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Abstract 

Significant progress has been made in the understanding of human cancers at the molecular 

genetics level and it is providing new insights into their underlying pathophysiology. This 

progress has enabled the subclassification of the disease and the development of targeted 

therapies that address specific biological pathways. However, obtaining genetic information 

remains invasive and costly. Medical imaging, on the other hand, is a non-invasive technique 

that captures important visual characteristics (i.e. image features) of abnormalities and plays 

an important role in routine clinical practice. Recent advancements in computerised medical 

image analysis have enabled quantitative approaches to extract image features that can reflect 

tumour genetic characteristics, leading to the emergence of the growing field of 

‘radiogenomics’. Radiogenomics investigates the relationships between medical imaging 

features and tumour molecular characteristics, and it enables the derivation of imaging 

surrogates (radiogenomics features) to genetic biomarkers that can provide an alternative 

approach to non-invasive and accurate cancer diagnosis. The identification of image features 

that are associated with tumour genetic characteristics is crucial for providing accurate 

radiogenomics analysis.  

This thesis presents a new framework that combines several novel methods for 

radiogenomics analysis that associates medical image features with tumour genetic 

characteristics, with the main objectives being: i) to provide a comprehensive characterisation 

of tumour image features that reflect underlying genetic information; ii) introduce a method 

that identifies and extracts radiogenomics features encoding common pathophysiological 

information across different diseases, overcoming the dependence on large volumes of 
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annotated datasets for radiogenomics analysis; and iii) develop a method that quantifies 

radiogenomics features from multi-modal imaging data and accounts for unique information 

encoded in tumour heterogeneity sub-regions. The present radiogenomics methods advance 

radiogenomics analysis and contribute to improving research in computerised medical image 

analysis.  



 
 

vii 

Acknowledgement 

I would like to convey my sincere gratitude to my supervisor, Professor David Dagan Feng, 

for his invaluable inspiration, patience, guidance, enthusiasm, and unwavering support. 

Although words cannot fully capture my appreciation, I believe it is appropriate to cite the 

following passage:  

“为天地立心，为生民立命，为往圣继绝学，为万世开太平。 

To ordain conscience for Heaven and Earth. To secure life and fortune for the people. To 

continue lost teachings for past sages. To establish peace for all future generations.” 

- Zhang Zai, Song dynasty, China  

 

I wish to extend my profound gratitude to my supervisor, Professor Jinman Kim, for his 

exceptional support and mentorship throughout my research journey. His unwavering 

encouragement, vast knowledge, and provision of the opportunity to conduct my study have 

been invaluable to me. I shall forever remain grateful for his guidance and support, and I find 

it fitting to quote the following in recognition of his outstanding contribution: 

“If the people prosper, how can the king not prosper with them? And if the people do not 

prosper, how may the king prosper without them?” 

- King Sejong, Joseon Wangjo, Korea 

 

To my wife, Jingshu Zhao: 

“春天黎明很美; 夏季夜色迷人; 秋光最是薄暮; 冬景尽在清晨。 

春は夜がほのぼのと明けようとする頃; 夏は夜; 秋は夕暮れ; 冬は早朝” 

- The Pillow Book (Makura no Sōshi), Sei Shōnagon, Heian period, Japan 

 



 
 

viii 

I would like to thank all the people whom I had the privilege to work with. Special thanks go 

to my co-supervisor Dr. Ashnil Kumar and Dr. Michael Fulham. I greatly appreciate their 

helpful advice and contribution towards my research. 

 

My thanks also go to Dr. Younhyun Jung, Dr. Euijoon Ahn, Dr. Lei Bi, Dr. Michael de Ridder, 

Dr. Xiaohang Fu, (grand master) Hoijoon Jung, Yifan Liu, Yige Peng, MingJian Li, Shijia 

Zhou, Zimo Huang, Mingxiao Tu and other former and current colleagues and friends in the 

Biomedical Data Analysis and Visualisation (BDAV) lab. 

 

Lastly, to myself: 

“周虽旧邦，其命维新” 

- Classic of Poetry (Shijing), Zhou Dynasty, China  



 
 

ix 

Contents 

 
Statement of Originality .......................................................................................................... iii 

Authorship Attribution Statement ........................................................................................... iv 

Abstract ...................................................................................................................................... v 

Acknowledgement ................................................................................................................... vii 

Contents .................................................................................................................................... ix 

List of Publications ............................................................................................................... xiii 

Published or Accepted: ................................................................................................................. xiii 

Under Preparation, Review or Revision: .................................................................................... xiv 

List of Figures ......................................................................................................................... xv 

List of Tables ......................................................................................................................... xvii 

Chapter 1. Introduction ....................................................................................................... 1 

1.1 Overview: .............................................................................................................................. 1 

1.2 Motivation ............................................................................................................................. 2 

1.3 Aims and Objectives ............................................................................................................. 6 

1.4 Thesis Structure .................................................................................................................... 7 

Chapter 2. Medical Imaging and Image Processing ......................................................... 8 

2.1 Overview ............................................................................................................................... 8 

2.2 Definitions ............................................................................................................................. 8 



 
 

x 

2.3 Medical Imaging Modalities .............................................................................................. 10 

2.3.1 Computed Tomography (CT) ......................................................................................................... 11 

2.3.2 Magnetic Resonance (MR) Imaging .............................................................................................. 12 

2.4 Machine Learning, Deep Learning and Convolutional Neural Networks .................... 13 

2.4.1 Machine Learning .......................................................................................................................... 13 

2.4.2 Supervised Learning: ..................................................................................................................... 14 

2.4.3 Artificial Neural Network .............................................................................................................. 15 

2.4.4 Deep Learning ................................................................................................................................ 17 

2.4.5 Convolutional Neural Networks .................................................................................................... 18 

2.4.6 Deep Residual Networks (ResNet) ................................................................................................ 21 

2.4.7 Domain Adaptation for Transfer Learning .................................................................................... 22 

2.5 Medical Image Processing ................................................................................................. 26 

2.5.1 Medical Image Segmentation .............................................................................................................. 26 

2.5.1 Medical Image Classification ......................................................................................................... 28 

Chapter 3. Radiogenomics ................................................................................................ 30 

3.1 Overview ............................................................................................................................. 30 

3.2 Overview of the Radiogenomics Pipeline ......................................................................... 30 

3.3 Gene Expression Profiling ................................................................................................. 32 

3.4 Image Feature Extraction .................................................................................................. 34 

3.5 Summary of Gaps in Radiogenomics Research ............................................................... 37 

3.5.1 Radiogenomics with Fused Feature Signature ............................................................................... 38 

3.5.2 Radiogenomics with Multi-disease Analysis ................................................................................. 39 

3.5.3 Radiogenomics with Tumour Heterogeneity and Multi-modal Imaging Data .............................. 40 

Chapter 4. Radiogenomics with Fused Image Feature Signature .................................. 42 

4.1 Contributions ............................................................................................................................. 42 

4.2 Materials and Methods ............................................................................................................. 44 



 
 

xi 

4.2.1 Overview of the framework ................................................................................................................. 44 

4.2.2 NSCLC Radiomics-Genomics Dataset ................................................................................................ 45 

4.2.3 NSCLC-Radiogenomics Dataset ......................................................................................................... 46 

4.2.3 Image Features ..................................................................................................................................... 46 

4.2.4 Radiogenomics Analysis ..................................................................................................................... 48 

4.2.5 Evaluation Strategy ............................................................................................................................. 49 

4.3 Results ......................................................................................................................................... 50 

4.3.1 Image Signatures and T Stage ............................................................................................................. 50 

4.3.2 RRs between Image Feature Signatures and Genes ............................................................................ 51 

4.3.2 RRs between Image Feature Signatures and GO Terms ..................................................................... 54 

4.4 Discussion ................................................................................................................................... 59 

4.5 Conclusion .................................................................................................................................. 65 

Chapter 5. Radiogenomics with Multi-disease Analysis .................................................. 66 

5.1 Contributions ............................................................................................................................. 67 

5.2 Materials and Methods ............................................................................................................. 68 

5.2.1 Materials .............................................................................................................................................. 68 

5.2.2 Overview of the framework ................................................................................................................. 69 

5.2.3 Radiogenomics Feature Extraction and Correlation Analysis ............................................................. 70 

5.2.4 Experiments ......................................................................................................................................... 71 

5.3 Results ......................................................................................................................................... 72 

5.3.1 ACE2-RGF for Classifying LUAD, COVID-19, and Normal Subjects ............................................. 72 

5.3.2 MLR for COVID-19 Classification ..................................................................................................... 75 

5.3.3 MLR for COVID-19 Critical Illness Identification ............................................................................. 78 

5.4 Discussion ................................................................................................................................... 79 

5.5 Conclusion .................................................................................................................................. 83 



 
 

xii 

Chapter 6. Radiogenomics with Tumour Heterogeneity and Multi-modal Imaging Data

 84 

6.1 Contributions ............................................................................................................................. 85 

6.2 Materials and Method ............................................................................................................... 86 

6.2.1 Materials .............................................................................................................................................. 86 

6.2.2 Image pre-processing ........................................................................................................................... 87 

6.2.3 Deep Multi-sequence Multi-region Classification Model (DeepMMC) ............................................. 88 

6.2.3.1 Multi-region Fusion Module (MRF) ................................................................................................ 89 

6.2.3.2 Multi-sequence Fusion Module (MSF) ............................................................................................ 90 

6.2.4 Experimental Setup ............................................................................................................................. 91 

6.3 Results ......................................................................................................................................... 92 

6.3.1 Ablation study ..................................................................................................................................... 92 

6.3.2 Comparison to the State-of-the-art ...................................................................................................... 94 

6.4 Discussion ................................................................................................................................... 94 

6.4.1 Ablation Study Analysis ...................................................................................................................... 95 

6.4.2 Comparison to the State-of-the-Art ..................................................................................................... 96 

6.5 Conclusion .................................................................................................................................. 97 

Chapter 7. Conclusions and Future Works ........................................................................... 98 

7.1 Conclusions ................................................................................................................................ 98 

7.2 Future Works ........................................................................................................................... 100 

Reference ............................................................................................................................... 102 

 

  



 
 

xiii 

List of Publications 

The following publications were produced during the Ph.D. candidature. Many of the listed 

publications are based on the work presented in this thesis. Three first author journal articles 

and three conference articles are listed. Publications marked with the star symbol (*) presents 

major contributions to this thesis.  

Published or Accepted: 

1. *Xia T, Kumar A, Fulham M, Feng D, Wang Y, Kim EY, Jung Y, Kim J. Fused 

feature signatures to probe tumour radiogenomics relationships. Scientific Reports. 

2022 Feb 9;12(1):2173. 
2. *Xia, T., Fu, X., Fulham, M., Wang, Y., Feng, D., and Kim, J., “CT-based 

Radiogenomics Framework for COVID-19 Using ACE2 Imaging 

Representations”, Journal of Digital Imaging. 2023 Aug 8:1-1. 

3. Huang, Z., Xia, T., Kim, J., Zhang, L. and Li, B., “Combining CNN With 

Pathological Information for the Detection of Transmissive Lesions of Jawbones 

From CBCT Images.” In 2021 43rd Annual International Conference of the IEEE 

Engineering in Medicine & Biology Society (EMBC) (pp. 2972-2975). IEEE. 

4. Wang, C., Xia, T., Yang, J. Y. H., and Kim, J., "A Three-Stage Self Supervised 

Deep Learning Network for Automatic Calcium Scoring of Cardiac Computed 

Tomography Images," 2022 International Conference on Digital Image Computing: 

Techniques and Applications (DICTA), Sydney, Australia, 2022, pp. 1-7. 

 



 
 

xiv 

Under Preparation, Review or Revision: 

5. *Xia, T., Fulham, M., Wang, Y., Feng, D., and Kim, J., “Deep multimodal Network 

for Predicting MGMT Promotor Region Methylation Status Using Tumour 

Heterogeneity Information from MR Imaging”, IEEE J. Biomed. Health Inform. 

(JBHI), 2023. (Under Internal Review) 

6. Liu, Y., Xia, T., Feng, D., and Kim, J., “Deep Radiogenomics with Intra-tumoral 

Heterogeneity Information for Predicting MGMT Promoter Region Methylation in 

Glioblastoma”, IEEE J. Biomed. Health Inform. (JBHI), 2023. (Under Internal 

Review) 

 

  



 
 

xv 

List of Figures 

 

 

Figure 2.1. An illustration of pixels, voxels, and spatial resolutions in medical images: (a) a 2D 

image with pixel resolution of 7 × 7 and a spatial resolution of 1mm × 1mm. (b) a 3D image 

volume with voxel resolution of 5 × 5 × 3 and a spatial resolution is 1mm × 1mm × 1mm. .... 9 

Figure 2.2. A CT scan depicting the lung field of a patient diagnosed with Non-small Cell Lung 

Cancer (NSCLC). (Data description detailed in Chapter 5). ................................................... 11 

Figure 2.3. Illustration of four common MRI sequences acquired from the same subject 

diagnosed with glioblastoma (GBM). ...................................................................................... 12 

Figure 2.4. An illustration of the structure of a single neuron in ANNs. ................................. 16 

Figure 2.5. An illustration a 2D convolution operation, which involves a 3 × 3 input image 

convolved with a 2 × 2 filter, resulting in a 2 × 2 output feature map. .................................... 20 

Figure 2.6. CNNs with multiple convolutional layers. At each layer, filters are applied to the 

input image, and the resulting feature maps are used as inputs to the subsequent convolutional 

layer. ......................................................................................................................................... 20 

Figure 2.7. A building block of ResNet. .................................................................................. 22 

Figure 2.8. Traditional and transfer learning-based approaches for CNN models. a) Traditional 

machine learning. b) Transfer learning-based approach for CNN model. ............................... 23 

Figure 2.9. An overview of shallow tuning-based transfer learning approach. ....................... 25 

Figure 3.1. The overview of a radiogenomics framework that employs conventional 

handcrafted image features. ..................................................................................................... 32 

Figure 4.1. The workflow for generating the FFSig and the identification of RRs with genes and 

GO terms. ................................................................................................................................. 44 



 
 

xvi 

Figure 4.2. Heatmap of the FFSig across patient clusters with corresponding T stage from the 

NRG-H dataset. ........................................................................................................................ 51 

Figure 4.3. The distribution of RRs between feature signatures and: a) gene expression value 

of the processed genes (n = 11,318) from the NRG-H dataset. b) gene expression value of the 

processed genes (n = 2,993) from the NRG-S dataset. ............................................................ 52 

Figure 4.4. Venn diagram shows the distribution of unique genes that were associated with 

FFSig, HCSig, TLSig, and FTSig: a) generated using the NRG-H dataset. b) generated using the 

NRG-S dataset. ........................................................................................................................ 53 

Figure 4.5. The distribution of RRs between the FFSig with the key genetic biomarker of EGFR 

from the NRG-H dataset, in comparison to HCSig, TLSig and FTSig. ........................................ 54 

Figure 4.6. Venn diagram shows the distribution of GO terms that were associated with image 

feature signatures of FFSig, TLSig, FTSig and HCSig: a) generated using the NRG-H dataset. b) 

generated using the NRG-S dataset. ........................................................................................ 55 

Figure 5.1. Our proposed radiogenomics method. It quantifies and identifies ACE2-RGF to 

construct a multiple logistic regression for classifying COVID-19 from normal subjects and 

identify critical illness from mild symptoms. .......................................................................... 69 

Figure 6.1. Overview of the proposed DeepMMC model. DeepMMC extracts, fuses, and learns 

complementary imaging features from distinct tumour heterogeneity sub-regions and multiple 

MR sequences using the MRF module. The output deep radiogenomics features were then 

processed using the MSF module to classify MGMT promoter region methylation status. ... 89 

  



 
 

xvii 

List of Tables 

 

Table 4.1. Two-Sample t-Tests that assess the strengths of all RRs constructed using the FFSig 

with HCSig, TLSig and FTSig, in both statistical directions on the NRG-H dataset. .................. 53 

Table 4.2. Two-Sample t-Tests that assess the strengths of all RRs constructed using the FFSig 

with HCSig and FTSig, in both statistical directions on the NRG-S dataset. ............................. 54 

Table 4.3. The GO terms that have RRs with FFSig, HCSig, TLSig and FTSig with positive and 

negative associations from the NRG-H dataset. ...................................................................... 57 

Table 4.4. The GO terms that have RRs with FFSig, HCSig and FTSig with positive and negative 

associations from the NRG-S dataset. ..................................................................................... 58 

Table 4.5. The GO terms that have the highest NES and exclusively RRs with FFSig (left) and 

the GO terms that are restricted to have RRs with FFSig (right), experimented on the NRG-H 

dataset. ..................................................................................................................................... 59 

Table 4.6. The GO terms that have the highest NES and exclusively RRs with FFSig (left) and 

the GO terms that are restricted to have RRs with FFSig (right), experimented on the NRG-S 

dataset. ..................................................................................................................................... 60 

Table 5.1. ACE2-RGF image features (12 features). ............................................................... 73 

Table 5.2. Performance of the MLR models for classifying LUAD from normal subjects using 

i) LUAD-AF, ii) ACE2-RGF, and iii) LUAD-RF. LUAD Radiomics features were extracted 

from the NRG-H and NRG-S datasets. ACE2-RGF was derived and extracted from the NRG-

H and NR ................................................................................................................................. 74 

Table 5.3. Performance of the MLR models for classifying COVID-19 from normal subject 

using i) LUAD-AF, ii) ACE2-RGF, and iii) LUAD-RF. Radiomics features were extracted 

from the NRG-S and NRG-H datasets. ACE2-RGF was derived and extracted from the NRG-

H and NRG-S datasets. ............................................................................................................ 75 



 
 

xviii 

Table 5.4. Top 12 radiomics features that were frequently selected by conventional image 

feature selection techniques for COVID-19 classification. ..................................................... 76 

Table 5.5. Performance of the MLR models for classifying COVID-19 from normal subject 

using i) COVID-19-AF, ii) ACE2-RGF, and iii) COVID-19-RF. COVID-19-AF Radiomics 

features were extracted from CT images of the CC-CCII dataset. ACE2-RGF was derived from 

the NRG-H and NRG-S datasets and was extracted from the CC-CCII dataset. .................... 77 

Table 5.6. Performance of MLR models for classifying COVID-19 subject from normal 

subjects. ACE2-RGF was fused with COVID-19-RF. COVID-19-RF Radiomics features were 

extracted from the CC-CCII dataset. ACE2-RGF was derived from the NRG-H and NRG-S 

datasets and was extracted from the CC-CCII dataset. Numbers in bold indicate improved 

performance from fusing ACE2-RGF with COVID-19-RF. ................................................... 77 

Table 5.7. Top 12 radiomics features that were frequently selected by conventional image 

feature selection techniques for COVID-19 critical illness identification. .............................. 78 

Table 5.8. Performance of MLR models for identifying COVID-19 critical illness using various 

feature selection methods. COVID-Crt-AF radiomics features were extracted from the CC-

CCII dataset. ACE2-RGF was derived from the NRG-H and NRG-S datasets and was extracted 

from the CC-CCII dataset. ....................................................................................................... 79 

Table 6.1. Performance of the DeepMMC model for classifying MGMT promoter region 

methylation status using i) MRF module that leverage selected MR sequence and tumour 

heterogeneity sub-regions, ii) MRF module that leverage all four MR sequences and tumour 

heterogeneity sub-regions available in the BraTS21 dataset, and iii) MRF and MSF modules 

that leverage all four MR sequences and tumour heterogeneity sub-regions. ......................... 92 

Table 6.2. MGMT promoter region methylation status classification performance between the 

proposed DeepMMC and existing classification methods. ...................................................... 94 



 
 

1 

 

Chapter 1. Introduction 
 

 

1.1 Overview: 

In modern healthcare, the ability to identify and extract imaging surrogates that can act as 

genetic biomarkers from cancer imaging is an important need. The development of optimal 

imaging surrogates has the potential to advance personalised and targeted medicine, thereby 

improving cancer diagnosis and therapy. This thesis aims to improve the methods used to 

identify and extract imaging surrogates for genetic biomarkers in the field of medical imaging 

analysis. Specifically, this thesis presents the outcomes of investigating the associations 

between cancer imaging characteristics, also known as image features, and their underlying 

genetic information using advanced medical image analysis methods. 

This thesis describes research conducted to explore two key hypotheses: what image 

features are considered important for representing the underlying genetic characteristics of 

tumours? and how can image features from various imaging modalities complement one 

another for cancer diagnosis? 
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1.2 Motivation 

Precision medicine is a personalised approach to disease prevention, treatment, and care that 

takes into account an individual's unique variability in genes, environment, and lifestyle [1]. 

Instead of employing a one-size-fits-all approach, it attempts to personalise medical procedures 

to the unique characteristics and needs of individual patients. Precision medicine enables the 

categorisation of individuals into disease-susceptible cohorts and predicts their responses to a 

particular therapy, therefore improving disease prognosis [2].  

 Cancers are a collection of disease categories characterised by a highly complex, 

diverse, and uncontrolled growth and spread of aberrant cells, which are one of the near-term 

focuses of precision medicine [1]. Cancer is a serious global health concern and is accountable 

for approximately 10 million deaths annually; this is despite substantial improvements in 

cancer research and therapy. The current standards of cancer patient management heavily rely 

on accurate diagnosis which may involve a combination of sophisticated medical procedures 

such as symptom evaluation during patient screening, non-invasive imaging for locating the 

disease, and examination of tissue specimens through histopathology. 

Recent advances in understanding human cancers at the molecular genetic level have 

provided insights into their underlying pathophysiology. Such progress has aided in the 

subclassification of the disease and facilitated the development of therapies that target specific 

biological pathways. For example, therapies that target epidermal growth factor receptor 

(EGFR) in non-small cell lung cancer (NSCLC) and O6-methylguanine methyltransferase 

(MGMT) in Glioblastoma (GBM) patients have demonstrated improved clinical outcomes [3, 

4].  

Obtaining genetic information is becoming an increasingly valuable complement to the 

existing diagnostic pipeline. It has the potential to provide optimal cancer treatment strategies 

at the level of individual patients [1]. The acquisition of genetic information, however, requires 
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adequate tumour tissue samples obtained from core biopsies that sample only a part of the 

tumour; further limitations are that biopsies are invasive and expensive [5]. These difficulties 

are compounded by human cancers exhibiting strong phenotypic and genetic heterogeneity, in 

which the abnormality develops at distinct sites with genetic variances [6].  

In addition to invasive procedures to obtain genetic information, medical imaging is a 

non-invasive technique that plays a vital role in routine clinical practice by capturing important 

visual characteristics of abnormalities. For instance, medical images can encode visual 

characteristics that describe cancer phenotypic traits, such as location, size, texture, and shape. 

These visual characteristics, commonly referred to as "image features," have been proven 

invaluable for disease diagnosis and oncologic research [7].  

Recent advancements in computerised medical image analysis have resulted in the 

development of "radiomics," a high-throughput and quantitative approach to extracting image 

features utilising machine learning-based algorithms and large volumes of medical data. 

Radiomics features have been demonstrated to offer additional insights into tumour phenotypic 

traits that complement traditional medical image analysis methods, which rely on explicitly 

designed image features based on existing medical knowledge, such as tumour location and 

shape. In addition, radiomics allows automated extraction of image features that can facilitate 

the characterisation of tumour phenotypic variations and provides insights into the patterns of 

disease spread and prognosis. Recent studies have demonstrated the capabilities of radiomics 

features for medical image analysis tasks, including the detection of tumours, characterisation 

of cancer subtypes, and prediction of treatment response [8, 9].  

Therefore, combining medical images and genetic information can offer a more 

comprehensive understanding of disease biology, improve disease diagnosis, and enhance the 

development of personalised treatment plans [10]. These findings contributed to the 

development of a novel research field known as ‘radiogenomics’, whose objective is to 
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investigate the statistical relationships between the image features of a tumour and its 

underlying genetic characteristics [11]; these features are hereby denoted as ‘radiogenomics 

features’. Radiogenomics enables the derivation of imaging surrogates to genetic biomarkers 

and provides an alternative approach that contributes to a non-invasive and accurate cancer 

diagnosis [12-14].  

Radiogenomics research has demonstrated the feasibility of deriving radiogenomics 

features by statistically correlating radiomics features with the underlying genetic 

characteristics of tumours in non-small cell lung cancer (NSCLC) patients [15]. In another 

study, Gevaert et al. [16] have shown that radiogenomics features can serve as non-invasive 

imaging surrogates to genetic biomarkers for the NSCLC prognosis. In another study, 

Kickingereder et al. [17] developed a radiogenomics-based approach and found that 

radiogenomics features are associated with biological information related to hypoxia / 

angiogenesis transcriptome signature in glioma patients. Early attempts have also been made 

to predict clinical outcomes in hepatocellular carcinoma using radiogenomics features [18, 19]. 

In these studies, image features such as tumour size, shape, and texture information were 

utilised to derive radiogenomics features. 

Despite recent progress in radiogenomics for deriving imaging surrogates to genetic 

biomarkers, there is still a reliance on tumour image features during statistical analysis. 

Furthermore, the current state-of-the-art radiogenomics approach usually involves using a 

single category of image features explicitly designed based on prior human knowledge (also 

known as ‘handcrafted features’) or those generated through machine learning techniques. As 

a result, the derivation of radiogenomics features is often restricted and may not fully capture 

the genetic characteristics that reflect specific cancer types or variants among patient cohorts. 

An alternative approach to address the challenges of radiogenomics analysis is to utilise both 

categories of image features during statistical analysis, as handcrafted and machine-learning 
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derived features have been shown to encode complementary information about the disease [20]. 

Furthermore, the utilisation of both categories of image features may enable the derivation of 

unique radiogenomics features that have the potential to demonstrate stronger associations to 

genetic characteristics and establish additional non-invasive imaging biomarkers. 

Another significant challenge in radiogenomics is the limited availability of annotated 

medical datasets, particularly for rare and emerging diseases [21]. The scarcity of annotated 

medical datasets restricts radiogenomics analysis to comprehensively extracting and deriving 

radiogenomics features that incorporate tumour genetic information. To address this challenge, 

an alternative approach is to use multi-disease analysis to leverage imaging and genetic 

information from related datasets where the diseases share similar pathophysiology. Multi-

disease analysis enables the derivation of radiogenomics features that have the potential to 

serve as a versatile imaging surrogate to genetic biomarkers for diseases that share similar 

pathophysiology information, such as signalling pathways.  

Furthermore, human cancers exhibit strong heterogeneity in imaging, histological, and 

genetic characteristics within and among patients. For instance, intra-tumoral heterogeneity in 

glioblastoma (GBM) can manifest as regions composed of diverse tissue necrosis, cystic 

degeneration, and haemorrhage at the imaging level [22-24]. The heterogeneous landscape of 

human cancers presents challenges for medical image analysis. Existing methods focus on 

processing and analysing imaging characteristics within entire tumour regions while neglecting 

the complementary information encoded in distinct image modalities. Radiogenomics has the 

potential to address the challenge by deriving radiogenomics features that leverages 

information from various tumour heterogeneous regions and integrates complementary 

information from distinct imaging modalities. Radiogenomics, therefore, demonstrates the 

potential to provide unique insights into tumour pathophysiology and facilitate medical image 

analysis tasks. 
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1.3 Aims and Objectives 

In this thesis, I propose a radiogenomics framework that aims to address the following 

challenges in the field of medical image analysis: 

1. The comprehensive characterisation of tumour imaging representations to reflect its 

underlying genetic information. 

2. The limited availability of annotated medical datasets, particularly for rare and 

emerging diseases for radiogenomics analysis. 

3. The comprehensive characterisation of tumour heterogeneity information for 

radiogenomics analysis. 

 

The proposed radiogenomics framework incorporates the following methods that address these 

challenges: 

1. I propose the fused feature signature (FFSig), a selection of image features that encodes 

complementary cancer imaging visual characteristics using a combination of handcrafted 

and deep learning-based image feature extraction techniques. The FFSig encodes 

complementary imaging characteristics of tumours and identifies more radiogenomics 

relationships with a broader range of genes related to important biological functions. The 

proposed FFSig is robust and generalisable across different datasets and allows the 

identification and extraction of important radiogenomics features that may facilitate cancer 

diagnosis and treatment planning. 

2. I propose a novel framework to derive radiogenomics features linked to the genetic 

characteristics of one disease, which can be applied to another disease through multi-

disease analysis. Furthermore, the proposed framework identifies and extracts 

radiogenomics features that encode common pathophysiological information across 
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different diseases, thus overcoming the dependence on large volumes of annotated datasets 

for radiogenomics analysis. 

3. I propose a novel radiogenomics method that quantifies radiogenomics features from multi-

modal imaging data and accounts for unique information encoded in tumour heterogeneity 

sub-regions. Furthermore, the framework leverages the complementary knowledge from 

the extracted radiogenomics features and identifies the relevant features for various medical 

image analysis tasks. 

 

1.4 Thesis Structure 

The remainder of this thesis is structured as follows: 

 Chapters 2 and 3 orient the readers by providing theoretical background knowledge of 

the thesis. Chapter 2 provides an overview of medical imaging and image processing 

techniques. Chapter 3 presents an overview of the state-of-the-art methods in radiogenomics 

analysis. In particular, it provides a summary of gaps from recent radiogenomics research.  

 Chapters 4, 5 and 6 provide detailed contributions to this thesis. We describe the Fused 

Image Feature Signature in chapter 4. In chapter 5, we describe the radiogenomics with multi-

disease analysis. Chapter 6 presents the novel radiogenomics method for multi-modality 

images with tumour heterogeneity and its application. 

 Finally, chapter 7 summarises the contribution of this thesis and indicates directions for 

future research in the domain of radiogenomics analysis. 
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Chapter 2. Medical Imaging and 

Image Processing  
 

 

2.1 Overview 

Medical imaging is integral tool to our contemporary healthcare systems for accurate cancer 

diagnosis and staging [25]. It provides a rapid and non-invasive assessment of morphological 

features across various cancers [7] through diverse imaging modalities. In addition, medical 

image processing techniques enable the extraction of valuable information that can provide 

insights into distinct aspects of patients' diseases. This chapter introduces medical imaging and 

the underlying theoretical principles of image processing techniques.  

 

2.2 Definitions 

Digital images are composed of numerical picture elements known as pixels. Pixel resolution 

refers to the number of pixels present in an image and can be denoted as either a single number 

or the number of pixels in each dimension.  

Several medical imaging techniques, such as computed tomography (CT) and magnetic 

resonance imaging (MR), involve sampling 2D images along a third spatial axis to construct a 

3D image. These medical imaging techniques are commonly referred to as volumetric images 

or image volumes. Three-dimensional volumetric images can capture spatial relationships 

between three-dimensional pixels, also known as voxels. Spatial resolutions of pixels and 

voxels describe the level of information captured by their individual elements. For instance, a 
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spatial resolution of 10.00mm × 10.00mm × 10.00mm means that a voxel depicts a region with 

a volume of 1000.00mm3. 

Contrast resolution refers to the intensity range or set of intensities for the red, green, 

and blue (RGB) channels that can be identified in grayscale and colour pictures. A relatively 

low contrast resolution can be interpreted as pixels/voxels with comparable and difficult-to-

distinguish intensities in an image. Figure 2.1 depicts an illustration of a 2D picture and a 3D 

volumetric image. Pixels and voxels are represented as 2D and 3D grid arrays, respectively. 

 

In medical image processing, a region of interest (ROI) frequently refers to a collection 

of pixels in 2D images that denotes an area that encodes important information to a particular 

domain or application in disease detection. The corresponding term for 3D volumetric pictures 

is the volume of interest (VOI), which refers to the emphasised regions that convey clinically 

useful information. 

1 mm

1 
m

m

1 mm

1 
m

m

1 m
m

(a) A 2D image (b) A 3D image volume

 
Figure 2.1. An illustration of pixels, voxels, and spatial resolutions in medical images: (a) a 
2D image with pixel resolution of 7 × 7 and a spatial resolution of 1mm × 1mm. (b) a 3D 
image volume with voxel resolution of 5 × 5 × 3 and a spatial resolution is 1mm × 1mm × 
1mm. 
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2.3 Medical Imaging Modalities 

Modern healthcare utilises various medical imaging modalities for cancer diagnosis and 

treatment, with the goal of capturing various visual characteristics of the abnormality [26, 27]. 

Medical image modality refers to specific imaging techniques, such as X-ray and CT, used to 

generate images. Each imaging modality has unique physical principles, imaging parameters, 

and technical characteristics, which produce distinct images for various clinical applications. 

Medical image modalities can be categorised into two classes based on their physical principles 

and their ability to visualise information related to abnormalities [28]: (i) Anatomical and (ii) 

Functional (frequently referred to as ‘physiological’) imaging. Anatomical imaging modalities 

encode and visualise information about the structure and morphology of tissues and organs in 

2D or 3D images. Anatomical medical images enable physicians to interpret and evaluate 

disease conditions for diagnostic purposes and for monitoring treatment responses [9]. In 

contrast, functional imaging allows the assessment of the metabolic and physiological status of 

the ROI, thereby facilitating the identification of abnormalities, such as tumours [29]. 

Common anatomical medical image modalities include X-ray, computed tomography 

(CT), magnetic resonance imaging (MRI), ultrasound and optical imaging. Common functional 

imaging includes single-photon emission computed tomography (SPECT), positron emission 

tomography (PET), functional MRI (fMRI), and diffusion tensor imaging (DTI). These 

imaging techniques generate a single type of image or image volumes and are referred to as 

single-modality medical imaging.  

In addition to using single-modality medical images, multimodal imaging techniques 

have become a standard diagnostic procedure for cancer diagnosis in clinical practice and 

medical research. For example, PET-CT scanners, which stack a PET scanner on top of a CT 

scanner, provide complementary anatomical and functional information (e.g. metabolic 

activity) of the abnormality. Similarly, multimodal MRI utilises various types of MRI 
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sequences to provide a comprehensive assessment of the abnormality being studied, thereby 

enabling more accurate diagnosis and treatment planning [30].  

This subsection provides an overview of the single- and multi-modality imaging 

techniques relevant to deriving radiogenomics features and their application in radiogenomics 

analysis. 

2.3.1 Computed Tomography (CT) 

Computed tomography (CT) is among the most commonly used medical imaging modalities 

for cancer detection, diagnosis, and prognosis [31, 32]. CT imaging employs a sequence of X-

ray images with varying rotational angles and produces cross-sectional images (also referred 

to as image slices). These cross-sectional images were then combined to form 3D image 

volumes. CT imaging provides detailed visualisation of internal organs such as bones and soft 

tissues. Figure 2.2 shows an axial view CT image of the lung field obtained from a patient 

diagnosed with Non-small Cell Lung Cancer (NSCLC). 

 

 
Figure 2.2. A CT scan depicting the lung field of a patient diagnosed with Non-small Cell 
Lung Cancer (NSCLC). (Data description detailed in Chapter 5). 
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2.3.2 Magnetic Resonance (MR) Imaging  

Magnetic resonance (MR) imaging is a non-invasive imaging technique that utilises magnetic 

fields and radiofrequency pulses to generate images of the internal organ. MR images are 

produced by detecting the signals emitted by protons in the body following their excitation by 

a magnetic field and radiofrequency pulses. Different tissue types can be emphasised by 

alternating the acquisition parameters, such as sequences of radiofrequency pulses, to generate 

MR images with distinctive appearances. 

 

Common MRI sequences include: i) T1-weighted (T1w), which produces images with 

good contrast between fat, muscle, and other soft tissues; ii) Gadolinium-enhanced T1-

weighted (T1-Gd, also known as T1CE), which highlights the contrast between enhancing 

tissues, such as vascular structures; iii) T2-weighted (T2w), which produces images with good 

contrast between fluid-filled spaces and other soft tissues, and iv) T2-fluid-attenuated inversion 

recovery (FLAIR), which suppresses fluid signals to enhance the visualisation of pathological 

tissue. Figure 2.3 shows MR images generated with various sequences. Additionally, multiple 

MR sequences may be combined to obtain complementary information about the tissues being 

imaged; such combined MR imaging sequences are referred to as multimodal MR [33]. The 

(a) T1-Weighted (b) T1-Weighted Gadolinium-enhanced (c) T2-Weighted (d) FLAIR

 Figure 2.3. Illustration of four common MRI sequences acquired from the same subject 
diagnosed with glioblastoma (GBM). 
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utilisation of multimodal MR images enables obtaining different types of contrast, which can 

aid in the better characterisation and diagnosis of various pathological conditions. 

2.4 Machine Learning, Deep Learning and Convolutional 

Neural Networks 

Machine learning is a well-established research field and has been widely utilised for medical 

image analysis. The capacity of machine learning to quantitatively extract image features from 

input medical images enables the development of computerised medical image analysis 

algorithms for various clinical applications. However, the effectiveness of machine learning-

based medical image analysis algorithms is constrained by the necessity of domain expertise 

and meticulous engineering to facilitate the learning and transformation of the input data [34]. 

Deep learning is a machine learning method that enables the learning of data representations 

using multiple abstraction levels. Among deep learning techniques, convolutional neural 

networks (CNNs) are particularly adept at extracting image features from medical images to 

reveal intricate underlying representations using deep networks [35]. This chapter focuses on 

deep learning and convolutional neural networks (CNNs) as they constitute the current state-

of-the-art medical image analysis. Relevant background knowledge and CNN architectures 

will be presented in the following sections. 

2.4.1 Machine Learning 

Machine learning is a major area of computer science that has found extensive application in 

modern healthcare systems, particularly for medical image processing and analysis by 

incorporating meticulously designed mathematical models, machine learning systems have 

been employed to perform disease recognition [36], medical image classification [20], medical 

image retrieval [37] and tumour segmentation [38]. In contrast to rule-based algorithms, which 
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rely on a predefined set of rules and conditions to make decisions or predictions based on the 

input data, machine learning-based techniques are based on creating models that can learn and 

make decisions based on patterns and relationships discovered within the input data. Therefore, 

it is crucial for a machine learning model to recognise and differentiate patterns and 

characteristics within the input data. This involves developing a model that can identify and 

extract the relevant information from the data and then employ it to produce accurate 

predictions or classifications [39].  

The training process for a machine learning model typically involves employing 

algorithms that enable the model to adjust its parameters based on the feedback it receives from 

the training data. Throughout the iterative training process, the model learns to recognise and 

classify patterns and provide improved accuracy. The learning processes to train a machine 

learning model are typically classified into three categories: i) supervised learning, which 

learns features that are relevant to the labelled data; ii) unsupervised learning, which discovers 

patterns and relationships in unlabelled data; and iii) reinforcement learning, which involves 

learning through trial and error to maximise a reward function designed for specific tasks. 

While unsupervised and reinforcement learning has demonstrated strong potential across 

various medical image processing and analysis tasks, our thesis centres on employing labelled 

medical imaging data through supervised training methods. 

 

2.4.2 Supervised Learning: 

Supervised learning is one of the most utilised medical image processing and analysis 

approaches. It involves training a model with annotated datasets, enabling the model to learn 

and comprehend the intrinsic features of input data and generate predictions on corresponding 

labels [40]. Supervised learning models have been demonstrated in clinical practice to aid 
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radiologists and clinicians in disease diagnosis, prognosis and predicting treatment responses 

[41]. In supervised learning, a dataset is usually split into the following parts: 

• Training set: the largest subset of the entire dataset utilised to train a machine learning 

model. 

• Validation set: a smaller, distinct subset of the entire dataset used to assess the model's 

performance during the training process and prevent overfitting. During validation, the 

predicted output is compared with the actual data labels from the validation set, which 

provides an assessment of the model's performance on unseen data and enables the 

tuning of model parameters. 

• Test data: A small subset of the dataset withheld and employed to evaluate the model's 

performance once training is complete. This subset is not included during training and 

is used to assess the model's ability to generalise to unseen data. In addition, the test 

data provides an assessment of the trained model's performance on new examples, 

which is important for ensuring the model's performance in practical applications. 

 

2.4.3 Artificial Neural Network 

Artificial Neural Networks (ANNs) are a machine learning technique that draws inspiration 

from the biological neural networks in the human brain [42]. ANNs consist of networks of 

interconnected nodes or neurons, which process and transmit information through a series of 

weighted connections. These connections allow the network to learn complicated, non-linear 

relationships from the input data, enabling ANNs to recognise patterns and make predictions. 

Furthermore, the structure and training approach of ANNs can be adjusted based on the 

complexity of the problem being solved, making them versatile and powerful tools for various 

medical image processing and analysis applications. 



 
 

16 

Neurons serve as the fundamental processing units in ANNs. Figure 2.4 depicts the 

structure of a single neuron that receives multiple input values and produces a single output 

value. The inputs to the neuron are represented by a vector X with n elements, and the weights 

associated with each input are represented by a corresponding vector W. The neuron's output 

is determined by a mathematical function that combines the inputs and weights, as shown in 

equation 2.3.1. The weights are adjusted during the training process to optimise the network's 

performance on the given task.  

L(𝑊, 𝑋) = ( 𝑓(𝑥! , 𝑤!) + bias
"
#$%     (2.3.1) 

where 𝑓(𝑥! , 𝑤!) is the ANN function that generates the output value. 

 

The training process of ANNs can be illustrated using a single-neuron model. During 

the training process, the features of each element in the training dataset are extracted and fed 

into the neuron as a feature vector. In a classification task involving two classes, neurons in 

ANNs process the input feature vector by multiplying it with its internal weights. The resulting 

product is compared to a threshold value to make a class prediction. This process is repeated 

Figure 2.4. An illustration of the structure of a single neuron in ANNs. 
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for each element in the training dataset, and the weights are adjusted iteratively to improve the 

model's performance.  

In addition to using a single neuron model to train ANNs, the training dataset is 

typically divided into batches to allow for weight adjustment after each batch. The process of 

training the model using all the batches in the training dataset is known as an epoch. The 

weights associated with each neuron are also adjusted after each epoch, which allows the model 

to learn from the entire training dataset iteratively. The number of epochs required to train a 

model depends on the complexity of the problem being solved and the size of the training 

dataset. The model's weights are typically adjusted over hundreds of training epochs to achieve 

robust performance for classification tasks. 

2.4.4 Deep Learning 

Deep learning is a class of machine learning techniques [43] that involves using computation 

models with multiple processing layers to learn the internal representation of input data at 

numerous levels of abstraction [44]. Deep learning models employ a hierarchical learning 

approach, where the output of one layer is fed as input to the next layer, thereby allowing the 

model to learn increasingly complex features and patterns in the data [39]. 

Deep learning techniques utilise the backpropagation of error technique, or 

"backpropagation," to train multilayer models for supervised learning. During 

backpropagation, the gradient of the cost function (also known as loss function or error 

function) of the neural network is calculated with respect to its weights, and the gradient is 

propagated backwards through the network. This allows the network to adjust its weights to 

minimise the difference between the predicted and actual output. In contrast to conventional 

methods that calculate the gradient of the cost function for each layer separately, 

backpropagation enables more efficient computation of gradients in neural networks. 
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The implementation of deep learning techniques utilises specialised graphics 

processing units (GPUs) to accelerate the training process by 10 to 20 times compared to 

traditional training approaches on standard central processing units (CPUs) [39]. This is 

because deep learning models involve large volumes of computations, and GPUs are better 

suited for performing calculations in parallel. Recent advances in deep learning have led to a 

state-of-the-art performance in various domains, including the visual object recognition [39], 

speech recognition [45], and medical image processing and analysis [46]. 

2.4.5 Convolutional Neural Networks  

Convolutional Neural Networks (CNNs) are a specific type of ANNs that are designed to 

process input data in the form of multidimensional arrays, such as coloured 2D images 

composed of 2D arrays for each RGB (colour) channel. In contrast to traditional ANNs with 

fully connected layers, where each input neuron is connected to every output neuron and leads 

to overfitting and slow learning, CNNs utilise localised connections and shared weight 

parameters. This approach diminishes the number of parameters necessitated for learning, 

consequently enhancing the model's performance when processing unobserved data. 

CNNs comprise a series of stages with specialised layers and unique functions. The 

building blocks of CNNs typically consist of three specialised layers: convolutional, pooling, 

and activation layers, such as the rectified linear unit (ReLU) layer [43]. The convolutional 

layers employ filters to extract features from the input data, whilst the pooling layers reduce 

the size of the feature maps and improve the computational efficiency of the network. The 

activation layers introduce nonlinearity into the network and enable it to learn complex patterns 

and relationships in the data. 

Convolutional layers in CNNs are composed of organised units in the form of feature 

maps. Each unit is connected to local patches from the previous layer through a set of weights 
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known as filter banks, as illustrated in Figure 2.5. The output of the convolutional layer is 

typically obtained by summing the products of the input values and the corresponding weights 

in the filter bank, which is then transmitted through a non-linear activation layer such as the 

ReLU layer e.g.  𝑓(𝑥) = 	𝑚𝑎𝑥(0, 𝑥).  

A filter bank is shared by all units contained within a single feature map. This 

architecture enables the convolutional layers to detect local conjunctions of features from the 

preceding layer. Local values are frequently highly correlated and invariant to the location 

within the input data. Pooling layers in CNNs are specifically designed to merge features in 

spatial proximity that share semantic similarities into one. The underlying principle behind 

pooling layers is to detect the position of motifs typically formed by highly correlated features 

through a coarse-grained approach. For instance, a typical pooling layer calculates the 

maximum value of a local patch in one or more feature maps. By merging features that share 

semantic similarities, pooling layers reduce the dimensions of the representations and create 

invariance to minor distortions and shifts in the input data. By combining convolutional and 

pooling layers, CNNs can learn spatial features and develop robust representations of variations 

in the input data. In a standard CNN architecture, layers are typically stacked in convolution, 

ReLU activation, and pooling order, followed by fully connected layers, as depicted in Figure 

2.6. 
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In the subsequent subsection, we will present an overview of ResNet. This widely 

utilised CNN architecture has demonstrated state-of-the-art performance in imaging object 

recognition and is particularly relevant to our research contributions. 

Figure 2.6. CNNs with multiple convolutional layers. At each layer, filters are applied to the 
input image, and the resulting feature maps are used as inputs to the subsequent convolutional 
layer. 

 

 

 

Figure 2.5. An illustration a 2D convolution operation, which involves a 3 × 3 input image 
convolved with a 2 × 2 filter, resulting in a 2 × 2 output feature map. 
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2.4.6 Deep Residual Networks (ResNet) 

It has been shown in multiple studies, such as EfficientNet, that the depth of CNNs is a crucial 

factor in enhancing the learning outcome for image object classification tasks with the 

ImageNet dataset [47-50]. However, in CNN architectures employing conventional layer 

stacking, the learning accuracy may rapidly decrease as additional layers are added. This 

performance decline was not attributable to overfitting but rather to an optimisation issue 

involving the mapping of identities for the new layers. 

ResNet was introduced to tackle the problem of learning accuracy degradation in deep 

CNN architectures by utilising residual mapping to fit the successive stacked layers [51]. 

ResNet utilises residual representations and incorporates shortcut connections with gating 

functions for the identity mapping [52-56]. The residual function and identity mapping through 

shortcuts can be expressed as follows:  

𝑓(𝑥) = ℋ(𝑥)	– 	𝑥     (2.3.2) 

In the equation above, 𝑓(𝑥) represents the residual function, obtained by subtracting 

the input 𝑥 of the first layer of stacked layers from the underlying mapping ℋ(𝑥). Residual 

learning propels the weights of multiple non-linear layers towards zero to achieve identity 

mapping, which can be expressed as: 

𝑦 = 𝑓(𝑥,𝑊!) + 	𝑥     (2.3.3) 

The variables 𝑦 and 𝑥 refer to the output and input of the stacked layers, respectively. 

In contrast, 𝑓(𝑥,𝑊!) represents the function that denotes the residual mapping that needs to be 

learned. The inclusion of shortcut connections in ResNet does not augment the number of 

network parameters or computational complexity. Figure 2.7 illustrates a ResNet building 

block that incorporates residual learning and shortcut connections.  

ResNet has exhibited exceptional performance in image object recognition, achieving 

a top-5 error rate of 4.49% with a 152-layer ResNet architecture. Furthermore, it is both robust 
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and generalisable for various recognition tasks and, as a result, has been extensively utilised in 

the medical image analysis [51, 57, 58]. 

 

2.4.7 Domain Adaptation for Transfer Learning 

Typical applications of machine learning techniques involve training models to learn the 

internal representations of data from a specific domain. This approach is based on the 

assumption that the training dataset and real-world data, which will be used in future 

applications, exhibit the same feature space with a similar distribution [59].  

When the distribution of feature spaces in a dataset changes, the machine learning 

model typically requires retraining to adapt to the newly collected data. However, this 

assumption may not hold in all cases, as most machine learning methods rely on large, 

annotated training datasets specific to the target domain. Consequently, machine learning 

applications are considerably constrained in domains such as medical image analysis, where 

acquiring labelled training data is costly and resource intensive. 

Transfer learning is an alternative approach to training a machine learning model that 

eliminates the requirement for large quantities of domain-specific datasets. This technique 

involves transferring the knowledge obtained from one large database to facilitate learning 

applications on a smaller but related dataset. In the context of neural network applications, 
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Figure 2.7. A building block of ResNet. 
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transfer learning refers to an approach that accelerates learning a particular domain by 

employing and transferring the weights derived from a network that was trained for a related 

source task [60]. Figure 2.8 depicts an illustration of the transfer learning approach.  

Transfer learning allows CNNs to be trained and applied to datasets from distinct but 

related domains, thereby reducing the need for a large amount of domain-specific training data. 

The differences between such domains can be classified into two categories: (i) those with 

different feature spaces or (ii) those with the same feature space but different marginal 

probability distributions [59]. Furthermore, the representation and similarity between two 

domains can be evaluated using techniques such as A-distance, which are commonly used in 

transfer learning applications [61, 62]. 

 

For CNNs applications in medical image analysis, there are two primary approaches to 

employ domain-adapted transfer learning: (i) using "off-the-shelf CNN" features; and (ii) using 

domain adaptation with fine-tuning techniques [63]. The term "off-the-shelf CNN" refers to 
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Figure 2.8. Traditional and transfer learning-based approaches for CNN models. 
a) Traditional machine learning. b) Transfer learning-based approach for CNN 
model. 
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the procedure of utilising a CNN model, which was trained on a larger dataset from scratch as 

a feature extractor directly on a new dataset with a smaller volume. The parameters in the 

convolutional and fully connected layers are not changed. For classification tasks, the extracted 

features from the "off-the-shelf CNN" can be used to train a separate classifier, such as support 

vector machines or random forest classifier or to train only the classification layer of the model 

to fit the number of classes of the new dataset [63-66].  

The process of updating pre-trained CNN models with new datasets from the desired 

domain using backpropagation is referred to as fine-tuning. Commonly, fine-tuning involves 

training only the last few convolutional layers, which is known as "shallow tuning" or all 

convolutional layers, commonly referred to as "deep tuning" [67]. Deep tuning is typically 

employed when the distances between domains are considered significant. Studies have 

demonstrated that fine-tuning may be as effective as training a CNN from scratch and is more 

robust to the size of the training dataset [72]. Therefore, fine-tuning has been applied to various 

medical image analysis tasks, such as the medical image modality classification [57]. An 

example of shallow tuning is illustrated in Figure 2.9. 
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Figure 2.9. An overview of shallow tuning-based transfer 
learning approach. 
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2.5 Medical Image Processing 

Medical image processing is a rapidly evolving research field that seeks to address the 

challenges emerging from clinical practices. By leveraging advanced computational techniques 

and artificial intelligence, this domain aims to improve the accuracy and efficiency of disease 

diagnosis, treatment planning, and patient monitoring. It encompasses various tasks such as 

image acquisition, pre-processing, segmentation, registration, and classification, all of which 

contribute to better understanding and interpretation of medical images. This chapter focuses 

on medical image segmentation and classification, as they constitute the core contributions of 

the thesis. 

2.5.1 Medical Image Segmentation 

This subsection provides an overview of various medical image segmentation methods relevant 

to our research.  

Medical image segmentation involves partitioning an image into sections, each 

comprising a group of pixels collectively representing a region of interest (ROI) [68]. This 

technique is frequently employed to identify and emphasise ROIs, eliminating irrelevant image 

regions and reducing the complexity of the medical image analysis [69].  

Manual delineation of medical images by experienced physicians is widely regarded as 

the gold standard in most clinical applications. However, this process relies on the visual 

inspection of imaging data, which is time-consuming and subject to errors based on the 

expertise of the pathologist [70].  

To address this issue, computerised medical image analysis algorithms have been 

developed to facilitate the segmentation of medical images. Based on their input and techniques 

employed, existing computerised medical image segmentation algorithms can be classified into 

three categories: (i) semi-automated segmentation methods that require human interaction 
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during the segmentation process, (ii) supervised segmentation methods that train the algorithm 

using labels generated based manual delineations, and (iii) unsupervised segmentation methods 

that enable the algorithm to learn sophisticated patterns within the image to generate ROI 

segmentations without the need for human interaction or manual delineations. 

Conventional medical image segmentation algorithms are generally centred on pixel 

analysis and commonly utilise a semi-automated approach. For example, region growing is a 

widely used method that necessitates predefined seed points and examines the adjacent pixels 

to recursively expand the region, encompassing pixels that share common characteristics [71]. 

Pixel thresholding is a commonly used segmentation technique that segregates pixels into 

clusters with similar characteristics based on a threshold value. This value can be either 

manually defined or automatically calculated using statistical properties of the image, such as 

the pixel intensities [72]. 

Recent developments in machine learning algorithms have enabled data-driven 

techniques for medical image analysis. Deep learning is one such method that employs 

Convolutional Neural Networks (CNNs) to learn sophisticated and abstract imaging features 

directly from large volumes of labelled training image data [43]. Deep learning-based medical 

image segmentation methods have demonstrated superior performance over traditional 

segmentation algorithms for various diseases. 

For instance, Bi et al. proposed a semi-automatic technique for skin lesion 

segmentation, which utilises fully connected layers (FCN) to combine user inputs with high-

level semantic information obtained by the deep learning model. Furthermore, In a recently 

published work, Primakov et al. introduced a fully automated deep learning-based method for 

detecting and segmenting non-small cell lung cancer (NSCLC), integrating volumetric CT 

scans from multiple institutions. However, although deep learning-based medical image 

segmentation algorithms have demonstrated greater performance than prior automatic and 
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semi-automatic approaches, few studies have shown improved outcomes than manual cancer 

delineation [73, 74].  

 

2.5.1 Medical Image Classification 

Medical image classification involves assigning a label or a category to a medical image based 

on the characteristics of the input image. Medical image classification plays an essential role 

in medical diagnosis, treatment planning and disease prognosis. However, the conventional 

methods for medical image classification require visual interpretation by radiologists, which 

can be time-consuming and subject to inter-observer variability. These challenges may be 

exacerbated by the need to identify quantitative morphological features of anomalies, such as 

tumour shape and cell counts [46].  

 Computerised medical image classification typically involves the following processes: 

i) image feature extraction, ii) image feature selection, and iii) image classification [75]. The 

image feature extraction step involves quantifying imaging characteristics that are informative 

and relevant to the labels to be assigned. These characteristics can be quantified through 

handcrafted features or by adopting deep learning-based approaches that automatically learn 

the features from the training data. Image feature selection refers to the process of selecting a 

subset of relevant features from previously extracted image features to reduce the 

dimensionality of the image data, which can improve the efficiency and accuracy of the 

machine learning algorithm. Conventional image feature selection methods comprise i) the 

filter methods that rank the features based on their relevance to the task and select the top-

ranked features; ii) the wrapper methods that use the machine learning algorithm to quantify 

the relevance of a subset of features; and iii) embedded methods that incorporate feature 

selection into the machine learning algorithm's training process. Finally, in the classification 
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step, the selected image features are fed into a machine learning model, which assigns a label 

or a category to the image. 

In contrast to conventional medical image classification techniques, deep learning-

based approaches enable end-to-end automatic learning of image features relevant to the 

corresponding labels. Furthermore, unlike conventional methods, these approaches do not 

require explicit feature engineering [76]. As a result, deep learning-based medical image 

classification techniques have achieved state-of-the-art performance for a variety of tasks, 

including lesion classification [20], tumour grading [77], and disease subtype classification 

[78]. 
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Chapter 3. Radiogenomics 
 

3.1 Overview 

In this chapter, I present a literature review of the current research in radiogenomics across 

various clinical applications. The review focuses on the state-of-the-art techniques used in 

radiogenomics to extract image features that exhibit statistical associations with genetic 

information. This also includes radiogenomics applied across different imaging modalities. 

Furthermore, I summarise identified gaps in the existing literature to provide insights for future 

research. 

 

3.2 Overview of the Radiogenomics Pipeline 

As introduced in previous chapters, advances in understanding human cancers' genetic 

characteristics have provided insights into their underlying pathophysiology, aided in the 

subclassification of the disease, and facilitated the development of therapies that target specific 

biological pathways.  

Gene expression profiling, on the other hand, necessitates the acquisition of sufficient 

tumour tissue samples via core biopsies, which only capture a fraction of the tumour and can 

be both invasive and expensive. Consequently, the comprehensive evaluation of all tumours 

via gene expression profiling is not always feasible and may be further exacerbated by the 

substantial phenotypic and genetic heterogeneity observed across different tumour sites [6].  

In contrast to invasive procedures, medical imaging is a non-invasive technique that 

plays a crucial role in routine clinical practice by capturing crucial visual characteristics of 
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abnormalities. Recent advancements in computerised medical image analysis have led to the 

development of "radiomics," a high-throughput and quantitative approach that utilises machine 

learning-based algorithms and large volumes of medical data to extract image features. 

Radiomic features have been shown to provide valuable supplementary insights into tumour 

phenotypic traits and complement traditional medical image analysis methods. For instance, 

Yang et al. proposed a radiomics-based methodology that leverages machine learning models 

for predicting the overall survival of NSCLC patients [79]. The authors found that radiomics 

features, including statistical descriptors and tumour textural information, are associated with 

NSCLC patients’ survival time. In another study by Aerts et al., the author demonstrated that 

radiomics features, such as tumour shape features, are associated with the tumour’s underlying 

gene expression patterns [15]. 

The studies above have made significant contributions to the growing research field of 

"radiogenomics," which aims to investigate the association between medical imaging features 

and genetic characteristics. Radiogenomics features can be determined by identifying image 

features that have statistically significant associations with the gene expression [10, 15, 21]. 

Radiogenomics presents opportunities for the non-invasive assessment of important molecular 

characteristics that contribute to tumour development. Recent studies have shown promising 

results in identifying prognostic image-genomics biomarkers for several cancers, such as 

hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). An et al. [80] reported that 

radiogenomics features are associated with the mammalian target of rapamycin (mTOR) 

pathway gene activity in HCC, where the mTOR signalling pathway governs cellular activities 

and offers opportunities for targeted anti-tumour treatment. Lee et al. [81] identified a 

collection of radiogenomics features that predict postsurgical metastases in patients with 

pathological stage T1 RCC. 
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In contrast to conventional imaging features, radiogenomics features have been shown 

to provide unique insights into intratumor heterogeneity, which can be linked to clinical 

outcomes. However, it is important to emphasise that the majority of radiogenomics research 

at present is constrained to publicly accessible datasets, specifically those featured in The 

Cancer Imaging Archive (TCIA) [82] and The Cancer Genome Atlas [83]. The limited amount 

and quality of these datasets present significant challenges for radiogenomics research, 

particularly with respect to feature selection due to insufficient clinical metadata and 

annotations.  

 The upcoming subsections delve into the utilisation of image features and the 

corresponding image feature extraction techniques in various settings. Figure 3.1 illustrate the 

fundamental steps involved in a radiogenomics framework. The present discussion focuses on 

extracting image features from two frequently utilised imaging modalities, namely CT and MR 

imaging, and their associated application in radiogenomics. 

3.3 Gene Expression Profiling 

Although visual inspection of tumour histopathology is commonly employed to establish a 

cancer diagnosis, it is susceptible to diagnostic errors, particularly in cases where tumour 

 Figure 3.1. The overview of a radiogenomics framework that employs conventional 
handcrafted image features. 
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classification is difficult due to morphological properties that are visually indistinguishable. 

Such diseases include diffuse large B-cell lymphoma and breast cancer [84, 85].  

Gene expression profiling is a method used to evaluate the activity of genes by 

examining the process by which genetic information is transformed into functional gene 

products, such as proteins. Gene expression analysis at various transcription levels can provide 

a comprehensive view of diverse biological functions that can be identified using 

computational and statistical methods [86]. Gene expression analysis provides insights that can 

facilitate predicting the clinical outcome for cancer patients and developing therapies that target 

specific biological pathways [3, 87]. In this subsection, I will describe the core concept of gene 

expression analysis and its application in clinical applications relevant to our contribution. 

A gene is a specific section of deoxyribonucleic acid (DNA) strands that contain genetic 

information. These codes serve as the foundation for the process of ribonucleic acid (RNA) 

synthesis, which occurs via transcription. During translation, RNA molecules are capable of 

synthesising proteins that encode a broad range of biological functions. However, human 

genetic codes are susceptible to mutations, which are irreversible alterations to genetic 

elements that can be introduced by a range of factors, such as damage to DNA from 

environmental effects. Mutations can lead to numerous variations in human DNA, which may 

ultimately result in alterations in both gene function and behaviour. 

Clinical studies have demonstrated that genetic mutations may play an important role 

in the prognosis of numerous human cancers [88-91]. Gene expression profiling enables the 

identification of genes with abnormal expressions in tumour tissue samples, thereby providing 

valuable insights into potential therapeutic options [92]. In addition, gene expression profiling 

enables the acquisition of patient-specific genetic information, including variations in the 

genetic information at the individual level. This information can ultimately be utilised in the 

precision medicine [93]. 
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3.4 Image Feature Extraction 

The famous adage by Bartlett, "A picture is worth a thousand words," epitomises the abundance 

of information encompassed within a singular image. Similar to human behaviour, 

computerised image analysis techniques extract and select information from images to address 

tasks from various domains.  

As briefly discussed in Chapter 2, image feature extraction is a technique that locates 

and transforms image-encoded information into appropriate image representations for various 

applications [94-96]. Within the field of image analysis, extracted image features can be 

categorised as either global, which are computed from the entire image, or local, which are 

derived from specific ROIs. The statistical, geometric, textural, and structural representations 

of a picture are commonly beneficial for a broad spectrum of image analysis applications. 

Textural features represent a crucial characteristic for the identification of objects and 

ROIs in an image. The texture is an inherent property of surfaces present in an image, regardless 

of the modality [97], and contains important information regarding the structural configuration 

of surfaces and their interrelations with the surrounding environment of the ROIs.  

Texture-based features provide a precise depiction of the uniformity of local spatial 

variations in the pixel intensity [98]. Texture analysis is integral to computerised applications 

such as image segmentation [99], classification [100], and pattern recognition [101]. Texture-

based features commonly employed in these applications include Haralick and wavelet features 

[102, 103]. Haralick features are derived from the distribution of co-occurring pixel values 

within a specified spatial neighbourhood, thereby providing a statistical summary of the 

relative distribution of gray levels in the image [97]. 
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Wavelet-based texture feature extraction has also played a significant role in various 

image analysis tasks, including content-based image retrieval [104], segmentation [105], and 

classification [106]. Wavelet features are extracted by decomposing image signals at various 

resolutions using wavelet orthonormal functions [107]. The orthogonal multi-resolution 

representation offers a hierarchical framework that presents image characteristics in a coarse-

to-fine approach, thereby enabling the extraction of contextual and low-level image features 

[106, 107]. 

Colour-based features represent one of the most widely adopted image representations 

as they are resilient to background complexities and are independent of image size and 

orientation [108]. Colour features provide both global and local image representations with 

diverse applications. Colour representations such as colour indexing, colour descriptors, and 

compact colour moments have been employed in applications such as image retrieval [109-

111] and scene recognition [112]. Colour histograms offer insights into the global colour 

distribution and ranges and have been utilised in applications such as face detection [113] and 

bleeding detection in the medical domain [114]. Moreover, the use of colour-based image 

representations in the three-channel domain provides complementary characteristics to the 

image compared to single-channel grayscale images [115]. 

Shape-based features provide descriptions that quantify the shape of ROIs in a manner 

consistent with human perception of specific tasks [116]. Shape representations capture the 

geometric intricacies of ROIs within an image and are invariant to translation, rotation, scaling, 

and resistance to noise [108]. Shape-based features have been extracted and applied using 

multiple approaches. For 2D images, shape-based features have been represented as point sets 

[117], outline curves [118], and shock graphs [119]. Such features have been utilized for image 

object classifications [120], recognition [121], and content-based image retrieval in diverse 

domains [122]. 
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In 3D volumetric images, commonly used shape features involve the use of spherical 

harmonics that decompose the 3D object into orientation-invariant and descriptive information 

[123]. Other approaches for extracting 3D shape-based features include the analysis of object 

surface curvature and the correlograms of objects from various viewpoints [124]. Such 3D 

shape-based features have found widespread application in 3D model search engines [123], 

classification tasks [125] and content-based retrieval [126]. 

In addition to the image features that quantify the statistical information of pixels 

(referred to as "agnostic features"), another set of features has commonly been utilised to 

represent high-level tumour characteristics based on human understanding (referred to as 

"semantic features"), such as tumour shape, size, and necrosis [21]. Unlike agnostic features, 

semantic features are frequently used by radiologists to describe tumours, with prior knowledge 

of their prognostic value in the cancer treatment [127]. The application of semantic features in 

radiogenomics studies has demonstrated their ability to identify prognostic imaging biomarkers 

[16] and predict gene expression patterns in hepatocellular carcinoma [128]. As a group, 

agnostic and semantic features quantify the image representation of tumour phenotypic 

characteristics based on established human knowledge of cancer physiology. To distinguish 

such a set of image features from AI-generated image descriptors, agnostic and semantic 

features are henceforth referred to as "handcrafted" features. Handcrafted image features have 

constituted a vital component of image-based CAD systems [129] in numerous clinical 

applications, including disease detection and classification [130, 131], enhancing diagnostic 

performance [132], and ROI segmentations [133]. 
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3.5 Summary of Gaps in Radiogenomics Research 

Recent advancements in the domain of radiogenomics involve the use of handcrafted image 

features or deep learning models that aim to extract a wider range of image features with the 

potential to derive radiogenomics relationships. Although both handcrafted and deep learning-

derived image features have demonstrated their ability to encode complementary information 

in various medical imaging analysis tasks [20], radiogenomics studies have not yet exploited 

both categories of image features when deriving radiogenomics relationships. 

Another challenge in the domain of radiogenomics is the scarcity of annotated data.  

Radiogenomics studies rely on medical images and their corresponding genetic information 

obtained from the same patient. Previous studies have extrapolated the conclusions drawn from 

genetic analyses of a particular disease to another disease that displays comparable genetic 

characteristics [134, 135]. However, radiogenomics studies have yet to adopt such approaches 

leverage imaging and genetic data from diseases with similar characteristics when deriving 

radiogenomics relationships.  

Numerous radiogenomics investigations entail the use of multiple image modalities for 

diverse applications across various cancer types. The diversity of radiogenomics research has 

motivated studies to employ images with multiple modalities and explore correlations with 

genetic information. However, published radiogenomics studies have yet to explore the 

potential benefits of exploiting complementary information encoded in distinct tumour regions 

and from different modalities [136]. 

 In the following sections, detailed explanation of these gaps in radiogenomics research 

are described with outline of the proposed methods to address them. 
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3.5.1 Radiogenomics with Fused Feature Signature 

Image feature ensemble algorithms offer the opportunity to leverage handcrafted and deep 

learning-derived image features to extract complementary visual characteristics and provide 

additional information for medical image analysis. Feature fusion is a common ensemble 

technique that integrates both categories of image features to produce a more comprehensive 

image representation of the problem. There have been applications of feature fusion to improve 

in a range of medical image analysis tasks. Kooi et al. [20] proposed a computer-aided detection 

system for mammography by using handcrafted and deep image features to quantify image 

features. The deep features were found to be prone to misclassifying benign abnormalities as 

tumours because both share similar visual characteristics. In their study, handcrafted features 

complemented deep features by introducing information that is more difficult for deep features 

to learn, such as the location and surrounding structures of tumours, thereby increasing the 

detection performance when compared with using a single category of ETs. Hagerty et al. [137] 

demonstrated that using both categories of image features improved melanoma classification 

with increased area under the curve (AUC) of receiver operator characteristics (RUC). The 

handcrafted features quantified medically meaningful image features such as lesion colour 

distribution and atypical pigment network and were complementary to deep features that 

quantified the low-level descriptive image features. Although these ensemble methods 

demonstrate notable advantages, to the best of our knowledge, the ensemble feature method 

has yet to be investigated for radiogenomics analysis. 

 The employment of both handcrafted and deep image features offers opportunities to 

derive more radiogenomics relationships that may encode unique information. The fusion and 

extraction of both handcrafted and deep image features will also bring advantages for future 

image-genomic research. Chapter 4 details a novel radiogenomics method that aims to address 

such a challenge. Specifically, I propose the fused feature signature (FFSig), a selection of image 
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features that encodes complementary cancer imaging visual characteristics using a combination 

of handcrafted and deep learning-based image feature extraction techniques. The FFSig encodes 

complementary imaging characteristics of tumours and identifies more radiogenomics 

relationships with a broader range of genes related to important biological functions. The 

proposed FFSig is robust and generalisable across different datasets and allows the identification 

and extraction of important radiogenomics features that may facilitate cancer diagnosis and 

treatment planning. 

 

3.5.2 Radiogenomics with Multi-disease Analysis 

Current radiogenomics investigations rely on extensive amounts of multidimensional data, 

which can be challenging to obtain and require precise annotations. To mitigate the challenge 

of insufficient well-annotated datasets, multi-disease analysis has been employed in prior 

studies, particularly in the case of emerging diseases such as COVID-19 [134, 135]. The 

utilisation of multi-disease radiogenomics analysis presents opportunities for the identification 

of radiogenomics features by capitalizing on shared pathophysiological characteristics between 

two diseases. In addition, multi-disease radiogenomics analysis has the potential to develop 

alternative approaches or techniques for radiogenomics that are more effective, feasible, and 

applicable. However, the potential of such adaptations in radiogenomics applications has not 

been rigorously investigated. 

Chapter 5 details a novel radiogenomics method to derive radiogenomics features that 

are associated with genetic characteristics of one disease, which can be applied to another 

disease through multi-disease analysis. The proposed radiogenomics method identifies and 

extracts radiogenomics features that encode common pathophysiological information across 
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different diseases, thus overcoming the dependence on large volumes of annotated datasets for 

radiogenomics analysis. 

 

3.5.3 Radiogenomics with Tumour Heterogeneity and Multi-modal 

Imaging Data 

Human cancers exhibit strong heterogeneity both within the tumour and among patients. 

Current radiogenomics investigations have endeavoured to comprehensively extract image 

features that reflect both anatomical and functional aspects of tumours using multimodal 

medical imaging, including PET-CT. For example, Nair et al. proposed a radiogenomics 

approach that employs image features extracted from PET-CT images of NSCLC patients. The 

authors discovered that textural information from PET-CT images can identify tumours with 

EGFR mutation and could serve as a surrogate imaging biomarker for NSCLC pre-treatment 

assessment and prognosis in the precision therapy [138].  

Another radiogenomics strategy for quantifying tumour heterogeneity entails the 

application of handcrafted features extracted from different tumour regions. For instance, Li et 

al. developed a radiogenomics approach to predict MGMT promoter region methylation that 

utilises handcrafted features obtained from various GBM tumour regions using a combination 

of T1w, T1CE, T2w, and T2-FLAIR images [139]. 

While radiogenomics approaches that quantify tumour heterogeneity information using 

handcrafted features demonstrated value in medical image analysis tasks, published studies that 

employ deep learning-based techniques are unable to exploit the complementary information 

encoded in distinct tumour regions and from different modalities [136]. Chapter 6 describes a 

radiogenomics method that aims to address such a challenge. The proposed framework 
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quantifies the radiogenomics features from diverse image modalities and accounts for unique 

information encoded in tumour heterogeneity sub-regions.   
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Chapter 4. Radiogenomics with Fused 

Image Feature Signature 
 

 

In this chapter, I present fused feature signature (FFSig), a selection of image features from both 

handcrafted and deep learning-derived image features (e.g., transfer learning and fine-tuning 

of deep learning models) for identifying radiogenomics relationships (RRs). Previous 

radiogenomics studies mainly relied on a single category of image feature extraction techniques 

(ETs); these are (i) handcrafted ETs that encompass visual imaging characteristics, curated 

from knowledge of human experts and, (ii) deep ETs that quantify abstract-level imaging 

characteristics from large data. Prior studies, therefore, failed to leverage the complementary 

information that are accessible from fusing the ETs. FFSig improves upon conventional 

radiogenomics research by exploiting the complementary information available from fusing 

both handcrafted and deep learning-derived image features. To validate the performance of the 

proposed FFSig, experiments are conducted using two public datasets that contain CT images 

from patients with NSCLC. Experimental results demonstrate that FFSig encodes 

complementary imaging characteristics of tumours and identifies more RRs with a broader 

range of genes related to important biological functions. 

 

4.1 Contributions 

The FFSig has the following contributions: 

• The FFSig is constructed by leveraging the complementary information from 

handcrafted and deep features, followed by a multi-step feature selection scheme. The 
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FFSig can determine radiogenomics relationships with gene expressions and gene 

ontology (GO) terms.  

• The proposed FFSig identified more and unique radiogenomics relationships with gene 

expressions and gene ontology (GO) terms when compared to the use of handcrafted or 

deep features independently.  

• The proposed FFSig is exclusively associated with biological functions that are related 

to protein kinase activities that play crucial roles in the tumourigenicity of NSCLC.  

• Experimental results demonstrate the potentials for the proposed FFSig to identify 

important radiogenomics relationships that may facilitate cancer diagnosis and 

treatment in the future. 

 

The contribution of this chapter is aligned with the aim 1 stated in section 1.3 of Chapter 1 

and addresses the gap 3.5.1 identified in Chapter 3. Furthermore, this chapter provides an 

extensive analysis and comparison of state-of-the-art radiogenomics analysis pipelines, which 

builds upon the literature review presented in Chapter 3.  
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4.2 Materials and Methods 

4.2.1 Overview of the framework 

Figure 4.1 presents an overview of the experimental design for constructing FFSig. 

Handcrafted and deep learning-based image features extraction techniques are used to extract 

handcrafted (denote as HC), transfer learning (denote as TL) and fine tuning (denote as FT) 

features from delineated tumour ROIs from CT image volumes. HC features are extracted from 

the CT image volume directly. TL and FT features are extracted from a 2.5D representation of 

the CT data around the tumour centroid. The extracted HC, TL and FT features are fused into 

a feature matrix using concatenation. The FFSig is generated by applying a multi-step feature 

selection procedure involving median absolute deviation (MAD), minimum redundancy 

maximum relevance (mRMR), and least absolute shrinkage and selection operator (LASSO) 

generalised linear model. RRs are determined by using Spearman rank correlation between 

FFSig and the averaged gene expressions. RRs between image features signatures and GO terms 

are determined by using GSEA. For evaluation purposes, the same multi-step feature selection 

Figure 4.1. The workflow for generating the FFSig and the identification of RRs with genes and 
GO terms. 
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procedure is applied to HC, TL and FT features. The resulting collections of image features are 

denoted as HCSig, TLSig and FTSig, respectively. 

 

4.2.2 NSCLC Radiomics-Genomics Dataset 

We used the public NSCLC Radiomics-Genomics dataset [140] from the Harvard University, 

and we refer to this dataset as the ‘NRG-H’. The dataset was sourced from the Cancer Imaging 

Archive (TCIA)[82]. The NRG-H is a pre-processed and de-identified dataset. The creator of 

the dataset has indicated that the collection and processing of the dataset were conducted 

according to national laws and guidelines and approved by the appropriate local trial committee 

at Maastricht University Medical Center (MUMC1), Maastricht, The Netherlands. The dataset 

comprises 89 patients (29 W, 60 M; age range 37 – 85 years) with histologically confirmed 

NSCLC with T stage (T1-T4) [141].  

All patients had a CT scan of the thorax / upper abdomen. CT scan slice thickness was 

between 1.5mm and 5mm. Gene expression information was acquired using the Rosetta/Merck 

human RSTA custom Affymetrix 2.0 microarray (Affymetrix HuRSTA-2a520709). Gene 

expression values were normalised using the RMA algorithm 5 in Bioconductor. Gene 

expression information was accessed via the Gene Expression Omnibus (GEO)[142]. The 

primary tumours were delineated by an experienced medical imaging specialist (M.F., more 

than 20 years of experience), slice-by-slice, on trans-axial image slices using open source 

software (Medical imaging Interaction Toolkit (MITK); version 2016.11 [143]). We excluded 

three patients (all men) because there were lung collapses distal to a proximal tumour and the 

extent of the tumour could not be reliably identified. Delineations were independently validated 

by a second clinician (E.K., 7 years of experience).  
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4.2.3 NSCLC-Radiogenomics Dataset 

The NSCLC-Radiogenomics dataset reported by Bakr et al[144] from the Stanford University 

is a pre-processed and de-identified dataset, and we refer to this dataset as ‘NRG-S’. The 

creator of the dataset has indicated that the collection and processing of the dataset were 

conducted under IRB approval from Stanford University and the Veterans Administration Palo 

Alto Health Care System. The NRG-S dataset comprises CT images and RNA-Seq data from 

117 subjects (29 W ,88 M; age range 46 – 85 years) with histologically confirmed NSCLC with 

T stage (Tis, T1-T4).  

All patients had a CT scan from the apex of the lung to the adrenal gland in supine 

position. CT scan thickness was between 0.625mm and 3mm. Detailed scanning parameters, 

such as the manufacturer attributes are specified in the DICOM headers. Total RNA was 

extracted from the tissue and analysed with RNA sequencing technology. Gene expression 

information was processed using the STAR algorithm[145] and Cufflinks version 2.0.2 [146]. 

Gene expression information was accessed via the Gene Expression Omnibus (GEO)[142]. 

Primary tumours were segmented using an unpublished automatic segmentation algorithm on 

the axial image slices for all 117 subjects. Segmentations were viewed by a thoracic radiologist 

(M.K.) with more than 5 years of experience and edited as necessary using ePAD. An additional 

thoracic radiologist (A.N.L.) reviewed and approved the final segmentations.  

 

4.2.3 Image Features 

We employed a set of standard HC feature extraction technique that are implemented in the 

pyradiomics framework to quantify HC features [147, 148]. For each patient, we extracted a 

well-documented set of 431 HC features from CT volumes [149, 150]. These 431 HC features 

comprised the following: (a) first-order statistics, describing the distribution of voxel 
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intensities; (b) shape and size that are geometric descriptors of tumoural 3D characteristics 

such as compactness and surface area; (c) textural or co-occurrence matrix features to illustrate 

the spatial distribution of the voxel intensities and, (d) first order statistics and textural features 

of the wavelet decompositions of the raw imaging data. 

 Deep image feature was extracted by using a ResNet-101 backbone that was pre-trained 

on ImageNet ILSVRC challenge data. To adopt the ResNet-101 model with pre-trained weight 

and to recognise the features in the NSCLC CT data, we fine-tuned it for the task of identifying 

CT images that contained tumours. The 86 subjects from the NRG-H dataset were divided into 

two groups: a training set that comprises imaging data from 69 patients and, a testing set that 

comprises imaging data from 17 patients. Subjects in the training and testing groups were 

randomly selected. We implemented a 5-fold cross-validation strategy on the training set of 69 

patients to fine-tune the ResNet-101 model. The fine-tuning process of the ResNet-101 model 

involved 300 epochs of training using stochastic gradient descent with a momentum of 0.9 and 

a batch size of 5. The Learning rate was set at 1 × 10-3, with L2Regularization set at 0.001. For 

every 100 epochs, the learning rate decreased by the factor of 0.1. TL and FT features were 

extracted from the ‘pool5’ layer of the ResNet-101 model. 

 We used a feature fusion strategy that concatenates the HC, TL and FT feature together 

to generate a feature matrix across the patients [151]. We hence applied a multi-step image 

feature selection scheme that aims to: i) reduce the dimensionality of the concatenated feature 

matrix; ii) remove image features that are redundant or irrelevant to the histology classification 

of tumours; and iii) identify a set of image features that are most relevant to the histology 

characteristics of patients. We used the median absolute deviation (MAD) as an indication for 

these features as it measures the variability across features and is robust against outliers in the 

concatenated feature matrix. Features that have poor variability and dispersion across patients 

were removed. The second stage reduced the dimensionality of the remaining features by 
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removing those that are redundant or irrelevant to the histology characteristics of patients. The 

histology characteristics of each patient were categorised into one the following classes: (1) 

squamous cell carcinoma, (2) adenocarcinoma and (3) other types including non-Small cell and 

Not otherwise specified (NOS). We used mRMR, a widely-adopted approach for feature 

selection, to produce a subset of features with high biological relevance [152]. A total of 100 

features were selected using the mRMR method, taking into consideration of the number of 

patients as well as the original dimensionality of the feature matrix [153]. The last stage of 

feature selection employed LASSO regularisation for generalised linear models to identify the 

set of remaining image features that are most relevant to the histology characteristics of 

patients. We also applied the multi-stage image feature selection process to the HC, TL and FT 

features individually for comparison. The resulting image feature signatures are hereafter 

denoted as ‘HCSig’, ‘TLSig’ and ‘FTSig’, correspondingly.  

 

4.2.4 Radiogenomics Analysis 

We used the following process to remove genes that had low variance, entropy and absolute 

expression value because such genes showed poor variability and dispersion, and therefore may 

not reflect the differences in the underlying tumour biology. We firstly removed genes with a 

variance of less than one-quarter percentile, as such genes may not reflect changes in tumour 

biological behaviours. The averaged gene expression was filtered to remove the genes with a 

variance of less than one-quarter percentile across all patients. The remaining genes were then 

filtered to remove genes that have an absolute expression level in the lowest quarter percentile 

of the gene expression; genes with low absolute expression were removed because they are 

prone to errors due to large quantisation or spot hybridisation. Finally, gene expressions were 

filtered to remove the genes with an entropy value that is less than the quarter percentile; genes 
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with low entropy are considered to be consistently expressed across patients and may not reflect 

the variance in tumour biological characteristics [154].   

We determined RRs between the FFSig with the averaged gene expressions using the 

Spearman rank correlation. We also employed functional enrichment analysis to enrich 

radiogenomics relationships with GO terms. We used 1,046 gene sets from the C5 collection 

of MSigDB [155], which categorise the following GO terms: molecular function, cellular 

component and biological process. The gene list was generated by ranking the radiogenomics 

associations for each of the features from FFSig in descending order. Gene sets that include 

between 15 and 500 contributing genes were selected for the enrichment analysis as was the 

standard protocol in prior work [147]. The determined RRs were then assessed using a pre-

ranked functional enrichment analysis. In this process, the radiogenomics relationships 

between FFSig and gene expressions were sorted to provide a ranked gene list based on the 

strength of the Spearman rank correlation. We used the pre-ranked gene list to perform GSEA, 

which derives the association between the provided ranked gene list and GO terms by testing 

the enrichment of each annotated term iteratively in a linear model. The enriched 

radiogenomics relationships with GO terms can be quantified by calculating normalised 

enrichment scores (NES) based on the number of genes. To ensure that only significantly 

associated genes were used for functional enrichment analysis, RRs with p-value < 0.001 were 

selected and ranked and serve as input to the functional enrichment analysis with GO terms. 

The same procedure was applied to the HCSig, TLSig and FTSig for comparative experiments. 

4.2.5 Evaluation Strategy 

We evaluated the performance of FFSig by: (i) determining if the proposed FFSig can encode 

complementary medical image visual characteristics when compared with other image feature 

signatures; ii) determining if the proposed FFSig is relevant to the tumour T stage by using the 
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χ2 test of independence; iii) assessing the distribution of RRs with genes; iv) assessing the 

distribution of RRs with GO terms; iv) determining if the proposed FFSig can identify exclusive 

RRs with genetic biomarkers of NSCLC and GO terms that are related to NSCLC. 

 

4.3 Results 

4.3.1 Image Signatures and T Stage 

The HC, TL and TF features were significantly associated with the T stage parameters (T1-T4) 

across patient clusters. The χ2 test statistics for HC, TL and TF features with T stage parameters 

are p < 2.9 × 10-4, p < 5.0 × 10-3 and p < 4.8 × 10-2, respectively. For image signatures, FFSig 

was significantly associated with primary tumour T stages (χ2 test, p < 4.0 × 10-2). None of the 

HCSig, TLSig or FTSig is found to be significantly associated with primary tumour T stages, their 

χ2 test statistics are p > 0.8, p > 6.0 × 10-2 and p > 0.5, respectively. Figure 4.2 illustrate the 

relationships among FFSig, T stages and patient clusters from the NRG-H dataset. 
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4.3.2 RRs between Image Feature Signatures and Genes 

A total of 11318 gene expression remained from the NRG-H dataset to establish radiogenomics 

associations. Figure 4.3a. represents the distribution of RRs that were determined between the 

averaged gene expression values of 11,318 individual genes and FFSig, HCSig, TLSig and FTSig. 

FFSig identified the highest number of RRs at 5039 and correlated with the highest number of 

genes at 3881. HCSig identified 1193 RRs with 886 genes. TLSig identified 3816 RRs with 3297 

genes. FTSig identified 2089 RRs with 2008 genes. Figure 4.4a. details the distribution of 

unique genes that were associated with FFSig, HCSig, TLSig, and FTSig. Among the 3,881 unique 

genes that were associated with the FFSig, 1,896 unique genes cannot be associated with any of 

the HCSig, TLSig, and FTSig. In contrast, a total number of 3,269 unique genes were associated 

with one of the HCSig, TLSig, and FTSig, but were not correlated with the FFSig.  

Figure 4.2. Heatmap of the FFSig across patient clusters with corresponding T stage 
from the NRG-H dataset. 
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Table 4.1 compares the strengths of all RRs that were determined using the FFSig against 

those determined using HCSig, TLSig and FTSig. Our results show stronger RRs are identified 

between the FFSig and genes, when compared with HCSig and TLSig, in the inverse direction. 

Figure 4.5 illustrates the distribution of RRs that were determined between image feature 

signatures of the FFSig, HCSig, TLSig, FTSig with the gene expression value from the key genetic 

biomarkers of EGFR for NSCLC [156]. Our result shows that the FFSig and FTSig were 

inversely correlated with EGFR expression. In contrast, HCSig is shown to be the only positive 

RRs with EGFR. Notably, FTSig shows to derive more and stronger inverse RRs with EGFR 

when compared with the FFSig. In addition, our result shows that ERCC1, a key genetic 

biomarker for NSCLC, is exclusively correlated with a single feature from the FFSig, where the 

same feature showed inverse RRs with EGFR previously. 

 Using the NRG-S dataset, a total of 2,993 gene expression remained to establish 

radiogenomics associations. Figure 4.3b. represents the distribution of RRs that were 

determined between the averaged gene expression values of 2,993 individual genes and FFSig, 

Figure 4.3. The distribution of RRs between feature signatures and: a) gene expression value 
of the processed genes (n = 11,318) from the NRG-H dataset. b) gene expression value of the 
processed genes (n = 2,993) from the NRG-S dataset. 
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HCSig, and FTSig. Figure 4.4b. details the distribution of unique genes that were associated with 

FFSig, HCSig, TLSig, and FTSig. Table 4.2. compares the strengths of all RRs that were 

determined using the FFSig against those determined using HCSig, and FTSig. Our validation 

results show that the FFSig did not identify stronger RRs with genes, when compared with HCSig 

and TLSig, in both statistical directions. 

 

Table 4.1. Two-Sample t-Tests that assess the strengths of all RRs constructed using the FFSig 
with HCSig, TLSig and FTSig, in both statistical directions on the NRG-H dataset. 

Strength of Positive RRs (Two-Sample t-Test) 

Feature signature HCSig TLSig FTSig 

FFSig p > 0.2 p > 0.7 p > 0.3 

Strength of Inverse RRs (Two-Sample t-Test) 

FFSig p < 1 × 10-3 p < 1 × 10-2 P > 0.6 

 

 

 

Figure 4.4. Venn diagram shows the distribution of unique genes that were associated with 
FFSig, HCSig, TLSig, and FTSig: a) generated using the NRG-H dataset. b) generated using the 
NRG-S dataset. 
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Table 4.2. Two-Sample t-Tests that assess the strengths of all RRs constructed using the FFSig 
with HCSig and FTSig, in both statistical directions on the NRG-S dataset. 

Strength of Positive RRs (Two-Sample t-Test) 

Feature signature HCSig FTSig 

FFSig p > 0.8 p > 0.2 

Strength of Inverse RRs (Two-Sample t-Test) 

FFSig p >0.3 P > 0.08 
 

4.3.2 RRs between Image Feature Signatures and GO Terms 

From our experiments using the NRG-H dataset, FFSig determined RRs with the highest number 

of GO terms at 244. HCSig determined RRs with 62 GO terms TLSig determined RRs with 246 

GO terms. FTSig determined RRs with 129 GO terms. Figure 4.6a. details the distribution of 

Figure 4.5. The distribution of RRs between the FFSig with the key genetic 
biomarker of EGFR from the NRG-H dataset, in comparison to HCSig, TLSig and 
FTSig. 
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GO terms that were associated with image feature signatures of FFSig, HCSig, TLSig, and FTSig. 

Among the 244 GO terms that have RRs with by FFSig, 122 GO terms were exclusively 

enriched; these GO terms account for 50% of the total enriched GO terms or 13.8% of the total 

1,046 GO terms.  

 

Table 4.3 shows the GO terms with the highest NES. Notably, FFSig determined RRs 

with GO terms that exhibit distinct patterns relating to the biological functions and cellular 

behaviours: i) 3 GO terms were related to lumen structures including organelle, nuclear and 

membrane; ii) 2 GO terms were reflecting biosynthesis processes that involve glycoprotein or 

macromolecule iii) 3 GO terms were related to the response mechanism to viruses, other 

organism or biotic stimulus. and other types of stimulus processes. In comparison, our results 

also show that TLSig determined RRs with 4 GO terms that are associated with fraction 

activities. In addition, FTSig determined RRs with GO terms that are related to enzyme 

activities. In contrast, HCSig determined RRs with GO terms are shown to be without overlaps 

in their biological functionalities. 

Figure 4.6. Venn diagram shows the distribution of GO terms that were associated with image 
feature signatures of FFSig, TLSig, FTSig and HCSig: a) generated using the NRG-H dataset. b) 
generated using the NRG-S dataset. 
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Table 4.5 shows the comparison between GO terms that have exclusive RRs with FFSig 

and those GO terms that are restricted to have RRs with FFSig. Among the GO terms with the 

highest NES, our result shows clusters of biological functions and cellular behaviours that have 

exclusive RRs with the FFSig: i) 3 GO terms were related to kinase activities for transmembrane 

receptor protein and tyrosine kinase; ii) 2 GO terms were related to metabolism activities; The 

identical 3 GO terms were most enriched by FFSig and related to the virus response mechanism. 

In contrast, our result shows 2 groups of related biological functions among the GO terms that 

were restricted to FFSig. Such GO terms are related to fraction processes and enzyme activities. 

From our validation experiment on the NRG-S dataset, functional gene enrichment 

analysis reveals that FFSig determined RRs with the highest number of GO terms at 322. HCSig 

determined RRs with 31 GO terms. TLSig determined RRs with 0 GO terms. Figure 4.6b. details 

the distribution of GO terms that were associated with image feature signatures of FFSig, HCSig, 

TLSig, and FTSig. FTSig determined RRs with 142 GO terms. Among the 322 GO terms that 

have RRs with by FFSig, 233 GO terms were exclusively enriched; these GO terms account for 

72.4% of the total enriched GO terms or 22.3% of the total 1,046 GO terms.  
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Table 4.3. The GO terms that have RRs with FFSig, HCSig, TLSig and FTSig with positive and 
negative associations from the NRG-H dataset. 

FFSig NES HCSig NE

S 

Organelle Lumen 2.43 Extracellular Region 1.74 

Nuclear Lumen 2.22 Regulation of Transferase Activity 0.60 

Membrane Enclosed Lumen 2.19 Transferase Activity Transferring Phosphorus 

Containing Groups 

0.58 

Glycoprotein Biosynthetic Process 1.98 Protein Kinase Activity 0.58 

Macromolecule Biosynthetic Process 1.94 Stress Activated Protein Kinase Signalling Pathway 0.58 

Response to Virus -1.98 Carbohydrate Metabolic Process -0.99 

Cell Cell Signalling -1.98 Phosphoric Monoester Hydrolase Activity -0.99 

Response to Other Organism -2.00 Phosphoric Ester Hydrolase Activity -1.01 

Anatomical Structure Morphogenesis -2.01 Alcohol Metabolic Process -1.02 

Response to Biotic Stimulus -2.01 Hydrolase Activity Acting on Ester Bonds -1.02 

                          TLSig                                 FTSig 

Cell Fraction 2.17 Anatomical Structure Morphogenesis 1.85 

Membrane Fraction 2.03 Enzyme Regulator Activity 1.80 

Phosphoric Ester Hydrolase Activity 2.02 Enzyme Activator Activity 1.79 

Soluble Fraction 1.96 Enzyme Linked Receptor Protein Signalling Pathway 1.77 

Insoluble Fraction 1.96 Membrane Fraction 1.73 

Homophillic Cell Adhesion -1.66 Extracellular Region Part -1.23 

Sulfuric Ester Hydrolase Activity -1.67 Extracellular Space -1.23 

Nervous System Development -1.68 Phosphorylation -1.24 

Regulation of Anatomical Structure 

Morphogenesis 

-1.68 Lipase Activity -1.25 

Cell Surface -1.99 Female Pregnancy -1.27 
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Table 4.4. The GO terms that have RRs with FFSig, HCSig and FTSig with positive and negative 
associations from the NRG-S dataset. 

FFSig NES HCSig NES  FTSig NES 

Perinuclear Region of 
Cytoplasm 

2.62 Sensory Perception 1.80 Intracellular Protein 
Transport 

2.62 

Nervous System 
Development 

2.58 Monooxygenase Activity 1.78 Establishment of Protein 
Localisation 

2.61 

Membrane Organisation 
and Biogenesis 

2.45 Oxygen Binding 1.78 Macromolecule 
Localisation 

2.61 

Intercellular Junction 2.05 Electron Transport (GO 
0006118) 

1.75 Protein Localisation 2.54 

Tight Junction 1.96 Neurological System Process 1.70 Protein Transport 2.52 

Kinase Activity -2.00 Second Messenger Mediated 
Signalling 

-0.77 Soluble Fraction -1.61 

Endoplasmic Reticulum -2.11 Establishment and or 
Maintenance of Cell polarity 

-0.77 Organelle Lumen -1.62 

Nuclear Lumen -2.19 Regulation of Catalytic Activity -0.77 Nucleolus -1.65 

Organelle Lumen -2.84 cAMP Mediated Signalling -0.77 Nuclear Lumen -1.67 

Membrane Enclosed 
Lumen 

-3.06 G Protein Signalling Adenylate 
Cyclase Activating Pathway 

-0.77 Membrane Enclosed 
Lumen 

-1.71 

 

Table 4.4. shows the GO terms with the highest NES. Notably, FFSig determined RRs 

with GO terms that exhibit distinct patterns relating to the cellular structure: i) 3 GO terms 

were related to lumen structures including organelle, nuclear and membrane; ii) 2 GO terms 

that reflect the cell junction. In comparison, FTSig determined RRs with GO terms that are 

related to cellular structures, protein transportation and localisation. HCSig determined RRs 

with GO terms that are related to signalling pathways, such as cAMP mediated signalling and 

second messenger mediated signalling. 

Table 4.6. shows the comparison between GO terms that have exclusive RRs with FFSig 

and those GO terms that are restricted to have RRs with FFSig. Among the GO terms with the 

highest NES, our validation results show a cluster of biological functions and cellular 

behaviours that have exclusive RRs with the FFSig: 3 GO terms were related to peptidase 

activity; ii) 2 GO terms that reflect the cell junction. In contrast, our result shows 2 groups of 
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related biological functions among the GO terms that were restricted to FFSig. Such GO terms 

are related to the intrinsic components of organelle membranes and metabolic processes. 

 

Table 4.5. The GO terms that have the highest NES and exclusively RRs with FFSig (left) and 
the GO terms that are restricted to have RRs with FFSig (right), experimented on the NRG-H 
dataset. 

FFSig Exclusive NES FFSig Restricted NES 

Transmembrane Receptor Protein Kinase Activity 1.61 Soluble Fraction 1.96 

Protein Tyrosine Kinase Activity 1.60 Insoluble Fraction 1.96 

Transmembrane Receptor Protein Tyrosine Kinase 

Activity 

1.53 Enzyme Regulator Activity 1.80 

Generation of Precursor Metabolic and Energy 1.47 Enzyme Activator Activity 1.79 

Phospholipid Metabolic Process 1.42 Molecular Adaptor Activity 1.73 

RNA Processing -1.85 Generation of Neurons -1.66 

Organ Morphogenesis -1.95 Homophilic Cell Adhesion -1.67 

Response to Virus -1.98 Sulfuric Ester Hydrolase Activity -1.67 

Response to Other Organism -2.00 Regulation of Anatomical Structure 

Morphogenesis 

-1.68 

Response to Biotic Stimulus  -2.01 Cell Surface -1.99 

 

4.4 Discussion 

Our main findings are that our FFSig: i) encoded complementary medical image’s visual 

characteristics when compared with other image feature signatures; (ii) determined a greater 

number of RRs with a greater number of genes; (iii) determined RRs with distinct GO terms; 

(iv) determined exclusive RRs with genetic biomarkers of NSCLC and GO terms that are 

related to NSCLC and (v) is robust and generalisable for determining RRs when validated on 

NRG-S.   
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From our experiments using the NRG-H dataset, the FFSig comprises 7 image features 

that are complementary to image features that were selected in the HCsig, TLsig, and FTsig. Image 

features that are included in the FFSig can be traced back to the 6,144-dimensional TL features. 

This finding indicates that the multi-step feature selection scheme prioritised a set of 

complementary image features that are relevant to the histological characteristics while 

reducing the overall redundancy in the information captured. This finding suggests that the 

FFSig encodes unique medical imaging visual characteristics when compared with other image 

signatures. The FFSig was the only feature signature that produced a significant association (p 

< 0.05) with the T stage. The HCSig, TLSig, and FTSig did not have any association with the T 

stage, despite the fact that the FFSig was selected from the HC, FT, and TL features. Our results 

showed that the semantic information that is encoded in the HC features and the abstract-level 

information that are encoded in the TL and FT features contributed towards the selection of 

features in FFSig. This finding implies that the association between FFSig and T stage occurred 

because the FFSig leveraged complementary information using both HC and deep ETs.  

Table 4.6. The GO terms that have the highest NES and exclusively RRs with FFSig (left) and 
the GO terms that are restricted to have RRs with FFSig (right), experimented on the NRG-S 
dataset. 

FFSig Exclusive NES FFSig Restricted NES 

Perinuclear Region of Cytoplasm 2.62 Positive Regulation of Metabolic Process 1.93 

Membrane Organisation and Biogenesis 2.45 Positive Regulation of Cellular Metabolic 
Process 

1.90 

Intercellular Junction 2.05 Neurite Development 1.90 

Tight Junction 1.96 Steroid Hormone Receptor Signalling 
Pathway 

1.89 

Apical Junction Complex 1.94 Cellular Lipid Catabolic Process 1.88 

Serine Type Peptidase Activity -1.57 cAMP Mediated Signalling -0.77 

Serine Hydrolase Activity -1.58 G Protein Signalling Adenylate Cyclase 
Activating Pathway 

-0.77 

Serine Type Endopeptidase Activity -1.60 Intrinsic to Golgi Membrane -0.88 

Peptidase Activity -1.75 Intrinsic to Organelle Membrane -0.93 

Endopeptidase Activity -1.76 Integral to Organelle Membrane -0.93 
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The FFSig determined a greater number of RRs with a greater number of genes when 

compared with the other image feature signatures. The FFSig was also correlated with EGFR. 

One potential explanation for our finding is that the FFSig encodes the imaging characteristics 

of the tumour that can reflect the underlying molecular characteristics of NSCLC [157].  The 

FFSig has also determined stronger inverse RRs with a range of genes when compared to HCSig 

and TLSig. There was no stronger positive RRs with genes when compared with the HCSig, TLSig 

and FTSig. The reason for this is because the FFSig did not incorporate any image feature that 

was learned from scratch from the raw data using deep ETs; the FT components were the 

closest and as stated previously were aligned with the non-medical TL features. We suggest 

that positive RRs may appear when deep ETs are directly trained from scratch on the NRG-H 

CT data.  

In addition, from our experiments using the NRG-H dataset, the FFSig determined RRs 

with a distinctive collection of GO terms with higher NES when compared to the other image 

feature signatures. A higher NES of GO terms is typically the result of a stronger correlation 

between the image feature signatures and the affiliated genes that contribute to the GO term 

and, RRs with a greater number of affiliated genes that contribute to the GO term. Notably, GO 

terms with the highest NES consist of a range of biological functions that relate to cellular 

structures. It has been reported that abnormalities in cellular structures are related to the 

development of NSCLC [158]. FFSig has shown to determine RRs with more GO terms when 

compared with HCSig and FTSig. A potential explanation for this finding is that the FFSig 

determined RRs with a greater number of unique genes. These genes may be affiliated with a 

greater range of biological functions and therefore provide opportunities for FFSig to determine 

RRs with more and unique GO terms. We note that while the TLSig determined RRs with a 
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higher number of GO terms, these are generally related to normal human anatomical 

information rather than the subtle disease processes related to the primary tumour. This finding 

is evidenced by the most enriched GO terms, such as “Regulation of Anatomical Structure 

Morphogenesis”, as shown in table 4.3.  

From our experiments using the NRG-H dataset, FFSig determined exclusive RRs with 

a group of GO terms that consist of a range of biological functions that are related to protein 

kinase activities, such as “Transmembrane Receptor Protein Kinase Activity”. Atypical kinase 

and its activities have been reported previously as an oncogene in NSCLC [159], which play a 

crucial role in cell growth and tumourigenesis that may be observable in medical images [160]. 

In contrast, GO terms that are restricted to have RRs with FFSig include, for example, “Soluble 

Fraction” and “Enzyme Regulator Activity”. A potential explanation is that the specific enzyme 

activities and fractions cannot be depicted by CT images and hence cannot be quantified by the 

FFSig.  

Our validation experiments on the NRG-S dataset show that the FFSig comprises 13 

image features that are complementary to image features that were selected in the HCsig, and 

FTsig. Among the 13 image features, 12 can be traced back to the 6,144-dimensional FT features 

and the other feature can be traced back to a HC feature. Our results using NRG-S demonstrated 

that the FFSig encoded complementary medical imaging visual characteristics. The validation 

results are consistent with our previous findings from the NRG-H dataset. 

However, none of the FFSig, HCSig, nor FTSig from the NRG-S dataset produced a 

significant association with the T stage. We attribute our findings to the different scanning 

parameters used in the NRG-S dataset, for example, slice thickness that ranges from 0.625 to 

3mm. Such factors contribute to subtle imaging differences and have potential impacts on the 

feature extraction process. 



 
 

63 

In our validation study, FFSig has determine a greater number of RRs with a greater 

number of genes when compared with the other image feature signatures. This result validates 

that the FFSig is robust and generalisable in encoding the imaging characteristics of the tumour 

that can reflect the underlying molecular characteristics of NSCLC. However, in our validation 

study, using the NRG-S dataset, FFSig did not identify stronger RRs with a range of genes when 

compared with HCSig and FTSig. One potential explanation is that the FFSig did not incorporate 

any image feature that was fine-tuned on the NRG-S dataset. Despite NRG-S dataset has many 

similarities to the NRG-H dataset, such as the type of disease, the distribution of patients’ 

clinical parameters and their histopathology status are vastly different to the NRG-H dataset. 

We suggest that stronger RRs may appear when deep ETs are fine-tuned on the NRG-S dataset.  

In our validation experiments, the FFSig has also shown to determine RRs with a 

distinctive collection of GO terms with higher NES when compared to the other image feature 

signatures. Notably, our validation results share a high degree of similarity with our previous 

findings from experiments using the NRG-H dataset. For example, from both experiments, the 

proposed FFSig determined RRs with GO terms such as ‘Membrane Enclosed Lumen’ and 

‘Organelle Lumen’. Interestingly, such RRs with GO terms that relate to lumen structures are 

in opposite statistical direction. We attribute this finding to the differences between the NRG-

H and NRG-S datasets where their distribution of T stage parameters and histology sub-types, 

as they played important roles in the multi-stage feature selection scheme. Such findings further 

demonstrate the robustness and generalisability of our proposed FFSig to determine RRs with 

GOs across different datasets. 

Furthermore, in our validation experiments using the NRG-S dataset, FFSig determined 

exclusive RRs with a group of GO terms that consist of a range of biological functions that are 

related to peptidase activity such as ‘Endopeptidase Activity’. Previous study has shown that 

bombesin-like peptides and other neuropeptides are autocrine growth factors for both small 
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cell lung cancer (SCLC) and NSCLC [161]. Our validation results demonstrate the robustness 

and generalisability of our proposed FFSig for determining GO terms that are related to NSCLC. 

We recognise that a limitation of our study is the size of the dataset and that lack of 

knowledge about the patients’ mutation status. This limits the ability to optimise deep ETs to 

quantify image features that are most relevant to the NSCLC. Another limitation of this study 

is the differences between the train dataset and the independent test dataset. The two datasets 

use different methods for gene expression profiling, and as such the NRG-H dataset has a 

greater amount of genetic information compared to the NRG-S dataset. The ideal situation 

would have been to utilise two datasets that use the same technology for gene expression 

profiling, but at the time of experimentation and to the best of our knowledge, no such public 

radiogenomics dataset existed. However, despite these differences we note that the NRG-S 

dataset shares similarity with the NRG-H dataset, such as the type of disease and 

histopathology subtypes, and these similarities mean that it is the closest dataset that can be 

used for independent validation.  

The limited availability of the clinical parameters e.g., survival data in the datasets has 

restricted our study from designing a deep learning-based image feature selection scheme. We 

note that as more radiogenomics datasets becomes available in the future, a key area for 

radiogenomics studies is to investigate the feasibility for a data-driven method for image 

feature selection [162]. Another potential future direction for our study is to investigate deep 

learning-based gene expression level prediction. Such a deep model can encode imaging 

characteristics that are reflective towards changes in gene expression levels and therefore may 

provide more insights into RRs. 
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4.5 Conclusion 

In this chapter, a novel framework for radiogenomics analysis was presented that used 

a selection of image features from handcrafted and deep ETs, named FFSig, to determine the 

RRs. The results show that the FFSig encoded complementary medical image visual 

characteristics when compared with other image feature signatures. The FFSig determined more 

RRs with genes and with a group of distinct GO terms. Results show that FFSig is correlated 

with a key biomarker for NSCLC and GO terms that are related to tumour developments in 

NSCLC. Furthermore, the validation experiments demonstrate that the FFSig is robust and 

generalisable in different dataset. The FFSig has demonstrated its potentials to identify 

important RRs that may facilitate cancer diagnosis and treatment in the future. 
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Chapter 5. Radiogenomics with Multi-

disease Analysis 
 

 

This chapter introduces a novel radiogenomics method that utilises multi-disease analysis to 

derive radiogenomics features associated with specific genetic characteristics from one disease 

that can be applied to another disease. The proposed framework considers radiogenomics 

features that encode similar pathophysiology underlying two distinct diseases, providing an 

alternative approach for radiogenomics analysis when there is a lack of annotated medical 

image datasets. By leveraging the similarities between diseases, the framework can facilitate 

the transfer of knowledge and provide unique insights to radiogenomics analysis for diseases 

with limited available data. 

 To validate the performance of the proposed radiogenomics method, experiments are 

conducted using multiple public datasets that contain CT images from patients with 

Coronavirus disease 2019 (COVID-19) and lung adenocarcinoma (LUAD). COVID-19 is 

caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). SARS-CoV-2 

enters the body via angiotensin-converting enzyme 2 (ACE2), a membrane-bound 

aminopeptidase abundantly expressed in the lungs and heart. Altered ACE2 expression due to 

SARS-CoV-2 infection plays a crucial role in the pathogenesis of COVID-19 and may lead to 

life-threatening conditions such as acute respiratory distress syndrome (ARDS). Gene 

expression profiling, however, is not routinely performed for COVID-19 patient management. 

Comparable to COVID-19, LUAD patients also exhibit altered ACE2 expression and LUAD 

data are relatively abundant. In this chapter, a radiogenomics method is presented for deriving 

image features (ACE2-RGF) associated with angiotensin-converting enzyme 2 (ACE2) 
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expression data from LUAD patients. The ACE2-RGF is utilised as a surrogate biomarker for 

ACE2 expression, thereby providing an alternative approach for COVID-19 analysis. The 

ACE2-RGF demonstrated potential for classifying COVID-19 and COVID-19 critical illness 

identification. These findings provide unique insights for automated COVID-19 analysis and 

future research. 

 

5.1 Contributions 

The proposed ACE2-RGF has the following contributions: 

• The ACE2-RGF is constructed by identifying radiogenomics features that exhibit 

statistical associations between ACE2 gene expressions and CT images from both 

COVID-19 and LUAD patients.  

• The ACE2-RGF encodes a distinct set of image features when compared with 

conventional machine learning-based frameworks.   

• The ACE2-RGF can differentiate between COVID-19 and normal subjects, and it can 

be combined with image features derived using conventional machine learning-based 

techniques to improve classification performance.  

• The ACE2-RGF can also effectively identify COVID-19 patients with critical illness. 

• The ACE2-RGF can be used as a biomarker for various applications, as shown for both 

COVID-19 classification and critical illness identification.  

 

The contribution of this chapter aligns with the aim 2 stated in section 1.3 of Chapter 1 and 

addresses the gap 3.5.2 identified in Chapter 3. Specifically, this chapter proposes a novel 

radiogenomics method that utilises limited datasets to improve the accuracy and efficiency of 

radiogenomics analysis. Moreover, this chapter provides an extensive analysis and comparison 
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of state-of-the-art radiogenomics analysis pipelines, which builds upon the literature review 

presented in Chapter 3. 
 

5.2 Materials and Methods 

5.2.1 Materials 

We compiled CT scans from multiple public datasets. For LUAD, we used 3 datasets from The 

Cancer Imaging Archive (TCIA) [163]: i) NSCLC Radiogenomics from Stanford University 

[164] (‘NRG-S’), ii) NSCLC Radiomics-Genomics from Harvard University [165], (‘NRG-

H’), and, iii) NSCLC Radiomics from Harvard University [165] (‘NR-H’). Only NSCLC 

patients with the LUAD subtype were included. The NRG-S dataset contained scans from 161 

patients, 112 also had lung tumour segmentation and 49 had valid ACE2 expression data. One 

patient was removed from our study due to an exceptionally high ACE2 expression level. The 

gene expression data were generated with RNA-Seq. The NRG-H dataset comprised CT and 

gene expression values generated using microarray from 42 patients. There were no 

corresponding segmentations in the original dataset. We obtained tumour segmentations from 

an imaging specialist experienced in reading radiology and CT scans. In total, there were 254 

LUAD CT scans; 91 also had tumour segmentations and ACE2 expression data. For examples 

of COVID-19 and normal patients, we used images from the China Consortium of Chest CT 

Image Investigation (CC-CCII) [166]. We downloaded all available data and 1,496 COVID-

19 and 725 normal scans were studied.  
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5.2.2 Overview of the framework 

In our framework, image features were extracted from the CT. The ACE2-RGF was determined 

by using Spearman rank correlation between ACE2 expressions and image features from the 

NRG-S and NRG-H datasets. ACE2-RGF was used to train a multiple logistic regression 

(MLR) classifier, which comprised a single fully connected hidden layer, and two output nodes 

corresponding to each class (e.g., COVID-19 and normal). The MLR classifiers were trained 

using LUAD images and were evaluated for their performance for COVID-19 classification 

and critical illness identification. An overview of our framework is outlined in Fig 5.1. 

 

Figure 5.1. Our proposed radiogenomics method. It quantifies and identifies ACE2-RGF to 
construct a multiple logistic regression for classifying COVID-19 from normal subjects and 
identify critical illness from mild symptoms. 
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5.2.3 Radiogenomics Feature Extraction and Correlation Analysis 

We extracted image features using the widely applied pyradiomics [167] Python package from 

the tumour regions of the images from the NRG-S and the NRG-H datasets, and from the 

segmented lung regions of all the available scans. A total of 1,288 features relating to shape, 

first order statistics, and texture were computed per scan volume. Features were extracted from 

the original images, derived images using Laplacian of Gaussian (LoG) filtering with 5 

different sigma levels, and Wavelet decomposition with different combinations of low (denote 

as ‘L’) and high-pass (denote as ‘H’) filters on the X, Y and Z dimensions of the image. Shape 

features were computed only on the original inputs while all other features were extracted from 

the original and the derivatives. Shape characteristics included volume, surface area, and 

length. First order statistics, such as mean, kurtosis, and skewness, described the image 

intensity histogram. Texture features were quantified by means of grey level cooccurrence 

matrix (GLCM), grey level run length matrix (GLRLM), grey level size zone matrix (GLSZM), 

neighbouring grey tone difference matrix (NGTDM), and grey level dependence matrix 

(GLDM). GLCM [168] describes the spatial relationship between pixels of similar intensities. 

GLRLM [169] quantifies the length of consecutive pixels with the same intensity. GLSZM 

[170] depicts texture homogeneity and areas with the same grey-level. NGTDM [171] 

quantifies the difference between a pixel and its average neighbouring intensities. GLDM [172] 

represents the connectedness of similar grey-levels. 

The extracted image features were associated with ACE2 gene expression using 

Spearman’s rank correlation and assessed for significance and stability across the NRG-S and 

NRG-H datasets. Image features that were significantly correlated (p < 0.05) with ACE2 

expressions across both datasets were selected and formed the ACE2-RGF.  
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5.2.4 Experiments 

The proposed radiogenomics method was assessed by conducting two sets of experiments: i) 

ACE2-RGF classifying LUAD/normal and COVID-19/normal and, ii) ACE2-RGF classifying 

COVID-19/normal subjects, and in identifying critical illness subjects.   

First, we derived ACE2-RGF from the NRG-S and NRG-H datasets according to their 

correlation to ACE2 gene profiles; these features were then used with MLR to measure their 

ability to classify LUAD/normal and COVID-19/normal subjects. Radiomics features were 

also extracted from the NRG-S and the NRG-H datasets. A variety of conventional feature 

selection techniques were employed to determine the best representative features for the tasks, 

including analysis of variance (ANOVA), mutual information [173], recursive feature 

elimination (RFE) [174] using a support vector classifier estimator, minimum redundancy 

maximum relevance (mRMR) [152], ReliefF [175], random forest with 100 estimators and Gini 

impurity, least absolute shrinkage and selection operator (Lasso) [176], Ridge, and Elastic Net 

[177] with an L1 ratio of 0.5. The resulting collections of selected image features are denoted 

as LUAD-RF. For instance, LUAD-RFANOVA represents radiomics features extracted from 

LUAD subjects and was processed using the ANOVA feature selection technique. The 

performance of ACE2-RGF was compared to LUAD-RF and all extracted radiomics features 

(‘LUAD-AF’). 

Next, the ACE2-RGF was used with MLR to measure its ability to separate COVID-

19/normal. For this experiment, radiomics features were extracted from CC-CCII datasets. The 

same feature selection techniques were applied to the extracted radiomics features and the 

resulting collection of selected image features were denoted as COVID-19-RF. The 

performance of ACE2-RGF was compared to COVID-19-RF and all extracted radiomics 

features (‘COVID-19-AF’). 
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Lastly, our ACE2-RGF was used with MLR to measure its ability for identifying 

COVID-19 critical illness. For this experiment, radiomics features were also extracted from 

CC-CCII datasets. We followed the same feature selection procedure as for the extracted 

radiomics features and the resulting collection of selected image features were denoted as 

COVID-Crt-RF. The performance of ACE2-RGF was compared to COVID-Crt-RF and all 

extracted radiomics features (‘COVID-Crt-AF’). 

5-fold cross-validation was performed for all experiments. We randomly sampled 250 

examples each of LUAD and normal classes (500 in total), and further randomly divided the 

sample into training and validation sets with an 80/20 split, resulting in 200 examples for 

training and 50 for validation from each class. Identical patient splits were used for both 

methods and no subject were in both the training and validation sets of a fold. For the test set, 

all available COVID-19 patients and control subjects not chosen in the cross-validation sample 

were included. We evaluated our MLR models using performance metrics including accuracy 

(ACC), area under the ROC curve (AUC), F1 score, F1 score of only the positive 

(LUAD/COVID-19) class (F1 POS), precision (PREC), recall (RECA), and specificity (SPEC). 

We define the best model based on the highest average score between F1 and AUC on the 

validation set of its fold. 

 

5.3 Results 

5.3.1 ACE2-RGF for Classifying LUAD, COVID-19, and Normal 

Subjects 

The ACE2-RGF had 12 features that were significantly correlated with the expression of the 

ACE2 gene (Table 5.1). These features were derived from the GLCM, GLRLM, GLSZM, and 
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GLDM, which are all descriptors of image texture. Eight of the 12 features related to textural 

"emphasis," which describes the proportion of various grey-level values and zones of varied 

sizes within an image. Notably, all 12 image features were extracted from the derived images 

using LoG filtering with sigma levels of 3 and 4.  

Table 5.1. ACE2-RGF image features (12 features). 

Feature Name Origin 
log_sigma_3_0_mm_3D_glcm_Autocorrelation GLCM 
log_sigma_3_0_mm_3D_glcm_JointAverage GLCM 
log_sigma_3_0_mm_3D_glrlm_HighGrayLevelRunEmphasis GLRLM 
log_sigma_3_0_mm_3D_gldm_HighGrayLevelEmphasis GLSZM 
log_sigma_3_0_mm_3D_gldm_LargeDependenceLowGrayLevelEm
phasis GLSZM 

log_sigma_4_0_mm_3D_glcm_Autocorrelation GLCM 
log_sigma_4_0_mm_3D_glcm_JointAverage GLCM 
log_sigma_4_0_mm_3D_glrlm_LongRunLowGrayLevelEmphasis GLSZM 
log_sigma_4_0_mm_3D_glrlm_LowGrayLevelRunEmphasis GLRLM 
log_sigma_4_0_mm_3D_gldm_HighGrayLevelEmphasis GLSZM 
log_sigma_4_0_mm_3D_gldm_LargeDependenceLowGrayLevelEm
phasis GLSZM 

log_sigma_4_0_mm_3D_gldm_LowGrayLevelEmphasis GLRLM 
 

Tables 5.2 and 5.3 compare the performance for LUAD-AF, ACE2-RGF, and LUAD-

RF for classifying LUAD from normal subjects and classifying COVID-19 from normal 

subjects. LUAD-AF and LUAD-RF demonstrated superior performance than ACE2-RGF for 

classifying LUAD from normal patients. However, MLR classifiers showed substantial 

decreases in performance when LUAD-AF and LUAD-RF were used as inputs for COVID-19 

classification. In contrast, MLR with ACE2-RGF showed consistent performance for 

classifying LUAD and COVID-19 from normal subjects. 
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Table 5.2. Performance of the MLR models for classifying LUAD from normal subjects using 
i) LUAD-AF, ii) ACE2-RGF, and iii) LUAD-RF. LUAD Radiomics features were extracted 
from the NRG-H and NRG-S datasets. ACE2-RGF was derived and extracted from the NRG-
H and NR 

Input ACC AUC F1 F1 POS PREC RECA SPEC 

LUAD-AF 0.99 1.00 0.99 0.99 0.99 0.99 0.99 

ACE2-RGF 0.85 0.91 0.85 0.87 0.79 0.95 0.75 

LUAD-RFANOVA 0.96 1.00 0.96 0.96 0.95 0.97 0.95 

LUAD-RFMutual 

Info 
0.97 1.00 0.97 0.97 0.97 0.98 0.97 

LUAD-RFRFE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

LUAD-RFmRMR 0.98 1.00 0.98 0.98 0.98 0.98 0.98 

LUAD-RFReliefF 0.92 0.97 0.92 0.92 0.91 0.93 0.91 

LUAD-RFForest 0.97 1.00 0.97 0.97 0.98 0.97 0.98 

LUAD-RFLASSO 0.99 1.00 0.99 0.99 1.00 0.99 1.00 

LUAD-RFRidge 0.99 1.00 0.99 0.99 0.99 1.00 0.99 

LUAD-RFElastic Net 0.99 1.00 0.99 0.99 0.99 0.99 0.99 

 

 

 

 

 

 

 

 

 



 
 

75 

Table 5.3. Performance of the MLR models for classifying COVID-19 from normal subject 
using i) LUAD-AF, ii) ACE2-RGF, and iii) LUAD-RF. Radiomics features were extracted 
from the NRG-S and NRG-H datasets. ACE2-RGF was derived and extracted from the NRG-
H and NRG-S datasets. 

Input ACC AUC F1 F1 POS PREC RECA SPEC 

LUAD-AF 0.28 0.70 0.25 0.09 0.99 0.05 1.00 

ACE2-RGF 0.85 0.83 0.80 0.90 0.91 0.89 0.72 

LUAD-RFANOVA 0.37 0.82 0.37 0.31 0.91 0.19 0.94 

LUAD-RFMutual 

Info 0.38 0.83 0.37 0.31 0.90 0.20 0.94 

LUAD-RFRFE 0.28 0.52 0.24 0.09 1.00 0.04 1.00 

LUAD-RFmRMR 0.28 0.64 0.25 0.11 0.86 0.06 0.97 

LUAD-RFReliefF 0.65 0.81 0.63 0.70 0.96 0.56 0.92 

LUAD-RFForest 0.34 0.87 0.33 0.24 0.92 0.14 0.96 

LUAD-RFLASSO 0.30 0.55 0.28 0.15 1.00 0.08 1.00 

LUAD-RFRidge 0.27 0.61 0.23 0.07 1.00 0.03 1.00 

LUAD-RFElastic 

Net 0.28 0.69 0.24 0.09 0.98 0.05 1.00 

 

5.3.2 MLR for COVID-19 Classification 

For COVID-19 classification, radiomics features that were frequently selected by conventional 

feature selection techniques (Table 5.4) were exclusively derived from decomposed images 

using 3D wavelet decomposition with LLH filters. Notably, none of these wavelet features 

overlap to ACE2-RGF.  
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Table 5.4. Top 12 radiomics features that were frequently selected by conventional image 
feature selection techniques for COVID-19 classification. 

Feature Name Frequency of 
Selection (%) 

wavelet_LLH_firstorder_Maximum  60.0 

wavelet_LLH_firstorder_Range  54.3 

wavelet_LLH_glszm_HighGrayLevelZoneEmphasis  48.6 

wavelet_LLH_glrlm_HighGrayLevelRunEmphasis     45.7 

wavelet_LLH_glszm_SmallAreaHighGrayLevelEmphasis  42.9 

wavelet_LLH_glcm_Autocorrelation  42.9 

wavelet_LLH_gldm_HighGrayLevelEmphasis  40.0 

wavelet_LHH_firstorder_Mean  37.1 

wavelet_LLH_glrlm_ShortRunHighGrayLevelEmphasis  37.1 

wavelet_LLH_gldm_SmallDependenceHighGrayLevelEmphasis 31.4 

wavelet_LLH_glszm_GrayLevelVariance  31.4 

wavelet_LLH_glrlm_LongRunHighGrayLevelEmphasis  31.4 
  

Table 5.5 presents the performance for COVID-19-AF, ACE2-RGF, and COVID-19-RF for 

classifying COVID-19 from normal subjects. Although ACE2-RGF did not achieve the highest 

performance for classifying COVID-19, the ACE2-RGF performed comparably or better in 

AUC, F1 POS, accuracy, and recall when compared to a variety of COVID-19-RF. When 

ACE2-RGF was fused with COVID-19-RF, several MLR models showed improved 

performance for COVID-19 classification (Table 5.6). Notably, among the MLR models with 

improved performance, ACE2-RGF typically improved the F1, F1POS, and precision of those 

models. 
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Table 5.5. Performance of the MLR models for classifying COVID-19 from normal subject 
using i) COVID-19-AF, ii) ACE2-RGF, and iii) COVID-19-RF. COVID-19-AF Radiomics 
features were extracted from CT images of the CC-CCII dataset. ACE2-RGF was derived from 
the NRG-H and NRG-S datasets and was extracted from the CC-CCII dataset. 

Input ACC AUC F1 F1 POS PREC RECA SPEC 

COVID-19-AF 0.94 0.99 0.94 0.94 0.97 0.91 0.97 

ACE2-RGF 0.82 0.92 0.82 0.83 0.79 0.87 0.77 

COVID-19-RFANOVA 0.89 0.94 0.89 0.88 0.90 0.87 0.90 

COVID-19-RFMutual Info 0.88 0.95 0.88 0.88 0.89 0.88 0.89 

COVID-19-RFRFE 0.94 0.98 0.94 0.94 0.95 0.94 0.95 

COVID-19-RFmRMR 0.91 0.96 0.91 0.91 0.93 0.88 0.93 

COVID-19-RFReliefF 0.64 0.69 0.63 0.64 0.63 0.66 0.61 

COVID-19-RFForest 0.92 0.97 0.92 0.92 0.94 0.91 0.94 

COVID-19-RFLASSO 0.96 0.99 0.96 0.96 0.98 0.95 0.98 

COVID-19-RFRidge 0.96 0.99 0.96 0.96 0.98 0.94 0.98 

COVID-19-RFElastic Net 0.94 0.98 0.94 0.93 0.96 0.91 0.96 
 

Table 5.6. Performance of MLR models for classifying COVID-19 subject from normal 
subjects. ACE2-RGF was fused with COVID-19-RF. COVID-19-RF Radiomics features were 
extracted from the CC-CCII dataset. ACE2-RGF was derived from the NRG-H and NRG-S 
datasets and was extracted from the CC-CCII dataset. Numbers in bold indicate improved 
performance from fusing ACE2-RGF with COVID-19-RF. 

Input  ACC AUC F1 F1 POS PREC RECA SPEC 

COVID-19-RFANOVA + 
ACE2-RGF  0.88 0.95 0.88 0.88 0.89 0.88 0.89 

COVID-19-RFMutual Info 
+ ACE2-RGF  0.90 0.95 0.90 0.89 0.91 0.88 0.91 

COVID-19-RFRFE + 
ACE2-RGF  0.95 0.98 0.95 0.95 0.96 0.94 0.96 

COVID-19-RFmRMR + 
ACE2-RGF  0.90 0.96 0.90 0.90 0.92 0.87 0.92 

COVID-19-RFReliefF + 
ACE2-RGF 0.91 0.96 0.91 0.91 0.92 0.90 0.92 

COVID-19-RFForest + 
ACE2-RGF 0.86 0.93 0.86 0.86 0.86 0.86 0.86 
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5.3.3 MLR for COVID-19 Critical Illness Identification 

For COVID-19 critical illness identification, image features commonly selected using 

conventional feature selection techniques (Table 5.7) were derived from log and wavelet filters. 

Notably, none of these wavelet features overlapped ACE2-RGF. Table 5.8 presents the 

performance for COVID-Crt-AF, ACE2-RGF, and COVID-Crt-RF for identifying COVID-19 

critical illness. Although ACE2-RGF did not achieve the greatest performance for COVID-19 

critical illness identification, the gap between the top performing models and ACE2-RGF was 

within 5% in AUC.  

Table 5.7. Top 12 radiomics features that were frequently selected by conventional image 
feature selection techniques for COVID-19 critical illness identification. 

Feature Name Frequency of Selection 
(%) 

wavelet_LLL_glcm_Correlation 42.9 

wavelet_HLH_glcm_Idn 37.1 

wavelet_HLL_firstorder_Kurtosis 28.6 

wavelet_LLL_glcm_Idmn 22.9 

wavelet_LLH_gldm_SmallDependenceLowGrayLevelEmphasis 20.0 

wavelet_HLH_glcm_Idmn 17.1 

wavelet_HLH_firstorder_Kurtosis 17.1 

wavelet_LLH_glcm_JointAverage 17.1 

log_sigma_4_0_mm_3D_gldm_SmallDependenceEmphasis 17.1 

log_sigma_1_0_mm_3D_glcm_Idmn 17.1 

wavelet_LLL_glcm_Imc2 17.1 

wavelet_HLL_glcm_Idn 14.3 
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Table 5.8. Performance of MLR models for identifying COVID-19 critical illness using various 
feature selection methods. COVID-Crt-AF radiomics features were extracted from the CC-
CCII dataset. ACE2-RGF was derived from the NRG-H and NRG-S datasets and was extracted 
from the CC-CCII dataset. 

Input ACC AUC F1 F1 POS PREC RECA SPEC 

COVID-Crt-AF 0.81 0.88 0.80 0.78 0.75 0.82 0.80 

ACE2-RGF 0.77 0.85 0.77 0.73 0.73 0.74 0.80 

COVID-Crt-RFANOVA 0.81 0.89 0.80 0.76 0.80 0.73 0.87 

COVID-Crt-RFMutual 

Info 0.81 0.88 0.80 0.76 0.79 0.74 0.86 

COVID-Crt-RFRFE 0.80 0.88 0.79 0.75 0.77 0.73 0.84 

COVID-Crt-RFmRMR 0.84 0.89 0.84 0.81 0.84 0.78 0.89 

COVID-Crt-RFReliefF 0.48 0.46 0.45 0.34 0.38 0.33 0.60 

COVID-Crt-RFForest 0.79 0.86 0.79 0.75 0.78 0.73 0.84 

COVID-Crt-RFLASSO 0.79 0.87 0.79 0.76 0.75 0.77 0.81 

COVID-Crt-RFRidge 0.77 0.84 0.76 0.73 0.73 0.73 0.79 

COVID-Crt-RFElastic 

Net 0.81 0.89 0.81 0.79 0.76 0.82 0.81 

 

5.4 Discussion 

Our main findings are that our framework can: i) encode ACE2-RGF imaging biomarkers using 

LUAD data, which are distinct to radiomics features extracted for COVID-19 classification 

and critical illness identification; ii) the ACE2-RGF can distinguish COVID-19 from normal 

subjects, and can be combined with COVID-19 RF to improve classification performance; iii) 

the ACE2-RGF can also effectively identify COVID-19 patients with critical illness and, iv) 

the ACE2-RGF can be used as a biomarker for various applications, as shown for both COVID-

19 classification and critical illness identification. 

The ACE2-RGF comprises 12 radiomics features (Table 5.1) that encodes textural 

information in CT images. Notably, none of the ACE2-RGF features were among the most 
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frequently selected features when compared with COVID-19-RF (Table 5.4) and COVID-Crt-

RF (Table 5.7). The ACE2-RGF encoded texture descriptors are a 2D isotropic quantification 

of the second spatial derivative of an image, and they identify locations with rapid intensity 

changes within the CT image. Such ACE2-RGF encoded textural information were consistent 

to the CT findings reported in ARDS and COVID-19 [178, 179], including ground glass 

opacity, vascular enlargement and crazy-paving pattern. In contrast, the COVID-19-RF 

encoded statistical and texture features from decomposed images using 3D wavelet 

decomposition with LLH filters. In comparison, COVID-Crt-RF encoded a distinct collection 

of image features that were derived from decomposed images using a variety of low and high-

pass filters, including LLL, LLH, HLL, and HLH filters and LoG filtered image with Gaussian 

sigma values at 1 and 4 mm. Our findings indicate that the presented radiogenomics method 

enabled the derivation of image features associated with ACE2 and encoded unique features 

regarding disease manifestation related to variations in ACE2 expression. In contrast, 

conventional machine learning-based approaches quantify and select image features that are 

optimized for particular tasks, thus may neglect important imaging representations related to 

the pathophysiology of the disease. This is owing to the possibility for multiple ‘optimal’ 

feature sets to be selected for a particular task, despite different feature sets may offer distinct 

information [180, 181].  

When compared to LUAD-AF and LUAD-RF variants, our radiogenomics method 

derived ACE2-RGF demonstrated consistent performance for classifying LUAD (Table 5.2) 

and COVID-19 (Table 5.3) patients from normal subjects. MLR models using LUAD-AF and 

LUAD-RF demonstrated a substantial decline in performance for classifying COVID-19 

patients from normal subjects. Our results show that our framework derived ACE2-RGF 

encoded imaging representations of pathophysiology information that are common to LUAD 

and COVID-19. Despite the ACE2-RGF having inferior performance when compared with 
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COVID-19-RF for separating COVID-19 patients from normal subjects (Table 5.5), the use of 

ACE2-RGF did not require identifying and extracting COVID-19-RF features. Our findings 

indicate that the ACE2-RGF encoded imaging representations are associated with alterations 

in ACE2 expression and are relevant to the pathophysiology of both LUAD and COVID-19. 

However, such information may not provide the optimal classification value that is specific to 

both LUAD and COVID-19. 

Notably, MLR models trained with COVID-19-AF performed similarly to MLR 

models trained with multiple COVID-19-RF in classifying COVID-19 patients from healthy 

subjects (Table 5.2). Our findings suggest that despite radiomics features (COVID-19-AF) may 

encode distinctive information, these features have demonstrated their capability to classify 

COVID-19 when used collectively. In contrast, the conventional machine learning frameworks 

that quantify task-specific image features may neglect radiomics features that encode relevant 

information for classifying COVID-19, such as statistical and textural features using various 

LoG filters.  

The classification performance for COVID-19 was enhanced when ACE2-RGF was 

fused with COVID-19-RF (Table 5.6). In contrast to COVID-19-RF, ACE2-RGF encoded 

distinct pathophysiological image features linked with COVID-19, and therefore is 

complementary to COVID-19-RF. Our results suggest that the conventional machine learning 

frameworks that quantify task-specific image features may neglect the underlying 

pathophysiology information of COVID-19 and its clinical manifestation due to altered ACE2 

expression. For instance, the involvement of the lower respiratory tract in individuals with 

early-stage or moderate COVID-19 and the possibility of ARDS progression [182].  

Our framework showed it could identify COVID-19 patients with critical illness. The 

performance of the MLR model trained with ACE2-RGF for identifying COVID-19 critical 

illness was similarly to that of models trained with COVID-Crt-RF (Table 5.8). Our findings 
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suggest that the ACE2-RGF may not contain imaging representations exclusive to COVID-19 

critical illness status, but rather imaging characteristics associated with ACE2 expression 

alterations that are tied with the progression of COVID-19 critical illness [183]. Notably, the 

performance gap between ACE2-RGF and the best performing COVID-Crt-RF for identifying 

COVID-19 critical illness was less than the gap between ACE2-RGF and the best performing 

COVID-19-RF for COVID-19 classification. One explanation of our finding is that patients 

with COVID-19 critical illness commonly have multiple complications that are related or 

results of ACE2 and RAAS failure, such as ARDS [184, 185].  

Our framework demonstrated potential to serve as an imaging biomarker for COVID-

19 classification and COVID-19 critical illness identification using the same set of ACE2-RGF. 

We attribute this to the encoding of altered ACE2 expression in ACE2-RGF. Recent research 

has implicated the role of ACE2 in the infection, development, and clinical manifestations of 

COVID in the human body [186]. It is also suggested that ACE2 and its variants affect the 

binding of SARS-COV2 virus and hence the disease severity following COVID-19 infection 

[187]. Therefore, our framework has the potential to serve as a valuable biomarker that 

complements existing image-based frameworks and offer new research possibilities to derive 

additional features for future automated COVID-19 classification and critical illness 

identification.  

In our study, we selected the use of traditional handcrafted image features relating to 

shape, first order statistics, and texture. These features are the routinely used to study 

radiogenomics due to its wide acceptability, comprehension and for its explainability. With the 

modern advances in deep learning feature extractors, it is able to extract complementary feature 

set to the handcrafted set, for example, in the recent work Xia et al. [10] in the analysis of lung 

cancer radiogenomics, they demonstrated that deep learning features produced unique features 

from the traditional set, but these features were not explainable e.g., they were not descriptive 
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or characterized. In this study, our focused is on analysing the ability to encode ACE2 features 

from CT images and offer explanation, and the traditional handcrafted feature sets were 

sufficient in this requirement. Our future work will investigate if deep learning features can 

complement our study.  

 A limitation of our study is the lack of ACE2 expression for the COVID-19 patients. 

This limits the ability to optimize the ACE2-RGF for COVID-19 classification and critical 

illness. We anticipate that with ACE2 expression data of COVID-19 patients, our model can 

be improved by identifying and selecting ACE2-RGF directly on COVID-19 imaging data.  

 

5.5 Conclusion 

This chapter introduces a novel radiogenomics method that utilises multi-disease analysis to 

derive radiogenomics features associated with similar pathophysiology underlying two distinct 

diseases. This approach provides an alternative method for radiogenomics analysis in the 

absence of annotated medical image datasets. The proposed framework has the potential to 

derive biomarkers for various applications, as demonstrated by its use for COVID-19 

classification and critical illness identification. By leveraging the similarities between diseases, 

this framework can facilitate the transfer of knowledge and improve the accuracy and 

efficiency of radiogenomics analysis. 
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Chapter 6. Radiogenomics with 

Tumour Heterogeneity and Multi-modal 

Imaging Data 
 

This chapter introduces a novel radiogenomics method that captures radiogenomics features 

from multiple heterogeneous regions of the tumour and integrates radiogenomics features from 

multi-modal imaging data. The proposed framework leverages the complementary information 

encoded in distinct tumour heterogeneity regions and in distinct imaging modalities to facilitate 

radiogenomics analysis on human cancers.  

To validate the proposed radiogenomics method's performance, experiments were 

conducted using a publicly available dataset that contained multi-modal MR images from 

patients with GBM. GBM patients typically receive treatment involving surgical resection, 

radiotherapy, and chemotherapy with alkylating agents such as temozolomide. The MGMT 

gene plays a crucial role in repairing DNA damage caused by alkylating agents, and its 

expression is regulated by a promoter region. Methylation of the MGMT promoter region leads 

to altered activity of the MGMT enzyme, which is relevant to GBM treatment response. 

Previous research has shown the potential of deep learning-based radiogenomics approaches 

for identifying diseases and predicting their prognosis and treatment response. However, these 

approaches typically focus on learning imaging features that depict the entire tumour and use 

a single MR sequence, such as T1, despite GBM tumours exhibiting strong heterogeneity and 

complementary information encoded in different MR sequences. 
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The experimental results demonstrate the effectiveness of the proposed framework in 

capturing radiogenomics features from multiple tumour regions and integrating multi-modal 

imaging data for improved radiogenomics analysis. 

 

6.1 Contributions 

The proposed radiogenomics method has the following contributions: 

• The proposed radiogenomics method utilises multi-modal imaging data, and accounting 

for tumour heterogeneity sub-regions to achieve end-to-end classification. 

• The proposed radiogenomics method can effectively extract, fuse, and learn 

complementary radiogenomics features that contribute to the identification of the 

relevant radiogenomics features for radiogenomics classification task. 

 

The contribution of this chapter aligns with the aim 3 stated in section 1.3 of Chapter 1 and 

addresses the gap 3.5.3 identified in Chapter 3. The proposed radiogenomics method utilises 

multi-modal imaging data of diseases with complex tumour heterogeneity to improve 

radiogenomics analysis. This chapter provides an extensive analysis and comparison of state-

of-the-art radiogenomics analysis pipelines, which builds upon the literature review presented 

in Chapter 3.  
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6.2 Materials and Method 

6.2.1 Materials 

MR sequences from the publicly available RSNA-ASNR-MICCAI BraTS 2021 challenge 

dataset is obtained for this study (hereby denote as ‘BraTS21’). This dataset consists of two 

unique subsets prepared for specific tasks: the first subset is intended for segmentation analysis 

(also known as task 1), while the second subset is designed for MGMT promoter methylation 

classification (also known as task 2). 

The segmentation dataset consists of 1251 subjects' 3D MR scans that is accessible in 

T1W, T1CE, T2W, and FLAIR sequences. Tumour sub-regions were generated by using an 

interactive segmentation pipeline that employs STAPLE [188] fusion of the best performing 

BraTS algorithms from prior competitions, specifically nnU-Net [189], DeepScan [190], and 

DeepMedic [191]. The results were then manually refined by neuroradiology specialists and 

validated by board-certified attending neuroradiologists with over 15 years of experience 

working with gliomas. The segmented tumour sub-regions comprise the following: i) 

enhancing tumour (ET), characterised by regions with both visibly avid and faint enhancement, 

ii) peritumoral oedematous/invaded tissue (ED), which is characterized by an abnormal 

hyperintense signal that encompasses the non-enhancing infiltrative tumour and includes 

vasogenic oedema in the peritumoral region, and iii) the necrotic tumour core (NCR). 

The MGMT Promoter Methylation Dataset is comprised of 585 subjects with 

confirmed MGMT promoter region methylation status determined using pyrosequencing and 

next generation quantitative bisulfite sequencing of promoter CpG sites. Among the 585 

subjects, 574 patients were found to be part of the segmentation dataset. In addition, three 

subjects were removed by the BraTS2021 challenge authority. Each patient's MR imaging data 
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is pre-processed and is accessible in T1W, T1CE, T2W, and FLAIR sequences with a 

dimension of 240×240×155. 

 

6.2.2 Image pre-processing 

The raw imaging data from the BraTS21 Dataset underwent a series of pre-processing steps. 

Firstly, the imaging data was rotated into the same plane and resized to have the same pixel 

spacing of 1×1×1 mm in the 3D dimension, based on the metadata retrieved from the DICOM 

header. Subsequently, for each patient, all sequences were co-registered using the SimpleITK 

image registration tool. 

The T2W sequence served as the reference volume for image co-registration. Our co-

registration process involved the utilisation of the Euler3DTransform, the Mattes-Mutual-

Information cost function, the Gradient Descent optimiser, and linear interpolation. The 

registered data were rescaled to a dimension of 240 × 240 × 155 to match the pre-processed 

imaging data provided in the segmentation dataset. The average time for pre-processing was 

approximately 26 seconds per volume. 

Subsequently, the segmentation masks of the tumour heterogeneity sub-regions 

underwent further processing to differentiate the following regions: the Whole Tumour (WT), 

the Enhancing Tumour (ET), and the Tumour Core (TC). WT encompasses the complete extent 

of the brain tumour, the ET subregion is represented by the mask sections identified as 

enhancing tumour, and the TC comprises the combined regions of both ET and Necrosis 

(NCR). Lastly, the pre-processed image volumes were rescaled to 100 x 100 x 100 to reduce 

GPU memory usage. 
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6.2.3 Deep Multi-sequence Multi-region Classification Model 

(DeepMMC) 

Figure 6.1 depicts an overview of the proposed DeepMMC, which is designed to facilitate the 

classification of MGMT promoter region methylation status by extracting, fusing, and learning 

complementary imaging features from distinct tumour heterogeneity sub-regions and multiple 

MR sequences. DeepMMC splits MR sequences and processes each sequence independently 

using MRF modules that leverage 3D CNN backbones. Within the MRF module, deep 

radiogenomics features from each tumour heterogeneity sub-region are first extracted and 

processed separately and then fused with those deep radiogenomics features processed from 

other sequences.  

 Subsequently, the fused deep radiogenomics features are processed using the MSF 

module, which employs explicitly designed 2D CNN layers. The MSF module first investigates 

the relationships between deep radiogenomics features that were processed from MR sequences 

and then identifies the deep radiogenomics from various tumour heterogeneity sub-regions that 

are most relevant to the classification of MGMT promoter region methylation status. 
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6.2.3.1 Multi-region Fusion Module (MRF) 

The MRF module utilises a customised 3D CNN backbone that draws inspiration from the 

inception module [192]. The inception module has been applied to a variety of medical image 

analysis tasks, including the detection of COVID-19 and the classification of breast cancer 

[193, 194]. Specifically, the 3D CNN backbone consists of four branches of 3D CNN blocks, 

where each block comprises a 3D CNN layer, a 3D batch normalisation layer, a leaky Rectified 

Linear Unit (ReLU) layer, and a 3D max pooling layer. To prevent overfitting, we implemented 
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Figure 6.1. Overview of the proposed DeepMMC model. DeepMMC extracts, fuses, and learns 
complementary imaging features from distinct tumour heterogeneity sub-regions and multiple 
MR sequences using the MRF module. The output deep radiogenomics features were then 
processed using the MSF module to classify MGMT promoter region methylation status. 
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a Conv_out block immediately after the 3D CNN backbone, which reduces the number of 

features. The Conv_out block consists of a single 3D CNN layer with a kernel size of 1 ´ 1 ´ 

1, a 3D batch normalization layer, a leaky ReLU layer, and a 3D adaptive max pooling layer.  

 In the MRF module, deep radiogenomics features are extracted from each tumour 

heterogeneity sub-region using independent 3D CNN backbones. These features are then 

processed and transformed into latent radiogenomics features. A total of 512 latent 

radiogenomics features are derived from each 3D CNN backbone. The latent radiogenomics 

feature from each tumour heterogeneity sub-region are fused together using concatenation, 

resulting in a feature vector with a size of 4 ´ 512. In a similar fashion, feature vectors that 

have been processed from each MR sequence are also fused together using concatenation to 

generate a three-dimensional fused feature vector with a size of 4 ´ 4 ´ 512.  

 

6.2.3.2 Multi-sequence Fusion Module (MSF) 

The MSF module consists of two explicitly designed 2D CNN blocks. Each CNN block 

comprises a 2D CNN layer, a 2D batch normalization layer, a leaky ReLU layer, and a 2D max 

pooling layer. The first CNN block (2D_Conv_1) is designed to investigate the relationship 

between latent radiogenomics features derived from MR sequences. This is accomplished by 

utilising a 2D CNN layer with a kernel size of 3 x 3 that processes latent radiogenomics features 

across the channel to which the fused feature vector was concatenated. The output from the 

2D_Conv_1 is then fed into the second 2D CNN block (2D_Conv_2) to investigate the 

relationships between processed latent radiogenomics features and their corresponding tumour 

heterogeneity sub-regions. In the final step, a total of 512 deep radiogenomics features are 

derived from the MSF module. These features are then fed into the classification block, which 

is composed of two fully connected layers. Between these layers, we have inserted a single 
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leaky ReLU layer and a dropout layer with a probability of an element to be zeroed set at the 

default value of 0.5. 

 

6.2.4 Experimental Setup 

The proposed DeepMMC was assessed by conducting experiments of MGMT promoter region 

methylation status classification using the BraTS21 dataset. We firstly performed ablation 

studies to determine the contribution of the proposed MRF and MSF modules. Specifically, the 

classification performance from the following approaches were compared: i) DeepMMC that 

employ both MRF and MSF modules (denote as ‘experimental setting A’), ii) DeepMMC 

models that only employ MRF modules using four MR sequences and four tumour 

heterogeneity sub-regions (denote as ‘experimental setting B’), and iii) DeepMMC models that 

only employ MRF modules using selected MR sequences and tumour heterogeneity sub-

regions (denote as ‘experimental setting C’).  

We also compared the DeepMMC model with three recent works for classifying 

MGMT promoter region methylation status. These works are: i) a 3D Densenet-based approach 

that utilises image volumes of the whole brain from the T2W MR sequence [136], ii) the 

winning algorithm for the RSNA-MICCAI Brain Tumour Radiogenomics Classification 

challenge that uses image volumes of the whole brain from four MR sequences (T1W, T1CE, 

T2W and FLAIR), and iii) a deep learning pipeline that uses segmented tumour ROI from 

T1CE and FLAIR sequences for classifying MGMT promoter region methylation status [195]. 

The proposed DeepMMC model was implemented using the PyTorch framework 

(version 1.12.1) on a Linux operating system (Ubuntu, version 20.04) and trained on an 

NVIDIA GeForce 3090 GPU with 24GB of memory. The DeepMMC was trained from scratch 

for a maximum of 150 epochs with a batch size of 4. Weight decay coefficient was set at 1 ´ 
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10-6. We utilised the Adam optimizer with a learning rate of 0.0001 to optimize the Binary 

Cross Entropy (BCE) with logits loss. The training process was configured to terminate if the 

BCE loss did not reduce in the previous 10 epochs. 

For all experiments, we conducted a 5-fold cross-validation. The imaging and MGMT 

data from the 574 patients were partitioned into five different sets of training and testing 

datasets with an 80/20 split. We evaluated the performance of our MLR models using several 

performance metrics, including accuracy (ACC), area under the ROC curve (AUC), F1 score, 

precision, and recall. We defined the best model based on the highest average score between 

ACC and AUC on the testing set of its respective fold. 

 

6.3 Results 

6.3.1 Ablation study 

Table 6.1. Performance of the DeepMMC model for classifying MGMT promoter region 
methylation status using i) MRF module that leverage selected MR sequence and tumour 
heterogeneity sub-regions, ii) MRF module that leverage all four MR sequences and tumour 
heterogeneity sub-regions available in the BraTS21 dataset, and iii) MRF and MSF modules 
that leverage all four MR sequences and tumour heterogeneity sub-regions. 

Model MR Sequence Tumour  
Sub-regions 

Accuracy AUC F1 Precision Recall 

MRF module Four sequences WT 0.540 0.546 0.539 0.531 0.656 
 

Four sequences ED 0.538 0.548 0.596 0.545 0.685 
 

Four sequences ET 0.582 0.587 0.519 0.673 0.566 
 

Four sequences NCR 0.571 0.568 0.511 0.474 0.590 
 

FLAIR Four regions 0.585 0.582 0.599 0.577 0.648 
 

T1W Four regions 0.545 0.554 0.571 0.543 0.654 
 

T1CE Four regions 0.570 0.554 0.486 0.567 0.513 
 

T2W Four regions 0.528 0.547 0.507 0.539 0.484 

MRF module Four sequences Four regions 0.516 0.548 0.541 0.544 0.563 

DeepMMC 
(MRF and MSF) 

Four sequences Four regions 0.587 0.600 0.615 0.590 0.646 
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Table 6.1 presents the results of the ablation study conducted on the proposed DeepMMC 

model for classifying MGMT promoter region methylation status using various combinations 

of MRF modules, MSF modules, MR sequences, and tumour heterogeneity sub-regions. Our 

findings indicate that the DeepMMC model, which incorporated both MRF and MSF modules, 

achieved the highest classification performance metrics, including an ACC of 0.587, an AUC 

of 0.6, and an F1 Score of 0.615. Additionally, the MRF models that utilised the FLAIR 

sequence and all four tumour heterogeneity regions yielded the second-highest ACC of 0.585 

and the second highest F1 score of 0.599. The MRF models that utilised all four MR sequences 

and the ET region yielded the second-highest AUC of 0.587 and the highest precision of 0.673. 

Finally, the MRF models that utilised all four MR sequences and the ET region yielded the 

highest recall of 0.685. 

Furthermore, our results show that the MRF module that utilised all four MR sequences 

and tumour heterogeneity sub-regions did not improve the classification performance metrics 

compared to the MRF modules that utilised selected MR sequences and tumour heterogeneity 

sub-regions. Notably, the performance differences between DeepMMC and MRF models that 

utilised selected MR sequences and tumour heterogeneity sub-regions were smaller than the 

differences between DeepMMC and the MRF module that utilised all four MR sequences and 

tumour heterogeneity sub-regions. 
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6.3.2 Comparison to the State-of-the-art 

Table 6.2. MGMT promoter region methylation status classification performance between the 
proposed DeepMMC and existing classification methods. 

Model MR Sequence Tumour  
Sub-regions 

Accuracy  AUC F1 Precision Recall 

DeepMMC Four sequences Four regions 0.587 0.600 0.615 0.590 0.646 

Faghani et al T2W Whole brain (WB) 0.472 0.500 0.531 0.800 0.397 

Kaggle #1 Four sequences Whole brain (WB) 0.530 0.602 0.630 0.776 0.554 

Chen et al T1CE WT 0.498 0.558 0.420 0.487 0.435 
 

FLAIR WT 0.514 0.539 0.257 0.303 0.224 

 

Table 6.2 presents the performance of MGMT promoter region methylation status 

classification between the proposed DeepMMC and three existing classification methods. The 

DeepMMC achieved the highest ACC of 0.587 and also outperformed other methods in recall 

of 0.646. In contrast, the winning algorithm from the RSNA-MICCAI Brain Tumour 

Radiogenomics Classification challenge that leveraged imaging data from all four MR 

sequences achieved the highest AUC of 0.602 and F1 score of 0.63. The highest precision of 

0.8 was achieved by the 3D Densenet-based approach that utilised image volumes of the whole 

brain from the T2W MR sequence. The differences between the highest and second-highest 

ACC, AUC, F1 score, precision and recall were 0.057, 0.002, 0.015, 0.004, and 0.092, 

respectively. Notably, methods that leveraged all four MR sequences outperformed those that 

utilised a single MR sequence in every evaluation metric except precision. 

 

6.4 Discussion 

Our two main findings are that: i) MR sequences and tumour heterogeneity sub-regions encode 

distinct imaging features that collectively can reflect MGMT promotor region methylation 
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status, ii) the proposed DeepMMC that utilises MRF and MSF modules can effectively extract, 

fuse, and learn these complementary deep radiogenomics features, ultimately enhancing the 

classification performance of MGMT promoter region methylation status. 

6.4.1 Ablation Study Analysis 

Our ablation study results demonstrate that the proposed DeepMMC model utilising 

experimental setting A exhibited improved performance for classifying MGMT promoter 

region methylation status when compared to DeepMMC models using experimental setting B 

and C. Our findings suggest that distinct tumour heterogeneity sub-regions encode 

complementary information that may enhance the classification performance, as evidenced by 

our results showing that DeepMMC with experimental setting C that utilises the ED and ET 

regions yielded the highest precision and recall, respectively. Similar findings have been 

reported in published works. For instance, Carrillo et al found that MGMT promoter 

methylation status is associated with tumour ED regions and patient survival time [196]. Our 

results suggest that the proposed MRF and MSF modules are effective in extracting and 

learning relevant deep radiogenomics features for the classification of MGMT promoter region 

methylation status. This is evidenced by the performance differences between the DeepMMC 

models using experimental settings B and C, where the inclusion of the MSF module in 

experimental setting C resulted in improved ACC, AUC, and F1 score compared to 

experimental setting B. We attribute this finding to the design of the proposed MRF and MSF 

modules, where deep radiogenomics features that are most relevant to the MGMT promoter 

region methylation status were identified using the explicitly designed 3D CNN back bones 

and 2D CNN blocks.  
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6.4.2 Comparison to the State-of-the-Art 

 Our proposed DeepMMC model utilises a novel approach that incorporates MR 

sequences and tumour heterogeneity sub-regions for end-to-end classification of MGMT 

promoter region methylation status. Previous deep learning-based methods have combined MR 

sequences and tumour heterogeneity sub-regions through techniques such as majority voting 

based on predicted probabilities obtained from using different MR sequences as input. In 

addition, existing methods typically utilise segmented tumour ROIs or the entire brain for the 

classification task. In contrast, the DeepMMC explicitly exploits the intrinsic relationships 

between MR sequences and tumour heterogeneity sub-regions and learns the relevant deep 

radiogenomics features from each MR sequence and tumour heterogeneity sub-region. Our 

results (Table 2) demonstrate that the proposed DeepMMC outperforms alternative approaches 

in terms of classification accuracy and recall. While the DeepMMC exhibited inferior 

performance in terms of AUC and F1 score, the differences in performance between the 

DeepMMC and alternative approaches are marginal, with all metrics differing by less than 2%. 

However, the precision of DeepMMC was lower compared to alternative approaches. It is 

important to note that these approaches are prone to over-representing one class, which result 

in a high precision score but a lower recall score. Our findings can be attributed to both the 

design of the DeepMMC and the MRF and MSF modules, which enable the utilisation of 

distinct MR sequences and tumour heterogeneity regions for the classification of MGMT 

promoter region methylation status. The proposed DeepMMC model demonstrated the ability 

to learn complementary deep radiogenomics features from MR sequences and to identify the 

most relevant features for MGMT promoter region methylation status classification through an 

end-to-end training strategy. 

 We acknowledge a limitation in our study with regards to computational power and the 

lack of comprehensive gene expression profiles from the dataset. Due to the significant 
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computational demand for processing 3D imaging volumes, we were unable to implement a 

deep 3D CNN backbone in the proposed MRF module, which may limit the module's ability 

to learn, quantify, and fuse optimal image features most relevant to tumour heterogeneity. 

Moreover, the lack of comprehensive gene expression profiles from patients limits the 

proposed DeepMMC's ability to learn the relationships between various genetic information 

from different tumour heterogeneity sub-regions, which may contribute to identifying the 

optimal deep radiogenomics features that facilitate the classification of MGMT promoter 

region methylation status. 

 

6.5 Conclusion 

This chapter introduces a novel radiogenomics method that utilises multi-modal MR imaging 

data, including T1W, T1CE, T2W, and FLAIR sequences, and accounts for tumour 

heterogeneity sub-regions to achieve end-to-end classification. The proposed radiogenomics 

method demonstrated effective extraction, fusion, and learning of complementary 

radiogenomics features, ultimately enhancing the classification performance of MGMT 

promoter region methylation status. Experimental results indicate that the proposed 

radiogenomics method has the potential to complement existing image analysis algorithms by 

leveraging information from distinct multi-modal imaging data and tumour heterogeneity 

information, offering unique and additional insights for radiogenomics analysis and future 

research. 
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Chapter 7. Conclusions and Future 

Works 
 

 

7.1 Conclusions 

Radiogenomics is a rapidly developing field that aims to identify and explore the associations 

between imaging and genetic information. This approach seeks to identify imaging surrogates 

for genetic biomarkers, with the potential to enhance existing medical image analysis 

techniques and optimise treatment planning for cancer patients. This research addressed several 

challenges and limitations in the field of radiogenomics to improve radiogenomics analysis.  

 In this thesis, a novel radiogenomics framework that combines several novel methods 

were developed and validated with the following contributions: 

• A radiogenomics method that derives fused feature signature (FFSig) that leverages both 

handcrafted and deep image features to derive radiogenomics relationships with gene 

expression and GO terms; 

• A radiogenomics method that utilises multi-disease analysis to derive radiogenomics 

features associated with similar pathophysiology underlying two distinct diseases; 

• A radiogenomics method that utilises multi-modal imaging data, and accounting for 

tumour heterogeneity sub-regions for medical image analysis. 

Chapter 2 of the thesis introduced the fundamental concepts of medical images, machine 

learning, and various medical image processing techniques. Chapter 3 discussed the basics of 

radiogenomics and identifies the gaps in the current research.  
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Chapter 4 presented a novel radiogenomics method that identifies FFSig, a set of image 

features derived from using both handcrafted and deep learning-based image feature extraction 

techniques, to identify radiogenomics relationships. Previous radiogenomics studies primarily 

relied on a single category of image feature extraction techniques, despite previous studies 

demonstrating that handcrafted and deep features encode complementary information. The 

proposed radiogenomics method and the FFSig identified more relationships with genes and a 

distinct group of GO terms and correlated with a key biomarker for NSCLC and GO terms 

related to tumour development in NSCLC. Furthermore, validation experiments demonstrated 

that the radiogenomics method is robust and generalisable across different datasets. The 

proposed framework shows potential for identifying critical radiogenomics relationships that 

may improve cancer diagnosis and treatment in the future. 

In chapter 5, a novel radiogenomics method that used multi-disease analysis to derive 

radiogenomics features associated with specific genetic characteristics from one disease that 

can be applied to another disease. The proposed framework leverages radiogenomics features 

that encode similar pathophysiology underlying two distinct diseases, providing an alternative 

approach for radiogenomics analysis when there is a lack of annotated medical image datasets. 

This framework is validated using several publically availble datasets that contain CT images 

from COVID-19 and LUAD patients. The proposed radiogenomics method demonstrated 

potential for classifying COVID-19 and COVID-19 critical illness identification. In addition, 

the framework demonstrates potential to facilitate the transfer of knowledge and provide 

unique insights to radiogenomics analysis for diseases with limited available data. 

Chapter 6 introduced a novel radiogenomics method that captures radiogenomics features 

from multiple heterogeneous regions of the tumour and integrates radiogenomics features from 

multi-modal imaging data. The proposed framework leverages the complementary information 

encoded in distinct tumour heterogeneity regions and in distinct imaging modalities to facilitate 
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radiogenomics analysis on human cancers. Experimental results show that the proposed 

radiogenomics method can effectively extract, fuse, and learn complementary radiogenomics 

features that contribute to the identification of the relevant radiogenomics features for 

radiogenomics classification task. 

 

7.2 Future Works 

This thesis identifies several research directions that can further the development of 

radiogenomics analysis. The significant contributions of this thesis rely on machine learning 

and deep learning-based approaches for medical image processing. However, deep learning-

based genetic information processing is an emerging field that enables the extraction of 

knowledge in addition to human knowledge. The opportunity for an end-to-end approach for 

deep learning-based methods to automatically extract and identify important information from 

both imaging and genetic data may provide opportunities for future radiogenomics research. 

For instance, the proposed radiogenomics method Tumour Heterogeneity and Multi-modal 

Imaging Data (detailed in chapter 6) may expand to include raw genetic information as part of 

the feature derivation process.  

Recently, there have been significant engineering advancements that have led to the 

development of advanced PET-CT scanners with improved sensitivity such as the Siemen’s 

Quadra Total Body scanner. These scanners can now image the entire body, from the vertex of 

the head to the upper thighs, simultaneously, with reduced doses of injected radioactivity. This 

breakthrough enables the imaging of physiology and pathophysiology across all the major body 

organs simultaneously [197]. This imaging technique allows the derivation of radiogenomics 

features across all abnormalities at distinct sites simultaneously, taking into account the 

metabolic activities from healthy organs, and enables the determination of personalised 
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radiogenomics relationships. Such an improvement can advance radiogenomics analysis and 

represents a significant step towards achieving precision medicine for human cancer diagnosis 

and treatment. 
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