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Abstract : In Bayesian theory, the data together with the prior produce a
posterior. We show that it is also possible to follow the opposite route, that
is, to use data and posterior information (both of which are observable) to
reveal the prior (which is not observable). We then apply the theory to
equilibrium climate sensitivity as reported by the Intergovernmental Panel
on Climate Change in an attempt to get some insight into the prior beliefs of
the IPCC scientists. It appears that the data contain much less information
than one might think, due to the presence of correlation. We conclude that
the prior in the fifth IPCC report was too low, and in the sixth report too
high.

JEL Classification: C11, C52, C83, Q54.

Keywords: Revealed prior; climate sensitivity; data uncertainty; combining
information; correlation; IPCC.

Corresponding author: Andrey L. Vasnev, University of Sydney Business
School, Abercrombie Building (H70), Sydney, NSW 2006, Australia

Email addresses: ikefuji@osipp.osaka-u.ac.jp (Ikefuji),
jan@janmagnus.nl (Magnus),
andrey.vasnev@sydney.edu.au (Vasnev).

2



1 Introduction

When the radiation balance of the Earth is perturbed, the temperature will
change. By how much is measured by the equilibrium climate sensitivity
(ECS): the long-term temperature rise that is expected to result from a
doubling of the atmospheric CO2 concentration, usually relative to the pre-
industrial level (around 1750). It is a prediction of the new global mean near-
surface air temperature once the CO2 concentration has stopped increasing
and most of the feedbacks have had time to have their full effect. The ECS
is an important diagnostic in climate modelling, but it cannot be measured
directly and forms a large source of uncertainty. CO2 levels rose from 280
parts per million (ppm) in the eighteenth century (IPCC, 2013, p. 100) to
about 416 ppm by 2020, an increase of almost 50%. In the same period, the
Earth’s temperature rose by a little over one degree Celsius. The ECS will
be our parameter of interest, and we shall denote this parameter by β.

In estimating β we rely exclusively on the Intergovernmental Panel on
Climate Change (IPCC) reports. So far, six so-called Assessment Reports
have appeared: the first in 1990, the sixth in 2021. In these reports we find
estimates and precisions of studies on the ECS and IPCC’s own estimates
and precisions. Our interest is not so much in these estimates themselves
but rather in the process that leads from the underlying studies to IPCC’s
estimates. Adopting a Bayesian framework, we shall think of the underlying
studies as our data and of the published conclusions as our posterior. The
question then arises whether we can reveal the IPCC’s priors (which we do
not observe) from these data and the posterior (which we do observe). This
is indeed possible, and the purpose of this paper is to explain how this can
be achieved, which challenges we encounter on the way, and what we learn
from such an exercise.

The idea of reversing Bayesian thought and — rather than obtain a pos-
terior from data and prior — recover the prior from data and posterior, was
recently proposed by Ikefuji et al. (2023) and applied to inflation forecasting
in the UK. Their application was carefully chosen to satisfy two requirements.
First, that inflation forecasts can be credibly modeled using a symmetric dis-
tribution, such as normality. The assumption of symmetry and normality is,
however, only plausible in a limited number of cases. We shall show that our
theory goes through in the case of monotonic transformations of β, for which
we shall take the log-transformation, which is not symmetric and particularly
appropriate for our application.

Second, the data in Ikefuji et al. (2023) consisted of essentially one piece
of information, i.e. the Phillips curve. But suppose we have two or more
pieces of information as our data, which will typically be the case. How to
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then combine these pieces of information into one data distribution? If we
combine too naively, then the resulting precision may be misleadingly high,
leading to the theoretical impossibility that the posterior variance is larger
(rather than smaller) than the data variance. To resolve this issue we use the
recently developed theory in Magnus and Vasnev (2023), where the critical
role of correlation was discussed and applied to Bank of Japan and European
Central Bank forecasts.

The remainder of this paper is organized as follows. In Section 2 we an-
alyze how to recover the prior from the data and the posterior in the case
when there is only one parameter of interest, first within the framework of
the normal distribution, then extending this framework to the lognormal
distribution. In Section 3 we consider the conclusions of the fifth and sixth
IPCC reports (our posteriors) concerning the ECS, and reformulate these
conclusions using the lognormal distribution. In Section 4 we review the
data sources that underly the IPCC conclusions, and find the appropriate
lognormal distributions for each of the data sources. Next, we need to com-
bine these data sources into one data source for each of the two reports. This
is achieved using Magnus and Vasnev’s (2023) approach through correlations,
and we discuss and explain the procedure in Section 5. Without correlation
the data variance is much too small, leading to data that are misleadingly
precise. This, in fact, is one of the findings of the current paper: when data
sources are (highly) correlated, as is often the case, they contain much less
information than casual inspection might indicate. Now that we have the
data and the posterior, we obtain and discuss the revealed prior in Section 6.
The prior turns out to be important and the direction of the prior changes
between the fifth and the sixth report. In Section 7 we study the relation-
ship between the posterior in one period and the prior in the next period
(dynamic consistency). Section 8 concludes.

2 From posterior to prior

Suppose we have data y1, . . . , yn, possibly correlated and heteroskedastic,
generated from a normal distribution with common mean β, our parameter
of interest. In other words, we have

y|β ∼ N(βı,Ω), (1)

where y = (y1, . . . , yn)
′, ı is an n × 1 vector of ones, and Ω is a positive

definite n × n matrix. A frequentist would estimate the scalar parameter β
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using the generalized least-squares estimator b0 with variance σ2
0:

b0 =
ı′Ω−1y

ı′Ω−1ı
, σ2

0 =
1

ı′Ω−1ı
. (2)

A Bayesian, on the other hand, would wish to take prior knowledge about
β into account. If this prior information is given by β ∼ N(b1, σ

2
1), then the

posterior distribution of β is β|y ∼ N(b2, σ
2
2) with posterior moments

b2 = wb1 + (1− w)b0 =
σ2
0b1 + σ2

1b0
σ2
0 + σ2

1

(3)

and

σ2
2 =

(
1

σ2
0

+
1

σ2
1

)−1

=
σ2
0σ

2
1

σ2
0 + σ2

1

, (4)

where w = σ2
0/(σ

2
0 + σ2

1) = σ2
2/σ

2
1. The expression (4) for the posterior vari-

ance implies the restrictions σ2
2 < σ2

0 and σ2
2 < σ2

1, and this makes sense:
when two pieces of information (prior and data) are combined then the pre-
cision increases. These inequalities, in turn, imply that 0 < w < 1. When
the prior becomes uninformative, that is, when σ2

1 → ∞, then b2 → b0 and
σ2
2 → σ2

0.
Now consider the opposite situation where the data and the posterior are

available but not the prior. Can we reveal the prior from the data and the
posterior? Indeed we can, and in the special case of normality we obtain the
prior moments as

b1 = w−1b2 + (1− w−1)b0 =
σ2
0b2 − σ2

2b0
σ2
0 − σ2

2

(5)

and

σ2
1 =

(
1

σ2
2

− 1

σ2
0

)−1

=
σ2
0σ

2
2

σ2
0 − σ2

2

, (6)

where w−1 = σ2
1/σ

2
2 = σ2

0/(σ
2
0 − σ2

2). The prior mean is thus a ‘weighted
average’ of b0 and b2, but w−1 does not lie between zero and one; in fact,
w−1 > 1 and 1−w−1 < 0. Also, since variances are nonnegative, the expres-
sion for σ2

1 implies an upper bound to the posterior variance, namely σ2
2 < σ2

0.
This restriction does not play a role in the usual Bayesian framework where
we go from data plus prior to posterior, because the underlying variances σ2

0

and σ2
1 are unrestricted (apart from being positive) and σ2

2 will automatically
satisfy the restriction. But it does play a role when we go from data plus
posterior to prior, because now the restriction is not automatically satisfied.
This has practical consequences as we shall see later. In summary, we can
indeed reveal the prior given information on the data and the posterior.
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This simple analysis can be generalized in various directions. First, we
may have not one but several parameters of interest in which case our start-
ing point is y|β ∼ N(Xβ,Ω) for some n × k matrix X; see Ikefuji et al.
(2023). Second, the assumption of normality (implying symmetry) may be
reasonable for some applications — as it was in Ikefuji et al. (2023) — but
it is not in our’s. So, a generalization of the framework is required. Recall
the fundamental formula for completing the square,

(b0 − β)2

σ2
0

+
(β − b1)

2

σ2
1

=
(β − b2)

2

σ2
2

+
(b0 − b1)

2

σ2
0 + σ2

1

, (7)

where b2 and σ2
2 are given in (3) and (4). Multiplying both sides by −1/2

and taking exponentials gives

f(b0; β, σ
2
0) f(β; b1, σ

2
1) = f(β; b2, σ

2
2) f(b0; b1, σ

2
0 + σ2

1), (8)

where

f(x;µ, σ2) =
1

σ
√
2π

exp

{
−1

2

(
x− µ

σ

)2
}

(9)

denotes the normal density. This, of course, is just Bayes’ formula

f(b0|β) f(β) = f(β|b0) f(b0), (10)

and it shows that a normal likelihood plus a normal prior results in a normal
posterior.

Now let h(x) be a monotonic transformation of x, such as h(x) = log x,
and define the density

g(x;µ, σ2) =
h′(x)

σ
√
2π

exp

{
−1

2

(
h(x)− µ

σ

)2
}
. (11)

Then it follows from (7) that

f(b0;h(β), σ
2
0) g(β; b1, σ

2
1) = g(β; b2, σ

2
2) f(b0; b1, σ

2
0 + σ2

1). (12)

In particular, letting h(x) = log x with h′(x) = 1/x leads to the lognor-
mal density g(x) for x > 0. Hence, a normal likelihood plus a lognormal
prior results in a lognormal posterior, so that prior and posterior remain
conjugate distributions. Another way of arriving at this result is to realize
that the lognormal distribution is not really a new distribution but rather a
reparametrization. The parameter of interest remains β, but the analysis is
performed on log β (more generally on h(β)).
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In summary, if we have a likelihood b0|β ∼ N(log β, σ2
0) and a prior log β ∼

N(b1, σ
2
1), then we obtain a posterior log β|b0 ∼ N(b2, σ

2
2). Reversing the

process, if we have a likelihood b0|β ∼ N(log β, σ2
0) and a posterior log β|b0 ∼

N(b2, σ
2
2), then we obtain a prior log β ∼ N(b1, σ

2
1), where b1 and σ2

1 are given
by (5) and (6), respectively.

At this point we have two objects that can be regarded as ‘data’: the
observations y and the estimate b0. The observations y are what one would
usually call data, but in our process the IPCC scientists consider b0 as their
data, add a prior b1, and arrive at a posterior b2. To avoid confusion and
following Ikefuji et al. (2023), we shall not refer to b0 as the data but as the
input. In the absence of a prior, the IPCC scientists accept the input as their
only tool: output = input, that is, b2 = b0. But if the scientists’ prior plays
a role (as of course it does), then output ̸= input and the difference is the
prior, which is the object of our study.

3 The posterior distribution

We shall apply the theory of Section 2 to the estimation of equilibrium climate
sensitivity, hereafter β, as presented by the IPCC in several reports. Their
conclusions are our posterior, which we discuss in the current section. These
conclusions are based on many scientific publications which serve as our
inputs, and we shall discuss these in the next section. Below we review the
IPCC conclusions and the posterior distributions derived from them, first for
the fifth then for the sixth IPCC report.

3.1 The fifth IPCC report (posterior)

In the fifth report, more precisely the Working Group I contribution (IPCC,
2013), hereafter IPCC5, the authors state that ‘no best estimate for equilib-
rium climate sensitivity can now be given because of a lack of agreement on
values across assessed lines of evidence and studies’ (IPCC5, p. 16, footnote).
But later in the same report they do provide a confidence region (as opposed
to a point estimate), as follows:

‘. . . ECS is likely in the range 1.5� to 4.5� with high confi-
dence. ECS is positive, extremely unlikely less than 1� (high
confidence), and very unlikely greater than 6� (medium confi-
dence).’ (IPCC5, pp. 83–84)

The IPCC also provides an interpretation of terms like ‘extremely unlikely’
and ‘medium confidence’ (IPCC5, p. 36), which differs slightly from the inter-
pretation in the previous Assessment Report (IPCC, 2007, p. 22) by explicitly
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taking into account the degree of ‘agreement’ in the team about the evidence
provided by each study.1 Given this interpretation, IPCC5 concludes that

Pr(1.5 < ECS < 4.5) = 0.67,

Pr(ECS < 1.0) < 0.05, and

Pr(ECS > 6.0) < 0.10.

In addition (pp. 75 and 817), they summarize information of experiments by
the Coupled Model Intercomparison Project Phase 5 (CMIP5) who report
a range 2.1–4.7 for the ECS, without however stating the likelihood of this
range.

Assuming the ECS β to be lognormally distributed, so that log β ∼
N(b2, σ

2
2), we seek combinations (b2, σ2) such that the posterior probabilities

closely match the probabilities in the IPCC5 report. There is no unique log-
normal distribution that fits our inputs, but b2 = 1.07 and σ2 = 0.53 seems
a reasonable approximation and is also in line with Hwang et al. (2013,
Figure 4) where b2 = 1.071 and σ2 = 0.527.

The selected posterior distribution, plotted in Figure 1 (bold line, in red),
satisfies

Pr(1.5 < β < 4.5) = 0.69 (about 67%),

Pr(0 < β < 1.0) = 0.02 (less than 5%), and

Pr(β > 6.0) = 0.09 (less than 10%),

hence close to the IPCC5 conclusions. In addition, the interquartile range is
Pr(2.04 < β < 4.17) = 50% and there is a 1% probability of β > 10.0. The
skewness of the distribution is well illustrated by the fact that the mode and
median of β are quite different: the mode is eb2−σ2

2 = 2.20, while the median
is eb2 = 2.92.

3.2 The sixth IPCC report (posterior)

In the sixth report, hereafter IPCC6, the authors write:

1In fact, the interpretation of these terms is far from easy. Kause et al. (2022) stud-
ied how IPCC experts from different disciplines interpret the recommended uncertainty
language, and they found that physical science experts were more familiar with the IPCC
instructions than other experts, and followed it more often; that experts’ confidence levels
increased more with perceptions of evidence than with agreement; and that experts’ es-
timated probability intervals for climate variables were wider when likelihood terms were
presented with ‘medium confidence’ rather than with ‘high confidence’ and when seen in
context of IPCC sentences rather than out of context.
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Red line: posterior

Figure 1: Posterior distribution (in red) of ECS in the fifth report
and the fifteen studies, lognormal distributions

‘. . . Based on multiple lines of evidence, the very likely range of
equilibrium climate sensitivity is between 2� (high confidence)
and 5� (medium confidence). The (. . . ) best estimate is 3�
with a likely range of 2.5� to 4� (high confidence).’

(IPCC6, A.4.4, p. 11)

Later (p. 926) they add that it is ‘virtually certain that ECS is larger than
1.5�.’

The ‘multiple lines of evidence’ are: the understanding of climate pro-
cesses, the instrumental record, paleoclimates, and model-based emergent
constraints (IPCC6, p. 11, footnote). The definition of ‘likely’, ‘very likely’,
and ‘virtually certain’ is the same as in the fifth report (IPCC6, p. 4, foot-
note 4), and hence we obtain the following posterior probabilities:

Pr(2.0 < ECS < 5.0) = 0.90,

Pr(2.5 < ECS < 4.0) = 0.67, and

Pr(ECS > 1.5) = 0.99,

where we interpret the ‘best estimate’ of 3.0� as the median of the ECS.
The posterior in the sixth report differs markedly from the posterior in the

fifth report, not so much in the mean (which increases a little) but rather in
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the variance (which is much lower). The reduction in uncertainty is caused,
not by a single breakthrough or discovery, but by combining evidence from
many different sources and a better understanding of their strengths and
weaknesses (IPCC6, p. 1024, FAQ 7.3; Sherwood et al., 2020).

Assuming again that the ECS β follows a lognormal distribution, so that
log β ∼ N(b2, σ

2
2), we seek combinations (b2, σ2) such that the posterior prob-

abilities closely match the above probabilities. If median(β) = 3.0 then
b2 = log 3 = 1.099 and

Pr(2.0 < β < 5.0) = 0.90 =⇒ σ2 = 0.27,

Pr(2.5 < β < 4.0) = 0.67 =⇒ σ2 = 0.24, and

Pr(β > 1.5) = 0.99 =⇒ σ2 = 0.30.

(b)

(d)

Posterior

(c)

(a) Process understanding

(b) Instrumental record

(c) Paleoclimates

(d) Emergent constraints

(a)

P
ro

b
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it

y
 d

en
si

ty

ECS

Figure 2: Posterior distribution (in red) of ECS in the sixth report
and the four inputs, lognormal distributions

Thus, a reasonable approximation is provided by b2 = 1.15 and σ2 = 0.27.
The selected posterior distribution, plotted in Figure 2 (bold line, in red),
satisfies

Pr(2.0 < β < 5.0) = 0.91 (about 90%),

Pr(2.5 < β < 4.0) = 0.62 (about 67%), and

Pr(β > 1.5) = 0.997 (about 99%),
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and we find median(β) = 3.16 and mode(β) = 2.94, hence close to the IPCC6
conclusions. In addition, the interquartile range is Pr(2.63 < β < 3.79) =
50%, much tighter than in the IPCC5 report, and there is a 1% probability
of β > 5.9.

4 The distribution of the inputs

In addition to the posterior we need information on the inputs. These inputs
are not ‘raw’ data but outcomes of scientific publications, each with its own
merits and viewpoints. In the fifth report we have fifteen inputs, one of which
we shall consider an outlier and disregard; in the sixth report we have four.
We discuss these inputs and the resulting distributions below.

4.1 The fifth IPCC report (inputs)

Our inputs in the IPCC5 report consist initially of m = 15 studies. Fourteen
of these studies are contained in Figure 10.20 (p. 925) and Box 12.2 (p. 1110)
of the report, and one study (Huber et al., 2011) is included in Figure 2 of
Knutti et al. (2017) and referred to in various places of IPCC5.

The ith study produces a range (li, ui) (lower and upper bound) with an
associated probability pi (typically 90% or 95%) for the ECS β, our parameter
of interest. Given the range (li, ui) and the associated probability Pr(li <
βi < ui) = pi we can identify the parameters of the associated lognormal
distributions, as follows. Since log βi ∼ N(b0i, σ

2
0i) in the ith study, we have

Pr

(
log li − b0i

σ0i

< zi <
log ui − b0i

σ0i

)
= pi, zi ∼ N(0, 1), (13)

and hence

b0i = log(liui)
1/2, σ0i =

log(ui/li)
1/2

qi
, Φ(qi) =

pi + 1

2
, (14)

where Φ denotes the c.d.f. of the standard-normal distribution. In this way
we end up with fifteen inputs b0i with associated standard deviations σ0i; see
Table 1.

The IPCC5 report distinguishes between an instrumental period and
a palaeoclimatic period. The instrumental period is the short period in
the Earth’s long history where direct instrumental records on climate are
available, while the palaeoclimatic period is the long period preceding such
records. Of our fifteen studies some only use data from the instrumental
period (studies 1, 3, 5–9, 12, 13), some only from the palaeoclimatic period
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Table 1: Inputs and lognormal approximations, fifth report

Study Bounds Lognormal approx.
pi li ui b0i σ0i

1 Lindzen and Choi, 2011 95% 0.5 1.1 −0.30 0.20
2 Schmittner et al., 2011 90% 1.4 2.8 0.68 0.21
3 Aldrin et al., 2012 90% 1.2 3.5 0.72 0.33
4 Hargreaves et al., 2012 90% 1.0 4.2 0.72 0.44
5 Lewis, 2013 90% 2.0 3.6 0.99 0.18
6 Bender et al., 2010 95% 1.7 4.1 0.97 0.22
7 Otto et al., 2013 90% 0.9 5.0 0.75 0.52
8 Schwartz, 2012 90% 1.2 4.9 0.89 0.43
9 Lin et al., 2010 90% 2.8 3.7 1.17 0.08
10 Libardoni and Forest, 2011 90% 1.2 5.3 0.93 0.45
11 Köhler et al., 2010 90% 1.4 5.2 0.99 0.40
12 Olson et al., 2012 95% 1.8 4.9 1.09 0.26
13 Huber et al. 2011 67% 2.9 4.0 1.23 0.17
14 Holden et al., 2010 90% 2.0 5.0 1.15 0.28
15 Palaeosens, 2012 95% 1.1 7.0 1.02 0.47

(2, 4, 11, 14, 15), and some combine different lines of evidence (3, 10, 12).
Studies 3 and 12 appear in both the groups instrumental and combination.
This highlights the first of several problems: comparability.

The second problem is that the first study (Lindzen and Choi, 2011) has
a big impact and should be considered an outlier. The IPCC raises doubts
about the reliability of this study (IPCC5, pp. 923–924), but it has not
removed the study from their report. Not only is the revealed value of b0i
much lower than in the other studies, but the effect is much strengthened by
the fact that the reported precision is high.

To gain further insight, Figure 1 presents the fifteen lognormal curves
corresponding to the fifteen studies. From the figure several things become
clear. First, that the first study (with the highest peak) is an outlier, and
that we should therefore disregard this study from our analysis, thus ending
up with m = 14 studies. Second, that what the inputs tell us is ambiguous
and uncertain. The modes range from 0.71 (1.62 if we exclude the first study)
to 3.32, and the medians from 0.74 (1.97 if we exclude the first study) to 3.42.
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4.2 The sixth IPCC report (inputs)

In earlier IPCC reports, the assessment of ECS relied on either CO2-doubling
experiments using global atmospheric models coupled with mixed-layer ocean
models or on standardized CO2-quadrupling experiments using fully coupled
ocean-atmosphere models or Earth system models. In the sixth report, the
assessment of ECS is based on multiple lines of evidence, with Earth sys-
tem models representing only one of several sources of information (IPCC6,
p. 993). These ‘multiple lines of evidence’ are divided in four classes: pro-
cess understanding, the instrumental record, paleoclimates, and emergent
constraints.

Each class is analyzed separately and is based on a number of underlying
studies (IPCC6, Section 7.5, pp. 992–1011). Our input can thus be viewed
as a two-step procedure: first from underlying studies to a distribution of
β in each of the four classes, then from these four class distributions to
the final input distribution. To estimate the input distribution in two steps
would, in principle, be possible, but it would require a two-level aggregation
theory where at the moment a one-level aggregation theory is already a major
challenge as we shall see in Section 5.

Table 2: Probabilities for the four inputs, sixth report

Probability
median 0.67 0.90 0.95

(a) Process 3.4 2.5–5.1 2.1–7.7
understanding

(b) Instrumental 2.5–3.5 > 2.2 > 1.8 > 1.6
record

(c) Paleoclimates 3.3–3.4 < 4.5 > 1.5 < 8.0

(d) Emergent 2.4–3.3 1.5–5.0
constraints

Hence, we shall take the m = 4 intermediate conclusions of the IPCC as
our inputs. These conclusions are presented in Table 2, which summarizes
Table 7.13 in IPCC6. The table contains the median and probabilities of 67%
(likely), 90% (very likely), and 95% (extremely likely) attached to various
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ranges in each class.2 In contrast to the IPCC5 report, there seems to be
broad agreement across multiple lines of evidence.

Table 3: Lognormal approximations based on the four inputs, sixth report

Quantiles
b0i σ0i mode 5% 50% 95%

(a) Process 1.22 0.36 2.98 1.87 3.39 6.12
understanding

(b) Instrumental 1.03 0.39 2.41 1.47 2.80 5.32
record

(c) Paleoclimates 1.20 0.61 2.29 1.22 3.32 9.06

(d) Emergent 1.05 0.36 2.51 1.58 2.86 5.17
constraints

If we assume, as in Section 4.1, that log βi ∼ N(b0i, σ
2
0i) for the ith input,

then we can approximate the values of b0i and σ0i from the given probabilistic
ranges in Table 2. These approximations are presented in Table 3 together
with the implied mode, and 5%, 50% (the median), and 95% quantiles. The
four implied distributions will serve as our inputs.

Table 4: Probabilities of the four inputs based on the
lognormal approximations, sixth report

Target = 0.67 Target = 0.90 Target = 0.95

(a) Pr(2.5 < β < 5.1) = 0.67 Pr(2.1 < β < 7.7) = 0.90
(b) Pr(β > 2.2) = 0.73 Pr(β > 1.8) = 0.87 Pr(β > 1.6) = 0.92
(c) Pr(β < 4.5) = 0.69 Pr(β > 1.5) = 0.90 Pr(β < 8.0) = 0.93
(d) Pr(1.5 < β < 5.0) = 0.90

The precision of our approximations is verified in Table 4, where we cal-
culate the implied probabilities for the ranges presented in Table 2. The

2The IPCC writes about the ‘best’ or the ‘central’ estimate, and they also occasionally
mention the median but never the mode of a distribution. For this reason we interpret
the ‘best’ estimate as the median rather than as the mode, but some ambiguity remains.
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probabilities in Table 4 should be close to those in Table 2, and they are.
Figure 2 presents the four lognormal curves corresponding to the four lines of
evidence. The distributions are closer to each other and less ambiguous than
the distributions in Figure 1. The modes range from 2.29 to 2.98 (rather
than from 1.62 to 3.32 in IPCC5) and the medians range from 2.80 to 3.39
(rather than from 1.97 to 3.42 in IPCC5).

5 Combining the inputs

Combining information from various sources into a single piece of informa-
tion is a nontrivial exercise. One needs to know the nature of the sources,
how relevant and reliable they are, and if and to what extent they are corre-
lated. We shall concentrate on the effect of correlation, first in general, then
specifically for our application.

In the general case, we consider a sequence of correlated random variables
x = (x1, x2, . . . , xm)

′ with common mean µ, so that E(x) = µ ı and var(x) =
σ2V , where ı denotes the vector of ones and V is positive definite. Without
loss of generality we normalize V by imposing the restriction tr(V ) = m.
The generalized least-squares estimators of µ and σ2 are

µ̂ =
ı′V −1x

ı′V −1ı
, σ̂2 =

(ı′V −1ı)(x′V −1x)− (ı′V −1x)2

mı′V −1ı
, (15)

while τ 2 = var(µ̂) is estimated by

τ̂ 2 =
σ̂2

ı′V −1ı
=

(ı′V −1ı)(x′V −1x)− (ı′V −1x)2

m (ı′V −1ı)2
. (16)

Important is the difference between σ2 and τ 2. The parameter σ2 is the
variance of the process, while τ 2 measures the precision of the estimator µ̂.
As the number of observations increases we are able to estimate µ more and
more precisely (as measured by τ 2), but the variance of the process (measured
by σ2) is not affected by the number of observations. The behavior of the
two estimators σ̂2 and τ̂ 2 as a function of V is also very different. We are
interested in σ̂2, the estimator of tr(var(x))/m, the average variance of the
xi.

When the xi are uncorrelated then σ̂2 is bounded and finite, but when
the xi are correlated then this is no longer the case. To see why, let us write
V −1 = |V |−1CV , where CV denotes the cofactor matrix of V . In the expres-
sion for µ̂ the determinant |V | cancels as it appears in both the numerator
and the denominator, but in the expression for σ̂2 it does not cancel and
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we are left with one factor |V | in the denominator. If |V | goes to zero then
the ratio goes to ∞. This heuristic argument was recently made precise in
Magnus and Vasnev (2023) and applied to forecast combinations of GDP and
CPI by the Bank of Japan and the European Central Bank. They conclude
that ignoring possible correlation in the observations can lead to estimates
of σ2 which are (much) too small.

We shall adopt the ideas in Magnus and Vasnev (2023) to aggregate the
m = 14 inputs in IPCC5 and the m = 4 inputs in IPCC6. Our task is to find
an estimator b0 ∼ N(log β, σ2

0) based on the fourteen inputs b0i ∼ N(log β, σ2
0i)

in Section 4.1 and, similarly, an estimator b0 based on the four inputs b0i in
Section 4.2. Thus we need to find two lognormal distributions which can
be thought of as reasonable representations of the two sets of inputs. These
distributions must have a larger variance than the red curves in Figures 1
and 2, because theory prescribes that the posterior variance is smaller than
the input variance (and also than the prior variance).

Let V0 denote the diagonal matrix containing the diagonal elements of
V . Then, P = V

−1/2
0 V V

−1/2
0 is the correlation matrix associated with V . In

the absence of correlation we have P = Im and we obtain b0 = 1.07 (fifth
report), b0 = 1.11 (sixth report), and

σ0 = 0.27 < 0.53 = σ2 (fifth report)

σ0 = 0.10 < 0.27 = σ2 (sixth report).

These input variances violate the restriction σ0 > σ2 and are therefore too
small. But the assumption of zero correlation is unrealistic anyway. We
expect the inputs to be correlated in our case, probably highly correlated.3

To take possible correlation into account we shall assume equicorrelation, so
that the correlation between each pair of inputs is the same, say ρ. The
correlation matrix P then takes the form

P =


1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

...
...

...
ρ ρ ρ . . . 1

 (0 ≤ ρ < 1). (17)

Since P depends on only one parameter, we can now investigate the effect of
correlation on our input moments.

3IPCC6 (p. 1006) is also concerned with the question on how to combine the inputs,
but with a view to narrow the range of ECS values. See Annan and Hargreaves (2006),
Stevens et al. (2016), and Sherwood et al. (2020) for a Bayesian perspective.
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Table 5: Combined inputs, fifth and sixth reports

Fifth report Sixth report
ρ b0 σ0 τ b0 σ0 τ

0.00 1.07 0.27 0.04 1.11 0.10 0.04
0.50 1.20 0.32 0.06 1.10 0.13 0.09
0.80 1.22 0.49 0.06 1.07 0.21 0.14
0.90 1.22 0.68 0.06 1.05 0.30 0.17
0.95 1.23 0.96 0.06 1.03 0.41 0.19
0.99 1.23 1.98 0.06 1.01 0.89 0.21
1.00 1.23 ∞ 0.06 1.00 ∞ 0.22

The input moments are presented in Table 5, where we let the correlation
ρ increase from 0 to 1.4 The restriction σ0 > σ2 is only satisfied when ρ > 0.83
(fifth report) and ρ > 0.88 (sixth report), confirming that the estimation
results in the underlying inputs are highly correlated. When there is no
correlation, then b0 increases from 1.07 to 1.11 between the fifth and sixth
report. But when we take correlation into account, then b0 decreases from
1.23 to 1.03 (at ρ = 0.95). Since the posterior b2 increases from 1.07 to 1.15
it will need a strong prior to achieve this change of direction.

While b0 is quite stable for ρ ≥ 0.9, this is not the case for σ0. The
precision in the input distribution depends heavily on the value of ρ, that
is, on the degree in which the inputs are correlated with each other. In the
limit, when ρ → 1 and σ0 → ∞, the inputs provide no additional information
and hence the posterior is equal to the prior. We conclude that the inputs
provide less information (σ0 is larger) in the presence of correlation, and given
our assumptions we can quantify how much less. We do not know what the
value of ρ is and hence, when we reveal the priors, we shall work with three
scenarios: ρ = 0.90, 0.95, and 0.99.

6 The revealed prior

Given the moments (b2, σ2) from the posterior and (b0, σ0) from the input, we
can now reveal the implied prior moments. Recall from Section 2 that, given
a posterior log β|b0 ∼ N(b2, σ

2
2) and an input b0|β ∼ N(log β, σ2

0), the prior

4The results are obtained from (15) and (16) for ρ < 1. For ρ = 1 the matrix P is
singular, but we can calculate the limiting values from the theory developed in Magnus
and Vasnev (2023).
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distribution is log β ∼ N(b1, σ
2
1), where b1 and σ2

1 are given by (5) and (6),
respectively:

b1 =
σ2
0b2 − σ2

2b0
σ2
0 − σ2

2

=
b2 − (1− w)b0

w
(18)

and

σ2
1 =

σ2
0σ

2
2

σ2
0 − σ2

2

=
σ2
2

w
, (19)

where w = 1−σ2
2/σ

2
0, as defined in Section 2. The prior mean b1 thus depends

only on the posterior mean b2 (which we set at 1.07 and 1.15 respectively),
the input mean b0 (which is quite stable at approximately 1.23 and 1.03
respectively), and on the weight w (which is not stable and depends heavily
on the assumed correlation). In contrast, the prior standard deviation σ1

depends only on the posterior standard deviation σ2 (which we set at 0.53
and 0.27 respectively) and on the weight w.

Table 6: Input, prior, and posterior

ρ Fifth report Sixth report

b0 σ0 w b0 σ0 w
0.90 1.22 0.68 0.39 1.05 0.30 0.16

Input 0.95 1.23 0.96 0.69 1.03 0.41 0.58
0.99 1.23 1.98 0.93 1.01 0.89 0.91
1.00 1.23 ∞ 1.00 1.00 ∞ 1.00

b1 σ1 b1 σ1

0.90 0.83 0.85 1.66 0.67
Prior 0.95 1.00 0.64 1.24 0.36

0.99 1.06 0.55 1.16 0.28
1.00 1.07 0.53 1.15 0.27

b2 σ2 b2 σ2

Posterior 1.07 0.53 1.15 0.27

Table 6 shows the revealed prior means and standard deviations for both
reports in the range 0.9 ≤ ρ ≤ 1.0, together with the corresponding moments
for the input and the posterior. We observe that there is essentially no
difference in the prior at ρ = 0.99 and ρ = 1.00. In the latter case, the input
variance is ∞ and hence prior = posterior and the inputs (the underlying
academic studies) play no role at all. Although there are situations where the
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posterior is completely determined by the prior (and hence the data, however
convincing, are disregarded), we do not believe this is a credible description
of the process by which the IPCC scientists reach their conclusions. On the
other hand, for ρ < 0.83 (fifth report) and ρ < 0.88 (sixth report) the weight
w becomes negative and the theoretical constraint σ2 < σ0 is violated. Let
us therefore concentrate on the two cases ρ = 0.90 and ρ = 0.95.
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Figure 3: Input, prior, and posterior for ρ = 0.90,
fifth report (left) and sixth report (right)
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Figure 4: Input, prior, and posterior for ρ = 0.95,
fifth report (left) and sixth report (right)

The table confirms what we already know from the theory, namely that
when ρ increases then w and σ0 also increase, while σ1 decreases. This
reflects the fact that more correlation in the inputs reduces the precision of
the combined input and makes the prior more important.

The prior mean b1 is much larger in the sixth than in the fifth report and
the prior standard deviation σ1 is much smaller. Specifically, b1 increased
from 0.83 to 1.66 (ρ = 0.90) and from 1.00 to 1.24 (ρ = 0.95), implying an
increase in the prior median of β from 2.30 to 5.27 (ρ = 0.90) and from 2.72
to 3.45 (ρ = 0.95). At the same time, the standard deviation σ1 decreased
from 0.85 to 0.67 (ρ = 0.90) and from 0.64 to 0.36 (ρ = 0.95). Hence, the
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IPCC scientists changed their prior views between the fifth and the sixth
report, and they held these views with more conviction.

It is remarkable that b1 < b2 in the fifth report, while b1 > b2 in the
sixth report. This means that in the fifth report the IPCC scientists used
their prior views to tune the input (= data) information down, arriving at
median(β) = 2.92 in the posterior while median(β) = 2.72 (at ρ = 0.95)
in the prior. In contrast, in the sixth report the prior views are tuned up
arriving at median(β) = 3.16 in the posterior while median(β) = 3.45 (at
ρ = 0.95) in the prior.

In Figures 3 and 4 we draw the lognormal distributions of β at ρ = 0.90
and ρ = 0.95, respectively. The figures illustrate that as ρ increases the prior
becomes more important, and that the prior distribution shifts to the right
and becomes more concentrated (lower variance) when we compare the fifth
and sixth reports.

7 Dynamic consistency

One would expect that the posterior in one period serves as the prior in the
next period, at least approximately. When this happens, the decision maker
is rational and the process is said to be ‘dynamically consistent.’ In our case,
dynamic consistency requires that the prior in the sixth report is equal to
the posterior in the fifth report. But is it?

The posterior in the fifth report is b2 = 1.07 (σ2 = 0.53), while the
prior in the sixth report is b1 = 1.24 (σ1 = 0.36) at ρ = 0.95. Hence, the
median of the posterior in the fifth report is 2.92 (the mode is 2.20) and the
median of the prior in the sixth report is 3.45 (the mode is 3.04). These are
large differences, both in terms of location (median, mode) and in terms of
precision.

One possible explanation of this large difference is that there is indeed
a lack of dynamic consistency. One can easily imagine a situation where
the decision maker remains too loyal to their original prior, which one may
call ‘prior stubbornness’ (bunching). This stubbornness may be politically
motivated and it could continue until some bound has been reached (a tipping
point) after which the prior is adjusted and moves to a new level.

But there is also another possible explanation. There is a gap of eight
years between the IPCC5 and IPCC6 reports. During this period the IPCC
experts were exposed to climate news (floods, fires, rising temperatures),
they attended conferences, they read newspapers, etc. Their beliefs were
therefore influenced and updated before they started working on IPCC6. In
other words, an adjustment to their priors occurred.
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To analyze this possibility we perform a thought experiment. In the
relationship between input, prior, and posterior we have so far encountered
input+prior = posterior (the standard Bayesian method) and also posterior−
input = prior (our perspective to reveal the prior). We now rewrite our
equations based on posterior − prior = input, assuming that the decision
maker behaves dynamically consistent. That is, we create a hypothetical
input by considering the IPCC5 posterior as our prior and the IPCC6 prior
as our posterior. To move from this new prior to the new posterior we need
a new input, which is constructed from

b0 =
σ2
1b2 − σ2

2b1
σ2
1 − σ2

2

, σ2
0 =

σ2
1σ

2
2

σ2
1 − σ2

2

, (20)

using (3) and (4) or, alternatively, (5) and (6). The revealed hypothetical
input thus represents the input that would be required to bridge the gap
between the posterior from IPCC5 and the prior from IPCC6.

Table 7: Consistency gap and hypothetical input at ρ = 0.95

Source Experiment b σ median mode

IPCC5
Input 1.23 0.96 3.41 1.36
Prior 1.00 0.64 2.72 1.81
Posterior Prior 1.07 0.53 2.92 2.20

IPCC6
Input 1.03 0.41 2.80 2.36
Prior Posterior 1.24 0.36 3.45 3.04
Posterior 1.15 0.27 3.16 2.94

Gap Input 1.37 0.48 3.95 3.14

In Table 7 we copy the posterior in the fifth report and the prior in the
sixth report (at ρ = 0.95) from Table 6, and then use (20) to calculate the
input that would be required to bridge the gap and bring about dynamic
consistency. In this experiment the IPCC5 posterior thus plays the role of
prior and the IPCC6 prior plays the role of posterior.

When we compare the hypothetical input with the actual input in the
sixth report (also displayed in Table 7), we see that the hypothetical input
distribution is located to the right of the actual input distribution. In fact,
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both the median and the mode of the hypothetical input are much larger
than of the actual input: for the median we have 3.95 ≫ 2.80 and for the
mode 3.14 ≫ 2.36.
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Figure 5: The consistency gap at ρ = 0.95

The gap is illustrated in Figure 5 where we display the prior and the pos-
terior of our experiment, and the implied input which we wish to compare
with the IPCC6 input (also displayed). The figure confirms what we found
in the table, namely that the gap is too large to explain the dynamic in-
consistency. One can imagine that IPCC6 scientists felt the pressure caused
by the increase of climate exposure in the media. There has been political
pressure and an abundance of qualitative information — information that
was not reflected in the underlying scientific reports underlying IPCC6. But
the consistency gap is too large too be credibly explained by political and
media pressure alone.

If the gap experiment does not explain the dynamic inconsistency, then
what does? Perhaps the IPCC6 scientists were not fully confident with the
conclusions from IPCC5, because they now had access to multiple lines of ev-
idence which were not available in IPCC5. They would then not necessarily
accept the IPCC5 posterior as their prior. Another possibility is prior stub-
bornness, as mentioned earlier. Interestingly, it seems that the opposite has
occurred here. We know from the previous section that the prior in IPCC5
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is smaller than the posterior,

prior < posterior < input (IPCC5),

that is, scientific evidence (the input) indicated a higher value of the ECS
than the IPCC scientists’ prior views.5 But in IPCC6 the situation is re-
versed:

input < posterior < prior (IPCC6).

The inconsistency is apparently caused, at least in part, by overcompensa-
tion. The prior in IPCC5 was too low, so the IPCC scientists adjusted their
prior upward in IPCC6, perhaps too much.

8 Concluding remarks

Let us translate our findings back to the language of the IPCC. As discussed
in Section 3.1, IPCC5 concludes that ECS is likely in the range 1.5� to
4.5�, that it is positive, extremely unlikely less than 1.0�, and very unlikely
greater than 6.0�. This reflects the posterior distribution as presented by
the IPCC itself. In Section 5 we deduce the combined input and approximate
its distribution, from which we find (at ρ = 0.95) that

ECS is likely in the range 1.4� to 8.6�, is positive, extremely
unlikely less than 0.7�, and very unlikely greater than 11.6�.

Then, in Section 6, we present the prior which tells us that

ECS is likely in the range 1.5� to 5.0�, is positive, extremely
unlikely less than 1.0�, and very unlikely greater than 6.2�.

In the same way, IPCC6 concludes (our posterior, Section 3.2) that the very
likely range of ECS is between 2.0� and 5.0�, that the best estimate is 3.0�
with a likely range of 2.5� to 4.0�, and that it is virtually certain that ECS
is larger than 1.5�. From the distribution corresponding to the combined
input we find that

the very likely range of ECS is between 1.4� and 5.5�, the best
estimate is 2.8� with a likely range of 1.9� to 4.2�, and it is
virtually certain that ECS is larger than 1.1�.

Then, combining posterior and input, the induced prior tells us that

5The inequality holds for b and the median, but not for the mode, where the inequality
is reversed.
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the very likely range of ECS is between 1.9� and 6.2�, the best
estimate is 3.4� with a likely range of 2.4� to 4.9�, and it is
virtually certain that ECS is larger than 1.5�.

These verbal summaries correspond exactly to the estimates obtained in the
previous sections, and they confirm that the prior plays an important role
in the IPCC decision process when drawing conclusions from the data (our
inputs). In the fifth report the prior is more optimistic than the input with a
prior median of 2.7 versus an input median of 3.4, while in the sixth report the
prior is more pessimistic with a prior median of 3.5 versus an input median
of 2.8. The ECS is a critical parameter in the climate debate but it remains
difficult to estimate, and it seems that the scientific evidence (the inputs)
and the prior views held by the IPCC scientists are not well synchronized.

In addition to an in-depth analysis of the estimation process of the ECS
in the fifth and sixth reports of the IPCC, the current paper makes two
theoretical contributions. First, we show how the prior can be revealed from
the input and the posterior, also when the underlying distributions are skewed
in which case the normal distribution is unsuitable. Second, we show how
inputs can be combined, and the critical role of correlation in this aggregation
process. The underlying studies (the inputs) are naturally correlated and
if we ignore the correlation we overestimate the precision of our combined
estimator: under correlation the data contain much less information than
a naive investigator might assume. These two theoretical contributions will
also be relevant in other applications where priors can be revealed.

Priors as discussed in the current paper are the human filter between
data and conclusions. Such a filter is present in any scientific project. When
the data and the conclusions are publicly available, which is often the case,
then our methodology makes it possible to infer the underlying prior, which
should make scientific and policy reports more transparent.
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