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Abstract

Adaptive Optics(AO) is the major technique for observing celestial objects from
ground-based telescopes and wavefront sensors (WFS) are one of the core tools for
sensing the phase information of light. As Earth atmosphere distorts the wavefront
(WF) of an incoming light from a distant point source, it is critical to know the
degree of distortion of the phase in order to reconstruct the image at the diffraction
limit for analysis. However, there are challenges for AO systems to resolve small
and dim objects such as Earth-like planets next to their parent stars, mainly due to
their small angular separation and high background glare from the stars. Current
WFSs embedded in AO systems carry inherited problems that either are not able
to correct particular types of wavefront errors (WFEs), or introduce more into the
system due to non-common optical paths. This results in the inability of observing
exoplanets and similar objects. It has been long realised that a new generation of
WFSs is required to observe Earth-like exoplanets and similarly dim objects.
This thesis proposes and introduces a new type of all-photonic focal plane WFS.

I will present the findings of using a 19 core photonic lantern (PL) as a novel type
of focal plane wavefront sensor (FP WFS) in a laboratory setting. The aim of the
experiment is to explore the feasibility of PL as FP WFS using a neural network
(NN) in a physical setting. The PL, in theory, is able to function as WFS due to
its ability to convert multi-mode (MM) inputs to single-modes (SM) outputs and
vice versa. While direct detection of the input phase and intensity with a single
PL (at a single wavelength) is not possible due to degeneracy, a NN is able to find
correlations using non-linear function between the PL’s inputs and outputs, hence
establishes accurate predictions of the WF inputs. Chapter 1 provides information
on the current adaptive optic (AO) technology used in Astronomy, and the pre-
senting challenges of AO in ground-based telescopes. Chapter 2 introduces the two
building blocks of the proposed technology, and the reasons why the combination of
both PL and NN can restore the distorted WF. Firstly, PL as a device of interest
with detailed explanation of propagation of light modes within the PL, i.e. how
PL works as a WFS. Secondly, Chapter 2 also describes the neural network (NN)
technique, its development, and its ability to solve problems autonomously. The
actual experiment is detailed in Chapter 3 and 4. The results and analysis of the
data obtained show a promising technique that is able to resolve WFEs that are cur-
rently extremely difficult for current WFSs. This demonstrates that PL as FP WFS
are worth exploring further, especially in a real on-sky setting, and it can largely
advance AO technology in general, from astronomy to free-space communications.
Chapter 5 concludes the finding and future research direction.
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Chapter 1

Introduction

Astronomy, being an observational science, involves the study of celestial bodies and
the analysis of their motion and composition to infer their evolution over time. When
it comes to observing distant objects, light in the form of electromagnetic(EM) waves
exhibits a planar wavefront with uniform intensity, assuming the source is located
at a considerable distance [1]. However, ground-based observations face a signifi-
cant challenge due to atmospheric turbulence, which causes distortion in the WF.
In astronomy, the concept of Seeing pertains to the angular resolution limited by
atmospheric conditions [2]. One potential solution to mitigate this issue is to deploy
telescopes in near-Earth orbits, as exemplified by the James Webb Telescope and
the Hubble Telescope. However, this approach is accompanied by exorbitant costs
for setup and maintenance. Additionally, space telescopes are constrained by factors
such as their smaller size compared to their ground-based counterparts, which limits
their overall functionality. Another effective approach to mitigate atmospheric tur-
bulence is the utilization of AO. AO is a system that integrates various optical and
mechanical components to correct distortions in the optical wavefront through phase
conjugation methods [2]. The concept of AO was initially proposed in 1953 and fur-
ther developed during the latter part of the 20th century [3, 4]. With the continuous
advancement of AO technology, ground-based telescopes have been able to achieve
results comparable to their space-based counterparts [3]. Furthermore, AO plays
a crucial role in modern telecommunications [5], including satellite communication
between near-Earth orbit and the Earth.
AO systems employ a synergistic combination of hardware and software compo-

nents to measure distortions and promptly apply corrective measures in real-time
[2–4, 6]. WFSs are pivotal hardware components within AO systems and have un-
dergone significant development alongside the advancement of AO technology over
the past six decades [2]. These sensors play a crucial role in measuring and charac-
terising the distortions present in the incoming wavefront. By accurately capturing
the aberrations, WFSs enable precise and real-time corrections to be made. As a
testament to their effectiveness, WFSs have been successfully integrated into nu-
merous state-of-the-art telescopes worldwide. This integration has greatly enhanced
the observational capabilities of these telescopes, allowing astronomers to capture
clearer and more detailed images of celestial objects.
This thesis is focused on researching into a new type of WFS using a pure pho-

1



1.1. THE TURBULENT ATMOSPHERE 2

tonic approach. Such an approach to WFS has the potential to provide a number
of benefits over traditional optics setups that use bulk components. One of the
primary advantages is the ability to downscale the size of the equipment required,
making it easier to integrate into other systems and/or to make it portable for field
applications. Additionally, photonic approaches can reduce the complexity and cost
of WFSs, since they rely on fewer components and can be fabricated using stan-
dardised, mass-production techniques as the fabrication of photonics advances.
Overall, a pure photonic approach to WFSs has the potential to revolutionise

the field of wavefront sensing, offering new opportunities for research and develop-
ment in a range of areas, from astronomy and remote sensing to manufacturing and
biomedical imaging.

1.1 The Turbulent Atmosphere

In order to understand AO technology, it is helpful to understand atmospheric turbu-
lence and its effect on an incoming wavefront. Atmospheric turbulence is generated
by mechanical processes and the thermal instability of the atmosphere [3]. The
day-night heating and cooling cycle causes convection currents and winds. These
currents and winds flow over uneven topography, such as forests and mountains,
leading to regions of air with different refractive indexes [3]. The wavefront of light
is distorted when travelling through these air variations. The Kolmogorov-Obukhov
scaling law dictates that the proportionality constant, C2

n, also called the index of
refraction structure constant, describes the fluctuations of the refractive index in
atmospheric turbulence. It characterises the strength of turbulence and is a key
parameter determining seeing quality and the performance of AO systems [3]. A
larger C2

n indicates a more turbulent atmosphere [2, 3].
An AO system faces three environmental constraints from the Earth’s atmosphere,

Fried’s coherence length, isoplanatic angle, and the Greenwood frequency [2, 3].
Fried’s coherence length, r0, which is the parameter that describes the spatial extent
of a section of turbulence [3] as a function of wavelength, where

r0 ∝ λ
6
5 . (1.1)

For visible light, r0 is equivalent to a few centimetres in magnitude [2]. The larger
the value of r0, the better the observation condition is [2], as it inversely relates to
C2

n. This is is described by,

r0 = [0.423k2

∫
(C2

n(z), dz)]
− 3

5 , (1.2)

where k is the wavenumber of the free space as k = 2π
λ
, and C2

n is related to the
altitude z (in kilometres). It is such an important parameter in astronomy that the
term Seeing is defined by the ratio of the incoming wavelength, λ over r0. A value
of r0 less than 5 cm at the observation site is said to have a poor seeing condition,
while a value greater than 20 cm is said to have a good seeing condition [6].
The isoplanatic angle, θ0, is the maximum angle allowed for a measurement of the

wavefront between two points at the same altitude with less than one radian root



1.2. HOW ADAPTIVE OPTICS WORKS 3

mean square (RMS) error in phase from each other [5] and is given by,

θ0 = 0.31(
r0
L
). (1.3)

As seen in Eq. 1.3, θ0 is proportional to r0 over the propagation path, L, the
distance between the altitude of the measured source and the telescope. As the
atmosphere changes rapidly over time, the term Greenwood frequency fG is used to
describe the temporal element of the atmosphere, as seen in Eq. 1.6. It is a useful
parameter that defines how well the AO system can process changing turbulence
in the temporal domain. The Greenwood frequency, fG , is highly dependent on
the coherence time, τ0 = 0.314 r0

V
(where V is the wind speed assumed at constant),

which characterises the temporal change of the atmosphere turbulence across a tele-
scope [3].
fG can be expressed as integration over layers of turbulence, z, with a constant

wind speed, V , along the path of sec(β), where β is the zenith angle:

fG = 2.31λ− 6
5 [sec(β)

∫
C2

n(z)V
5
3 (z)dz]

3
5 (1.4)

= 0.43(
V

r0
). (1.5)

It can also be written in relation to the coherence time, τ0, as:

fG = 0.134/τ0. (1.6)

Therefore, these three factors largely constrain the condition of the environment
in which an AO system operates. However, despite these well-established mathe-
matical models, the AO system cannot compensate for all turbulence. This is due to
limiting factors such as complex and rapid changes in the atmosphere, as well as the
systematic error existing in the AO system itself, for example, the processing speed
of the AO system and non-common-path (NCP) aberrations [2, 3]. Some scaling
laws are developed and implemented to evaluate the performance of AO systems [2],
which are detailed in Sections 1.2 and 1.3.

1.2 How Adaptive Optics works

There are three principal components in an AO system, a WFS, a deformable mirror
(DM), and a control computer, which are integrated with a telescope and an opti-
cal system [2, 5], as seen in Fig. 1.1. Atmospheric turbulence causes optical path
difference due to slight change in refractive indexes of the air [2, 6] resulting aberra-
tions. These aberrations cause distortion, blurring, and other image quality issues
and is called wavefront error (WFE) [2, 6–8]. During the on-sky operation, a bright
background star or an artificial guide star, created by a powerful laser or Rayleigh
beacon, is usually used as the reference star [2], so that the wavefront contained in
the incoming atmospheric turbulence can be sampled and calculated in real time by
a ground-based WFS.
The WFS detects and interprets the phase component in a beam’s electric field

since any light beam can be presented as a wave function with amplitude, A, and
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Figure 1.1: A schematic of a typical AO system with a pupil plane
WFS: The planar wavefront is distorted by atmospheric turbulence. The DM
corrects the distortion by phase conjugation in conjunction with a real-time com-
puter system. The WFS plays a crucial role in detecting phase distortion and
gives a quantifiable value to such distortion, hence, the computer can relay the
information to the DM for correction. Noted that the optical train A and B are
schematics, in reality, each contains many different optical components. Due to
the position of the WFS at the object’s pupil plane, a beam splitter is employed
to produce two optical trains for the WFS and the scientific camera respectively.
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Figure 1.2: A similar schematic of an AO system but with a FP-WFS
instead: Noted that the optical train A and B are now one of the same path due
to the fact that FP-WFS, sensing at the focal plane, does not require a separated
optical train for analysis unlike in the ones in Fig. 1.1. This design is currently
not in existence.
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phase, θ; the general function of the said electric field is: U = Aeiθ[2]. The control
system, a computer, applies the complex conjugate of the function, Ae−iθ, onto the
DM. The two terms, Aeiθ and Ae−iθ, mathematically cancel out to give the function
U , with a phase of 0. This method is called phase conjugation. In an ideal situation,
AO is able to restore the distorted image to its ideal diffraction limited (absent of
phase distortion) point spread function (PSF), which is the mathematical function
that describes how a perfect point source of light, such as a star or a point on a
printed image, is spread out or blurred by an imaging system [9]. However, there
are a few limiting factors that affect the performance of an AO system.
The term Strehl ratio (SR), SR, is introduced to describe the imaging performance

of an AO system [2, 3, 5, 10]. SR is defined in terms of the ratio of the maximum
intensity in an aberrated point source image to the maximum intensity of the image
at the diffraction limit [4, 10]. SR describes how well the optic system can image
the object to the said object’s diffraction limits. SR is thus indirectly established
from Fraunhofer integral [2], as the later is a mathematical formula that describes
how a complex wavefront propagates from an object to a distant observation plane
in the far-field regime. The French physicist, Augustin-Jean Fresnel was the first
to develop this function in Fraunhofer diffraction theory [11]. The peak intensity
I0, of an incoming wave with wavelength, λ, and total power, P, through a circular
aperture with a diameter, D, without any phase aberrations (i.e. diffraction-limited),
is

I0 = P
πD2

4λ2R2
, (1.7)

where R is the propagation distance. This diffraction-limited image is perceived
physically as a series of concentric rings surrounding the central point of light with
80% of the total intensity, called an Airy ring. Phase aberrations are present when
there is a mismatch between the actual wavefront and the theoretically perfect wave-
front, also known as WFE. As a result, the maximum intensity, I0, decreases in
intensity. Given that the wavefront error, σ, is known, the actual intensity, I, can
be derived from 1.7 as

I = I0[1− (
2π

λ
)2σ2]. (1.8)

Noting that the part in squared bracket in Eq.1.8, is the SR component [2] which
has a value between zero and unity. If the SR component is at unity, it represents
an optical system free of aberration [10]. SR can also be written in exponential
expansion terms [2] as

SR = exp[−(
2πσ

λ
)2] (1.9)

. A more in-depth explanation of SR and image quality can be found in [10]. If SR
≥ 80%, the AO system is said to be at the diffraction limit [6]. From Eq. 1.9, a signal
with a shorter wavelength is ideal, such as visible spectrum, as it tolerates a greater
WFE to achieve the ideal 80% in SR. However, in practice, the signal coming from
the distant star usually consists of a longer wavelength as the Earth atmosphere
tends to commonly scatter the shorter wavelength of light more (as opposed to the
longer wavelength) [12] . As a result, most ground-based telescopes utilise longer
wavelength, such as near-infrared, as the operating basis. This constrains the range
of the residual WFE that is allowed for a good AO system. Notwithstanding, in
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recent years, there has been an increased interest in developing an AO system for
shorter wavelength (700 nm and less) [5, 13]. The shorter wavelength provides
higher angular resolution as these two terms are proportional to each other. A
higher angular resolution provides opportunities for observation of stellar physics,
close binary stars and Earth-like exoplanets etc. [13].

1.3 AO performance

Challenges for an AO system during real-time operation are also present, since
no current AO system can correct all the little turbulence in the air [2] . The
performance of AO systems is evaluated by several different metrics [5] and for the
focus of the thesis, error arising from WFSs are discussed below.
Ref.-[14] discussed AO errors in their 2004 paper and identified that WFS noise

halo is the only fundamental limitation for extreme AO (ExAO), an AO system that
is specialised in optimising wavefront quality over a narrow field centred around a
bright star [13]. Ref.-[14] also proposed resolutions to address the errors mentioned
above, such as a high density of actuators (d ≈ 10 − 20cm) and a fast AO system
(f ≈ 1− 2kHz) to reduce WFS noise; a low-aliasing WFS to resolve aliasing error;
and adding an analytical process to remove cophasing errors.
In astronomy, the most widely used metric for evaluating the AO system is the

delivered SR, or root-mean-squred(RMS) wavefront [3]. The delivered SR relates to
the residual wavefront error variance, σ2

WFE by Marechal approximation [5]:

S ∼ e−σ2
WFE (1.10)

The σ2
WFE is the sum of a few uncorrelated contributors [5]:

σ2
WFE = σ2

fitting + σ2
reconstruction + σ2

bandwith +Other (1.11)

The three main contributors in Eq. 1.11 are: the fitting error,σ2
fitting. The re-

construction error, σ2
reconstruction, which is the sum of all the effects that reduces

the wavefront measurement accuracy, such as measurement noise, calibration noise,
sampling errors, aliasing and chromaticity [5].
However, these errors can be complicated to fix, as solving one error may often

exasperate a different error[3], AO systems are often optimised in selected features.
They are designed according to their required functionalities.
The fitting error, denoted as σfitting, can be attributed to two sources: the DM and

the WFS [3, 6, 15]. In a DM, numerous small mechanised units, called actuators,
are controlled by a closed-loop algorithm to manipulate the surface shape of the
DM. The resolving power of the DM in fitting spatial structures is determined by
the total number of actuators it possesses [2, 15]. However, when the wavefront
distortion becomes highly complex, the DM may encounter difficulties in accurately
fitting the wavefront due to its limited number of actuators.
WFSs that employ linear approximation as the basis for fitting spatial distortions

are powerful tools. However, it is important to note that linear approximation may
yield sub-optimal results when attempting to fit highly non-linear modes of the
complex wavefront.
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Consequently, the fitting error arises from the insufficiency of the DM and/or
WFS to accurately fit the spatial structures of the incoming phase, primarily due
to the complexity of its distortion. A third source of the fitting error is the WFS’s
inability to fully resolve certain wavefront aberrations. Many currently deployed
WFSs lack the capability to detect or are insensitive to specific wavefront aberra-
tions. For example, the low wind effect (LWE), which is a type of aberration that
existing WFSs are unable to detect [16–18]. Another example is non-common-path
(NCP) aberrations, arising from differences in the optical path between the scien-
tific channels and the WFSs, resulting in the failure of the WFSs to detect these
aberrations [3, 7, 19].

1.4 Wavefront Sensors

A WFS is a device used to measure the aberrations in an optical wavefront [2, 3,
5, 6, 13, 15]. The performance of the AO depends on the accuracy of the WFS
that detects the incoming wavefront, in conjunction with various reconstruction
algorithms[20].
A WFS typically works by comparing the incoming wavefront to a reference wave-

front or a known ideal wavefront. The sensor detects the phase shifts or deformations
in the wavefront and provides feedback to the AO system, which applies the neces-
sary corrections to the optical system to compensate for the aberrations.

1.4.1 Pupil Plane WFS

Pupil plane wavefront sensing (PP-WFS) is a common technique used in AO systems
to measure the wavefront aberrations. The technique involves splitting the incoming
wavefront using a beam splitter and projecting the resulting two beams respectively
onto scientific channels and a WFS, seen in Fig.1.1, such as a Shack-Hartmann [21],
a pyramid sensor[22] or the curvature WFS [4], which measures the phase shifts
in the wavefront. The beam splitter is typically placed in the pupil plane of the
optical system, seen in Fig. 1.1, which is the plane where the incoming wavefront
passes through the aperture of the telescope or other optical instrument, hence,
the name given to this type of WFS as PP-WFS conventionally. There are several
disadvantages when using a PP-WFS in AO systems. Firstly, PP-WFSs can not
resolve the NCP aberration. NCP aberrations are the result of non-common optical
components traversed by the two split beam paths by a dichromatic beam splitter
(seen in Fig. 1.1), which causes the differences in optic path between the wavefront
seen by the WFS and the one used to observe the image [7, 8, 19]. Conventional
AO systems incorporating PP-WFSs unavoidably give rise to NCP error because of
the inherited alignment of the optical components. In Fig. 1.1, beam path A and
B does not share a commonality and this difference in the two paths introduces the
NCP aberration into the system. Aberration can take low or high-order forms and
results in speckles appearing in the final images [23]. These speckles, particularly
formed from low-order forms, are harmful when a coronagraph is used to form the
final images [20] as they distort the image more and create false features. Speckle
noises are often random and difficult to correct [13]. These aberrations are not seen
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by the PP-WFS, and thus, cannot be corrected. This is one of the major limiting
factors in the high-contrast Extreme AO systems [8, 17]. NCP aberration errors also
affect the proper calibration of a WFS, which is an important step for closed loop
performance of the AO system [6].
In Ref.-[19], a focal plane sharpening (FPS) method is applied in conjunction with

phase diversity (PD) to correct the NCP aberration. However, this method requires
a large number of images and time to achieve the desired outcome. The applied NCP
aberration must be small ( −0.7 to 0.7 radians) in incident RMS WFE with the final
reconstruction root-mean-squared error (RMSE) of 0.4 in radians. The PD method
described in [19] also has its disadvantages, such as its limitation on the types of
aberration it can resolve. Furthermore, the characteristics of the aberration must be
accurately known before correcting those same aberrations. PD also requires highly
optimised algorithms, which demands a large portion of computation time; this
greatly limits the practical application of FPS PD in correcting NCP aberrations
by increasing the complexity in both software and hardware requirement.
Secondly, PP-WFSs are insensitive to aberrations called the Low Wind Effect

(LWE) [16–18, 24]. LWE, also named island effect (IE), is a type of turbulence that
occurs at the telescope top end. It is attributed to radiative cooling of the telescope
spider (the structure holding the secondary mirror, seen in Fig. 4.17) caused by
temperature differentials in its surroundings [16, 18]. As the temperature differen-
tial has an effect on the refractive index of the air, the wavefront of the incoming
light becomes distorted due to the inhomogeneous refractive indexes of the layers
of air within the telescope light path [16–18, 25]. Due to the fact that the effect is
largely dominating when the wind speed can not blow away the thermally effected
air pockets during low wind conditions, the heat transference from the spider to
the surrounding air is more efficient at the lower wind speed, it is so named the ”
low wind effect” [16]. These aberrations produce a strong effect in the image plane,
see the bottom left image in Fig. 4.17. LWE aberrations can also result in speckle
noises [13] , which represent a significant challenge in high-contrast extreme adap-
tive optics (EXAO) systems used for exoplanet hunting. Speckles occur randomly
and can resemble the angular size of exoplanets, making it challenging to distin-
guish between them [13]. Furthermore, the pure randomness of speckle occurrence,
combined with their similarity in angular size to exoplanets, increases the likelihood
of mistaking a speckle for an actual exoplanet. This can introduce false positives
or false detection in astronomical observations, potentially impacting the accuracy
and reliability of exoplanet detection and characterisation. The presence of LWE
aberration has been reported in Spectro-Polarimetric High-Contrast Exoplanet Re-
search (SPHERE) [16]. The current WFSs mounted on the telescopes are insensitive
to the shearing in phase (seen in the bottom right of Fig. 4.17) that result in these
aberrations. As a result, there is active AO research in relation to new types of
WFS that are capable of detecting LWE.
There are also other issues for PP-WFSs, such as poor sensitivity at low spatial

frequencies and the requirement of a large number of photons to work [26], which
is detrimental to exoplanet imaging. A study by Ref.-[26] has shown that the cur-
vature WFS, a form of PP-WFS, displays promising results in ExAO simulations
by enhancing sensitivity. However, one limitation of this WFS type is its inability
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to address the phase wrapping [26], a jump or discontinuation of phase when inci-
dent phase exceeds 2π causing ambiguity in wavefront measurement. Furthermore,
curvature WFS still suffers from NCP aberrations in the study of Ref.-[26].

1.4.2 Focal Plane WFS

Focal-plane wavefront sensors (FP-WFSs) measure the wavefront in the focal plane
of the objective, where the two-dimensional Fourier transform of the object is con-
tained [27]. FP-WFSs can eliminate the NCP issue and is highly applicable to phase
diversity methods by directly using Zernike polynomials to fit individual aberrations
at focal plane [28]. FP-WFSs eliminate NPC errors by sampling wavefront at the
same plane as the detectors [13], rather than the need to use additional components
to redirect light, such as a beam splitter. FP-WFSs are sensitive to aberrations
caused by the low-wind effect (LWE) as these aberrations have a strong effect in
the image plane. The aberration caused by LWE can not be detected by a PP-
WFS, such as Shack-Hartmann wavefront sensor, and a phase-measuring sensor at
the focal plane may be needed to detect such aberrations. This is because PP-WFS
measures the gradient of the wavefront, and does not directly measure the phase of
the wavefront [2, 16, 17, 20]. Section 4.3 will further discuss on this aspect.
In Ref.-[29], they also discussed the advantages of a FP-WFS over its counterpart,

a PP-WFS, with higher accuracy and dynamic range Peak-to-Valley (PV). Further-
more, they compared FP-WFS with interferometers and concluded that FP-WFS
was superior in overcoming the effects of vibrations and environmental disturbances.
Therefore, FP-WFSs are desirable in future AO systems.
However, the detection of a wavefront in FP can be complicated due to limitations

of current imaging detectors, such as CCD or CMOS chips, which only detect the
intensity I, of the beam, instead of the phase [20]. This is due to the complex wave
function of light described in Eq. 1.12 ( ω is the angular frequency, t is time, β is
the propagation constant of the wave and z is the orthogonal axis of the x axis) and
the intensity function, I, is the modular function of Eq. 1.12 as 1.13:

E(x,z,t) = Ψ(x)ei(ωt−βz) (1.12)

I =| E(x,z,t) |2 (1.13)

Therefore, the phase information,i(ωt − βz), of the signal is lost for conventional
imaging devices such as a camera.
There have been many attempts to achieve FP wavefront sensing in order to by-

pass this problem, such as phase diversity methods [30], Fast and Furious method
[31], and the Zernike Asymmetric Pupil Wavefront Sensor[8]. However, most of the
methods rely on a linear approximation or a small wavefront error (≪ 1 radian)[20].
Furthermore, these FP-WFSs suffer greatly from the chromaticity problem. It
should be noted that these FP wavefront sensing methods have a significant draw-
back, as highlighted in Ref.-[20]. Specifically, these methods are unable to seamlessly
incorporate spectrography into their functionality, which is a critical aspect of ad-
vanced exoplanet characterisation.
In this thesis, an all-photonic device, the Photonic Lantern (PL), is tested as a

new type of FP-WFS, which is placed at the image plane of the objective lens to
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directly measure the amplitude and phase of the image without the need for linear
approximations in a laboratory setting. In Chapter 2, we look at the theory and
properties of an PL and how the PL is manufactured. In Chapter 2, we explain the
function of a neural network (NN) which is employed for the reconstruction of the
wavefront measured by PL using the non-linear method. In Chapter 3, we describe
and analyse the experiment that demonstrates the PL operating as FP-WFS in a
laboratory setting, in conjunction with a NN to process data recorded to achieve
the reconstruction of the input phases. The PL also can be augmented with a
spectrograph (as it did in the experiments described in this thesis), which has great
implications for advanced exoplanet analysis, as mentioned above, to combat issues
such as speckles and phase wrapping in modern AO technology.



Chapter 2

Photonic Wavefront Sensors
Powered by Neural Networks

In this chapter, there are two key components for building the WFS proposed and
demonstrated in this thesis: the photonic lantern (PL) and Neural Network (NN).
The PL - its multi-mode (MM) to single-mode (MM) conversion properties- is used as
the light sensing mechanism to interrogate and predict the incoming WF. However,
due to the highly non-linear relationship between the WF, it is difficult to produce
a function that can resolve the problem. NN is thus used to map the relationship
between the intensity measured from the PL’s output and the phase at the PL’s
input. The detailed information and history of the both are described in Section
2.1,2.2,2.3 and 2.4

2.1 Photonic Lantern

Photonics is the field that describes the application and usage of light, or photons, to
transmit and/or process information, or modify materials [32]. Photonics includes
optical sensors, optical imaging and processing, as well as optical communications,
which is one of the most important technologies of the 21st century [32]. The
hallmark of modern photonics is based on the quantum property of light which
was explained by famous Einstein’s photoelectric effect in 1905. Photonics is closely
related to optics which is a much older stream of physics, and optical fibres developed
during the late 70’s are used in many photonic fields as sensors or light transport
methods.
An optical fibre is a cylindrical dielectric waveguide (WG) made of low-loss ma-

terials, such as silica, with a core surrounded by cladding [33], the light is guided
within the core due to total internal reflections [33]. The concept of optical fibres
was discussed in Tyndall’s lectures in the late 1900 century [34], and materialised
this idea into the prototypes of optical fibre[34]. Due to the low-loss nature of optical
fibres, it quickly replaced the copper coaxial cables in telecommunications [33].
The introduction of optical fibres in astronomy as a means of transporting incom-

ing light to various instruments for analysis started in the 1980 [20, 35–37] enabling
the downscale of certain equipment in astronomy. For example, before incorporating
optical fibres as means of light transportation, instruments such as spectrographs

12
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had to be at the focus of the telescope, which limited the size of the spectrograph
when integrated into the telescope system. With the popular usage of optical fibres
in the astronomy community, so has the incorporation of photonic technologies, such
as fibre Bragg gratings (FBG) and the fibre couplers, in the early 2000s [38]. The
field of Astrophotonics started in early 2000’s as a bridge between astronomy and
photonic processes with the primary goal of harnessing technologies developed in
photonics to enable a new generation of astronomical instrumentation [38].
The first PL was made in 2005 [35–37] in search of a device that was capable

of covert MM to SM light with low loss and benefited from the attributes of both
multi-mode fibres (MMFs) and single-mode fibres (SMFs). Due to the wide use of
optical fibres in astronomy, it was very well understood that MMFs with a large
core size were able to capture more light from the stars, which was very important
in the study of very faint objects, such as exoplanet hunting. However, SMFs
were essential in applying new photonic functions, such as filtering the noise from
science signals for analytical purposes [35–37]. Unfortunately, the desired modal
guidance characteristics of SMFs and MMFs were not interchangeable, and they
could not simply be connected to each other without information loss during the
transition. Most photonic technologies that use SM fibres, such as FBGs, could
not be directly applied to MMF, which were proposed earlier on for sky background
suppression [36]. Hence, a solution for applying SM photonic functions to MMFs was
indeed needed. There were some attempts to solve this problem, for example, Sun
et al. performed a narrowed MMF grating [39], however, the MMF and modes used
were highly specialised and were incompatible with the general MMFs. In 2015, PL
were proposed and designed to achieve efficient conversion of MM to SM conversion
and vice versa via a low loss optical transition device [36, 37, 40]. Consequently,
PLs allowed for SM performance in MM fibres, such as more efficient data collection
and processing using photonic technologies was possible.
Although the PL has been used in astronomical instruments as an MM to SM

converter, its function as a FP-WFS has not been fully explored in a laboratory
setting, indeed this thesis reports on the first real demonstration of such technology.
Previously, using a digital model of a PL to test its function as a FP-WFS through
computational simulation [41] was carried out in a paper published in 2016. Ref.-[41]
also discussed several advantages of using PL as WFS, such as a PL could be tailored
in any shape to match the configuration of expensive sensors so that it reduced the
wastage of unused pixels area on expensive sensors due to traditional shapes of WFS
issues. However, those attempts did not use them as proper WFSs but more like
spatially non-degenerate fibre splitters. Thus, not taking advantage of one of the
most important features of PL - that it can decouple a MM source into its subset of
SM with very low loss will maintain the phase information from the source during
the PL coupling process. The composition of different guided modes at the MM end
of the PL will transform in a set of SM outputs of the PL with different intensities
distribution depending on the incident phase. Hence, this information can be used
to infer the phase information of the source at the focal plane (PL input); in other
words, the PL can be used as WFS at the focal plane (FP).
The advantages of using PLs as WFSs are: facilitating the incorporation of other

photonic technologies directly into the AO system; It enhances the AO system’s
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(a) Schematic of a taper rig for tapering an optic fibre: As the fibre being stretched, the
diameter at the centre part of the body became smaller. Once the fibre is tapered, it is cleaved
into two: a PL and a sacrificial fibre (the end to be discarded).

(b) A top view of the taper rig machine, 3SAE.

Figure 2.1: Tapering rig for the production of PLs.

ability to minimising the interference of speckles, produced by monochromatic source
[42], using broadband source as well as open the gate for multipurpose analysis using
other photonics.

2.2 How the Photonic Lantern is made

Early on PLs were made by inserting SMFs into a glass preform cane with a 19-hole
array, and the cane was drawn to MM photonic crystal fibre (PCF) [36]. Ref.-[36, 37]
showed that this device was capable of producing a MMF system with SM photonic
functions of a SMF - e.g. SM FBG response in a MM system. The downside of
their work was the high loss between the MM-SM transition, due to the mismatch
between the number of SM cores in the MCF end and MM in MMF end, and the
lack of practicality of the manufacturing method in mass production [36, 43] due
to the air-clad PCF used in MM. Leon-Saval & Birk proposed another production
method to simplify the fabrication and achieve low loss for similar devices [36] by
tapering down a multi-core fibre containing an array of SM cores. The method was
used in the fabrication later on of PLs with larger number of modes and SM WGs.
Fibre tapering is the optical fibre post-processing method that makes PLs and
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gives them all of the desirable characteristics. Fibre tapering was first used in
1981 by Ref.-[44] when a heat source was applied to a SM fibre while the fibre is
stretched by some mechanical means under a control condition [45]. The process of
fibre tapering was further explored in more mathematical detail by Birks and Li in
1992 [45], so a rig could be made to specialising in tapering fibres of desired features;
see Fig. 2.1a fibre tapering has been used to produce couplers, such as the PL, which
fundamentally is a fibre coupler, and many other applications, such as fibre sensors of
optical and acoustic detection. Nowadays, PLs are made by commercially available
glass post-processing equipment, e.g. Vytran, 3SAE, Nyfors, etc.
There are several ways of making a PL [46], and those methods are listed in

Fig. 2.2. A standard PL is made with a bundle of SMFs placed inside a capillary
that functions as the secondary cladding with a refractive index lower than that
of the core and cladding of the SMFs[38]. The bundled fibres then undergo the
tapering process using a specialised mechanical apparatus, see Fig. 2.1a to reduce
the overall diameter of the cross section. The cores of the SMFs are reduced to such
a size that the SMFs cores become ineffective WGs; the cladding of the SMFs is
fused together into one structure. At the end of the taper transition, a new MM core
is formed, with the secondary cladding becoming the cladding and the now fused
SMFs being the core. The tapered region is then cleaved and the cleaved surfaces
polished to produce a PL with one MM end and one SM end. As a result, PL is a
monolithic device that allows both SMF and MMF capacities (seen in Fig. 2.6) and
each SMF is at the diffraction limit [35].
PL produced with multicore fibre (MCF) is an easier way to produce, since they do

not suffer from fabrication imperfections due to early fusing and fibre twists during
the SMF bundling. A MCF, although the fibre itself requires a custom optical fibre
draw, it can be obtained in kilometres of length. Furthermore, MCF PLs allow easier
scalability in the number of modes for individual PLs. Thus this method makes the
manufacturing effort easier.
However, the downside of PL production is that each PL is produced by hand,

which is time-consuming. The ultra-fast laser inscription (ULI) technique has been
tested as a production method for PL [38] which uses laser writing to create PL
in a single piece of glass block, see details in Fig. 2.3. The adiabatic transition
is achieved by gradually bringing the SM WG together so that they are strongly
coupled with each other. This is much more practical in mass production with the
additional advantage of size reduction for PL. The disadvantage of such a method
is the difficulty of integration with standard optic systems available in the current
market [38].

2.3 Principle of the Photonic Lantern

The principle of PL is based on a very gradual change, also known as an adiabatic
transition, in the tapering region of the PL, compared to the incoming wavelength;
The MM in the MMF end decouples into its subsets of SMs at the MCF end con-
sisting of an array of identical SM cores, as the modes propagate along the body
of a PL. If the number of degrees of freedom, i.e. the number of modes, between
the MM end and the SM end of the PL, hence a low loss optical transition will be



2.3. PRINCIPLE OF THE PHOTONIC LANTERN 16

Figure 2.2: Four different ways of manufacturing a photonic lantern: A - Tapered
MCFs; B - fused SMFs; C - ULI on a solid chip; D - An example of lantern made using
B. The inserted panel shows the chip of ULI lantern. This figure is reproduced from [46].
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(a) A photonic lantern on a chip. (b) Manufacture rig using ULI technique.

Figure 2.3: PL manufacture using the ULI technique: this figure is reproduced
from [47].

achieved.
The adiabatic transition of MM to SM inside a PL can be explained using an

analogy with the Kronig-Penney model in quantum mechanics (QM) [48]. As QM
dictates that at the atomic scale, electrons display non-localisation and other wave-
like properties. For simplicity, we can consider a system with two 1-D potentials as
the two separate SM WGs in a PL transition. Therefore, there are two 1-D quan-
tum potential wells in series within a bigger 1-D potential well for 2 electrons as
shown in Fig. 2.5(d), the 2 electrons’ wave equations interfere and tunnel through
the smaller potential wells when the wells are very small and close to each other
due to quantum tunnelling effect, while the big well’s presence performs the major
influence on the electrons’ wave functions so the two electrons occupy two distinct
energy levels allowed in the big well as if ignoring the existence of the two smaller
wells. As the two smaller wells increase in size and distance from each other, the
two electrons now experience the effect of the smaller potential wells. The electrons’
wave equations meet the boundary condition in the smaller potential wells respec-
tively until their energy wave equations can no longer leak through the potential
walls of the smaller wells as the amplitudes of the wave functions increase and the
energy decrease. The two electrons eventually decouple and reside in the lowest
energy state in each respective smaller well as seen at the top of Fig. 2.5(d).
This is an analogue to the guided modes in PLs. The PL can be treated as a

bundle with N number of very closely placed, identical SM cores within a larger
cladding at the MMF end. At the small diameter and close proximity to each other,
the incoming light can not be contained in any of the individual SM cores, which
makes the individual SM core ineffective as WGs. However, the array of the SM
cores collectively behaves as the core of a larger WG to the incoming light complete
with the larger cladding around the composite WG. Regarding a guided mode in
a 1-D SM WG, there are two components, the transverse wavenumber KT and the
propagation constant β, while β = Kneff with K is the wavenumber and neff is a
modal effective index. For a MM WG, the MM wavefunctions are the composite
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MMF end MCF end

Figure 2.4: Photos of the MCF PL MMF and the SM MCF ends: The back
illuminated MMF end (left). The illuminated MCF end shows the 19 individual SM cores
(right).

functions with higher and lower neff . Hence the overall structure essentially is a MM
WG supporting N number of non-degenerated super modes due to the homogeneous
nature of the SM cores. The relationship between the two can be explained in Eq.
2.1.

Kn =

√
KT

2 + β2 (2.1)

As the diameter of each SM core gradually increases, the WG modes show a decrease
in KT and an increase in neff . For a given incoming light of λ wavelength, once at
a certain core diameter, the nondegenerate super-modes start to be absorbed and
trapped into the cores of each SM core. Mode beating occurs as a result of the
coupling process, while each mode is still able to leak out of its core and interfere
with adjacent cores at close proximity. The gradual increase in the thickness of
the cladding around the individual SM cores resulting in the coupling distance to
increase to the point that coupling between the cores no longer exists. The value of
neff reaches the maximum and KT decreases to its minimum when the diameter of
the tapering region continues to increase, and these conditions meet the fundamental
mode guiding conditions of the SM core. Then N number of non-degenerate MMs
are now supported in each SM core as N number of degenerated fundamental modes,
providing that the number of supported MMs at the MMF end matches the number
of SM WGs at the end [36, 40, 43]. The wavefunctions of the original MM are still
contained within the PL at the SM end as subsets of the original wave functions,
hence in theory, the MM wavefunctions at the MMF end can be reconstructed by
analysing its subsets at the SM end. The performance of a PL is also wavelength
dependent due to the high efficiencies of the MM to SM conversion [36, 38].
Several types of PL have since been developed to meet particular desired require-

ments and applications [40]. In this thesis, the purpose of the work is to understand
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Figure 2.5: Quantum analogue of how a PL works: a is the electron in a 1-D
potential well with different potential energy levels, E, that allows electrons to exist. b
is the guided modes with different guiding constants, β, in a 1-D WG. This figure is
reproduced from [49]

and exploit the complex spatial modes PL relationship in an AO system for analysis.
In our work we will focus on a 19 core MCF PL (as shown in Fig. 2.4). A detailed
analysis of the mode evolution of PLs can be found in [36, 38], however, we will not
go into details of PL mode evolution for the purpose of this thesis.

Figure 2.6: Wavefront propagation in PL: This is one of the configurations of the
PL with 19 SM output as the MCF end, on the left side; the MM input that sustains 19
modes, as known as MMF end, is on the right. The traversing modes are coupled into the
MMF end and decoupled at the MCF end into separated modes without much loss due to
the gradual transition. The figure is not to scale
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The symbolic paradigm The connectionist paradigm
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Figure 2.7: Comparison between the symbolic and connectionist
paradigm: The left is an example of the symbolic AI stream: the von Neumann
machine [51]. The right is an example of the connectionist: a NN algorithm with
1 hidden layer of different weights and biases. The circles represent individual
’neurons’, the base processing unit in a NN [23, 52, 53]. Note: the different colours
of the arrows represents a different value of weights embedded in the algorithm
to lead to the next layers.

2.4 Deep Learning in Neural Network

Artificial intelligence (AI), in its general sense, has been successfully used in modern
times in many areas of life [23] since the creation of the first computer in the early
40s. The quest to explore the intelligence of a human-made machine that can achieve
complex tasks such as perception and understanding of the environment from its
input; providing perception based on a common sense approach is always under
consideration in real-life applications, as stated in [23]. There are two streams of
research in AI, symbolic and connectionist [23]. Each of them has a very different
way of solving problems, which is described in Fig. 2.7.
The universal Turing machine (UTM) [50], a hypothetical machine, which was

described in a published paper by Ref.-[50] in 1936, is probably the best example of
the symbolic paradigm and defines the computability of a problem using a set of well-
constrained rules [23, 50]. All general-purpose modern computers are equivalently
based on this model but work more akin to another type of symbolic model, the von
Neumann machine [23], developed by Ref.- [51] in the 1940s. The basic workflow
of the von Neuman machine can be described as shown on the left of Fig. 2.7.
Although it was not a fully fledged AI algorithm, modern computer programming
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is capable of understanding symbols and manipulating them without the computer
itself knowing the semantics stored in their memory in the bit form [23]. Both Turing
and von Neuman’s model on the symbolic stream in AI has been used to develop
the modern AI engine and found in many applications in different areas of industries
based on the argument that all knowledge can be formalised and the mind or device
can execute knowledge using sets of rules [23].
It was soon realised that the symbolic AI stream, or a so-called expert system,

was not enough to solve things that were initially promised, such as producing
general intelligence [54]. For example, AI in language translation was criticised by
Ref.-[54] in his book that despite 10 years of research and millions of dollars, the
machine translation system was still not operational [54]. Pattern recognition was
particularly difficult for the symbolic AI stream due to the inability of a machine
to create arbitrariness on its own given a limited set of examples [54]. Ref.-[54]
concluded that in order to perform tasks such as pattern recognition and language
processing, a new form of computer should be programmed based on a different
theory from the symbolic paradigm [54]. This was also mentioned by Ref.-[55]
in 1988, that symbolic AI had been generally successful over the years, but was
insufficient in tasks such as chess playing, self-driving cars, language translation,
etc.[55]. He emphasised a different approach to AI, the connectionist paradigm,
for future AI development. Ref.-[55] proposed that the concept of connectionism
was the answer to performing complicated computations in certain tasks such as
recognising a picture [55].
The connectionist paradigm, which stems from the study of a biological brain[23,

53], was a parallel stream to the symbolic paradigm that can be traced back to
the 1940s [23, 52]. The neural network (NN) is an example of the connectionist
paradigm, which is an interconnected assembly of simple processing units, whose
action is loosely based on an animal neuron cell which (in that case) performs the
simple task of firing or not firing [23, 31, 55, 56]. The actual processing ability is
contained in its connection with millions of other neurons as connection strengths,
which are called ”weights” , so the network as a whole causes the phenomena of
”learning” in a machine via a process of adaptation from a set of training patterns
given to the NN [23, 31, 52].
In animal neurons, the individual neuron achieves its function by firing or not firing

a signal depending on the input strength [23, 53], for example, an animal’s decision
to attack or flee when threatened, which is said to be a basic cognitive function [53].
A set of input neurons get activated by an outside stimulus from the environment,
and in the next layers of neurons, some are selectively activated through previously
stored weighted connections from the input neurons, yet some are inhibited by the
same inputs. This algorithm produces an outcome and rewrites some of the weighted
connections depending on the new feedback, which is then stored in the NN: hence,
the action of learning completed. This is a more mathematical term, is called credit
assignment, an algorithm to find the weights in between the NN that make the NN
produce a desired outcome [53].
Deep learning (DL) is a form of fundamental credit assignment, also known as

learning in an artificial learning system or machine learning (ML), a subset of AI.
DL gives a method for universal problem solvers with a time-optimal scale [52].
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DL algorithms are widely used in the modern era for various applications, such as
computer vision, language translation, and language processing [57]. The foundation
of the DL algorithm is in the theory of artificial neural networks (ANNs) [23, 53, 57]
in the search of artificial learning in machines. ANNs act like a set of decentralised
neuron cells in an animal, utilising a series of multiple inputs to produce a single
output. The output is made by categorising its input patterns, hence reducing
the complexity of the algorithm as a whole for individual neurons. ANNs achieve
this model by using a weighted sum of the inputs to lead to an output nonlinearly
in the most common case [31]. This is analogous to an animal brain using the
previous stored ’knowledge’ of its experienced examples and interprets intuitively
the new input by using a series of weighted distribution of actions. This process
is very different from the symbolic AI approach, in that a computer has to be
programmed in such a way that all the representations of actions are stored in a
memory bank [23], and the symbolic AI approach can not learn from the new input
from its intuition. As an example of the difference between the ML algorithm and
the von Neumann machine, the ML is able to play a game of chess by learning how
the pattern of each move can lead to a possible driven outcome and responding
accordingly, while the other approach purely relies on the stored memory of the
combination of moves leading to every single outcome there is in a chess game.
However, any new combination will lead to a failure in response in the von Newmann
machine, and hence it runs into storage issues very quickly in dealing with a problem
that produces complicated patterns.
Artificial neural network(ANN), as stated above, are a computational algorithm

that uses connected processors, called neurons, to produce a sequence of real-valued
activation [52]. The earlier ANN construct is described theoretically in the paper
by Ref.-[56] in 1943, in which they simply called the construct ’Nets’ using the
neurophysiological idea of all or none activation in animal neurons, also called the
threshold logical unit (TLU). However, the net construct did not learn as modern
ANNs do. Despite the net’s inability to learn, their work became the foundation of
the future development of ANNs, especially the TLU model of the ANN [23], and
Rosenblatt in 1958 pushed forward the development of ANNs based on McCulloch
and Pitts’s work by introducing weights in the equation [58]; hence, the network
was able to learn via learning curves. The TLU operates in binary: it takes in only
two values, for example, 0 or 1. Each neuron is activated according to the credit
assignment process via their statistical weights, obtained by adaptation character-
istics from a set of training patterns [23]. It is the computer’s attempt to mimic
a biological brain and its learning process using a mathematical approach, linear
regression [52], and the basic function can be seen in Eq. 2.2.

m∑
i=1

wixi + bias = w1x1 + w2x2 + w3x3 + bias (2.2)

f(x) = 1, if
m∑
i=1

wixi + bias >= 0 (2.3)

f(x) = 0, if
m∑
i=1

wixi + bias < 0, (2.4)
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where w is the weight, xi is each input in vector form, bias is the bias or threshold in
the system and f(x) is the outcome for the activation function. This is the most basic
form of an ANN [52]. For example, if the input variables xi have assigned values,
such as x1 = 1, x2 = 0, x3 = 1, with the corresponding weight values, w1 = 0.3,
w2 = −0.1, w3 = 0.7 and evaluated as per Eq. 2.2 with bias given the value of
-0.2, the sum is 1 which was greater than the threshold; therefore, the neuron gives
an output, f(x), of 1 from the activation function, seen in Eq 2.3. If the output is
smaller than the threshold, then the output is assigned as 0, seen in Eq 2.4, which
means that the activation function is inhibitory. In modern neural networks, such
as that used in this project, these binary units are replaced with continuous-value
neurons, which use a non-linear function (an activation function) rather than a hard
threshold to pass a real-valued floating point number to connected neurons.
Backpropagation is a training algorithm to adjust the connection weights between

each of the individual neurons [59–61], the detailed computation flow chart can
be seen in Fig. 2.8; Backpropagation is essential for ANNs to learn from given
examples [23] as it basically forms a feedback loop of the error report and adjusts
the connection weight in the hidden layers according to the error report by comparing
a desired output against the generated output in a descending gradient of the loss
function [59]. Backpropagation was first theorised by Ref.-[59] in his 1974 thesis in
its application in ANNs [59]. It was later rediscovered by both Ref.-[60] and Ref.-
[61] separately with slightly different methods in their researches, for the training of
noncyclic ANNs, also known as feedforward ANNs. The method done in Ref.-[60]
popularised back-propagation for people to solve neural net related problems and
renewed the enthusiasm in research into DL; while before that, the symbolic stream
was still the more favourable research area for AI due to the time efficiency of the DL
being low [23]. The more familiar construct of today’s ANNs was established in Ref.-
[61], by applying constraints in backpropagation, which allows for more generalised
learning in ANNs with fewer free parameters. As a result, their network was proven
to be applicable to a more real-life problem: successfully recognising a handwritten
zip code from the US Postal Service using a relatively short time and a limited data
set [61]. Backpropagation is often misunderstood as the whole learning algorithm for
multilayer ANS [62] as it is actually the algorithm that computes the gradient rather
than other algorithms, such as stochastic gradient descent, which is the algorithm
that uses the gradient for actual learning. One of the drawbacks of backpropagation
is the time involved in training ANNs on real-life problems [23], which was improved
by Ref.-[63] in 1995 by developing ways to adapt a global learning rate to reduce
training time [63].
The complexity of such a learning process using ANNs depends on the number

of layers of neurons a particular NN contains [23, 52]. A single layer of neurons,
without an activation function, can be used to classify two linearly separable classes,
and thus is able to perform a calculation of a linear relationship between these two
classes. Nonlinearly separable classes require more layers of neurons to perform
and achieve the same purpose [23], since most of nature has nonlinearly separated
classes. The number of layers of neurons is described as the ”depth” of the NN.
The first nonlinear NN algorithms to solve nonlinear problems in this way (learning
from labelled examples) were developed back in the 1960s and 1970s [52], and were
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Figure 2.8: A program flow chart for backpropagation algorithm

supervised learning (SL) methods. A shallow NN that is discrete and differentiable
in nature with arbitrary depth often employs teacher-based SL methods, such as
backpropagation, which has been very effective [52]. Unsupervised learning (UL) on
the other hand does not require labelled examples. UL has also been improved in
recent decades in combination with SL to optimise its utility [23, 52].UL is used to
uncover and disentangle hidden underlying sources of signals [52].
The ANNs used in this paper are an example of supervised learning (SL). The

SL NN was chosen as the appropriate method due to the need to characterise the
input phase map (using the Zernike modes) and the output fluxes, and recover
a mathematical solution between the two. There is precedence of using SL NNs
as a tool to reconstruct the PSF of the focal plane images with aberrations. For
example, Ref.-[64] stated that NN as a real-time method to resolve focal plane images
was possible, if the said NN was running on a high-performance GPU equipped
with tensor cores. The results stated in Ref.-[65] demonstrated the advantages of
employing a NN with a pyramid WFS.
In this paper, a similar use of SL NN is implemented in combination with a PL as

the WFS to analyse the input phase information. The NN’s role in the setup is to
establish the relationship between the input phase and the fluxes in each of the 19
MCF end single-mode outputs. One of the issues of developing an optimised NN is
to avoid overfitting of the model, which comes from sampling noise [66]. This leads
to a model that does not generalise and thus can not predict with high accuracy.
Therefore, many methods are used to reduce overfitting, such as introducing weight
penalties, including L1 and L2 regularisation [64], when the validation performance
deteriorates during the learning process. These are a type of hyperparameters,
parameters for constructing or specifying the learning algorithm of a ML model [57].
The depth and amount of the hidden layers are also a type of hyperparameter, as
well as the number of neurons contained in each layer.
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Dropout is also a hyper-parameter to address both conservation of computation
power and over-fitting when given a limited data set [66], it achieves the above
by removing percentages of neurons [57] in each iteration of the learning process.
The number of epochs (a complete run through all the training data) also is a
hyper-parameter, which determines the time of the learning process and can also
be fine-tuned by stopping when the validation accuracy starts to decrease to avoid
over-fitting [57]. Others like batch size, size of each processed sample ’batch’ before
updating the model, learning rate, and the parameter that determines each step size
of learning, are also hyper-parameters to enable optimisation of a NN model [57].
In summary, the progress of AI has spanned over two centuries, and the advent

of ANNs has uncovered numerous applications in modern society, serving as a valu-
able instrument for data analysis. Specifically, NNs have been employed within
WFSs as an analytical tool owing to their robust pattern recognition capabilities.
Additionally, the NN can be optimised through its hyperparameters to yield high-
performance analysis. The type of NN utilised in this thesis belongs to the category
of SL NNs for analysing the experimental data.



Chapter 3

Laboratory Testing Procedure

3.1 Laboratory Setup

To validate the efficacy of the photonic lantern (PL) WFS, a number of laboratory
experiments were performed. A laboratory test-bed was constructed, which allowed
a WF with an arbitrarily chosen phase structure (imposed by a spatial light modu-
lator (SLM)) to be focused and injected into a PL’s MM input. The test-bed was
placed in a temperature-controlled room with a temperature variance of +/- 0.1◦ C
peak to peak at an average of 17.3◦ C to reduce the effect of thermal expansion of
optical components.
A bypass filter was utilised to selectively choose a 70-nm bandwidth of light as the

source for the experiment. The light was injected into an optic fibre and connected
to an OAP collimator (Thorlabs RC08FC-P01) and passed through a set of neutral
density filters to prevent saturation. A 2mm pupil stop was placed behind the bypass
filter in the beam path to eliminate the Gaussian wings; the reshaped beam went
through the polariser (PBS202) and reached the surface of the SLM which imparts
a phase pattern with a dynamic range between 0 to 3.5 π rad peak to valley(P-V).
The beam was then redirected by a beam splitter (non-polarising, R:I 50:50) into
two beams. One beam was directed into a 200 mm focal-length lens and focused
onto the detector, CAM2 (FLIR Blackfly BFS-U3-13S2M), viewing the resulting
PSF. The other beam was focused onto the MM end of the PL within a fibreport
mount (0.25 NA, 16.5 mm focal length). A fraction of this beam was reflected by
the surface of the PL MM end, allowing an image of the PL’s MMF end to form via
a 200 mm focal-length lens onto the detector, CAM3 (FLIR Chameleon3-CM3-U3-
13Y3M), simultaneously as reference. This feature allowed for easier alignment of
the system. The rest of the light was channelled into the PL, the SM outputs of which
(within a MCF) were imaged onto the detector, CAM1 (FLIR Grasshopper3-GS3-
U3-32C4M), using a third 200 mm focal length lens. In the second iteration of the
setup, the imaging happened via a spectrograph (seen Fig. 3.3 ). The custom-made
spectrograph contains a collimator, a dispersive prism and 2xlens for focusing onto
CAM1. The collimator is composed by a 15 mm achromatic lens(Thorlab AC050-
015-B ) and a 30mm achromatic lens (Thorlabs AC127-030-B ). The collimator has
a focal length of 16 mm. 2x60 mm achromatic lens (AC254-060-B-ML) are used to
focus the light onto the camera. The dispersive prism gives the spectra resolution:

26
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Figure 3.1: Photo of the experiment setup: this figure shows the in-lab test bed
setup for the experiments. Noted that the PL is highlighted in the insert (≈ 7.4 cm in
length). The rest of the length is purely for connection reach.The detailed configuration
is depicted in Fig. 3.2
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Figure 3.2: Experimental setup: A 70 nm bandwidth light (generated by SuperK
Evo supercontinuum white light laser fitted with a 2mm pupil stop and a bypass filter
centering at 704 nm) passes through a reflective collimator and polariser (POL) and onto
the Spatial Light Modulator(SLM). The modulated light is then split into two beams of
light by the 50/50 beam splitter (BS). Some light goes into camera 2 (CAM2) via a 200
mm focus lens (L2) to image the PSF; the other beam goes into a EFL=16.5 mm injection
lens within a fibreport containing the PL’s MM end. Camera 1 (CAM1) images the PL’s
SMF end via a 200 mm focal lens(L3). Some of the light beam is reflected from the MM
core and directed towards CAM3 to monitor the image plane of the PL at the MM end
via a 200 mm focal lens (L1).
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Figure 3.3: A schematic of spectrograph: shows the custom made spectrograph
using 3-D printing material as the main body housing attached with a SMA fibre adapter.

R=300 to allow each SM output to be measured as a function of wavelength.
The integration time of the cameras had to be chosen to minimise phase noise

from the SLM. The Pluto Holoeye SLM has a refresh rate of 60 Hz, with modulation
occurring at higher frequencies to produce intermediate ‘gray’ values. Thus the 3
cameras’ integration times were set long enough to average out this phase noise,
balanced against the need to acquire large volumes of training data rapidly. The
global shutter rate was tested from 1ms to 500 ms, and the result is shown in Fig. 3.4.
The normalised standard deviation of the flux intensity tapering out as the shutter

rate increased to 100 ms onward, as shown in Fig 3.4a. There is no statistical
significance in choosing from 200 ms onward to minimise the phase noise as the
remaining is most likely consisted of Cam 1’s dark noise. However, another factor
that accounts for the choice of shutter rate was the global flux intensity across three
non-uniformed CCD cameras for visual purposes. As the result, 400 ms was chosen
as the global shutter rate as it reduced the flux standard deviation to 1.84 × 10−2

flux intensity per ms, and a further increase in shutter rate induced over saturation
on Cam 1 (see Fig. 3.4b). In addition, the process of displaying the phase map on
the SLM is subject to a systematic delay caused by the refresh rate and software
response. This delay can lead to errors in accurately injecting the correct phase
information into the experiment setup. To mitigate this issue, a 0.1 second pause
was incorporated into the acquisition program for each update of the new phase
map. When collecting 40 data points, the overall acquisition time including built-
in delays is 20 seconds. However, when factoring in the computer response time
for processing and saving each individual file, the average time per file saved is 34
seconds. It translates to 18.9 hours of data collection per experiment of a total of
2000 data files with 40 data points.
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(a) Shutter rate vs total flux stability: Normalised standard deviations
of the total flux across PL 19 MCF output vs 8 different shutter rates of the
camera setting.

(b) Total Flux Stability vs Shutter Rate from 200 to 500ms: Histogram
shows the distribution of the normalised standard deviation of 19 flux intensity
across PL 19 MCF outputs as camera shutter rate increases from 200ms to
500ms.

Figure 3.4: Two figures show the relationship between the total flux stability
and the global shutter rate in milliseconds(ms).
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3.2 Wavelength resolved measurements

Existing WFSs in use are mainly limited to single-wavelength measurements [2, 8,
18]. Monochromatic source produces random speckle at image plane and makes
detection of phase wrapping a major issue in bad seeing conditions. A WFS that
is able to resolve measurements using polychromatic source is able to overcome
these limitations; Thus, the test-bed included the low dispersion spectrograph. The
bypass filter at the source (seen in Fig. 3.2 limited the wavelength range such that
the spectra from each output core do not overlap (Fig.3.5).
The spectrally-dispersed image of the MCF outputs was mapped to wavelength-

calibrated fluxes by the following procedure ensuring the pixel-to-wavelength cali-
bration of the resulting spectra is identical for all 19 output cores was important.
For the initial wavelength calibration, a calibrated monochromator was placed at
the light source to inject specific wavelengths. Four wavelength values ranging from
670 nm to 730 nm, with a step of 20 nm, were selected as reference points. These
reference points were used to establish the interpolated equation for the wavelength-
dependent intensity.The four sets of data were collected under the same condition
to establish the relationship between the position of the 19 MCF cores and the cor-
related single-wavelength source. The four images were combined, as shown in Fig.
3.6b. The highlighted rectangular box in Fig. 3.6b shows the spectral extraction
region for one of the output WG. The dimensions of the box are 2 pixels by 39
pixels, large enough to contain the entire spectrum across the 70 nm bandwidth.
The 4 selected monochromatic wavelengths of the 19 outputs are enclosed inside a
rectangular box (shown in Fig. 3.6a) as a circular pattern at the output. The pixel
position of the peak intensity is extracted for each of the wavelengths at the 19 out-
puts. The box is divided vertically to get a step value of δλ, of 2.31 nm per pixel.
The program, Matlab, used in processing matrix is in integer indexing, therefore an
interpolated function was necessary to accurately describe the relationship between
the flux centroid and the wavelength. Fig. 3.6a shows a 2-D fitted function over the
4 positions in Fig. 3.6b as each line indicates 1 fitting function for position vs. the
wavelength for 3 outputs. It is important to note that none of the 19 cores contains
the same fitting function, due to the slight positional difference on the camera across
the 19 cores, seen in Fig. 3.6b.

3.3 Measurement procedure

A pattern of the designed modes was generated by manipulating indexes of a zero
value matrix (181 x 181 in unit pixels) with randomly assigned coefficients with
a predetermined combined wavefront RMS error range: 0.88 rad and 1.5 rad on
average, respectively. The tests were conducted using different combinations of
Zernike phase maps, including 9, 14 ,and 19. The Matlab function that was used
to achieve this was Zernfun [67]. A phase map was made by linearly adding the
desired modes together. The process involves injecting specific phase maps onto the
SLM screen for manipulation, which then propagate through the PL and result in
flux intensities across the 19 PL outputs. The data is acquired via CAM 1 as seen
in Fig. 3.2.
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(a) Spectra output vs Wavelength: Plot of wavelength vs the intensity of the flux from the
19 MCF cores.

(b) Lantern Image Plane spectra output: The raw camera image of the same MCF cores as
the data shown in Fig. 3.5a.

Figure 3.5: Wavelength-resolved output of the MCF PL illuminated by a light source
with a wavelength from 660 to 780 nm. The total wavefront at the input is 1.5 radian
RMS in average.
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(a) Raw camera image of the 4 calibration wavelength positions for each of the 19
cores: The highlighted box represents 1 of the cores with 4 different wavelengths (670nm to 730
nm with a step of 20 nm, from top to bottom).

(b) Wavelength calibration curve: this graph shows 4 fitted lines to the 4 wavelength’s pixel
positions respectively. The location of each set of 4 points is the graph presentation of the same 4
dots in the rectangular box in Fig. 3.6a. Noted: only three out of 9 outputs are shown here for visual
clarity.

Figure 3.6: Wavelength calibration: spectral extraction process used for the
spectrally-dispersed MCF outputs.
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Dark frames were produced for each camera by averaging 200 unilluminated im-
ages, which were subsequently subtracted form each measurement. An automated
control loop, written in Matlab, was used to construct and display random phase
maps on the SLM, and save the displayed phase maps with the corresponding camera
images in one file. Due to the limitation of the computer’s random access memory
(RAM), a set of 40 data points was allowed to be stored in individual files before
running out of RAM. For a full run of data acquisition, a total of 2000 such files
were collected for an individual experiment. All raw data were stored as Matlab
files; 9 different experiments were conducted for characterising the 19 MCF output
PL as WFS.

3.4 Interrogation of the NN structure for analysing

the PL wavefront input

Some of the hyperparameters greatly affect the NN prediction while training the
model; one of the hyperparameters is called dropout rate as mentioned previously
in Section 2.4. The dropout rate is usually used to avoid overfitting the model, as
overfitting undermines the ability of the model to predict unseen new data [66]. The
different dropout rates were tested on the 9 Zernike phase map with on average 0.88
rad incident wavefront RMSE, the result can be seen in Table 3.1. It should be noted
that when the dropout rate was set to 0, overfitting occurs in the model (shown in
Fig. 3.7a, which was not an ideal situation either as it has been discussed in Section
2.4 earlier). The optimal amount of the dropout rate is at 0.1 × 10−1, where the
test and validation losses are overlapping, as seen in Fig. 3.7b. When the dropout
was too large for the model (dropout rate = 0.3) the model became underfitting
(shown in Fig. 3.7c). This is again not ideal as the algorithm for learning in the
model has underfitted too much in each iteration of the learning process, so the test
set under-represents the validation set, and this over-representation of the data is
reflected in the loss curve since the training loss has higher reconstruction RMSE
than the validation loss. Another hyper-parameter, epoch, was turned to optimise
the NN performance. As seen in Fig. 3.8, the linear relationship between the epoch
and the time, the amount used to train the model, presents a cost in the application
of PL-NN methods for wavefront detection. As discussed previously in Chapter
1.3, the computation time is directly related to the temporary error, which impedes
overall AO performance. However, the NN reconstruction RMS error demonstrates
an inverse, non-linear relationship as there is a sharp decrease when the epoch
increases from 100 to 500, shown in Fig. 3.8, and a much slower decreasing trend
afterwards. It eventually gives no more benefits to extend the training time, the
epoch, to decrease the reconstruction RMS error. The NN reconstruction error
also depends on the NN structure in terms of linearity and the number of hidden
layers applied when building a model, which can be explained by the complexity
relationship mentioned in Section 2.4. However, the trade-off is time efficiency
during training, as the deeper the NN, the more it penalises training time [57], a
known shortfall for most DL models, including NN. Supervised NNs are also known
to require a large amount of data while building an optimal model, as can be seen in



3.4. INTERROGATION OF THE NN STRUCTURE 35

Fig. 3.9. As the larger the data set is given to the NN, the smaller the reconstruction
error in RMS becomes, with almost a reverse exponential pattern. A three-layered
NN may not necessarily be classified as a deep network; however, it still contains 3
non-linear hidden layers. The more Zernike terms included in the phase map, the
more complicated the relationships between input and output, hence the deeper the
NN required to deal with the increased variables to predict [66]. Currently, as in
the DL NN used here, increasing the number of layers does not necessarily mean
increased performance, as discussed in Section 2.4. This is also true for the number
of data required to train the NN if the model is kept the same. Using only half of
the 80000 data points, we were still able to predict with similar accuracy for 9, 14
and 19 Zernike terms in the smaller RMS WFE range at the input. However, the
same can not be said with a larger incident RMS WFE for the same terms, which is
possibly due to the current NN construct still not being optimised in dealing with
the high nonlinearity of the input wavefront and also the fact that SLM displayed
more phase wrapping at the range over its maximum P-V threshold, so it affects the
NN’s ability to accurately predict the coefficients.

Drop out rate Reconstruction RMSE (rad)
0.00 1.90× 10−2

0.1× 10−1 1.84× 10−2

0.2× 10−1 1.84× 10−2

0.5× 10−1 1.92× 10−2

1.0× 10−1 2.30× 10−2

2.0× 10−1 2.80× 10−2

3.0× 10−1 3.40× 10−2

Table 3.1: NN hyperparameter: dropout rate vs the reconstruction error:
different dropout rate and the reconstruction RMS error for 9 Zernike with input total
wavefront RMSE of 0.88 rad.
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(a) Dropout rate: 0: the training loss shows a lower value than the validation loss , indicating
a overfitted model.

(b) Dropout rate: 0.01: the training loss overlaps with the validation loss , indicating a well-
fitted model.

(c) Dropout rate: 0.3: the training loss tapered out at a higher value than the validation loss,
indicating a underfitted model.

Figure 3.7: Loss curve with two values of dropout rate using the same NN
construct.
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Figure 3.8: Number of Epoch vs time used to train NN: Relationship between the
number of epochs used to train the NN model with the reconstruction RMSE and time
consumed to build the model while the amount of training and validation data sets were
unchanged
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Figure 3.9: Number of data used in training the NN model vs reconstruction
error: using the same hyperparameter with different number of data quantity the RMS
reconstruction error



Chapter 4

Experiment result

To test the ability of the PL-WFS to accurately reconstruct the incident WF, a
number of different laboratory tests were conducted. In each experiment, a different
type and magnitude of WFE was imposed, and the reconstruction accuracy quanti-
fied. For a general test of low-order WF sensing, the Zernike polynomial was used, a
commonly used basis for representing optical WF aberrations. Both the number of
terms (corresponding to the number of spatial modes sensed) and the magnitude of
the WFE was varied, see in Fig. 4.1. Next, the ability to sense the problematic low-
wind effect modes (also called island modes)/ petal modes was tested, using a basis
specifically designed to emulate these modes. Finally, the ability of the PL-WFS to
reconstruct simulated atmospheric turbulence was tested. The performance of each
test was evaluated based on the reconstruction RMSE, which is the RMSE of the
residual map between the actually-applied and reconstructed WF RMS.

Figure 4.1: Distribution of total incident RMS WFE for the different Zernike
experiments: the top row is for the low WFE phase maps; the bottom row is for the
high WFE phase maps.

39



4.1. WAVELENGTH BINNING 40

4.1 Analysis of wavelength binning

Before conducting all the experiments, the optimal bandpass needed to be estab-
lished. Since the output is spectrally dispersed, it is possible to choose the centre
wavelength and bandwidth of light used in the analysis by integrating over the
chosen spectral channels. An optimal bandpass was chosen using the procedure de-
scribed here in the experiments described above. This same bandpass was used for
all experiments.
A test set consisting of 9 Zernike modes with an average incident RMS WFE

of 0.88 rad was selected, with identical raw test data being utilized for all tests in
this task. In the first experiment, after obtaining individual spectra from the PL
output image as previously described, the resultant sets of 39 fluxes corresponding
to 39 wavelength channels (ranging from 655.84 to 751.14 nm) were each used inde-
pendently to train and test a neural network tasked with the reconstruction of the
wavefront coefficients.
Fig. 4.2a illustrates that the most effective wavelength range for the PL WFS

was between 680 nm and 730 nm. Notably, the poorest performance of the PL
was observed at 765.84 nm (with the best RMSE of 1.75× 10−1 rad) and the most
effective at 693.17 nm (with the best RMSE of 2.50 × 10−2 rad) when comparing
the reconstruction RMSE (see Figure 4.2a). This pattern was anticipated and can
be largely attributed to the decrease in flux, resulting in a decreased signal-to-noise
ratio (SNR) at the upper and lower limits of the bandpass filter positioned in front
of the source.
The measured fluxes were integrated across a range of different bandwidths, with

the integrated fluxes for each bandpass choice subsequently used to train and test the
network. The best performing bandwidth was the found, as shown in Figure 4.2b.
The narrowest bandwidth of approximately 2 nm was the least effective due to low
SNR, and a rise in reconstruction RMSE was also observed when larger bandwidths
were employed. This is expected when the bandwidth becomes large enough that
the flux at each wavelength is not linearly proportional to all other wavelengths in
the bandpass, e.g. when a null is present at some wavelength. The most effective
bandwidth was demonstrated to be 34 nm, which, with a centre wavelength of
680 nm, was adopted for all experiments presented here.

4.2 Low-order WFE with Zernike modes

Zernike polynomials [68] are widely used in AO as the basis for optical aberrations
due to their orthogonal nature [2] and the fact that their lower-order series mathe-
matically describe the classic optical aberrations such as tip, tilt, astigmatism, etc.
[69]. This basis was thus used here to simulate general low order wavefront aberra-
tions. An important question to be answered is how many spatial modes a PL-WFS
can sense. Due to the available degrees of freedom, the number of output WGs
places a hard upper limit on the number modes that can be sensed. But in practice,
due to symmetries in the PL lantern and the mismatch between Zernike basis and
the modes natively supported in the PL, this number would be expected to be lower.
These experiments used sets of phase maps made with 9, 14 and 19 Zernike terms
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(a) The best reconstruction RMSE for a single wavelength across a wavelength span
between 660 nm to 768 nm.

(b) Bandwidth vs reconstruction error: The change in reconstruction RMSE versus the
different integrated bandwidths used

Figure 4.2: The relationship between the wavelength and performance of the
PL setup
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(excluding the piston mode). For each of these, a set with lower WFE (0.88 rad
RMS) and a set with high WFE (1.5 rad RMS) were tested.
In the first experiment, for each test measurement, the first 9 Zernike modes

(excluding the piston mode) were linearly combined to form one phase map on the
SLM. Each of the 9 Zernike terms was given a coefficient randomly chosen from a
uniform distribution ranging from −0.26 to 0.26 rad in RMS WFE. The combined
9 Zernike modes yielded an average incident RMS WFE of 0.88 rad. An example
measurement is shown in Fig. 4.3. For each applied phase map, the PL’s output
fluxes at its MCF end, the image of the PSF and the image of the back-reflection of
the injection are saved.

Figure 4.3: An example of a (polychromatic) individual measurement for the 9 Zernike
data set. As with all other types of test data, random modal coefficients were chosen to
produce a phase map describing low-order WFE, which is applied to the SLM (bottom-
right). The resulting PSF (top-right) is injected into the PL, and the 19 outputs of
its MMF end (seen here spectrally dispersed) are measured by a camera (left). This is
repeated of order 10 000 times to produce the data set.

While many existing FP wavefront sensing algorithms rely on a linear approxima-
tion for the relationship between WFS signal and wavefront phase[8, 17, 20, 26, 30,
31, 69], in practice this is not always a good assumption as real-world WFE often
have magnitudes placing them well outside the locally-linear regime. This is espe-
cially true for modes such as LWE. To test the ability of the PL WFS and neural
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Number of
Zernike
Terms

Average
RMS
WFE
applied
(rad)

Number
of

neurons
and NN
layer

Epochs Dropout
rate

Learning
rate

9 0.88 2000-1100-100-9 100 0.004 1.00× 10−4

9 1.50 2000-2000-200-9 100 0.05 1.00× 10−4

14 0.88 2000-2000-2000-14 100 0.22 1.00× 10−4

14 1.5 2000-2000-2000-14 300 0.40 1.00× 10−4

19 0.88 2000-2000-2000-19 200 0.40 1.00× 10−4

19 1.5 2000-2000-2000-19 200 0.40 1.00× 10−4

Table 4.1: Summary of neural network parameters

network to perform non-linear wavefront reconstruction, the total WFE were also
constructed with an average RMS WFE of 1.5 rad. The total peak-to-valley (P-V)
error in wavefront was found to be up to 11 rad on average, depending on the number
of modes that were combined to create the final phase masks. This distribution of
wavefront included many instances with very large RMS WFE (up to 2 rad), firmly
in the non-linear regime - see the histogram in Fig. 4.1 and Fig. 4.18. For both
WFE magnitudes, a set of 80000 measurements (consisting of random combinations
of the 9 Zernike modes) was taken. Measurement sets using the first 14 and first
19 (non-piston) Zernike terms, for both RMS WFE magnitudes, were acquired in
the same fashion. A NN was then used to test the performance of wavefront recon-
struction for each of these experiments. In each case, 80% of the data was randomly
selected to train the NN, and the other 20% kept separate and used to evaluate the
performance of the trained network. Withholding a separate test set allows one to
detect if overfitting has occurred, and proves that the network is able to generalise
to new, previously unseen data. Fully connected NN were used, with the network
parameters tuned for each case. The network parameters are summarised in Table
4.1. The NN was built in Tensorflow [70] using the Keras API [71], and trained on
an NVIDIA GeForce RTX 2080ti GPU.
The reconstruction accuracy results for all Zernike experiments are given in Table

4.2. For the 9 Zernike term, with low incident WFE (0.88 rad RMS) set, the recon-
struction RMSE per mode was 2.21×10−2 rad. The set of results from high incident
WFE (1.5 rad RMS) shows an almost threefold increase in reconstruction error, with
a value of 6.89× 10−2 in rad. The resulting predicted and actual coefficients for the
phase maps can be seen in Fig. 4.5 and Fig. 4.6 for two different incident WFE.
The lower incident WFE (Fig. 4.5) gives a better prediction in coefficients across all
9 Zernike modes than the higher WFE data set (Fig. 4.6) in general. Similar differ-
ences are also observed in the 14 and 19 Zernike term sets, where the reconstruction
RMSE per mode was 5.70 × 10−2 rad for Fig. 4.7 and 8.50 × 10−2 rad for Fig. 4.9
respectively at the low incident RMS WFE; the reconstruction error increased to
1.72 × 10−1 rad in Fig. 4.8 and 2.07 × 10−1 rad for Fig. 4.10. The more detailed
breakdown of RMS WFE per mode are displayed in the figures from Fig. 4.5 to
Fig. 4.10. In the best cases, the reconstruction residuals for each mode are barely
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Number of Zernike
Terms

Reconstruction RMSE per
mode with 0.88 rad
incident wavefront

Reconstruction RMSE per
mode with 1.5 rad incident

wavefront
9 2.21× 10−2 6.89× 10−2

14 5.70× 10−2 1.72× 10−1

19 8.50× 10−2 2.07× 10−1

Table 4.2: Summary of reconstruction performance, in terms of reconstruction
RMSE, for all the Zernike-based experiments.

visible (coinciding with the ’Residual=0’ : the black dashed lines) in each of the
figures, showing a very high accuracy in predicting coefficients for the Zernike terms
used. However as the magnitude of applied WFE and number of Zernike terms
increases, the residuals become larger, such as seen in Fig. 4.8 and Fig. 4.10.
Table 4.2 shows a pronounced trend that the higher the incident WFE, the greater

the reconstruction RMSE. This is clearly reflected using an example comparison
between Fig. 4.5 and Fig. 4.6; the individual RMS WFE per modes increases in
the each mode when the experiment was moved from low to high incident WFE.
The same relationship is again confirmed in the correlation graphs for all 3 sets
of Zernike terms with different incident RMS WFE, see in Fig. 4.4. Additionally,
it is worth noting that increasing the number of Zernike modes used to construct
the phase maps also leads to a higher reconstruction error within the same incident
WFE regime. This is again reflected by the correlation graph, see Fig. 4.4, where
there is a decrease in linear shape in the data clusters as the number of Zernike
terms increases. As the number of Zernike terms in the phase mask increases, from
9 to 14 and finally 19, such as in Fig 4.6, Fig 4.8 and Fig 4.10, there is a visible
increase in the reconstruction RMSE for each mode.
Fig. 4.12 shows the contribution to reconstruction RMSE (rad) from each mode,

for each of the Zernike-basis experiments. While the distribution of error is roughly
even, some trends can be discerned. In many cases (especially evident in the 9 and 19
Zernike plots) the first two modes, corresponding to tip and tilt, have higher errors.
It is suspected this is due to drifts in alignment and vibration in the laboratory setup,
introducing tip/tilt variation in the training data which is not reflected in training
labels. The amount of the drift is quantified by comparing the change in total flux
of the PL at its output using a series of equations below under the assumption that
the initial system is perfectly aligned.

Ex,y = Ae−
2x2+2y2

σ2 (4.1)

, where Ix,y is the intensity at x, y position, A is the amplitude, x is the mean
position at x axis, y is the mean position at y axis, σ is the standard deviation of
Gaussian profile. The standard deviation can be replaced by the mode field diameter
(the input beam diameter), w, by using the equation,

w = 2
√
2 ln 2σ (4.2)

.

η =

∫
E1 ∗ E2dA∫

E1dA+
∫
E2dA

(4.3)
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Figure 4.4: Correlation histograms between predicted WFE and actual WFE
for the 6 sets of Zernike mode testing: the predicted coefficients closely match the
actual coefficient values for 9, 14, 19 Zernike terms at lower incident WFE. As the number
of Zernike term and RMS WFE increase, the scatter becomes larger. The dotted line is
the theoretic best fit.
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Figure 4.5: Results of wavefront prediction for the 9 Zernike phase masks with
incident WFE of 0.88 rad RMS. Both true and predicted coefficients for all modes of
70 randomly selected data points are plotted. The corresponding residuals are also shown
for each mode. The green line is the actual coefficient values, the red dot is the predicted
values, the blue line is the residual and the dotted black line is the theoretic perfect fit.
The residual between the actual and predicted values are almost overlapping with the
perfect fit.
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, where η is the coupling efficiency, E1 is the PL mode field energy, E2 is the beam
mode field energy and dA is the common area between the two field. A function of η
is established by integrating the dA over the mode area of the PL as seen in Fig. 4.11.
The PL mode-field has a shape of a step function, therefore the convolution between
the beam (a Gaussian profile) and the PL shape looks like an imperfect Guassian,
shown in Fig. 4.11. The displacement in x, y direction is under the assumption that
the output intensity from PL’s MCF end has a Gaussian profile (happens when
the intensity across the MMF end is assumed constant), however there is optical
misalignment noted at the initial of each test case. The drift is calculated to be 0.03
micron/hour at best case and 0.12 micron/hour at the worst case across the 8 test
cases. Also there appears to be a general trend where the higher order terms have
lower errors. This may be because the effect of beam tip/tilt on the powered optics
in the setup tends to induce lower order aberrations rather than higher order ones.
To allow a more visually intuitive presentation of the wavefront reconstruction,

additional test sets were acquired where the Zernike coefficients varied continuously
over time (produced by filtering noise by a Gaussian kernel), mimicking the contin-
uously varying phase error experienced by a telescope in natural seeing, shown in
Fig. 4.13 and Fig. 4.14.
It is worth noting that the performance of the NN is relatively poor for Tip and

Tilt modes when compared to higher order modes. This could be attributed to the
presence of background vibrations and thermal drifts in the laboratory setup, which
result in modulation of the PSF position without a corresponding change in applied
wavefront coefficients.
Two such sets of 1000 phase maps were generated with a incident RMS WFE of

0.88 and 1.5 rad respectively, and were injected into the PL and reconstructed using
the existing 9-Zernike NN model. In Fig. 4.13 and Fig. 4.14, the PL and NN are seen
to work well with the predicted coefficients coinciding with the actual coefficients
for the 9 Zernike modes.
The same procedure was used to generate 2 time-series sets of 1000 phase masks

with 19 Zernike terms (incident RMSWFE = 0.88 rad and incident RMSWFE = 1.5
rad respectively), were injected into the PL and reconstructed using the existing 19-
Zernike NN model, see Fig. 4.15 and Fig. 4.16. It is as expected that the predictions
for 19 Zernike terms are less accurate. Same prediction was shown for the previous
data, seen in Fig. 4.9 and Fig. 4.10. Especially, the data with the high incident WFE
(Fig. 4.16), shows the least accuracy in predicted coefficients per mode. There is a
notable overall increase in reconstruction error per mode observed for both 9 and 19
Zernike terms in the two incident wavefront regimes comparing to their randomised
counterparts in Fig. 4.5, Fig. 4.6, Fig. 4.9 and Fig. 4.10. This increase are likely
attributed to the time difference (7 days) between the development of the model used
for prediction and the acquisition of the time-series dataset. Over time, mechanical
drift on the setup gradually introduced optical misalignment, leading to the observed
increase in reconstruction error compared to the randomised 9 and 19 Zernike terms
in both incident wavefront regimes.
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Figure 4.6: 9 Zernike phase masks with incident WFE of 1.5 in rad RMS:
Both true and predicted coefficients for all modes of 70 randomly selected data points
are plotted. The green line is the actual coefficient values, the red dot is the predicted
values, the blue line is the residual and the dotted black line is the theoretic perfect fit.
The residual between the actual and predicted values are still largely coinciding with the
perfect fit, however there are noticeable departure comparing to the residual in Fig. 4.5.
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Figure 4.7: 14 Zernike phase map with 0.88 rad of incident RMS WFE: Both
true and predicted coefficients for all modes of 70 randomly selected data points are
plotted. The green line is the actual coefficient values, the red dot is the predicted values,
the blue line is the residual and the dotted black line is the theoretic perfect fit. The
residual between the actual and predicted values are largely coinciding with the perfect fit.
There are noticeably disparities when comparing with Fig. 4.5, showing the reconstruction
accuracy in this case is generally worse than the 9 Zernike term in the low WFE regime.
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Figure 4.8: 14 Zernike phase map with 1.5 rad of incident RMS WFE: Both true
and predicted coefficients for all modes of 70 randomly selected data points are plotted.
The residual between the actual and predicted values are largely coinciding with the perfect
fit. The disparities between residual and the perfect fit appears to be increasing comparing
with Fig. 4.6 and 4.7, showing the reconstruction accuracy in this case is worse than the
14 Zernike term in the low WFE regime as well as the 9 Zernike terms in the high WFE
regime.
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Figure 4.9: 19 Zernike phase map with 0.88 rad of incident RMS WFE: Both
true and predicted coefficients for all modes of 70 randomly selected data points are
plotted. The residual between the actual and predicted values are still coinciding with
the perfect fit. The departure between residual and the perfect fit shows an further
deterioration in reconstruction accuracy comparing with Fig. 4.5 and 4.7 in the same
WFE regime. The disparity between residual and the perfect fit also more noticeable than
those in Fig. 4.6, but comparable to those in Fig. 4.8, showing the reconstruction accuracy
in this case is worse than the 9 and 14 Zernike terms in the low WFE regime as well as
the 9 Zernike term in the high WFE regime.
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Figure 4.10: 19 Zernike phase map with 1.5 rad of incident RMS WFE: Both
true and predicted coefficients for all modes of 70 randomly selected data points are
plotted. The residual between the actual and predicted values are more departed from
the perfect fit comparing with Fig. 4.6 and 4.8 in the same WFE regime. The disparity
between residual and the perfect fit also is the most noticeable than those in the previous
5 cases. This shows the reconstruction accuracy in this case is worst in terms of wavefront
reconstruction.
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Figure 4.11: Function of coupling efficiency over change in common area be-
tween PL and input beam: as the beam move away from the centre of the PL mode
field, an initial beam movement up to 5 micron corresponds to a very slow decline in
coupling efficiency. A rapid drop in coupling efficiency is shown as beam moves over 5
micron. This coincides with the in the lab setting via change in the total output flux.
The displacement of the optical system can be estimated via the change in output flux
overtime.

Figure 4.12: Reconstruction RMSE per mode for the Zernike-basis tests, for
three different numbers of terms and for both the low and high incident WFE
regime. There is a light decreasing trend in reconstruction error moving from lower order
to higher order Zernikes. However due to the limited number of terms (19 terms), it is
inclusive.
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Figure 4.13: Results for a smoothly-varying time-series 9 Zernike phase map
with 0.88 rad of incident RMS WFE: first 9 modes are shown (except piston mode) in
a time series. The predicted coefficients almost coincide with the actual coefficient values
in each for the 9 modes perfectly.



4.2. ZERNIKE MODES 55

Figure 4.14: 9 Zernike phase map with 1.5 rad of incident RMS WFE in
a time series: first 9 modes are shown (except piston mode) in a time series. The
predicted coefficients still largely coincide with the actual coefficient values for each of the
9 modes.
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Figure 4.15: 19 Zernike phase map with 0.88 incident RMS WFE (rad) in
a time series: first 19 modes are shown (except piston mode) in a time series. The
predicted coefficients show deviation from the actual coefficient values in each of the 19
modes.
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Figure 4.16: 19 Zernike phase map with 1.5 incident RMS WFE (rad) in a time
series: first 19 modes are shown (except piston mode) in a time series. The predicted
coefficients show further deviation with the actual coefficient values in each of the 19
modes.
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4.3 Testing for Low Wind Effect

As mentioned previously, one of the advantages of a FP-WFS is the ability to detect
the low wind effect (LWE) [18] also called the island effect (IE) [17]. The cause of this
aberration was first confirmed by SPHERE using the Zernike sensor for Extremely
Low-Level Differential Aberration(ZELDA)[17, 18].

Figure 4.17: Phase slope and phase discontinuity: Top left shows simulated LWE
on a phase map. Top right is an image of the Very Large Telescope(VLT) belonging to the
European Southern Observatory (ESO) [72] located in Chile. Image credited to ESO/José
Francisco (josefrancisco.org); Bottom left image captures what happens to the PSF of a
point source when a LWE of 1.34 rad RMS WFE is applied to; Bottom right image shows
the phase slope and phase discontinuity in a 2-D spatial domain.

Addressing this is also an opportunity to resolve another type of aberration men-
tioned previously, the NCP aberration. There are many methods to attempt to find
solutions to these two aberrations, and efforts to resolve this issue are ongoing. [17].
Current PP-WFSs, such as a pyramid WFS, are limited in correcting this type of
aberration due to the phase discontinuity at each spider beam [18] even in good
seeing condition. 20% of the data were unusable due to the LWE on the SPHERE
project [18]. This is a significant loss in cost-effectiveness given that the observing
times are always limited and very competitive for the usage of any large telescopes
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(a) incident WFE RMS (b)a sample of phase map gen-
erated for each case

Figure 4.18: Distribution of total incident WFE in RMS (in rad) for petal
and LWE phasemap: the top row is the petal WFE RMS distribution and a sample of
the phase map; the bottom row is the LWE WFE RMS distribution and its sample phase
map.

across different international projects. A FP-WFS, in theory, can detect this type
of aberration well because the aberration has a very strong effect at the image plane
[17, 25]. The first part of the experiment was to test whether the PL could observe
phase discontinuity. A four-panel phase map was generated by applying piston a
mode in each of the first 3 quadrants. The segmentation of the circle simulates the
phase discontinuity in each spider beam Fig. 4.17.
The total incident WFE of each phase map was 1.5 rad RMS on average, seen in

Fig. 4.18. 58578 sets of randomly generated phase maps were measured withe the
PL, and the data were collected to feed into a NN with a 2 hidden layers (1000-
100) with non-linear activation function to predict the coefficients of each of the
piston modes. The calculation time for NN using GPU was 2.9 minutes in total.
The predicted sets of coefficients of the same quantity were then compared with the
actual sets of coefficients. The average reconstructed error per mode is 4.70× 10−2

rad RMS, which corresponds to 9.1 nm in residual RMS WFE per mode. This
demonstrates that the PL can see the phase discontinuity and predicts with high
accuracy when a simple NN is also employed in data analysis.
For a more thorough invesitagion of LWE, the wavefront can be treated as a

combination of piston, tip and tilt modes in each of the 4 quadrants[16, 17] in the
simulation. The units of the coefficients are the gradients of tilts and tips, while
the unit for piston modes is rad. Seen in Fig. 4.17, the circle is divided into 4
segments to simulate the 4 supporting beams of the spider structure over a pupil
on a ground-based telescope shown in Fig. 4.17. The segmented pattern gives rise
to phase discontinuity, which has been observed in large telescopes, caused by the
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Figure 4.19: A comparison between the predicted phase map reconstructed
by the predicted coefficients from NN and the actual phase map that PL had
seen at the time of data collection : From left to right: top left shows a reconstructed
phase map using the predicted result; the top right shows an actual phase map that PL
saw during the experiment; The bottom panel shows a residual phase map subtracted
between the two (note the different colour scale).
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Figure 4.20: Correlation histogram between the actual WFE (in RMS rad)
and the predicted WFE (in RMS rad) for petal and LWE mode testings: (on
the left) the graph shows an almost linear correlation between the predicted data set using
NN 3-layered structure and the actual total coefficients for the petal; (on the right) the
correlation between the actual and predicted total coefficients of LWE. This graph appears
to be less linear and more spread out, showing a less accuracy in reconstruction using an
optimised NN due to the increased number of terms, N, in LWE phase masks (N=11)
comparing to petal phase masks (N=3). The dotted line is the theoretic fit.

radiative effect of the spider beam (highlighted by the red box in the upper right
image, Fig. 4.17). As mentioned earlier, PP-WFSs only detect the slope of the phase
[18, 20, 26], this aberration cannot be well corrected by PP-WFS due to the shear of
the phase (shown in the bottom right image in Fig. 4.17), although the aberration is
strongly presented in the image plane (shown in the bottom left image in Fig. 4.17).
The range of the randomly chosen coefficients for piston, tip and tilt modes was set
such that the total WFE of each phase map is roughly centred at 1.5 rad RMS on
average Fig. 4.18. The value of the RMS WFE was selected purely to test the PL’s
ability to detect wavefront in a large WFE regime. 3 of the 4 segments each contain
a combination of the randomly generated tip, tilt, and piston modes to simulate the
phase discontinuity caused by each supporting beam structure of the spider; the last
panel left contains only tip and tilt, as it acts as the reference piston for the other 3
panels containing piston mode. Each individual phase mask , constructed by a total
of 11 modes, is then displayed on the SLM to perform the PL measurement as seen
in Fig. 4.22.
A set of 80000 randomly generated combinations of the 11 coefficients was used to

construct the 8000 LWE phase maps, with each containing an average RMS WFE
of 1.5 rad. The coefficients and the corresponding 19 fluxes of the PL MCF were
used to train the NN. The NN used for predicting petal and LWE can be seen in
Table 4.3). Both NN use 20% of the total data as validation, and were trained
for the stated epochs shown in Table 4.3 using a total of 20 minutes. Evaluation
with the validation data resulted in a reconstruction RMSE of 1.04× 10−1 rad per
mode, which is equivalent to a 11.6 nm residual RMS WFE per mode for the source
wavelength at 700 nm. This results in a total RMS reconstruction error of 38.4 nm.
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Figure 4.21: Comparison between the actual coefficients and predicted
coefficients by the NN for petal modes with average input RMS WFE
of 1.5 rad: the residuals of each modes are the blue line (almost indistinguishable
from the axis).
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Figure 4.22: An example from the LWE test bed: The panel on the left is the
image recorded from Cam1, seen in Fig 3.2. Note each of the 19 outputs consisting of an
individual spectrum with 70 nm bandwidth (of which a smaller bandpass was selected for
these experiments); the top right panel is the PSF after applying the phase map of the
panel below.

Phasemap NN layers
with

neuron
number

Number of
epoch

dropout
rate

learning
rate

Petal 1000-100-3 100 0.005 1× 10−4

LWE 12000-2000-2000-11 100 0.15 1× 10−4

Table 4.3: NN construct with hyperparameter for peddle and LWE with inci-
dent wavefront (RMSE=1.5 rad in average): all of the activation function for the
NN is non-linear (ReLu)

The strong correlation between true and predicted coefficient values is shown in the
left in Fig. 4.20.
Predicted WFEs that comprised the LWE phase map compared to the actual

WFEs are shown on the right side of Fig. 4.20, while Fig. 4.23 shows the individual
modes’ comparisons in reconstruction RMSE (rad). Qualitatively, the differences
between the predicted phase maps and the actual phase maps for petal and LWE
respectively are almost visually negligible, seen in both Fig. 4.19 and Fig. 4.24.
This is an excellent result, especially considering the very high incident WFE and
high accuracy of the reconstruction compared to other work. For example, the
asymmetric Fourier pupil wavefront sensor (APF-WFS) method mentioned in [17]
only had an incident RMS WFE of < 1 rad in the lab-based test.
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Figure 4.23: 70 data points for predicted and actual coefficients for the 11
individual mode that made up the LWE phase map with incident average
WFE of 1.5 rad RMS. The total of residual RMS is displayed for each mode. The
corresponding residuals are also shown for each mode.
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Figure 4.24: Comparison between the actual LWE phase map and predicted
phase map using NN:Visual comparison between the reconstructed phase map using
predicted coefficients and the original phase map. The panel at the bottom is the residual
subtraction between the two.

4.4 Testing for Atmospheric Turbulence

The next step of the experiment is to use the atmospheric turbulence simulation
generated by HCIPy [73] in the same setup as in the previous experiment. From
the results in Section 4.2, the 9 Zernike phase map with low incident WFE gives
the best result using NN. However, due to the complexity of a true atmospheric
turbulence, 19 Zernike was selected as the basis in an attempt to fit the turbulence
phase map. The low incident WFE regime is applied to both 19 Zernike phase map
and turbulence phase map.
To minimise the impact of potential mechanical drifts and thermal effects from

the surrounding environment on the optical setup, the input data training set was
74,280 phase masks of 19 Zernike phase maps, with sets of turbulence phase maps
taken periodically. The average incident RMS WFE was set at 0.88 rad. The NN
was trained in the same way as the previously described Zernike-basis networks
using 80000 randomly generated Zernike phase maps (19 terms).
The simulated atmospheric phase screen contains higher spatial frequencies than

the low orders sensed by the PL. To visually evaluate the PLs low-order recon-
struction of the phase screen, a low-order representation of test phase screens were
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reproduced by fitting the lowest 19 Zernike polynomials (using OpticsPy [74]), as
shown in Fig.4.25. With the original phase screen applied to the SLM, the fluxes
from the 19 output of the PL’s MCF end were injected into the trained 19-Zernike
NN model, which allowed the network to give the prediction in 19 Zernike terms
according to the incident turbulence on SLM. The predicted coefficients were used
to reconstruct the phase screen from these low-order Zernike terms. Very similar
phase patterns can be seen in the predicted and the actual phase maps in Fig.4.25.
This suggests that despite the high spatial frequency contained in the input SLM
phase map, the PL produced a good prediction of the turbulence phase map using
19 Zernike modes as its basis in a laboratory demonstration, hence this method of
detecting wavefront is feasible in an on-sky test in future development.
It is worth noting that despite the prediction of the PL using the NN shows close

similarity to the true phase of the turbulence, there are larger variances at the edge of
the pupil in the predictions of the PL shown in 4.25]. This may be due to the strong
sensitivity of higher order Zernike modes to the very edge of the pupil, combined
with any drift in alignment between the optical pupil location and the location of
the pupil displayed on the SLM. Furthermore, quantitative comparisons of Fig. 4.25
(between the predicted and fitted Zernike phase maps) are not analysed due to the
difference in the programs were employed, leading to discrepancies. The Zernike
terms were created using the Matlab function - Zernfun, and the fitted Zernike
terms were generated by applying the Python - Zernfit function which encoded with
different sets of parameters. The objective of this comparison is solely qualitative in
nature and never to test how well two different programs can model a known surface
with Zernike polynomials as the basis. To sum up, the PL employed as a FP WFS
demonstrates impressive accuracy in predicting higher frequency Kolmogorov phase
maps when utilising a lower-order 19 Zernike modal bases. This further motivates
future on-sky research into PL as a workable WFS.
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Figure 4.25: Comparison of a time series of the measurement of simulated
atmospheric turbulence by the PL. Left: the prediction from the PL, centre: true
phase map (fitted by low-order Zernike terms), and right: the true SLM phase mask of
turbulence, which all display close similarity.



Chapter 5

Conclusions

WFSs play a crucial role in adaptive optics systems as they serve as the sensing
tool to detect the incident phase of the incoming light source. The type of WFSs,
PP-WFSs, used in contemporary AO systems are not sufficient by themselves to
provide sufficient wavefront correction to resolve very high contrast objects such
as rocky exoplanets next to their parent stars. Accurately detecting WFE and
restoring the light source to its diffraction limit is crucial in detecting and analysing
exoplanet formation and evolution, particularly for ground-based telescopes where
atmospheric distortion caused by turbulence is constantly present. The limitations
of currently working WFSs are partially due to their inability to detect errors such as
non-common-path error as well as low-wind-effect and such limitation constrains the
accuracy of the reconstructed phase values. The technical reason for such limitation
has been discussed in Section 1.2 and 1.4. There have been numerous attempts to
address these issues, either through the development of new WFSs or through post-
digital processing techniques. However, these attempts have their own limitations
and have yet to produce a working device for routine on-sky use. The concept of
developing a new type of FP-WFS has been long desired in astronomy as this type
possesses beneficial features complementary to PP-WFSs. These include eliminating
NCP aberration and providing a large dynamic range for wave correction. The FP
WFS is also desirable due to the potential to correct modes that are difficult for PP-
WFSs to detect, such as LWE which is proven to be a serious problem for extreme
AO systems in the era of very large telescopes. All these limitations and theory has
been discussed in Section 1.4.
The work on this thesis proposes a new technology to tackle the limitations of

current WFSs by focusing on a new type of WFS belonging to the FP-WFS category.
The approach involves using a piece of existing photonic technology, a PL, that has
been theorised for use as a WFS in recent years. It is thus advantageous as the
fabrication of the PL has been refined and matured over the last several years with
various studies characterising and improving the PL’s different properties. The
theory behind how PL can be used as a WFS has been discussed in Section 2.3.
Furthermore, in this thesis we have shown that there is a very promising potential
for PLs in conjunction with neural networks (NN) as functional FP-WFSs for future
AO systems. The passive phase detection of a PL gives almost real-time sensing
which minimises the potential of introducing more uncertainty into the system.
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The previous works on other forms of FP-WFSs produced results using the linear
approximation method to a small incident WFE (≪ 1 radian RMS), which is less
than can be experienced by ground-based telescopes. However, this thesis presents
the result showing that the PL-WFS is able to detect incident RMSWFE (on average
1.5 rad; maximum at 3 rad ), greater than many of its contemporary counterparts
and with very small reconstruction RMSE. The PL-WFS is shown to be able to
detect LWE, which is one of the developmental goals for new-generation WFSs for
extreme AO as discussed in Section 1.4 and 1.3. We confirmed the success of the
LWE detection for firstly with the test on petal modes for incident WFE RMS
of 1.5 rad in the first part of Section 4.3. The reconstruction RMSE shows a very
promising result as the total reconstruction RMSE of the 3 petal modes is 8.10×10−2

rad RMS. Furthermore, we also demonstrate the PL’s ability to sense LWE at the
same non-linear regime in the same section. The result is also significant as the
total reconstruction RMSE in RMS is only 3.50× 10−1 rad for a single iteration of
correction at a very large incident WF in an experimental setting, which has not
been shown in other published work for physical testing of any FP-WFS to the best
of our knowledge.
The PL has further shown accurate wavefront sensing for up to the fourth-order

Zernike phase mask (9 Zernike combinations) of the same incident WFE RMS in
Section 4.2. This is already a significant result for the future implementation of
this technology for wavefront sensing, since the majority of the aberrations hap-
pen and can be described in the lower order regime. The result is promising as it
demonstrates a very small reconstruction RMSE and a relatively short processing
time needed for a somehow simple NN on an off-the-shelf consumer computer. The
limitation of the same quality wavefront sensing on higher-order terms, such are
those in Section 4.2 is largely associated with the original number of the outputs
of the PL used in the experiment. Despite the diminishing accuracy on predicting
higher-order Zernike terms, the laboratory experiment confirms that a 19-output
PL FP-WFS can predict up to 19 Zernike terms at a large incident WFE, while
producing a total reconstruction RMSE between 1.85× 10−1 rad to 9.10× 10−1 rad
for the different number of Zernike terms (9, 14 and 19), in a phase mask. It is
therefore anticipated that this will scale well as PLs with more outputs are used.
Furthermore, we have also demonstrated the broadband nature of this technol-

ogy. The light source used for the thesis was broadband as shown in Section 3.2.
Broadband operation is associated with higher input intensity, lower speckle at the
image plane, as well as (when wavelengths are separately resolved) resolving phase
wrapping problems in monochromatic sources. Early results shows that broadband
operation and wavelength diversity will offer an unique advantage for future devel-
opments of this technology as a wavefront sensor.
This thesis is only the starting point of the study of PLs as WFSs. There is more

work needed to fully exploit and characterise this technology, as well as to develop
full deployable WFSs for future generation AO systems. Many directions can be
taken to further the study this technology. For example, using a PL as FP-WFS
also provides further convenient integration into other astronomical systems such as
exoplanet spectrographs, sky-glow suppression instruments, and astronomical inter-
ferometers to name a few. For instance, the direct integration of diffraction-limited
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spectroscopy and a FP-WFS may provide a more compact instrument that provides
a much more powerful instrument for analysing exoplanet atmosphere composition
in order to search for biological signatures. The PL as FP-WFS can also function as
a novel photonic direct imaging sensor that could both detect phase and intensity
simultaneously while removing NCP aberration - a significant problem in current
imaging AO systems.
The limits of this technology with respect to the number of modes for a PL to

increase detection of higher order aberrations have yet to be investigated. Further
studies in both experimental and theoretical efforts towards a full understanding of
PL’s capability as FP-WFS is an exciting prospect and no doubt highly beneficial
for optical sensing and imaging technology as a whole. The data acquisition and
AI components of the PL WFSs, such as the NN framework and deployment, will
also need to be developed and optimised for the processing time when integrated
into working real-time AO systems. For instance, the integration of the NN as
processing software is yet to be explored in an on-sky survey. Ultimately, we are
just scratching the surface of the potential of this technology that will no doubt find
important applications in wavefront sensing and optical imaging.
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