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Abstract

The universe of mathematical modelling from observational data is a vast space. It consists

a cacophony of differing paths, with doors to worlds with seemingly diametrically opposed

perspectives that all attempt to conjure a crystal ball of both intuitive understanding and

predictive capability. Among these many worlds is an approach that is broadly called kernel

methods, which, while complex in detail, when viewed from afar ultimately reduces to a

rather simple question: how close is something to something else? What does it mean to be

close? Specifically, how can we quantify closeness in some reasonable and principled way?

This thesis presents four approaches that address generalised kernel learning. Firstly, we

introduce a probabilistic framework that allows joint learning of model and kernel parameters

in order to capture nonstationary spatial phenomena. Secondly, we introduce a theoretical

framework based on optimal transport that enables online kernel parameter transfer. Such

parameter transfer involves the ability to re-use previously learned parameters, without re-

optimisation, on newly observed data. This extends the first contribution which was unable

operate in real-time due to the necessity of re-optimising parameters to new observations.

Thirdly, we introduce a learnable Fourier based kernel embeddings that exploits generalised

quantile representations for stationary kernels. Finally, a method for input warped Fourier

kernel embeddings is proposed that allows nonstationary data embeddings using simple

stationary kernels.

By introducing theoretically cohesive and algorithmically intuitive methods this thesis

opens new doors to removing traditional assumptions that have hindered adoption of the

kernel perspective. We hope that the ideas presented will demonstrate a curious and inspiring

view to the potential of learnable kernel embeddings.
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CHAPTER 1

Introduction

The overarching theme of this thesis is to showcase the possibilities of moving the theory and

application of modelling with kernels into a more general, data-centric archetype. We aim to

show that improving the capabilities of kernel methods is both algorithmically intuitive and

desirable from a practitioner’s perspective.

1.1 Motivation

Kernel methods are a long studied topic within the space of machine learning. Despite

enjoying earlier successes within various learning algorithms, such as the well known support-

vector machine (SVM), the utility of kernel methods has been marred by the effectiveness

and study of recently ubiquitous neural networks. Even though equivalences between various

statistical modelling approaches have been shown (such as the convergence of certain infinitely

wide or deep neural networks to equivalent kernels), comparatively little effort has been

focused on asking: why don’t kernel methods scale as effectively; or how could you can scale

them? Indeed it seems more reasonable to see all learning methods as similar faces of the

same multi-faceted coin. Using this universal perspective as a starting point we take this as

inspiration for a fresh take on the kernel learning perspective.

Kernels are, loosely speaking, functions that represent similarity between objects. More

precisely, they encode a mathematical quantification of how one object relates, according to

some interpretation, to another object. The critical notion here is that of interpretation. In

other words, while there are a vast number of kernel functions that have been discovered, each

kernel, precisely through their mathematical construction, encodes its own unique meaning
1



2 1 INTRODUCTION

of similarity. To date the large majority of kernel functions in the literature are well defined,

convenient, analytic functions with well studied properties. We wish to show that these alone

are insufficient when one attempts to embed and model real-world data, which is usually full

of diversity.

We are ultimately guided by a desire to relax the assumptions that are held by the conventional

library of well known and well defined kernels. We wish to explore relaxations of not just the

kernels themselves but the kernel along with its corresponding modelling algorithm (for a

kernel is just a tool that needs a host) in a holistic manner.

In summary this thesis addresses the following key problems:

(1) How to reduce the reliance on the restrictive assumptions of canonical kernels.

(2) What are effective ways of representing and modelling with newly proposed general-

ised kernels.

(3) How to efficiently estimate, given data, the parameters of a new family of generalised

kernels.

(4) How to show that practice follows theory in a meaningful context within the domain

of real world data.

1.2 Challenges

In order to accomplish our goal of exploring the relatively unwalked path of free-form kernel

learning, there are various essential theoretical and applied stepping stones that must be

crossed. In particular, this thesis will focus on the following challenges:

• Breaking Classical Kernel Assumptions: What different mathematical paramet-

erisations allow us to escape from the safe and well defined kernels that are used?

• Kernel Learning Models: What mathematical models allow us to seamlessly

integrate a data-driven kernel design?

• Hyperparameter Learning: How do we actually learn to adjust our newly minted

kernels and learning models given the data?
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• Interpretability: Can we describe our newfound flexible kernel representations in

an intuitive way that doesn’t diminish our understanding and can even showcase why

it’s so important for us to discover flexible data representations?

• Performance: Can we move beyond the often slow optimisation procedures that are

typically necessary to learn nuanced kernel and model representations?

1.3 Contributions

The following outlines our contributions:

A probabilistic framework for joint learning of model and kernel parameters in a unified

model that can capture nonstationarity in observations in an automatic manner. We

propose a theoretical framework that works well in practice to learn all parameters of a

classification model that uses explicitly placed kernels in the data domain. We showcase

the method on the contemporary problem of probabilistic occupancy mapping in robotics.

Experimental results validate the method with significant improvements in representational

performance for robotic mapping in highly unstructured and nonstationary environments.

A theoretical framework for online parameter transfer using the theory of optimal

transport. We introduce a way to adapt previously trained kernel models, on demand and in

real-time, using a parallelised decomposition of the learning problem. We demonstrate the

process on the domain adaptation paradigms of intra and inter-domain transfer in a robotic

mapping problem.

A new method that learns quantile representations of generalised stationary kernels in

the Fourier domain. We introduce a relaxation of an approximate Fourier representation of a

kernel that adapts to the observed data. We additionally show that the quantile representation

naturally allows for improved approximation efficiency through quasi-Monte Carlo integral

sampling. We validate the method on various datasets and problems that exhibit complex

phenomena like pseudo-periodicity that cannot be modelled with conventional stationary

kernels within limited data.
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An approach to learning nonstationary approximate Gaussian process models via in-

put warping. We introduce an intuitive measure-value input-dependent warping function

alongside its multi-level warping extension by propagating moments. Comprehensive experi-

ments shows competitive performance with many deep learning and alternative approximate

Gaussian process methods.

1.4 Thesis Overview

This thesis begins its journey by introducing a Bayesian approximation to a general learning

problem that uses explicit placements of kernels within the observed data space. While

invariant to the actual problem, we demonstrate our proposed method on an important

problem domain within the field of robotics: probabilistic mapping of environments. We

demonstrate how relaxing assumptions on the form of the kernels that are placed within the

environment, and taking advantage of probabilistic programming and variational inference,

that it is possible to let the data define the (hyper-)parameters of the kernels and model in

an end-to-end fashion. We follow this thread of kernel learning into an online estimation to

address computational limitations of the previous end-to-end learning paradigm. Taking a

short detour through the mathematical theory of optimal transport, we will discover that it is

possible to frame the online learning situation under the light of domain adaptation: treating

the learned distributions that represent the kernel parameters as points on some manifold.

Continuing the desire to replace canonical kernels with their relaxed counterparts, our story

will take a turn to spectral representations of kernels and accommodating model represent-

ations. Specifically, we will consider kernels in the Fourier domain allowing us to view

them in a different light that allows us to expand our arsenal of mathematical intervention by

viewing the kernel as itself a distribution. We show that it is both possible and even desirable

to formulate the kernel’s distributional representation as a parameterised quantile function.

By providing an end-to-end learning pipeline we can let the observed data inform the shape

that the kernel should take rather than assuming that canonical kernels are a priori the right

choice (which is almost never the case). The thesis concludes its journey by relaxing further



1.5 THESIS STRUCTURE 5

assumptions that our data generating processes are stationary, and we provide a simple but

effective representation for embedding our data into a kernel space for effective inference.

1.5 Thesis Structure

Following this introductory chapter, the thesis presents essential background knowledge in

Chapter 2 underlying the critical components of the main contributions. We will bring the

reader up to speed with a summary of Bayesian learning and a canonical review of both

standard and Bayesian linear regression. The background will then introduce the fundamental

concept of a kernel (as a way of evaluating closeness between data) and its critical role in

modelling. After this we broadly introduce some theory and intuition regarding optimal

transport. We close the background with a brief summary of robotic mapping and how kernel

methods have attempted to tackle this challenging real world problem.

Our first major contribution is presented in Chapter 3. This is our first foray into what one

could term learning a locally explicit nonstationary kernel. We first describe related work and

preliminaries on probabilistic mapping in robotics, which is our sandbox to demonstrate the

technique. Then we introduce our fundamental idea of relaxing the conventional (stationary

and local) kernel assumptions to produce a model that adapts to the observed data. This

chapter also introduces the fundamentals for the following chapter. We report a variety of

experiments comparing nonstationary probabilistic mapping with conventional, non-adaptive

probabilistic mapping methods.

Chapter 4 extends the previous work by addressing a serious performance constraint in the

flexible learning process. By leveraging the theory and application of optimal transport, we

transform the time consuming end-to-end learning process into a real-time problem under

the perspective of domain adaptation. We explain how the problem can be formulated as an

efficient online optimisation problem under the paradigm of optimal transport theory. We

then report results on a number of experiments on the domain of probabilistic mapping shown

previously.
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In Chapter 5 we shift gears from the previous two chapters on locally explicit kernel represent-

ation and learning to globally implicit kernel approximations. In other words, we cease from

placing explicit kernel functions around the data domain and adopt a spectral representation

in the Fourier domain. We proceed to introduce our fundamental contribution that relaxes

the analytic representation of familiar, conventional kernel functions. This discourse will

involve a Fourier theory perspective on kernel functions and their connection to probability

theory. Thus we make the connection with quantiles (a.k.a. the inverse cumulative distribution

function) and how we can represent arbitrarily flexible kernels implicitly without ever knowing

their analytic form. We demonstrate how we can learn this flexible kernel given data and

present some experiments that validate the contributions.

Chapter 6 is our final exploration of the globally implicit perspective on kernel learning. It is

a natural successor to Chapter 5 by further relaxing some limiting assumptions. While the

quantile formulation of the kernel presented previously is arbitrarily flexible, it is only flexible

in a stationary sense. That is to say, it does not allow one to capture data-dependent kernel

variation with respect to our observations. Thus we introduce a way to capture nonstationarity

within the kernel approximation paradigm. We provide extensive experimental validation of

the proposed methodology on toy and real world datasets.

Finally, Chapter 7 concludes the thesis, with a brief retrospective on the contributions and

possibilities for future work.



CHAPTER 2

Background

This chapter introduces the foundational methods to our proposed modelling and kernel

approximation methods. We first introduce Bayesian learning in the context of linear regres-

sion and the Bayesian settings correspond to an equivalent kernel. Next we describe kernel

methods, in particular the Gaussian process (GP) and related methods explaining kernel

approximations and optimisation strategies. We will then provide an introductory discourse

on combining a priori known kernels with kernel compositions. Next follows an introduction

of some basic optimal transport (OT) theory which will be necessary for understanding

the domain adaptation concepts introduced in more detail later. Finally we introduce the

application domain of probabilistic robotic mapping for unstructured environments. This will

be our applied domain of focus for demonstrating the effectiveness of some of the proposed

models.

2.1 Learning Model Representations

As the systems we create and use increase in complexity, a stronger need arises to help us

make sense of both the increasing complexity of data and the increasing complexity of the

systems we use to digest such information. Indeed it could be argued that the very reason we

create and use such systems is to drive more informed decision making that can account for

associated risks our models bring to the real world. Robotics, medical treatment, exploration,

financial and political systems that govern our lives, space exploration, material and drug

discovery are but a few examples of the countless domains that inevitably require us to create

and use methods that can learn and improve themselves. More pressingly, these systems will
7
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need to operate with larger deluges of information that often exceed the capacity of human

capability.

The general domain of probabilistic modelling affords us a way of thinking that allows us to

both make predictions that extrapolate and reason about the uncertainties involved with such

predictions. This section will provide a simple introduction to some common terminology and

methodologies that we will dive into greater detail later on. We begin with an extremely broad

categorization of modelling methods: that of parametric and non-parametric modelling.

Parametric methods can loosely be understood as a modelling paradigm in which one defines

some, usually fixed, set of parameters, denoted θ, that govern the operation of a model. This

modelling approach necessarily imbues some assumptions on the underlying distribution

of the data. One then attempts to learn some ideal values for these parameters given the

model structure and observed data. Perhaps the most ubiquitous example is the simple linear

regression model in which the predictions correspond to a vector-matrix dot product. The

parameters here correspond to the vector and the data to the matrix. Parametric methods

can effectively represent complex phenomena accurately assuming one has made accurate

assumptions on the underlying data generating process. Unfortunately this is often not the

case.

In a seeming contrast, non-parametric (Wasserman 2006) methods are methods that assume

the data distribution cannot be defined by a finite set of parameters. Notable examples

include Gaussian processes (Rasmussen and Williams 2006), infinite Hidden Markov Models,

infinite latent factor models, and Dirichlet process mixtures. One can understand inference

complexity using these methods to typically ‘grow’ in complexity in proportion to the number

of observations. While these methods can be more expressive, due to their usually explicit

dependency on the observations, their drawback is notably evident in the context of dataset

with very large numbers of observations.

As a short aside and before moving onto further details, one should note that although the

terms parametric and non-parametric, when taken at face value, are simply common parlance

in the literature. However, the terms bring with them a somewhat misleading, but historically
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perpetuated, dichotomy between modelling approaches: non-parametric models still have

parameters themselves! It is more reasonable to think of this dichotomy as a divergence in

the strictness of a model’s dependency on observed data when it comes to making any future

inferences with the chose model.

2.1.1 Linear Regression

As hinted above, perhaps the canonical parametric method is linear regression. In many

problems one wishes to find some functional mapping f(·) which takes some D-dimensional

query input vector x∗ ∈ RD by applying f(x∗) for some training data D = {Xn,yn}Nn=1

where X ∈ RD are inputs, y ∈ R are associated target values, and n = 1, 2, ..., N . Lin-

ear regression then regards the mapping between input and output as a linearly weighted

combination of input variables:

f(x) = w0 + w1x1 + ...+ wDxD

= x⊤w.
(2.1)

The critical thing to note here is that the output is linear in both the parameters (’weights’)

and the input variables xi. A trivial but important extension of the linear model is that we can

generalise it to a nonlinear map from the input to the output. In this case, we transform the

input variables using some basis transformation ϕ(x):

f(x) =
M−1∑
j=0

ϕj(x)
⊤wj

= ϕ(x)⊤w,

(2.2)

where we have introduced a dummy variable ϕ0(x) = 1 that allows the parameter w0 to

act as a bias variable. This basis function transforms an input D-dimensional data vector

into some M dimensional vector. There is no necessary restriction on the size of M . In this
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non-linear transformation, we still have a linear model, except the output is no longer linear

in the original data, but linear in the transformation of the original data.

This transformed data is often called the design matrix and we denote it as Φ. It has elements

defined as Φn,j = ϕj(xn) giving

Φ(x) =


ϕ0(x1) ϕ1(x1) . . . ϕM−1(x1)

ϕ0(x2) ϕ1(x2) . . . ϕM−1(x2)
...

... . . . ...

ϕ0(xN) ϕ1(xN) . . . ϕM−1(xN)

 . (2.3)

The linear model, as it is, assumes a completely deterministic relation between the output and

the inputs (assuming our weights w are deterministic). We can now extend the model to allow

for an independent additive noise parameter ϵ giving the noise-augmented model y:

y = f(x) + ϵ, (2.4)

where ϵ is some random variable, typically Gaussian with zero mean and variance σ2
n; i.e.

ϵ ∼ N (0, σ2
n), however this is not necessary and one could replace this term with an arbitrary

distribution or even an input dependent distribution.

There are two well known approaches to solving for the weights of the linear model. These

are Maximum Likelihood (MLE) and Maximum a Posteriori (MAP). MLE solves the linear

model by taking the partial derivative of the log likelihood with respect to the weights and

noise model. MAP is similar to MLE but additionally assumes another prior distribution

over the parameters w. Even though MLE and MAP have probabilistic motivations and

derivations, both methods only produce point estimates of the parameters and consequently

all predictive uncertainty information is lost. More details can be found in (Bishop 2007).

In the next section we will introduce the Bayesian Linear Regression (BLR) model, also

called empirical Bayes or type-2 MLE.
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2.1.2 Bayesian Linear Regression

Instead of obtaining point estimates of model parameters, we can estimate the entire distri-

bution over the parameters. In other words, we marginalise over (integrate out) all possible

parameter values and weight the result using the posterior. Sometimes, but incorrectly, called

the ‘fully Bayesian approach’, one assumes a hyperprior (simply another distribution) over

the parameters, of the distributions, that represent the ‘bottom level’ parameters. To put it

another way, type-2 MLE is a method by which we compute point estimates of parameters

that parameterise the weight priors. Under this interpretation we can see the appropriateness

of the term type-2 MLE. In theory one could regress this over uncountably many hierarchical

hyperpriors but this is computationally implausible. In any case, what we are usually inter-

ested in under this paradigm, is that we can obtain a full predictive distribution for making

predictions f∗ for new values x∗:

p(f∗|x∗,x,y, α, β) =

∫
p(f∗|x∗,w, β)p(w|x,y, α, β)dw, (2.5)

where α is termed the inverse weight variance or precision, and β is the precision of the

noise. If we assume (for simplicity) that we can use univariate Gaussian distributions for the

distribution parameterisations, we can obtain an analytic predictive distribution following

from the analytic posterior distribution over the weights:

p(f∗|x∗,x,y, α, β) = N (f∗|µ⊤ϕ(x∗), σ
2
∗(x∗)), (2.6)

where

µ = βΣΦ⊤y, (2.7)

σ2
∗(x∗) =

1

β
+ ϕ(x∗)

⊤Σϕ(x∗), (2.8)

Σ−1 = αI+ βΦ⊤Φ. (2.9)
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2.1.3 Variational Parameter Estimation

As we have seen above, certain Bayesian interpretations under specific distributional choices,

e.g. Gaussian, allow estimation methods such as MLE and MAP to produce closed form

posterior solutions. It is often the case that such simplified distributional assumption are not

justified and one wishes to pick from more flexible or appropriate distributions. Variational

Inference (VI) (Wainwright, Jordan et al. 2008) is a method for determining approximate

probabilistic posterior inference using tractable optimisation. At a high level it consists of

two steps: First, we assume some approximating distribution family q(z;λ) over the latent

variables z we wish to estimate, and second, optimise over the variational parameters λ to

reduce some measure of distributional divergence between the variational distribution q(z;λ)

and the true, but unknown, posterior p(z|x) where x is the set of all observed variables. This

optimization procedure can generally be expressed as follows:

λ∗ = argmin
λ

D(p(z|x), q(z;λ)), (2.10)

where D is the divergence measure.

In most real world situations, the posterior p(z|x)is intractable and thus it is necessary to

represent and solve for an approximate generating model instead. One of the most common

ways to minimise the divergence is by using the Kullback-Leibler (KL) divergence from

q(z;λ) to p(z | x),

λ∗ = argmin
λ

KL(q(z;λ)∥p(z | x)) (2.11)

= argmin
λ

Eq(z;λ)

[
log q(z;λ)− log p(z | x)

]
. (2.12)

Unfortunately the problem defined in (2.12) is intractable since it depends on the posterior,

however it is possible to take advantage of the property

log p(x) = KL(q(z;λ)∥p(z | x)) + Eq(z;λ)

[
log p(x, z)− log q(z;λ)

]
. (2.13)

The left hand side is the logarithm of the marginal likelihood where p(x) =
∫
p(x, z)dz is

the model evidence. Since the evidence is constant relative to the variational parameters λ,
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we can minimise KL(q|p) by maximising the probability of observing the data. This can be

seen as a lower bound on the evidence and is called the Evidence Lower Bound (ELBO),

ELBO(λ) = Eq(z;λ)

[
log p(x, z)− log q(z;λ)

]
. (2.14)

Both p(x, z) and q(z;λ) are tractable within the ELBO and thus we have an optimisable

objective:

λ∗ = argmax
λ

ELBO(λ). (2.15)

Although there are various ways to perform this optimisation, we will follow the approach

in (Kingma and Welling 2014) that allows us to reparameterise our distributions in such

a way that allows the use of automatic differentiation over the variational distributions’

gradients. The key insight to this is that some variational distributions q(z;λ) allow us to

define some random variable ϵ ∼ q(ϵ) that doesn’t depend on the variational parameters λ,

and a deterministic function z := z(ϵ;λ), which contains our variational parameters. As a

consequence we can obtain unbiased Monte Carlo estimates of the gradient:

∇λELBO(λ) = Eq(ϵ)

[
∇λ

(
log p(x, z(ϵ;λ))− log q(z(ϵ;λ);λ)

)]
. (2.16)

In other words, the gradient of the ELBO is an expectation over some distribution q(ϵ).

Consequently, this variational formulation allows us to tractably optimise weights and hy-

perparameters in a principled manner. Later in the thesis we will show how we use this

methodology to optimise a previously intractable kernel learning model.

2.2 Kernel Methods

2.2.1 Equivalent Kernel

Returning to our Bayesian Linear Regression solution in the previous section, first observe

the posterior mean given by equation (2.7). If we take (2.7) and substitute it into (2.2) we
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arrive at the predictive mean in the following form:

f(x∗,µ) = µ⊤ϕ(x∗)

= βϕ(x∗)
⊤ΣΦ⊤y

=
N∑

n=1

βϕ(x∗)
⊤Σϕ(xn)yn.

(2.17)

This implies that the mean value of the predictive distribution at some test point x∗ is

some linear combination of training targets yn. This observation motivates the following

interpretation of the predictive distribution:

f(x∗) =
N∑

n=1

k(x∗,xn)yn, (2.18)

where we have the function

k(x,x′) = βϕ(x)⊤Σϕ(x′), (2.19)

which we may call the equivalent kernel.

By considering the covariance between f(x) and f(x′) we can see:

Cov
(
f(x), f(x)′

)
= Cov

(
ϕ(x)⊤w,w⊤ϕ(x′)

)
= ϕ(x)⊤Σϕ(x′)

= β−1k(x,x′).

(2.20)

This equivalent kernel given in (2.19) fulfills a key property of kernels in general: an inner

product with respect to some vector ψ(x) such that:

k(x,x′) = ψ(x)⊤ψ(x′), (2.21)

with ψ(x) = β1/2Σ1/2ϕ(x).
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This short segue from linear models, to a particular Bayesian solution to the type-2 MLE

brings us to kernel methods (Schölkopf and Smola 2002). Perhaps one of the most widespread

examples of non-parametric modelling methods in which k : X × X → R is some kernel

on an input domain X ⊂ RD. One may interpret the kernel k as some embedding in a

high-dimensional Hilbert space H through a feature map Φ : X → H as an inner product

between points from the feature map with k(x,x′) = ⟨Φ(x),Φ(x′)⟩H.

This continuing section from our discourse on Bayesian Linear Regression naturally leads to

the Gaussian process (GP) – an extremely popular and powerful method of nonparametric

modelling. Following this we expand upon what it means to be a covariance function, or

simply kernel and then demonstrate how it is possible to compose kernels to produce more

complicated covariances that can represent information that individual, canonical, kernels

cannot. We then introduce kernel approximation methods in terms of the general form of

function approximation and in the context of the key methods we will expand upon in the

subsequent chapters.

2.2.2 Gaussian Processes

Gaussian process (GP) regression (Rasmussen and Williams 2006) is a method of learning

some probability distribution over functions f(x) given inputs x ∈ RD given training data

D = {xn, yn}Nn=1 where n = 1, 2, ..., N .

The model may be defined for some set of parameters θ as a Gaussian random process prior:

f ∼ GP(m, k(x,x′;θ)), (2.22)

where

m = E[f(x)]. (2.23)

Our GP has the predictive distribution

p(f(x∗)|x∗,D) = N (E[f(x∗)],V[f(x∗)]). (2.24)
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This has a closed form solution for the predictive mean:

E[f(x∗)] = kT∗ (K + σ2I)−1y, (2.25)

and variance:

V[f(x∗)] = k(x∗,x∗)− kT∗ (K + σ2I)−1k∗, (2.26)

where Kij = k(xi,xj) is the Gram matrix of our kernel function k, k∗ is an N -dimensional

vector with the ith entry being k(x∗,xi) and y a vector of the N observations. To solve the

GP to obtain a prediction, one typically needs to perform an N × N matrix inversion of

the gram matrix K which significantly hinders scalability to very large datasets since this

involves an O(N3) complexity. To try and alleviate this complexity, there have been many

recent attempts to approximate the ‘full GP’ problem.

As can be seen above, the result of the GP relies critically on the choice of kernel k. The next

section will introduce a small library of various canonical kernels and trivial ways that one

may combine such kernels to obtain more flexible representations.

2.2.3 Kernel Functions

The kernel (Schölkopf and Smola 2002) function is a general mathematical notion that lends

itself to integration into many machine learning algorithms such as the well known GP

model above and well popularised Support Vector Machine (SVM), amongst many others.

In essence, the kernel encodes some prior belief (as imposed by its mathematical definition)

on the function one is trying to model whether or not it is with a GP or some other model

that integrates kernels. Broadly speaking, the kernel is a measure of similarity between two

objects. We show a small set of some common kernels realised over a linear span of scalars

in Figure 2.1. To show what’s possible with increasing the expressiveness of kernels we show

realisations of compositions of kernels in Figure 2.2.
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Figure 2.1. A small kernel zoo. Various canonical kernels with visualisation
of their respective gram matrices (top row) and arbitrary slices taken from
their corresponding gram (bottom row). (Tompkins 2018)

Figure 2.2. A small compositional kernel zoo. Various compositions of kernels
with visualisation of their respective gram matrices (top row) and arbitrary
slices taken from their corresponding gram (bottom row). (Tompkins 2018)

DEFINITION 1. (Positive definite kernel) For some nonempty set X , a symmetric function

k : X × X → R is a positive definite (p.d.) kernel on X if and only if,

N∑
i=1

N∑
j=1

aiajk(xi,xj) ≥ 0 ∀ xi ∈ RD and ai, aj ∈ R. (2.27)
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More formally, a covariance function is a special kind of function of two input data points x,

x′, where x and x′ are typically vectors in some D dimensional space. A typical requirement

for kernels is that for all possible input points on the kernel’s operating space (observations,

query points), and hyperparameters, is that they produce positive semi-definite covariance

matrices as per Definition 1.

Some key terminology one may encounter regarding covariance functions include: stationary

kernels, non-stationary kernels, and hyperparameters or kernel parameters.

Stationary kernels: Often due to their analytic simplicity and broad effectiveness, the most

commonly used kernels are stationary. A stationary kernel is a kernel which is a function

of the difference between two points x and x′: τ = |x− x′|. In upcoming chapters, we

will show how stationary kernels have a natural interpretation through the lens of harmonic

analysis: kernels of stationary stochastic processes have a corresponding Fourier transform of

some positive finite measure.

Non-stationary kernels: Non-stationary kernels refers to kernels that evaluate differently,

conditional, on where the data lies – in contrast the stationary kernels which just cares about

the difference between. Additional details can be found in Chapter 4 of (Rasmussen and

Williams 2006) and (Paciorek and Schervish 2004).

Kernel parameters: Most kernels will typically have their own adjustable parameters that

affect its output. These parameters are typically called hyperparameters. For example,

the lengthscale is a hyperparameter of the squared exponential kernel, and the period and

lengthscale are hyperparameters of the periodic squared exponential kernel.

2.3 Slightly Expressive Kernels

We introduce some well known kernels.
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Squared exponential: This is perhaps the most explored and applied kernel. It is infinitely

differentiable and consequently is appropriate for modelling smooth processes. It is conven-

tionally equipped with two simple hyperparameters: 1) the lengthscale Σ. This determines

how much the input variables affect the output; and 2) the signal variance h2 which determines

the overall magnitude. It is formally defined as follows:

kSE(x,x
′) = h2 exp

(
− 1

2
(x− x′)⊤Σ(x− x′)

)
. (2.28)

For additional flexibility, a more general form of the symmetric lengthscale matrix Σ allows

for anisotropic modelling in the sense of treating each dimension independently. Various

choices may be made for Σ such as Σ = l−2I , Σ = diag(l)−2, Σ = ΛΛ⊤ + diag(l)−2

where l is a vector of positive values and Λ is a D × k matrix where k < D. Interestingly,

the spectral density of the SE kernel has the same exponential form as its time domain

form: S(s) = (2πΣ)D/2 exp(−2π2Σ2s2). One potential downside, while the SE kernel has

many useful properties it is often regarded as encoding too much smoothness which is often

inappropriate for modelling real world processes (Stein 1999).

Matérn class: In contrast to the SE kernel, The Matérn class of covariance functions is an

example of a kernel that is not infinitely differentiable. The kernel’s construction manifests

itself in a very general way with the option to specify the varying amounts of differentiabilty.

Its most general form is defined as follows:

kmatern(x,x
′) =

21−ν

Γ(ν)

(√2ν |x− x′|
l

)ν

Kν

(√2ν |x− x′|
l

)
, (2.29)

where Kν(z) is a modified Bessel function of the second kind of order ν > 0 and argument z,

Γ is the gamma function, and l > 0 is the lengthscale parameter.

Perhaps the two most popular concrete realisations of the Matérn, which are respectively

one and two times differentiable, are when ν = 3
2

and ν = 5
2

in which case we obtain the

simplified expressions:
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kν=3/2(x,x
′) =

(
1 +

√
3 |x− x′|

l

)
exp

(
−
√
3 |x− x′|

l

)
, (2.30)

kν=5/2(x,x
′) =

(
1 +

√
5 |x− x′|

l
+

√
3 |x− x′|2

l2

)
exp

(
−
√
5 |x− x′|

l

)
. (2.31)

An interesting note about the Matérn is that one can show that as ν →∞ the kernel becomes

the squared exponential, and when ν = 1
2

one recovers what is often called the exponential

kernel which is continuous but not differentiable. Indeed the exponential kernel correspond to

the covariance function of the Ornstein-Uhlenbeck process which is the mathematical model

one obtains from a particle following Brownian Motion (Uhlenbeck and Ornstein 1930).

2.4 Slightly More Expressive Kernels

At this point you may be wondering could we combine some of these individual kernels

to get some kind of trade-off between them? The answer to this is yes! It is possible to

trivially compose standard p.d. kernels using addition and product operations. One can adopt

composition operators on the full covariance (Schölkopf and Smola 2002) as well as the in

the feature space view (Shawe-Taylor and Cristianini 2004). This can be summarised with the

following operator notation for sum and product operations on kernels.

The addition of two covariance matrices generated by two kernels k1 and k2:

(k1 + k2)(x,x
′) = k1(x,x

′) + k2(x,x
′), (2.32)

and the multiplication of two covariance matrices generated by two kernels k1 and k2:

(k1 × k2)(x,x′) = k1(x,x
′)× k2(x,x′). (2.33)

2.4.1 Sums of Kernels

One way to interpret a sum of kernels is through a logical or operation over the summed

kernels. One instance where we can see the benefit of assuming additivity can be seen when
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used in the context of GP modelling. Essentially, if our true data generating process is made

up of an additive superposition of multiple processes each satisfying the assumptions of each

individual kernel, then we would be able to efficiently model the data. Some visual examples

of kernel sums can be seen in Figure 2.3.

Figure 2.3. Examples of kernel compositions using addition. (Tompkins
2018)

2.4.2 Products of Kernels

In the same way we can consider additive kernels as logical or operations, the product of

two kernels can be interpreted as a logical and operation between the participating kernels.

Various interesting phenomena can be naturally expressed with products of kernels. Just a few

examples can include: functions of growing amplitude by multiplying a stationary lengthscale

(e.g. SE) kernel with a linear kernel, M th degree polynomial priors by multiplying M linear

kernels together (indeed this corresponds precisely to well known polynomial features), and

locally periodic structure by multiplying periodic kernels with some stationary kernel like the

SE or Matérn. Some visual examples of kernel products can be seen in Figure 2.4.

Figure 2.4. Examples of kernel compositions using multiplication. (Tomp-
kins 2018)
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2.4.3 Multi-dimensional Compositions

One more variation we could achieve with kernel compositions is by applying specific kernels

to corresponding subsets of our full input dimension. LetD ∈ Z+ be an ordered set of integers

representing a subset of dimensions. An example of such a composition can be written as

follows:

kcomposition = k
D=(1,2,5)
1 + k

D=(3,4)
2 , (2.34)

where kD=(1,2,5)
1 is one kernel applied to dimensions 1, 2, 5 and kD=(3,4)

2 is a second kernel

applied to dimensions 3, 4.

2.4.4 Other Kernel Operations

There are countless more, usually ‘discrete’ auxiliary variations related to compositional

kernel learning. A few notable examples include: changepoint kernels for detecting regime

changes in data, manifold learning by warping data in a non-linear fashion, categorical

kernels operating on categorical variables, symmetry respecting kernels such as those that

model symmetries around some origin that represent certain invariant behaviours, and kernels

for multiple-output GPs. The interested reader may find more details in (MacKay 1998),

(Rasmussen and Williams 2006), and Chapter 2 of (Duvenaud 2014).

2.4.5 Caveats of Kernel Compositions

While the aforementioned kernel compositions are well formulated and very interpretable

(in the sense of the individual kernels which make up the aggregated kernel), they are still

extremely limited. They beg the question: why should we restrict ourselves to this particular

stationary kernel or and addition between this and that kernel? The real answer is there is no

reasonable reason other than ‘we think our data generating process has these properties’. This

is somewhat disappointing! If we knew the properties of our data generating process then why

would we be going to all this trouble optimising and finding appropriate kernels in the first

place. This is ultimately the biggest caveat of both using canonical kernels and compositions



2.4 SLIGHTLY MORE EXPRESSIVE KERNELS 23

of canonical kernels – their base assumptions (such as on smoothness) are ultimately arbitrary

or unjustified in the regime of discrete observations. We will see later on, throughout the main

body of this thesis, how we can try to address this problem by taking a more fundamental and

holistic perspective of what it means to be a kernel.

2.4.6 Spectral Kernel Representations

All the kernels we have encountered above are what could be termed the primal form of the

kernel – analytically exact functional definitions that act directly on the data and explicitly

construct a Gram or kernel covariance matrix. This matrix is precisely quadratic in size,

proportional to the number of observations used to construct it. Consequently, it is obvious to

see that this results in significant drawbacks when dealing with larger amounts of data. In fact

this is a systemic issue with non-parametric methods that often require the entire dataset or a

subset of the full dataset to be stored in order to perform the desired inference. It is therefore

reasonable, as the sample size of our datasets become larger, to resort to approximations. These

usually manifest themselves as either data-dependent sampling methods, or data-independent

projections that produce low-rank covariance structures.

In the regime of data sampling based methods, the Nyström method is perhaps the most

prominent. Details can be found in (Williams and Seeger 2001) for the original version and

(Gittens and Mahoney 2013) for a more elaborate discourse. To summarise the method, one

selects a subset of observations from the original dataset and then computes the columns of the

full Gram that correspond to these sampled points. This incomplete Gram matrix is then used

as a surrogate to the full Gram. One may consider this as a data-dependent approximation

method.

Contrasting the data-dependent approach is that of data-independent approximation. We will

explore this perspective in greater detail throughout this thesis. Perhaps the most significant

literature regarding approximate kernel representation is from (Rahimi and Recht 2007b) with

a method termed the Random Fourier Feature (RFF). The key result hearkens back to an old

result in harmonic analysis called Bochner’s theorem:
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THEOREM 1. (Bochner 1933) A complex-valued function g : RD → C is positive definite if

and only if it is the Fourier Transform of a finite non-negative Borel measure µ on RD:

g(τ ) = µ̂(τ ) =

∫
RD

e−iτTωdµ(ω), ∀τ ∈ RD. (2.35)

In essence, the theorem provides a direct connection between shift-invariant kernels and

embeddings of distributions. The kernel is given an integral representation and consequently

this implies it can be approximated via a sampling of integral. Some of the main results

shown in this thesis will show how we can leverage such a perspective to construct arbitrary

but theoretically valid kernels.

To get a better understanding of function integration let us consider an integral I of the

following form:

ID[f ] =

∫
[0,1]D

f(x)dx. (2.36)

If x is some random vector uniformly distributed over [0, 1]D then we have the expectation

ID[f ] = E[f(x)]. We can estimate the expected value by taking discrete samples using

independent samples from [0, 1]D with a random set S = {w1, ...,ws}. This empirical

method of estimation is commonly known as the Monte Carlo (MC) method (Robert 2004):

IS[f ] =
1

s

∑
w∈S

f(w). (2.37)

It is possible to specify an integration error w.r.t. the set S as,

ϵS[f ] = |ID(f)− IS(f)|. (2.38)

According to the Central Limit Theorem, if S is randomly drawn and s = |S| tends toward

infinity, then we have that ϵS[f ] ≈ σ[f ]s−1/2ν where ν is a standard normal r.v. and σ[f ] is
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the square root of the variance of f . This represents the root mean square error (RMSE) of

the MC method:

σ2[f ] =

∫
[0,1]D

(f(x)− ID(f))2dx. (2.39)

This yields in expectation:

(ES[ϵS[f ]
2])1/2 ≈ σ[f ]s−1/2, (2.40)

which has a rate of convergence of O(s−1/2).

This Monte Carlo approximation will turn out to be at the heart of the novel approximate

kernel representations later in this thesis.

2.4.7 Kernel Learning

For a non-empty set X ⊂ RD, let us denote the kernel function as k : X ×X → C. By adding

the inner product structure ⟨·, ·⟩, a kernel can be represented as k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H
for x,x′ ∈ X , where ϕ : X 7→ H is a mapping from the low dimensional input space X

into a possibly infinite-dimensional Hilbert spaceH. Intuitively, these inner product kernels

quantify the similarity between two input points. The simplest kernel is the linear kernel given

by k(x,x′) = x∗x′. However, arguably, the most popular kernel is the squared-exponential

kernel k(x,x′) = σ2 exp(−2γ2∥x− x′∥22) with parameters σ2 and γ2. If less smooth fittings

are intended, then the user would choose kernels such as the neural network or Matérn 3
2

(Rasmussen 2004). Similarly, if there is a seasonal pattern it is desirable to use a periodic

kernel k(x,x′) = σ2 exp(−2γ2 sin2(ρπ
2
|x− x′|)) with the periodicity parameter ρ.

Because of the inner product, the kernel function is, i) positive-definite, ii) conjugate symmet-

ric k(x,x′) = k∗(x′,x), and iii) satisfies linearity in the first argument of the kernel. Due to

these properties, functional composition, and convolution of kernels result in another valid

kernel. Even though kernels constructed with these operations are capable of computing
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complex patterns, the choice of kernels and their combinations often depend on the domain

knowledge and physical observations of the data analyst.

COROLLARY 1. If the measure µ in Theorem 1 is a probability measure with µ̂(0) = 1 and has

a probability density function (pdf) fΩ on the random variable Ω with its realization ω ∈ RD,

then µ̂(x− x′) =: k(x,x′) is a continuous, stationary, and positive-definite covariance

function that satisfies,

k(x,x′) =

∫
RD

e−i(x−x′)⊤ωfΩ(ω)dω. (2.41)

In a series of pioneering work (Wilson and Adams 2013; Wilson et al. 2013), the covariance

function of a Gaussian process prior is modeled by making use of a result similar to Corollary 1

as a spectral representation (Rasmussen 2004). Taking advantage of mixture representations

and sampling from a pdf has been explored in (Lázaro-Gredilla et al. 2010; Oliva et al. 2016).

2.5 Optimal Transport (OT)

The final concept we will explore is that of optimal transport. We will utilise this later on to

reframe conventional long winded sequential learning problems into multiple short parallel

optimisation problems.

2.5.1 Discrete Optimal Transport

At a high level, optimal transport seeks to answer the question: what is the best way to

move information from one location to another location with the the least effort; indeed a

classical example of this problem is a toy example of moving ‘dirt’ from one configuration

to another with the least effort. The Monge-Kantorovich Theorem is a convex relaxation

of the optimal transport problem proposed by Monge (Monge 1781; Villani 2008). Unlike

in Monge’s formulation, Monge-Kantorovich guarantees the existence of a transport map

P : Ω(S) → Ω(T ).

THEOREM 2. (Monge-Kantorovich) (Villani 2008) Let Ω(S) and Ω(T ) be two separable metric

spaces such that probability measures µ(S) and µ(T ) on Ω(S) and Ω(T ), respectively, are
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Figure 2.5. (a) 10 red and 10 brown dots indicate samples in R2 from a source
and target distributions, respectively. The higher the transparency of gray
lines, the lower the probability of couplings (matches) obtained after solving
Equation (2.43). (b) 10 × 10 pairwise cost matrix D between the positions
of samples. (c) 10 × 10 coupling matrix P∗ indicates the optimal coupling
probability of source points and all other target points. Determining this matrix
(and gray lines in (a)) is one of the goals of optimal transport.

Radon measures. The optimal coupling,

P∗ = arginf
P∈Γ(µ(S),µ(T ))

∫
Ω(S)×Ω(T )

D(µ(S),µ(T ))dP (µ(S),µ(T )), (2.42)

always exists for a distance function D : Ω(S) × Ω(T ) → [0,∞), where Γ is the set of all

couplings (probability measures) on Ω(S) and Ω(T ) with marginals µ(S) and µ(T ), respectively.

As stated earlier, and as illustrated in Figure 2.5, the OT problem attempts to determine

the ideal way to transfer some distribution from one location to another. If µ(S) and µ(T )

constitute two datasets of size N (S) and N (T ), respectively, there always exists an optimal

probabilistic coupling P∗ ∈ RN(S)×N(T ) between the two datasets (Courty et al. 2017).

As a concrete example, observe Figure 2.5 where we can see colour coded samples coming

from two different distributions, on the left and right, in red and brown respectively. The goal

is to find some transport plan (allocation) and this is demonstrated in the coupling matrix

P∗. This is a doubly stochastic matrix, where each row and column sums to one, each cell

indicating the probability of a sample in the source distribution aligning with a sample in the

target distribution.
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More formally, with some observed source data, for a new target dataset, we attempt to obtain

the optimal coupling,

P∗ = argmin
P∈Γ(x(S),x(T ))

∑
ij

PijDij − λ−1r(P ), (2.43)

for a givenD ∈ RN(S)×N(T ) distance matrix (for example, one could use the squared Euclidean

distance between source-target pairs) with the information entropy of P ,

r(P ) = −
∑
ij

Pij logPij. (2.44)

An approximation of the original problem, this entropic regularisation, commonly known

as the Sinkhorn distance (Cuturi 2013; Genevay, Peyré and Cuturi 2018), allows one to

replace an otherwise difficult integer programming problem with a significantly more efficient

iterative algorithm (Sinkhorn and Knopp 1967). A single hyperparamter, λ, is introduced to

control the regularisation strength. The larger one sets this the closer we approach the original

optimisation problem.

2.5.2 Wasserstein metric

There is a special case of Theorem 2 that measures the distance between two probability

distributions. Known as the 2-Wasserstein distance it is calculate between Dirac measures

µ(S) and µ(T ) introduced in Section 2.5.1 is defined as,

W2(µ
(S),µ(T )) =

{
min
P∈P∗

∑
ij

PijDij

} 1
2

(2.45)

where Dij = ∥x(S)
i − x

(T )
j ∥2 (i.e. squared Euclidean distance).

We will see later how to take advantage of this metric to perform domain adaptation from

pre-trained models to construct new, data conditioned models, in real-time at test time.
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Figure 2.6. Kernel positioning. Kernels are placed in different locations h̄.
For instance, here, the distance between each data point x and {h̄m}M=6

m=1 has
to be evaluated as in Equation 4.1.

2.6 Probabilistic Mapping in Robotics

In essence, robotics is the study of robots and their agency within some, often unstructured,

environment. In order to make the most of its capabilities, a robot should have some kind of

representation of the world out there – that is to say, the environment that the robot resides

within. Without the ability to represent its surrounding environment in some meaningful way,

a robot would have no means by which to operate effectively. There are countless downstream

tasks in robotics that depend on useful world representations, i.e. mapping, path planning,

and control. In this thesis we will use the problem of occupancy mapping as our playground

for exploring more flexible kernel learning.

2.6.1 Representing Occupancy

An occupancy model is typically represented as a parameterised function that models the

occupancy probability of each location in the environment. The objective is to learn the

model parameters θ given a set of observations from what is usually a kind of light based

range finder – commonly a LIDAR system. After parameter estimation is complete, it is

possible to query y∗ = p(occupied|x∗, θ) ∈ [0, 1] anywhere in the 2D space. For now we

will focus our discussion and experimentation to domains in 2D space x∗ ∈ R2 := (x1, x2),

while the theory extends naturally to higher dimensions. We label locations where the LIDAR
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has reflected upon an object as y := 1 := occupied, and randomly sampled points, in the

scan’s ray of travel defined as the space between each LIDAR hit and the LIDAR sensor, as

y := 0 := free. From this we can construct a dataset D = {(xn, yn)}Nn=1. Here, xn ∈ R2 are

the corresponding spatial locations of yn ∈ {0, 1}.

There have been multiple models proposed in the literature to represent the occupancy model.

One of the seminal works, that operates on a discrete formulation, is the Occupancy Grid

Map (OGM) (Elfes 1989). An important attempt to transition from an discrete cell based

construction from OGMs is the Hilbert map (HM) (Ramos and Ott 2015) which was later

extended with Gaussian process occupancy maps (GPOMs) (O’Callaghan and Ramos 2012;

Wang and Englot 2016). Both the HM and GPOM ideas use kernel functions as critical

components that can represent spatial correlations in an effective and continuous manner.

Indeed the kernel methods used in GPOMs come with the extended flexibility of incorporating

other useful attributes such as dynamics into occupancy mapping (Senanayake, O’Callaghan

and Ramos 2017; Senanayake et al. 2016b). The HM is based on a parametric (linear regres-

sion with kernel features) model while GPOMs are operating on a non-parametric Gaussian

process based model which additional allows effective characterisation of uncertainty. Despite

their attractive theoretical properties, GPOMs are impractical for real-world and real-time

usage because of the O(N3) run-time and memory complexity of the naive Gaussian process

implementation they use. An extension of Hilbert maps is the recently proposed Bayesian

Hilbert maps (BHMs) (Senanayake and Ramos 2017) which comprises most of the positive

attributes of GPOMs with a computational complexity cost of O(M3) where M ≪ N and

M is the number of features. That is to say the computational complexity depends on the

features used rather than the number of observations – in contrast the GPOMs which has

complexity growth coupled to the number of observations. To summarise BHM, it can be

seen as performing Bayesian logistic regression in a high-dimensional feature space RM

using kernels embeddings of observations (LIDAR hits and misses) (Hofmann, Schölkopf and

Smola 2008; Senanayake and Ramos 2018). Although extremely effective, a major drawback

of BHMs is that it firstly has no automatic ability to learn the kernel hyperparameters, and

secondly the same kernel must be used for the entire spatial extent of the observed map – i.e.
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it cannot accommodate nonstationarity in the observed environment space. This is one of the

key problem areas we address in this thesis.

2.6.2 Kernel Methods in Occupancy Mapping

Kernel methods have been applied extensively in robotics and especially so when it is either

necessary or useful to model nonlinear patterns with a small and large amounts of data

(Mukadam, Yan and Boots 2016; Deisenroth and Rasmussen 2011; Kingravi, Maske and

Chowdhary 2016; Kingravi et al. 2012; Guizilini and Ramos 2017b). Although only SE

kernels with fixed lengthscales are typically used in robotic mapping (Ramos and Ott 2015;

Doherty, Wang and Englot 2016; Senanayake and Ramos 2017), different kernel learning

techniques have also been developed and explored in machine learning; and extensively so

in the GP literature. It can be observed that the choice of kernels for a particular application

is typically done through expert human knowledge (Duvenaud et al. 2013), a model selec-

tion criteria such as Bayesian information criteria (Duvenaud 2014), or compute intensive

optimisation procedures (Bach, Lanckriet and Jordan 2004). As we have seen earlier, one can

also compose a discrete set of existing kernels (Duvenaud et al. 2013), or represent them as a

Figure 2.7. Examples of some learned Hilbert maps.
Left: laser scans, middle: predicted occupancy, right: learned kernel positions
and lengthscales



32 2 BACKGROUND

spectral mixture (Wilson et al. 2013). However, unlike in Gaussian process learning where

optimising the hyperparameters is a well-studied problem and solutions are easily represented

with the log marginal likelihood, kernel parameter optimisation for Hilbert mapping has not

been so straightforward. Some examples of learned probabilistic maps from LIDAR scans

can be seen in Figure 2.7

As technology improved and became more accessible, depth sensors such as LIDAR and sonar

became more natural ways to provide active sensing. Indeed it came to be that occupancy

grid maps developed in the 1980s (Elfes 1989) became an exceedingly popular way to

provide a computable representation for sensing the world. At a high level, OGMs splits the

world into discretised grid cells with a well define grid resolution. For each cell, a Bayes

filter is applied to each cell independently and this sequentially updates each cell as new

depth sensor information is acquired. The problem with OGMs is that OGMs maintains

an independence assumption on the sensor data acquired within each cell – each cell has

no statistical connection to neighboring cells. This is problematic because in reality sensor

information can be correlated by the active sensing apparatus. (O’Callaghan, Ramos and

Durrant-Whyte 2009) was proposed a method called Gaussian process occupancy maps

(GPOMs) which enabled the ability to capture spatial correlation with a kernel function

embedding. As mentioned previously, the classic Gaussian process based methods have

O(N3) runtime complexity for N data points for both learning and prediction. The problem

with this modelling approach that, for sensor modalities which have the ability to sample at

very high rates, they are not able to scale with continually growing streams of data which

is the case with active real world systems. To mitigate this problem, another kernel based

method, called Hilbert maps (HMs) was introduced (Ramos and Ott 2015). HMs utilise a

parametric model which, unlike the non-parametric Gaussian process in GPOMs, is able to

scale linearly to larger and larger datasets.

Unlike the cell structure in OGMs, HMs learn the occupancy map in a reproducing kernel

Hilbert space (RKHS) where spatial relationships are modelled using the designated kernel

function. In HMs, a kernel k(x, x̃) : X × X → R is a function that measures the similarity

between two multidimensional inputs x, x̃ ∈ X ⊂ R2. Concretely, in two dimensional
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HMs, we compute pairwise similarities between the elements of the two sets of points

{xn ∈ R2}Nn=1 and {x̃m ∈ R2}Mm=1. Specifically, x represent longitude and latitude positions

of either empty or occupied y ∈ {0, 1} = {free, occupied} data points corresponding to

samples from LIDAR scans and x̃ are points placed, or hinged, at pre-defined locations of

the space. A squared-exponential (SE) kernel k(xn, x̃m; l) = exp
(
− ∥xn − x̃m∥22/2l2

)
with

a heuristically chosen lengthscale l is used to compute the the feature vector ϕ(xn; l) =

(k(xn, x̃1; l), k(xn, x̃2; l), ..., k(xn, x̃M ; l)) ∈ RM×1 for all data points {xn}Nn=1. We can then

say, {(xn, yn)}Nn=1 is the dataset and
{
l, {x̃m}Mm=1

}
is the pre-defined parameter set. Although

random Fourier features or Nyström features can also be used for occupancy mapping, hinged

kernel features are both highly intuitive and have shown improved performance for occupancy

mapping (Ramos and Ott 2015) and related problems (Kingravi, Maske and Chowdhary 2016;

Whitman and Chowdhary 2017).

Once the kernel based feature vector is calculated, we simply pass it through a sigmoidal

function to predict an estimate of the probability of occupancy ŷ = p(y|x∗,w) = 1/(1 +

exp(w⊤ϕ(xn; l))) of a query point in the space x∗, given the weights w ∈ RM×1. Since the

query point is an arbitrary longitude-latitude coordinate in the real domain, HMs are able

to produce maps with arbitrary resolution at prediction time – in contrast to OGMs which

are limited to their chosen cell resolution. To learn the model weights, the loss function∑N
i=1 log(1+ exp(ynw

⊤Φ(xn; l, x̃))) + λ1∥w∥22 + λ2∥w∥1 with heuristically chosen penalty

terms λ1 and λ2 is minimised. The problem with this setup is that it is requires a human expert

is to choose the parameters l, x̃, λ1, and λ2. One attempt to fix this (Senanayake and Ramos

2017) attempted to minimise this complexity by removing λ1 and λ2 which are responsible for

over-fitting, the lengthscales of the kernel l and where to place them x̃ were still heuristically

chosen. While the model in (Senanayake and Ramos 2017) works effectively if l and x̃ are

chosen appropriately, the model is based on a fixed approximate lower bound which does not

allow further modifications that would allow automatic hyperparameter discovery.
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2.7 Summary

In this background chapter we have introduced the basics of learning predictive models with

a brief tour through parametric model representations and learning procedures, using both

analytic and approximate Bayesian estimation. We then proceeded to introduce the idea

of a kernel, and the classical Gaussian process model which has kernels at its heart. We

then shifted gears to the theory of optimal transport which will prove to be crucial for later

exposition. Finally we gave a short introduction to probabilistic mapping in robotics which

we will treat as a running applied sandbox for validating some of our contributions.



CHAPTER 3

Automorphing Kernels

The capacity of a robot to adapt on their own to changes in their environment is a key factor

to the effectiveness of their deployment. An example of this is in mobile robotics where a

robot is typically required to learn a map of its environment with minimal human assistance.

In this chapter, we leverage the latest developments in automatic machine learning, also

known as AutoML, and probabilistic programming, under the Hilbert mapping paradigm. The

probabilistic representations that Hilbert mapping gives allows us to represent the occupancy

of the environment as a continuous function of real world spatial location, and we construct

an end-to-end Bayesian framework that allows us to learn all critical parameters of the map

model. That is to say, the robot, by itself, is able to learn dataset-optimal location and

shape hyperparameters of the the Hilbert map’s kernel embeddings. In this way, we can

lift the problem of picking kernel hyperparameters to a more general problem of specifying

broader prior probability distributions over plausible hyperparameters without needing expert

human domain knowledge. The methodology we introduce employs stochastic variational

inference and is able to learn tens of thousands of parameters within minutes with both a large

and small numbers observations. We additionally validate the proposed method on various

real-world and simulated datasets in static and dynamic environments showing significant

performance improvements over existing stationary occupancy mapping techniques. Perhaps

the fundamental takeaway of this chapter is that we showcase the importance of learning

data-dependent position-shape hyperparameters of kernels with respect to the observed data.

35
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3.1 Introduction

In order to facilitate more effective and safer decision making for essential tasks like path

planning, it is absolutely critical for a robot to have a faithful and informative model of

its environment. A robot using sensors such as LIDAR or sonar must be able to discern

occupied areas (where obstacles exist) from unoccupied areas (where obstacles are absent).

The realisation of such occupancy states is a highly nonlinear and spatially correlated problem

that cannot be expressed with a simple linear classification model. Thus, it seems appropriate

that we approach this problem from a machine learning perspective where deep learning

models and kernel-based models can be regarded as excellent candidates for occupancy

mapping – for they are known to perform well in nonlinear classification settings. However,

since it is often necessary to represent the sensed environment’s occupancy with variably

sparse-to-dense sensor measurements in a reasonable time, kernel methods have emerged as a

natural choice in recent occupancy mapping methods (Ramos and Ott 2015; Doherty, Wang

and Englot 2016). Multiple related theoretical and experimental works have corroborated

their promising applications in 2D, 3D, and spatiotemporal mapping (Ramos and Ott 2015;

Doherty, Wang and Englot 2016; Senanayake et al. 2016a; Guizilini and Ramos 2017a) –

although often these rely on some expert-assisted heuristic parameter choices.

It can be said that perhaps the essential challenge in employing kernel methods in occupancy

mapping is the requirement of accurately determining the kernel hyperparameters in conjunc-

tion with the model parameters (Senanayake and Ramos 2017). To move towards the ideal of

robots achieving full autonomy in potentially unknown environments, with or without human

or other-robot interaction, it would be ideal that the robot is able to automatically determine

their own model parameters from observational data. In the real world, it is usually only

the most simple environments that maintain spatially homogeneous features. Unfortunately,

homogeneous environments are not the typical case in real-world environments. For example,

walls and furniture may contribute to sharp features while open spaces and large hills may

contribute to spatially smooth features. In our probabilistic mapping paradigm, to better

understand the significance of representing nonstationarity in terms of kernels, first consider

the squared-exponential kernel. This is a kernel which is parameterised with lengthscale
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Figure 3.1. Comparison of stationary and nonstationary squared-exponential
kernels, exp(−∥x− x̃∥22/2l2) with bivariate Gaussian distributions x̃ hinged
on the environment with lengthscales l, and their ability to represent sharp
spatial changes. Note that both examples have the same number of kernels,
however in the nonstationary case the kernels have different positions and
lengthscales to account for abrupt changes in the training data.

and position hyperparameters. As seen in Figure 3.1 larger lengthscales allow the capture of

smoother changes across the space, while smaller lengthscales allow the capture of relatively

sharper changes in the space. Hyperparameter optimisation is critical for almost all machine

learning methods and the best values are almost always dependent on the dataset. Often, a

single best lengthscale is chosen that performs, on average, the best for the entire dataset.

There is also a computational constraint of the modelling method that restricts one from pla-

cing a large number of kernels around the space being mapped – this introduces the problem

of where one should place kernels. In our contribution, we address both problems – where to

place kernels and what lengthscales they should have. We maintain that these autodidactic

and model adaptation paradigms are vital for a robot to achieve full autonomy.

Another critical consideration for real-world robot deployment is the acknowledgement that

there is uncertainty inherent to all parts of system operation, from sensor and actuator imper-

fections to model misspecifications. Indeed the real-world is, to the best of our knowledge,

analogue and noisy! Therefore it is subject to such observational imperfections. To accom-

modate for possibly encountered uncertainty, probabilistic formulations (Thrun 2000; Thrun,

Burgard and Fox 2005) are widely adopted in robotic applications such as in simultaneous

localisation and mapping (SLAM) (Dissanayake et al. 2001), occupancy grid mapping (Elfes

1987), Bayesian occupancy mapping (Kim, Kim et al. 2014; Kim and Kim 2013; Duong,

Yip and Atanasov 2022), and human-robot interaction (Campbell and Amor 2017; Unhelkar

et al. 2018; Rana et al. 2017). While these models largely exploit Bayes theorem to determine
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inverse probabilities assuming the conjugacy of prior-posterior probability distribution pairs

(Bishop 2007), they usually do not leverage a more general Bayesian treatment of introducing

probability distributions over all parameters. This is, in essence, a cleaner way of dealing with

potentially diverse sources of uncertainty. Bayesian models are particularly suitable for small

data settings (Gelman et al. 2013), largely due to the assumptions often encoded in choice

of prior distribution and their natural regularising effect. It follows naturally from this that

their benefit in robotics should apparent – they provide a principled way to accommodate

prior knowledge, which is usually derived from expert human knowledge. Although these

upsides seem attractive, there are still significant drawbacks to Bayesian methods which are

often hindered by i) the necessity for often tedious and problem-dependent mathematical

derivations, and ii) such models are often unable to scale or adapt to real-world robotics

applications. All of this said, recent developments in AutoML methods in machine learning

can alleviate some of these issues which makes them attractive for use in a variety of applied

robotics problems such as kernelised continuous occupancy mapping.

In the method proposed in this chapter, we show how the the reparameterisation trick (Kingma

and Welling 2013) along with stochastic gradient descent is a perfect candidate to help solve

the challenging learning problem of determining parameters for Hilbert maps in probabilistic

robotic mapping. Specifically, we show how it can solve the previously intractable problem of

automatically learning kernel parameters that plagued previous Hilbert mapping techniques

that have required human chosen heuristic values for the kernel parameters.

3.2 Contributions

This chapter focuses on the problem of scalable and automatic hyperparamter learning for

nonstationary kernel representations. We specifically tackle kernel learning in the application

domain of probabilistic robotic mapping for which prior work has only been capable of

automatically learning model parameters but not kernel parameters in a scalable way. To

address this problem, we present the following contributions:
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Figure 3.2. (a) A 50×300 m section of a simulated environment with obstacles
in yellow. A robot shown as a black arrow has a LIDAR with beams shown
in blue and the laser hit points in red. (b) The robot moves around and
collects data. Red points are laser hit points and blue points are samples taken
from LIDAR beams between the robot and laser hit points (c) The occupancy
probability map. Red indicates occupied space, blue indicates free space, and
colors in-between indicates the uncertainty of occupancy. (d) The map is
built based on a set of squared-exponential kernels. The mean of the initial
bivariate Gaussians is shown here—Gaussians are in a grid. (e) The proposed
algorithm can learn both kernel parameters l and positions x̃ alongside other
model parameters. Both the color and the size of the marker indicates the size
of the learned lengthscales. For instance, larger lengthscales are shown in a
bigger marker size and in red.

(1) Proposing a theoretical framework that works well in practice to learn all parameters

in Hilbert maps in both static and dynamic environments,

(2) Learning kernels to account for nonstationary and nonlinear patterns,

(3) Proposing the use of low-discrepancy sampling in robotic mapping,

(4) Demonstrating the importance of using complex Bayesian formulations for uncer-

tainty representation in robotics and learning thousands of parameters in both small

and bigdata settings without laborious mathematical derivations, and

(5) A thorough analysis of known critical factors that affect Hilbert mapping.
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3.3 Related Work

Kernel methods have been used extensively in robotics. Predominantly we see their application

when the objective requires representation of nonlinear patterns with small amounts of data

(Mukadam, Yan and Boots 2016; Deisenroth and Rasmussen 2011; Kingravi, Maske and

Chowdhary 2016; Kingravi et al. 2012). In robotic mapping, one typically sees only Squared

Exponential kernels that have fixed (but hand tuned) lengthscales (Ramos and Ott 2015;

Doherty, Wang and Englot 2016; Senanayake and Ramos 2017).

A variety of kernel learning (see Section 2.4.7) techniques have been previously discussed in

the machine learning literature, with arguably the largest represented proportion existing in the

Gaussian process literature. The selection of kernels is typically done through expert human

knowledge (Duvenaud et al. 2013), a model selection criteria such as Bayesian information

criteria (Duvenaud 2014), or expensive optimization procedures (Bach, Lanckriet and Jordan

2004).

It is also possible to compose kernels as a sum or a product of previously defined kernels

(Duvenaud et al. 2013), or as representing them as a spectral mixture in the frequency

domain (Wilson et al. 2013). However, unlike in Gaussian process where optimizing the

hyperparameters is well-studied and readily available through the log marginal likelihood,

directly learning parameters online in a classification setting is not straightforward in HMs.

3.4 Automorphing Kernels for Nonstationary Hilbert

Mapping

It is known that kernel methods are well suited for occupancy mapping, if parameters are

appropriately set (Ramos and Ott 2015; Doherty, Wang and Englot 2016). In this section, we

propose novel techniques for mapping unstructured environments without a human explicitly

*The gamma distribution is defined as G(x;α, β) := βα

Γ(α)x
α−1e−βx where Γ(α) :=

∫∞
0

zα−1e−zdz is the
gamma function. α > 0 is the shape parameter and β > 0 is the rate parameter. In literature, the scale parameter
is sometimes defined as the inverse of the rate parameter instead of the rate parameter.

*The log-normal distribution LN is obtained by transforming a standard normal variable z′ = exp(µ+σz).
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(a) Feature vector computa-
tion. {x̃}M=12

m=1 are hinge dis-
tributions and xn is the nth

data point.
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Figure 3.3. Description of model parameters. Assuming independence, indi-
vidual distributions are associated with all hinge points m = 1...M
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providing hyper-parameters. Firstly, we propose different positioning techniques for hinging

kernels in Section 3.4.3. Then, we discuss the importance of nonstationary learning (Paciorek

and Schervish 2004) in occupancy mapping. That is, rather than having a single lengthscale

for all kernels as in (Ramos and Ott 2015; Senanayake and Ramos 2017), kernels should have
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different parameters, depending on where they are placed in the space. For instance, with re-

gards to SE kernels, kernels should have smaller lengthscales close to walls in order to capture

sharp transitions from occupied to unoccupied. Similarly, bigger lengthscales are expected in

largely unoccupied or unobserved areas. With the motivation from Section 3.4.3, we propose

a technique to simultaneously learn the position and kernel parameters in Section 3.4.

Although the aggregation method proposed in Section 3.4.3 partially accounts for nonstation-

arity, it requires a set of predefined parameters. As with other continuous mapping techniques,

the method cannot learn where to place kernels. However, for a robot to adapt to changes in

unstructured environments, it is crucial to take the human out of the loop of parameter tuning.

In the following sections, without loss of generality to other kernels, we explain using SE

kernels to solve these issues.

3.4.1 Model Specification

In this section, as the main contribution of this chapter, we propose a principled approach to

provide two traits of adaptation to kernels in Hilbert maps: plasticity and mobility. That is,

both the shape l of the kernel and its locations x̃ can be learned alongside feature weights

w under the proposed framework. Further, as shown in Figure 3.2e, rather than considering

a single lengthscale as in previous work (Senanayake and Ramos 2017) or a small set of

lengthscales as in Section 3.4.3, the new technique can not only learn any lengthscale in R,

but also the kernels associated with each hinge location has its own local lengthscale. These

individual lengthscales {lm}Mm=1 essentially model the nonstationary behavior and can easily

acclimatise to local changes in the environment.

Since observed occupancy values are always binary and they are independent of each other, we

assume the likelihood follows a Bernoulli distribution p(y|x,w, l, x̃) where log(θ/(1−θ))) =

w⊤Φ(x; l, x̃). Note that this is equivalent to logistic regression (Bishop 2007). The prior

distributions over weights are defined as Gaussian distributions. Since the hinge locations

can be anywhere in the space, they are also defined as Normal distributions. As shown in

Section 3.4, kernel functions are now implicitly evaluated between datapoints and hinge
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distributions, naturally accounting for uncertainty. A meaningful lengthscale can only be

positive and hence the prior distribution over inverse squared-lengthscales l̄ = 1/2l2 is defined

as a gamma distribution. The first three rows of Figure 3.3 provides a summary of all variables.

Here, for computational efficiency we assume all variables are independent. As these prior

distributions were empirically sufficient for modelling occupancy, we do not complicate the

model with hyper-prior distributions.

Our objective is to learn the posterior distribution: parameters conditioned on data. However,

because of the Bernoulli likelihood, the posterior is intractable and hence is approximated

using another distribution q. Indicating longitude and latitude with lon and lat, respectively,

the basic formulation with mean-field variational approximation is given in Section 3.4 and

the following equation,

M∏
m=1

q(wm)q(l
lon
m )q(llat

m)q(x̃m)︸ ︷︷ ︸
factorised variational distribution

= q(w, l, x̃)︸ ︷︷ ︸
variational
distribution

≈ p(w, l, x̃|x,y)︸ ︷︷ ︸
posterior

∝ p(w)p(l)p(x̃)︸ ︷︷ ︸
priors

p(y|x,w, l, x̃)︸ ︷︷ ︸
likelihood

.

3.4.2 Model Learning

The posterior distribution defined in Section 3.4.1 is intractable due to the Bernoulli likelihood.

Since distributions over lengthscales and positions are introduced in addition to distributions

over weights, obtaining a maximum a posteriori (MAP) estimation is not feasible even with

the lower bound derived in (Jaakkola and Jordan 1997). As occupancy mapping is a very

high dimensional problem, obtaining the posterior using Markov chain Monte Carlo (McMC)

techniques is costly (Bishop 2007). As an alternative, we use variational inference (VI) with

the reparameterisation trick (Kingma and Welling 2013). Although there are other alternatives

such as VI with stochastic search (Paisley, Blei and Jordan 2012) and Hamiltonian Monte-

Carlo (Neal 1993), we used the well-established method (Kingma and Welling 2013) as it

can easily perform stochastic gradient descent (SGD) with minibatches. Rather than deriving

the lower-bound for the specific case, as an AutoML technique, we made use of probabilistic

programming (Tran et al. 2017) to minimise the Kullback-Leibler (KL) divergence between

the variational distribution and posterior KL(q∥p). For this reason, the proposed model is
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easily amenable for extensions. The choice of distributions is detailed in Figure 3.3. To keep

variances of variational distributions non-negative a softplus transformation was applied.

3.4.3 Various Initialisations for Hinged Kernels

Rather than initialising hinge points randomly in the space, it is possible to place them based

on quasi-random locations in order to guarantee a more uniform spread of kernels in the space.

This is done by using a low-discrepancy sequence (Dick, Kuo and Sloan 2013). Some of the

commonly used Quasi-Monte Carlo (QMC) sampling techniques include Halton, generalised

Halton, and Sobol sequences (Dick, Kuo and Sloan 2013; Yang et al. 2014).

SE kernels with a fixed lengthscale have been the de facto choice in Hilbert mapping (Ramos

and Ott 2015; Doherty, Wang and Englot 2016; Vallicrosa and Ridao 2018; Senanayake and

Ramos 2017). We propose to hinge multiple kernels with varying properties on every hinge

location x̃m rather than hinging a single kernel. For instance, it is possible to hinge a set of

SE kernels {k(·, x̃m; lr)}Rr=1 with R different lengthscales lr. More broadly, these can also

be a set of R different kernel types {kr(·, x̃m; θr)}Rr=1 with θr parameters corresponding to

the the rth kernel. In addition to the hackneyed SE kernels, this pool of kernels can consist

of Matérn kernels, rational quadratic kernels, etc. A spectral mixture of kernels (Wilson and

Adams 2013) is also another choice.

Adding hinged kernels increases the dimensionality of the feature vector by R times. For

Φr feature vectors individually computed on M hinge points as in Section 2.6.2, define the

aggregated feature vector ΦΣ = ∥Rr=1Φr ∈ R1×RM with ∥ indicating vector concatenation.

The classification model is ŷ = p(y|x∗,wΣ) = 1/(1 + exp(−w⊤
ΣΦΣ)) with wΣ ∈ RRM×1.

This is equivalent to joining R individual sets of model weights wr ∈ RM×1 as
∑R

r=1w
⊤
r Φr

before the sigmoidal transformation.
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Table 3.1. Description of the datasets.

Dataset Real Dynamic Description
1 ✗ ✗ A 600× 300m2 area (Senanayake and Ramos 2017). This is a simple but large environment.
2 ✓ ✗ Intel lab dataset: a complex indoor environment.
3 ✗ ✓ Vehicles move in two directions with robot in the middle (Senanayake and Ramos 2017).
4 ✓ ✓ LIDAR dataset in a busy intersection (Senanayake and Ramos 2017).

3.5 Experiments

We conducted a series of experiments on four different datasets given in Table 3.1. These

datasets contain both static and dynamic environments. As with (Senanayake and Ramos

2017; Senanayake, O’Callaghan and Ramos 2017), our model will estimate the average

long-term occupancy which is different to mapping short-term occupancy (Senanayake et al.

2016a) or removing dynamics to build a static occupancy map (Meyer-Delius, Beinhofer

and Burgard 2012; Stachniss and Burgard 2005). When demonstrating basic concepts and

observations, a portion of dataset 1 is used as it is simple and easy to visualise. We used

TensorFlow with the Edward library (Tran et al. 2016) to program. Demonstrations can be

found at https://github.com/MushroomHunting/automorphing-kernels.

3.5.1 Experiment 1: Effect of Kernel Aggregation

As the first experiment, to verify that capturing nonstationarity is important, we hinged three

SE kernels with l = 5, 1, 0.1 on fixed locations. We observe that by changing the lengthscale

of all kernels we can observe differently learned weights – this indicates the requirement of

learning kernel parameters depending on where they are in the environment.

3.5.2 Experiment 2: Effect of Hinging Techniques

In order to demonstrate the effect of positioning kernels, we learn the map for a fixed length-

scale chosen from five-fold cross-validation that minimises AUC. We consider positioning

kernels on a regular grid, MC samples, and three QMC sampling techniques—Halton, gen-

eralised Halton, and Sobol. The number of hinge kernels was set to 222. As shown in the

https://github.com/MushroomHunting/automorphing-kernels
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Figure 3.4. These images are based on a simulated dataset. (a) Kernel aggreg-
ation in experiment 1 (b) Positioning kernels in HMs with fixed position and
lengthscales for different hinging schemes.

Figure 3.5. (a) Environment and entire dataset 1 (b) The averaged occupancy
map of BHM with a random set of lengthscales (c) Predicted occupancy map
using ABHM.

Figure 3.4, unlike the QMC techniques, MC sampling tends to make clusters causing the

Hilbert maps to be less accurate. Therefore, if kernel positions are not learned, they should be

placed either quasi-randomly or on a regular grid.

For the intel dataset, as shown in Figure 3.8, we do further analysis to see the effect of

the number of samples trade off. Interestingly, the time increases almost linearly with the

number of features while the accuracy does not significantly improve after a certain number

of features.

3.5.3 Experiment 3: Effect of Learning Parameters

This experiment was designed to validate the main contribution of the method—learning

lengthscales and hinge locations. The learned environments for different datasets are shown in

Figure 3.5 and Figure 3.6. To understand the full effect of the proposed model it is not enough

to look at the predicted occupancy map—we must consider the underlying distributions.

Figure 3.7 provides a visual map of the means and variances of a learned model’s variational
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posteriors. Accounting for a large part of the upper and lower parts of the map, the position

variance in Figure 3.7b shows that in areas of dense laser scans where no walls exist, a larger

but uniform variance for each spatial dimension is learned. For the areas where the laser

scanner has detected walls one observes a stark contrast exhibited by the smaller spatial

variances. In the walled area spanning the middle of the map the learned variances in the

latitudinal direction are stretched out further relative to the longitudinal direction reflecting

the narrow corridor-like shape of the wall. Concerning now the lengthscale mean and variance

Figure 3.6. Left: laser scans, middle: predicted occupancy, right: learned
kernel positions and lengthscales
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Figure 3.7. Uncertainty plots (a) A portion of the environment (b) Positions
of hinge kernels x̃ (c) Lengthscales (d) Weights

in Figure 3.7c we can observe the most significant effect in terms of the learned posteriors. At

the top and the bottom open areas the largest lengthscales are observed signifying a minimal

complexity of occupancy. Paralleling the learned position variances, the learned lengthscale

means are clustered around either areas of detail or areas of uncertain occupancy. This effect

is repeated in the lengthscale variance.

The kernel weights means and variances are depicted in Figure 3.7d where one can see the

highest weights appear around areas associated with the smallest position and lengthscale

variances. Contrastingly, the most negative weights appear in regions of highly confident

predicted empty occupancy. The weights closest to zero occur in areas of the map the robot

has no visual perception and these constitute the insides of walls. The effect of the weight

means is reflected in the weight variance where areas of high observability, which include

open spaces and walls, have a low uncertainty in their estimates. Areas of low observability,

i.e. inner parts of walls, have extremely high variances. This underlying analysis of the

learned posterior distributions not only substantiates the motivation for spatially adaptive

kernel learning, but also gives an explainable and intuitive understanding of what the model

has learned which is often critically important for robotic tasks that interact with real-world

environments.

Using all four datasets, the area under curve (AUC) and mean negative log loss (MNLL) were

calculated. As reported in Table 3.2, these metrics were also calculated for occupancy grid

maps with dynamic updates (DOGM), variational sparse dynamic Gaussian process occupancy
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Table 3.2. Experiment 3: Losses on all real datasets. The higher the area under
curve (AUC) or the lower the mean negative log loss (MNLL), the better the
model is.

Method Dataset 1 Dataset 2 Dataset 3 Dataset 4
AUC MNLL AUC MNLL AUC MNLL AUC MNLL

ABHM 0.999 0.015 0.994 0.093 0.993 0.175 0.889 0.477
BHM 1.000 0.176 0.921 0.362 0.990 0.280 0.825 0.570
HM 0.992 0.226 0.938 0.666 0.920 0.903 0.778 0.677
VSDGPOM 0.801 0.372 0.794 0.530 0.990 0.233 0.788 0.886
DOGM 0.792 0.593 0.901 0.744 0.980 0.495 0.779 3.449

Figure 3.8. Performance vs. number of features for dataset 2. The blue lines
show performance for fixed hinge positions while the red lines show the full
ABHM model.

maps (VSDGPOM) (Senanayake, O’Callaghan and Ramos 2017), HMs, and Bayesian Hilbert

Maps with sequential updates (BHM). The best lengthscales for previous Hilbert mapping

techniques were determined using five-fold cross validation. Even when compared with

hand-crafted features, ABHM outperforms. This is because it models nonstationarity and can

capture subtle changes. For dataset 1 which has straight boundaries, the AUC value of both

BHM and ABHM are comparable. However, ABHM outperforms in complex datasets such

as in dataset 2 and dynamic environments such as in datasets 3 and 4. This is because only

ABHMs can adjust the position and shape of kernels to locally adapt to environments.

To further understand the relationship between the performance and number of hinge points,

we analysed the speed time and accuracy for dataset 2. We did this by, 1) learning both

lengthscales and position, and 2) learning only the lengthscale keeping the kernels hinged on

a grid. As shown in Figure 3.8, to achieve the same level of accuracy, only a smaller number

of features is required when learning both the lengthscale and position.
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Runtime: All experiments were conducted on a computer with a GTX1080 Ti 11 GB. For

datasets 1 and 2, on average it takes around 10 minutes to learn all parameters. Note that

this is to learn upwards of 57,600 parameters (8 parameters per hinge with more than 7200

hinges) and 300,000 data points. In contrast, (Senanayake and Ramos 2017) has an inevitable

computational complexityO(M3) while the proposed method uses stochastic gradient descent

(SGD). Although analysing the theoretical asymptotic complexity is not straightforward, it

linearly increases with M and N empirically. In ABHM, we take the advantage of SGD to

scale effectively to significantly larger datasets.

3.6 Summary

In this chapter we have presented a new methodology for representing and learning probab-

ilistic representations of kernel and model parameters in the domain of probabilistic robot

mapping. The formulation takes advantage of mean-field variational inference under a probab-

ilistic programming framework in order to learn essential parameters using gradient descent.

We showed that the method produces more accurate representations of the target distribution

and removed the necessity for hand-tuning kernel parameters that was required by previous

methods. Furthermore, by exploiting the latest AutoML techniques we show it is possible to

learn complex models without relying on explicit mathematical derivations.

We demonstrated the effectiveness of the ABHM formulation on a comprehensive set of exper-

iments including both simulated and challenging real-world data. The results demonstrate that

since the proposed method performs exceptionally well by taking advantage of data-specific

nuances that the learned kernels were able to discover. While the predictive performance is

exceptional, the overall procedure is prohibitive to operation in real-time which is a necessary

condition for integration into real-world systems. This is the problem to which we will focus

on, and provide a solution to, in the next chapter.



CHAPTER 4

Parameter Optimal Transport for Online Kernel Domain Adaptation

In this chapter we build on work from Chapter 3, aiming to extend the capabilities that end-

to-end learning brought to the nonstationary kernel learning problem. Specifically, we solve

a critical but problematic side-effect that the flexibility of probabilistically learning kernels

brought: performance. In doing so, we take a short detour through the theory of optimal

transport which is concerned with moving mass something from one location to another in

an energy preserving manner. The consequence of framing the problem of kernel learning

through the lens of optimal transport allows us to perform nonstationary kernel transport in

real time. That is to say, instead of performing lengthy end-to-end learning, we can transport

prior learned models in an online fashion circumventing a lengthy sequential optimisation

problem into multiple short and parallelised optimisations problems.

4.1 Introduction

As we have seen earlier, accurate spatial representations that can accommodate observation

and model uncertainty are a fundamental concern for autonomous robots to safely navigate in

unstructured environments. We have also seen, in the previous chapter, that while LIDAR

based mapping techniques can learn excellent maps, the required compute of these models dis-

courages their real-world applications in tasks, such as autonomous driving, where they would

be most valuable. In this work, we make the observation that real-world structures exhibit

similar fundamental geometric features across a variety of urban environments and exploit

this to accelerate learning. We show that it is unnecessary to re-learn all geometry dependent

parameters from scratch. To this end, this chapter introduces a theoretical framework that
51
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builds upon the theory of optimal transport in which we propose the observation-conditioned

adaptation of model parameters which accounts for the observed environment geometry.

Experimentally, we demonstrate the new parameter adaptation paradigm on 2D and 3D

occupancy maps derived from both high-fidelity driving simulators and real-world datasets.

We additionally consider various domain adaptation paradigms that include inter-domain

feature transfer and simulation-to-real feature transfer. Our experimental validation verifies

the possibility of adapting parameters with comparatively negligible compute and memory

cost.

As discussed previously, the ability for a robot to adapt to continuously changing environments

is a hallmark of its real-world utility. If our model is represented as a parameterised statistical

model, it is reasonable that its parameters should be able to adjust to new observations. In a

sense this ability to adapt to its domain is essential to performing effectively in real-world

settings where the robot is often required to interact with humans, other robots, or simply

with the changing environment.

One crucial issue that hinders adaptability is if the robot’s adaptation process is slow in

the sense of being unable to perform its required tasks. One cause of this is if the learning

or adaptation process is computationally expensive, then adapting parameters in real-time

becomes a challenge. We can observe this in all kinds of models such as in deep learning and

Figure 4.1. (a) Forward camera-view from a car that has just passed an urban
intersection (KITTI dataset). (b) A set of occupancy model parameters estim-
ated using the proposed Parameter Optimal Transport (POT) method. Values
of these parameters depend on the geometry of the environment. Note that
these parameters were transferred online from a simulated environment and
were never learned from scratch. (c) Mean occupancy map obtained from the
transferred parameters.
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even Bayesian techniques. Many attempts have been made to enable adaptation in neural-

network models (Ammar et al. 2015; Sadeghi et al. 2017; Finn, Abbeel and Levine 2017;

Fang et al. 2018; Wulfmeier, Bewley and Posner 2018), yet this is a relatively under-explored

area in Bayesian modelling (Meier, Hennig and Schaal 2014) – despite their wide applicability

in robotics (Deisenroth and Rasmussen 2011; Wüthrich et al. 2016; Campbell and Amor

2017; Burchfiel and Konidaris 2017; Unhelkar and Shah 2018). Since uncertainty is a natural

byproduct of probabilistic representations in Bayesian models, it stands to reason that we

must therefore adapt distributions themselves to new domains. And so we can ask: how

could we solve the problem of efficient distributional adaptation without being burdened by

requiring retraining models from scratch? In this chapter, we focus on answering this question

in the kernel learning domain by transferring kernel and model parameters, online, and in a

zero-shot fashion (Isele, Rostami and Eaton 2016). The practical consequence we explore is

how we can adapt kernel based occupancy models to unknown environments without having

to train models from scratch.

The fundamental techniques developed in this chapter are broad enough to transfer to other

applications that require timely domain adaptation capabilities. Most directly, any kernel

modelling technique in which observed data is coupled in a true geometric sense will be

able to benefit – e.g. data-efficient robot perception and planning, or even spatio-temporal

modelling. Our focus for the time being will remain with continuous mapping methods

for arbitrarily large environments with an emphasis on online operations. The proposed

formulation will be applied to the kernel mapping method introduced in the previous chapter:

automorphing Bayesian Hilbert maps (ABHMs). While ABHM is a theoretically rich method,

it is impractical to apply in real-time due to the large compute cost required to train the model.

ABHM produces probabilistic (uncertainty aware) estimates of its sensed environments

making it applicable to domains that must recognise possible environmental uncertainties

(Lasota, Fong, Shah et al. 2017) like autonomous driving and motion planning that requires

one to be risk-aware in the decision making process (Akametalu et al. 2014; Vallicrosa and

Ridao 2018).
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Perhaps the core reason that prohibits most learning methods, concretely exhibited in the

previous chapter, is the run-time cost of having to learn from what could be described

as a uniform prior. We observed a similar situation with ABHM which required a black-

box variational setup that required a lengthy optimisation procedure to obtain idealised

parameter estimates. In ABHM we could observe that the parameters are collocated with the

geometrical features of the sensed objects in the natural environment (LIDAR hits and misses).

Consequently, ABHM required a large-batch assumption and learning spatially dependent

parameters for every spatial location. This could be problematic for more complex tasks

that involve dynamic environments in which parameters would need to adapt in real-time to

accommodate changing situations.

We therefore propose to transfer geometry-dependent spatial features from a pre-existing

set of models to new unobserved test scene, while ‘geometrically conditioning’ on the

spatial observations. This method fundamentally contrasts to having to relearn parameters

from scratch by using novel re-interpretation of the problem formulation using the theory

of optimal transport (Villani 2008; Arjovsky, Chintala and Bottou 2017; Solomon et al.

2015). The proposed approach completely skips the need to explicitly learn parameters of

the statistical model which are conventionally learned through a differentiable log-likelihood

based optimisation. As we show in Figure 4.1, the algorithm transports location and geometry-

dependent parameters of the model from one place to another place by aligning geometric

similarity between new observations and prior observations. In the context of kernel-based

occupancy mapping, this parameter transport procedure is shown to successfully construct

geometry-dependent kernels with less computational cost than required by existing methods.

4.2 Contributions

This chapter focuses on the problem of online hyperparameter estimation for nonstationary

kernel models in the context of probabilistic robotic mapping. Prior methods have approached

the learning problem from global perspective which requires singular, lengthy optimization

procedures to infer optimal hyperparameters. While such methods can learn near-optimal
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models, they are severely handicapped by the time for optimization to achieve convergence.

To address this fundamental problem we view the problem from the lens of domain adaptation

and in doing so present the following contributions:

(1) a theoretical framework for parameter transfer in robotics using the mathematical

framework of optimal transport;

(2) intra-domain transfer: sequentially building a map based on features learned in

previous time frames;

(3) inter-domain transfer: mapping an environment with features learned from another

environment. This includes parameter transfer from one town to another, static to

dynamic environments, and simulation to real-world; and

(4) online and efficient mapping of large-scale 2D and 3D environments.

4.3 Preliminaries

Notation given in Table 4.1 will be used throughout this chapter.

Table 4.1. Table of notations and terminology

Notation Description

¯and˘ Mean and variance of Gaussian; shape and scale of Gamma
x and y LIDAR data positions and labels
N and M Number of data points and number of parameters

h̄ Kernel positions
θ Parameter set except h̄

(S) and (T ) Source and target
P Coupling matrix

a→ b transport = transfer = domain adaptation = transform
= map = convert (from a to b)

4.3.1 Uncertainty of Occupancy

An occupancy model is typically represented as a parameterised function that models the

occupancy probability of each location in the environment. The objective is to learn the
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Figure 4.2. Spatial correlation among obstacles in the environment and some
ABHM parameters. (a) LIDAR data: y = 1 (hits) in red and y = 0 in blue.
(b)-(d) kernel weight means w̄m, weight variances w̆m, and width means γ̄m.
Each point is a kernel placed in the shown location h̄ in the x1-x2 space. Refer
Observation 1 for further interpretation. (e) Predicted occupancy.

model parameters θ given a set of observations from LIDAR beams. Once the parameters

are estimated, it is possible to query y∗ = p(occupied|x∗, θ) ∈ [0, 1] anywhere in the 2D

space* x∗ ∈ R2 := (x1, x2). Labeling LIDAR hits as y = 1 = occupied and randomly

sampled points between each LIDAR hit and the LIDAR sensor as y = 0 = free, a dataset

D = {(xn, yn)}Nn=1 can be generated. Here, xn ∈ R2 are the corresponding spatial locations

of yn ∈ {0, 1}.

Various models have been proposed for the occupancy function. Gaussian process occupancy

maps (GPOMs) (O’Callaghan and Ramos 2012; Wang and Englot 2016) have been presented

as an alternative to improve occupancy grid mapping (OGM) (Elfes 1989; Arbuckle, Howard

and Mataric 2002) and Hilbert maps (Ramos and Ott 2015). In addition to considering

neighborhood information for accurate occupancy predictions, kernel methods used in GPOMs

come with the flexibility of incorporating other aspects such as dynamics into occupancy

mapping (Senanayake, O’Callaghan and Ramos 2017; Senanayake et al. 2016b). On the other

hand, GPOMs account for uncertainty as they are based on a Bayesian nonparametric model.

Regardless of their attractive theoretical properties, GPOMs are impractical for real-world

usage because of the O(N3) run-time and memory complexity. Recently proposed Bayesian

Hilbert maps (BHMs) (Senanayake and Ramos 2017), on the other hand, encompass all

positive traits of GPOMs but at a cost of O(M3) where M ≪ N is the number of features

that correlates with the accuracy. Since ABHM considers the full Bayesian treatment over

*We limit our discussion to 2D for simplicity. All theory are readily extensible to 3D.
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parameters of (Senanayake and Ramos 2017) to account for local spatial changes in the

environment, it achieves a significantly higher accuracy.

BHM can be summarised as performing Bayesian logistic regression in a high-dimensional

feature space RM using kernels (Hofmann, Schölkopf and Smola 2008; Senanayake and

Ramos 2018). BHM uses the same kernel for the entire map. ABHM is an extension to

BHM to learn all location-dependent nonstationary kernel parameters. While BHM can be

run in near real-time in an online fashion, ABHM is computationally expensive as it requires

learning thousands of parameters offline. In ABHM, the occupancy probability of a point x∗

is given by,

p(y∗ = 1|x∗) = sigmoid

( M∑
m=1

wm exp
(
− γm∥x∗ − hm∥22

)︸ ︷︷ ︸
mth SE kernel

)
, (4.1)

where w,h, and γ are parameters learned from data D. The inner part of the equation is a

w weighted sum of M kernels placed in 2D spatial locations h. In areas where there are

more LIDAR hits in the locality of a kernel, then its associated weight wm will be higher,

and vice versa. This is because, as illustrated in Figure 4.2, here, M squared-exponential

(SE) kernels positioned at mean locations (h̄1, h̄2, . . . , h̄M) are used to project 2D data into

an M dimensional vector such that each kernel has more effect from data in its locality.

γ are positive parameters that control the width of each kernel. Probability distributions

wm ∼ N (w̄m, w̆m), hm ∼ N (h̄m, h̆m), and γm ∼ Gamma(γ̄m, γ̆m) are induced on the

parameters to naturally encode uncertainty. Here, slightly abusing standard notations,¯and˘

symbols are used to represent the mean and dispersion parameters, respectively (Table 4.1).

The parameters of the model are learned using variational inference (Senanayake, Tompkins

and Ramos 2018). See Figure 4.2 for some of the estimated parameters. Since there are

8 parameters (w̄m, w̆m, γ̄m, γ̆m ∈ R and h̄m, h̆m ∈ R2) associated with each kernel, it is

required to learn 8M parameters. In order to achieve a practically satisfactory accuracy to

cover a 100 m2 area, it is necessary to have over 10000 kernels which would take around

10 minutes on a GPU. On the other hand, although ABHM provides high-quality maps, it is
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required to first collect the entire dataset as it does not support sequential training, making it

practically unsuitable for mobile robotics applications.

4.3.2 Optimal Transport (OT)

Intuitively, in its simplest form, Optimal Transport aims at determining the optimal way to

change one probability distribution to another probability distribution with the least effort.

One of the classical toy examples is moving “dirt” from one configuration to another with

the least effort. Monge-Kantorovich Theorem is a convex relaxation to the more general

optimal transport problem proposed by Monge (Monge 1781; Villani 2008). Unlike in the

Monge’s general formulation, Monge-Kantorovich guarantees the existence of a transport

map P : Ω(S) → Ω(T ).

From Monge-Kantorovich Theorem 2, our objective is to determine the optimal coupling

matrix (plan) between measures µ(S) and µ(T ). We represent source LIDAR locations

x
(S)
1 ,x

(S)
2 , . . . ,x

(S)
N(S) and target LIDAR locations as x(T )

1 ,x
(T )
2 , . . . ,x

(T )

N(T ) corresponding to

both y = 0 and y = 1 as discrete measures,

µ(S) =
N(S)∑
i=1

a
(S)
i δ

x
(S)
i

and µ(T ) =
N(T )∑
j=1

a
(T )
j δ

x
(T )
j

(4.2)

where δx is the Dirac at x,
∑N(S)

i=1 a
(S)
i = 1 =

∑N(T )

j=1 a
(T )
j , and a(S)i , a

(T )
j ≥ 0. The existence

of transport maps for discrete measures is identified by the Minkowski–Carathéodory Theorem

(Villani 2003).

4.3.3 Automorphing Bayesian Hilbert maps (ABHM)

The conventional approach for occupancy mapping is discretizing the environment with

a predefined cell resolution and update cells individually (Elfes 1989; Arbuckle, Howard

and Mataric 2002). Instead if discretizing the environment, continuous occupancy mapping

techniques such as Automorphing Bayesian Hilbert Maps (ABHM) (Senanayake, Tompkins

and Ramos 2018) learn the environment as a continuous function. Unlike occupancy grid maps
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(OGM) (Elfes 1989), such mapping techniques take into account neighborhood information

and epistemic uncertainty to improve the map quality (Senanayake, Tompkins and Ramos

2018). The speciality about this mapping technique is that it fully estimates all parameters of

the model accounting for all geometric nuances in the environment. However, this model is

extremely slow to run in real-time. All the necessary details for ABHM are given in previous

section chapter 3.

4.3.4 Kernel Methods in Robotics

Loosely speaking, Hilbert space can be thought of as a generalization of the Euclidean

space. Reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions with special

propertiesthat enable easy computations. Intuitively, kernel methods project data into a high

dimensional linear space and perform computations there. Since most of the robotics tasks

are nonlinear, kernel methods can be effectively used in robotics. Especially, they are useful

in settings where alternative nonlinear function learning techniques such as neural networks

cannot be used. For instance, when the dataset is small or sparse, as in occupancy mapping,

learning in RKHS is efficient. Kernel methods have applications in both perception and

control. For instance, Gaussian processes with various kernels have been used for mapping

(O’Callaghan and Ramos 2014; Norouzii, Miro and Dissanayake 2016), and modelling for

grasping (Bohg 2011), adaptive control (Chowdhary et al. 2014), data-efficient reinforcement

learning (Deisenroth and Rasmussen 2011), learning inverse dynamics (Nguyen-Tuong,

Seeger and Peters 2009), and simultaneous localization and mapping (Norouzi, Miro and

Dissanayake 2017).

4.3.5 Domain Adaptation

The learned model parameters for a sample environment can be visualised in Figure 4.2.

OBSERVATION 1. Once the full ABHM model is learned, the following can be observed:

(1) As shown in Figure 4.2 (b), the mean values of weights w̄ are higher in areas where

there are LIDAR hits, and vice versa. In areas where there are no observations
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at all (x1 ⪅ −105 in Figure 4.2 (a)), the variance values w̆ are high as shown in

Figure 4.2 (c).

(2) The mean widths γ̄, as can be observed in Figure 4.2 (d), are higher close to the

obstacles, indicating sharp edges.

(3) The mean positions of kernels h̄ align according to the geometry of the obstacles

(Figure 4.2 (b)-(d)).

PREMISE 1. Based on Observation 1, there is geometric correspondence between parameter

values and obstacles observed by the LIDAR. Therefore, we argue that spatially dependent

parameters for a new environment, defined as the target domain, can be estimated by discov-

ering correspondence between the target (new) LIDAR data and source (known) LIDAR data

with associated parameters. Here, the source is an environment whose parameters are known

or pre-estimated using a method such ABHM in a simple environment, and the target is a

complex and large environment whose parameters are not known and challenging to estimate.

This requires transferring features from source to target domains.

Transferring knowledge obtained from one domain to the other has been widely discussed

in the machine learning literature (Ammar et al. 2015; Pan and Yang 2009). The broader

class of transferring from one type of domain to the other, e.g. images to text, is known as

transfer learning. If the type of source and target domains are the same, as in occupancy

mapping, the transfer process is called domain adaptation (DA). Applications in robotics

include transferring control policies from simulation to real-world (Sadeghi et al. 2017;

Bousmalis et al. 2018), and making image processing tasks invariant to lighting and other

changes (Wulfmeier, Bewley and Posner 2018; Hoffman et al. 2016).

Variations of generative adversarial networks (GANs) such as DTN (Ghifary et al. 2016),

CycleGAN (Zhu et al. 2017), DiscoGAN (Kim et al. 2017), UNIT (Liu, Breuel and Kautz

2017), DART (Fang et al. 2018) have been widely used for domain adaptation of RGB

images. However, not only do these methods require a large amount of data but also it is

not immediately clear how to use these techniques with sparse LIDAR data nor transferring

probability distributions. In the next section, we consider an alternative domain adaptation
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method based on optimal transport (OT) (Villani 2008) to transfer parameters of the Bayesian

occupancy model using sparse LIDAR data.

4.4 Optimal Parameter Transport

In this section, we present the proposed algorithm. Transferring parameters is a two-step

procedure: creating a source dataset offline (Section 4.4.1) and transferring them to a target

domain online (Section 4.4.2). Section 4.4.3 is a generalization and is the actual algorithm

used in experiments. Section 4.4.4 is an extension to further improve the map quality.

4.4.1 Preparing the Source Dictionary of Atoms

Figure 4.3. Extracting source data. (a) Splitting source LIDAR scans into 3
sectors. (b) Corresponding kernels parameters are also split the same way.
Only kernel position means and weight means are shown here.

In order to take advantage of domain adaptation we must have accurately pre-trained maps

from which we can extract spatially relevant features. In the context of our problem, we must

extract LIDAR scans (hits and free) with their corresponding model parameters including

kernel weights, positions, and widths. To provide high-quality training data we extract learned

model parameters from ABHM maps. Since ABHM can only be used on small areas due to

the high computational cost, we learn separate ABHM maps for different areas and construct

a dictionary of source atoms which we call a dictionary of atoms.

To construct the dictionary, as illustrated in Figure 4.3, we split each LIDAR scan into

circular sectors with radii equal to the specified maximum LIDAR distance. Rather than
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using the entire LIDAR scan as the source dataset, this split not only results in a diverse set of

geometric primitives but also provides simpler sources for the transfer procedure presented

in the following section. The corresponding learned model parameters for each sector are

considered as source parameters that we wish to transfer to the target domain. For each

sector, we have M (S) parameters {θ(S)m }M
(S)

m=1 associated with N (S) LIDAR hits or free points

{(x(S)
n , y

(S)
n )}N(S)

n=1 . The collection of these different LIDAR sectors constitutes the dictionary

of source atoms X (S).

4.4.2 Source to Target Parameter Transport

Until we present the general transfer procedure that we used in experiments in Section 4.4.3,

for the sake of simplicity of the following discussion, let us assume that the dictionary of

atoms contains only one LIDAR sector and associated parameters.

Figure 4.4. Optimal transport from a square to an arc. (a) If there are N (S)

and N (T ) number of data points in the source (red) and target (brown) datasets,
the coupling matrix γ is size N (S) ×N (T ) where any column or any row sums
to 1. A given row in γ indicates the probabilities of the sample associated with
that row could be coupled to all samples in the target dataset. Probabilities
associated with one such source point to target matches are shown in white-
black color scale. Note that only the 10 highest matches are shown for clarity.
(b) For a given set of LIDAR hits (red) spatial parameters can be learned
using ABHM. Here we see kernel parameters spread across the environment.
However, for another set of LIDAR hits (brown) we would prefer not re-
learning parameters because it is expensive. (c) Based on the coupling matrix
between the source and the target, we transport (move from the target area to
the source area) the parameters around each point. Note that how the small
lengthscales (cyan) stays close to the LIDAR hits and larger lengthscales
(magenta) move away from the LIDAR.
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learn P∗ for x(S) explicit−−−−→
transport

x(T )

predict−− .h̄(S) explicit−−−−→
transport

h̄(T ) using P∗
...−−−− ... ...−−

——-θ(S)
implicit−−−−→
transport

θ(T )

Figure 4.5. Parameter optimal transport. Known and unknown quantities are
in blue and red, respectively. We learn an optimal coupling matrix P∗ using
source and target LIDAR. Then we use this coupling matrix to predict target
kernel positions corresponding to the source kernel position. By doing this, the
other parameters associated with each kernel are also implicitly transported by
treating them as labels.

Objective: Having determined source LIDAR data {(x(S)
n , y

(S)
n )}N(S)

n=1 and corresponding

parameters {θ(S)m }M
(S)

m=1 , our objective is to determine the new set of parameters {θ(T )}M(T )

m=1 for

a new LIDAR dataset {(x(T )
n , y

(T )
n )}N(T )

n=1 . This problem is illustrated in Figure 4.4 (a) and (b).

In other words, we are looking for a nonlinear mapping technique to convert a source (S) to a

target (T ). We recognise this as an optimal transport (OT) problem given in Theorem 2.

Having obtained the optimal coupling between source and target LIDAR, as illustrated in

Figure 4.4 (b)-(c) and Figure 4.5, now it is possible to transport source parameters θ(S) to the

target domain. This is done by associating the source parameter positions h̄(S) with source

samples x(S) as a linear map (Perrot et al. 2016), and transporting them to the target domain

h̄(S) → h̄(T ) according to the coupling matrix P∗ learned from LIDAR matching. All other

θ(S) parameters associated with the kernels positioned at h̄(S) will also be transported to the

target domain. This implicit transfer process is depicted in Figure 4.5.

4.4.3 Transport from a Dictionary of Atoms

Although we created a dictionary of atoms consisting of diverse geometric primitives in

Section 4.4.1, the transfer procedure introduced in Section 4.4.2 was limited to a single

LIDAR sector. In order to effectively make use of the entire dictionary, it is required to find

the optimal coupling matrix over all elements in the dictionary x(S) ∈ X (S).
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Figure 4.6. A high-level overview of the proposed method: Parameter Optimal
Transport (POT). Training domains correspond to potentially independent,
data-intensive, expensive, yet small-scale pre-learned models. After storing in
a dictionary of atoms, representative data-space and model-parameter tuples
from the pre-learned set of models, we find data-space correspondences using
optimal transport. These correspondences are then used to transport pre-
learned parameters to out-of-sample test domains.

As another fact, although Equation (2.43) can be used to obtain a translation and scale invariant

solution, it is not robust enough against large rotation variations. However, we can rotate data

about the centroid of each atom using the rotation matrix,

R(α) =

cos(α) − sin(α)

sin(α) cos(α)

 , (4.3)

for a discrete set of rotations α ∈ A.

Overall, we obtain a candidate optimal coupling set of size |X (S)| × |A| by minimizing

Equation (2.43) over all rotations and atoms,

P∗ =

{
argmin

P∈Γ(x(S),R(α)x(T ))

∑
ij

PijDij − λ−1r(P )

}
x(S)∈X (S)

α∈A

. (4.4)

Ultimately, we select the overall best coupling matrix from the candidate set P∗ as the

candidate that has the minimum 2-Wasserstein distance Equation (2.45) to the target,

P∗ = argmin
P∈P∗

∑
ij

PijDij. (4.5)
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This P∗ can now be used to transfer parameters using the same method explained in Figure 4.5.

As a result of the computation procedure introduced in this section, as depicted in Figure 4.6,

atoms from various domains will be transferred to the target. Because atoms only consist of a

few hundred LIDAR points, this transfer can be performed in real-time. Unlike in BHM or

ABHM, we can now introduce thousands of kernels. The increasing number of pre-learned

kernels as well as the nonstationarity help to improve the accuracy. The entire Parameter

Optimal Transport (POT) algorithm is summarised in Algorithm 1.

P∗ is computed for each candidate source prepared in Section 4.4.1. At runtime, it is necessary

to determine the best source atom to transport to the test data using the Wasserstein-2 distance

between each atom and test data. Since the computation is rotation invariant, each source

dataset is rotated about its centroid using quaternion geometry before computing the optimal

coupling P∗ for each such configuration. The source that minimises the overall distance for a

finite set of rotation matricesR, given in (Equation (4.4)), is used as the best-rotated source

atom to transfer.

4.4.4 POT Maps and Refined POT Maps

Transporting parameters can be performed in two different ways. It is possible to transport

parameters for each LIDAR scan separately, and immediately build the occupancy map.

This results in an instantaneous map which is useful for understanding the occupancy of

the surrounding at present. Such maps can be used for safe decision-making and control in

the locality of the robot. On the other hand, it is also possible to build the overall map by

sequentially aggregating the transported parameters as the robot moves. The overall map

model completely discards training LIDAR data after transporting the parameters. This

enables mapping large areas at a constant cost.

Once the parameters are transported with the intention of building an instantaneous or overall

map, an occupancy map can be generated by plugging in the transported parameters to eq.

(1) and querying occupancy probabilities. It will not only provide the mean occupancy map,

but also the uncertainty as the variance estimate. Since only the parameters of the continuous
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Algorithm 1: Transferring parameters to a new domain
Input: New LIDAR scans, Source dictionary of atoms
while new scan in new domain do
P∗ = {};
for each atom in X (S) do

for each rotation in A do
P∗.insert(Compute the coupling matrix) (Equation (4.4));

end
end
P∗ ← Determine the best coupling matrix (Equation (4.5));
θ(T ) ← Transfer the source parameters to the target domain using P∗ (Figure 4.5);

end
Output: Parameters θ(T )

mapping function Equation (4.1) are stored, the occupancy map can later be queried at any

time at any resolution.

Learning kernel parameters γ and h in real-time is not feasible with ABHM. However,

learning weights w, assuming other parameters are given, we have a fast approximation

given by Bayesian Hilbert maps (BHMs) (Senanayake and Ramos 2017). As an additional

step to further improve the map quality, we propose to use transported parameters as prior

distributions of the BHM and simply update the weights w by using (Senanayake and Ramos

2017). We call this improved map, the refined POT (RePOT) map.

4.5 Experiments

Both simulated and real-world datasets were used to assess the quality of POT. To generate

simulated data, Carla v.0.9.2 simulator (Dosovitskiy et al. 2017) was used as it closely

resembles real-world towns. As a real-world dataset, we used the KITTI benchmark dataset

(Geiger et al. 2013). All datasets are listed in Table 4.2 and each of these environments

is considered as a domain. As evaluation metrics, we used accuracy (ACC), area under

the receiver operating characteristic (ROC) curve (AUC) and negative log-likelihood (NLL)

(Bishop 2006) which is also know as log loss or cross entropy loss. Unlike ACC and AUC,
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Table 4.2. Description of domains

Domains (Datasets) Description
Carla Town 1 a 2D dataset in town 1 in Carla (3.7 km).
Carla Town 2 a 2D dataset in town 1 in Carla (1.5 km).
Carla Town 3 a 2D dataset in town 1 in Carla (8.6 km).
Carla Town 1 3D a 3D dataset in town 1 in Carla.
Carla Town 1 Dyna Carla Town 1 with 120 vehicles running around.
KITTI Dyna a 2D dataset (the middle LIDAR channel).

NLL takes into account uncertainty of predictions. NLL is defined as follows

NLL = −y log(y∗) + (1− y) log(1− y∗), (4.6)

where y ∈ {0, 1} is the true label and y∗ ∈ [0, 1].

Accuracy is defined as follows

ACC =
TP + TN

TP + TN + FP + FN
(4.7)

where TP = True positive, FP = False positive, TN = True negative, and FN = False negative

predictions.

The ROC curve is a curve constructed by varying some discrimination threshold threshold ∈

[0, 1] plotted over the fraction from the true positive rate (TPR) over the false positive rate

(FPR). TPR is the number of true positive (TP) out of all positives, and the FPR is the number

of false positives out of all negatives.

The higher the AUC or lower the NLL, the better the model is.

4.5.1 Dataset Details

To generate simulation datasets, a car equipped with 20 m - 360o LIDAR was driven 3.7 km,

1.5 km, 8.6 km with varying speeds in Town 1, Town 2, and Town 3, respectively in the Carla

simulator (Dosovitskiy et al. 2017). A 32 beams LIDAR with the z-axis view of −30o- 10o
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was used to generate the 3D dataset in Town 1. The KITTI dataset was used as the real dataset

(Geiger et al. 2013). It has a car driving in an urban environment carrying a 120 m -360o

LIDAR. As in other occupancy mapping techniques we assumed that the localization is given

from an another sensor.

4.5.2 OGM Hyperparameters

We considered the rotationsA = {0o, 90o, 180o, 270o}. For Sinkhorn, λ was set to 0.005 with

maximum 1000 iterations. OGM was obtained by with the best of cell resolutions of 0.1, 0.5,

1, 5, and 10 m.

4.5.3 Snapshot of Domain Adaptation Pipeline

Figure 4.7. An example of domain-to-domain parameter transfer. (a) Camera-
view of the target environment. (b) Transported model parameters (kernels)
for a given test LIDAR scan. (c) Target occupancy map at current time step.

Figure 4.7 shows an instantaneous map for the Carla Town 1 environment. Visualization of all

datasets and corresponding kernel position means and width means are shown in Figure 4.9.

Figure 4.8 demonstrates how POT can be used for 3D LIDAR data.

4.5.4 Intra-domain and Inter-domain Adaptation

In this experiment, we consider two paradigms: intra-domain and inter-domain transfer. In

intra-domain transfer, the source atoms are generated from the first 10 frames of a particular

dataset and parameters are transferred to the rest of the same dataset while they are transferred
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Figure 4.8. Training atoms for Town 1 in 3D. The left figure shows 3D
LIDAR scans while the right figure shows the learned ABHM kernels for
the corresponding LIDAR scans. Instead of extracting 2D atoms, we simply
extract radial 3D atoms and use their previously learned model parameters for
transfer.

to a completely different domain in inter-domain transfer. Based on results reported in

Table 4.3 with 20% randomly sampled test LIDAR beams from each town, it is possible to

accurately transfer parameters using POT. This enables mapping large scale towns in real-time.

All parameters are aggregated over time to build occupancy maps of the entire environments

as visualised in Figure 4.9. Using the Town 1 3D dataset, we demonstrate the possibility of

extending POT to 3D environments. In this case, source atoms described in Section 4.4.1,

were circular cylindrical sectors (i.e. pie slice shaped). The post-hoc refinement procedure,

RePOT, introduced in Section 4.4.4, further improved the map significantly. A visualization

of RePOT is shown in Figure 4.10 and performance improvement, in direct comparison with

results in Table 4.3, is reported in Table 4.4.

4.5.5 Building Instantaneous Maps

This experiment was designed to demonstrate how parameters can be instantaneously trans-

ported to build the instantaneous map of the surrounding. For this purpose, we used the two

dynamic environments: Town 1 Dyna and KITTI Dyna. The source dictionary of atoms was

prepared similar to the intra/inter-domain adaptation experiment. Such a map is shown in
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Figure 4.9. Transported kernels (Bottom) and their occupancy maps (Top) for
the inter and intra domain town datasets. From top to bottom and left to right
are towns 1, 2, and 3.



4.5 EXPERIMENTS 71

Table 4.3. Performance of intra-
domain (diagonal entries of the
table) and inter-domain (off-
diagonal entries of the table)
transfer.

Target
Town1 Town2 Town3

So
ur

ce
A

C
C Town1 0.79 0.82 0.76

Town2 0.70 0.72 0.58
Town3 0.85 0.83 0.84

A
U

C Town1 0.88 0.88 0.90
Town2 0.85 0.83 0.83
Town3 0.92 0.92 0.93

N
L

L Town1 1.14 0.97 1.40
Town2 3.30 3.23 5.98
Town3 1.64 1.69 1.79

Table 4.4. Performance
of Refined POT (RePOT)
across intra- and inter-
domain transfers.

Target
Town1 Town2 Town3

So
ur

ce
A

C
C Town1 0.95 0.93 0.95

Town2 0.91 0.91 0.92
Town3 0.95 0.92 0.93

A
U

C Town1 0.99 0.98 0.98
Town2 0.98 0.98 0.98
Town3 0.99 0.97 0.97

N
L

L Town1 0.71 1.4 1.12
Town2 1.40 1.74 1.85
Town3 0.96 1.62 1.44

Table 4.5. Instantaneous maps in dynamic environments: Experiments for
sim2sim and sim2real with mean and SD.

Target
Town 1 Dyna KITTI Dyna

So
ur

ce
A

C
C Town 1 0.74 ± 0.10 0.69 ± 0.06

Town 2 0.70 ± 0.10 0.58 ± 0.06
Town 3 0.74 ± 0.11 0.71 ± 0.07

A
U

C Town 1 0.81 ±0.11 0.77 ±0.06
Town 2 0.77 ±0.12 0.73 ±0.06
Town 3 0.78 ±0.15 0.73 ±0.09

N
L

L Town 1 1.06 ± 0.56 1.42 ± 0.38
Town 2 1.90 ± 0.79 3.63 ± 1.04
Town 3 1.89 ± 1.30 2.30 ± 0.83

Figure 4.1. The performance of the model was evaluated on 20% of data that were not used

for optimal transport. Table 4.5 shows the performance of transferring features extracted from

each town to the dynamic datasets.
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Figure 4.10. Large-scale map building with POT and RePOT. (a) Carla Town
2 plan. (b) Transferred kernel mean width and position parameters. (c)
Occupancy prediction with POT. (d) Occupancy prediction with RePOT.

Table 4.6. Performance per time unit for RePOT, POT, ABHM, and BHM.
Though OGM results are reported for reference purposes, unlike other methods,
OGM cannot be computed for per time unit basis.

Target
Method Town1 Town2 Town3

A
C

C

RePOT 0.95 0.93 0.95
POT 0.85 0.83 0.84

ABHM 0.77 0.59 0.86
BHM 0.66 0.61 0.71
OGM 0.78 0.78 0.77

A
U

C

RePOT 0.99 0.98 0.98
POT 0.92 0.92 0.93

ABHM 0.95 0.96 0.96
BHM 0.94 0.92 0.91
OGM 0.89 0.91 0.90

N
L

L

RePOT 0.71 1.41 1.12
POT 1.64 1.69 1.79

ABHM 0.58 0.71 0.41
BHM 0.63 0.69 0.61
OGM 2.00 1.34 1.13

4.5.6 Performance Comparison

In this experiment, we compared various occupancy mapping algorithms in terms of accuracy

and speed. Since these algorithms cannot be trained or queried in a similar fashion, we

measured the per time unit performance. For instance, ABHM can only be trained in small

environments although our datasets consist of large towns. Firstly, we measure the time for

running POT per LIDAR scan. Then we decide the number of kernels to match the same

runtime for BHM and ABHM. Results are reported in Table 4.6. Though OGM cannot be



4.6 SUMMARY 73

computed per time basis, we report the results for reference. GPOM cannot be executed for

datasets this large. As expected, ABHM outperforms BHM in all metrics because ABHM is

a nonstationary model that takes into account local geometry. Theoretically, in the infinite

memory and computation time limit, ABHM should outperform all methods. Nonetheless,

practically, POT has a higher ACC and AUC compared to ABHM as POT can transfer kernels

online to accommodate the complexity of the environment. However, the increase in NLL in

POT compared to ABHM, indicates the inherent uncertainties of the transfer procedure. Once

the weights were refined using RePOT, NLL has dropped as the weight distributions can be

optimised to reduce the uncertainty giving better predictions.

Runtime: With a laptop with 4 cores and 8 GB RAM, on average, POT, programmed in

Python, takes around 1 s update time. This is without parallelizing any part of the code.

Note that eq. (Equation (4.4)) is highly parallelizable making the algorithm |X (S)| × |A|

faster (approx. 25 times). This is a significant improvement to algorithms such as BHM and

ABHM which would take several hours to build a large-scale map as they rely on complicated

variational inference procedures. POT run-time increases with increasing λ in the Sinkhorn

algorithm we used in POT. As λ→∞ the convergence is guaranteed.

4.6 Summary

In this chapter we highlighted a major issue with learning data-dependent Bayesian models

using learnable kernels: they have no closed form solution and the optimisation problem is

compute intensive such that the methodology is prohibitive to real-time use. We thus proposed

a novel method using optimal transport that allows us to transform the long sequential

optimisation problem into a domain-adaption procedure that involves much smaller parallel

optimisations.

In optimal transport, we consider the problem of transforming one probability measure to

another. This also loosely relates to the point cloud registration problem typically addressed

by the iterative closest point (ICP) algorithm (Besl and McKay 1992). However, unlike

ICP which only has a single set of translation and rotation parameters, in optimal transport,
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each data point in the source dataset has a highly nonlinear relationship with every other

point in target datapoints through the optimal coupling matrix P∗. Another reason why we

cannot resort to a popular algorithm such as ICP is because it only works for slight changes

in translation and rotation. When a robot moves in dynamic environments, it is essential to

adapt for sudden, potentially large, nonlinear changes in geometry.

One remarkable aspect of being able to transport distributions is that it endows us the ability

to adapt Bayesian models in the sense of an informed prior (Gronau et al. 2017) enabling

expedited parameter tuning. We have demonstrated such a use case in this chapter with in

RePOT that brings significant improvements in overall predictive quality.

In conclusion, this chapter introduced parameter optimal transport (POT), an efficient frame-

work for geometric domain adaptation. By combining the formalism of automorphing

Bayesian Hilbert maps with optimal transport theory, patterns from one environment can

be seamlessly transferred to another in a fraction of a second. We show that this frame-

work can be effectively used to map large urban environments, transferring learned patterns

between two cities, between simulated and real environments, and between static and dynamic

environments.



CHAPTER 5

Quantile Representations for Approximate Kernel Learning

This chapter presents a major shift in perspective, with regard to kernel representation,

compared to the previous chapters. Instead of explicitly located kernel embeddings in our

observation space, we will exploit the Fourier domain representation of stationary kernels.

The Fourier perspective contrasts with the kernel representation and learning methodologies

presented previously in Chapter 3 and Chapter 4 which used explicit placements of known

analytic kernels, in precisely the same domain that the raw data resides, to construct learnable

embeddings. By adopting the well known Fourier representation of kernels and consequent

parametric learning paradigm, we introduce a way to fundamentally generalise the structure

of the kernel into a learnable representation founded on the quantile representation of a

distribution. By doing so, we create an implicit kernel that indirectly represents some arbitrary,

non-analytic kernel that is free to adapt its representation to observations. We demonstrate

the flexibility of the new construction on a variety of interesting problems ranging from non,

quasi and periodic phenomena.

5.1 Introduction

Historically, as with typically black box approaches using deep neural networks, kernel

methods gained popularity due to their ability to discover nonlinear patterns (Schölkopf,

Smola and Müller 1998; Cristianini and Shawe-Taylor 2000). Traditionally applied in data

scarce regimes, kernel methods have been shown to be similarly effective in big data settings

(Cortes and Vapnik 1995; Dai et al. 2014; Hensman, Fusi and Lawrence 2013a). In the

literature, there have been multiple endeavours for fully automated inference pipelines in
75
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machine learning (Ghahramani 2014; Tran et al. 2017; Tran et al. 2016; Feurer et al. 2015;

Inc. 2018). Among these, we could broadly classify them under black box (Valera and

Ghahramani 2017; Nguyen and Bonilla 2014) and grey box (Galliani et al. 2017) approaches

where some informative amounts of prior knowledge is injected into the inference pipeline.

Kernel methods seem to have had comparatively less effort invested under such generalist

learning paradigms.

It has been seen many times that kernel methods are highly effective in wringing out the

essential nonlinear structures in data from a variety of domains and tasks. As we have seen

earlier, one of the major problems with kernel methods is that there is almost always the

necessity for some kind of heuristic when it comes to choosing the kernel. In a sense this

means the choice of kernel function is handcrafted due to the fundamental differences between

the way various kernels encode data. We argue that this very human constraint is undesirable.

While certain kernels have very interesting theoretical and well studied properties, it is usually

the case that a priori we simply do not know the structure of the very data we are trying to

model! So it therefore stands to reason that we should not be so confident (indeed, helpless) in

choosing any well known analytic kernel. From this, one could reason that we could simply

try them all; this is in fact reasonable and even attempted. Many practitioners will try an SE

kernel, a Matérn kernel, a variety of lengthscales for each, perhaps a reasonably complex but

finite weighted composition as seen in Section 2.4, and then call it a day. However, this is

really like an answer to the wrong question. We can do better. A better question to ask would

be: What is the most fundamental, necessarily sufficient, and computable form of a kernel? In

this chapter we propose an attempt to answer this question.

As hinted earlier, it can be observed that most kernel learning techniques have focused on

choosing a mixture of popular kernels and learning their weights (Duvenaud 2014; Wilson

and Adams 2013). In contrast, in the work presented in this chapter, we demonstrate how to

learn kernels in a more general and black box way that makes no prior assumption on any

prior analytic kernel. In order to address our desire for greater generality, this chapter will

present a novel technique to learn kernels that best fit the data. To do this, we will adopt the

measure-theoretic view of a shift-invariant kernel given by Bochner’s theorem Theorem 1. We
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will additionally propose to learn the measure in terms of a parameterised quantile (inverse

cdf) function in light of this new distributional perspective. With this learnable black box

quantile, which is amenable to both Monte Carlo (MC) and Quasi-Monte Carlo (QMC)

sampling, we show that it is possible to construct quasi-random Fourier feature maps that

can approximate arbitrary kernels. This process generates novel shift-invariant kernels that

are guaranteed to be positive-definite. The kernels learned in the proposed method can be

used in any kernelised inference algorithm such as kernelised regression or classification by

optimizing the parameters of the black box quantile (BBQ) alongside the parameters of the

inference algorithm. It can also be noted that interpreting the learned quantile as a black

box does not hinder the interpretability of the inference algorithm since the reconstructed

kernel itself can still be understood as a similarity function. To validate the methodology,

we demonstrate the kernel’s capabilities on a variety of datasets, showing how it is able to

automatically able to extract complex patterns in the underlying data with minimal necessity

for human knowledge.

5.2 Contributions

This chapter focuses on the problem of learning expressive and scalable approximate kernel

representations of stationary kernels. By approaching kernel embeddings from the Fourier

domain we are able to relax the definition of kernel functions from rigid analytic functions to

arbitrary distributions. Specifically, we propose to represent kernels implicitly by using the

quantile form of a distribution which we can parameterise to enable learnable implicit kernel

approximations. Specifically, we present the following contributions:

(1) We propose a new method to learn quantile representations of stationary kernels in

the Fourier domain. We term the method Black Box Quantiles (BBQ);

(2) We demonstrate how to integrate the kernel learning in an end-to-end fashion; and

(3) Validate the method on various datasets and problems exhibiting complex phenomena

like periodicity that is not straightforward to model with conventional stationary

kernels.
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5.3 Related Work

As described in Section 2.4.7 kernel learning is a fundamental area of research since it clear,

by their corresponding definitions, that kernel methods completely and utterly depend on their

realisation of hyperparameters.

Previous works have looked at augmenting kernels with flexible learning methods like neural

networks (Rasmussen 2004) while others attempt to find optimal combinations of existing

kernels (Duvenaud et al. 2013). Nonetheless, because the manual construction of a sophistic-

ated kernel is not straightforward, similar to a typical model selection problem in statistics,

researchers have attempted to learn kernels as multi-task learning and through expensive

optimization techniques (Duvenaud 2014; Lanckriet et al. 2004; Bach, Lanckriet and Jordan

2004). These approaches to finding sophisticated kernels is known as kernel learning. In

this work, we revisit kernel learning with novel techniques developed in recent years to

approximate kernels by a dot product of basis functions. In this regard, the spectral domain

representation of the kernel defined in Theorem 1 and Corollary 1 has gained popularity

(Rahimi and Recht 2007a).

In a series of works (Wilson and Adams 2013; Wilson et al. 2013), using an interpretation

similar to Corollary 1 motivates the learning of a general covariance function of a Gaussian

process model. Taking advantage of mixture representations and sampling from a pdf has

also been explored in (Lázaro-Gredilla et al. 2010; Oliva et al. 2016). In the next section,

we discuss the generic sampling based approximation for kernels with a fixed structure (i.e.

kernels are not learned).

As previously detailed in Section 2.4.6, (Rahimi and Recht 2007a) proposed to pick a known

probability density function fΩ(ω) in such a way that the required kernel can be reconstructed

using Corollary 1. For instance, samples drawn from a standard normal distribution can

reconstruct a squared exponential kernel. More generally, representing the known pdf using a

finite number of Monte-Carlo (MC) samples {ωm
iid∼ fΩ(ω)}Mm=1 creates a finite dimensional

approximation of the feature map ϕ̂(x) ∈ CM (Sriperumbudur and Szabó 2015; Rudi and
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Rosasco 2017; Bach 2017). That is,

k(x,x′) ≈ 1

M

M∑
m=1

e−i(x−x′)⊤ωm = ⟨ϕ̂(x), ϕ̂(x′)⟩C. (5.1)

The approximate feature map can be decomposed into, ϕ̂(x) = 1√
M
[e−ix⊤ω1 , . . . , e−ix⊤ωM ] ∈

CM . For real valued kernels, (Equation (5.1)) can be further reduced into cosine and sine

terms (Rahimi and Recht 2007a). This work has gained attention in recent years because of

the simplicity, solid theoretical basis (Sutherland and Schneider 2015; Choromanski et al.

2018), and superiority in various applications (Rajeswaran et al. 2017; Kulis and Grauman

2009). Further advantages and outstanding performance of randomization based algorithms

have been discussed in (Pastur 1973; Rahimi and Recht 2008; Lopez-Paz, Muandet and Recht

2015; Mania, Guy and Recht 2018).

5.4 Black Box Quantile Kernels

In this section, we propose black box quantiles (BBQ) as an alternative parameterisation of

the probability measure to capture complex patterns in data. The method is general and can

be used with other kernel composition techniques. Without loss of generality, BBQ features

are introduced for univariate data x in Section 5.4.2 to Section 5.4.4 and a summary of the

algorithm is given in Figure 5.1 and Algorithm 2. The treatment for multidimensional data is

discussed in Section 5.5.

5.4.1 Why are Quantile Representations Suitable?

Quantiles are flexible in terms of both representation as well as representable for easy op-

timization. Learning complicated pdfs using a mixture of Gaussians or other parameterised

distributions is challenging, while it is straightforward using our proposed method. By repres-

entation as a quantile, i) it is immediately possible to take advantage of low-discrepancy QMC

samples without performing the “inverse transform sampling,” ii) there are natural extensions

connecting with copulas to enable cross-dimensional correlations between quantiles, iii) we



80 5 QUANTILE REPRESENTATIONS FOR APPROXIMATE KERNEL LEARNING

Figure 5.1. A summary of the BBQ algorithm.

have a closed form, in the sense of an explicit parameterisation of a distribution, giving an

explainable "view" of the generalised kernel we are representing in the Fourier domain.

5.4.2 Parameterised Quantiles

As discussed in Section 2.4.6, known pdfs are used in (Rahimi and Recht 2007a) to construct

popular kernels using Corollary 1. Unfortunately, to approximate complicated kernels, the

method requires the specification of generic pdfs which can be notoriously difficult as pdfs

need to satisfy
∫∞
−∞ fΩ(ω)dω = 1. Observing the definition of Bochner’s theorem (Theorem 1)

given in a measure-theoretic view, we can alternatively prescribe the probability distribution

in terms of a parameterised quantile function.

If the measure in Theorem 1 is defined by the cumulative distribution function (cdf), p =

P (Ω ≤ ω) =: FΩ(ω) : R → [0, 1], then its quantile function is inf{ω ∈ R; p ≤ FΩ(ω)} =:

QΩ : [0, 1]→ R. Intuitively, with strict monotonicity and continuity assumptions, the quantile

can be regarded as the inverse of the cdf. Quantile functions of known distributions are widely

used in many application domains in statistics (Steinbrecher and Shaw 2008; Sankaran, Nair

and Midhu 2016). In Corollary 2, we obtain the kernel by a parameterised quantile function.
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Algorithm 2: BBQ algorithm
Data: xtrain, ytrain, xtest, ytest
Result: Optimal kernel parameters θ∗
Optimal inference algorithm parameters w∗
p = {pm}Mm=1 low discrepancy sequence
Initialise θ
while inference loss not converged do

Construct quantile Q(·; θ) from θ

ϕ̂
(
Q
)
← Compute features as in (Equation (5.4))

Train inference model using ϕ̂
(
Q
)

Compute inference loss as in Section 5.4.4
θ ← Next parameter from optimiser

end
return Best θ, corresponding w∗

COROLLARY 2. Following Theorem 1, if QΩ(p; θ) is a quantile function associated with a

random variable Ω and parameterised by θ, the associated continuous, positive-definite, and

shift invariant kernel, k(x, x′; θ), is given by,

k(x, x′; θ) =

∫
[0,1]

e−i(x−x′)QΩ(p;θ)dp. (5.2)

Our objective is to implicitly learn a sophisticated kernel by explicitly learning the parameters

θ that define a quantile function. To this end, the properties that need to be satisfied are given

in Theorem 3.

THEOREM 3. The function QΩ is a quantile function iff,

(1) limp→0QΩ(p) = −∞ and limp→1QΩ(p) =∞,

(2) QΩ(p) is a non-decreasing function of p,

(3) limp↑p0 QΩ(p) = QΩ(p0),∀p0 ∈ [0, 1], i.e. QΩ(p) is left-continuous.

Proof sketch: Writing QΩ using probability functions verifies the necessary conditions. For

sufficiency, the existence of a sample space S, a probability function P on S, and a random

variable Ω defined on S such thatQΩ is a quantile function should be verified. A more detailed

axiomatic description of probability and quantiles can be found in (Casella and Berger 2002;

Parzen 1980; Chambers 2009).
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Since building kernels by direct integration in Corollary 2 is intractable, we adopt a Monte

Carlo approximation similar to random Fourier features discussed in Section 2.4.6, such

that k(x,x′; θ) ≈ ⟨ϕ̂(x; θ), ϕ̂(x′; θ)⟩C. However, in this setting, the parameterised quantile

is evaluated on a low-discrepancy sequence of quasi-Monte Carlo (QMC) samples. QMC

approximations are known to be superior over MC approximations irrespective of the dimen-

sionality (Dick and Pillichshammer 2010; Dick, Kuo and Sloan 2013; Yang et al. 2014) and

with known kernels (Yang et al. 2014). With {pm}Mm=1 QMC samples, the approximated

feature map is given by,

ϕ̂(x; θ) =
1√
M

[e−ixQΩ(p1;θ), . . . , e−ixQΩ(pM ;θ)] ∈ CM . (5.3)

For real valued kernels, this can be further simplified as,

ϕ̂(x; θ) =

√
2

M

[
cos

(
xQΩ(p1; θ)

)
, . . . , cos

(
xQΩ(pM ; θ)

)
,

sin
(
xQΩ(p1; θ)

)
, . . . , sin

(
xQΩ(pM ; θ)

)]
,

(5.4)

where ϕ̂(x; θ) ∈ R2M . The objective is to learn QΩ(p; θ) by adjusting θ.

5.4.3 BBQ Parameterisation

In this section we demonstrate how to parameterise an arbitrary quantile such that it can be

evaluated for p ∈ [0, 1]. We restrict ourselves to fully continuous functions and therefore

condition 3 in Theorem 3 is not of our interest. Intuitively, we are interested in seeking a

parameterisation technique to represent a non-decreasing continuous function with vertical

asymptotes at 0 and 1. In order to satisfy properties listed in Theorem 3, there are numerous

ways to parameterise a valid quantile function such as Bernstein polynomials (Han et al.

2016). While such complex quantile formulations can surely be advantageous, the aim of this

chapter is to lay the foundation to quantile induced kernels and demonstrate their importance

through various applications. Therefore, in the following sections we restrict ourselves to
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Figure 5.2. Diagram of the offset parameterised quantile

coordinates in the space of the quantile function Q(p) ∈ R. This allows using isotonic

regression or constrained interpolation on monotonically increasing points to interpolate the

quantile function. Specifically, we use two interpolation methods that enjoy flexible coordinate

based parameterisation and also ensure the necessary condition of functional monotonocity:

Linear and Monotonic Cubic Hermite interpolation. While the simplest method of linear

interpolation guarantees monotonicity on monotonic interpolating coordinates, naive cubic

interpolation does not. Strict conditions must be set on the interpolant’s tangents (Fritsch

and Carlson 1980) in order to guarantee the induced kernel is valid. Specifically, we use the

Piecewise Cubic Hermite Interpolation (PCHIP) method (Fritsch and Carlson 1980) however

various other methods exist (Steffen 1990; Stineman 1980). As shown in Figure 5.2, we

represent our N interpolating points in terms of horizontal and vertical offsets from some

vertical origin Q0. Specifically, for N interpolating points,

learn ∆x1, . . . ,∆xN+1 ∈ [0, 1],

∆y1, . . . ,∆yN ∈ R,

s.t.
N+1∑
i=1

∆xi = 1,

Q0 ∈ R,

where Q0 is a vertical origin from which all offsets are defined, ∆xi and ∆yi are offsets with

respect to Q0. To enforce the necessary constraint that all ∆xi sum up to 1, ∆xi are simply

chosen in [0, 1] and normalised.
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(a) Skewed

(b) Combed

Figure 5.3. Section 5.5.1: Reconstructing corresponding kernels from two
different quantile functions. Though not used in the algorithm, as visualised
in the second column, kernels generated by BBQ can have corresponding
pdfs that are arbitrarily complex and almost impossible to explicitly learn.
BBQ parameterisation allows implicitly modelling such complex distributions.
The last column shows normalised Frobenius errors for different sampling
methods.

Even with this simple and explicit parameterisation of the quantile function, we demonstrate

that we are able to learn complex kernels as well as avoid overfitting as the number of

interpolating points increases, by using the negative log-marginal likelihood as a loss function.

Handling asymptotes. Valid quantile functions feature asymptotes at p = 0 and p = 1 which

interpolation techniques do not guarantee. Asymptotes are constructed by using modified

inverse functions a0
p
+ b0 and a1

1−p
+ b1 around p = 0 and p = 1 respectively. Parameters

a0, b0, a1, and b1 are chosen to ensure quantile function and derivative continuity at both

interpolation end points.

5.4.4 Learning BBQ Parameters

Quantile parameters θ are learned by minimizing the inference algorithm loss Linference (eg.

regression loss). Examples of losses include Mean Square Error (MSE), computed on an
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validation data, and Negative Log Marginal Likelihood (NLML), computed on training data.

Depending on the quantile parameterisation used, constraints on θ may apply, and hence, one

generally needs to solve,

minimiseθ Linference(θ) (5.5a)

subject to g(θ) ≤ b, (5.5b)

where g and b reflect constraints from the chosen quantile parameterisation. Extended

literature on optimization provides a wide range of local and global derivative-free optimisers

to efficiently solve this problem, such as ADAM, Bayesian optimization (Brochu, Cora and

De Freitas 2010), DIRECT (Powell 1994) or COBYLA (Gablonsky and Kelley 2001).

Negative Log Marginal Likelihood in Bayesian Linear Regression:

For the inference setup with Bayesian Linear Regression we implement the Negative Log

Marginal Likelihood with respect to the quantile parameters θ. Here, Φ is parameterised by θ

and A := Σ−1 as in Equation 2.9. Details as in (Lázaro-Gredilla et al. 2010; Bishop 2007):

log p(y|θ) = (y⊤y − y⊤Φ̂⊤A−1(̂Φ)y)/(2σ2
n)

+
1

2
log |A| −m log

mσ2
n

σ2
0

+
n

2
log 2πσ2

n

(5.6)

5.4.5 Relation with Spectral Mixtures

A non-negative definite kernel fully defines a probability distribution and this representation

is commonly referred to as a characteristic function in statistics. It is possible to specify the

uncertainty of a quantity using the characteristic function, cdf, pdf, or quantile, and with

some assumptions the following equalities hold: ϕ(x) = E[e−ixΩ] =
∫
R e

−ixωdFΩ(ω) =∫
R e

−ixωfΩ(ω)dω =
∫ 1

0
e−ixQΩ(p)dp. In this work, we demonstrated that the quantile repres-

entation can be conveniently used to learn complex kernels in a data-driven way. One key

related work is the Spectral Mixture (SM) kernel (Wilson and Adams 2013).

BBQ features have inherent similarities to SM kernels – the former uses the quantile repres-

entation while the later uses the pdf representation. Although SM kernels are attractive, as
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with any flexible kernel based methods, they are sensitive to initialization of hyperparameters.

In a more generic Bayesian nonparametric setting, (Oliva et al. 2016) further scale this as a

mixture of pdfs by exploiting sampling based techniques which require expensive Markov

chain Monte Carlo (MCMC) techniques. In BBQs, we attempt to circumvent these issues by

a different spectral representation which leads to similarly flexible parameterisation and op-

timization but from the orthogonal perspective of kernel approximation with Fourier features

and a parametric (as opposed to a non-parametric) model.

5.5 Experiments

The BBQ algorithm with parameterisations discussed in Section 5.4 are implemented in

python. We conducted a series of experiments on a computer with 16 GB RAM to validate the

proposed method. All datasets were normalised between -1 and 1. Bayesian Linear Regression

(BLR) (Bishop 2007) was used for inference, similar to (Lázaro-Gredilla et al. 2010). The code

is available at github.com/MushroomHunting/black-box-quantile-kernels.

5.5.1 Quality of Kernel Approximation

In this section, we verify that the parameterised quantile functions can easily construct

expressive black box kernels with popular kernels. Furthermore, by utilizing QMC sequences,

we also demonstrate that the true kernel can be approximated significantly faster than standard

MC samples which are used in pdf-based methods such as (Rahimi and Recht 2007a; Oliva

et al. 2016). To show this, as shown in Figure 5.3, complex probability distributions whose

kernels are known in closed from were chosen. In order to show the importance of QMC

sampling on BBQ kernel learning, kernels were approximated using three low-discrepancy

sampling methods – Sobol, Halton, and generalised Halton sequences – in addition to Monte-

Carlo sampling.

In order to assess the quality of approximation, we calculated the normalised Frobenius

norm error ∥Kt − K̂∥F/∥Kt∥F where Kt and K̂ are the true and approximated kernel Gram

github.com/MushroomHunting/black-box-quantile-kernels
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matrices, respectively. For the true and approximate kernel Gram matrices 4000 points were

sampled on the interval [−10, 10] and vary the number of features over the range [50, 1000].

While low-discrepancy sequences have been considered for standard kernels (Yang et al.

2014), their efficacy has not been demonstrated for the more general family of kernels induced

by arbitrary quantile functions. For the various complicated quantiles in Figure 5.3, and their

corresponding pdfs and kernels, irrespective of the number of features, the error is always

smaller with QMC.

5.5.2 Optimisation Settings for Various Experiments

C02 Optimiser: COBYLA, Number of steps: 200, Number of interpolating points: 2.

Passenger Optimiser: COBYLA, Number of steps: 200, Number of interpolating points: 2.

Concrete Optimiser: Controlled Random Search (CRS) (Johnson 2014), Number of steps:

200, Number of interpolating points: 12.

Noise Optimiser: Controlled Random Search (CRS), Number of steps: 200, Number of

interpolating points: 12.

Pores Texture Optimiser: adam, adam β1: 0.9, adam β2: 0.999, Learning Rate: 0.5e-2,

Number of steps: 225, Number of interpolating points: 15

Rubber Texture Optimier: adam, adam β1: 0.9, adam β2: 0.999, Learning Rate: 0.5e-3,

Number of steps: 225, Number of interpolating points: 25

Tread Texture Optimiser: adam, adam β1: 0.9, adam β2: 0.999, Learning Rate: 0.5e-3,

Number of steps: 225, Number of interpolating points: 31

5.5.3 Various Aspects of Learning BBQ Kernels

Using two toy datasets (Figure 5.6) we illustrate that Bayesian linear regression with BBQ

features can model nonlinear patterns. Interestingly, rather than handcrafting and composing

periodic and RBF kernels, the BBQ parameterisation allowed automatically learning the

appropriate kernel, making both interpolation and extrapolation possible. Figure 5.7a shows
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Figure 5.4. Gram matrix reconstruction error corresponding to various
quantile, pdf, and kernels. Relative errors are measured with the approx-
imating Gram matrix measure in the normalised Frobenius norm.

the error surface. The objective is to determine quantile parameters θ that minimise the loss.

An instance of gradient descent to find an optima is shown in Figure 5.7b.

In order to demonstrate the BBQ algorithm’s capacity to learn highly complex kernels, two

toy datasets (Figure 5.6) were used to learn the quantile functions. Even though pdfs and

quantiles are merely two different representions of the probability, the proposed quantile

parameterisation leads to generating flexible and arbitrarily complex kernels. Highlighting

this property, as shown in Figure 5.8, the proposed method was able to learn complex quantiles

that would otherwise have been challenging, if not impossible, to pragmatically learn even

with a large finite mixture of pdfs or a composition of known kernels.
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Figure 5.5. Predictive mean and variance for the texture datasets from models
learned with BBQ quantiles. The two quantiles (for the vertical and horizontal
patterns) for each pattern is shown below each dataset. Note that the quantiles
are similar for the third pattern because it is symmetric.
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Figure 5.6. Section 5.5.3: Fits on toy datasets (periodic and steps) using BBQ
features.

(a) (b)

Figure 5.7. Section 5.5.3: An example of loss (NLML) surface for 2-parameter
quantile and loss per optimization iteration.

5.5.4 Learning Complex Patterns and Extrapolation

We experiment on various real-world datasets from the UCI machine learning repository*.

CO2 and passenger are periodic datasets evaluating extrapolation capabilities. Datasets

concrete and noise feature higher dimensions of 5 and 8 respectively. We further tests on three

in-filling texture datasets from (Wilson et al. 2014) pores, rubber tread. For multidimensional

datasets, one black-box quantile per dimension was learned. For extrapolation datasets,

passenger and CO2 we compose BBQ features with a linear kernel klin + kBBQ and klin +

klin × kBBQ, respectively.

*https://archive.ics.uci.edu/ml/index.php
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(a)

(b)

(c)

Figure 5.8. Section 5.5.3: Learned kernel quantile functions and their corres-
ponding kernel pdfs. Slight variation in quantile function result varied PDFs:
unimodal, diracs, multimodal or skewed.

Conventionally, different Gaussian process methods such as (Hensman, Matthews and

Ghahramani 2015; Titsias 2009) with fixed kernels are used to capture nonlinear patterns.

In addition to these, we compare Bayesian linear regression augmented with BBQ features

against the standard Random Fourier Features (RFFs) for the RBF kernel (Rahimi and Recht

2007a) as well as Spectral Mixture (SM) kernels (Wilson and Adams 2013). Since SM kernels

are somewhat sensitive to initialization, we run SM kernels 10 times and report the best
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result. In order to compare textures that are in a regular grid, we used 3000 inducing points

with bicubic interpolation, in a sparse approximation method akin to, though not exactly the

same, KISS-GP (Wilson and Nickisch 2015). We also compare with Doubly Stochastic Deep

GPs (Salimbeni and Deisenroth 2017) which can learn complex patterns in data because of

the deep structure, though a complex kernel is not explicitly learned.

Methods are evaluated in terms of RMSE and Mean Negative Log Loss (MNLL). The smaller

these metrics are the more accurate the model is. Unlike RMSE, MNLL takes into account

both the mean and variance of predictions (Bishop 2007). Occasionally full GPs with SM

kernels perform better which could be explained by better estimates of uncertainty. Results

displayed in Table 5.1 show the superior performance of using BBQ features. In comparison,

indicating the importance of learning the kernel, the standard RFFs (RFF-RBF) consistently

scores higher errors.

Fits on individual data sets for various methods are displayed in Figure 5.9, showing both SM

and BBQ identify the data periodicity, while RFF-RBF only manages to follow the global

trend. All three textures with corresponding quantiles (one quantile per dimension) are shown

in Figure 5.5. Finally, BLR with BBQ features has complexity O(M2N) resulting in much

faster runtime than SM of complexity O(N3). This difference is especially noticeable on

moderately sized datasets such as textures, where BLR-BBQ runs in minutes on a desktop

computer compared to hours for SM.

5.5.5 Effect of the Number of Quantile Parameters

We designed an experiment to show the empirical influence of increasing number of quantile

parameters on BBQ regression error. See Figure 5.10 for results on CO2 dataset. The train-

ing and testing errors decrease with the increased number of parameters and then levels

off. In this case, training by optimizing NLML (using Bayesian linear regression as the

model) does not lead to overfitting, even when the model is overparameterised. Neverthe-

less, note that this is not a straightforward comparison because the errors depend not only on
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(a) Airline dataset (b) CO2 dataset

(c) Pores dataset

Figure 5.9. Section 5.5.4: (a)-(b) Extrapolation on two real datasets. On
both datasets, BLR with BBQ, SM both discover periodicity while RBF only
finds the general trend. This shows BBQ features can easily be composed
with nonstationary kernels (here linear) to learn global trends. (c) Intra-filling
task on pores texture dataset (train set outside red square, test set inside) and
prediction with 300 BBQ features respectively.

the quantile parameterisation, but also on the inference model, loss function, and the optimiser.

5.5.6 Kernel Composition

It is straightforward to combine BBQ features (which are approximating a stationary kernel)

with other potentially kernels (that are nonstationary) to enable additional expressiveness. We

support this notion with Claim 1.
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Table 5.1. Section 5.5.4: Loss metrics on all real datasets. We used RMSE
and MNLL for spectral mixture (SM), RBF with random Fourier features
(RFF-RBF), the proposed technique (BBQ), Sparse Gaussian Process Regres-
sion (SGPR) (Titsias 2009), Sparse Variational Gaussian Process (SVGP)
(Hensman, Matthews and Ghahramani 2015), and Doubly Stochastic Deep GP
(DSDeepGP) (Salimbeni and Deisenroth 2017).

Loss Method CO2 Passenger Concrete Noise Rubber Pores Tread

R
M

SE

BBQ 0.068 0.096 0.124 0.138 0.248 0.256 0.114
SM 0.083 0.102 0.465 0.132 0.395 0.795 0.513
RFF-RBF 0.245 0.270 0.164 0.184 0.687 1.739 0.326
SGPR 0.190 0.262 0.138 0.164 0.315 0.586 0.276
SVGP 0.191 0.262 0.176 0.201 0.3176 0.5853 0.1436
DSDeepGP 0.446 0.396 0.178 0.174 0.3256 0.5853 0.1508

M
N

L
L

BBQ -1.242 -0.610 -0.577 -0.173 1.336 0.337 -0.754
SM -0.604 -0.441 0.743 -0.570 0.523 1.386 1.022
RFF-RBF -0.368 14.310 3.173 7.569 18.351 122.689 1.057
SGPR -0.695 0.516 -0.545 -0.392 0.268 0.885 0.328
SVGP -0.686 0.503 -0.308 -0.181 0.274 0.885 -0.501
DSDeepGP 1.454 1.361 0.111 0.032 0.306 0.884 -0.339

Figure 5.10. Effect of increasing number of quantile parameters.

CLAIM 1. We have the equivalence of kernel composition operations in the kernel space and

feature space (Shawe-Taylor and Cristianini 2004).

(k1 + k2)(x,x
′) = k1(x,x

′) + k2(x,x
′)

= [ϕ1(x)ϕ2(x)][ϕ1(x
′)ϕ2(x

′)]⊤,
(5.7)
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defines the sum of two feature maps, and

(k1 × k2)(x,x′) = k1(x,x
′)× k2(x,x′)

=

n,m∑
i

ϕ
(i)
1,2(x)ϕ

(i)
1,2(x

′),
(5.8)

defines the product of two feature maps, where ϕ1,2(x) = ϕ1 × ϕ2 is the Cartesian product.

In experiments, to handle multiple dimensions, different quantiles were used on a per-

dimension basis analogous to Automatic Relevance Determination (ARD) in kernel based

methods (MacKay 1998; Neal 2012). As an alternative method to deal with multi-dimentional

data, it is possible to concatenate feature vectors for multiple dimensions. Consider a

D-dimensional dataset having N data points X = (x1,x2, . . . ,xD) ∈ RN×D. If f is

an inference model such as linear regression, a composite model similar to Generalised

Additive Model (GAM) (Hastie 2017) f(X) =
∑D

d=1 fd(xd) can be composed. For in-

stance, consider the linear model f(x) = wϕ̂⊤(x; θ) with BBQ features ϕ̂ ∈ RN×2M and

corresponding coefficients w ∈ R1×2M . Then, the model for multidimensional data is

f(X) =
∑D

d=1 wdϕ̂
⊤(xd; θd) = W⊤Φ̂(X; Θ) where Φ̂(X; Θ) = ∥Dd=1ϕ̂(xd; θd) ∈ RN×2MD

and W = ∥Dd=1wd ∈ R1×2MD with ∥ indicating vector concatenation. Algorithmically, it is

possible to learn an individual quantile for each dimension and then concatenate corresponding

features to create a 2MD dimensional feature vector for the inference algorithm.

Although the aforementioned treatments to handle multi-dimensional data are straightforward,

note that they cannot capture correlation between covariates. Though the out of scope of

this chapter, the parameterised quantile representation naturally opens the door to explicitly

representing multidimensional variations using copulas that are widely studied in statistics

(Nelsen 2007).

5.6 Summary

In summary, this chapter introduces a novel technique to automatically represent and learn

highly expressive kernels that fit the data best. To do this, we propose a parameterised a
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quantile function, that represents an arbitrary kernel in its Fourier domain, and then learn

its parameters using stochastic gradient descent. With the use of Bayesian linear regression,

we have shown that inducing a kernel by a quantile function allows one to additionally

take advantage of Quasi-Monte Carlo sampling with Random Fourier features to reduce

approximation error.

We demonstrated the efficacy of the propose BBQ features on a large set of synthetic and

real datasets highlighting the various possibilities that a flexible kernel allows. Our algorithm

performed competitively with similar state-of-the-art nonparametric and parametric kernel

learning methods from the literature. One burden that remains on our quest to relax kernel

learning to theme of let the data speak is that while arbitrarily flexible, the BBQ parameterisa-

tion is still only approximating a stationary kernel. That is to say, it is fundamentally unable

to correctly represent nonstationary processes. This motivates us towards the next chapter

which aims to address this limitation through a novel nonstationary kernel learning technique.



CHAPTER 6

Warped Input Measures for Nonstationary Kernel Learning

In this final chapter we establish a general form of explicit, input-dependent, measure-valued

input warpings for learning nonstationary kernels. This chapter expands upon the capabilities

of the previous Chapter 5 by addressing kernel learning to nonstationary representations while

remaining in the paradigm of kernels in the Fourier domain. While stationary kernels are

ubiquitous and simple to use, they struggle to adapt to functions that vary in smoothness with

respect to the input. The proposed learning algorithm warps inputs as conditional Gaussian

measures that control the smoothness of a standard stationary kernel resulting in an implicit

nonstationary kernel representation. This construction allows us to capture nonstationary

patterns in the data while providing an intuitive inductive bias. The resulting method is based

on sparse spectrum Gaussian processes, enabling closed-form solutions, and is extensible

to a stacked construction to capture more complex patterns. The method is extensively

validated alongside related algorithms on synthetic and real-world datasets. We demonstrate

a remarkable efficiency in the number of parameters of the warping functions in learning

problems with both small and large data regimes.

6.1 Introduction

Many interesting real-world phenomena exhibit characteristics, such as varying smoothness,

across their domain. Simpler phenomena that do not exhibit such variation may be called

stationary. The typical kernel-based learner canonically relies on a stationary kernel function,

a measure of ‘similarity’, to define the prior beliefs over the function space. Such a kernel,

however, cannot represent desirable nonstationary nuances, like varying spatial smoothness
97
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and sudden discontinuities. Restrictive stationary assumptions do not generally hold and limit

applicability to interesting problems, such as robotic control and reinforcement learning (Ng

et al. 2006), spatial mapping (Ton et al. 2018), genetics (Friedman et al. 2000), and Bayesian

optimisation (Martinez-Cantin 2017). One obvious way to alleviate the problem of finding

the appropriate kernel function given one’s data is hyperparameter optimisation. However, for

a GP with a stationary kernel, even if the optimal set of hyperparameters were found, it would

be insufficient if our underlying response were fundamentally nonstationary with respect to

the observed inputs. This provides a general motivation for the algorithmic contribution of

this work.

In this chapter we propose a method for nonstationary kernel learning, based on sparse spectral

kernel representations. Our method is linear in complexity with respect to the number of data

points and is simultaneously able to extract nonstationary patterns. In our setup, we consider

the problem of learning a function f : X → R as a nonstationary Gaussian process. We

decompose f as:

f(x) = E[u ◦m(x)|u] , x ∈ X , (6.1)

where ◦ denotes function composition, u : Q → R is a function over a latent space Q, and

m(x) represents the warped input. If u has covariance function ku, the resulting f follows a

GP with covariance kf (x,x′) = E[ku(m(x),m(x′))]. The latter constitutes a nonstationary

kernel.

To model u as a stationary GP on Q, we propose a formulation for m : X → Q, which is

based on a locally affine stochastic transform:

m(x) = G(x)x+ h(x) , (6.2)

where G(x) and h(x) are Gaussian processes. Intuitively, the matrix G scales the inputs,

with a similar effect to what length-scales have on stationary kernels (Rasmussen 2004), but

which now varies across the space, while h allows for arbitrary shifts.

The conditional expectation (6.1) also corresponds to the composition of a function on Q

with a measure (Bauer 1981) on Q, which is actually a function of x ∈ X . In our case,
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the measure-valued warpings are Gaussian probability measures, which we parameterise as

Gaussian process conditioned on pseudo-training points. In particular, we use sparse spectrum

Gaussian processes (Lázaro-Gredilla et al. 2010) due to their scalability and availability of

closed-form results for Gaussian inputs (Pan et al. 2017).

6.2 Contributions

This chapter focuses on the problem of learning nonstationary spectral approximations

of kernel embeddings. While most kernels and their approximations assume stationary

underlying processes this is an often unrealistic assumption to hold for real-world data in

general. Furthermore, it is often difficult to learn approximations of conventional nonstationary

kernel functions simply because they are non-separable. We will demonstrate a way to unify

conventional stationary spectral kernel approximations with input warpings. Specifically,

we show it is possible to effectively bootstrap off simpler stationary kernels composed with

input-dependent warping functions. To this end we present the following contributions:

(1) We propose a new method to learn nonstationary Gaussian process models via input

warping. We introduce the use of a measure-valued, self-supervised and input-

dependent warping function as a natural improvement for sparse spectrum Gaussian

processes. We term this sparse spectrum warped input measures (SSWIM);

(2) We propose a self-supervised training scheme for representing the warping function

allowing us to cleanly represent the latent measure valued warping; and

(3) We propose a simple extension to multiple levels of warping by propagating mo-

ments.

6.3 Related Work

Foundational work (Higdon, Swall and Kern 1999; Paciorek and Schervish 2004) on kernel-

based nonstationarity necessitated manipulation of the kernel function with expensive in-

ference procedures. Recent spectral representation of kernel functions have emerged with
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Bochner’s theorem (Bochner 1932). In this paradigm, one constructs kernels in the Fourier

domain via random Fourier features (RFFs) (Rahimi and Recht 2007a; Rahimi and Recht

2008) and extensions for nonstationarity via the generalised Fourier inverse transform (Samo

and Roberts 2015; Remes, Heinonen and Kaski 2017; Ton et al. 2018; Sun et al. 2018). While

general, these methods suffer from various drawbacks such as expensive computations and

overfitting due to over-parameterised models (Ton et al. 2018).

More expressive modelling frameworks (Calandra et al. 2016; Wilson, Knowles and Ghahramani

2012; Sampson and Guttorp 1992; Anderes, Stein et al. 2008) have played a major role in

expanding the efficacy of kernel-based learning. Perhaps the most well known in the recent

literature is Deep Kernel Learning (Wilson et al. 2016) and the deep Gaussian process (Dami-

anou and Lawrence 2013) and heretofore its various extensions (Salimbeni and Deisenroth

2017; Cutajar et al. 2017; Bui et al. 2016). While functionally elegant, methods like DKL and

DGP often rely on increasing the complexity of the composition to produce expressiveness

and are often unsuitable or unwieldy in practice occasionally resulting in performance worse

than stationary inducing point GPs (Salimbeni and Deisenroth 2017). We remark a notable

difference between DGP and SSWIM is one should interpret our pseudo-training points as

hyperparameters of the kernel as opposed to parameters of a variational approximation.

Simple bijective input warpings were considered in (Snoek et al. 2014) for transforming

nonstationary functions into more well behaved functions. In (Heinonen et al. 2016) the

authors augment the standard GP model by learning nonstationary data-dependent functions

for the hyperparameters of a nonstationary squared-exponential kernel (Gibbs 1997). Their

method, however, is limited to low dimensions. More recently, the work of (Hegde et al. 2019)

has explored a dynamical systems view of input warpings by processing the inputs through

time-dependent differential fields. Less related models presented in (Wang and Neal 2012;

Dutordoir et al. 2018; Snelson, Ghahramani and Rasmussen 2004) involve output warping

non-Gaussian likelihoods and heteroscedastic noise.
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6.4 Preliminaries

We start by reviewing relevant background with regards to kernel methods for Gaussian

process regression. In particular, we focus on the sparse spectrum approximation to GPs

(Lázaro-Gredilla et al. 2010), which we use to formulate nonstationary kernels.

6.4.1 Gaussian Processes

As described in Section 2.2.2, GPs are a method for representing a distribution over functions.

We provide the definition here for completeness. Suppose our goal is to learn a function

f : RD → R given IID data D = {xi, yi}Ni=1, with each data pair related through

y = f(x) + ϵ, ϵ ∼ N (0, σ2
n), (6.3)

where ϵ is IID additive Gaussian noise. A Gaussian process is a distribution on functions

f over an input space X ⊆ RD such that any finite set of inputs x1, ...,xN ∈ X produces a

multivariate normal distribution of response variables fN := [f(x1), ..., f(xN)]
T:

fN ∼ N (mN ,KN) , (6.4)

where mN = m(x1, ...,xN) is the mean vector, and KN = {k(xi,xj)}i,j with kernel k.

6.4.2 Approximate GP in Feature Space

Considering the inner product structure ⟨·, ·⟩ we can represent the kernel as k(x,x′) =

⟨ϕ(x), ϕ(x′)⟩H for x,x′ ∈ X , where ϕ : X 7→ H is a mapping from the input space X into

potentially infinite-dimensional Hilbert space H. Perhaps the most popular kernel is the

stationary squared-exponential kernel k(x,x′) = σ2 exp(−2γ2∥x − x′∥22) with parameters

σ2 and γ2. It is also well known that it is possible to combine standard kernels to arrive at

more elaborate kernel structures (Duvenaud et al. 2013). Full GP inference is a challenging

problem naively occurring in O(N3) complexity as a consequence of having to invert an

(N,N) Gram matrix. Much work as gone into scaling GP inference using pseudo-inputs or
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inducing points in which we avoid operating on the full data space and work with a lower

complexity subset of size M where M ≪ N (Hensman, Fusi and Lawrence 2013b). An

alternative perspective on approximate GP inference is to consider the feature space view

of the kernel function using Bochner’s theorem (Bochner 1932). Under this view, random

Fourier features (Rahimi and Recht 2007a; Rahimi and Recht 2008) decompose the kernel

function in terms of Fourier features based on a finite approximation to the kernel’s spectrum.

As presented by (Rahimi and Recht 2007a), the Fourier transform of any shift-invariant

positive-definite kernel k : RD × RD → R yields a valid probability distribution pk, so that k

is approximately:

k(x,x′) = Eω∼pk [cos(ω
T(x− x′))] ≈ ϕ(x)Tϕ(x′) , (6.5)

where ϕ corresponds to the approximate feature map:

ϕ(x) =

√
2

M

[
cos

(
ωT

1x
)
, . . . , cos

(
ωT

Mx
)
, sin

(
ωT

1x
)
, . . . , sin

(
ωT

Mx
)]
∈ R2M .

(6.6)

where ϕ(x) ∈ R2M . The Fourier interpretation of kernels has gained attention in recent

years because of the simplicity, solid theoretical basis (Sutherland and Schneider 2015;

Choromanski et al. 2018), and superiority in various applications (Rajeswaran et al. 2017).

Using the feature map above we are able to define an approximate GP termed the Sparse

Spectrum Gaussian Process (SSGP) (Lázaro-Gredilla et al. 2010).

DEFINITION 2. (Sparse Spectrum Gaussian Process) (Lázaro-Gredilla et al. 2010) The

Sparse Spectrum Gaussian Process (SSGP) is a GP with kernels defined on finite-dimensional

and randomised feature map ϕ,

k(x, x′) = ϕ(x)Tϕ(x′) + σ2
nδ(x− x′) (6.7)

where the function δ denotes the Kronecker delta.

The second additive term accounts for additive zero mean noise from (6.3). Due to the feature

map from (6.6), the SSGP is a Gaussian distribution over the feature weights w ∈ R2M . If
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we assume the weight prior is N (0, I), after conditioning on data D the posterior distribution

of w ∼ N (α, σ2
nA

−1), where:

α = A−1Φy, (6.8)

A = ΦΦT + σ2
nI, (6.9)

following from Bayesian Linear Regression (Bishop 2007). The design matrix Φ = [ϕ(x1), ....,ϕ(xN)]

and column vector y = [y1, ..., yN ]
T are given directly by the data D. The posterior distribu-

tion over the response y given an x is exactly Gaussian:

p(f(x)|x) = N
(
αTϕ(x), σ2

n∥ϕ(x)∥2A−1

)
, (6.10)

where we define ∥v∥2Σ := vTΣv. Multivariate outputs can be modelled as conditionally

independent GPs for each output dimension or jointly by encoding the covariance between

the outputs as a vector-valued GP (Alvarez, Rosasco and Lawrence 2011).

6.4.3 Kernels with Gaussian Inputs

Input warping methods for nonstationarity require some functional form of the warping. For

example in (Wilson et al. 2016) the warping is a deterministic neural network, in (Snoek

et al. 2014) it is a deterministic monotonic function, and in (Hegde et al. 2019) the warping is

defined through a stochastic differential equation. In contrast, with our method, we propose to

explicitly learn an operator-valued input-dependent function G that combines with the original

input data before being passed as uncertain inputs into an SSGP. The only difference is that

we also wish to propagate any uncertainty on the warping function into the top-level function

u which will produce the final predictions taking that underlying uncertainty into account. In

our formulation of nonstationary kernel, we take form the kernel-based on expectations with

respect to distributions conditioned on the inputs. In the sparse-spectrum formulation, the

expected kernel is simply the result of the inner product between the expected feature map of

each input, due to the linearity of expectations. For the case of Gaussian inputs, results by

(Pan et al. 2017) then allow us to compute the expected feature map in closed form. For a



104 6 WARPED INPUT MEASURES FOR NONSTATIONARY KERNEL LEARNING

Gaussian input x̃ ∼ N (x̂,Σ), we have:

E[cos(ωTx̃)] = exp

(
−1

2
∥ω∥2Σ

)
cos(ωTx̂) , (6.11)

E[sin(ωTx̃)] = exp

(
−1

2
∥ω∥2Σ

)
sin(ωTx̂). (6.12)

What is important to note here is the exponential constant which scales the standard feature

by a value proportional to the uncertainty in the warped input. That is to say, expectations that

take on larger (predictive) uncertainties will be smaller than if we did not take this uncertainty

into account.

6.5 Sparse Spectrum Warped Input Measures

In this section we introduce the main contribution: sparse spectrum warped input measures

(SSWIM). The key idea in our work is based on two crucial steps. First, we construct a

stochastic vector-valued mapping modelling the input warping m : X → Q, where X ⊆ RD

represents the raw input space andQ is the resulting warped space. A top-level GP modelling

u : Q → R then estimates the output of the regression function f : X → R. To learn the

warping, each lower-level SSGP is provided with pseudo-training points, which are learned

jointly with the remaining hyper-parameters of both GP models.

It is important to note that the pseudo-training points are free parameters of the latent warping

function and therefore hyperparameters of the top-level function. Furthermore, while our

construction and implementation assumes a pseudo-training dimensionality equal to that of

the original data dimX = dimQ, nothing preventing us from embedding the input warping

into a lower dimQ ≪ dimX or higher dimQ ≫ dimX dimensional manifold.

6.5.1 Warped Input Measures

To model and propagate the uncertainty on the warping operator G through the predictions,

we start by modelling G : X → L(X ) as a Gaussian process. Then every linear operation

on G results in another GP (Jidling et al. 2017), so that m(x) = G(x)x + h(x), for a
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deterministic x ∈ X , is Gaussian. Similarly, as expectations constitute linear operations, the

expected value of the GP u under the random input given by the warping is also Gaussian

(Oliveira, Ott and Ramos 2019). Marginalising m out of the predictions, i.e. inferring the

expected value of f under the distribution of m, f̂(x) = E[u ◦m(x)|u], we end up with a

final GP, which has analytic solutions.

From Section 6.4.3, the uncertain-inputs predictions from û = E[u(x̃)|u] for m(x) ∼

N (m̂(x),Σm(x)) are given by the SSGP predictive equations in (6.10) using the expected

feature map for E[ϕ(m(x))]. Equation (6.12) then allows us to compute E[ϕ(m(x))] in

closed form for a given mean m̂(x) and covariance matrix Σm(x). The general form of the

covariance matrix Σm(x) for m(x) involves dealing with a fourth order tensor describing

the second moment of G. For this work, however, we consider a particular case with a more

elegant formulation and yet flexible enough to accommodate for a large variety of warpings.

LEMMA 1. Let v ∼ N (v̂,Σv) denote a Gaussian random vector and x ∈ RD an arbitrary

point. Then z := v ⊙ x is Gaussian, z ∼ N (ẑ,Σz), with mean and covariance matrix given

by:

ẑ = v̂ ⊙ x (6.13)

Σz = x1T ⊙Σv ⊙ 1xT (6.14)

Let G(x)x := g(x)⊙ x, where ⊙ denotes the element-wise product and g is a vector-valued

Gaussian process. This type of warping is equivalent to G(x) map to a diagonal matrix. The

mean and covariance matrix of the warped input m(x), can be derived as:

m̂(x) = ĝ(x)⊙ x+ ĥ(x) (6.15)

Σm(x) = x1T ⊙Σg(x)⊙ 1xT +Σh(x) , (6.16)

where ĝ(x) and Σg(x) are the predictive mean and covariance, respectively, of the GP

defining g, while ĥ(x) and Σh(x) are the same for the GP on h.
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Algorithm 1 Sparse Spectrum Warped Input Measures

Input: {X,y}
Output: θ = {θu,θg,θh,Xg,Yg,Xh,Yh}
Initialise pseudo-training points {Xg,Yg}, {Xh,Yh}
for t ∈ {1, . . . , T} do

Fit g and h to {Xg,Yg}, {Xh,Yh}
Compute m̂ and Σm for X
Fit u using expected feature map
Calculate log p(y|θ)
Update gradients and take new step.

end for

PROOF. The element-wise vector product, which is the Hadamard product for single-

column matrices, is symmetric and linear, i.e. a⊙b = b⊙a and a⊙ (b+c) = a⊙b+a⊙c,

for any a,b, c ∈ RD. By the linearity of the expectation, we then have E[z] = E[v ⊙

x] = E[v] ⊙ x. From the properties of the Hadamard product, one can also show that

a(b ⊙ c)T = abT ⊙ 1cT, where 1 is a vector of 1’s. Therefore, the covariance matrix

Σz := V[z] = E[(z− ẑ)(z− ẑ)T], is given by:

V[z] = E[((v − v̂)⊙ x)((v − v̂)⊙ x)T]

= x1T ⊙ E[(v − v̂)(v − v̂)T]⊙ 1xT

= x1T ⊙ V[v]⊙ 1xT ,

(6.17)

which concludes the proof. □

6.5.2 Latent Self-supervision With Pseudo-training

In order to fully specify our latent function, we utilise pseudo-training pairs {Xg,Yg} and

{Xh,Yh}, somewhat analogous to the well known inducing-points framework for sparse

Gaussian processes (Titsias 2009). Conditioning on these virtual observations allows us to

implicitly control the Gaussian measure determined by the warping SSGP.

We model the multiplicative warping g : RD → RD using a standard, multi-output, SSGP

that is analytically fit on virtual pseudo-training points {Xg,Yg}. Assuming coordinate-wise
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output independence, we model g as g(x) ∼ N (ĝ(x),Σg(x)), where:

ĝ(x) = ϕg(x)
TA−1

g ΦgYg (6.18)

Σg(x) = σ2
n,gϕg(x)

TA−1
g ϕg(x)I , (6.19)

with Φg := Φg(Xg) as the matrix of Fourier features for the pseudo-inputs Xg, and

Ag = ΦgΦ
T
g + σ2

n,gI. The pseudo-inputs Xg are initially sampled uniformly across the

data domain, Xg ∼ U(min(X),max(X)). The pseudo-training targets Yg are initialised

[Yg]i,j ∼ N (1, σ2
γ) where σ2

γ mimics a prior variance for the latent warping function. The

mean at 1 keeps the initial warping close to identity.

We adopt a similar construction for the GP on the additive component of the warping h.

However, we initialise the pseudo-training targets Yh with zero-mean values [Yh]i,j ∼

N (0, σ2
γ), so that we favour a null effect initially. In summary, the complete expected kernel

is thus given as:

kf (x,x
′) := E[ϕ(m(x)]TE[ϕ(m(x′))] , (6.20)

where the expectation is taken over m, whose distribution is recursively defined by equations

Equation (6.15) to Equation (6.19).

6.5.3 A Layered Warping

We have thus far considered a single warping m of the input x. It is natural to ask: can

we warp the warpings? A simple way to answer this is to revisit how we interpret a single

warping: we are transforming the original input space, with which our response varies in a

nonstationary way, to a new space a GP with a stationary kernel can easily represent. We

could thus intuit a warping of a warping to mean that we are transforming the first level of

warping to a second one to which our response variable is simply more stationary than if we

had just relied on the first warping alone. We present now an extension to SSWIM which lets

us perform this measure value warping of a measure valued warping. Let us begin by defining

the J th warping as:

m(J)(x(J−1)) = g(J)(x(J−1))⊙ x(J−1) + h(J)(x(J−1)), (6.21)
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where:

x(J−1) = m(J−1)(x(J−2)) , J ≥ 2 (6.22)

While multiplication of a known vector by a Gaussian random matrix keeps Gaussianity, after

the first warping layer, the product of two Gaussians is no longer Gaussian in (6.21). For

the layered formulation, we therefore apply moment matching to approximate each layer’s

warped input as a Gaussian x(J) ∼ N (x̂(J),Σ(J)
x ). Making independence assumptions on

(6.21) and applying known results for the Hadamard product of independent random variables

(Neudecker, Liu and Polasek 1995), we have:

x̂(J) = ĝ(J) ⊙ x̂(J−1) + ĥ
(J)

(6.23)

Σ(J)
x = Σ(J−1)

x ⊙Σ(J)
g +Σ(J−1)

x ⊙ ĝ(J)ĝ(J)T +Σ(J)
g ⊙ x̂(J−1)x̂(J−1)T +Σ

(J)
h , (6.24)

where g(J) ∼ N (ĝ(J),Σ(J)
g ) and h(J) ∼ N (ĥ

(J)
,Σ

(J)
h ) are the SSGP predictions using the

expected feature map (Equation (6.12)) of the previous layer’s output x(J−1).

The layered warping allows for more complex input transformations. The drawback, however,

is an increased computational cost due to the additional hyper-parameters, i.e. the pseudo-

training points. In addition, we are taking a non-linearly transformed Gaussian input, which

leads to a non-Gaussian result, and moment-matching it with a Gaussian. This distribution

mismatch leads to compounding effects across several layers which could make the top-level

Gaussian tend to a high-variance flat distribution. However, the training process should

compensate for this increase in variance by adjusting the pseudo-training points according to

a loss that takes the data into account, e.g. the GP marginal likelihood.

6.5.4 Joint Training

The goal of optimisation in learning our warping with uncertainty is to quickly discover

hyper-parameters whose models explain the variation in the data. We also want to avoid

pathologies that may manifest with an arbitrarily complex warping function. We do this

by minimising the model’s negative log-marginal likelihood. Given a set of observations
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D = {xi, yi}Ni=1, we learn the hyper-parameters θ by minimising the negative log-marginal

likelihood:

− log p(y|θ) = 1

2σ2
n

(yTy−yTΦ̂
T

FA
−1
F Φ̂Fy)+

1

2
log|AF |−

D

2
log σ2

n+
M

2
log 2πσ2

n , (6.25)

where Φ̂F is the matrix whose rows to expected feature maps for the top-level SSGP, i.e.

[Φ̂F ]i = Em[ϕF (m(xi))]
T, and |AF | denotes the determinant of AF . The expectation is

taken under the warping m, whose parameters are computed from the predictive mean and

covariance functions of the lower-level GPs (cf. (6.15) and (6.16)), and available in closed

form via Equation (6.12).

6.5.5 Computational Complexity

The top-level function u and two warping functions G and h all inherit the complexity of

SSGP with and without predictions under uncertainty (Pan et al. 2017) which isO(nm2+m3)

for n samples and m features. For multiple warping levels this cost is multiplied by the

number of levels J therefore the overall complexity remains O(nm2 +m3). In practice m is

very small with m < 1000. For SSWIM, a single pseudo-training point has dimensionality D

which is the same as the raw input x. Therefore G and h consist of D ×NG and D ×Nh

pseudo-training points respectively. The functions u, G and h contain model and kernel

hyperparameters of size |θu|, |θG| and |θh| respectively which should each not exceed much

more than D for conventional stationary kernels.

6.5.6 On Function Classes of the Warping

It has been remarked in prior work on deep GP models that degenerate covariance matrices

may arise after consecutive compositions (Duvenaud et al. 2014; Hegde et al. 2019). Recent

works, such as (Hegde et al. 2019; Ustyuzhaninov et al. 2020), that employ a dynamical

systems based formulation can demonstrate improved uncertainty propagation under an

injective warping (by maintaining monotonic constructions) as opposed to conventional deep

GP models (Damianou and Lawrence 2013). Indeed our proposed SSWIM is not guaranteed
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to be injective and falls into the most general class of functions. An interesting consequence

of this is that one could argue injectivity is not necessarily ideal for learning latent mappings

and furthermore it certainly is not a necessary condition for preventing collapse of uncertainty

although such phenomena may be correlated. To comment further, by relaxing from certain

function types it is plausible for multiple different input values in a prior warping layer to

warp into the same input location in the next layer; i.e. in a surjective function. This may

ultimately be a desirable property – it suggests compressiblity of the input domain – in that

there might be an underlying non-monotonic, nonstationary covariance function at play in

the latent representation. Such expressiveness would not be able to be directly captured by a

purely injective mapping. Injectivity and even bijectivity could be enforced as an additional

constraint and this perspective undoubtedly deserves future investigation.

6.5.7 On Kernel Priors

One may enquire about the choice of kernels for latent and top level functions. Our meth-

odology is, generally speaking, "kernel prior agnostic" in the sense that the nonstationarity

is accomplished through the affine warpings. We remark that kernel choice undoubtedly

may play a role in performance. One could indeed use extremely expressive kernels, like

the stationary spectral mixture (Wilson and Adams 2013) or quantile kernel representations

(Tompkins et al. 2019). However, to restrict the space of analysis to measure the effect of the

warping construction, we aimed to forgo kernel discovery.

6.6 Experiments

We experimentally validate SSWIM alongside various state of the art methods in both small

and large data regimes as well as expand upon the intuition in Section 6.6.1 by examining

specific aspects of the model. Section Section 6.6.2 analyses computational complexity and

model performance with respect to the pseudo-training points. We investigate increasing

the number of warping levels in Section 6.6.3. Large scale comparison alongside various

algorithms is presented in Section 6.6.4.
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Figure 6.1. Visualisation of SSWIM learning an input warping. (a) Noisy
training data. Going left to right, the signal observations exhibit abrupt steps,
periodic, and spatial frequency nonstationarity. (b) The learned warping
functions. (c) The training data after input warping, and (d) Final prediction
with respect to the warped inputs. The key observation here is how the spatially
varying frequencies and steps in the original training data from (a) have been
transformed to (c) where the warped data varies in a more uniform (stationary)
manner.

Table 6.1. RMSE and MNLP metrics for various real-world datasets.

(D,N) (8, 1030) (16, 5875) (15, 17379) (379, 53500) (81, 21263) (9, 45730) (77, 583250) (90, 515345)

Method concrete parkinsons bikeshare ct slice supercond protein buzz song

R
M

SE
(×

1
0
−
1
)

SSWIM1 3.05 ± 0.26 7.63 ± 0.20 0.13 ± 0.04 0.46 ± 0.02 3.44 ± 0.14 5.91 ± 0.07 2.98 ± 0.04 8.12 ± 0.05
SSWIM2 3.01 ± 0.31 7.55 ± 0.15 0.11 ± 0.03 0.23 ± 0.01 3.02 ± 0.04 5.80 ± 0.08 2.40 ± 0.01 7.97 ± 0.03
DSDGP 5.88 ± 1.24 7.94 ± 0.20 0.33 ± 0.55 4.81 ± 1.18 5.10 ± 0.84 5.96 ± 0.06 3.65 ± 0.75 8.46 ± 0.03
DKL 3.18 ± 0.38 8.84 ± 0.74 0.24 ± 0.03 0.52 ± 0.08 3.46 ± 0.18 7.15 ± 1.10 4.11 ± 3.33 16.66 ± 8.14
RFFNS 3.46 ± 0.24 8.15 ± 0.15 0.05 ± 0.01 4.39 ± 0.27 3.85 ± 0.05 6.87 ± 0.06 5.70 ± 0.84 8.35 ± 0.03
SVGP 3.32 ± 0.26 8.14 ± 0.12 0.06 ± 0.03 1.16 ± 0.02 4.06 ± 0.05 7.32 ± 0.08 9.98 ± 0.02 12.19 ± 0.18
SGPR 5.55 ± 0.58 7.86 ± 0.22 0.67 ± 0.18 1.79 ± 0.04 4.27 ± 0.06 6.45 ± 0.07 2.89 ± 0.02 8.40 ± 0.04
RFFS 3.33 ± 0.30 8.24 ± 0.17 0.03 ± 0.00 2.34 ± 0.05 3.89 ± 0.06 6.91 ± 0.07 3.78 ± 0.14 8.36 ± 0.04

M
N

L
P

(×
1
0
−
1
)

SSWIM1 10.22 ± 4.15 11.95 ± 0.47 -11.89 ± 0.15 -11.24 ± 0.05 3.55 ± 0.32 8.95 ± 0.12 2.03 ± 0.13 12.08 ± 0.05
SSWIM2 5.19 ± 2.59 12.50 ± 0.44 -11.78 ± 0.07 -11.79 ± 0.02 2.82 ± 0.29 8.82 ± 0.15 -0.09 ± 0.04 11.93 ± 0.04
DSDGP 11.02 ± 1.06 11.91 ± 0.24 -23.28 ± 8.29 6.62 ± 2.61 7.36 ± 1.62 9.04 ± 0.10 3.80 ± 2.02 12.52 ± 0.04
DKL 7.69 ± 0.20 13.17 ± 1.12 6.82 ± 0.01 6.83 ± 0.01 7.76 ± 0.10 11.02 ± 1.53 9.01 ± 4.65 42.64 ± 44.77
RFFNS 3.31 ± 0.45 12.18 ± 0.18 -11.97 ± 0.00 5.95 ± 0.66 4.66 ± 0.12 10.39 ± 0.08 8.78 ± 1.87 12.39 ± 0.04
SVGP 2.83 ± 0.56 12.21 ± 0.14 -27.70 ± 1.24 -5.98 ± 0.13 5.32 ± 0.12 11.10 ± 0.09 63.31 ± 3.44 18.02 ± 0.09
SGPR 8.48 ± 2.10 12.39 ± 0.30 -13.67 ± 0.98 -3.14 ± 0.26 5.58 ± 0.10 10.05 ± 0.13 1.11 ± 0.12 11.97 ± 0.07
RFFS 3.05 ± 0.96 12.29 ± 0.20 -11.98 ± 0.00 -0.33 ± 0.22 4.79 ± 0.13 10.45 ± 0.09 4.41 ± 0.37 12.40 ± 0.05
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Figure 6.2. Performance in RMSE and MNLP as the number of pseudo-
training points increases.

For every quantitative experiment, we report the mean and standard deviation over ten repeats.

Metrics are presented in the standardised data scale. In all experiments the Matern 3
2

is used

as the base kernel. For performance evaluation we use the test Root Mean Square Error

(RMSE) and test Mean Negative Log Probability (MNLP). These are defined as RMSE =√
⟨(y∗j − µ∗j)2⟩ and MNLP = 1

2
⟨(y∗j−µ∗j

σ∗j
)2+log σ2

∗j+log 2π⟩ where y∗j is the true test value,

and µ∗j and σ2
∗j are the predictive mean and variance respectively for the j th test observation.

Mean is denoted as ⟨·⟩.

6.6.1 Inductive Bias and a Geometric Interpretation

An intuitive interpretation of SSWIM is by imagining it as learning a conditional affine

transformation. The quintessential affine transformation of some vector x is described as
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Ax + b for some multiplication matrix A and addition vector b. Such transformations are

typically interpreted geometrically (González and Woods 2008) as translation, rotation,

reflection, scale and shear. SSWIM learns a conditional affine map that depends on the

input. I.e. A and b become maps A(x) and b(x). By directly applying a learned warping

to the original input data we transform the inputs into a locally Euclidean manifold which

ultimately preserves any structure with respect to the input resulting in a convenient inductive

bias. Observe in Figure 6.1 (c) how we have non-uniformly "stretched out" out the left and

rightmost parts of the original data in (a) to produce a new warped dataset. What was original

spatially nonstationary becomes spatially homogeneous resulting excellent prediction as in

Figure 6.1 (d).

6.6.2 How Many Pseudo-training Points?

To understand the overall sensitivity of our method we visualise the predictive performance

as a function of the number of pseudo-training points. Figure 6.2 shows performance, in log

scale, with respect to the number of pseudo-training points on real-world datasets. While

we observe a trending improvement, very few pseudo-targets are required to get excellent

performance, even in much higher dimensional problems like superconductivity (D = 81)

and ct slice (D = 379), suggesting that there is significant expressiveness in the underlying

warping function.

We remark that a possible drawback of pseudo-training points and fitting a stochastic model

over those points is the question of how to set the prior of their locations. Furthermore, how do

we initialise them? To answer this, it is natural to set G and h to be fit to noisy pseudo-targets

with mean I and 0 respectively. This has a nice interpretation as the matrices corresponding

to the identity operations of an affine transformation.

We now make an observation of our framework in terms of the required hyperparameter

complexity to perform learning. We consider the highly performing deterministic warping

approach of Deep Kernel Learning (Wilson et al. 2016) (DKL). In DKL a large neural network

is used to encode the input data before the outputs are passed into a standard GP. The neural
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network is completely deterministic. As seen in Table 6.1, DKL offers similar performance to

our method and is among the overall best performing. The default network structure is (input,

output) layer dimensionalities of [(D, 1000), (1000, 500), (500, 50), (50, 2)]. In addition to

this, there are GP hyperparameters. If we probe the parameter count for the model used for

the airfoil dataset, we find there are a total of 531656 free parameters for the optimiser to tune.

The majority of these come from the neural network. For comparable results of our method

SSWIM, we use 512 features for both the warped mapping and top-level predictive function.

The total number of free parameters including additional kernel and SSGP hyperparameters

accounts to 3510 which is more than 2 orders of magnitude fewer parameters for similar

performance.

6.6.3 Increased Warping Depth

In this experiment we evaluate the predictive performance of SSWIM as we increase the

number of levels of consecutive input warping from 0 to 3. A depth of 0 simply corresponds

to the stationary SSGPR specification. Figure 6.3 summarises the results. For all the datasets

we can see that adding just a single level of input warping increases predictive performance.

Adding additional levels of warping seems to consistently improve performance however it

adds additional variance to all results which could be explained by the additional complexity

required for optimisation.

6.6.4 Real Datasets

For completeness, we specify for each dataset used, the data dimensionality and sample size,

the raw data source, the modelling objective (i.e. the target) as defined for the original problem,

and any target variable pre-processing excluding standardisation. The dimensionality D is

reported for the inputs X (i.e. excluding the target variable y). All problems are single output

regression tasks. Number of samples N is reported for the entire dataset before train/test

splitting is applied. Note that we do not alter the raw data files and pre-processing is applied

as defined and in the provided supplementary code as per dataloader.py.
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Figure 6.3. Performance in RMSE and MNLP as the number of warping levels
increases.

Table 6.2. Summary of datasets used.

Name D N Preprocessing Target Source

elevators 18 8751 None goal (Torgo 2019)
airfoil 5 1503 None sound pressure in decibels (Dua and Graff 2017)
concrete 8 1030 None compressive strength (Dua and Graff 2017)
parkinsons 16 5875 Drop the first 5 columns as they are not used in the original problem total udpr (Dua and Graff 2017)
bikeshare 15 17379 None number of bike shares per hour (Dua and Graff 2017)
ct slice 379 53500 Drop Patient ID. Drop columns which have constant value throughout entire dataset. reference (relative location) (Dua and Graff 2017)
supercond 81 21263 None critical temperature (Dua and Graff 2017)
protein 9 45730 log(1 + y) transform for target y rmsd (Dua and Graff 2017)
buzz 77 583250 log(1 + y) transform of target y mean number of active discussion (nad) (Dua and Graff 2017)
song 90 515345 None year of song release (Dua and Graff 2017)
abalone 9 4177 None number of rings (Dua and Graff 2017)
creep 30 2066 None rupture stress (Brun and Yoshida n.d.)
ailerons 40 7154 None goal (Dua and Graff 2017)

We compare our model on various real-world datasets including multiple regression tasks

(Dua and Graff 2017; Torgo 2019; Cole et al. 2000). All datasets are standardised using the

train set. We use 2
3

of the samples for training and the remaining 1
3

for testing. We compare

multiple related algorithms alongside our proposed method SSWIM using both one level of

warping (SSWIM1) and two levels of warping (SSWIM2), Deep Kernel Learning (Wilson
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et al. 2016) (DKL), SSGP with stationary random fourier features kernel (RFFS), SSGP with

nonstationary kernel features (RFFNS) with freely variable mean and width for the Matern 3
2

spectral frequencies (Remes, Heinonen and Kaski 2017; Ton et al. 2018), Sparse Gaussian

Process Regression (SGPR) (Titsias 2009), Sparse Variational Gaussian Process (SVGP)

(Hensman, Matthews and Ghahramani 2015), and Doubly Stochastic Deep GP with 2 layers

(DSDGP) (Salimbeni and Deisenroth 2017). All experiments were performed on a Linux

machine with a single Titan V GPU. We ran all methods for 150 iterations with stochastic

gradient descent and the library GPyTorch was used for DKL, DSDGP, SGPR, and SVGP. We

have provided implementations for RFFS, RFFNS, and SSWIM. PyTorch Code is provided at

https://github.com/MushroomHunting/SSWIM to reproduce the experimental results.

In the main experimental results given in Table 6.1 we can observe a consistent high per-

formance across all datasets for SSWIM in all tasks for the RMSE metric. For concrete,

parkinsons and bikeshare SSWIM is outperformed in MNLP by DSDGP, SVGP and RFFS

suggesting they were more capable of representing the predictive distribution rather than the

mean. For the remaining datasets SSWIM has performed extremely well, most notably on

the high dimensional problem ct slice. SSWIM2 with two levels of warping comprehensively

outperforms other methods as well as SSWIM1 which also performs competitively. These

results further corroborate the analysis given in Figure 6.2 and Figure 6.3.

6.6.5 Overfitting Analysis

We ran an overfitting analysis of SSWIM1 to observe the effect of over-optimising with

respect to the marginal likelihood. We ran with 256 features, 1280 pseudo-training points,

for 150 steps, with 10 repeats, and evaluated the test RMSE and test MNLP on the test set

for every single epoch of optimisation. The results are averaged with mean and standard

deviations of the training curves displayed in Figure 6.4. We can see that we are quite resistant

to overfitting except for RMSE in the elevators dataset and the MNLP in the concrete and

parkinsons datasets. The causes of this could be explained by the underlying flexibility

of the proposed method which allows the model to become overconfident in what it has

learned with respect to the data it has observed. In fact, we observed similar overfitting

https://github.com/MushroomHunting/SSWIM
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Figure 6.4. Empirical analysis of overfitting behaviour in SSWIM

behaviour for similar optimisation periods with DKL and DSDGP. This analysis leads to some

interesting observations and recommendations for future algorithm development in more

expressive GP methodologies: 1. the marginal likelihood is no panacea although it is easy

to think it is, and 2. other loss functions and training schemes, such as leave-one-out cross

validation may be equally or more effective. These issues corroborate long known discussions
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from (Rasmussen 2004) about the risk of overfitting from trusting the marginal likelihood

with standard optimisation procedures, however their importance seems to have been largely

ignored in evaluation of recent methodology innovations in the GP literature. We believe that

a more open discussion should be on the table for analysing the interplay between model

expressiveness and the effect this has on overfitting; this is especially pertinent to the GP

literature which has placed a large emphasis on the importance of the marginal likelihood has

a valid hyperparameter optimisation loss.

6.6.6 Relationship to Output Warped GPs

Table 6.3. MSE and MNLP metrics for comparison with Warped and Bayesian
Warped GPs (Lázaro-Gredilla 2012). MSE results for ailerons are ×10−8.

Method abalone creep ailerons

M
SE

GP 4.55 ± 0.14 584.9 ± 71.2 2.95 ± 0.16
BWGP 4.55 ± 0.11 491.8 ± 36.2 2.91 ± 0.14
MLWGP3 4.54 ± 0.10 502.3 ± 43.3 2.80 ± 0.11
MLWGP20 4.59 ± 0.32 506.3 ± 46.1 3.42 ± 2.87
SSWIM1 4.64 ± 0.13 483.69 ± 64.12 2.96 ± 0.08
SSWIM2 4.50 ± 0.11 279.86 ± 31.88 2.83 ± 0.06

M
N

L
P

GP 2.17 ± 0.01 4.46 ± 0.03 -7.30 ± 0.01
BWGP 1.99 ± 0.01 4.31 ± 0.04 -7.38 ± 0.02
MLWGP3 1.97 ± 0.02 4.21 ± 0.03 -7.44 ± 0.01
MLWGP20 1.99 ± 0.05 4.21 ± 0.08 -7.45 ± 0.08
SSWIM1 2.18 ± 0.01 4.45 ± 0.03 -7.24 ± 0.01
SSWIM2 2.17 ± 0.02 4.27 ± 0.03 -7.00 ± 0.02

A body of work has previously been developed under the title of warped Gaussian processes

(Snelson, Ghahramani and Rasmussen 2004). As noted, this contrasts from our modelling

problem because while we proceed to expand the GP’s capabilities to warp the inputs, the

WGP and extensions warps explicitly the output distribution of the Gaussian process. We now

juxtapose the efficacy of our input warping formulation with WGP by applying SSWIM to

the three challenging datasets abalone, creep, and ailerons experimented upon in (Snelson,

Ghahramani and Rasmussen 2004; Lázaro-Gredilla 2012).

Our results in Table 6.3 suggest that with SSWIM we are able to improve upon both WGP

and BWGP in MSE: marginal improvements for abalone and a significant improvement
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for creep with comparable performance in ailerons. Contrasting this, the output warping

methods outperform unanimously on the MNLP metric. This is expected because output

warping may allow one to capture non-Gaussian conditional distributions which an input

warping formulation cannot with a standard Gaussian process. The discussion we wish to

raise here is that both aspects of manipulating the inputs and outputs of a GP can result in

major improvements respectively across different metrics.

6.6.7 Parameter Variations

Pseudo-training points. For the "increasing number of pseudo-training points" experiment

we used 1 layer of warping with 256 features for both the warping and top-level predictive

functions.

Warping Depth. We used 256 features and 1280 pseudo-training points for all of the

experiments.

6.6.8 Pseudo-training Points in 2D

Figure 6.5 contains an interpretation of input warping and the pseudo-training points in higher

dimensions. We use the exponential 2D function from (Gramacy 2005) as a case where it is

intuitive to observe how SSWIM reacts to topological differences in the underlying function.

The function consists of a mostly flat surface with abrupt spiking occurring at a corner of the

domain as seen in Figure 6.5 (b). If we were to assume a homogeneous domain, and model

our data with a standard SSGP with stationary RBF kernel, the kernel’s hyperparameters

would be optimised to provide a homogeneous representation resulting in conflict between the

spiked area in the corner and flat areas elsewhere. By directly manipulating the input domain

with our warping, we are able to transform the input domain with a continuous warping that

consequently allows accurate representation as seen in Figure 6.5 (c).

The intuition and utility of our proposed pseudo-training as virtual training points is visualised

from a birds-eye view in Figure 6.5 (d). Before optimisation, we initialise these points



120 6 WARPED INPUT MEASURES FOR NONSTATIONARY KERNEL LEARNING

Figure 6.5. Visualisation of learned pseudo training points in 2D. We demon-
strate spatial nonstationarity with the exponential 2D function from (Gramacy
2005). (a) Noisy training data, (b) True function surface, (c) SSWIM predic-
tion conditioned on training data, (d) Learned pseudo-training point positions,
(e) Learned warping predictive mean for x1, (f) Learned warping predictive
mean for x2, (g) Learned warping predictive variance.

uniformly across the domain of the training space. It is clear that the learned positions of

the pseudo-training data have transformed their spatial locations away from uniform. At the

bottom left they appear to have clustered near the discontinuity of the test function while

in the remaining corners of the space the points have spread away. The predictive mean

of the learned warping function is thus visualised across the domain, for both x1 and x2,

in Figure 6.5 (e) and (f). Furthermore, Figure 6.5 (g) shows the predictive variance of the

warping function and we can see how a lower amount of spatial uncertainty arises both from

the noisy pseudo-targets as well as the pseudo-inputs from (d).
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6.7 Summary

We have proposed a crucial advance to the sparse spectrum Gaussian process framework to

account for nonstationarity through a novel input warping formulation. Our model analytically

incorporates complete Gaussian measures in the functional input warping with the concept

of pseudo-training data and latent self-supervision. We have further extended this core

contribution with the necessary results to extend the warping to multiple levels resulting in

higher levels of model expressiveness.

Experimentally, the methodology we propose has demonstrated excellent results in the

total number of hyperparameters for various low and high dimensional real-world datasets

when compared to deterministic and neural network based approaches but also performing

exceptionally well in contrast to deep Gaussian processes. Our model suggests an interesting

and effective inductive bias when interpreted as a learned conditional affine transformation.

This perspective invites a fresh take on how to discover more effective representations of

nonstationary data.



CHAPTER 7

Conclusion

On our journey to discover a more nuanced view of kernel representations and learning we

encountered two learning perspectives: i) explicitly local kernel placements, and ii) implicitly

global Fourier kernel. In the first perspective we accommodate a local approach where kernels

are explicitly located in the same space of the original data. The advantage of this approach is

that our kernels are both local, analytically computable, and highly intuitive. This allows us to

optimize individual kernels with respect to the known input space. Conversely, this approach

potentially suffers from the necessity to add kernels cumulatively if the convex hull of our

observation space increases which is the case for higher dimensional problems. In the second

approach, which uses Fourier representations of kernels, we approximate placing an infinite

amount of kernels and simply learn a vector of linear weights and a single kernel parameter.

Using this alternative spectral perspective on kernel representation, we observe that we can

exploit the distributional representation of the kernel. That is to say, we can completely

relax the conventional assumptions that canonical kernels impose and learn how to adapt the

distributional form of the kernel to data. Furthermore, while remaining in the spectral domain,

instead of adapting the kernel to fit the data, we demonstrate it is also possible to adapt the

data to fit the kernel.

7.1 Summary of Contributions

Our first major contribution in Chapter 3 was a probabilistic framework for joint learning

of model and kernel parameters in a unified model that can capture nonstationarity

in observations in an automatic manner. In this chapter we proposed a theoretical kernel
122
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learning framework that works well in practice to learn all parameters of a classification

model that uses explicitly placed kernels in the data domain. We showcased the method on

the contemporary problem of probabilistic occupancy mapping in robotics. Experimental

results validate the method with significant improvements in representational performance for

robotic mapping in highly unstructured and nonstationary environments.

In Chapter 4 we introduced a theoretical framework for online parameter transfer using

the theory of optimal transport. This contribution improved on the work from the previous

chapter by proposing a way to adapt previously trained kernel models, on demand and in

real time, using a parallelized decomposition of the learning problem. We demonstrated the

process on the domain adaptation paradigms of intra and inter-domain transfer in a robotic

mapping problem. The most important takeaway from this work was the realisation that

if there is a clear geometric coupling between observations and model then transforming

the online learning problem that is approximately equivalent to the original computationally

demanding optimization problem.

Switching gears to the spectral domain, in Chapter 5, we presented a new method that learns

quantile representations of generalised stationary kernels in the Fourier domain. We

introduced a relaxation of an approximate Fourier representation of a kernel that adapts to

the observed data. We additionally showed that the quantile representation naturally allows

for improved approximation efficiency through quasi-Monte Carlo integral sampling. We

validated the method on various datasets and problems that exhibit complex phenomena

like pseudo-periodicity that cannot be modelled with conventional stationary kernels within

limited data.

Finally, in Chapter 6 we closed the set of contributions with an approach to learning non-

stationary approximate Gaussian process models via input warping. We introduced an

intuitive measure-value input-dependent warping function alongside its multi-level warp-

ing extension by propagating moments. Comprehensive experiments showed competitive

performance with many deep learning and alternative approximate Gaussian process methods.
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7.2 Future Work

7.2.1 Black Box Variational Inference and Kernel Learning

Since kernel methods have also been successfully used in a variety of nonlinear path planning

methods (Mukadam, Yan and Boots 2016; Marinho et al. 2016; Vallicrosa and Ridao 2018)

we plan to extend these ideas to path planning so that mapping and path planning can be

performed simultaneously in real-world in an end-to-end fashion under one framework.

7.2.2 Parameter Optimal Transport

Although our method presented in Chapter 3 was demonstrated in the context of occupancy

mapping, there are many other potential applications in robotics. For example, the theory can

be potentially used for domain adaptation of policy parameters where a policy is trained in

one environment and needs to be transferred to another. For example, say a robotic arm is

trained to grasp objects on a table and performs well on this particular task. One could then,

in principle transport these prior learned policies for use in another arm without retraining

the policy from scratch. Finally, one could envision the same methodology being used for

sim2real where models are learned in simulation and transferred to the physical world, saving

significant time and cost in running real robots.

7.2.3 Quantile Kernel Features

Inspired by recent ideas in automated machine learning, fundamental connections with

harmonic analysis and measure theory, we believe more general and flexible representations

of kernels will open doors to compelling new directions in Bayesian inference techniques

and kernel learning. As future work, it would be interesting to investigate connections with

Copula methods (Nelsen 2007), non-stationary kernels (Remes, Heinonen and Kaski 2017),

and alternative quantile function parameterizations.
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7.2.4 Input Warped Kernel Learning

The functional warping scheme presented in Chapter 6 are not monotonic increasing warpings;

in other words they are not bijective mappings. While not a necessary condition, non-bijective

mappings may introduce unnecessary complexity in the optimization loss surface due to the

potential for many-to-many inputs warpings to occur. We conjecture this would introduce

arbitrary discontinuities in the loss landscape making optimization much harder than it need

be. It would be worthwhile investigating strictly monotone mappings of the input space to

improve both the convergence speed and stability of the optimization problem. Finally, there

would be scope to investigate connections between our work and the recently proposed Neural

Tangent Kernel (Jacot, Gabriel and Hongler 2018) perspective on kernel learning with neural

networks.

7.3 La Fin

So I have just one wish for you – the good luck to be somewhere where you are free to maintain

the kind of integrity I have described, and where you do not feel forced by a need to maintain

your position in the organization, or financial support, or so on, to lose your integrity. May

you have that freedom.

∼ Richard P. Feynman
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