. 2022, 22, 82.
[CrossRef]

47. Makki, K.; Deehan, E.C.; Walter, J.; Backhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell
Host Microbe 2018, 23, 705–715. [CrossRef]

48. Townsend, G.E., II.; Han, W.; Schwalm, N.D., III.; Raghavan, V.; Barry, N.A.; Goodman, A.L.; Groisman, E.A. Dietary sugar
silences a colonization factor in a mammalian gut symbiont. Proc. Natl. Acad. Sci. USA 2019, 116, 233–238. [CrossRef] [PubMed]

49. Regitz-Zagrosek, V.; Kararigas, G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol. Rev. 2017, 97, 1–37.
[CrossRef]

50. Razavi, A.C.; Potts, K.S.; Kelly, T.N.; Bazzano, L.A. Sex, gut microbiome, and cardiovascular disease risk. Biol. Sex Differ. 2019,
10, 29. [CrossRef] [PubMed]

51. Li, S.; Kararigas, G. Role of Biological Sex in the Cardiovascular-Gut Microbiome Axis. Front. Cardiovasc. Med. 2022, 8, 759735.
[CrossRef]

52. Korn, E.L.; Graubard, B.I. Epidemiologic studies utilizing surveys: Accounting for the sampling design. Am. J. Public Health 1991,
81, 1166–1173. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/s41591-020-01183-8
http://doi.org/10.1186/s12866-022-02495-0
http://doi.org/10.1016/j.chom.2018.05.012
http://doi.org/10.1073/pnas.1813780115
http://www.ncbi.nlm.nih.gov/pubmed/30559205
http://doi.org/10.1152/physrev.00021.2015
http://doi.org/10.1186/s13293-019-0240-z
http://www.ncbi.nlm.nih.gov/pubmed/31182162
http://doi.org/10.3389/fcvm.2021.759735
http://doi.org/10.2105/AJPH.81.9.1166
http://www.ncbi.nlm.nih.gov/pubmed/1951829


Dietary Quality, Macronutrient Composition, and Breast Cancer 

172 

Chapter 9: Dietary Quality, Macronutrient Composition, and Breast Cancer 

Macronutrient Composition of Plant-Based Diets and Breast Cancer Risk: The E3N Prospective 

Cohort Study 

 



Dietary Quality, Macronutrient Composition, and Breast Cancer 

173 

Macronutrient Composition of Plant-Based Diets and Breast Cancer Risk: The E3N 

Prospective Cohort Study 

Nicholas A. Koemel1,2*; Sanam Shah3*; Alistair M. Senior1,4; Gianluca Severi3,5; Francesca R. 

Mancini3; Timothy P. Gill1,2,6, Stephen J. Simpson1,3; David Raubenheimer1,3; Marie-Christine 

Boutron-Ruault3; Nasser Laouali3,7,8*, Michael R. Skilton2* 

1Charles Perkins Centre, The University of Sydney, Sydney, Australia 

2Sydney Medical School, The University of Sydney, Sydney, Australia 

3Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, “Exposome and 

Heredity” team, CESP, F-94805, Villejuif, France 

4School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia 

5Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, 

Florence, Italy 

6Susan Wakil School of Nursing and Midwifery, The University of Sydney, Sydney, Australia 

7Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, 

University of Massachusetts, Amherst, Massachusetts, USA 

8Scripps Institution of Oceanography, University of California, San Diego, USA 

*Nicholas A. Koemel and Sanam Shah contributed equally as the first authors. Nasser Laouali and 

Michael R. Skilton contributed equally as the last authors. 

*Correspondence: Nasser Laouali 

Email: nasser.laouali@inserm.fr 

Running head: Macronutrient Composition of Plant-Based Diets and Breast Cancer 

Keywords: Macronutrients; Diet composition; Plant-based diet quality; Plant-based diets; Breast 

cancer; Dietary patterns 

Registry: The protocol is registered at clinicaltrials.gov as NCT03285230.

nasser.laouali@inserm.fr


Dietary Quality, Macronutrient Composition, and Breast Cancer 

174 

ABSTRACT 

Background: Recent evidence suggests that plant-based diets may reduce the risk of breast cancer 

(BC). However, the macronutrient composition of plant-based diets and its potential impact on BC 

risk has not been well explored.  

Objective: To explore the association of macronutrient composition with BC risk across a 

spectrum of plant-based diet indexes using a multidimensional approach. 

Design: This study followed 64,655 participants from the Etude Epidémiologique auprès de 

femmes de la Mutuelle Générale de l'Education Nationale (E3N) cohort from 1993 to 2014. Diets 

were evaluated using validated 208-item diet history questionnaires at baseline (1993) and follow-

up (2005), to calculate adherence to the overall plant-based diet (PDI), healthful plant-based diet 

(hPDI), and unhealthful plant-based diet (uPDI). The association of macronutrient composition 

with BC risk was assessed via generalised additive time-dependent Cox models across different 

levels of these indexes. Response surfaces were generated to visualize compositional associations 

at the 25th, 50th, and 75th percentile of each index (low, moderate, and high). 

Results: A total of 3,932 incident BC cases were identified during the 21-year follow-up. There 

was a significant association between macronutrient composition and BC risk for hPDI, uPDI, and 

PDI (all P < 0.001). Akaike information criterion favored the hPDI model for characterizing the 

association between macronutrients and BC. BC risk was highest for individuals with a lower hPDI 

score comprised of 10% protein, 35% carbohydrate, and 55% fat. The lowest risk of BC was 

observed in those with higher hPDI scores with the lowest intake of protein (10%). At higher PDI 

and uPDI, diets containing higher protein (30%) and fat (45%) had the highest BC risk. 
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Conclusion: These results demonstrate a complex relationship between macronutrient 

composition, plant-based diet quality, and BC risk. Further research is needed to examine specific 

foods that may be driving these associations. 
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INTRODUCTION 

Globally, breast cancer (BC) is the most commonly diagnosed cancer in women, with over 

2 million new cases and 685,000 deaths in 2020 [1]. Both genetic factors, such as BRCA1 or -2 

mutations, and lifestyle choices including physical activity, body weight, alcohol consumption, 

and nutritional quality, play a definitive role in the risk of BC [2-4]. 

A large body of evidence supports the role of certain foods and nutrients in BC incidence. 

For instance, the consumption of alcoholic beverages has been consistently linked with a higher 

BC risk [5, 6] and there is evidence, albeit limited, for the role of the consumption of non-starchy 

vegetables and foods high in calcium in lower risk of BC [7, 8]. Dietary saturated fat might be 

associated with BC [9]; nonetheless, evidence on total dietary protein and carbohydrate intake is 

less clear [10-12]. This may partially be due to unique differences in macronutrient intake across 

indices of the overall dietary quality and interactions across the spectrum of nutrients, components 

of foods, and dietary patterns [13-16]. 

Analysis of dietary patterns provides additional insights into the relationship between diet 

and the risk of chronic diseases [17-19]. Moreover, transitioning to a more plant-based diet has 

become the focus of numerous research communities due to their putative benefits to human health 

[20-22]. To overcome any discrepancy in the quality of plant diets, plant-based diet indices (PDI) 

are now often detailed as healthful (hPDI) and unhealthful plant-based diet (uPDI). In our recent 

study, we used data from the Etude Epidémiologique auprès de femmes de la Mutuelle Générale 

de l'Education Nationale (E3N) cohort of >65,000 women to demonstrate that hPDI was 

associated with a 14% lower risk of BC in postmenopausal women. Conversely, the uPDI was 

associated with a 20% higher BC risk [23]. However, the relationship between adherence to plant-

based diets with BC while also considering macronutrient composition has not been investigated.  
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The advent of the Geometric Framework of Nutrition (GFN) has allowed significant 

insights into these complex interactions of dietary constituents [24]. The principle of GFN lies in 

multidimensional nutritional landscapes that enable graphical representations of nutrient mixtures, 

such as protein, carbohydrate, and fat with various outcomes. Previous experimental and 

population-level studies using this approach suggest the interactive effects of macronutrient 

proportions consumed as possible drivers and underlying mechanisms of obesity, aging, 

cardiometabolic health, and all-cause mortality [25-29]. These studies highlight the notion that 

evaluating dietary macronutrients individually may fail to capture underlying complex 

relationships.  

Therefore, we sought to expand on our previous study and explore the relationship between 

postmenopausal BC risk and macronutrient composition across a spectrum of the hPDI, the uPDI, 

and the overall PDI using the GFN approach. In addition, we also investigated how the 

macronutrient composition is related to the intake of food groups that may potentially explain the 

observed associations between the plant-based diet indices and BC risk. We propose that 

collectively analyzing macronutrient composition, food groups, and diet quality will provide a 

more comprehensive understanding of how diet affects the risk of BC. 

METHODS 

E3N Cohort 

 The E3N cohort is a prospective cohort that began in 1990 to identify risk factors associated 

with cancer and other non-communicable diseases in women [30]. The cohort is comprised of 

98,995 French women aged 40 to 65 at the time of inclusion. Participants were selected from a 

health insurance scheme that covered workers in the National Education System and their families 

[30]. All participants provided written consent and the cohort received ethical approval from the 
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French National Commission for Computerized Data and Individual Freedom [31]. Participants 

completed a self-administered questionnaire every 2 to 3 years including questions on 

sociodemographic factors, health conditions, diet, and lifestyle characteristics. BC cases was 

identified through the follow-up questionnaires which detail cancer occurrence, physician 

information and contact permission. Cases were validated through medical records and pathology 

reports. Some cases were identified through death certificates.  

Study Population 

 For this study, we included the same subsample of postmenopausal participants as our 

previous analysis in this cohort [23]. Follow-up began at the date of the first diet history 

questionnaire (1993) for women who were menopausal or at the date of menopause if it occurred 

later than the dietary questionnaire [32]. The end of follow-up date was November 2014, and this 

was the last date for the validation of cases. Of the individuals who completed the diet history 

questionnaire at baseline (n = 74,522), we excluded those with undefined menopausal status (n = 

14), those who never menstruated (n = 6), women with prevalent cancers (n = 4,709), women with 

missing BC receptor status (n = 1,309), and those with missing follow-up questionnaire 

information (n = 623). Participants who were reported consuming potentially unreliable energy 

intakes (i.e., <500 kcal/day or >3,500 kcal/day) were also excluded (n = 2,283) [33]. Participants 

who had not attained menopause at the end of the follow-up were excluded (n = 923). The final 

sample included 64,655 postmenopausal women. Of the 3,932 validated breast cancer cases, 1,981 

were diagnosed before and 1,951 after the follow-up diet questionnaire (Supplementary Figure 

1). 

Dietary Intake and Plant-Based Diet Indices 
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 Dietary data was collected at baseline (1993) and follow-up (2005) via validated self-

administered 208-item diet history questionnaires [34, 35]. In all, 53,803 participants responded 

to both questionnaires, at baseline and follow-up. Participants reported on the consumption of food 

over the preceding year, with portion sizes assessed via photographs and qualitative questioning. 

Nutrient and energy intakes were calculated using the Food Composition Database from the French 

Information Center on Food Quality [36]. Correlation coefficients for reproducibility ranged from 

0.40 to 0.74 for food groups and 0.54 to 0.75 for nutrients. In addition, correlation coefficients for 

relative validity ranged from 0.12 to 0.71 for food groups and from 0.28 to 0.63 for nutrients. In 

this study, we analysed the nutrient intake at baseline and follow-up. The intake of nutrients at the 

baseline and follow-up questionnaires were analysed as prospective time-dependent continuous 

variables.   

 The present analysis explored three separate plant-based dietary indices, the overall PDI, 

hPDI, and uPDI. The overall PDI provides a score based on 18 food groups defining the overall 

plant-based diet. The hPDI provides a score based on healthy plant-based foods, including fruit, 

vegetables, nuts, and legumes. Conversely, the uPDI provides a score for unhealthy plant-based 

foods, including fruit juice, refined grains, and potatoes. Further details on the diets are described 

elsewhere [23]. Plant-based dietary scores were calculated for the initial and follow-up dietary 

measures. The scores were analysed as prospective time-dependent continuous variables.  

Covariates 

The following variables were selected a priori [23] and considered as potential 

confounders at baseline in our analyses: educational level (undergraduate or less, graduate, 

postgraduate or more), smoking status (current, former, non-smoker), family history of BC (yes, 

no), physical activity (metabolic equivalent hours per week; MET-h/week), age at menarche 
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(years), age at first full-term pregnancy (nulliparous, <30 years, ≥30 years), ever breastfeeding 

(yes, no, unknown), past history of benign breast disease (yes, no), ever use of oral contraception 

(yes, no), ever use of menopausal hormone therapy (MHT) (yes, no), mammography in the 

previous follow-up cycle (yes, no), body mass index (BMI) as weight in kilograms divided by 

squared height in meters, and alcohol intake (g/day), and birth generation composed of 5-year 

categories (<1930, 1930–1934, 1935–1939, 1940–1944, ≥1945).  

Statistical Analysis 

 Associations between macronutrients and BC incidence were examined using generalised 

additive models (GAMs) to fit time time-dependent Cox Proportional Hazards models with three-

dimensional smooth terms of macronutrients (i.e., protein; carbohydrate; fat). Plant-based diet 

quality indices were entered as a fourth interactive component in the smooth term. To visualize 

the outcomes, we explored the association between macronutrients and BC risk using a response 

surface via the ‘gam’ function in the mgcv package of the R statistical software with “family” set 

to “cox.ph” (v. 1.8-41; R Core Team; Vienna, Austria) [37, 38]. Three separate models were used 

to sequentially adjust for covariates. Model 1 was age-adjusted (as the time scale); model 2 

additionally included physical activity, educational level, smoking status, family history of BC, 

age at menarche, age at first childbirth, birth cohort, ever breastfeeding, ever use of MHT, ever 

use of the contraceptive pill, past history of benign breast disease, and mammography in the last 

follow-up cycle. The final model included covariates from models 1-2 with the addition of BMI 

and alcohol intake. 

We transformed the absolute intake (kcal/day) to reflect a percentage of energy to plot as 

a right angle mixture triangle [40] using the ggplot2 package in R statistical software (v. 3.3.6; R 

Core Team; Vienna, Austria) [39]. In this study, mixture triangles were constructed with protein 
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and carbohydrates as a percentage of energy on the x and y-axis, and the intake of fat is then 

inferred as the sum of the protein and carbohydrate subtracted from 100. To establish differences 

in macronutrient associations, predictions were made while holding each plant-based dietary index 

at either the 25th, 50th, or 75th percentile (low, medium, and high respectively). To account for 

dietary composition changes with dietary quality, response surfaces were plotted for the 

macronutrient ranges observed at 10 percentiles above and below each quartile of hPDI, uPDI, 

PDI (15-35th percentile, 40-60th percentile, and 65-85th). The ranges excluded predictions for 

percentages of macronutrient intake that were ± 3 standard deviations from the mean. Response 

surface predictions were also made at the 50th percentile of energy intake observed within each of 

these percentile ranges. When plotting the response surfaces, BC risk predictions were made using 

the entire cohort holding the diet score constant at the specified threshold. All covariates in the 

model were held constant at the mean value for the entire cohort. Model outcomes were reported 

on the survival function scale (SFS) ranging from 0-1 which can be interpreted as the probability 

that an event would occur later than the mean follow-up time. The response surface reflects the 

transformed value as a percentage of BC risk ((1-Survival score)*100). Models were compared 

using the Akaike information criterion (AIC), where a difference of >2 was considered a 

significant improvement in model fit [40]. The primary figures in this analysis display those for 

hPDI as this plant-based dietary index was favoured by AIC. Response surfaces shown are adjusted 

as per the fully adjusted model. Compositional associations across energy intake were examined 

by creating three response surfaces for each plant-based dietary index using the absolute intake of 

macronutrients (kcal/day). Each surface was plotted with two macronutrient exposures expressed 

in absolute intake as the x and y-axis, while the third macronutrient is held constant at the 25th, 

50th, and 75th percentile of intake.  
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To further elucidate potential drivers of the relationship between dietary macronutrient 

composition, plant-based dietary indices, and BC risk, we created response surfaces of several 

food groups related to the plant-based indices. This included six major categories consisting of 

meat, grains, dairy, vegetable, fruit, and discretionary foods. Meat included all types of meat such 

as red meat, processed meat, poultry, fish, and eggs. Dairy included milk, cream, yogurt, cheese, 

and ice cream. The grains category included both whole and refined grains. Vegetables included 

both non starchy and starchy vegetables. Discretionary foods were defined as sugar-sweetened 

beverages, sweets, desserts, and fruit juices. All categories were plotted as response surfaces on 

right-angle mixture triangles with the dry weight (g/day) of each of the food groups consumed by 

participants. More detailed food category response surfaces including refined grain, whole grain, 

nuts and legumes, fish, and egg, were also explored in the Supplementary Material.  

Sensitivity Analyses 

 Several sensitivity analyses were undertaken in the present study. Firstly, we examined the 

relationship of each macronutrient composition at the mean of each dietary index while predicting 

the risk of BC for the 25th, 50th, and 75th percentile of alcohol intake (i.e., light drinker, moderate 

drinker, and heavy drinker) to ensure associations were similar across varying alcohol 

consumption. Associations were also evaluated after removing those who were diagnosed with BC 

less than 5 years after enrolment in the study to test for potential reverse causation (n = 973). 

Sensitivity analyses were conducted that included participants with missing BC receptor status (n 

= 1,309). 

RESULTS  

Participants 
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 This analysis included 64,655 women from the E3N cohort with an average age of 53.9 ± 

5.2 years (Table 1). Of these participants, a total of 3,932 cases of BC (5.3%) over a median 

follow-up of 21-years.  

Macronutrient Composition of Healthy Plant-Based Index 

There was a significant association detected for macronutrients, hPDI score and BC 

incidence (P < 0.001; Table 2). Among the three indices examined, hPDI showed the best fit based 

on the AIC scores. Figure 1 shows the compositional association of macronutrients across the 

spectrum of hPDI. Overall, higher hPDI scores demonstrated a significantly lower risk for BC. For 

higher hPDI scores (75th percentile), the response surfaces show that generally the lowest BC risk 

was primarily associated with lower protein intake (10%). The highest risk of BC was observed at 

lower hPDI (25th percentile of hPDI), while also composed of lower levels of protein (10%), lower 

carbohydrate (35%), and higher fat (55%).  

On the absolute scale, the response surfaces accord with the main findings in the right-

angle mixture analysis (Supplementary Figures 2-4). The highest risk for BC was shown for 

individuals with the lowest hPDI score containing higher amounts of fat while also lower in protein 

and carbohydrate content. Conversely, at higher diet quality, protein was primarily positively 

associated with BC risk. 

Macronutrient Composition of Unhealthy Plant-Based Index 

A significant association was identified for uPDI scores and dietary macronutrient 

composition and BC risk (P < 0.001; Table 2; Supplementary Figure 5). Overall, lower 

adherence to uPDI was generally associated with a lower risk of BC. At the lowest uPDI scores, 

BC risk was lowest in individuals consuming higher amounts of protein (30%), moderate 

carbohydrate (55%), and lower fat (15%). Conversely, at this uPDI level, the risk was highest in 



Dietary Quality, Macronutrient Composition, and Breast Cancer 

184 

individuals consuming lower protein (10%), moderate carbohydrate (60%), and lower fat (30%). 

Higher uPDI scores were associated with a higher risk of BC, especially for individuals with a 

nutritional composition of 25% protein, 25% carbohydrate, and 50% fat. However, individuals 

with a higher uPDI also had a low BC risk region in a band of lower protein (10%) extending 

across varying fat and carbohydrate intake.  

Associations of absolute intake of macronutrients across a spectrum of uPDI scores are 

shown in Supplementary Figures 6-8. These associations align with the right angle mixture 

analysis. Of the absolute intake response surfaces, the highest risk for BC was found in those with 

the highest uPDI scores that were comprised of both higher fat and higher protein. The lowest 

overall BC risk was observed in individuals with lower uPDI scores. 

Macronutrient Composition of the Overall Plant-Based Diet Index 

A significant association was revealed for macronutrient composition across a spectrum of 

PDI scores (Table 2; Supplementary Figure 9). For the lowest PDI scores, BC risk was generally 

lower for individuals consuming higher amounts of protein and fat. Conversely, the highest risk 

of BC at this level of PDI was apparent for individuals consuming lower protein (10%), moderate 

carbohydrate (60%), and moderate fat intake (30%). Overall, the risk of BC risk was highest for 

individuals in the 75th percentile of PDI scores with a macronutrient composition of approximately 

25% protein, 25% carbohydrate, and 50% fat.  

The response surfaces for absolute intake across the PDI score spectrum are shown in 

Supplementary Figure 10-12. These surfaces reflect that at lower PDI scores, carbohydrate intake 

was positively associated with BC risk and protein was negatively associated with BC risk. At 

higher PDI scores, these associations were inverted with protein being positively associated with 

BC risk and carbohydrate becoming negatively associated with BC risk. 
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Food Group Analysis 

Figure 2 shows response surfaces that illustrate the relationship between the consumption 

of different common food groups (meat, grains, dairy, vegetables, fruits, and discretionary foods) 

that may help explain the macronutrient BC associations [41-43]. The results suggest that diets 

with high levels of protein and fat tend to have the highest meat intake. In contrast, dairy 

consumption was highest in diets high in protein, moderate in carbohydrate, and low in fat. The 

intake of vegetables was generally positively associated with protein intake, while the consumption 

of grains, discretionary foods, and fruits tended to be highest in diets that are higher in carbohydrate 

and have low to moderate levels of protein. For the hPDI, the highest risk macronutrient region 

corresponds to the region with the lower intake of vegetables, fruit, dairy, grain, and meat, while 

being moderately higher in discretionary foods. For uPDI and PDI, the highest risk region 

corresponds with the area highest in both meat and vegetables. Supplementary Figure 13 

provides additional food group analyses, including whole versus refined grains, fish, eggs, nuts, 

and legumes. 

Sensitivity Analyses 

 There were no significant differences in the compositional associations for hPDI, uPDI, or 

PDI when predictions were made for light, moderate, and heavy drinkers (Supplementary Figure 

14-16). Overall, the surfaces display higher BC risk in those consuming more alcohol. There were 

no changes in the results when excluding individuals diagnosed with BC in the first 5 years of 

follow-up (Supplementary Table 1), or when including participants with missing BC receptor 

status (Supplementary Figure 17; Supplementary Table 3). 

DISCUSSION 
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Through a large prospective cohort study, we investigated the relationship between 

macronutrient composition and BC risk across measures of various plant-based diet indices. In the 

main findings, the hPDI had the greatest support for characterizing the relationship between BC 

and macronutrient composition. The results suggest that long-term adherence to a higher hPDI diet 

is associated with lower BC risk. However, at specific levels of hPDI adherence, different high 

and low BC risk regions were observed depending on the macronutrient composition.  Individuals 

with higher hPDI had the lowest risk, particularly when consuming lower protein (10%), while 

individuals with a lower hPDI showed the highest risk when consuming lower protein (10%), 

lower carbohydrate (35%), and higher fat (55%). Notably, BC risk appears to be highest with high 

uPDI and PDI scores. At higher uPDI and PDI scores, the highest risk of BC was evident for 

individuals consuming the highest amount of protein (25%) and fat (50%) while lower in 

carbohydrate (25%). Overall, these findings demonstrate that the relationship of plant-based 

dietary indices with BC may be more complex than previously thought as BC risk differed widely 

across macronutrient composition. 

In cohort studies, all three macronutrients have observed null, positive or negative 

associations with BC [10, 44, 45]. In the Italian EPIC cohort, although total carbohydrates had no 

association with BC, diets of higher glycemic load were associated with higher risk [46]. 

Moreover, higher consumption of saturated fat may increase BC risk, and findings vary for total, 

monosaturated, or polyunsaturated dietary fats [47, 48]. Associations between total dietary protein 

intake and BC are less clear, and previous studies have instead explored protein intake by animal 

or vegetable source. In the Women’s Health Initiative study, a higher calibrated total protein intake 

was not associated with BC in postmenopausal women [12]. Conversely, in a recent substitution 

analysis, replacing dietary protein with dietary fat was shown to have an increased likelihood of 
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BC [49]. From an epidemiological perspective, the relationship between dietary macronutrients 

and BC has been less consistent and appears more nuanced than previously understood. This may 

be partially explained by differences in overall diet quality and interactions among macronutrients 

[50]. 

Plant-based dietary patterns offer a wide range of health benefits including antioxidants, 

fiber, and polyphenols which can offer additional protection against cancer [51]. Plant-based diets 

have been proposed as a way of improving overall diet quality, however, these diets can also 

include ultra-processed foods which may increase the risk of cancer [52]. Indices such as the hPDI 

and uPDI offer a way to evaluate the quality of the plant-based diet [51, 53]. A recent study 

exploring the relationship between healthful and unhealthful low-fat diets with BC risk revealed 

no clear association between macronutrient quality and BC risk [54]; albeit, moderate adherence 

to an unhealthy low-fat dietary patterns was associated with higher risk. One possible explanation 

for these findings is that the study did not account for macronutrient interactions at varying diet 

quality. These findings suggest that the associations of plant-based diet quality indices with BC 

depend heavily on the relative intake of all three macronutrients rather than individual 

macronutrients. 

 Notably, the findings of this study highlight a potential interaction between dietary protein 

and overall diet quality on BC risk. Specifically, in diets with lower plant-based diet quality, low 

protein intake was found to be associated with higher BC risk, whereas low protein intake was 

found to be protective at higher plant-based diet quality. In animal studies, the role of 

macronutrient quality supports these findings mechanistically, suggesting that lower protein intake 

has a beneficial effect when consumed with primarily resistant starch [55]. Conversely, consuming 

lower protein with lower quality carbohydrates leads to poor metabolic outcomes [55]. 
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Furthermore, adverse effects of low protein intake may also arise from high-fat diets, which 

include multiple pathways involving gut dysbiosis, obesity, oxidative stress, and inflammation 

[56]. Previous evidence shows that consuming foods high in fat may increase visceral adiposity, 

low-grade systemic inflammation, and subsequent postmenopausal BC risk [56, 57]. Furthermore, 

increasing dietary fat over a wide range of protein intake (8%, 16%, or 32% of energy) was found 

to enhance breast carcinogenesis [58]. Dietary protein from animals has been shown to increase 

the risk of cancer [12], while the opposite appears true for plant sources of protein [59]. This may 

be partially due to the fact that plant-based sources of protein often contain other bioactive food 

components that are known to have antioxidative and anti-inflammatory properties, which can act 

protectively against cancer [60].  

In this study, a unique relationship was observed for dietary protein and overall plant-based 

diet quality. One possible explanation for this is that risk-driving foods, such as ultra-processed 

foods, may be commonly consumed in low-quality, lower protein diets, while high-quality, lower 

protein diets may consist of more protective foods, such as fruits, vegetables, and grains. To 

investigate this hypothesis, we explored the relationship between specific foods and food groups 

and their macronutrient composition with regard to BC risk. Our findings suggest that at low hPDI, 

the highest risk region for BC overlaps with the macronutrient compositions associated with the 

lowest intake of vegetables, dairy, fruit, and grain and moderately more discretionary foods. 

Conversely, for uPDI and PDI, the highest risk region corresponds with macronutrient regions 

associated with a higher intake of meat. From an epidemiological standpoint, these findings accord 

with previous evidence suggesting a protective effect of fruits, vegetables, and dairy for BC while 

discretionary foods, red meat, and processed meat has been shown to increase BC risk [41]. 

However, it is important to note that our results are not definitive as risk driving and risk reducing 
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foods may occupy a similar region on the response surface. That said, these findings may reflect 

underlying dietary patterns that collectively contribute to BC risk. 

Strengths and Limitations 

To our knowledge, this is the first study to explore dietary macronutrient associations with 

BC while considering varying plant-based dietary indices in a large prospective cohort. A key 

strength of this study was that we used the GFN approach to explore the associations between 

nutrients on a multidimensional landscape. The GFN enables the capture of complex nonlinear 

relationships that may not be detected using traditional epidemiological approaches. Another 

strength of this study is that we incorporated three levels of nutrition related analyses to create a 

more cohesive investigation. This included associations from the perspective of dietary indices, 

macronutrients, and food groups. Additionally, dietary data was collected at two separate time 

points twelve years a part, which may partially account for dietary changes over the follow-up 

period. When excluding participants diagnosed with BC in the first five years of follow-up did not 

change our results, suggesting that reverse causation was unlikely to explain the findings. 

This study is met with several limitations, including that dietary data was collected using 

diet history questionnaires. This form of evaluation of human dietary data uses a finite list of foods 

to measure dietary intake over an extended period. It is better at assessing usual intake than other 

forms of dietary assessment but has limited capacity to quantify intakes and capture atypical foods 

or diet patterns. Thus, there is an inherent risk of misreporting that limits causal conclusions. 

Moreover, although the food group analysis was created to provide a more comprehensive 

analysis, no formal assessment was done to determine the degree to which food groups or 

individual foods were associated with BC. This method does not exclude the possibility that the 



Dietary Quality, Macronutrient Composition, and Breast Cancer 

190 

underlying associations of macronutrients may be ultimately driven by specific foods, 

micronutrients, or bioactive components.  

Lastly, the E3N cohort is predominantly comprised of highly educated women, making it 

less representative of the overall French population. Consequently, caution should be exercised in 

generalizing these findings to the broader population. 

CONCLUSION 

In the present study, we revealed associations between various plant-based diet indices, 

macronutrients, commonly consumed food groups, and BC risk. These findings give insight into 

the relationship between human nutrition and BC risk and offer evidence that may help guide the 

way toward dietary BC risk reduction. Further studies are required to replicate the findings in other 

populations and detail specific foods that may be driving the observed relationships. 
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TABLES 

Participant Characteristics 

N=64,655 Mean SD 

Age, years 53.92 5.19 

Educational level  

Undergraduate or less (%) 11.3 − 

Graduate (%) 53.3 − 

Postgraduate (%) 35.4 − 

Alcohol intake 11.21 13.46 

Smoking status  

Current (%) 13.5 − 

Former (%) 32.5 − 

Nonsmoker (%) 54.0 − 

BMI, kg/m2 22.9 3.2 

BMI categories, kg/m2 (%)  

<20 12.6 − 

20-24.99 57.3 − 

≥25 19.4 − 

Physical activity, met-h/week 49.10 49.46 

Energy intake (excluding alcohol) kcal/day 2,056 511 

Age at menarche, years 12.78 1.42 

Age at menopause, years 50.60 3.83 

Age at first birth (%)  

< 30 years 77.6 − 

≥ 30 years 10.1 − 

Nulliparous 12.3 − 

Breastfeeding (%)  

Ever 57.5 − 

Never 38.0 − 

Unknown 4.6 − 
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Ever use of menopausal hormone therapy (%) 30.3 − 

Ever use of contraceptive pill (%) 60.0 − 

Past history of benign breast disease (%) 25.1 − 

Family history of breast cancer (%) 7.4 − 

Mammography in the last follow-up cycle (%) 59.2 − 

Healthy Plant Based Diet Index  56.10 6.03 

Unhealthy Plant Based Diet Index  52.46 6.22 

Plant Based Diet Index  51.65 5.38 

Table 1. Baseline characteristics of the E3N cohort study population. Body mass index (BMI); Standard 

deviation (SD).
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Table 2. Model Outputs for Macronutrient Composition and Plant-Based Diet Indices 

 Model 1 Model2 Model3 

Diet Index Dev Exp AIC P Dev Exp AIC P Dev Exp AIC P 

Healthy Plant Based Diet Index 0.70% 87,399.84 <0.001 1.31% 86,541.03 <0.001 0.81% 86,275.18 <0.001 

Unhealthy Plant Based Diet Index 0.69% 87,417.14 <0.001 1.28% 86564.43 <0.001 0.81% 86,278.15 <0.001 

Plant Based Diet Index 0.66% 87,436.5 <0.001 1.25% 86583.30 <0.001 0.77% 86,295.75 <0.001 

Table 2. Model outputs for associations of macronutrient intake with breast cancer with varying levels of adjustment are shown above. A significant 

macronutrient model can be interpreted such that the relationship of each macronutrient with breast cancer is dependent upon the relative intake of 

all three macronutrients. Akaike information criterion (AIC); deviance explained (Dev Exp). 
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Figure 1. Dietary Macronutrient Composition, Healthy Plant Based Diet Quality, and Breast Cancer Risk. The mixture triangles 

show the model predictions of the breast cancer risk with a significant association with macronutrient composition. Predictions were 

made for the range of macronutrient percentages in this dataset at the 25th, 50th, and 75th percentile of healthy plant based diet index 

scores from left to right. Predictions were created at the 50th percentile of total energy of those observed at 10 percentiles above and 

below each quartile of hPDI (15-35th percentile (2173 kcal), 40-60th percentile (2035 kcal), and 65-85th (1933 kcal)). The x and y-axis 

show protein and carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such that each 

point on the triangle can be summed to equal 100%. Response values are coloured such that warm colours show a higher risk of breast 

cancer and cooler colours show a lower breast cancer risk. Risk scores were calculated from the survival function scores and can be 

interpreted as the percentage of risk that a breast cancer event will occur. Response surfaces were adjusted for physical activity, 

educational level, smoking status, family history of breast cancer, age at menarche, age at first childbirth, ever breastfeeding, ever use 

of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography in the last follow-up cycle, BMI, alcohol 

intake, and birth cohort. 
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Figure 2. Dietary Macronutrient Composition and Consumption of Food Groups. The mixture triangles show the model predictions 

of individual consumption of six major food groups (g/day). Food groups included: meat: fish, eggs, white, and red meat; dairy: milk, 

cream, yogurt, cheese, and ice cream; grains: whole and refined grains; fruit; vegetables: starchy and non-starchy vegetables; nut and 

legumes; and discretionary: sugar-sweetened beverages, sweets, desserts, fruit juices. The x and y-axis show protein and carbohydrate 

respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such that each point on the triangle can be 

summed to equal 100%. Predictions were made at the 50th percentile of total energy intake of individuals in the 40th-60th percentile of 

hPDI (2035 kcal/day). 
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Chapter 10: Conclusion 
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10.1 Aims and Objectives 

This thesis aimed to investigate the relationship between human nutrition and aging, 

metabolic health, and the risk of noncommunicable diseases. Specifically, it aimed to analyze the 

impact of dietary macronutrient composition on different aspects of human health throughout the 

life course. Each chapter provides a unique analysis both expanding on previous Nutritional 

Geometry research in animals, but also exploring the novel questions such as the role of fatty acids, 

diet quality, and the role of other factors such as the gut microbiome. Moreover, another aim was 

to explore how each of the aspects may differ across the life course.  

To achieve this, the first main objective was to explore the influence of dietary 

macronutrient composition on metabolic health, as this plays a crucial role in both aging and 

disease risk. Chapters 4 and Chapter 5 examined this relationship in both early life and adulthood 

to capture how these relationships may differ across the life course. The second aim of this thesis 

also was to investigate how diet composition affects biological aging, which was also covered in 

these chapters. Aligned with these objectives, this thesis aimed to explore how these findings 

ultimately relate to endpoint diseases and mortality outcomes which was examined in Chapter 7. 

The final aim of this thesis, shown in Chapters 8 and Chapter 9, was to examine how diet quality, 

food groups, and other factors such as the gut microbiome may impact the relationship of 

macronutrients with these outcomes.  

10.2 Main Findings 

 Early Life Nutrition, Cardiometabolic Health, and Aging 

Individual nutrients such as macronutrients, micronutrients, and fatty acids play an integral 

role in the development of non-communicable diseases. In Chapter 4 of this thesis, we began by 
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exploring the role of maternal diet composition with newborn markers of cardiometabolic health 

and aging in a sample of Australian participants (n = 224; [1]). Specifically, the main goal of this 

study was to explore the relationship between macronutrient composition (i.e., protein, 

carbohydrate, fat) and dietary classes of fatty acids including polyunsaturated fatty acids (PUFA), 

monounsaturated fatty acids (MUFA), and saturated fatty acids (SFA) with aortic intima-media 

thickness, heart-rate variability, body fatness, and epigenetic age. In this study, there was no clear 

association between diet composition with cardiometabolic health markers in the offspring, 

however, a unique interactive association was revealed for maternal dietary fatty acids and 

newborn offspring. Herein, dietary MUFA were positively associated with epigenetic aging, while 

when increasing the relative amounts of SFA and PUFA this association was attenuated. When 

further exploring the subtypes of fatty acids, omega-3 and omega-6 fatty acids with outcomes 

there was a unique protective effect observed for omega-3 fatty acids with epigenetic aging, while 

omega-6 fatty acids were positively associated with epigenetic aging. Together these findings 

suggest that the specific fatty acid composition consumed during gestation may have a direct 

impact on fetal development and aging in early life.  

However, this study was met with several limitations. Notably, the sample size used for 

this study was relatively small, especially for such sophisticated modeling approaches. Ultimately, 

this size limitation also prevented us from conducting further covariate adjustment and sensitivity 

analyses. Specifically, it would be of interest to explore how these associations differ according to 

diet quality and dietary patterns. Moreover, this study used dietary data collected from an 80-item 

FFQ which like other forms of dietary questionnaires is inherently limited to the ability of the 

participants to accurately report their diet during pregnancy. Considering pregnancy represents a 
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period of frequent dietary changes, a more thorough investigation of diet throughout pregnancy 

may be warranted.  

 Nutrition in Adulthood, Cardiometabolic Health, and Aging 

The aim of Chapters 5 and Chapter 6 was to explore the impact of adult dietary 

macronutrient intake on both cardiometabolic health and aging. In Chapter 5, data was used from 

the NHANES dataset from years 1999-2014 where each year dietary intake was collected using 

24-hour dietary recall information for 33,681 US adults (49.7 ± 18.3 years; 52.5% female). 

Cardiometabolic health markers including lipid profile, glycemic control, blood pressure, and body 

fatness were collected from a random sample of individuals throughout the specified time range. 

In this study, we revealed a complex association of dietary macronutrients with triglycerides, HDL 

cholesterol, total cholesterol, systolic blood pressure, and diastolic blood pressure. Herein, 

complex trade-offs were observed for these cardiometabolic health markers where different 

macronutrient compositions were associated with optimal blood lipids compared to blood pressure 

and insulin. Specifically, diets higher in protein (25%) with moderate carbohydrate content (65%) 

and lower dietary fat (10%) had the highest values of triglycerides, systolic blood pressure, insulin, 

and the lowest HDL cholesterol. Conversely, diastolic blood pressure was highest in those 

consuming the highest range of dietary fat (55%). Total cholesterol was highest in either diets of 

higher carbohydrates (75%) coupled with lower amounts of protein (5%) or diets with lower 

carbohydrate content (30%) coupled with moderate protein (25%). Together these results 

demonstrate a complex association between macronutrient composition and cardiometabolic 

health that appears to differentially impact various markers of lipid profile, glycemic control, and 

blood pressure.  
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Chapter 6 of this thesis was aimed at extending the work in early life that assessed the 

association of diet composition on aging, by exploring this relationship in adults. This analysis 

was also undertaken using data from the NHANES dataset and included 4,130 US adults (44.8 ± 

17.0 (51% female) from the years 1999-2002. This study explores the relationship between 

individual macronutrients with telomere length as a marker of biological aging which was 

collected from a random sample of individuals from these years. Dietary data was collected using 

only a single 24-hour dietary recall which was recorded via a trained professional. Herein, this 

analysis revealed that telomere length appeared longest in those individuals consuming diets 

highest in carbohydrate (75%) content while simultaneously low in protein (10-15%) and fat (10-

15%). Conversely, these results show that when dietary carbohydrate content was reduced (40%) 

and dietary fat was higher (55%) along with lower protein (5%), telomere length was the shortest. 

Notably, these associations appear to increase in magnitude with increasing total caloric intake. 

When transforming the telomere length to years of aging, the high carbohydrate diets demonstrated 

7.7 years of reduced aging while the high fat diet had 4.4 years of accelerated aging.  

Together both Chapter 5 and Chapter 6 were met with several limitations. Firstly, 

NHANES data is collected cross-sectionally which prevents any causal conclusion to be drawn 

from this analysis. Secondly, although a large sample size was incorporated in both studies, the 

sample weights could not be readily incorporated into the complex modeling. Therefore, these 

results could not be generalized to the entire US population. Lastly, it should be noted that this 

data was collected using 24-hour recall data and therefore potentially unrealistic intakes of 

macronutrients (e.g., <10% protein) should be considered with caution as they are likely not 

reflective of long-term diet composition. 

 Dietary Macronutrients, Noncommunicable Diseases, and Mortality 
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Chapter 7 was designed to further these associations of both macronutrients with 

cardiometabolic health and aging, to understand the relationship between cardiovascular mortality, 

cancer mortality, and all-cause mortality [2]. This study was undertaken using the NHANES data 

from the years 1999-2014 with dietary data collected from 24-hour dietary recall. Mortality data 

was accessed using the data-linkage program to the National Death Index provided by the National 

Center for Health Statistics. In this study, we revealed a significant association between dietary 

macronutrients and the risk of all-cause mortality. The risk of all-cause mortality was generally 

highest in individuals consuming a high-caloric diet with moderately high protein (20%), moderate 

fat (30%), and moderate carbohydrate (50%). Lower mortality risk was observed in two separate 

macronutrient profiles consisting of higher protein (30%), higher carbohydrate (60%), and lower 

fat levels (10%) or lower protein (10%), moderate carbohydrate (45%), and higher fat levels 

(45%). These results suggest that the relative intake of all three macronutrients is important when 

considering the association of dietary macronutrients with disease outcomes. For example, dietary 

fat was only associated with a lower risk of all-cause mortality at low protein levels, and high 

carbohydrate intake was only protective at high protein levels. 

 This study was not met without limitations. Firstly, this study like the rest of the NHANES 

analyses only included a single time point of dietary data collection. Therefore, these associations 

should be explored with caution as habitual diet and diet after the interview may have changed. 

Additionally, this study adjusted for overall diet quality using the Health Eating Index. This index 

is a general tool for assessing diet quality as it measures adherence to the US dietary guidelines [3, 

4]. However, this tool does not include adjustment for differences in age, sex, and ethnicity which 

may have influenced the observed results [5].  

 The Role of the Gut Microbiome in Nutrition and Health 
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Chapter 8 of this thesis aimed to examine the interrelationship of the gut microbiome as a 

potential effect modifier of the relationship between diet quality and cardiometabolic health in the 

NHANES dataset [6]. In this study, we used data from the NHANES dataset from the years 1999-

2010 as these years assessed the urinary enterolignans (i.e., enterolactone and enterodiol) which 

gives an indirect indication of gut microbial function [7]. Unlike the previous multi-nutrient plots 

used in this thesis, this analysis applied multidimensional modelling to examine enterolignans, diet 

quality, and cardiometabolic health markers in order to visually capture effect modification as a 

response surface. This study revealed a complex multidimensional association for enterolignans 

and diet quality with triglycerides, LDL cholesterol, HDL cholesterol, insulin, oral glucose 

tolerance test, adiposity, systolic blood pressure, and diastolic blood pressure. For each of these 

markers, the most optimal cardiometabolic health outcome was only observed when both diet 

quality and enterolignans were high, suggesting that many the effects of the microbiome may 

potentially modify the relationship of diet quality on cardiometabolic health. Of the outcomes 

identified as having a significant relationship, triglycerides and oral glucose tolerance test had the 

greatest model support for the three-dimensional relationship with enterolignans.  

Although these findings provide interesting results that accord with other population level 

and experimental evidence [8] there are some important limitations of this analysis. Firstly, this 

study was conducted using cross-sectional data which has strong limitations when aiming to draw 

relationships between the microbiome and diet which typically differ over time. Additionally, 

urinary enterolignans are heavily influenced by lignan containing foods, such as plant-based foods 

in the diet. Taken together, individuals showing the higher urinary enterolignans with more optimal 

cardiometabolic health may simply reflect these individuals consume diets containing higher 

amounts of plant-based foods.  
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 Diet Quality, Food Groups, and Noncommunicable Diseases 

Chapter 9 presents the final analysis chapter of this thesis and was aimed to blend various 

components of the other chapters to explore the relationship between the macronutrient 

composition of long-term plant-based diets with the incidence of breast cancer. This study was 

conducted using data from the 64,655 participants from the Etude Epidémiologique auprès de 

femmes de la Mutuelle Générale de l'Education Nationale (E3N) cohort from 1993 to 2014. This 

study collected dietary data in 1993 and 2005 via two separate FFQs. This analysis aimed to 

expand the multidimensional framework of macronutrient composition and breast cancer 

incidence (n = 3,932) by examining differences across three varying plant-based dietary indices. 

These indices included the plant-based dietary index (PDI), unhealthy plant-based dietary index 

(uPDI), and the healthy plant-based dietary index (hPDI) [9, 10]. This study also included a follow-

up analysis to explore which food groups correspond with macronutrient composition. The results 

of this study revealed that the hPDI was best at characterizing the relationship between 

macronutrients and breast cancer and that BC risk was highest for individuals consuming diets 

with a lower hPDI score comprised of 10% protein, 30% carbohydrate, and 55% fat. Conversely, 

the lowest risk of BC was observed in those with higher hPDI scores with the lowest intake of 

protein (10%). These findings differed widely for the other two indices where diets of higher uPDI 

and PDI had the highest risk of BC in diets composed of higher protein (30%) and fat (45%) while 

lower in carbohydrates (25%). Together, these findings suggest a complex relationship exists 

between dietary macronutrients and BC, but this widely depends on the relative quality of the diet. 

Moreover, we demonstrate that this may be potentially driven by complex trade-offs of individual 

food groups.  
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Despite the vast sample size and repeated dietary measurement of this study it was still met 

with many limitations. Given this study incorporated a complex design that involves both diet 

quality and macronutrient composition, specific micronutrients, fatty acids, or other bioactive 

components were not explored and may partially explain the observed relationship. Lastly, like the 

other population level analyses in this thesis, it is subject to the limitation of dietary data collection  

which is subject to under- or over-reporting of dietary information.  

 Advancing Analyses in Nutritional Epidemiology 

Findings from these chapters provide a wide breadth of new approaches in the area of 

nutritional epidemiology. Traditionally, nutritional research has focused on exploring the role of 

specific nutrients or dietary components in relation to health outcomes [11]. However, dietary 

patterns, which consist of a collection of individual foods that are habitually consumed, also play 

a significant role in health outcomes [12]. This has led to a division in research approaches, with 

some studies taking a holistic perspective and others using a reductionist approach driving 

dissonance regarding what components of nutrition ultimately underpin human health outcomes. 

This thesis addresses this issue by taking a unique multidimensional approach that explores 

multiple nutrient exposures simultaneously. The research was able to demonstrate clear differences 

in interpretation when exploring nutrients using compositional analyses compared to a one-

variable-at-a-time approach [1, 2]. These results stem from the notion that when undertaking a 

univariate approach, many of the complex non-linear substitutions made when one nutrient is 

replaced is not fully captured.  

While compositional analyses offer a valuable addition to the methodology of nutritional 

epidemiology, there are still many other components of human nutrition that are not yet fully 

captured. For instance, diet quality is a major driver of disease and can significantly impact how 
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specific nutrients are associated with human health. Chapter 9 of this thesis introduces diet quality 

into the formal analysis by exploring interactions between macronutrients and specific indices of 

diet quality as they relate to disease outcomes. In addition, food group categories are also included 

to provide further insight into which specific foods or food groups may be driving the association. 

These additions create a more comprehensive understanding of the relative impact of diet quality 

and provides a cohesive perspective that bridges both reductionist and holistic viewpoints. By 

incrementally including various components of nutrition in the epidemiological hierarchy, this 

approach moves away from deconstructing individual parts and towards a more holistic 

understanding of nutrition and its impact on health outcomes. 

 Interplay between Diet, Cardiometabolic Health, Aging, and Disease 

Nutrition is one of the most potent modifiable risk factors for the development of 

noncommunicable diseases [13] and for promoting healthy aging [14]. However, the relationship 

between nutrition, aging, metabolic health, and disease development is complex, with these factors 

all being integrally involved with each other. As a result, it can be challenging to identify individual 

associations. Fortunately, advancements in biological sciences have provided specific markers of 

biological aging, such as epigenetic aging [15] and telomere length [16], which have made it easier 

to explore these associations. 

This thesis demonstrates that diet composition has varying impacts on markers of aging 

and cardiometabolic health throughout the different stages of the life course. During early life, it 

was found that maternal dietary intake of fatty acids significantly impacted the epigenetic age of 

offspring. However, no formal relationship was found between maternal diet and cardiometabolic 

health. Epigenetic age is a marker of biological aging and has been linked to a higher risk of 

developing diseases such as type 2 diabetes, CVD, and cancer [17]. From a mechanistic 
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perspective, dietary fatty acids play a crucial role in early development, particularly in fetal brain 

and neurological development [18]. Several omega-3 fatty acids such as EPA and DHA are 

structurally important and cannot be produced endogenously, thus requiring sufficient intake to be 

consumed from the diet. Additionally, dietary fatty acids also influence inflammation, oxidative 

stress, and insulin sensitivity, all of which are mechanistic drivers of the aging process [19]. 

Chapter 4 of this thesis supports this notion by demonstrating a protective association of maternal 

dietary fatty acid composition on newborn epigenetic aging. Moreover, there was evidence that 

omega-3 fatty acids were negatively associated with epigenetic age while omega-6 fatty acids were 

positively associated with epigenetic aging.  

Transitioning into adulthood, other diet and lifestyle factors become involved in both aging 

and cardiometabolic health. Independent of diet quality, this thesis demonstrates that dietary 

macronutrient composition was significantly associated with various markers of cardiometabolic 

health. In Chapter 5, dietary macronutrients were shown to be strongly associated with blood 

lipids, glycemic control, and blood pressure. These findings align with previous literature 

including a recent meta-analysis of 32-RCTs demonstrating a differential effect of dietary 

macronutrients and fatty acids on blood lipid profile [20]. Specifically, it was shown that low fat 

diet decreased total cholesterol and LDL cholesterol. Conversely, a high-fat diet was associated 

with a reduction in triglycerides and an increase in HDL cholesterol. The glycemic control 

relationship with dietary macronutrient composition generally accord with previous literature 

suggesting that a reduction in carbohydrate intake optimizes outcomes [21, 22]. Similar results 

were yielded for systolic blood pressure suggesting lower carbohydrate diets had lower systolic 

blood pressure [23]. All these cardiometabolic markers are known to have an influential role in the 

aging process [24] and ultimately risk of disease [25].  
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Furthermore, the association of macronutrients with aging was then tested using telomere 

length in Chapter 6. These findings were interesting considering the relationship appeared to show 

that diets low in protein and high in carbohydrate had the slowest aging, while diets low in protein 

and highest in fat displayed accelerated aging. Notably, these findings overlap with animal and 

other human research suggesting that carbohydrate intake is associated with longevity [26]. Diets 

comprised of low protein and high carbohydrate are thought to cause this relationship by 

optimizing nutrient sensing pathways such as insulin-like growth factor-1 (IGF), mechanistic 

target of rapamycin (mTOR), and 5′ adenosine monophosphate-activated protein kinase (AMPK) 

[27]. A population level example of this phenomenon exists in those consuming the Okinawan diet 

which consists of very low protein (9%) and high carbohydrate content (85%) [28]. Individuals 

consuming this diet are a part of a unique region with one of the longest life expectancy in the 

world [29]. However, in humans this relationship is extremely complex as both diet quality and 

total energy intake are also primary drivers of telomere length [30].  

However, when comparing the compositional associations of cardiometabolic health with 

telomere length, the macronutrient profiles with highest triglycerides, blood pressure, insulin, and 

lowest HDL cholesterol correspond to the macronutrient profiles of accelerated aging. This was 

most strongly evident at the highest energy intakes. Interestingly, the diets with the highest 

association with aging (i.e., low protein, high fat, low carbohydrate) also correspond to the diets 

associated with the most optimal fatty acid ratio ((MUFA+PUFA/SFA)). These findings suggest 

that there may be both dietary fatty acids and dietary macronutrients both have a relationship with 

human health, but these may differ for aspects of aging and cardiometabolic health. 

In Chapter 7, we investigate the relationship between macronutrient composition and 

cause-specific as well as all-cause mortality. Surprisingly, we found significant associations only 
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between macronutrient composition and all-cause mortality, and these associations were contrary 

to those observed with cardiometabolic health and aging markers. Specifically, our findings 

indicate that diets that are highest in protein (30%), moderately high in carbohydrate (60%), and 

low in fat (10%), or diets that are lowest in protein (10%), lowest in carbohydrate (45%), and 

highest in fat (45%) have the lowest risk of all-cause mortality. However, we also found that these 

macronutrient combinations correspond with the highest diet quality and the most optimal dietary 

fatty acid intake of both polyunsaturated fatty acids (PUFA) and saturated fatty acids (SFA). Taken 

together these findings provide an interesting story in the area of nutritional epidemiology. In this 

analysis, we demonstrate similar findings for macronutrient association and mortality when 

examined individually such that moderate intake of each macronutrient has the lowest risk of 

mortality [31, 32]. However, when using a multi-nutrient approach to examine the relationship of 

all macronutrients simultaneously, this analysis demonstrated that the associations were more 

complex with distinct regions of dietary macronutrient composition associated with high and low 

risk.  

In Chapter 8, we further investigated the relationship between diet quality, markers of gut 

microbial function, and the link between cardiometabolic health, aging, and mortality risk. Our 

study yielded unique findings that suggest diet quality plays a differentially influential role in 

cardiometabolic health depending on various surrogate markers of gut microbial function. These 

findings support other animal models and population-level analyses that suggest the gut 

microbiome moderates the relationship between diet and metabolic health [33]. Interestingly, these 

results accord with a growing body of work in humans demonstrating the role of the microbiome 

in modifying blood glucose and triglycerides [34, 35]. These results may partially explain the 

varying associations observed between dietary macronutrients, markers of cardiometabolic health, 
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and aging, as there may have been underlying differences in diet quality and gut microbial health 

among those included in the analysis. 

In Chapter 9, we tested the influence of diet quality on these relationships by examining 

the association between dietary macronutrients and breast cancer risk, as it varies depending on 

different indices of plant-based diet quality. The results showed that diets low in dietary protein 

and high in dietary fat had the highest risk of breast cancer when plant-based diet quality was low. 

From an epidemiological standpoint, these results align with much of the previous work suggesting 

poor plant-based diet quality with higher ultra-processed food and meat consumption is associated 

with a higher risk of breast cancer. Moreover, we show that in diets with low plant based quality, 

risk is higher in those with higher fat intake. More specifically, these results accord with previous 

work suggesting high-fat diets can lead to mechanistic drivers of cancer including dysbiosis [36], 

inflammation [37], and oxidative stress [38]. Together, the region of most accelerated biological 

aging in both early life and adulthood, but there was limited overlap when looking at differences 

in cardiometabolic health from the previous study. However, it should be noted that this study was 

conducted solely in women, and we observed clear sex differences in cardiometabolic health and 

the risk of all-cause mortality when exploring the relationship in the NHANES dataset. Moreover, 

the breast cancer outcome was investigated in a completely different population of individuals 

from a distinct geographical region, which may be related to differences in food selection and 

overall dietary patterns. 

These results emphasize the evolving significance of fatty acid and macronutrient 

compositions in relation to aging and metabolic health across different life stages. Viewing these 

chapters as a whole reveals the intricate relationship between nutrition, aging, metabolic well-

being, and noncommunicable diseases. It is noteworthy that this relationship seems to present 
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trade-offs among diet quality, the microbiome, and certain nutrients, with some being particularly 

impactful during crucial life stages, such as early life. 

Notably, this work offers a unique perspective into the complexity of human nutrition and 

health throughout the life course. Much of nutritional epidemiology focuses on either specific 

nutrients or dietary patterns within a limited spectrum of adults. A key feature of this work is the 

integration of Nutritional Geometry to help disentangle the complexity of diet with the various 

outcomes examined. Nutritional Geometry has demonstrated the capacity to capture complex 

compositional associations that cannot be detected using traditional epidemiological techniques 

[39, 40]. Specifically, this approach has shown that the ratio of macronutrients rather than 

individual macronutrients is a primary driver of cardiometabolic health and lifespan [41]. While 

each chapter tells a unique story of diet composition, this thesis also systematically incorporated 

layers of depth in the domain of nutritional epidemiology. For example, initial Chapters 4, 5, 6, 

and 7 focused primarily on the macronutrient and fatty acid composition relationship. Chapter 8 

extended the application of this methodology one step further by examining other potential 

modifiers of these relationships such as the gut microbiome. Lastly, Chapter 9 incorporated a 

layer of both dietary patterns and food groups into the framework. The addition of these aspects 

vastly enhances the understanding of both how diet quality influences the observed associations 

and how food groups relate compositionally. Taken together, these chapters highlight the 

integration of new elements into the Nutritional Geometry framework, capturing both a life-course 

viewpoint and a broader macroscopic epidemiological perspective. 

10.3 Future Directions 

These findings support a complex relationship that provides insight into the various 

components of complexity that exist in the relationship between nutrition and human health. Most 
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notably, there is a clear discrepancy between the relationship of nutrition and health outcomes 

depending on the stage throughout the life course [42]. This relationship is likely shaped by 

differing nutritional requirements in development and maturation that dictate the development and 

maintenance on a cellular level. Furthermore, these findings highlight sex differences that are 

likely to contribute to many of the observed differences in cardiometabolic health between males 

and females [43]. These differences may also be related to differences in food selection and 

preference, which heavily vary according to geographical region [44] and socioeconomic status 

[45]. Together, these aspects of nutrition and health exist in a complex ecological framework where 

individuals interact with their environment temporally, which shapes not only the risk of disease 

but also a healthy aging process. 

To extend the findings of this thesis, further evidence is needed to explore the associations 

between dietary macronutrients, diet quality, and specific foods and their impact on healthy aging 

and disease risk in different cohorts and regions. These results emphasize the need for tailored 

dietary guidelines rather than a one-size-fits-all approach, and the importance of individual or 

population-level guidance to prevent disease. However, this highlights a larger public health issue 

related to the limited availability of accurate population-level surveillance regarding dietary intake, 

especially as it varies throughout the life course.  

Another important aspect of this work that needs further advancement includes details 

related to our fundamental mechanistic understanding of how nutritional intake shapes disease and 

aging. While these relationships have been commonly examined in both animal models and 

clinical trials, further work is needed to test the robustness of these relationships on a population 

level. Specifically, more research is needed to explore the mediating pathways between diet, 

noncommunicable diseases, aging, and mortality. Understanding these mechanisms would provide 
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a deeper understanding of how diet impacts health outcomes and how interventions could be 

developed to improve overall health. 

The findings from these analyses may help better tailor nutrition guidance for different life 

stages or different sections of the community. However, these studies revealed a high degree of 

complexity between diet and dietary components and different health outcomes at different stages 

of life. Although these complexities make it unreasonable to draw firm conclusions on which to 

base clinical or public health messages to reduce risk and improve health outcomes, they do 

confirm the importance of avoiding a one-size fits all approach to dietary guidance. Additionally, 

this research underscores the significance of examining multiple layers within human nutrition, 

such as diet composition, food groups, and dietary patterns when addressing public guidance. 

While there exist advantages of taking a reductionist approach, there are also many pitfalls 

which are often ignored in nutritional literature. This thesis delves into a complex array of exposure 

categories, such as dietary macronutrients, diet quality, specific food groups, and dietary patterns 

that influence human health. This wide spectrum of exposure categories makes it difficult to draw 

broader conclusions. To address this complexity, a framework needs to be developed in order to 

better organise and synthesize nutritional research with varying levels of specificity. For example, 

a key focus of this should be to distinguish the distinct profile of micronutrients, macronutrients, 

and fatty acid composition that comprise dietary patterns across various geographical regions. 

Another layer of importance should be placed on how these respective dietary pattern profiles are 

shaped by socioeconomic status and the life course. This information will be crucial toward 

furthering the work in this thesis as the availability and importance of specific dietary components 

for human health will likely differ across these domains. 
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Lastly, nutrition plays a role in an assortment of other lifestyle risk factors such as physical 

activity and sleep, which are both intimately connected to energy balance, metabolic health, and 

aging [46-48]. In the future, it is important to investigate how nutrition, physical activity, and sleep 

interact to shape these outcomes of interest. By gaining a better understanding of the interplay 

between these lifestyle factors, we may develop more comprehensive strategies for promoting 

healthy aging and disease prevention. 

10.4 Conclusions 

Taken together, this thesis offers a wide range of information regarding the relationship 

between diet and human health. Each chapter presents a multifaceted analysis of the complex 

associations between dietary macronutrients and disease outcomes. These findings underscore that 

studying individual nutrients alone fails to capture the full complexity of this relationship. 

Additionally, these findings also support that examining macronutrient composition alone can also 

be misleading as diet quality, food groups, and other aspects of health such as the microbiome also 

play a significant role in the associations. Ultimately, the relationship between diet and health 

outcomes varies widely among individuals, based on factors such as age, sex, and geographical 

region. These results emphasize the need for a comprehensive and standardized approach to 

nutritional research that considers each of these aspects before providing dietary guidance or 

making public health recommendations.
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Supplemental Figure 1. Participant Flow Chart. 
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Supplementary Figure 2. Associations between Macronutrient Composition and Triglycerides Across Energy Intakes. The 

mixture triangles show the model predictions of the fasting triglycerides at the 25th, 50th, and 75th percentile of total energy intake from 

left to right. Predictions were made for the range of macronutrient percentages in this dataset. The x and y-axis show protein and 

carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such that each point on the 

triangle can be summed to equal 100%. Response values are coloured such that warm colours display higher values and cooler colours 

display lower values. Response surfaces were adjusted for age, household income, BMI, physical activity, and Healthy Eating Index. 
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Supplementary Figure 3. Associations between Macronutrient Composition and Total Cholesterol Across Energy Intakes. The 

mixture triangles show the model predictions of the fasting Total-C at the 25th, 50th, and 75th percentile of total energy intake from left 

to right. Predictions were made for the range of macronutrient percentages in this dataset. The x and y-axis show protein and 

carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such that each point on the 

triangle can be summed to equal 100%. Response values are coloured such that warm colours display higher values and cooler colours 

display lower values. Response surfaces were adjusted for age, household income, BMI, physical activity, and Healthy Eating Index.
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Supplementary Figure 4. Associations between Macronutrient Composition and HDL Cholesterol Across Energy Intakes. The 

mixture triangles show the model predictions of the HDL cholesterol at the 25th, 50th, and 75th percentile of total energy intake from left 

to right. Predictions were made for the range of macronutrient percentages in this dataset. The x and y-axis show protein and 

carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such that each point on the 

triangle can be summed to equal 100%. Response values are coloured such that warm colours display higher values and cooler colours 

display lower values. Response surfaces were adjusted for age, household income, BMI, physical activity, and Healthy Eating Index.
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Supplementary Figure 5. Associations between Macronutrient Composition and Systolic Blood Pressure Across Energy Intakes. 

The mixture triangles show the model predictions of the systolic blood pressure at the 25th, 50th, and 75th percentile of total energy intake 

from left to right. Predictions were made for the range of macronutrient percentages in this dataset. The x and y-axis show protein and 

carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such that each point on the 

triangle can be summed to equal 100%. Response values are coloured such that warm colours display higher values and cooler colours 

display lower values. Response surfaces were adjusted for age, household income, BMI, physical activity, and Healthy Eating Index.
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Supplementary Figure 6. Associations between Macronutrient Composition and Diastolic Blood Pressure Across Energy 

Intakes. The mixture triangles show the model predictions of the diastolic blood pressure at the 25th, 50th, and 75th percentile of total 

energy intake from left to right. Predictions were made for the range of macronutrient percentages in this dataset. The x and y-axis show 

protein and carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such that each point 

on the triangle can be summed to equal 100%. Response values are coloured such that warm colours display higher values and cooler 

colours display lower values. Response surfaces were adjusted for age, household income, BMI, physical activity, and Healthy Eating 

Index.
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Supplementary Figure 7. Associations between Macronutrient Composition and Insulin Across Energy Intakes. The mixture 

triangles show the model predictions of the fasting insulin at the 25th, 50th, and 75th percentile of total energy intake from left to right. 

Predictions were made for the range of macronutrient percentages in this dataset. The x and y-axis show protein and carbohydrate 

respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such that each point on the triangle can be 

summed to equal 100%. Response values are coloured such that warm colours display higher values and cooler colours display lower 

values. Response surfaces were adjusted for age, household income, BMI, physical activity, and Healthy Eating Index. 
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Supplementary Figure 8. Dietary Macronutrient Composition and Adequacy Components 

of the Healthy Eating Index. The mixture triangles shows the model predictions of the adequacy 

components of the Healthy Eating Index with a significant association with macronutrient 

composition. Predictions were made for the range of macronutrient percentages in this dataset. The 

x and y-axis show protein and carbohydrate respectively. Percentage of fat can be inferred as 

decreasing moving away from the origin, such that each point on the triangle can be summed to 

equal 100%. Response values are coloured such that warm colours display higher values and cooler 

colours display lower values. Response surfaces were adjusted for age, household income, BMI, 

and physical activity. 
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Supplementary Figure 9. Dietary Macronutrient Composition and Moderation Components of the Healthy Eating Index. The 

mixture triangles shows the model predictions of the moderation components of the Healthy Eating Index with a significant association 

with macronutrient composition. Predictions were made for the range of macronutrient percentages in this dataset. The x and y-axis 

show protein and carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such that each 

point on the triangle can be summed to equal 100%. Response values are coloured such that warm colours display higher values and 

cooler colours display lower values. Response surfaces were adjusted for age, household income, BMI, and physical activity.
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Supplementary Figure 10. Dietary Macronutrient Composition and Cardiometabolic Health Markers for Males. The mixture 

triangles shows the model predictions of the cardiometabolic health markers with a significant association with macronutrient 

composition. Predictions were made for the range of macronutrient percentages in this dataset. The x and y-axis show protein and 

carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such that each point on the 

triangle can be summed to equal 100%. Response values are coloured such that warm colours display higher values and cooler colours 

display lower values. Response surfaces were adjusted for age, household income, BMI, physical activity, and Healthy Eating Index.
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Supplementary Figure 11. Dietary Macronutrient Composition and Cardiometabolic Health 

Markers for Females. The mixture triangles shows the model predictions of the cardiometabolic 

health markers with a significant association with macronutrient composition. Predictions were 

made for the range of macronutrient percentages in this dataset. The x and y-axis show protein and 

carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the 

origin, such that each point on the triangle can be summed to equal 100%. Response values are 

coloured such that warm colours display higher values and cooler colours display lower values. 

Response surfaces were adjusted for age, household income, BMI, physical activity, and Healthy 

Eating Index.
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Supplemental Table 1. Associations between Macronutrient Composition with Components of the Healthy Eating Index 

Outcome Model
1
 

Adequacy Dev Exp. P 

Total Fruits 8.1% <0.001 

Whole Fruits 9.0% <0.001 

Total Vegetables 4.1% <0.001 

Greens and Beans 2.0% <0.001 

Whole Grains 6.3% <0.001 

Dairy 2.2% <0.001 

Total Protein Foods 8.4% <0.001 

Seafood and Plant Proteins 2.3% <0.001 

Fatty Acids 0.9% <0.001 

Moderation   

Refined Grains 1.8% <0.001 

Sodium 2.1% <0.001 

Added Sugars 4.4% 0.55 

Saturated Fats 0.6% 0.58 
1P-value reflects the level of significance for macronutrients as a three-dimensional smooth term for the adequacy and moderation 

components of the Healthy Eating Index. Percentage of deviance explained (Dev Exp.) represents is shown for the entire model. Models 

were adjusted for age, sex, household income, physical activity, and BMI. 

 



Appendix A: Supplementary Files for Chapter 5 

240 

Supplemental Table 2. Associations between Macronutrient Composition and Cardiometabolic Health for 

Males1 

Outcome Model
1
 Model

2
 Model

3
 

 Dev Exp. P Dev Exp. P Dev Exp. P 

Triglycerides (mg/dL) 3.7% 0.11 5.7% 0.24 11.6% 0.07 

Total Cholesterol (mg/dL) 7.3% 0.002 8.0% 0.003 9.1% 0.01 

LDL Cholesterol (mg/dL) 6.2% 0.08 6.8% 0.09 7.8% 0.14 

HDL Cholesterol (mg/dL) 1.3% 0.01 2.4% 0.03 14.8% <0.001 

Glucose (mg/dL) 8.7% 0.12 8.7% 0.12 12.9% 0.12 

Insulin (uU/mL) 1.3% 0.66 1.3% 0.66 33.2% 0.18 

OGTT (mg/dL) 15.6% 0.68 15.6% 0.68 21.2% 0.75 

HbA1c (%) 12.0% 0.57 12.0% 0.57 16.4% 0.50 

Systolic Blood Pressure (mm/Hg) 13.8% 0.02 14.2% 0.03 15.3% 0.02 

Diastolic Blood Pressure (mm/Hg) 11.5% 0.04 11.6% 0.03 12.5% 0.07 

Body Fat (%) 4.8% 0.22 5.1% 0.21 6.0% 0.35 
1P-value reflects the level of significance for macronutrients as a three-dimensional smooth term for triglycerides (n = 7,162), total 

cholesterol (n = 13,540), Low-density lipoprotein (LDL) cholesterol (n = 6,790); high-density lipoprotein (HDL) cholesterol (n = 

14,613); systolic blood pressure (n = 14,962); diastolic blood pressure (n = 14,891); body fat percentage (n = 1,722); glucose (n = 7,215); 

insulin (n = 7,094); oral glucose tolerance test (OGTT; n = 3,721); hemoglobin A1C (HbA1c; n = 11,322). Percentage of deviance 

explained (Dev Exp.) represents is shown for the entire model. Body fat percentage was not adjusted for BMI in Model3. 

 

Model1: Adjusted for Age, Household Income 

Model2: Adjustments as per model 1 + Race/Ethnicity + Education Level  

Model3: Adjustments as per model 2 + Smoking + Alcohol Intake + Physical Activity + BMI + Healthy Eating Index
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Supplemental Table 3. Associations between Macronutrient Composition and Cardiometabolic Health for 

Females1 

Outcome Model
1
 Model

2
 Model

3
 

 Dev Exp. P Dev Exp. P Dev Exp. P 

Triglycerides (mg/dL) 6.2% 0.008 9.3% 0.009 15.2% <0.001 

Total Cholesterol (mg/dL) 6.7% 0.70 6.9% 0.72 8.0% 0.77 

LDL Cholesterol (mg/dL) 4.7% 0.34 4.8% 0.34 6.2% 0.45 

HDL Cholesterol (mg/dL) 4.0% 0.002 5.2% 0.007 14.4% <0.001 

Glucose (mg/dL) 13.8% 0.20 14.2% 0.20 18.9% 0.24 

Insulin (uU/mL) 2.6% 0.28 3.2% 0.39 32.0% 0.47 

OGTT (mg/dL) 16.2% 0.02 16.9% 0.03 22.6% 0.07 

HbA1c (%) 17.6% 0.60 18.0% 0.58 22.4% 0.64 

Systolic Blood Pressure (mm/Hg) 35.4% <0.001 35.8% <0.001 37.5% <0.001 

Diastolic Blood Pressure (mm/Hg) 9.4% 0.002 9.8% <0.001 10.2% 0.001 

Body Fat (%) 2.6% 0.75 2.6% 0.75 5.0% 0.71 
1P-value reflects the level of significance for macronutrients as a three-dimensional smooth term for triglycerides (n = 7,925), total 

cholesterol (n = 15,028), Low-density lipoprotein (LDL) cholesterol (n = 7,643); high-density lipoprotein (HDL) cholesterol (n = 

16,100); systolic blood pressure (n = 16,355); diastolic blood pressure (n = 16,259); body fat percentage (n = 1,935); glucose (n = 8,026); 

insulin (n = 7,836); oral glucose tolerance test (OGTT; n = 3,783); hemoglobin A1C (HbA1c; n = 12,077). Percentage of deviance 

explained (Dev Exp.) represents is shown for the entire model. Body fat percentage was not adjusted for BMI in Model3. 

 

Model1: Adjusted for Age, Household Income 

Model2: Adjustments as per model 1 + Race/Ethnicity + Education Level  

Model3: Adjustments as per model 2 + Smoking + Alcohol Intake + Physical Activity + BMI + Healthy Eating Index



Appendix A: Supplementary Files for Chapter 5 

242 

Supplemental Table 4. Associations between Macronutrient Composition and Cardiometabolic Health: 

Cardiometabolic Sensitivity1 

Outcome Model
1
 Model

2
 Model

3
 

 Dev Exp. P Dev Exp. P Dev Exp. P 

Triglycerides (mg/dL) 4.5% <0.001 7.1% 0.007 13.7% 0.002 

Total Cholesterol (mg/dL) 10.1% 0.78 10.4% 0.81 12.4% 0.85 

LDL Cholesterol (mg/dL) 8.9% 0.10 9.1% 0.10 11.5% 0.16 

HDL Cholesterol (mg/dL) 13.1% 0.02 14.2% 0.06 24.2% <0.001 

Glucose (mg/dL) 13.1% 0.57 13.6% 0.53 17.9% 0.50 

Insulin (uU/mL) 1.0% 0.61 2.1% 0.72 33.8% 0.08 

OGTT (mg/dL) 12.7% 0.03 13.3% 0.03 19.3% 0.07 

HbA1c (%) 12.6% 0.35 13.1% 0.33 17.2% 0.24 

Systolic Blood Pressure (mm/Hg) 26.7% <0.001 27.1% <0.001 30.3% <0.001 

Diastolic Blood Pressure (mm/Hg) 12.5% 0.003 12.9% 0.002 14.3% 0.002 

Body Fat (%) 43.0% 0.23 43.1% 0.21 43.7% 0.48 
1P-value reflects the level of significance for macronutrients as a three-dimensional smooth term for triglycerides (n = 9,682), total 

cholesterol (n = 18,026), Low-density lipoprotein (LDL) cholesterol (n = 9,315); high-density lipoprotein (HDL) cholesterol (n = 

19,611); systolic blood pressure (n = 19,893); diastolic blood pressure (n = 19,830); body fat percentage (n = 3,291); glucose (n = 9,765); 

insulin (n = 9,602); oral glucose tolerance test (OGTT; n = 5,239); hemoglobin A1C (HbA1c; n = 14,654). Percentage of deviance 

explained (Dev Exp.) represents is shown for the entire model. Body fat percentage was not adjusted for BMI in Model3. 

 

Model1: Adjusted for Age, Sex, Household Income 

Model2: Adjustments as per model 1 + Race/Ethnicity + Education Level  

Model3: Adjustments as per model 2 + Smoking + Alcohol Intake + Physical Activity + BMI + Healthy Eating Index 
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Supplemental Table 5. Associations between Macronutrient Composition and Cardiometabolic Health: 

Pregnancy Sensitivity1 

Outcome Model
1
 Model

2
 Model

3
 

 Dev Exp. P Dev Exp. P Dev Exp. P 

Triglycerides (mg/dL) 10.1% 0.07 12.9% 0.17 17.7% 0.03 

Total Cholesterol (mg/dL) 10.4% 0.64 10.5% 0.63 11.4% 0.77 

LDL Cholesterol (mg/dL) 5.7% 0.73 5.8% 0.74 7.0% 0.82 

HDL Cholesterol (mg/dL) 4.7% 0.005 6.2% 0.01 16.8% <0.001 

Glucose (mg/dL) 11.2% 0.28 11.7% 0.30 16.7% 0.37 

Insulin (uU/mL) 2.8 0.18 3.4% 0.29 32.1% 0.36 

OGTT (mg/dL) 16.3% 0.02 16.9% 0.03 22.6% 0.07 

HbA1c (%) 15.8% 0.59 16.3% 0.57 21.1% 0.67 

Systolic Blood Pressure (mm/Hg) 33.9% 0.002 34.2% 0.003 35.8% <0.001 

Diastolic Blood Pressure (mm/Hg) 8.7% 0.02 9.0% 0.007 9.3% 0.01 

Body Fat (%) 2.6% 0.75 2.6% 0.75 5.0% 0.71 
1P-value reflects the level of significance for macronutrients as a three-dimensional smooth term for triglycerides (n = 7,456), total 

cholesterol (n = 14,123), Low-density lipoprotein (LDL) cholesterol (n = 7,206); high-density lipoprotein (HDL) cholesterol (n = 

15,178); systolic blood pressure (n = 15,410); diastolic blood pressure (n = 15,322); body fat percentage (n = 1,935); glucose (n = 7,553); 

insulin (n = 7,367); oral glucose tolerance test (OGTT; n = 3,764); hemoglobin A1C (HbA1c; n = 11,595). Percentage of deviance 

explained (Dev Exp.) represents is shown for the entire model. Body fat percentage was not adjusted for BMI in Model3. 

 

Model1: Adjusted for Age, Household Income 

Model2: Adjustments as per model 1 + Race/Ethnicity + Education Level  

Model3: Adjustments as per model 2 + Smoking + Alcohol Intake + Physical Activity + BMI + Healthy Eating Index 
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Supplemental Table 6. Associations between Macronutrient Composition and Cardiometabolic Health: Dietary 

Recall Sensitivity Including Only Individuals with Two Completed 24-hour Recalls1 

Outcome Model
1
 Model

2
 Model

3
 

 Dev Exp. P Dev Exp. P Dev Exp. P 

Triglycerides (mg/dL) 4.4% 0.75 6.5% 0.66 12.8% 0.48 

Total Cholesterol (mg/dL) 6.0% 0.81 6.3% 0.79 7.4% 0.79 

LDL Cholesterol (mg/dL) 4.7% 0.28 4.9% 0.27 5.9% 0.22 

HDL Cholesterol (mg/dL) 12.4% 0.56 13.2% 0.52 23.4% 0.63 

Glucose (mg/dL) 12.3% 0.13 12.9% 0.16 12.9% 0.16 

Insulin (uU/mL) 1.9% 0.60 2.2% 0.58 2.2% 0.58 

OGTT (mg/dL) 15.7% 0.09 16.3% 0.12 22.0% 0.32 

HbA1c (%) 14.6% 0.23 15.1% 0.27 15.1% 0.27 

Systolic Blood Pressure (mm/Hg) 22.1% 0.47 22.6% 0.45 22.6% 0.45 

Diastolic Blood Pressure (mm/Hg) 11.4% 0.35 11.6% 0.30 11.6% 0.30 

Body Fat (%) 44.9% 0.80 45.0% 0.80 − − 
1P-value reflects the level of significance for macronutrients as a three-dimensional smooth term for triglycerides (n = 9,420), total 

cholesterol (n = 17,537), Low-density lipoprotein (LDL) cholesterol (n = 9,235); high-density lipoprotein (HDL) cholesterol (n = 

19,394); systolic blood pressure (n = 19,729); diastolic blood pressure (n = 0.35); body fat percentage (n = 746); glucose (n = 9,496); 

insulin (n = 9,304); oral glucose tolerance test (OGTT; n = 6,527); hemoglobin A1C (HbA1c; n = 19,585). Percentage of deviance 

explained (Dev Exp.) represents is shown for the entire model. Body fat percentage was not sufficiently powered in Model3. 

 

Model1: Adjusted for Age, Sex, Household Income 

Model2: Adjustments as per model 1 + Race/Ethnicity + Education Level  

Model3: Adjustments as per model 2 + Smoking + Alcohol Intake + Physical Activity + BMI + Healthy Eating Index 
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Supplemental Figure 1. Participant Flow Chart.   
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Supplemental Figure 2. Unadjusted Macronutrient Composition and Telomere Length. The mixture triangle shows the model 

predictions of log-transformed telomere length for the range of macronutrient percentages in this dataset. The figures show the 

predictions using the 25th, 50th, and 75th percentile of caloric intake. The x and y-axis show protein and carbohydrate respectively. 

Percentage of fat can be inferred as decreasing moving away from the origin, such that each point on the triangle can be summed to 

equal 100%. Response values are coloured such that warm colours show a higher telomere length and cooler colours show a lower 

telomere length. Response surfaces shown are unadjusted.
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Supplemental Figure 3. Absolute Intake of Macronutrients and Telomere Length. Response values show the predicted telomere 

length for the absolute intake of macronutrients (kcal/day). The x and y-axis represent two macronutrient exposures sliced through the 

third macronutrient intake shown at the top of each figure. Response values are coloured such that warm colours show a higher telomere 

length and cooler colours show a lower telomere length. Response surfaces were adjusted for age, sex, diet quality, race/ethnicity, 

education, household income, physical activity, smoking, alcohol intake, and BMI. 
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Supplementary Figure 4. Macronutrient Composition and Telomere Length. The mixture triangle shows the model predictions of 

telomere length ratio (telomere/standard) for the range of macronutrient percentages in this dataset. The figures show the predictions 

using the 25th, 50th, and 75th percentile of the Healthy Eating Index. The x and y-axis show protein and carbohydrate respectively. 

Percentage of fat can be inferred as decreasing moving away from the origin, such that each point on the triangle can be summed to 

equal 100%. Response values are coloured such that warm colours show a higher telomere length and cooler colours show a lower 

telomere length. Response surfaces were adjusted for age, sex, diet quality, race/ethnicity, education, household income, physical 

activity, smoking, alcohol intake, and BMI.
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Supplementary Table 1. Generalised Additive Models for Individual Dietary Macronutrients and Telomere Length 

 Model3 

Macronutrients edf Ref.df FS P value Dev Exp Scale 

Protein 1.00 1.00 1.00 0.32 17.6% 0.05 

Carbohydrate 2.06 2.62 2.53 0.05 17.8% 0.05 

Fat 1.89 2.39 1.83 0.13 17.7% 0.05 

Models 1-3 sequentially adjust for various covariates. Each cell reflects the P value for each individual macronutrient as a smooth term 

in a generalised additive model. The percentage of deviance explained by the entire model (Dev Exp) is shown in addition to the Akaike 

Information Criterion (AIC) which acts as a measure for model comparison. Models were adjusted for age, sex, diet quality, 

race/ethnicity, education, household income, physical activity, smoking, alcohol intake, and BMI. 
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Supplemental Table 2. Generalised Additive Model1 Coefficients for Macronutrient Intake and Telomere Length 

Model edf Ref.df FS P value Dev Exp Scale 

Macronutrients − − − − 16.4% 0.05 

s(Protein, Carbohydrate, Fat) 7.00 7.00 2.49 0.01 − − 

Age Est: -0.12 SE: 0.004 Z: -26.12 <0.001 − − 

Sex Est: 0.03 SE: 0.008 Z: 3.33 <0.001 − − 

Household Income 4.88 5.93 4.27 <0.001 − − 

Healthy Eating Index 1.00 1.00 1.14 0.29 − − 

Model1 outputs for associations of macronutrient intake with log transformed telomere length after adjustment for age, sex, household 

income, and the Healthy Eating Index are shown above. Effective degrees of freedom (edf); reference degrees of freedom (Ref.df); F 

statistic (FS); deviance explained (Dev Exp); estimate (Est); standard error (SE); Z score (Z).
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Supplemental Table 3. Generalised Additive Model2 Coefficients for Macronutrient Intake and Telomere Length 

Model edf Ref.df FS P value Dev Exp Scale 

Macronutrients − − − − 17.2% 0.05 

s(Protein, Carbohydrate, Fat) 7.00 7.00 2.48 0.02 − − 

Age Est: -0.12 SE: 0.004 Z: -26.93 <0.001 − − 

Sex Est: 0.02 SE: 0.008 Z: 3.09 0.002 − − 

Household Income 4.55 5.56 1.80 0.11 − − 

Healthy Eating Index 1.00 1.00 1.78 0.19 − − 

Race/Ethnicity Est: 0.02 SE: 0.003 Z: 5.23 <0.001 − − 

Education Est: 0.01 SE: 0.005 Z: 2.19 0.03 − − 

Model2 outputs for associations of macronutrient intake with log transformed telomere length after adjustment for age, sex, household 

income, Healthy Eating Index, race/ethnicity, and education are shown above. Effective degrees of freedom (edf); reference degrees of 

freedom (Ref.df); F statistic (FS); deviance explained (Dev Exp); estimate (Est); standard error (SE); Z score (Z).
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Supplemental Table 4. Generalised Additive Model3 Coefficients for Macronutrient Intake and Telomere Length 

Model edf Ref.df FS P value Dev Exp Scale 

Macronutrients − − − − 17.6% 0.05 

s(Protein, Carbohydrate, Fat) 7.00 7.00 2.34 0.02 − − 

Age Est: -0.11 SE: 0.005 Z: -25.19 <0.001 − − 

Sex Est: 0.02 SE: 0.008 Z: 3.11 0.002 − − 

Household Income 4.52 5.52 1.71 0.13 − − 

Healthy Eating Index 1.00 1.00 1.25 0.26 − − 

Race/Ethnicity Est: 0.02 SE: 0.003 Z: 5.02 <0.001 − − 

Education Est: 0.01 SE: 0.005 Z: 2.18 0.03 − − 

Physical Activity  2.87 3.63 1.70 0.18 − − 

BMI 1.00 1.00 7.46 0.006 − − 

Smoking Est: 0.01 SE: 0.006 Z: 1.87 0.06 − − 

Alcohol Est: -0.002 SE: 0.007 Z: -0.28 0.78 − − 

Model3 outputs for associations of macronutrient intake with log transformed telomere length after adjustment for age, sex, household 

income, Healthy Eating Index, race/ethnicity, education, physical activity, BMI, smoking, and alcohol are shown above. Effective 

degrees of freedom (edf); reference degrees of freedom (Ref.df); F statistic (FS); deviance explained (Dev Exp); estimate (Est); standard 

error (SE); Z score (Z). 
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Appendix C: Supplementary Files for Chapter 9 
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Supplementary Figure 1. Participant Flow Chart.  
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Supplementary Figure 2. Absolute Fat and Carbohydrate Intake, Healthy Plant-Based Diet Quality, and Breast Cancer Risk. Response 

values are coloured such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. The x and y-axis 

represent two macronutrient exposures sliced through the median protein intake made at a specified plant-based diet score shown at the top of each 

figure. Risk scores were calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer event will 

occur. Response surfaces were adjusted for physical activity, educational level, smoking status, family history of breast cancer, age at menarche, 

age at first childbirth, ever breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography 

in the last follow-up cycle, BMI, alcohol intake, and birth cohort.
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Supplementary Figure 3. Absolute Fat and Protein Intake, Healthy Plant-Based Diet Quality, and Breast Cancer Risk. Response values are 

coloured such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. The x and y-axis represent 

two macronutrient exposures sliced through the median carbohydrate intake made at a specified plant-based diet score shown at the top of each 

figure. Risk scores were calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer event will 

occur. Response surfaces were adjusted for physical activity, educational level, smoking status, family history of breast cancer, age at menarche, 

age at first childbirth, ever breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography 

in the last follow-up cycle, BMI, alcohol intake, and birth cohort.
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Supplementary Figure 4. Absolute Carbohydrate and Protein Intake, Healthy Plant-Based Diet Quality, and Breast Cancer Risk. Response 

values are coloured such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. The x and y-axis 

represent two macronutrient exposures sliced through the median fat intake made at a specified plant-based diet score shown at the top of each 

figure. Risk scores were calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer event will 

occur. Response surfaces were adjusted for physical activity, educational level, smoking status, family history of breast cancer, age at menarche, 

age at first childbirth, ever breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography 

in the last follow-up cycle, BMI, alcohol intake, and birth cohort.
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Supplementary Figure 5. Dietary Macronutrient Composition, Unhealthy Plant-Based Diet Quality, and Breast Cancer Risk. The mixture 

triangles show the model predictions of the breast cancer risk with a significant association with macronutrient composition. Predictions were made 

for the range of macronutrient percentages in this dataset at the 25th, 50th, and 75th percentile of healthy plant-based diet index scores from left to 

right. Predictions were created at the 50th percentile of total energy of those observed at 10 percentiles above and below each quartile of uPDI (15-

35th percentile (2196 kcal), 40th-60th percentile (2071 kcal), and 65-85th (1978 kcal)). Percentage of fat can be inferred as decreasing moving away 

from the origin, such that each point on the triangle can be summed to equal 100%. Response values are coloured such that warm colours show a 

higher risk of breast cancer and cooler colours show a lower breast cancer risk. Risk scores were calculated from the survival function scores and 

can be interpreted as the percentage of risk that a breast cancer event will occur. Response surfaces were adjusted for physical activity, educational 

level, smoking status, family history of breast cancer, age at menarche, age at first childbirth, ever breastfeeding, ever use of MHT, ever use of the 

contraceptive pill, past history of benign breast disease, mammography in the last follow-up cycle, BMI, alcohol intake, and birth cohort. 
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Supplementary Figure 6. Absolute Fat and Protein Intake, Unhealthy Plant-Based Diet Quality, and Breast Cancer Risk. Response values 

are coloured such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. The x and y-axis 

represent two macronutrient exposures sliced through the median carbohydrate intake made at a specified plant-based diet score shown at the top of 

each figure. Risk scores were calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer event 

will occur. Response surfaces were adjusted for physical activity, educational level, smoking status, family history of breast cancer, age at menarche, 

age at first childbirth, ever breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography 

in the last follow-up cycle, BMI, alcohol intake, and birth cohort.
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Supplementary Figure 7. Absolute Protein and Carbohydrate Intake, Unhealthy Plant-Based Diet Quality, and Breast Cancer Risk. 

Response values are coloured such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. The x 

and y-axis represent two macronutrient exposures sliced through the median fat intake made at a specified plant-based diet score shown at the top 

of each figure. Risk scores were calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer 

event will occur. Response surfaces were adjusted for physical activity, educational level, smoking status, family history of breast cancer, age at 

menarche, age at first childbirth, ever breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign breast disease, 

mammography in the last follow-up cycle, BMI, alcohol intake, and birth cohort.
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Supplementary Figure 8. Absolute Fat and Carbohydrate Intake, Unhealthy Plant-Based Diet Quality, and Breast Cancer Risk. Response 

values are coloured such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. The x and y-axis 

represent two macronutrient exposures sliced through the median protein intake made at a specified plant-based diet score shown at the top of each 

figure. Risk scores were calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer event will 

occur. Response surfaces were adjusted for physical activity, educational level, smoking status, family history of breast cancer, age at menarche, 

age at first childbirth, ever breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography 

in the last follow-up cycle, BMI, alcohol intake, and birth cohort.
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Supplementary Figure 9. Dietary Macronutrient Composition, Plant-Based Diet Quality, and Breast Cancer Risk. The mixture 

triangles show the model predictions of the breast cancer risk with a significant association with macronutrient composition. Predictions 

were made for the range of macronutrient percentages in this dataset at the 25th, 50th, and 75th percentile of healthy plant-based diet 

index scores from left to right. Predictions were created at the 50th percentile of total energy of those observed at 10 percentiles above 

and below each quartile of PDI (15-35th percentile (2009 kcal), 40th-60th percentile (2091 kcal), and 65-85th (2140 kcal)). Percentage 

of fat can be inferred as decreasing moving away from the origin, such that each point on the triangle can be summed to equal 100%. 

Response values are coloured such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer 

risk. Risk scores were calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer 

event will occur. Response surfaces were adjusted for physical activity, educational level, smoking status, family history of breast cancer, 

age at menarche, age at first childbirth, ever breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign 

breast disease, mammography in the last follow-up cycle, BMI, alcohol intake, and birth cohort.  
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Supplementary Figure 10. Absolute Fat and Carbohydrate Intake, Plant-Based Diet Quality, and Breast Cancer Risk. Response values are 

coloured such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. The x and y-axis represent 

two macronutrient exposures sliced through the median protein intake made at a specified plant-based diet score shown at the top of each figure. 

Risk scores were calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer event will occur. 

Response surfaces were adjusted for physical activity, educational level, smoking status, family history of breast cancer, age at menarche, age at 

first childbirth, ever breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography in the 

last follow-up cycle, BMI, alcohol intake, and birth cohort.
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Supplementary Figure 11. Absolute Fat and Protein Intake, Plant-Based Diet Quality, and Breast Cancer Risk. Response values are coloured 

such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. The x and y-axis represent two 

macronutrient exposures sliced through the median carbohydrate intake made at a specified plant-based diet score shown at the top of each figure. 

Risk scores were calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer event will occur. 

Response surfaces were adjusted for physical activity, educational level, smoking status, family history of breast cancer, age at menarche, age at 

first childbirth, ever breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography in the 

last follow-up cycle, BMI, alcohol intake, and birth cohort.
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Supplementary Figure 12. Absolute Protein and Carbohydrate Intake, Plant-Based Diet Quality, and Breast Cancer Risk. Response values 

are coloured such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. The x and y-axis 

represent two macronutrient exposures sliced through the median fat intake made at a specified plant-based diet score shown at the top of each 

figure. Risk scores were calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer event will 

occur. Response surfaces were adjusted for physical activity, educational level, smoking status, family history of breast cancer, age at menarche, 

age at first childbirth, ever breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography 

in the last follow-up cycle, BMI, alcohol intake, and birth cohort.
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Supplementary Figure 13. Dietary Macronutrient Composition and Consumption of Food Groups. The mixture triangles show the model 

predictions of individual consumption of additional food groups (g/day) including eggs, nuts and legumes, fish, refined grains, and whole grains. 

The x and y-axis show protein and carbohydrate respectively. Percentage of fat can be inferred as decreasing moving away from the origin, such 

that each point on the triangle can be summed to equal 100%. Predictions were made at the 50th percentile of total energy intake of individuals in 

the 40th-60th percentile of hPDI (2035 kcal/day). 
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Supplementary Figure 14. Differences in Alcohol Intake, Dietary Macronutrient Composition, and Breast Cancer Risk for Healthy Plant-

Based Dietary Index. The mixture triangles show the model predictions of the breast cancer risk with a significant association with macronutrient 

composition. Predictions were made for the range of macronutrient percentages in this dataset specified at the 25th, 50th, or 75th percentile of alcohol 

intake (light, moderate, or heavy drinker) while holding plant-based dietary quality constant at the 50th percentile. Percentage of fat can be inferred 

as decreasing moving away from the origin, such that each point on the triangle can be summed to equal 100%. Response values are coloured such 

that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. Risk scores were calculated from the 

survival function scores and can be interpreted as the percentage of risk that a breast cancer event will occur. Response surfaces were adjusted for 

physical activity, educational level, smoking status, family history of breast cancer, age at menarche, age at first childbirth, ever breastfeeding, ever 

use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography in the last follow-up cycle, BMI, and birth 

cohort. Predictions were created at the 50th percentile of total energy of those observed at 10 percentiles above and below each quartile of hPDI (15-

35th percentile (2173 kcal), 40-60th percentile (2035 kcal), and 65-85th (1933 kcal)).
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Supplementary Figure 15. Differences in Alcohol Intake, Dietary Macronutrient Composition, and Breast Cancer Risk for Unhealthy Plant-

Based Dietary Index. The mixture triangles show the model predictions of the breast cancer risk with a significant association with macronutrient 

composition. Predictions were made for the range of macronutrient percentages in this dataset specified at the 25th, 50th, or 75th percentile of alcohol 

intake (light, moderate, or heavy drinker) while holding plant-based dietary quality constant at the 50th percentile. Percentage of fat can be inferred 

as decreasing moving away from the origin, such that each point on the triangle can be summed to equal 100%. Response values are coloured such 

that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. Risk scores were calculated from the 

survival function scores and can be interpreted as the percentage of risk that a breast cancer event will occur. Response surfaces were adjusted for 

physical activity, educational level, smoking status, family history of breast cancer, age at menarche, age at first childbirth, ever breastfeeding, ever 

use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography in the last follow-up cycle, BMI, and birth 

cohort. Predictions were created at the 50th percentile of total energy of those observed at 10 percentiles above and below each quartile of uPDI (15-

35th percentile (2196 kcal), 40-60th percentile (2071 kcal), and 65-85th (1978 kcal)).
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Supplementary Figure 16. Differences in Alcohol Intake, Dietary Macronutrient Composition, and Breast Cancer Risk for Plant-Based 

Dietary Index. The mixture triangles show the model predictions of the breast cancer risk with a significant association with macronutrient 

composition. Predictions were made for the range of macronutrient percentages in this dataset specified at the 25th, 50th, or 75th percentile of alcohol 

intake (light, moderate, or heavy drinker) while holding plant-based dietary quality constant at the 50th percentile. Percentage of fat can be inferred 

as decreasing moving away from the origin, such that each point on the triangle can be summed to equal 100%. Response values are coloured such 

that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. Risk scores were calculated from the 

survival function scores and can be interpreted as the percentage of risk that a breast cancer event will occur. Response surfaces were adjusted for 

physical activity, educational level, smoking status, family history of breast cancer, age at menarche, age at first childbirth, ever breastfeeding, ever 

use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography in the last follow-up cycle, BMI, and birth 

cohort. Predictions were created at the 50th percentile of total energy of those observed at 10 percentiles above and below each quartile of PDI (15-

35th percentile (2009 kcal), 40-60th percentile (2091 kcal), and 65-85th (2140 kcal)).
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Supplementary Figure 17. Response Surfaces for Missing Hormone Receptor Status Sensitivity Analysis. The mixture triangles show the 

model predictions of the breast cancer risk with a significant association with macronutrient composition. Predictions were made for the range of 

macronutrient percentages in this dataset at the 25th, 50th, and 75th percentile of healthy plant-based diet index scores from left to right. Predictions 

were created at the 50th percentile of total energy of those observed at 10 percentiles above and below each quartile of hPDI (15-35th percentile 

(2173 kcal), 40-60th percentile (2035 kcal), and 65-85th (1933 kcal)). The x and y-axis show protein and carbohydrate respectively. Percentage of 

fat can be inferred as decreasing moving away from the origin, such that each point on the triangle can be summed to equal 100%. Response values 

are coloured such that warm colours show a higher risk of breast cancer and cooler colours show a lower breast cancer risk. Risk scores were 

calculated from the survival function scores and can be interpreted as the percentage of risk that a breast cancer event will occur. Response surfaces 

were adjusted for physical activity, educational level, smoking status, family history of breast cancer, age at menarche, age at first childbirth, ever 

breastfeeding, ever use of MHT, ever use of the contraceptive pill, past history of benign breast disease, mammography in the last follow-up cycle, 

BMI, alcohol intake, and birth cohort.
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SUPPLEMENTARY TABLES 

Supplementary Table 1. Breast Cancer Sensitivity Analysis for Diagnosis in First Five Years 

 Model 1 Model 2 Model 3 

Diet Index Dev Exp AIC P Dev Exp AIC P Dev Exp AIC P 

Healthy Plant-Based Diet Index 0.46% 65,254.01 <0.001 0.95% 64,609.18 <0.001 0.17% 64,281.39 <0.001 

Unhealthy Plant-Based Diet Index 0.53% 65,244.43 <0.001 0.98% 64,606.63 <0.001 0.22% 64,265.78 <0.001 

Plant-Based Diet Index 0.40% 65,272.25 <0.001 0.88% 64,620.38 <0.001 0.11% 64,285.41 <0.001 

Supplementary Table 1. Model outputs for associations of macronutrient intake with breast cancer with varying levels of adjustment are shown 

above. Individuals with a diagnosis of breast cancer in the first five years of follow-up were excluded from this analysis (n = 973). A significant 

macronutrient model can be interpreted such that the relationship of each macronutrient with breast cancer is dependent upon the relative intake of 

all three macronutrients. Akaike information criterion (AIC); deviance explained (Dev Exp).
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Supplementary Table 2. Breast Cancer Sensitivity Analysis for Participants with Missing Hormone Receptor Status 

 Model 1 Model 2 Model 3 

Diet Index Dev Exp AIC P Dev Exp AIC P Dev Exp AIC P 

Healthy Plant-Based Diet Index 0.74% 119120.6 <0.001 1.40% 118,696.3 <0.001 1.00% 118,338.3 <0.001 

Unhealthy Plant-Based Diet Index 0.84% 119102.2 <0.001 1.47% 118,689.1 <0.001 1.07% 118,322.3 <0.001 

Plant-Based Diet Index 0.81% 119127.2 <0.001 1.47% 118,699.8 <0.001 1.06% 118,329.2 <0.001 

Supplementary Table 3. Model outputs for associations of macronutrient intake with breast cancer with varying levels of adjustment are shown 

above. Individuals with missing hormone receptor status were added to the primary analysis (n = 1,309). A significant macronutrient model can be 

interpreted such that the relationship of each macronutrient with breast cancer is dependent upon the relative intake of all three macronutrients. 

Akaike information criterion (AIC); deviance explained (Dev Exp). 
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The Impact of Nutrition on Epigenetic Aging in Early Life 

Epigenetic Aging in Early Life: Role of Maternal and Early Childhood Nutrition 
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Abstract
Purpose of Review Early life presents a pivotal period during which nutritional exposures are more likely to cause epigenetic 
modifications, which may impact an individual’s health during adulthood. This article reviews the current evidence regarding 
maternal and early childhood nutritional exposures and their role in epigenetic aging.
Recent Findings Maternal and early life consumption of diets higher in fiber, antioxidants, polyphenols, B vitamins, vitamin 
D, and ω-3 fatty acids is associated with slower epigenetic aging. Conversely, diets higher in glycemic load, fat, saturated 
fat, and ω-6 fatty acids demonstrate a positive association with epigenetic aging.
Summary Maternal and early life nutrition directly and indirectly influences epigenetic aging via changes in one-carbon 
metabolism, cardiometabolic health, and the microbiome. Clinical trials are warranted to determine the specific foods, dietary 
patterns, and dietary supplements that will normalize or lower epigenetic aging across the life course.

Keywords Maternal diet · Epigenetics · Early life · Childhood nutrition · Aging · Developmental Origins of Health and 
Disease (DOHaD)

Introduction

The Barker hypothesis, now more frequently referred to as 
the Developmental Origins of Health and Disease (DOHaD), 
originated from epidemiological evidence published in the 
1980s demonstrating a clear inverse association of new-
born birth weight with death from cardiovascular diseases 
in adulthood [1]. In the three and a half decades since the 
publication of these initial observations, research in this 
field has generated a large body of evidence regarding the 

long-term effects of early life exposures, including the role 
of maternal diet in fetal development and health and disease 
in later life [2]. Fetal epigenetic modifications may play an 
important role as a mechanism that links maternal nutrition 
with both fetal development and long-term health outcomes 
for the affected fetus.

Epigenetics involves a wide range of heritable biologi-
cal changes that alter gene expression or activity without 
directly manipulating the DNA sequence [3]. Fundamental 
epigenetic changes include histone modifications and DNA 
methylation [4]. Histone modifications typically involve 
the addition of an acetyl unit by histone acetyltransferases, 
which can lead to post-transcriptional changes [4]. DNA 
methylation often occurs at regions of DNA where cytosine 
is immediately followed by guanine, known as CpG sites 
(Fig. 1) [5]. There are numerous CpG sites that when either 
hyper or hypo-methylated can affect gene expression. Indi-
vidually or collectively, the methylation status of many of 
these sites is associated with markers of metabolic health 
[6]. Nutritional exposures play a vital role in regulating epi-
genetic processes by directly providing necessary substrates 
and indirectly by changes in metabolism. Fetal and early life 
presents a period where the human epigenome has a high 
degree of plasticity and is susceptible to external exposures. 
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As such, maternal and early childhood nutrition is likely an 
important exposure driving epigenetic programming in the 
young [2].

A growing body of literature focuses on epigenetic age 
derived from epigenetic “clocks,” equations derived from the 
methylation status of a number of specific age-related CpG 
sites [7]. In general, epigenetic age acceleration reflects epi-
genetic age above or below chronological age, and as such is a 
measure of biological aging. A recent review concluded that 
epigenetic clocks provide a better indicator of biological aging 
than other markers, including proteomic predictors, transcrip-
tomic predictors, telomere length, metabolomic predictors, 
and biomarkers [8]. Poor metabolic health, including oxida-
tive stress [9] and chronic inflammation [10], is an important 
risk factor for epigenetic age acceleration [11]. Importantly, 
epigenetic aging is associated with future incidence of cardio-
vascular disease [12], cancer [13], diabetes [14], and all-cause 

mortality [15], independent of chronological aging. These epi-
genetic clocks are now being applied to study the influences 
of nutrition, lifestyle, and environmental factors on the aging 
process [16].

This narrative review identifies, highlights, and discusses 
the most recent evidence and key concepts relating to mater-
nal and early life nutrition and epigenetic aging, and proposes 
future research priorities.

Findings

Maternal Under‑ and Overnutrition

Epidemiological data from extreme maternal dietary 
restriction, such as the Dutch Hunger famine [17], provide 
proof-of-principle that severe maternal caloric restriction 

Fig. 1  DNA methylation
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is associated with a higher incidence of metabolic disor-
ders in the offspring. This may be partially related to the 
inadequacy of macro- and micronutrients (Fig. 2) which 
provide substrates that are important for healthy fetal 
development, including protein, folate, choline, betaine, 
vitamin  B12, vitamin  B6, vitamin  B2, antioxidants, and bio-
active compounds. Protein malnutrition has been widely 
studied given the role of amino acids in the healthy devel-
opment of the vital organs. Animal models show decreased 
pancreatic β-cell mass in the offspring of pregnant dams 
consuming a low-protein diet [18], which is sustained into 
adulthood in addition to hyperinsulinemia, and reduced 
insulin signaling protein expression [19].

These nutrients not only play a role in development 
but also are needed for the regulation of oxidative stress, 
inflammation, cellular division, and an adequate supply of 
the one-carbon units required for DNA methylation [20]. 
Maternal undernutrition may affect the fetal epigenome 
through reduced intake and bioavailability of key micro-
nutrients involved in the one-carbon metabolism such as 
folate, methionine, choline, betaine, vitamin  B12, vitamin 
 B6, vitamin  B2, antioxidants, and other bioactive com-
pounds [21, 22], discussed in detail later in this review.

At the other end of the spectrum, maternal overnutri-
tion also appears to contribute to epigenetic modifications. 
Extreme maternal overnutrition can lead to a variety of 
maternal metabolic factors, such as obesity, hyperlipi-
demia, poor glycemic control, hypertension, and low-grade 
inflammation, all of which may modify the offspring’s epi-
genome [23–25]. For example, in a recent meta-analysis 
of 19 cohorts comprising 9,340 mother-newborn pairs, 
maternal pre-pregnancy body mass index was associated 

with DNA methylation variation at 104 CpG sites [26]. 
However, maternal obesity and excessive gestational 
weight gain appear to have mixed associations with epi-
genetic aging of the offspring [27, 28••, 29], possibly due 
to differences in newborn body weight [30].

Impaired Fetal Growth

Maternal nutrition provides the fetal nutrient supply neces-
sary for growth and development during pregnancy. Both 
under- and overnutrition can disrupt nutrient supply causing 
impaired fetal development [31]. However, placental func-
tion and development are likely more substantial contribu-
tors to fetal growth for the majority of births in developed 
nations where severe undernutrition is rare [32]. New-
borns who experienced impaired growth often show early  
signs of disrupted glucose metabolism, hypothalamus– 
pituitary–adrenal axis, and vascular function, predispos-
ing them to cardiovascular and metabolic disorders in later 
life [33]. Whether birth weight itself is associated with epi-
genetic age acceleration is less clear. Recent research has 
demonstrated that newborns of a preeclamptic pregnancy 
[34] or low birth weight [35, 36] show accelerated placental 
epigenetic aging. In contrast, Phang et al. found that nei-
ther birth weight nor body fatness is associated with epige-
netic age acceleration in newborns [28••]. In a small study, 
30–35-year-old males who had been born with extremely 
low birth weight had accelerated epigenetic aging compared 
to their peers born with normal birth weight [37]. Taken 
together, these associations suggest links between maternal– 
fetal wellbeing and offspring epigenetic aging, although the 
finer detail of these links requires further description.

Fig. 2  Nutritional characteristics during pregnancy and early life that are linked with increased epigenetic aging in the offspring
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Maternal Dietary Macronutrients

Dietary macronutrients, carbohydrate, protein, and fat are 
the principal sources of dietary energy. Macronutrients may 
influence health and disease outcomes through regulation of 
energy intake, but there is a large body of evidence indicat-
ing their associations with disease outcomes independent of 
caloric intake (i.e., within the context of an isocaloric diet). 
The role of maternal macronutrient intake and offspring epi-
genetic aging has been increasingly explored.

Carbohydrates There is an inverse association between 
maternal carbohydrate intake and epigenetic age accelera-
tion in newborns [28••]. However, carbohydrates are derived 
from various sources and can differ in quality. Glycemic 
index (GI), a measure of the glucose-raising effect of foods, is 
considered a marker of carbohydrate quality. Secondary and 
post hoc analyses of several recent trials of low GI diets dur-
ing pregnancy provide some support for a detrimental effect 
of GI on epigenetic modifications related to insulin regulation 
in both placental [38] and newborn tissues [39]. However, 
the relationship with carbohydrates remains complex and 
difficult to isolate given that carbohydrate is typically the 
primary source of dietary energy, and as such, the intake of 
many micronutrients is associated with carbohydrate intake. 
Similarly, other nutritional elements such as fiber often co-
inhabit with minimally processed carbohydrate-rich foods.

Protein Maternal protein intake does not appear to be mean-
ingfully associated with offspring epigenetic aging [28••], 
although evidence remains limited. In animal models, inad-
equate maternal protein intake worsens metabolic and car-
diovascular health outcomes [40]. During pregnancy, low 
dietary protein may lead to an insufficient supply of amino 
acids necessary for one-carbon metabolism (i.e., methio-
nine), which is integral to many epigenetic processes. Other 
evidence points toward the role of protein-restricted preg-
nancies in regulating peroxisome proliferator–activated 
receptors (PPARs) [41]. PPARs are nuclear receptor proteins 
involved in the regulation of gene expression by conducting 
an essential role in many cellular processes including cell 
differentiation, inflammation, and metabolism [42]. In ani-
mal models with protein-restricted pregnancies, offspring 
appear to have reduced expression of PPAR-α, which has 
been implicated in the maintenance of energy metabolism 
and oxidative stress, potentially contributing to the aging 
process [43].

Fat A maternal high-fat diet is positively associated with 
newborn epigenetic aging [28••]. It has been proposed that 
this may be at least partially related to elevated serum lipid 
levels, insulin resistance, oxidative stress, and systemic 
inflammation during pregnancy [44], and involve the gut 

microbiome. For example, a maternal high-fat diet dur-
ing pregnancy disrupts the maternal gut microbiome and 
increases lipid accumulation in the offspring’s liver [45]. 
These changes to the maternal gut microbiome could be 
transgenerational and persist in the offspring beyond the 
immediate postnatal period, with a maternal high-fat diet 
leading to infant microbial dysbiosis up to 4–6 weeks after 
birth in animal models [46]. These changes in microbiome 
health could lead to higher offspring exposure to toxins and 
pro-inflammatory markers involved in epigenetic aging.

Maternal Dietary Fatty Acids

Specific dietary fatty acids of varying chain length and 
saturation exhibit different associations with offspring epi-
genetic modifications [47]. Maternal dietary saturated fat, 
ω-6 polyunsaturated fat, and trans-saturated fat have positive 
associations with age-related inflammatory markers, lipid 
metabolism, and disrupted cellular functionality [47]. Con-
versely, ω-3 polyunsaturated fatty acid supplementation has 
been widely recognized for its anti-inflammatory and epige-
netic effects [48]. These studies of epigenetic related mecha-
nisms support a recent study of maternal diet and offspring 
epigenetic age by Phang et al., in which there was a strong 
positive association of maternal saturated fat and palmitoleic 
acid intake with epigenetic aging in the newborn offspring, 
while ω-3 polyunsaturated fat intake was inversely associ-
ated with newborn epigenetic aging [28••]. Koemel et al. 
demonstrated that the composition of maternal dietary fatty 
acids is associated with newborn epigenetic aging such that 
the association of each fatty acid class with epigenetic age 
acceleration is dependent upon the levels of other fatty acids 
[49•]. For example, ω-3 polyunsaturated fats appear to only 
provide a protective effect against epigenetic aging in off-
spring when maternal intake of saturated fat or palmitoleic 
acid is also high. This interaction might be due to the differ-
ential epigenetic effects of specific fatty acids that could not 
be revealed when assessed individually. These findings sug-
gest that associations of maternal fatty acids with offspring 
epigenetics may be more complex than previously described.

The Role of Micronutrients and Fiber

Micronutrients play a crucial role in fetal development and 
maintaining metabolic homeostasis during pregnancy. In the 
context of epigenetic modifications, micronutrients involved 
in one-carbon metabolism such as folate, choline, betaine, 
and methionine act as methyl donors, while vitamin  B12, vita-
min  B6, and vitamin  B2 act as cofactors involved in the trans-
fer of methyl units [50]. Maternal dietary deficiency in these 
nutrients can result in changes to DNA methylation in the 
offspring [51, 52], and epigenetic aging. Animal studies show 
that supplementation with folate or  B12 can reduce epigenetic 
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aging in adults [53]. Within the context of maternal diet, a 
mother’s deficiency in these methyl donors can lead to low 
levels of one-carbon units needed for DNA methylation and 
elevated detrimental byproducts of disrupted one-carbon 
metabolism such as homocysteine which are associated with 
accelerated epigenetic aging in offspring [54].

Vitamin D is widely accepted to play a role in the devel-
opment of human tissues, gene expression [55], and global 
DNA methylation [56]. Evidence from an observational 
study in humans supports an inverse association between 
maternal vitamin D consumption and epigenetic aging of 
newborns [28••]. In a recent post hoc analysis of a small ran-
domized trial of ninety-two multi-ethnic pregnant women, 
offspring epigenetic age acceleration was not affected by 
4000 IU/day of vitamin D3 compared to placebo [57]. There 
was, however, a beneficial effect of the vitamin D3 supple-
mentation, evidenced by reduced offspring epigenetic aging, 
in the offspring of African American women when assessed 
by both Knight’s epigenetic clock (β =  −0.89, p = 0.047) and 
Bohlin’s epigenetic clock (β =  −0.71, p = 0.005). Confirma-
tion of these putative protective effects of maternal vita-
min D3 supplementation as prespecified outcomes in larger 
experimental trials should be considered a priority.

Other bioactive compounds such as antioxidants and 
polyphenols play a crucial role in reducing systemic inflam-
mation and maintaining reactive oxygen species homeo-
stasis [22]. Experimental animal models demonstrate that 
supplementation of polyphenol compounds can affect the 
regulation of DNA methylation by altering the activity of 
non-coding RNAs, histone deacetylases, and DNA methyl-
transferase [58]. In animal models, supplementation of bio-
active polyphenol-rich food components, such as resveratrol, 
has been shown to partially protect against the deleterious 
epigenetic metabolic programming of mothers consuming a 
low-protein diet [59]. Nonetheless, no studies have thus far 
explored the associations of maternal intake of these bioac-
tive components on offspring epigenetic aging in humans.

Maternal dietary fiber also has a beneficial association 
with offspring metabolic health [60]. This may at least par-
tially be mediated by the vital role of fiber in the mainte-
nance and colonization of the maternal microbiome, which 
in turn contributes to the colonization of the offspring 
microbiome. Maternal microbial health during pregnancy 
is a known regulator of inflammation, immune function, 
and the production of short-chain fatty acids [61]. Specific 
short-chain fatty acids such as butyrate can directly influ-
ence epigenetic modifications by acting as a histone dea-
cetylase inhibitor [62]. In support of this, a recent trial of 
a probiotic intervention during pregnancy found decreased 
DNA methylation in obesity and weight gain–related genes 
in both the mother and child [63]. Other evidence from ani-
mal models points toward the metabolic health impact of 
prenatal colonization such as improved glycemic control, 

reduced inflammation, and lower risk of obesity [64, 65]. 
That said, despite increasing discussion of a link between 
maternal microbiome health and newborn epigenetic aging 
[66], limited research has directly informed this topic.

Foods, Dietary Patterns, and Dietary Quality

Food-level analyses, dietary patterns, and measures of die-
tary quality present alternative frameworks through which 
to assess nutritional characteristics. In adults, food groups 
such as fruits and nuts, and foods rich in whole grains, are 
inversely associated with epigenetic age acceleration [67]. 
In contrast, red meat consumption is directly associated with 
epigenetic age acceleration. From a more encompassing 
dietary pattern perspective, adherence to more elements of 
the Dietary Approaches to Stop Hypertension (DASH) diet 
was associated with reduced epigenetic aging [68]. Higher 
quality diets are more likely to provide adequate amounts 
of micronutrients, antioxidants, and polyphenols while con-
comitantly limiting potentially metabolically deleterious 
dietary components such as saturated fat and refined sugars. 
As such, determining whether maternal dietary patterns are 
associated with offspring epigenetic age acceleration, and 
whether any such associations are independent of specific 
nutrient characteristics, should be considered a priority.

Neonatal Nutrition

Human breast milk or formula is the primary source of nutri-
ents for neonates and plays a vital role in the modification 
of the epigenome during infancy [69]. Longer duration of 
breastfeeding has been linked with epigenetic modification 
to obesity-related genes such as the leptin gene, consistent 
with the well-described association of breastfeeding duration 
with lower risk of obesity in later life [70]. Recently, differ-
ences in epigenome-wide changes from birth to 10 years 
were examined in those who were exclusively breastfed 
or exclusively formula-fed as infants for at least 3 months, 
with 87 CpG sites showing differences in DNA methyla-
tion [71•]. Interestingly, the exclusively breastfed neonates 
showed positive methylation for genes involved in organelle 
biogenesis (TTC30B), DNA binding transcription factors 
(SOX-1), ligase activity (RNF220), and the production of 
microRNAs (MIR658). These differences in methylation 
patterns may lead to changes in cellular functions involved in 
epigenetic regulation. However, to our knowledge, no CpG 
sites identified in this study were related to metabolic health 
or epigenetic clocks.

The difference in total caloric intake between formula and 
breastfed infants has been proposed as an essential aspect 
underlying associations of infant feeding status with longer-
term health and disease outcomes, particularly obesity-
related outcomes. However, the composition of formula and 
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breast milk may also contribute to their short and long-term 
effects on health and disease. Breast milk fatty acid composi-
tion has been examined as a possible pathway for newborn 
epigenetic modifications [72], with a focus on the maternal 
intake of long-chain ω-3 polyunsaturated fatty acids, given 
that the concentration of these fatty acids in breast milk is 
at least partially linked to maternal intake [73] and that they 
play a role in early childhood development [74]. The human 
body is unable to synthesize ω-3 fatty acids endogenously 
and, as such, is reliant on dietary intake or endogenous con-
version from shorter-chain ω-3 fatty acids for maintaining 
sufficient levels for healthy cellular and tissue function. 
Thus, the maternal diet can act as a dominant factor for 
affecting the bioavailability of these nutrients in breastfed 
infants. Other fatty acids such as ω-6 fatty acids compete 
for elongase and desaturase enzymes which can impair the 
endogenous conversion of short-chain ω-3 fatty acids to the 
long-chain ω-3 fatty acids required for healthy development 
[75]. Human studies reveal that maternal intakes of ω-6 and 
ω-3 fatty acids during lactation both directly affect fatty acid 
composition in breast milk [74]. In general, a higher ratio 
of ω-6:ω-3 fatty acids can lead to higher levels of inflamma-
tion and expression of obesity-associated genes [75]. Further 
investigation is needed to explore the association of ω-6:ω-3 
fatty acid concentration with epigenetic clocks and methyla-
tion of age-related genes in neonates.

Breastfeeding seeds the natural colonization of offspring 
gut microbiota [76]. This may relate to oligosaccharides in 
breast milk, which provide a substrate to help promote a 
healthy functioning microbiome, and more directly the limited 
quantity of microbes in breast milk [77]. The development and 
maintenance of a healthy microbiome in the neonatal period 
can shape the epigenome by producing metabolites involved 
in mediating gene expression and epigenetic processes [78]. 
However, limited evidence exists regarding the translation of 
neonatal microbial health with epigenetic aging.

There has been only one study that has directly examined 
the association of breastfeeding with early life epigenetic 
aging. Simpkin et al. studied DNA methylation profiles from 
1018 mother–child pairs in the Avon Longitudinal Study of 
Parents and Children [79], with epigenetic age measured 
at birth, 7, and 17 years of age. There were no significant 
differences in epigenetic age during childhood or adoles-
cence for those reported as breastfed. This study did not 
examine breastfeeding duration or breast milk composition, 
which may have influenced these findings and warrants more 
detailed investigation.

Breast Milk Micronutrients and Bioactive 
Components

Human breast milk also supplies the micronutrients neces-
sary for development during the neonatal period. In a recent 

systematic review of 59 observational and 43 intervention 
studies, maternal dietary intake of fat-soluble vitamins, 
including vitamin D, and water-soluble vitamins, including 
vitamin  B12, was associated with their content in breast milk 
[80]. Vitamin  B12 is an essential regulator of one-carbon 
metabolism and in utero epigenetic modifications. Post-
natal vitamin D supplementation is linked with epigenetic 
changes to gene clusters involved in cell migration and cel-
lular membrane function in human infants [81]. No studies 
have explored the relationship between maternal breast milk 
micronutrient content with epigenetic age.

Breast milk also contains various bioactive components, 
including immunoglobulins, hormones, cytokines, and anti-
inflammatory proteins such as lactoferrin [82]. These com-
ponents play an essential role in the regulation of epigenetic-
related factors such as cell growth, immune function, and 
inflammation [82]. Furthermore, differences in breast milk 
micronutrient and bioactive content by maternal diet qual-
ity may provide an additional avenue of epigenetic influ-
ence during the neonatal period. Any such effects of breast 
milk composition would be unlikely to change public health 
advice concerning breastfeeding, given that breastfeeding is 
promoted for a wide variety of beneficial health outcomes 
for mother and child. However, such evidence could inform 
postnatal maternal supplementation and dietary strategies to 
optimize offspring biological aging.

Early Childhood Nutrition

The NU-AGE study has demonstrated that a Mediterranean 
dietary pattern intervention was associated with reduced epi-
genetic aging in healthy adults aged 65–72 [83]. Moreover, 
interventions combining diet advice, exercise, and lifestyle 
changes have the ability to reverse epigenetic aging in healthy 
adult males aged 50–72 (n = 43) [84•]. Specifically, the dietary 
advice included consumption of liver, eggs, dark leafy greens, 
cruciferous vegetables, beets, low glycemic fruit, seeds, tea, 
prebiotics, and probiotics while avoiding added sugar, dairy, 
grains, legumes, and beans. After an 8-week intervention, the 
treatment group was associated with a 3.23-year decrease in 
epigenetic age compared to the control group.

Given this evidence that nutrition in adulthood can mod-
ify epigenetic aging, it is reasonable to propose that dietary 
nutrition in childhood, beyond infancy, may also affect epi-
genetic properties, although there is little direct evidence to 
inform as to whether this is the case. A recent study assess-
ing methyl donor and cofactor nutrient intakes during the 
first 2–3 years of life revealed no significant relationship 
with global DNA methylation at 4 years of age [85]. Con-
versely, dietary intake of methyl donors appears to be ben-
eficially associated with methylation of CpG sites linked to 
inflammation in children with asthma [86]. This variation 
in the effects of nutrient supplementation may be partially 
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explained by the wide degree of environmental, psychologi-
cal, and social exposures that vary across children, or the 
distinct differences in methylation outcomes [87, 88].

Developmental Characteristics and Epigenetic 
Aging

There are numerous causal pathways linking maternal, neo-
natal, and early life nutrition with markers of health that 
may ultimately impact epigenetic aging (Fig. 3). A recent 
study of physical development characteristics with epige-
netic aging in 1018 children revealed a positive association 
of height and fat mass during childhood with epigenetic age 
acceleration [89]. Specifically, epigenetic age acceleration 
at birth was positively associated with a higher average fat 
mass from birth to 17 years of age, and height was posi-
tively associated with epigenetic aging at age 7. In a separate 
study of adolescents, epigenetic aging is related to a higher 
body mass index, insulin resistance, and pro-inflammatory 
markers [90•]. Ultimately, these developmental characteris-
tics may help inform the potential links between epigenetic 
aging, anthropometry and development, and the risk of non-
communicable diseases later in adulthood.

Future Directions

In this review, we have outlined the emerging links between 
maternal and early life nutrition with epigenetic aging. The 
broad picture of whether epigenetic aging mechanistically 

underpins the complex intersection between maternal diet, 
fetal and infant development, and long-term risk of non-
communicable diseases remains a challenging domain. 
While there is evidence of specific nutrients in the mater-
nal diet being associated with or affecting offspring epige-
netic aging, the mechanistic links that are involved remain 
poorly described. These mechanistic links may involve 
one-carbon metabolism and the maternal gut microbiome; 
however, the intersection between maternal diet, early life 
nutrition, and both the maternal and neonatal gut microbi-
ome is complex. Several potential avenues have yet to be 
fully elucidated, including the roles of intestinal perme-
ability and microbiome dysbiosis throughout pregnancy. 
Understanding how the maternal diet-gut axis is affected by 
a range of nutrients, foods, and dietary patterns, and how 
these subsequently affect epigenetic aging, should inform 
future dietary guidelines for the young, with a focus on 
reducing biological aging to prevent non-communicable 
diseases.

Despite the relationship between maternal diet and breast 
milk composition, there is currently a dearth of informa-
tion regarding the role of maternal diet during lactation and 
offspring epigenetic aging. Specifically, research regard-
ing maternal micronutrients, antioxidants, and polyphenol 
intake as it relates to offspring epigenetic aging is greatly 
needed. This will inform any putative roles of maternal diet, 
maternal supplementation during lactation, or neonatal sup-
plementation, as plausible pathways to healthy epigenetic 
programming in high-risk populations.

Fig. 3  Schematic diagram of the proposed intersection between maternal and early life nutrition, health, and epigenetic aging as pathways to long-
term risk of non-communicable diseases
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Conclusions

Epigenetic aging in adults has a well-demonstrated relation-
ship with non-communicable diseases, cause-specific mor-
tality, and all-cause mortality. Currently, there is an apparent 
link between maternal and early life nutrition and the epige-
netic aging of the offspring, albeit based on an emerging evi-
dence base. A broad range of research is needed to explore 
these associations throughout early life development, includ-
ing the determination of causality, underlying mechanisms, 
and long-term health and disease outcomes.
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Abstract: Quantitative rankings of multiple dietary patterns for their effects on non-communicable
disease (NCD) biomarkers is lacking and would inform primary prevention strategies. Accordingly,
a network meta-analysis (NMA) was conducted to compare and rank the effects of different dietary
patterns on NCD biomarkers, and associations of dietary patterns’ underlying macronutrient com-
position with NCD biomarkers were determined by a nutritional geometry approach. Randomised
controlled trials (RCTs) were eligible for inclusion if they enrolled healthy participants, employed
food-based dietary pattern interventions without energy restriction, and reported NCD biomarker
outcomes. NCD biomarkers were included as an outcome if ≥10 trials were available. A system-
atic search of five electronic databases identified 4008 records. Sixty-eight articles from 59 RCTs
reporting lipids, glycemic, and inflammatory biomarkers were included for quantitative syntheses.
Risk-of-bias was predominantly categorized as low or having some concerns, and confidence-of-
evidence low. Relative to western habitual diet, the Mediterranean, Dietary Approaches to Stop
Hypertension (DASH), dietary guidelines-based, plant-based, and low-fat diets reduced low-density
lipoprotein cholesterol (mean difference range: −0.29 to −0.17 mmol/L), total cholesterol (−0.36 to
−0.24 mmol/L), and apolipoprotein B (−0.11 to −0.07 g/L) (all p < 0.05); the Paleo, plant-based and
dietary guidelines-based diets reduced homeostasis model assessment of insulin resistance (−0.95
to −0.35, all p < 0.05). No dietary pattern ranked consistently highest. The Paleo diet received the
highest all-outcomes-combined average Surface Under the Cumulative Ranking Curve value (67%),
followed by DASH (62%) and Mediterranean diets (57%), whereas western habitual diet was lowest
(36%). Our findings were independent of macronutrient composition, highlighting the significance of
dietary pattern-level analysis.

Keywords: systematic review; diet; biological markers; intervention trials; chronic disease; GRADE

1. Introduction
1.1. Dietary Patterns and Non-Communicable Diseases

Non-communicable diseases (NCDs), including obesity, cardiovascular diseases, dia-
betes, and cancers, are a major and ongoing burden to global health systems, accounting
for 71% of all deaths [1]. Diet is an important modifiable risk factor for NCDs. The Global
Burden of Disease study showed that nearly eight million deaths and 188 million disability
adjusted life years were attributable to dietary risk factors worldwide in 2019 alone [2].
An approach that focuses on individual nutrients, and, to a lesser extent, food groups,
fails to account for the synergistic and antagonistic effects of nutrient, phytochemical and
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antinutrient combinations within meals. An alternative approach is describing dietary
intake at the dietary pattern-level. Dietary patterns take the quality, quantity, and frequency
of dietary intake into consideration, inherently accounting for nutrient-nutrient interactions,
intercorrelations and food matrix characteristics. As such, dietary patterns provide a more
holistic indication of the net effects of dietary intake, in addition to being more relevant,
and more easily translatable, to real-world dietary intake [3].

1.2. Biomarkers of Non-Communicable Diseases

Biomarkers of NCDs can either be risk factors or reflect intermediate and/or disease
phenotypes and play an important role in understanding diet-disease relationships [4,5].
NCD biomarkers, in particular laboratory-measured markers, are objective and widely
accepted as surrogate outcomes in research, including clinical trials, and in clinical practice
as part of NCD prevention strategies [6]. Blood lipid levels are established risk factors for
NCDs [7–9], some of which have shown causal relationships with various cardiovascular
diseases [10–12]. Other commonly measured NCD biomarkers include those that reflect
glycemic control including insulin resistance [13], which itself is associated with risk
of diabetes and cardiovascular disease [14–18]. In addition, biomarkers that indicate
chronic low-grade inflammation have been shown to play a pivotal mechanistic role
in the development and progression of atherosclerosis [19–21], and are associated with
risk of incident cardiovascular disease events [22–24]. More recently, chronic low-grade
inflammation has been associated with increased risks for a wider range of NCDs across
diverse ethnic groups [25].

1.3. A Role for Network Meta-Analysis

Several meta-analyses have investigated the effects of a single dietary pattern on
NCD biomarkers [26–28]. This approach limits the comparison of multiple dietary pat-
terns within a consistent framework. Network meta-analysis (NMA) is a powerful ex-
tension to traditional meta-analysis which uses both direct and indirect evidence within
a connected network of trials to compare and rank multiple treatments [29]. Several
previous NMAs have described the comparative effects of dietary patterns in NCD manage-
ment [28,30–35]. Those NMAs were predominantly conducted in populations at high risk
or with pre-existing disease, such as type 2 diabetes [28,32–34], hypertension [35], and/or
obesity [28,30,31]. Comparison of dietary patterns for primary prevention remains limited
despite dietary patterns increasingly being the primary focus of dietary guidelines [36].

Accordingly, we conducted a systematic review with an NMA of randomised con-
trolled trials to compare and rank the effects of various dietary patterns on common NCD
biomarkers. We hypothesized that the Mediterranean diet would be among the most highly
ranked overall based.

2. Materials and Methods

This systematic review is conducted as per the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) extension statement for network meta-analysis [37].
We registered our systematic review in PROSPERO (Registration no. CRD42019129839);
this registration specifically covered a broad review on dietary patterns and biochemical
markers. Results of the association of dietary patterns and nutritional biomarkers has
been published [38]. This current NMA is of an exploratory analysis derived from papers
retrieved as part of the registered protocol, specifically relating to NCD biomarkers. The
PRISMA NMA checklist is included as Supplementary Table S1.

2.1. Literature Search and Study Selection

The PRISMA flow diagram of study selection is presented in Figure 1. A system-
atic search was conducted in MEDLINE, Embase, Cochrane Central, PreMEDLINE, and
CINAHL until 16 November 2020. The full electronic search strategy for MEDLINE is
presented in Supplementary Document S1. A manual search of any relevant publications in
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the literature from additional sources and citations in included publications was performed
to supplement the electronic database search until 1 August 2021.
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Publications were included if they met all of the following inclusion criteria: (1) ran-
domised controlled trial (RCT) study design; (2) healthy adult participants that were not
selected specifically based on disease diagnosis, including studies in which some of the
participants have a chronic disease; (3) food-based interventions, which were not achieved
by nutritional supplementation, and have a focus on dietary patterns that are pre-defined,
or based on a priori pattern indexes, or derived using a posteriori methods, e.g., principal
component analysis, cluster analysis, and reduced rank regression; (4) having an appro-
priate comparator, i.e., a different dietary pattern, and (5) biochemical markers that are
laboratory-measured and are relevant to NCD risk stratification or prevention. Given the
exploratory nature of this review, no biomarkers were pre-specified. Publications were
excluded if they met any of the following exclusion criteria: (1) all participants had a cur-
rent diagnosis of metabolic syndrome, diabetes, cardiovascular diseases, cancers, or other
diseases; (2) study participants were pregnant or breastfeeding; (3) the dietary intervention
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focused on one component of the diet, such as a single nutrient, individual food or food
group; (4) the intervention involved nutritional supplementation or energy restriction,
and the control group(s) differed in less than two components of the intervention diet;
(5) article not written in English language, and (6) research only published in the form of a
scientific abstract. No limits on publication year, study country, or intervention duration
were applied.

Eligible publications along with their reported NCD biomarkers were recorded as
candidates for full data extraction. NCD biomarkers with data available from at least
10 different trials were included as an outcome to ensure adequate statistical power and to
reduce the likelihood of publication bias [30,39], given the exploratory nature of this NMA.
Only one set of data was included from the same trial, and the chosen data was based on
the largest sample size, and/or the longest intended intervention duration.

Title and abstract screening were undertaken by one reviewer (Shuang Liang), with a
random sample of 12% of all abstracts double coded by a second reviewer (Fiona O’Leary),
and 100% agreement was reached. Full text of the articles was screened in duplicate by
three reviewers independently (Shuang Liang, Reeja Nasir, and Clémence Toniutti) using
reference management software (EndNote, version 9, Clarivate Analytics, Philadelphia,
PA, USA). Any discrepancies were resolved by consultation with reviewers (Fiona O’Leary,
Michael Skilton, Kim Bell-Anderson, and Shuang Liang).

2.2. Data Syntheses and Statistical Analyses

Data were extracted from each of the identified articles by two reviewers (Shuang
Liang and Jovana Mijatovic) independently, using a data collection form developed and
pilot-tested according to the Cochrane handbook [40]. Data extracted included first au-
thor, publication year, study origin (country), study design (RCT: parallel or crossover),
population size, participant characteristics (age, sex, and health status), study timeframe,
description of dietary patterns, dietary compliance assessment, end-point values with corre-
sponding standard deviations for disease biomarkers and biological compartment. Where
the end-point values with the corresponding standard deviations (SD) were not readily
available, the baseline and change from baseline values were used to impute the end-point
values, the change scores were used if not possible to impute [40]. Where median and confi-
dence intervals/interquartile range were reported, the mean and SD were estimated [41–43].
If impossible to estimate, the SD was imputed from a similar article based on the interven-
tion dietary patterns, intervention duration, sample size, and population characteristics [40].
The biomarker concentrations were converted to standard units. We contacted authors for
missing data, 6 of 11 contacted authors provided additional information.

Cochrane risk-of-bias tool version 2 [44] was followed by two reviewers independently
(Shuang Liang and Jovana Mijatovic) to assess the risk of bias of each publication. Any
discrepancies were resolved through discussion. A total of five domains were assessed:
(1) bias arising from the randomisation process; (2) bias due to deviations from intended
interventions; (3) bias due to missing outcome data; (4) bias in measurement of the outcome
and (5) bias in selection of the reported result. Risk of bias judgements were made as “Low
risk of bias”, “Some concerns” and “High risk of bias” at domain levels and overall risk of
bias judgement was given per the criteria set in the Cochrane risk-of-bias tool version 2
(Cochrane Collaboration, London, UK).

The Confidence in Network Meta-Analysis (CINeMA) framework [45] was followed
to assess the confidence of evidence. CINeMA is the extension based on the Grading of
Recommendations Assessment, Development and Evaluation (GRADE) system, with the
consideration of six domains: within-study bias, reporting bias, indirectness, imprecision,
heterogeneity, and incoherence [46].

We illustrated the available direct comparisons between different dietary patterns
using a network diagram for each outcome. The size of the nodes is proportional to
the sample size of each dietary pattern intervention, and the thickness of the lines is
proportional to the number of studies available. The assumption of transitivity was assessed
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by comparing the distribution of the potential effect modifiers including participants’ age,
percentage of female participants, and intervention duration across the available direct
comparisons [47,48]. Given the generally healthy populations in scope, the distribution of
BMI was not assessed.

Quantitative syntheses were conducted including studies with arithmetic means
(n = 68), i.e., studies reporting geometric means or medians that could not be imputed were
excluded from the analyses (n = 4). For each outcome of interest, a random effects NMA
was conducted to estimate all possible pairwise relative effects and to obtain a relative rank-
ing of the different dietary patterns. The summary mean differences with corresponding
95% CI were calculated. The effect sizes were deemed as statistically significant at 0.05 level.
The relative ranking of the different dietary patterns for each outcome was assessed using
the distribution of the ranking probabilities and the surface under the cumulative ranking
curves (SUCRA) [49]. The SUCRA is a value with a range from 0 to 100% that is associated
with each treatment in a connected network. A higher SUCRA indicates a greater chance
of the treatment being the best for achieving a favourable outcome, e.g., a lower LDL
cholesterol level, or a higher high-density lipoprotein (HDL) cholesterol level. For each
of the dietary patterns, a category-level combined SUCRA was calculated by averaging
biomarker-level SUCRAs in a category, and an all-outcomes-combined SUCRA was calcu-
lated by averaging category-level combined SUCRAs. We used the loop-specific approach
for the detection of loops of evidence that might present important inconsistency [50].
A common heterogeneity (between-study variance) for comparisons within each loop is
assumed. We performed side-splitting approach to detect any potential inconsistency
present between direct and indirect evidence [51]. We applied the global methods to jointly
investigate the presence of inconsistency from all possible sources in the entire network
simultaneously using the design-by-treatment interaction model [52,53]. The presence of
small-study effects for each outcome was evaluated by drawing a comparison-adjusted
funnel plots that adjusts for different dietary pattern comparisons being included [54].
Sensitivity analyses were conducted to reflect the following themes: (1) Risk of bias, by
removing studies considered being at high risk; (2) Intervention duration, by removing
studies with the intervention longer than 52 weeks, as dietary compliance tends to decline
as the intervention duration increases [55]; (3) Participants’ age, by removing studies which
had a population with a mean age of 70 years and above, as most NCDs attributed “prema-
ture” deaths occur in the population under the age of 70 years [1]; and (4) high sensitivity
C-reactive protein (hsCRP) levels, by removing studies reporting a plasma concentration
greater than 10 mg/L, as a higher hsCRP level suggests acute infection or inflammation,
rather than low-grade inflammation that is relevant for NCD risk [56]. The network meta-
analyses were performed and presented using the network package [57] and network graphs
package [58] in Stata version 16.0 (StataCorp, College Station, TX, USA).

A nutritional geometry approach [59] was applied to determine whether the associa-
tion of macronutrient composition with NCD biomarkers in these trials is consistent with
the effects of dietary patterns as determined by the NMA. For each outcome of interest,
five mixture models [60] were fitted to test the linear and non-linear associations between
macronutrients, as a percentage of dietary energy, and the NCD biomarker; Model 1 repre-
sents the null model where there is no association with macronutrient composition, Model
2 reflects linear associations, Model 3 reflects quadratic associations, and Models 4 and 5
reflect cubic associations. Models were compared and the preferred model determined
by the lowest Akaike Information Criterion value. The effects predicted by the Akaike
Information Criterion-favoured model was visualised as response surfaces in right-angle
mixture triangles. Each space on these right-angle mixture triangles represents 100% of
dietary energy, being the sum of the x-axis (fat), the y-axis (carbohydrate), and an inferred
z-axis (protein). The values of predicted effects are presented on the response surface as
contour lines, with the distribution of the surface limited to the intakes observed in the
included dietary studies. Mixture models were built using the “MixModel” function in the
R program mixexp package version 1.2 (R Core Team, Vienna, Austria).
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3. Results
3.1. Data Availability and Study Characteristics

Of the 4008 records retrieved from literature search, 478 full texts were screened, and
72 articles met the inclusion criteria. A total of 68 articles were derived from 59 RCTs were
included in NMAs and geometric framework for quantitative syntheses, including 56 for
HDL cholesterol, 55 for triglycerides, 54 for LDL cholesterol, 53 for total cholesterol, 39 for
glucose, 32 for insulin, 28 for hsCRP, 17 for apoB, 16 for apoA-1, 13 for Homeostatic Model
Assessment for Insulin Resistance (HOMA-IR), and 8 for IL-6. All trials conducted some
form of dietary assessment to monitor the adherence to the dietary pattern intervention,
and/or have partially or fully provided the food, and/or have supervised the consumption;
however, one trial did not report these results. The most commonly used assessment
methods included weighted or unweighted food records, 24-h dietary recalls, diet history,
food frequency questionnaires, and food checklists. Five trials have incorporated nutritional
biomarkers for dietary assessment. The main characteristics of included studies are shown
in Supplementary Table S2. The characteristics and biomarker levels of the studies excluded
from statistical analyses are detailed in Supplementary Table S3. The dietary patterns
examined included the Mediterranean diet, DASH diet, Paleo diet, plant-based diet, diet
patterns based on dietary guidelines, low Glycemic Index (GI)/Glycemic Load (GL) diet,
high GI/GL diet, low-fat diet, low carbohydrate high-fat diet, traditional Mexican diet, and
western habitual diet. Although we did not restrict the method used for deriving dietary
patterns, all articles included in this NMA reported dietary patterns that were defined a
priori, i.e., pre-described, or based on pattern indexes. Intervention duration ranged from
10 days to 5 years. The mean age of participants ranged from 23.1 to 70.9 years.

Detailed risk of bias assessment is shown in Supplementary Table S4. Twenty-two
articles were assessed as low risk of bias. Thirty-nine articles were judged as having some
concerns and seven as high risk of bias, with inadequate information on randomisation
process raising the risk of bias for most articles affected. Furthermore, while it is almost
impossible to achieve blinding in dietary studies, the Cochrane risk-of-bias tool notes that
lack of blinding does not necessarily lead to a higher risk-of-bias unless there is evidence of
deviations arising due to the trial content. We considered the likelihood of such deviations
on a case-by-case basis and found them to be generally low.

3.2. Network Meta-Analysis (Dietary Patterns and NCD Biomarkers)

The network diagrams for each of the NCD biomarkers are shown in Supplemen-
tary Figures S1–S3 (LDL cholesterol, Figure 2). The league tables summarising the effect
size estimates for comparisons between all dietary patterns in the network are shown in
Supplementary Tables S5–S14 (LDL cholesterol, Table 1), with results for each individual
biomarker described below. The SUCRA values (Table 2) provide a relative ranking of the
dietary patterns for each individual biomarker and for combined outcomes. There was no
indication of violated transitivity according to the distribution of potential effect modifiers,
although for some comparisons there were insufficient studies for appropriate examination
(Supplementary Figures S4–S14). Rankograms for all NCD biomarker outcomes show
distinct ranking distributions between best and worst dietary patterns (Supplementary
Figures S15–S25), indicating relatively high precision of the rankings.

3.2.1. Individual Lipids and Apolipoproteins

The Mediterranean diet, DASH diet, dietary guidelines-based diets, plant-based diets,
and low-fat diets effectively reduced total cholesterol, LDL cholesterol, and apoB when
compared to the western habitual diet (effect sizes range from −0.36 to −0.24 mmol/L for
total cholesterol, −0.29 to −0.17 mmol/L for LDL cholesterol, and −0.11 to −0.07 g/L for
apoB, all p < 0.05). When compared to the low carbohydrate high-fat diet, the Mediterranean
diet, DASH diet, plant-based diet and low-fat diet were more effective for reducing total
cholesterol (−0.48 to −0.42 mmol/L, all p < 0.05); the Mediterranean diet, plant-based diet
and low-fat diet were more effective for reducing LDL cholesterol (−0.37 to −0.33 mmol/L,
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all p < 0.05); and the Mediterranean diet, DASH diet, dietary guidelines-based diet and
low-fat diet were more effective for reducing apoB (−0.17 to −0.15 g/L, all p < 0.05). The
confidence ratings were moderate (13%), low (53%) and very low (33%) for LDL cholesterol,
and were moderate (2%), low (67%), and very low (31%) for total cholesterol.
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Figure 2. Network diagram for LDL cholesterol illustrating the available direct comparisons between
different dietary patterns. The size of the nodes is proportional to the sample size of each dietary
pattern intervention, and the thickness of the lines is proportional to the number of studies available.
The number of studies for each dietary pattern were: Mediterranean diet (n = 20); Dietary Approaches
to Stop Hypertension (n = 5); Paleo diet (n = 2); Dietary guidelines-based diets (n = 12); low GI/GL
diet (n = 9); plant-based diets (n = 10); low-fat diet (n = 14); low carbohydrate high-fat diet (n = 4);
high GI/GL diet (n = 9); and western habitual diet (n = 37).

The low carbohydrate high-fat diet significantly improved HDL cholesterol when
compared to the DASH diet, plant-based diet, low-fat diet, dietary guidelines-based diets,
and Mediterranean diet (effect size (95% CI): 0.19 (0.08, 0.30), 0.19 (0.09, 0.29), 0.17 (0.06,
0.28), 0.16 (0.05, 0.26), and 0.12 (0.02, 0.22) mmol/L, respectively); and the Mediterranean
diet resulted in a marginal improvement in HDL cholesterol levels when compared to
the plant-based diet, the DASH diet, and the low-fat diet (effect size (95% CI): 0.07 (0.02,
0.13), 0.07 (0.00, 0.14), and 0.05 (0.00, 0.10) mmol/L, respectively). A number of dietary
patterns resulted in a reduction in HDL cholesterol when compared to the western habitual
diet. These included the DASH diet, plant-based diet, low-fat diet, and dietary guidelines-
based diets (effect size (95% CI): −0.10 (−0.15, −0.04), −0.10 (−0.14, −0.05), −0.08 (−0.12,
−0.03), and −0.06 (−0.11, −0.02) mmol/L, respectively). The confidence ratings for HDL
cholesterol were high (4%), moderate (27%), low (33%), and very low (36%). The low
carbohydrate high-fat diet showed significant beneficial effects on apoA-1 and triglycerides
when compared to the plant-based diet (effect size (95% CI): 0.22 (0.02,0.42) g/L and −0.22
(−0.44, −0.01) mmol, respectively).

The low carbohydrate high-fat diet was ranked the best at increasing HDL cholesterol
and apoA-1, and for reducing triglycerides (SUCRA: 92.6%, 93.4%, and 91.3%, respec-
tively); the plant-based diet, Mediterranean diet, and DASH diet were respectively the
best at reducing total cholesterol, LDL cholesterol, and apoB (SUCRA: 76.0%, 79.2%, and
77.9%, respectively).
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Table 1. League table for LDL cholesterol showing comparative effect sizes between dietary patterns 1.

Mediterranean

−0.03
(−0.27, 0.21) 4 DASH

−0.25
(−0.71, 0.22) 4

−0.21
(−0.70, 0.28) 4 Paleo

−0.11
(−0.30, 0.07) 3

−0.08
(−0.32, 0.16) 3

0.13
(−0.30, 0.56) 4 DG-based

−0.23
(−0.85, 0.39) 5

−0.20
(−0.84, 0.45) 5

0.02
(−0.74, 0.78) 4

−0.12
(−0.74, 0.51) 5 Low GI/GL

−0.01
(−0.20, 0.19) 3

0.02
(−0.24, 0.28) 5

0.24
(−0.24, 0.71) 4

0.10
(−0.10, 0.31) 2

0.22
(−0.41, 0.85) 5 Plant-based

−0.03
(−0.18, 0.11) 3

0.00
(−0.24, 0.24) 3

0.21
(−0.26, 0.69) 4

0.08
(−0.12, 0.28) 4

0.20
(−0.43, 0.82) 5

−0.02
(−0.22, 0.18) 4 Low-fat

−0.37
(−0.68, −0.05) 3

−0.33
(−0.70, 0.03) 4

−0.12
(−0.66, 0.42) 4

−0.25
(−0.59, 0.08) 4

−0.14
(−0.82, 0.54) 5

−0.36
(−0.66, −0.05) 2

−0.33
(−0.66, −0.01) 4

Low CHO
high-fat

−0.27
(−0.88, 0.34) 5

−0.24
(−0.87, 0.39) 5

−0.03
(−0.78, 0.73) 4

−0.16
(−0.78, 0.46) 5

−0.04
(−0.25, 0.16) 5

−0.26
(−0.88, 0.36) 5

−0.24
(−0.86, 0.38) 5

0.09
(−0.58, 0.76) 5 High GI/GL

−0.29
(−0.41, −0.16) 3

−0.25
(−0.47, −0.04) 3

−0.04
(−0.50, 0.42) 4

−0.17
(−0.33, −0.02) 3

−0.06
(−0.67, 0.55) 5

−0.28
(−0.44, −0.12) 3

−0.26
(−0.41, −0.11) 3

0.08
(−0.22, 0.38) 3

−0.01
(−0.61, 0.58) 5

Western
habitual

1 The values correspond to the mean difference (95% CI) in LDL cholesterol (mmol/L) between the column dietary pattern and the row dietary pattern; column minus row. 2 CINeMA
(Confidence in Network Meta-Analysis) ratings were high. 3 CINeMA ratings were moderate. 4 CINeMA ratings were low. 5 CINeMA ratings were very low. Abbreviations: CHO,
carbohydrate; DASH, Dietary Approaches to Stop Hypertension; DG, dietary guidelines; GI/GL, glycemic index/glycemic load.
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Table 2. SUCRA-values for each biomarker, category and for all outcomes combined 1.

Inflammation Glycemic Control Lipids and Apolipoproteins
All-Outcomes-Combined 3

hsCRP IL-6 Combined 2 Glucose Insulin HOMA-IR Combined 2 TC LDL-c HDL-c TG ApoB ApoA1 Combined 2

Mediterranean 56.4 59.7 58.1 50.0 63.1 40.4 51.2 65.3 79.2 57.9 72.0 62.8 41.3 63.1 57.4

DASH 71.3 71.3 61.0 58.2 59.6 75.2 70.3 18.1 63.0 77.9 33.9 56.4 62.4

Paleo 79.0 95.0 87.0 35.3 70.7 89.7 65.2 32.9 35.5 78.6 51.1 49.5 67.2

Dietary
guidelines-based 73.4 31.0 52.2 16.7 59.3 58.7 44.9 54.2 52.3 37.4 44.7 64.3 37.9 48.5 48.5

Low GI/GL 48.2 31.1 31.3 36.9 51.1 42.2 43.2 29.8 41.6

Plant-based 44.9 44.9 57.6 27.6 90.4 58.5 76.0 75.6 16.9 27.5 49.6 21.1 44.5 49.3

Low-fat 14.5 20.4 17.5 48.2 78.5 35.6 54.1 74.3 70.7 28.8 47.6 77.0 45.1 57.3 42.9

Low CHO high-fat 31.2 31.2 80.8 51.9 66.4 14.8 16.8 92.6 91.3 4.3 93.4 52.2 49.9

Traditional Mexican 58.8 58.8

High GI/GL 66.3 25.8 35.3 42.5 34.2 34.3 55.2 18.4 35.5

Western habitual 29.3 43.9 36.6 27.2 33.8 18.6 26.5 22.1 23.1 71.5 54.6 14.1 77.2 43.8 35.6

1 SUCRA is a value ranges from 0 to 100% that associated with each treatment in a connected network. A higher SUCRA indicates a greater chance of the associated treatment being
the best for achieving a favourable outcome. 2 Category-level combined SUCRA is the average of biomarkers in the category. 3 All-outcomes-combined SUCRA is the average of
category-level combined SUCRAs. Abbreviations: CHO, carbohydrate; DASH, Dietary Approaches to Stop Hypertension; GI/GL glycemic index/glycemic load; HDL-c, high-density
lipoprotein cholesterol; HOMA-IR, homeostatic model assessment for insulin resistance; hsCRP, high sensitivity C-reactive protein; IL-6, interleukin-6; LDL-c, low-density lipoprotein
cholesterol; SUCRA, surface under the cumulative ranking curve; TC, total cholesterol; TG, triglycerides.
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3.2.2. Individual Glycemic Biomarkers

The Paleo diet, plant-based diet, and dietary-guidelines based diets were the most
effective for lowering HOMA-IR when compared to the western habitual diet (effect size
(95% CI): −0.95 (−1.68, −0.21), −0.90 (−1.21, −0.59), and −0.35 (−0.59, −0.10), respec-
tively). Additionally, the plant-based diet was more effective in HOMA-IR reduction when
compared to the low-fat diet, Mediterranean diet, and dietary guidelines-based diets (effect
size (95% CI): −0.75 (−1.21, −0.29), −0.72 (−1.21, −0.23), −0.55 (−0.95, −0.16), respec-
tively); and the Paleo diet was more effective relative to the low-fat diet (effect size (95% CI):
−0.80 (−1.56, −0.03)). The confidence ratings for HOMA-IR were moderate (14%), low
(61%) and very low (25%). The plant-based diet was ranked the best for reducing HOMA-IR
(SUCRA 90.4%).

Only the low-fat diet showed a significant but relatively small reduction in fasting in-
sulin concentrations when compared to the western habitual diet [effect size (95% CI): −3.09
(−6.18, −0.00) mU/L], and had the highest SUCRA value for insulin (78.5%). No dietary
pattern significantly altered fasting glucose levels compared to other dietary patterns, al-
though the low carbohydrate high-fat diet was ranked the best for glucose (SUCRA 80.8%).

3.2.3. Individual Inflammatory Biomarkers

No dietary pattern significantly affected hsCRP or IL-6 levels. The confidence ratings
for hsCRP were moderate (43%), low (43%), and very low (14%). The Paleo diet had the
highest SUCRA values for both hsCRP and IL-6 (79.0% and 95.0%, respectively).

3.2.4. Summary across Outcomes

The Mediterranean diet had the highest average SUCRA value (63.1%) in the lipids
and apolipoproteins category; a low carbohydrate high-fat diet was the highest (66.4%) in
the glycemic control category; and the Paleo diet was the highest (87.0%) in the inflamma-
tion category.

When combining all three categories, the Paleo diet had the highest average SUCRA
value (67.2%), followed by the DASH (62.4%) and the Mediterranean diet (57.4%). The
western habitual diet performed the worst (35.6%). The overall SUCRA values were not
available for the low GI/GL, high GI/GL, and traditional Mexican diets as there was no
data for at least one biomarker category.

3.2.5. Inconsistency, Sensitivity Analyses, Publication Bias, and Confidence of Evidence

Based on the loop-specific approach, no inference was made for inconsistency for
LDL cholesterol, HDL cholesterol, triglycerides, apoB, apoA-1, glucose, and HOMA-
IR. Borderline inconsistency was inferred for total cholesterol in the loops between the
Mediterranean diet, dietary guideline-based diets and low-fat diet and between dietary
guideline-based diets, plant-based diets and low-fat diet; and inconsistency for insulin,
especially in the loop of the Mediterranean diet, low-fat diet and western habitual diet
(Supplementary Tables S15–S24). IL-6 was not eligible for this method as no multiple-arm
(≥ 3) study was included. The side-splitting approach showed no inconsistency for apoA-1,
glucose, HOMA-IR, hsCRP, and IL-6. Inconsistency was observed for lipids (LDL choles-
terol, HDL cholesterol, total cholesterol, triglycerides, and apoB), and insulin, for some of
the comparisons between the Mediterranean diet, dietary guidelines-based diets, low-fat
diet, plant-based diet, and western habitual diet (Supplementary Tables S25–S35). The
design-by-treatment method showed no inconsistency for hsCRP (p = 0.96), IL-6 (p = 0.61),
glucose (p = 0.43), total cholesterol (p = 0.59), LDL cholesterol (p = 0.55), apoA-1 (p = 0.30),
and HOMA-IR (p = 0.96); and suggested inconsistency for triglycerides (p < 0.001), HDL
cholesterol (p = 0.004); insulin (p = 0.002) and apoB (p = 0.04).

Sensitivity analyses resulted in similar results for the majority of applicable biomarker
outcomes, except for exclusion of studies with a high risk of bias resulted in additional
significant findings for insulin, with the Paleo, DASH, and dietary guideline-based diets
showing significant beneficial effects compared to the Mediterranean diet or low-fat diet;
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and additional estimated effects achieved statistical significance for hsCRP and apoA-1
(Supplementary Tables S36–S62).

In comparison-adjusted funnel plots, no asymmetry was detected for any of the
outcomes (Supplementary Figures S26–S36), consistent with no evidence of publication
bias. Overall confidence in the evidence for dietary pattern comparisons were high (1%),
moderate (18%), low (51%), and very low (29%) (Supplementary Tables S63–S67).

3.3. Nutritional Geometry Approach (Macronutrients and NCD Biomarkers)

The relationship between macronutrient composition and NCD biomarkers is shown
in Supplementary Figures S37–S39. Using trial-level data, macronutrient composition
was associated with total cholesterol, HDL cholesterol, and apoA-1 (p < 0.001 for all;
Supplementary Table S68), but not for other NCD biomarkers included in this review. The
lowest total cholesterol was associated with a diet comprised of approximately 15% energy
from protein, 80% from carbohydrate, and 5% from fat, while the highest was seen in
the diets with 25% energy from protein, 5% from carbohydrate, and 70% from fat. The
highest HDL cholesterol levels were associated with diets comprised of 30% energy from
protein, ≤40% from carbohydrate, and ≥35% from fat, while the lowest was found in the
area with 15% energy from protein, ≥50% from carbohydrate, and ≤45% from fat. The
highest apoA-1 was associated with diets comprised of 25% energy from protein, 5% from
carbohydrate, and 70% from fat, whereas the lowest was seen when the composition was
10% energy from protein, 70% from carbohydrate, and 20% from fat.

4. Discussion

We compared up to 11 dietary patterns for their effects on 11 NCD biomarkers. The
Mediterranean diet was ranked best for improving lipid profiles, a low carbohydrate
high-fat diet was best for glycemic control, and the Paleo diet was ranked highest for the
inflammatory biomarkers category. Across all outcomes, the Paleo diet had the highest
all-outcomes-combined average SUCRA value (67.2%), followed by the DASH diet (62.4%)
and Mediterranean diet (57.4%). The western habitual diet received the lowest overall
average SUCRA (35.6%). The confidence in the evidence was rated low for the majority
of dietary patterns and their influences on NCD biomarkers indicating more research
is needed.

Our results indicate potential benefits of the Paleo diet for improving biomarker risk
profile, and, as such, potentially for NCD prevention. In concordance with our findings,
emerging evidence has demonstrated health benefits of the Paleo diet [61,62]. In a pair-wise
meta-analysis, the Paleo diet was associated with a significant decrease in cardiovascular
disease risk factors, including blood lipids and CRP, even when compared to a heteroge-
neous control group that included various well-documented healthy dietary patterns, such
as the Mediterranean diet and diets based on dietary guidelines [62]. Similar to previous
NMAs in populations with type 2 diabetes, the Paleo diet was ranked among the top
dietary patterns for several blood lipids, such as triglycerides and HDL cholesterol [32],
and glycemic outcomes including fasting blood glucose and HbA1c [28,34]. Another NMA
focusing on populations with type 2 diabetes included nine outcomes covering glycemic
control, cardiovascular risk, and weight loss targets [33]. However, that NMA included
only 10 trials and compared 5 diets (low-fat diet, Mediterranean diet, low carbohydrate
diet, high carbohydrate diet, and regular diet), and found that the Mediterranean diet was
linked with the best outcomes. The top overall ranking of the Paleo diet in our NMA was a
result of high SUCRA values for all categories, especially inflammatory biomarkers. The
effects of the Paleo diet on individual inflammatory biomarkers did not reach statistical
significance in the main analysis, which is similar to a previous NMA focused on weight
loss that included CRP [30]. Although our sensitivity analysis excluding studies with high
risk of bias, found a significant reduction for hsCRP but not for IL-6. In principle, the
Paleo diet attempts to emulate the dietary intake of human ancestors from the Palaeolithic
age, focusing on greater intake of fruit, vegetables, lean meat, and fish, while eliminating
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processed foods, grains, beans, legumes, and dairy. Although some components of the
Paleo diet are in line with modern dietary guidelines, others are not and may be detrimental
to some long-term health outcomes and environmental sustainability goals [63]. High meat
intake is consistent with an increased risk in cardiovascular events, eliminating dairy may
have implications for bone health [62], and limiting intakes of grains, beans and legumes
can result in dietary carbohydrate restriction [64,65]. In addition, although dietary energy
content was outside the scope of this current review, and RCTs that explicitly involved
energy restriction were excluded in our study selection, we acknowledge that inadvertent
weight reduction may have occurred due to energy intake differences between dietary
patterns, with implications for NCD biomarker levels. However, two previous NMAs
with a focus on macronutrient composition and weight loss in overweight or obese adults
concluded that individual named diets are similarly effective, irrespective of macronutrient
content [30,31]. The net effect of the Paleo diet on health and NCD outcomes remains largely
inconclusive. Large scale RCTs are warranted to confirm whether the potential benefits of
the Paleo diet on NCD biomarkers identified in our research translates to prevention of
clinical NCD outcomes.

The DASH diet and Mediterranean diet were the next highest SUCRA ranked dietary
patterns in our NMA. The DASH diet is specifically designed to lower blood pressure and
is linked to lower cardiovascular disease incidence [66]. Detailing effects on blood pressure
was outside the scope of our review; however, a previous NMA ranked the DASH diet
best for blood pressure lowering, followed by the Paleo diet [35]. Our NMA supports
the DASH diet for overall NCD prevention, ranking highly in all categories; although,
it ranked second-worst for HDL cholesterol and apoA-1, potentially due to overall fat
restriction. This finding for HDL cholesterol is comparable with a previous NMA focusing
on weight loss [30]. Only two other NMAs have included HDL cholesterol as an outcome.
Although the DASH diet was not included in either of those, one reported a low-fat diet
to be associated with lowest HDL cholesterol levels [33], while the other found that a
vegetarian diet was worst [32], which is also generally low in fat. There is a strong body of
evidence from observational cohorts and large clinical trials indicating the Mediterranean
diet improves clinical cardiovascular outcomes [67]. Two previous NMAs focusing on
people with type 2 diabetes concluded that the Mediterranean diet was most beneficial
for reducing cardiovascular disease risk factors [32,33]. We found similar benefits of the
Mediterranean diet in healthy populations and across a broader range of NCD biomarkers,
particularly for improving lipid levels.

Although our results support the Paleo diet, DASH diet, and Mediterranean diet for
improving overall NCD biomarker profile, our findings may be of relevance for tailoring
dietary recommendations to meet the needs of specific groups. For example, people with
dyslipidaemia may particularly benefit from a Mediterranean diet for maximal benefits to
lipid levels.

Comparison of the macronutrient composition of dietary patterns demonstrated di-
etary patterns cannot be described purely by their macronutrient composition. The plant-
based diet and low-fat diet included in our analyses had similar macronutrient composi-
tion, as did the Paleo diet and low carbohydrate high-fat diet. Despite their similarities in
macronutrient composition, these dietary patterns had distinctly different outcomes. As
such, although macronutrient profile may partially explain diet-disease relationships, other
aspects of a dietary pattern, including source of macronutrients (e.g., plant vs. animal), lev-
els of food processing, food structure, micronutrients, phytochemicals, antioxidants, such
as phenolic compounds [68], fatty acid profile, fibre content, etc., likely have contributed to
the observed effects of dietary patterns and act as a combined matrix to affect health and
NCD outcomes. Although accounting for these dietary aspects is beyond the scope of our
work, it would be an area of importance for future research.

Limitations of this systematic review include the broad nature of the search terms.
The goal of this review was to identify a broad selection of NCD biomarkers, and this was
reflected in our search terms which did not specify individual NCD biomarkers, although
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we supplemented the search with a thorough manual search for relevant publications.
We assume a reasonable level of adherence to dietary interventions for all studies in our
analysis as this information is rarely reported. Although almost all included RCTs have
employed dietary compliance assessment and/or food provision, and the sensitivity analy-
sis excluding trials with extended intervention duration, which itself is often associated
with lesser adherence over time, found similar results. There are a number of distinct
variations of the Mediterranean diet. We adopted a pragmatic approach and grouped these
as a single broad dietary pattern. This approach captures the totality of evidence under the
Mediterranean diet umbrella and is consistent with how the Mediterranean diet is applied
in practice. Similarly, the roles of different fatty acids within dietary patterns were not
analysed. This NMA would have been statistically underpowered for comparing different
variations of Mediterranean diet and specific roles of individual fatty acids; however, future
trials should look to compare the different types of Mediterranean diet and variations of
diets that were defined by their macronutrients (i.e., low-fat diet and low CHO high-fat
diet) [69]. NMA are limited by the inherent statistical assumptions and the quality of the
evidence used. Confidence in the results was assessed using CINeMA however residual
bias e.g., from small sample sizes may still exist. CINeMA ratings should be taken into
account when interpreting the results. We used standard models for NMA, which may be
associated with increased type I error rate due to multiple testing [70]. We have not adjusted
for multiple comparisons given the exploratory nature of this analysis, although this would
be appropriate in future targeted work. SUCRA rankings are an important outcome in
this study, although this method does not directly reflect the risk of bias within individual
studies. Nonetheless, sensitivity analysis excluding studies at high risk of bias were pre-
dominantly consistent with the main results. SUCRA rankings also do not account for effect
sizes in different studies. We focused on the combined SUCRA-based ranking to provide a
concise indication of overall ranking, noting the number of distinct individual pair-wise
comparisons given the possible combinations of dietary patterns and NCD biomarkers
covered in this review. Combined SUCRAs were derived by averaging SUCRAs for each
biomarker in a given category, and then taking the average for each category. However,
this approach equally weights the three categories, which may not be adequately robust for
NCD risk prediction. There is currently no evidence to support the use of specific weights
of individual categories or biomarkers for combined effects calculation.

This systematic review has multiple strengths. The application of NMA allows the
simultaneous comparisons of all possible pairs of dietary patterns, utilising both direct
and indirect evidence. Furthermore, we used a geometric framework approach as a novel
means to study the macronutrient composition of dietary patterns as a possible mechanism
driving NCD biomarkers. Additional strengths include the high number of included
randomised trials, and the inclusion of 11 biomarker outcomes across various categories
and the use of CINeMA confidence of evidence ratings.

5. Conclusions

Our NMA showed that the Mediterranean diet was likely the most effective dietary
pattern in lipid profile improvement, a low carbohydrate high-fat diet may be beneficial
for glycemic control, and the Paleo diet appeared best for reducing inflammation. No
dietary pattern performed consistently best across all major NCD biomarkers or categories,
although overall the Paleo diet, DASH diet, and Mediterranean diet had the highest ratings.
The majority of the confidence of evidence ratings were low, indicating more research
is needed including high-quality randomised trials with clinical outcomes to determine
whether the Paleo diet indeed has a role in NCD prevention. Furthermore, our findings
were predominantly independent of macronutrient composition, highlighting the potential
importance and significance of evidence and advice at the dietary pattern-level.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15010076/s1, Table S1: PRISMA NMA checklist; Document
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for inflammatory biomarkers illustrating the available direct comparisons between dietary patterns;
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interleukin-6 showing comparative effect sizes between dietary patterns; Figure S4: Box plot showing
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Box plot showing the distribution of participants’ age across the direct comparisons for glucose;
Figure S7: Box plot showing the distribution of participants’ age across the direct comparisons for
hsCRP; Figure S8: Box plot showing the distribution of participants’ age across the direct comparisons
for interleukin-6; Figure S9: Box plot showing the distribution of percentage of female participants
across the direct comparisons for LDL-c; Figure S10: Box plot showing the distribution of percentage
of female participants across the direct comparisons for glucose; Figure S11: Box plot showing the
distribution of percentage of female participants across the direct comparisons for hsCRP; Figure S12:
Box plot showing the distribution of intervention duration across the direct comparisons for LDL-c;
Figure S13: Box plot showing the distribution of intervention duration across the direct comparisons
for glucose; Figure S14: Box plot showing the distribution of intervention duration across the direct
comparisons for hsCRP; Figure S15: Rankograms for LDL-c; Figure S16: Rankograms for HDL-c;
Figure S17: Rankograms for total cholesterol; Figure S18: Rankograms for triglycerides; Figure S19:
Rankograms for ApoB; Figure S20: Rankograms for ApoA1; Figure S21: Rankograms for glucose;
Figure S22: Rankograms for insulin; Figure S23: Rankograms for HOMA-IR; Figure S24: Ranko-
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excluding high risk of bias studies for interleukin-6; Table S46: League table of sensitivity analysis
excluding studies with intervention duration longer than 52 weeks for LDL-c; Table S47: League
table of sensitivity analysis excluding studies with intervention duration longer than 52 weeks for
HDL-c; Table S48: League table of sensitivity analysis excluding studies with intervention duration
longer than 52 weeks for total cholesterol; Table S49: League table of sensitivity analysis excluding
studies with intervention duration longer than 52 weeks for triglycerides; Table S50: League table of
sensitivity analysis excluding studies with intervention duration longer than 52 weeks for glucose;
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for total cholesterol; Figure S29: Comparison-adjusted funnel plot for triglycerides; Figure S30:
Comparison-adjusted funnel plot for ApoB; Figure S31: Comparison-adjusted funnel plot for ApoA1;
Figure S32: Comparison-adjusted funnel plot for glucose; Figure S33: Comparison-adjusted funnel
plot for insulin; Figure S34: Comparison-adjusted funnel plot for HOMA-IR; Figure S35: Comparison-
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A B S T R A C T

Background: Epidemiological studies assessing the influence of vegetarian diets on breast cancer (BC) risk have produced inconsistent results. Few
studies have assessed how the incremental decrease in animal foods and the quality of plant foods are linked with BC.
Objectives: Disentangle the influence of plant-based diet quality on BC risk between postmenopausal females.
Methods: Total of 65,574 participants from the E3N (Etude Epid�emiologique aupr�es de femmes de la Mutuelle G�en�erale de l’Education Nationale)
cohort were followed from 1993–2014. Incident BC cases were confirmed through pathological reports and classified into subtypes. Cumulative average
scores for healthful (hPDI) and unhealthful (uPDI) plant-based diet indices were developed using self-reported dietary intakes at baseline (1993) and
follow-up (2005) and divided into quintiles. Cox proportional hazards models were used to estimate adjusted HR and 95% CI.
Results: During a mean follow-up of 21 y, 3968 incident postmenopausal BC cases were identified. There was a nonlinear association between adherence
to hPDI and BC risk (Pnonlinear < 0.01). Compared to participants with low adherence to hPDI, those with high adherence had a lower BC risk [HRQ3

compared with Q1 (95% CI): 0.79 (0.71, 0.87) and HRQ4 compared with Q1 (95% CI): 0.78 (0.70, 0.86)]. In contrast, higher adherence to unhealthful was
associated with a linear increase in BC risk [Pnonlinear ¼ 0.18; HRQ5 compared with Q1 (95% CI): 1.20 (1.08, 1.33); Ptrend < 0.01]. Associations were similar
according to BC subtypes (Pheterogeneity > 0.05 for all).
Conclusions: Long-term adherence to healthful plant foods with some intake of unhealthy plant and animal foods may reduce BC risk with an optimal
risk reduction in the moderate intake range. Adherence to an unhealthful plant-based diet may increase BC risk. These results emphasize the importance
of the quality of plant foods for cancer prevention.
This trial was registered at clinicaltrials.gov (NCT03285230).

Keywords: breast cancer, plant-based diet quality, dietary score, estrogen receptor, progesterone receptor, prospective study
Introduction

Breast cancer (BC) is one of the leading global health challenges
and, in 2020, accounted for an estimated 2.3 million new cases and
685,000 deaths worldwide [1]. In addition, it is one of the leading
Abbreviations used: BC, breast cancer; E3N, Etude Epid�emiologique aupr�es de femmes d
ERþ, estrogen-positive; FFQ, food frequency questionnaire; hPDI, healthful plant-based diet
per week; MHT, menopausal hormone therapy; PDI, plant-based diet index; PR, progesterone
diet index.
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causes of disability-adjusted life years (15.1 million from 1990 – 2015)
[2]. Cases are predicted to rise in the coming years, particularly post-
menopausal BC and estrogen-positive (ERþ) tumors [3, 4].

In addition to older age, several factors may contribute to BC risk.
Armstrong et al. [5] estimated that the prevalence of genetic mutations
e la Mutuelle G�en�erale de l’Education Nationale; ER, estrogen; ER-, estrogen-negative;
index; IDC, invasive ductal carcinoma; MET-h/wk, metabolic equivalents of task-hours
; PR-, progesterone-negative; PRþ, progesterone-positive; uPDI, unhealthful plant-based
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accounting for hereditary BC ranged from 0.6%–36.9% internationally,
leaving a sizable unexplained proportion potentially because of
modifiable risk factors, including environmental exposures and
reproductive and lifestyle factors [6–10]. With the increase in life ex-
pectancy worldwide, there is a strong interest in identifying modifiable
factors involved in the occurrence of BC. As such, research has focused
on understanding lifestyle factors, particularly diet.

Plant-based diets have received extensive attention recently because
of their benefits for individual health and environmental sustainability
[11]. Vegetarian diets with a binary characterization in terms of
exclusion or not of animal-based foods have long been explored in
relation to BC risk, but the results are inconsistent [12]. Based on the
incremental decrease in animal foods consumption and the notion that
the nutritional quality is not consistent across all plant-based foods,
Satija et al. [13] have recently proposed healthful and unhealthful
plant-based dietary patterns. These indices have gained attention for
their potential to prevent or manage chronic diseases [13–19]. How-
ever, despite retrospective and prospective studies on the link between
plant-based diet indices with BC, findings remain inconsistent [20–25].

BC is a heterogeneous disease with several subtypes with unique
disease progression and responses to treatment [26, 27]. ERþ and/or
progesterone-positive (PRþ) BCs have a substantial advantage from
oncologic endocrine therapy in addition to chemotherapy, although the
treatment of triple-negative BCs [estrogen-negative (ER-),
progesterone-negative (PR-), and human epidermal growth factor re-
ceptor 2-negative] depends on chemotherapy alone [28, 29]. Even
though a potential heterogeneity has been suggested in the associations
between intakes of some nutrients [30], food groups [31], and dietary
patterns [32, 33] and the risk of specific BC types according to, e.g.,
ER, PR status, and histology, to our knowledge, only 1 study investi-
gated a potential heterogeneity in the association between a plant-based
diet and BC by ER status [20].

Therefore, we aimed to clarify further the relationship between
plant-based diet quality and BC risk overall and by subtypes of BC
defined by ER and PR status and histology in participants from the
Etude Epid�emiologique aupr�es de femmes de la Mutuelle G�en�erale de
l’Education Nationale (E3N) cohort study. Because the associations
between BC risk and environmental factors have been found hetero-
geneous between pre and postmenopausal BC, the latter being the most
frequent, we restricted our analyses to postmenopausal BC in this
cohort of middle-aged and elderly participants.
Methods

E3N cohort
The E3N cohort was initiated in 1990 to investigate the risk factors of

common cancers prospectively. Participants were 98,995 French females
aged 40–65 y at inclusion, selected from the health insurance scheme
covering workers in the National Education System and their families
[34]. The study participants provided written informed consent, and the
cohort study received ethical approval from the French National Com-
mission for Computerized Data and Individual Freedom. Participants
were enrolled in the cohort through a self-administered questionnaire
followed by questionnaires every 2–3 y for sociodemographic factors,
health conditions, reproductive factors, diet, and other lifestyle factors.
Study population
In the present study, follow-up began on the return date of the first

dietary questionnaire for participants who were already menopausal at
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that time or the date of menopause if it occurred later. Participants
contributed person-time until the date of diagnosis of any type of
cancer except basal cell carcinoma, the date of the last completed
questionnaire, or the date on which the last available follow-up ques-
tionnaire was mailed (November 17, 2014), whichever occurred first
[35].

Between 74,522 participants who returned the dietary questionnaire
sent in 1993, we first excluded those with undefined menopausal status
(n ¼ 14), those who had never menstruated (n ¼ 6), prevalent cancer
cases (n ¼ 4709), those with incomplete or absent follow-up infor-
mation (n ¼ 623); we further excluded participants with extreme en-
ergy intake values, i.e., the 1st and 99th percentiles of the energy intake
over energy requirement distribution in the population (n ¼ 1364),
those with missing BC receptor status data (n ¼ 1309), and those who
had not attained menopause at the end of follow-up (n ¼ 923). Hence,
our final study population included 65,574 postmenopausal partici-
pants (Supplemental Figure 1).

Dietary assessment and plant-based diet indices
Dietary data were collected at baseline (1993) and follow-up (2005)

using a validated self-administered 208-item food frequency ques-
tionnaire (FFQ) [36, 37]. Participants were asked about the frequency
of consumption for 8 eating moments from breakfast to after-dinner
snacks over the preceding year. According to the French meal pat-
terns, portion sizes were assessed via photographs and qualitative
questions on specific food and drink items. Nutrient and energy intakes
were obtained using the Food Composition Database derived from the
French Information Center on Food Quality [38].

The following indices were created using a procedure previously
described [13]: healthful plant-based diet index (hPDI), which con-
sisted of healthy plant foods, such as fruit, vegetables, nuts, and le-
gumes, and the unhealthful PDI (uPDI), which consisted of primarily
refined/processed foods as listed in Supplemental Table 1. First, we
created 18 food groups (summing up the grams of consumed food
items). Next, participants were categorized according to the quintile
distribution (or a nonconsumer category plus quartiles between con-
sumers) of their food intake for each food group. For each participant,
values of 1–5 or reverse were assigned to each category based on the
positive or negative association with the index; animal foods were
reverse scored. The sum of the values for each food parameter led to the
final hPDI and uPDI scores, which ranged from 18–90 (lowest to
highest adherence).

These scores have been developed in the E3N cohort using only
baseline dietary data [19]; however, in the present study, the scores
from baseline (1993) and follow-up (2005) were averaged to capture
better the long-term adherence and changes in diet over the long
follow-up. In addition, baseline scores were used if participants were
censored before the follow-up dietary questionnaire (2005). The
baseline and cumulative average scores were used for the final analysis
for 12,689 and 52,885 participants, respectively. The observed median
values were 56 (range 27–79) for hPDI and 52.5 (range 27–78) for
uPDI.

Incident BC ascertainment
All potential cases of BC were identified through baseline and

follow-up questionnaires (3rd–11th) which inquired about cancer
occurrence, contact details of participants’ physicians, and permission
to contact them. A few BC cases were further identified from insurance
files and death certificates. Tumor characteristics of hormonal receptor
status ER and PR and histology (ductal, lobular, and other) were
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extracted using original clinical and pathology reports. The pathology
reports were obtained for 95% of incident BC cases.

Covariates
The covariates were selected a priori based on literature evidence

for their potential association with the exposure and/or the outcome.
Education, physical activity (metabolic equivalents of task-hours per
week [MET-h/wk]), and smoking status were self-reported at baseline.
Breastfeeding and lifetime use of oral contraception and menopausal
hormone therapy (MHT) was assessed from the baseline and follow-up
questionnaires. Age at menarche, history of benign breast disease,
parity, and family history of BC was self-reported at baseline.
Mammography performed in the previous follow-up cycle was
captured from each follow-up questionnaire. BMI was assigned ac-
cording to the value reported at baseline self-reported height and
weight were used to calculate BMI, defined as the weight (kg) divided
by squared height (m2). In the cohort, self-reported anthropometry is
considered reliable from a validation study [39]. Lastly, alcohol con-
sumption (g/d) and energy intake were calculated from the E3N FFQ.

Statistical analysis
Baseline characteristics overall and according to hPDI and uPDI

quintiles were described using means and SDs for continuous variables
and frequencies for categorical variables. HR and 95% CI of the BC
risk was estimated using multivariable-adjusted Cox proportional
hazards regression with age as the time scale (entry time defined as the
age at the baseline questionnaire or age at menopause, whichever was
maximum). The proportional hazards assumption was tested graphi-
cally using Schoenfeld Residuals, and no major violations were
observed [40].

All diet indices were analyzed in 3 ways. We first tested for non-
departure from a linear association and provided a graphical repre-
sentation using restricted cubic splines [41]. The splines analyses were
fitted with the fully adjusted model, and 5 knots were placed at the 5th,
27.5th, 50th, 72.5th, and 95th percentiles. Second, when a linear as-
sociation was confirmed, we assessed the HR of BC risk for a 1-SD
increase in the diet index. Lastly, all diet indices were categorized
into quintiles, and the first quintile group was considered the reference
category to assess whether higher categories were associated with BC
risk.

All models were stratified by 5-y birth cohorts, and 3 sets of
multivariable Cox models were built by adding covariates: Model 1
was age-adjusted. Model 2 additionally included physical activity
(continuous), educational level (undergraduate or less, graduate, and
postgraduate or more), smoking status (current, former, and
nonsmoker), family history of BC (yes, no), age at menarche (contin-
uous), age at first childbirth (nulliparous, <30 y, �30 y), ever breast-
feeding (yes, no), ever use of MHT (yes, no), ever use of the
contraceptive pill (yes, no), past history of benign breast disease (yes,
no), and mammography in the last follow-up cycle (yes, no). The final
Model 3 also included potential diet and cancer association mediators,
BMI (continuous), energy intake (excluding alcohol and continuous),
and alcohol (continuous). The P value for linear trend was estimated in
the models using the median score in each quintile. Subtypes of BC,
characterized by hormone receptors and histology, were studied in
separate Cox models. We used the Q statistic to test the homogeneity of
the results between the receptor subtypes and histology [42].
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In addition to the above-described primary analyses, we tested for
effect modification of the overall associations by BMI (<20, 20–24.99,
>25 kg/m2), use of MHT (yes, no), and physical activity (above or
below median physical activity level, i.e., <37.97, �37.97 MET-h/wk)
as suggested by previous studies [20, 43]. However, because of the
small number of cases, the stratified analyses were not performed for
the subtypes.

Missing observations were <5% for all variables except for ever
breastfed and therefore were imputed to the median (for continuous
variables) or mode (for categorical variables). For ever breastfed, a
“missing” category was created to maintain the same number of par-
ticipants in the analyses. All tests of statistical significance were 2-
sided, with statistical significance set at P < 0.05. Statistical analyses
were performed using the SAS software version 9.4 (SAS Institute).
Sensitivity analyses
Several secondary analyses were conducted to assess the robustness

of the findings. First, missing values in the covariates were imputed
with multiple imputations to overcome any systematic differences
between the participants with complete and missing information.
Second, the participants with BC diagnosed in the first 5 y of follow-up
were excluded to overcome the influence of any reverse causation bias
because of changes in diet after diagnosis of BC. Third, we analyzed
the association of the overall PDI with the risk of BC. Fourth, we used
the baseline and the time-dependent approaches to analyze dietary
measurements across the follow-up. The cumulative average approach
differs from the time-dependent approach in that the incident BC
diagnosed between 2005 and 2014 was related to the average dietary
intake reported on the 1993 and 2005 questionnaires instead of the
dietary intake on the 2005 questionnaire only. Fifth, as we had too few
cases of ductal carcinoma in situ (n¼158) to conduct separate analyses,
we performed additional analyses based only on invasive ductal car-
cinoma (IDC) cases. Lastly, we excluded participants with energy
limits <500 or >3500 kcal/d as proposed by Willett instead of the 1st
and 99th percentiles energy distribution.
Results

Baseline characteristics
Three thousand nine hundred sixty-eight incident BC cases were

diagnosed between 65,574 postmenopausal participants over approxi-
mately 21 y of follow-up. The average age of participants at baseline
was 52.9 y (SD 6.7).

Participants in the highest quintile of cumulative average hPDI had
lower BMI. They were more likely to have lower levels of energy and
alcohol intake, to report lower use of the contraceptive pill, and to be
former smokers than those in the lowest quintile. They were also more
likely to report higher levels of physical activity, mammography his-
tory, benign breast disease, and ever use of MHT than participants in
the lowest quintile (Table 1). The consumption in g/d of the food
groups according to quintiles of cumulative average hPDI is presented
in Supplemental Table 2. Participants in the highest quintile of cu-
mulative average uPDI reported lower levels of energy and alcohol
intakes and lower physical activity, were more likely to have lower
BMI and lower proportion of excess weight, and were less likely to be
current smokers, to report ever use of the contraceptive pill, to have a



TABLE 1
Baseline characteristics of the study population overall and according to quintile of the healthful plant-based diet index, E3N (Etude Epid�emiologique aupr�es de
femmes de la Mutuelle G�en�erale de l'Education Nationale) cohort (N ¼ 65,574)1

Characteristics Quintile of the healthful plant-based diet index

Overall
(N ¼ 65,574)

Q1
(N ¼ 12,822)

Q2
(N ¼ 12,832)

Q3
(N ¼ 14,577)

Q4
(N ¼ 13,008)

Q5
(N ¼ 12,335)

Age, y 52.85 (6.65) 51.90 (6.57) 52.57 (6.64) 52.97 (6.64) 53.36 (6.68) 53.46 (6.57)
Educational level, n (%)
Undergraduate or less 7358 (11.22) 1528 (11.91) 1504 (11.72) 1648 (11.31) 1376 (10.58) 1302 (10.56)
Graduate 34,927 (53.26) 6926 (54.02) 6829 (53.22) 7768 (53.28) 7006 (53.86) 6398 (51.86)
Postgraduate 23,289 (35.52) 4368 (34.07) 4499 (35.06) 5161 (35.41) 4626 (35.56) 4635 (37.58)
Alcohol intake, g/d 11.58 (13.90) 13.17 (14.89) 12.48 (14.42) 11.57 (14.00) 10.81 (13.15) 9.80 (12.59)
Smoking status, n (%)
Current 8826 (13.46) 1769 (13.80) 1755 (13.68) 1923 (13.19) 1733 (13.32) 1646 (13.35)
Former 21,348 (32.56) 3846 (30.00) 4019 (31.32) 4786 (32.83) 4377 (33.65) 4320 (35.02)
Nonsmoker 35,400 (53.98) 7207 (56.20) 7058 (55.00) 7868 (53.98) 6898 (53.03) 6369 (51.63)
BMI, kg/m2 22.92 (3.22) 23.15 (3.48) 23.00 (3.31) 22.92 (3.14) 22.89 (3.13) 22.63 (3.00)
BMI categories, kg/m2, n (%)
<20 8826 (13.46) 1769 (13.80) 1755 (13.68) 1923 (13.19) 1733 (13.32) 1646 (13.35)
20–24.99 21,348 (32.56) 3846 (30.00) 4019 (31.32) 4786 (32.83) 4377 (33.65) 4320 (35.02)
�25 35,400 (53.98) 7207 (56.20) 7058 (55.00) 7868 (53.98) 6898 (53.03) 6369 (51.63)
Physical activity, MET-h/wk 49.24 (49.52) 47.66 (45.21) 48.55 (48.88) 48.90 (50.07) 49.65 (49.00) 51.57 (54.08)
Energy intake (excluding alcohol) kcal/d 2129.36

(543.81)
2441.27
(543.17)

2226.76
(530.40)

2097.45
(510.86)

2001.04
(493.34)

1876.83
(463.09)

Age at menarche, y 12.78 (1.42) 12.83 (1.42) 12.80 (1.41) 12.79 (1.42) 12.76 (1.39) 12.73 (1.42)
Age at menopause, y 50.62 (3.82) 50.62 (3.82) 50.65 (3.81) 50.65 (3.81) 50.57 (3.82) 50.58 (3.84)
Age at first birth, n (%)
<30 y 51,384 (78.36) 10,237 (79.84) 10,182 (79.35) 11,345 (77.82) 10,099 (77.64) 9521 (77.19)
�30 y 6625 (10.10) 1365 (10.65) 1262 (9.83) 1527 (10.48) 1297 (9.97) 1174 (9.51)
Nulliparous 7565 (11.54) 1220 (9.51) 1388 (10.82) 1705 (11.70) 1612 (12.39) 1640 (13.30)
Breastfeeding, n (%)
Ever 37,772 (57.60) 7482 (58.35) 7386 (57.56) 8350 (57.28) 7390 (56.81) 7164 (58.08)
Never 24,380 (37.18) 4682 (36.52) 4785 (37.29) 5475 (37.56) 4916 (37.79) 4522 (36.66)
Unknown 3422 (5.22) 658 (5.13) 661 (5.15) 752 (5.16) 702 (5.40) 649 (5.26)
Ever use of menopausal hormone therapy, n (%) 19,761 (30.14) 3404 (26.55) 3812 (29.71) 4417 (30.30) 4203 (32.31) 3925 (31.82)
Ever use of the contraceptive pill, n (%) 39,816 (60.72) 8263 (64.44) 7927 (61.78) 8818 (60.49) 7674 (58.99) 7134 (57.84)
Past history of benign breast disease, n (%) 19,048 (29.05) 3651 (28.47) 3721 (29.00) 4183 (28.70) 3809 (29.28) 3684 (29.87)
Family history of breast cancer, n (%) 4841 (7.38) 931 (7.26) 929 (7.24) 1135 (7.79) 952 (7.32) 894 (7.25)
Mammography in the last follow-up cycle, n (%) 44,751 (68.25) 8512 (66.39) 8766 (68.31) 9910 (67.98) 9041 (69.50) 8522 (69.09)
Healthful plant-based diet index (continuous) 55.94 (6.07) 47.35 (2.82) 52.59 (1.02) 56.01 (0.97) 59.40 (1.01) 64.64 (2.78)

BMI, body mass index; MET, metabolic equivalents of task.
1 Continuous variables were described using means and SD, and categorical variables were described as numbers and percentages.
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history of benign breast disease, and to have recent mammography than
participants in the lowest quintile (Supplemental Table 3).

Healthful and unhealthful plant-based diet indices and BC
risk overall

Table 2 and Figures 1–3 present the associations of cumulative
average hPDI and uPDI with postmenopausal BC risk. After consid-
ering known BC risk factors, spline analysis showed a significant de-
parture from linearity for the association between hPDI and BC risk
(Pnonlinear < 0.01) (Figure 1). Participants with hPDI score intervals of
approximately 52–62 had the lowest BC risk. Similarly, when the hPDI
was modeled as a categorical variable, those in hPDI quintiles 3 and 4
had the lowest BC risk, 21% and 22%, respectively [fully adjusted
model (Model 3), HRQ3 (95% CI): 0.79 (0.71, 0.87) and HRQ4 (95%
CI): 0.78 (0.70, 0.86)] than those in the first quintile. Participants in the
highest quintile 5 had a 14% lower risk of BC [HRQ5 compared with Q1

(95% CI): 0.86 (0.77, 0.95)].
In contrast, for cumulative average uPDI, the spline analysis was

consistent with a linear relation (Pnonlinear ¼ 0.18) (Figure 2). Modeled
as a continuous variable, uPDI resulted in a 4% higher risk of BC
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[Model 3, HR1-SD increase (95% CI): 1.04 (1.01, 1.08)]. When quintile
groups of uPDI were considered, a 20% higher risk for the highest
compared with the lowest quintile was observed [Model 3, HRQ5

compared with Q1 (95% CI): 1.20 (1.08, 1.33); Ptrend < 0.01]. Since the
HRs changed substantially from Model 2 to 3, we adjusted energy
intake, alcohol, and BMI individually to assess which variables could
be driving the associations. We observed the following changes:
adjusting for BMI, HRQ5 compared with Q1 (95% CI): 1.14 (1.03, 1.26),
for energy intake, HRQ5 compared with Q1 (95% CI): 1.17 (1.05, 0.30), and
for alcohol, HRQ5 compared with Q1 (95% CI): 1.13 (1.03, 1.25). The
greatest variation in HR occurred when adjusting for energy intake,
suggesting that this variable could be an important confounder or
mediator of the association between uPDI and BC risk.

Healthful and unhealthful plant-based diet indices
according to hormone receptor and histologic subtypes

When investigating the association of cumulative average hPDI
according to BC subtypes, we did not observe heterogeneity by either
receptor status or histology (Pheterogeneity > 0.05 for all) (Supplemental
Tables 4–7). For example, in the fully adjusted model, when we



TABLE 2
Association of the healthful and unhealthful plant-based diet indices with overall breast cancer risk, E3N (Etude Epid�emiologique aupr�es de femmes de la Mutuelle
G�en�erale de l'Education Nationale) cohort (N ¼ 65,574)

Plant-based diet indices Number noncases Number cases Model 1 Model 2 Model 3

HR (95% CI) HR (95% CI) HR (95% CI)

Healthful plant-based diet index
N ¼ 61,606 N ¼ 3968

Pnonlinear <0.01
Q1 11,960 862 Reference Reference Reference
Q2 12,002 830 0.93 (0.85, 1.03) 0.93 (0.84, 1.02) 0.93 (0.85, 1.03)
Q3 13,760 817 0.78 (0.71, 0.86) 0.77 (0.70, 0.85) 0.79 (0.71, 0.87)
Q4 12,290 718 0.77 (0.70, 0.85) 0.76 (0.69, 0.84) 0.78 (0.70, 0.86)
Q5 11,594 741 0.84 (0.76, 0.93) 0.83 (0.75, 0.91) 0.86 (0.77, 0.95)
Ptrend <0.01 <0.01 <0.01
Unhealthful plant-based diet index
Pnonlinear 0.18
1-SD increase N ¼ 61,606 N ¼ 3968 1.01 (0.98, 1.04) 1.02 (0.98, 1.05) 1.04 (1.01, 1.08)
Q1 11,547 753 Reference Reference Reference
Q2 12,955 813 0.96 (0.87, 1.06) 0.96 (0.87, 1.06) 0.98 (0.89, 1.09)
Q3 11,575 711 0.94 (0.85, 1.04) 0.95 (0.85, 1.05) 0.99 (0.89, 1.10)
Q4 13,414 837 0.96 (0.87, 1.05) 0.96 (0.87, 1.06) 1.02 (0.92, 1.13)
Q5 12,115 854 1.10 (1.00, 1.22) 1.11 (1.01, 1.23) 1.20 (1.08, 1.33)
Ptrend 0.12 0.06 <0.01

CI, confidence interval; HR, hazard ratio; Q, quintiles groups
Model 1: Adjusted for age (as the time scale), stratified by birth cohort.
Model 2: Model 1þ educational level, physical activity, smoking status, family history of breast cancer, breastfeeding, age at menarche, age at first full-term birth,
past history of benign breast disease, ever use of the contraceptive pill, ever use of menopausal hormone therapy, and mammography in the last follow-up cycle.
Model 3: Model 2 þ body mass index, energy intake, and alcohol.

FIGURE 1. Associations of the healthful plant-based diet index with BC fitted with restricted cubic splines (N ¼ 65,574; 5 knots placed at the 5th, 27.5th, 50th,
72.5th, and 95th percentiles), Pnonlinear < 0.01. Risk estimates were adjusted for age (as the time scale), educational level, physical activity, smoking status,
family history of BC, breastfeeding, age at menarche, age at first full-term birth, past history of benign breast disease, ever use of the contraceptive pill, ever use
of menopausal hormone therapy, mammography in the last follow-up cycle, body mass index, energy intake, and alcohol (model stratified by birth cohort). The
solid line represents the hazard ratio, and the dashed lines the lower and upper 95% confidence interval. BC, breast cancer.
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compared the risks associated with quintile 5 of hPDI for PRþ and PR-,
we observed 13% and 16% lower risks, respectively [HRQ5 compared with

Q1 (95% CI): 0.87 (0.76, 0.99) and 0.84 (0.70, 1.00); Pheterogeneity ¼
0.76] (Figure 3). For ERþ BC, participants in the highest quintile of
hPDI had a 15% lower BC risk [HRQ5 compared with Q1 (95% CI): 0.85
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(0.76, 0.95)] compared with participants in the lowest quintile. For ER-

BC, there was a lower risk for the first 2 quintiles and a null association
for quintile 5 [HRQ5 compared with Q1 (95% CI): 0.88 (0.69, 1.12)]
(Supplemental Table 4). The HRsQ5 compared with Q1 (95% CI) for
ERþPRþ and ER-PR- BC was 0.86 (0.75, 0.99) and 0.87 (0.67, 1.14),



FIGURE 2. Associations of the unhealthful plant-based diet index with BC fitted with restricted cubic splines (N ¼ 65,574; 5 knots placed at the 5th, 27.5th,
50th, 72.5th, and 95th percentiles), Pnonlinear ¼ 0.18. Risk estimates were adjusted for age (as the time scale), educational level, physical activity, smoking status,
family history of BC, breastfeeding, age at menarche, age at first full-term birth, past history of benign breast disease, ever use of the contraceptive pill, ever use
of menopausal hormone therapy, mammography in the last follow-up cycle, body mass index, energy intake, and alcohol (model stratified by birth cohort). The
solid line represents the hazard ratio, and the dashed lines the lower and upper 95% confidence interval. BC, breast cancer.

FIGURE 3. The healthful and unhealthful plant-based diet indices and breast cancer risk, overall and subtypes, E3N (Etude Epid�emiologique aupr�es de femmes
de la Mutuelle G�en�erale de l'Education Nationale) cohort (N ¼ 65,574). Hazard ratios (Model 3)1 for the highest (Q5) compared with the lowest (Q1) quintiles
was presented in the figure. CI, confidence interval; ER, estrogen receptor; HR, hazard ratio; PR, progesterone receptor. 1HR adjusted for age (as the time scale),
educational level, physical activity, smoking status, family history of breast cancer, breastfeeding, age at menarche, age at first full-term birth, past history of
benign breast disease, ever use of the contraceptive pill, ever use of menopausal hormone therapy, mammography in last follow-up cycle, body mass index,
energy intake, and alcohol (model stratified by birth cohort).
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respectively (Supplemental Table 6). Lastly, for ductal and lobular BC,
the HRsQ5 compared with Q1 (95% CI) were 0.84 (0.74, 0.95) and 0.79
(0.62, 1.02), respectively (Supplemental Table 7).

In subgroup analyses for cumulative average uPDI, in the fully
adjusted model, participants in the highest intake quintile had a 20%
higher risk of ERþ BC, HRQ5 compared with Q1 (95% CI): 1.20 (1.07,
1.35); Ptrend < 0.01, albeit we did not observe heterogeneity by either
receptor status or histology (Pheterogeneity > 0.05 for all) (Figure 3).
Corresponding HRQ5 compared with Q1 (95% CI) for ER- BC was 1.20
(0.94, 1.53); Ptrend ¼ 0.45 (Supplemental Table 4). In addition, there
was an 18% and 24% higher risk of PRþ and PR- BC, HRQ5 compared

with Q1 (95% CI): 1.18 (1.03, 1.34); Ptrend ¼ 0.02 and 1.24 (1.05, 1.47);
Ptrend ¼ 0.02, respectively (Supplemental Table 5). Corresponding
HRsQ5 compared with Q1 (95% CI) for ERþPRþ and ER-PR- BC were 1.17
(1.02, 1.34), Ptrend ¼ 0.02 and 1.19 (0.91, 1.55), Ptrend ¼ 0.57,
respectively (Supplemental Table 6). Lastly, there were positive asso-
ciations for both ductal and lobular BCs, HRQ5 compared with Q1 (95%
CI): 1.17 (1.03, 1.32), Ptrend ¼ 0.02, and 1.55 (1.20, 1.99), Ptrend <

0.01, respectively (Supplemental Table 7).

Stratified analyses
There were no interactions between cumulative average hPDI and

uPDI and BMI, MHT use, or physical activity with respect to BC risk
(Pinteraction > 0.05 for all) (Supplemental Tables 8–10 and Supple-
mental Figure 2).

Sensitivity analyses
In sensitivity analyses using multiple imputations to handle missing

covariates, a similar pattern of results was obtained than those of the
primary analysis (results not tabulated). In addition, results were un-
changed when excluding participants diagnosed in the first 5 y of
follow-up, suggesting that reverse causation was unlikely to explain the
findings (results not tabulated).

We found evidence for a nonlinear association between the cumu-
lative average overall PDI and BC risk (Pnonlinear ¼ 0.03). Considering
quintiles of PDI in the fully adjusted model, there was a lower risk of
BC from quintiles 2–4 [HRQ2 (95% CI): 0.83 (0.75, 0.92) –HRQ4 (95%
CI): 0.84 (0.76, 0.93)] which attenuated in quintile 5 [HR (95% CI):
0.94 (0.85, 1.04)].

Furthermore, when using scores derived by FFQ at baseline in
Model 3, there was a linear association between PDI (Pnonlinear ¼ 0.51),
hPDI (Pnonlinear ¼ 0.86), and uPDI (Pnonlinear ¼ 0.11), and BC risk.
Considering a 1-SD increase in hPDI in Model 3, there was a 3% lower
risk of BC [HR (95% CI): 0.97 (0.93, 1.00)]. Considering quintiles of
baseline hPDI, there was an 11% lower risk of BC [HR (95% CI): 0.89
(0.81, 0.99); Ptrend< 0.01] in Model 1, while full adjustment attenuated
the association, HR (95% CI): 0.92 (0.83, 1.02); Ptrend ¼ 0.06.
Conversely, for baseline uPDI, there was a 4% increase in risk for a 1-
SD increase [HR (95% CI): 1.04 (1.01, 1.08)]. As quintiles of uPDI, in
Model 3, there was a 13% higher risk [HR (95% CI): 1.13 (1.02, 1.26);
Ptrend ¼ 0.02]. We found no association between baseline overall PDI
and BC risk (results not tabulated).

When considering the time-dependent indexes in the fully adjusted
model, for each 1-SD increase, the HRs (95% CI) for overall BC risk
were as follows: PDI, 0.977 (0.969, 0.985); hPDI, 0.991 (0.983, 0.999);
and uPDI, 0.997 (0.988, 1.005). For the quintiles group analysis, the
HR (95% CI) for overall BC risk were as follows: PDI, HRQ5 compared

with Q1 (95% CI): 0.94 (0.91, 0.96); hPDI, HRQ5 compared with Q1 (95%
CI): 0.97 (0.94, 1.00); and uPDI, HRQ5 compared with Q1 (95% CI): 0.99
(0.96, 1.01) (results not tabulated).
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The HRs CI for IDC was not materially different from our pri-
mary analysis; for cumulative average hPDI and uPDI, in the fully
adjusted model, the HRQ5 compared with Q1 (95% CI) were 0.84 (0.74,
0.95) and 0.18 (1.04, 1.34); Ptrend < 0.01, respectively (results not
tabulated).

Lastly, when we used energy limits proposed by Willett, the results
did not change materially, and the direction of the association
remained. For cumulative average hPDI and uPDI in the fully adjusted
model, the HRsQ5 compared with Q1 (95% CI) were 0.85 (0.77, 0.94) and
1.16 (1.05, 1.28); Ptrend ¼ 0.02, respectively.

Discussion

The French E3N prospective cohort study observed a nonlinear
association between adherence to hPDI and BC risk, with the lowest
risk for moderate adherence. In contrast, higher adherence to uPDI was
positively associated with BC risk. In addition, we found no hetero-
geneity between adherence to these plant-based diet indices and BC
risk across tumor subtypes. These results suggest that hPDI could have
a preventive influence and uPDI a promotive influence on all types of
BC, thus acting independently of hormonal mechanisms and reflecting
the importance of plant-based diet quality in BC prevention in post-
menopausal females.

Our findings of a differential pattern of association between a plant-
based diet and postmenopausal BC risk by the quality of plant foods
were observed in previous studies. In a cohort study of more than
150,000 participants from the Nurses’ Health Studies, an inverse as-
sociation was observed with hPDI. However, they did no evidence of
any increased risk of overall BC with uPDI [20]. Moreover, in a
case-control study on 350 cases and 700 controls from Iran, there were
lower odds of BC in postmenopausal participants with the greatest
adherence to hPDI, whereas the greatest adherence to uPDI was
associated with higher odds [21], although in another case-control
study on 412 cases and 456 controls, hPDI was associated with
lower odds, no association was observed with uPDI [23]. Furthermore,
in a Mediterranean cohort study of 10,812 participants, neither the
healthful nor the unhealthful provegetarian patterns were associated
with postmenopausal BC risk [25].

Although a nonlinear association between high-quality plant foods
such as fruit and vegetables and BC risk has not been reported so far, a
nonlinear association between dietary folate intake and BC risk in the
EPIC cohort was suggested [44]. However, such an association has
already been reported for colorectal cancer. For example, a
meta-analysis of 19 prospective studies conducted by Aune et al. [45]
reported a nonlinear association between fruit and vegetable intake and
colorectal cancer risk, with the greatest risk reduction in the lower
intake range. Furthermore, a meta-analysis by Schwingshackl et al.
[46] reported nonlinear associations between vegetables, fruit, and nuts
with all-cause mortality.

We found no heterogeneity across BC subtypes in our study. The
risk of BC by receptor and histological subtypes has not been exten-
sively studied. As regards the association between dietary patterns and
ductal and lobular carcinoma, studies support the findings of an inverse
risk between the Mediterranean diet and risk of IDC and invasive
lobular carcinoma BC and a positive association between the Western
diet and IDC and invasive lobular carcinoma BC [47]; however,
literature is scarce for associations between BC histological types and
plant-based diets. The Nurses’ Health Studies reported heterogeneity
by ER receptor status, with the strongest association between hPDI and
ER- tumors [20].
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The discrepancies in findings of these studies could partly be
attributed to varying sample sizes, differences in the development of
scores using 18- [20, 25] or 16- food group constructs [21], dietary
measurement errors, the duration of follow-up (which varies between
115,802 and over 4,841,083 person-years of follow-up for prospective
studies), as well as the nonreporting in some studies of the potential
deviation from the linearity of association.

Several potential biological mechanisms support a protective role of
hPDI toward BC risk. The healthful plant-predominant dietary pattern
is characterized by high fiber, fruit, vegetables, nuts, legumes, and low
red and processed meat. Hence, abundant antioxidants, vitamins, and
fiber could have anti-inflammatory and antiproliferative activities
[48–50]. Furthermore, there is experimental evidence that polyphenols
in fruit and vegetables inhibit the proliferation of ductal carcinoma in
situ BC [51]. High fiber also reduces the total body pool of estrogen,
thus helping reduce BC risk [52]. Similarly, phytoestrogens which are
plant-derived estrogen-like compounds, have anticarcinogenic effects
of their own and via lowering the amount of circulating estrogen;
meta-analyses have reported that dietary lignans, a class of phytoes-
trogen found in vegetables, fruit, and whole grains, green tea, and
oilseeds, were associated with lower BC risk in postmenopausal par-
ticipants [53, 54]. In France, a high dietary intake of plant lignans and
enterolignans was associated with lower ERþ and PRþ post-
menopausal BC risk [55]. On the other hand, less healthful plant-based
foods are poor in fiber and micronutrients and laden with carbohydrates
with tumor-promoting potential via effects on circulating insulin and
insulin-like growth factor-1 [56, 57]. Trans-fatty acids in industrially
processed salty foods, sweets, and other packaged foods influence
systemic inflammation, visceral adiposity, body weight, and insulin
resistance, increasing BC risk [58–60]. Furthermore, polyunsaturated
fatty acid metabolites reduce estrogen binding to serum-binding pro-
teins increasing circulating levels and activating breast cell growth
[61]. More evidence on the effects of bioactive metabolites of various
compounds could shed light on these findings.

This study has some important strengths. First, the prospective
nature of the study design precluded recall and selection biases with
high retention over a long follow-up period. Second, the large sample
size provided statistical power to detect associations. Third, the large
number of incident cases allowed us to analyze by receptor and his-
tological subtypes. Fourth, validated FFQs were used to collect dietary
intake data before BC diagnosis. We used the cumulative average diet
scores, thus accounting for possible changes in dietary habits during the
follow-up period and better reflecting long-term dietary adherence.
Fifth, excluding participants with BC diagnosed in the first 5 y of
follow-up did not change our results, suggesting that reverse causation
was unlikely to explain our findings. Lastly, when we applied the
Willett energy exclusion criteria, although it reduced the study popu-
lation and the study power, the results were somewhat stronger and in
favor of a true association.

However, this study was met with some limitations. First, although
we adjusted for the most known confounding factors of BC, there could
still be some bias from unmeasured confounders because of the study’s
observational nature. Second, self-reported dietary intake was used as
exposure information. Although the FFQ has been validated, some
degree of nondifferential exposure misclassification is likely, which is
usually considered to bias the results toward the null in a prospective
setting such as ours, although a recent paper suggests that there are
possibilities of opposite bias [62]. Lastly, our highly educated partici-
pants might be more health-conscious. They may not be a represen-
tative sample of the general French population, limiting our results’
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external validity. However, considering the dietary variations in the
general population, there is a higher possibility of finding stronger
associations between these indices and the risk of BC.

In conclusion, the results showed a nonlinear risk reduction be-
tween hPDI and BC, with the lowest BC risk for moderate adherence
and a linear risk increase between uPDI and BC between post-
menopausal females. These findings have implications for all subtypes
of BC and support the notion of the importance of the quality of plant-
based foods when consuming plant-predominant diets with a balance
of animal foods. Additional research is needed to confirm these find-
ings and better understand the underlying mechanisms involved in
these associations. Lastly, more studies are required to determine the
associations in relation to premenopausal BC, as there are different
mechanisms for hormone-related BC in pre and postmenopausal fe-
males. Because premenopausal BCs are less frequent than post-
menopausal BCs, a collaborative study of several cohorts would be an
ideal setting.
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