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Thesis abstract 

Prostate cancer is the second most diagnosed cancer worldwide among men and the most diagnosed in 

Australia. Despite controversies surrounding its low specificity, the Prostate-specific antigen (PSA) test 

remains the most commonly used test for prostate cancer. In Australia, PSA “screening” test rates have 

consistently been high among men living in socio-economically advantaged and urban areas compared 

to disadvantaged and rural areas. Long term national level data on these trends has not been available. 

Additionally, there is limited information about the prevalence of PSA testing at the small geographical 

area level, limiting the ability to appropriately understand the role of PSA testing in the observed 

geographical patterns of prostate cancer incidence. The aim of this thesis was to investigate spatial and 

temporal patterns of PSA testing in Australia. 

We utilized the population-based Medicare Benefit Schedule dataset on PSA testing, developed complex 

methods to transform postcodes into smaller areas and used Bayesian models to identify key underlying 

patterns. We first computed a general PSA testing trend across Australia, as well as by area-specific 

regions, including socio-economic status, remoteness, and states and territories. Then, we investigated 

whether the national patterns were evident in smaller areas across Australia over time. Finally, to 

understand the impact of PSA testing on prostate cancer incidence, we examined the association between 

PSA testing and prostate cancer incidence by small areas.  

This population-based study identified substantial variation in the participation rate of PSA testing by 

small geographical areas across Australia and over time. However, there was a low association between 

PSA testing and prostate cancer incidence at the smaller area level. This information can help in reviewing 

and developing evidence-based strategies to reduce any identified disparities in prostate cancer indicators 

across Australia.  
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Chapter 1 

 

1 INTRODUCTION AND BACKGROUND 

1.1 Chapter overview 

Chapter 1 provides an overview of prostate-specific antigen (PSA) testing and prostate cancer. It begins 

by explaining what PSA testing is and highlights the significance of elevated PSA levels in detecting early 

prostate cancer and other conditions. The types and reasons for PSA testing are discussed, including the 

use of novel markers and alternative methods. The chapter emphasizes the limitations of these 

modifications in detecting aggressive disease.  

The debates surrounding PSA testing are explored, focusing on its high sensitivity, low specificity, and 

the challenges in distinguishing between cancer and non-cancer conditions. The issue of overdiagnosis 

and overtreatment is addressed, highlighting the detection of slow-growing tumors that may not cause 

harm and the potential negative impact on patients' quality of life and mental health. The benefits and 

harms of PSA testing are examined, including the limitations of false positives and false negatives. False 

positives lead to unnecessary tests, procedures, treatments, and adverse effects, while false negatives can 

result in missed high-risk diseases, poor outcomes, and medico-legal issues for clinicians. The chapter 

emphasizes the need for careful consideration of the benefits and harms of screening programs.  

This chapter further discusses international guidelines for PSA testing, highlighting the varying 

recommendations across different countries, including the US, UK, Canada, and Australia. It outlines the 

changes in Australian guidelines over time and the differing recommendations from organizations such 

as the Royal Australian College of General Practitioners and the Prostate Cancer Foundation of Australia. 

Finally, the chapter explores the overall and area-specific patterns of PSA testing, noting the variability 

in usage across Western countries and the disparities between advantaged and disadvantaged areas.  

Chapter 1 also provides an introduction to prostate cancer, outlining a summary of what is known about 

the natural history of the disease and the role of PSA in its detection. It discusses the different tests used 

for diagnosing prostate cancer, such as digital rectal examination, PSA testing, prostate biopsy, and 

Magnetic Resonance Imaging (MRI) scans. The epidemiology of prostate cancer on an international scale 

is examined, highlighting its incidence rates across different regions and the impact of PSA testing on 

detection rates. The chapter emphasizes the geographical variation in prostate cancer incidence and 

mortality rates.  
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Overall, this chapter provides the necessary background and sets the agenda for understanding the 

complexities and controversies surrounding PSA testing and prostate cancer, providing a foundation for 

the subsequent chapters of the thesis.  

1.2 Prostate-specific antigen testing 

1.2.1 What is Prostate-specific antigen testing?  

The prostate-specific antigen (PSA) test is a blood examination designed to assess the levels of a protein 

known as "prostate-specific antigen." This particular protein is predominantly synthesized within the 

prostate gland and plays a crucial role in providing nourishment to sperm (National Cancer Institute 

2022). Increased concentrations of PSA can serve as an indication of the presence of early-stage prostate 

cancer, in addition to other conditions such as benign prostatic hyperplasia, urinary tract infections, or 

recent ejaculation (Brett 2011). Through the utilization of the PSA test, early detection of prostate cancer 

can occur, leading to the implementation of more efficacious treatment strategies. The initial introduction 

of the PSA test occurred in the United States in 1987, and subsequently, it has been extensively employed 

for opportunistic screening in numerous developed countries, including Australia in 1989, with the 

objective of reducing prostate cancer mortality rates (Alberts et al., 2015, Pathirana et al., 2022). Prior to 

the integration of PSA testing, prostate cancer diagnoses primarily relied on the practice of digital rectal 

examination (DRE), which exhibited suboptimal sensitivity, limited specificity, and substantial 

interobserver variability in the detection of prostate cancer (Alberts et al., 2015).  

1.2.2 Types and reasons for prostate-specific antigen testing 

The PSA test is often used for screening asymptomatic men for prostate cancer and used extensively in 

the monitoring and surveillance of men with prostate cancer, in those on active surveillance but also those 

who have had treatment (surgery, radiation, androgen deprivation therapy) to assess disease control 

(National Cancer Institute 2022). An elevated PSA level is classified as abnormal when it exceeds 2.5 

ng/ml for men aged 40 to 59 and 4.0 ng/ml for men in their 60s (Pavlovich 2023). Furthermore, a yearly 

increase of 0.35 ng/ml in PSA is also considered an abnormal finding. In such instances, additional testing 

may be advised by the healthcare professional. Recognizing the limitations associated with PSA testing, 

extensive efforts have been devoted over the past few decades to enhance the reliability of prostate cancer 

screening markers. Numerous novel markers are currently under investigation, with prostate cancer 

antigen 3 (PCA3), Prostate Health Index, and TMPRSS2:ERG gene fusion being among the most 

extensively studied (Borza et al., 2013).  

Alternatives or variations to the PSA test include:  

• PSA Velocity: This method, if used optimally, involves obtaining a minimum of three sequential 

PSA readings over an 18-month period to calculate the rate of PSA increase.  
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• Free PSA: The ratio of free-PSA to total PSA is calculated, as benign prostatic tissue produces 

more free-PSA compared to prostate cancer. This test is usually used in the case of men with PSA 

levels between 3 and 10 ng/ml. Consequently, patients with prostate cancer exhibit lower ratio 

values.  

• Complexed PSA: It serves as an adjunct to total PSA; however, it offers limited additional 

benefits over total PSA in differentiating between benign and malignant conditions.  

• PSA Density: PSA density is a calculation of the PSA level to the size of the prostate. 

This is employed to enhance the performance of PSA testing since prostate cancer has 

been reported to produce up to 10 times more PSA per unit volume of tissue compared 

to benign conditions.  

These modifications have demonstrated improved cancer detection rates. Unfortunately, most of them 

possess limited capability in predicting or detecting aggressive disease. Despite the limitations of the test, 

PSA remains the foremost predictive tumor marker for identifying men at an elevated risk of prostate 

cancer (Alberts et al., 2015).  

1.2.3 Prostate-specific antigen testing debates  

Sensitivity and specificity  

The utilization of the PSA test for detecting prostate cancer is a subject of extensive debate (Coory and 

Baade 2005). This debate arises from concerns regarding its high sensitivity and low specificity (Ankerst 

and Thompson 2006) in asymptomatic people as well as its limited ability to differentiate between cancers 

that will progress and those that are unlikely to cause symptoms (Stamey et al., 2004). One of the original 

developers of the PSA test, Richard Albin, described the test as a “hugely expensive mistake and never 

thought that it would lead to profit driven public health disaster” (Albin 2010). Although the PSA test 

remains the prevailing method for prostate cancer detection, its use is accompanied by these 

controversies.  

Overdiagnosis and overtreatment  

PSA testing has had a substantial influence on the recorded incidence rates of prostate cancer in western 

nations (Alberts et al., 2015). This testing method aims to detect prostate cancer in asymptomatic 

individuals, leading to earlier diagnosis compared to cases that would have otherwise been identified 

later. However, it also detects indolent tumors that may not have exhibited symptoms before the patient's 

demise from unrelated causes, resulting in the identification of overdiagnosed cancers (Alberts et al., 

2015). The term "overdiagnosis" refers to the identification of cancer that would not have presented 

clinically or led to cancer-related mortality during a patient's lifetime. The detection of such 

overdiagnosed cases artificially inflates the observed incidence rate of prostate cancer by including 
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instances that would have otherwise gone undetected (Carter et al., 2015). Overdiagnosis poses a notable 

concern in prostate cancer due to its high prevalence and low mortality rates (Borza et al., 2013). The 

diagnosis of insignificant tumors can lead to unnecessary invasive treatments like radical prostatectomy 

or radiotherapy, which may entail side effects such as incontinence and impotence. The overtreatment of 

clinically insignificant prostate cancer significantly impacts the patient's quality of life (Alberts et al., 

2015). Moreover, PSA testing and prostate cancer diagnosis have been associated with adverse effects on 

mental well-being, including anxiety and depression, which in turn elevate the risk of cardiovascular 

events and suicide (Borza et al., 2013).  

Benefits and harm of testing  

The drawbacks associated with PSA testing encompass the occurrence of false positives and false 

negatives, where false positives can trigger the need for further tests, procedures, treatments, and the 

adverse effects associated with radiation exposure, surgery, or active surveillance (Ilic et al., 2013). On 

the other hand, the effects of false negatives are quite different from false positives. Missing the 

opportunity to detect high-risk disease can have serious outcomes for the man, such as a poor prognosis, 

aggressive treatment, poor quality of life, and the risk of premature death. A false negative test can also 

present medico-legal issues for clinicians (Nash et al., 2009). These outcomes have the potential to cause 

physical and emotional harm (Lin et al., 2008). Initially, it was believed that the majority of tumors 

detected through PSA testing had the potential to be clinically significant. However, it has become evident 

over time that many of these tumors resemble those identified in autopsy studies, which were deemed to 

be clinically insignificant (Borza et al., 2013).  

Nonetheless, uncertainties persist regarding the potential benefits of early detection, improved prognosis, 

reduction in disease incidence, and cost-effectiveness in terms of whether prostate cancer necessitates 

treatment and whether early detection leads to enhancements in the duration or quality of life (Lin et al., 

2008).  

However, the reason PSA testing is still not part of a formal structured screening program may be 

attributed to the results of international randomized controlled trials that examined whether PSA testing 

reduces prostate cancer-specific mortality and its impact on the quality of life (Ilic et al., 2013). The 

European Randomized Study of Screening for Prostate Cancer (ERSPC) has reported prostate-specific 

mortality benefits at 16years of follow up for men randomized to receive screening compared to the 

control group (Hugosson, Roobol et al., 2019). All three international randomized controlled trials, 

including the European Randomized Study of Screening for Prostate Cancer (ERSPC), the United States' 

Prostate, Lung, Colorectal and Ovarian (PLCO), and the UK's Comparison Arm for ProtecT (CAP) study, 

reported that the harms likely outweigh the benefits. Moreover, the evidence shows that treatment-related 

quality of life issues for men treated for early-stage disease have traditionally been the main concern due 

to the harms associated with aggressive therapy (Smith et al., 2009, Donovan et al., 2016). Various 
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modeling-based studies have estimated that up to 42% of men have been considered to be 

"overdiagnosed," and when these men are "overtreated" with aggressive therapy, it creates harm (Glasziou 

et al., 2020). A recent Australian study reported, for every man aged 50-69 years who avoids prostate 

cancer-specific mortality, two will experience overdiagnosis (Caruana, Gulati et al., 2023). However, 

recent changes in the use of mpMRI, different approaches to biopsy techniques, and the use of active 

surveillance in low-risk disease have altered the balance of harms to benefits (Chiam et al., 2021).  

In conclusion, although screening programs hold promise for significant benefits, they also carry the risk 

of harm to patients. The careful evaluation of the advantages and disadvantages of screening programs is 

crucial both in the clinical context and within screening trials to ensure that the benefits outweigh the 

harm and that patients receive optimal and equitable care (Alberts et al., 2015).  

1.2.4 Prostate-specific antigen testing guidelines  

International guidelines  

Due to the contentious nature of PSA testing, it is not recommended as a widespread screening approach. 

However, international guidelines exist that recommend informed decision-making regarding testing 

considering risk factors such as age, family history, race, and ethnicity when determining whether to 

perform the screening test.  

The US Preventive Services Task Force (USPSTF) in 2018 stated that while there are potential benefits 

of prostate cancer testing, however, these advantages did not outweigh the expected harms enough to 

recommend routine testing (Grossman et al., 2018). Testing was not recommended for men aged 70 or 

older. However, the guideline stated that if men aged 55-69 expressed a desire for the PSA test, they 

should be provided with information about the benefits and risks of testing prior to offering it. Similar 

recommendations were provided by other US guidelines, including the American Cancer Society 

(American Cancer Society 2020), The American Urological Association (Carter et al., 2013), The 

American Academy of Family Physicians (American Academy of Family Physicians 2020), The 

American College of Physicians (Qaseem et al., 2013) and National Comprehensive Cancer Network 

(Mohler et al., 2019) although the frequency of offering the test varied.  

The UK's National Screening Committee advised against population-based screening and instructed 

general practitioners not to initiate discussions related to testing. However, if men inquired about the test, 

they should be informed about its benefits and risks before it was offered (UK National Screening 

Committee 2020). The Canadian Task Force on Preventive Health Care did not support PSA-based testing 

for prostate cancer (The Canadian Task Force on Preventive Health Care 2019). In 2020, the European 

Association of Urology recommended an individualized risk-adapted approach for well-informed men 

aged 50 or older (Jackson et al., 2022). The New Zealand Prostate Cancer Working Group and Ministry 
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of Health, in 2015, recommended testing men aged 50-70 every 2-4 years following a discussion (Jackson 

et al., 2022).  

Australian PSA guidelines overtime 

The guidelines in Australia have changed over time since 1996. Generally, Australian guidelines for PSA 

testing have evolved in response to changes in the United States Preventive Services Task Force 

guidelines, likely resulting in substantial fluctuations in testing rates.  

In 1996, the Royal Australian College of General Practitioners (RACGP) acknowledged that PSA testing 

could detect early cases of prostate cancer but there was uncertainty as to whether early cancer detection 

could improve outcomes (Royal Australian College of General Practitioners 1996). In 2002, RACGP 

discouraged the use of PSA test for screening prostate cancer and described it as unsuitable due to known 

risks and adverse effects of therapies (Royal Australian College of General Practitioners 2002). By 2005, 

the RACGP recommended PSA tests for men aged 50-75 years (Royal Australian College of General 

Practitioners 2005), likely leading to a further increase in testing until 2008. However, in 2009, the 

RACGP advised against testing men aged 75 or older, possibly contributing to the observed decline in 

testing rates (Royal Australian College of General Practitioners 2009). This recommendation was further 

reinforced in 2012, when the RACGP discouraged PSA testing for men of all ages and advised against 

raising the issue of PSA testing with patients (Royal Australian College of General Practitioners 2012). 

A further decrease in testing rates was observed. In 2016, the RACGP continued to not recommend PSA 

testing and advised general practitioners that they are not obliged to offer the test (Royal Australian 

College of General Practitioners 2016).  

Conversely, the Prostate Cancer Foundation of Australia and Cancer Council Australia guidelines 

(Prostate Cancer Foundation of Australia and Cancer Council Australia PSA Testing Guidelines Expert 

Advisory Panel 2016) released in 2016 and endorsed by the National Health and Medical Research 

Council, recommend that men aged 50-69 years at average risk of prostate cancer be offered a PSA test 

every two years if they make an informed decision to do so. However, as explored in a later chapter of 

this thesis, this recommendation did not appear to result in a significant change in testing rates.  

The guidelines in Australia have resulted in conflicting messages due to inconsistent phrasing of 

recommendations. A recent commentary discussing the need for a review of these guidelines suggests 

that the interpretation of these two sets of Australian based recommendations can lead to differences in 

primary care (Rashid et al., 2023).  

1.2.5 Area-specific patterns of prostate-specific antigen testing   

PSA testing is widely practiced in various western countries, including Australia; however, there is 

notable variation in the utilization of PSA testing based on the geographic location of individuals (Coory 
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and Baade 2005, Calopedos et al., 2019). Studies have shown that testing rates tend to be higher among 

men residing in advantaged and urban areas, while lower rates are observed among those living in 

disadvantaged and rural regions (Calopedos et al., 2019, Dasgupta et al., 2019). Furthermore, variations 

in testing patterns are evident at both the inter-state and intra-state levels, influenced by factor such as the 

accessibility to prostate cancer services for men residing in remote or regional areas (Calopedos et al., 

2019).  

1.3 Prostate cancer 

1.3.1 What is prostate cancer? 

Prostate cancer is a malignancy that originates in the prostate gland (Figure 1.1) (Prostate anatomy), an 

essential component of the male reproductive system located near the base of the bladder (Healthdirect 

2022). Typically, about the size of a golf ball, the prostate gland can undergo enlargement as men age and 

due to conditions, such as prostatitis or benign prostatic hypertrophy. Within the prostate, specialized cells 

produce a protein called prostate-specific antigen (PSA), which can be detected through a blood test 

(Cancer Research UK 2019). The development of cancer in the prostate is characterized by the abnormal 

growth and proliferation of cells, which can invade nearby tissues and potentially metastasize to distant 

parts of the body (Prostate anatomy). The most common type of prostate cancer is acinar adenocarcinoma, 

originating from the glandular cells in the outer regions of the prostate (Prostate anatomy). Prostate cancer 

encompasses various subtypes, with many exhibiting slow growth and remaining asymptomatic for long 

periods, while others display aggressive behavior and pose a significant risk to overall health and survival 

(Healthdirect 2022).  

 

Figure 1.1: Location of prostate gland in men body (left) and cancerous tumor in prostate gland (right), adapted 

from American Cancer Society. 
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The Prostate Cancer Outcomes Registry - Australia and New Zealand (PCOR-ANZ) serves as a 

comprehensive registry for prostate cancer, gathering data on care and outcomes for men diagnosed with 

prostate cancer in Australia and New Zealand (Prostate Cancer Outcomes Registry Australia and New 

Zealand 2023). Its primary goal is to enhance the quality of care and health outcomes for individuals 

diagnosed with prostate cancer. Presently, the registry contains data pertaining to 91,941 men who 

received prostate cancer diagnoses between 2015 and 2022 in Australia (excluding Western Australia) 

and New Zealand (Prostate Cancer Outcomes Registry Australia and New Zealand 2022). Among the 

diverse treatment options available, including Active Surveillance, Watchful Waiting, Surgery, Radiation 

Therapy, Androgen Deprivation Therapy, and Chemotherapy, PCOR-ANZ has described a notable shift 

towards the utilization of Active Surveillance among men with low-risk prostate cancer. Additionally, 

there has been a clear shift in the trend from transrectal biopsy to transperineal biopsy over the period 

2015 to 2019. Investigating the prevalence of PSA testing in smaller geographic areas holds the potential 

to shed light on small area differences in the utilization of biopsies and treatments. 

1.3.2 How prostate cancers are diagnosed?  

There are several tests available to evaluate the prostate health:  

• Digital rectal examination (DRE): During a DRE, a doctor inserts a lubricated, gloved finger into 

the rectum to assess the size and detect any abnormalities in the prostate. Although Australian 

guidelines do not recommend routine addition of DRE to PSA testing in asymptomatic men (Royal 

Australian College of General Practitioners 2016) in primary care, it can still detect some cancers, 

even in individuals with low PSA levels (Ong et al., 2020). The DRE is often performed by a 

urologist in the investigation of suspicious cancer.  

• Prostate-specific antigen (PSA) test: This blood test measures the levels of a protein called prostate-

specific antigen, which is produced by the prostate gland. Elevated PSA levels can indicate the 

possibility of prostate cancer.  

• Prostate biopsy: To confirm a diagnosis of prostate cancer, a urologist performs a prostate biopsy. 

This procedure involves the removal of a sample of cells from the prostate by passing a biopsy 

needle through the rectal mucosa (Wei et al., 2015). The cells are then examined for cancer. 

However, there has been a shift in techniques for biopsy, from Trans Rectal Ultrasound (TRUS) 

towards Trans Perineal. The resulting change appears to reduce the risk of infection.  

• MRI scan: An MRI scan provides a detailed image of the prostate, helping to identify potential 

signs of cancer. Multiparametric MRI of the prostate has improved the accuracy of biopsy results 

and reduced the number of unnecessary benign biopsies (Thompson et al., 2016). It has shown 

high sensitivity and negative predictive value of 87% and 72%, respectively, compared to TRUS 

biopsy with sensitivity and negative predictive value of 60% and 65% (Ahmed et al., 2017).  
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• Prostate-specific membrane antigen positron emission tomography–computed tomography (PSMA 

PET-CT): PSMA is a glycoprotein expressed in prostate tissue. However, no significant difference 

was found between PSMA PET-CT and multiparametric MRI in detecting primary tumors, 

clinically significant tumors, or transition zone tumors (Kalapara et al., 2020) and is not currently 

systematically offered in the diagnostic pathway.  

1.3.3 Risk factors for prostate cancer  

Several risk factors have been linked to the incidence of prostate cancer, including age (Milonas et al., 

2019), race or ethnicity (Rebbeck et al., 2013), family history (Ang et al., 2020), and inherited genetic 

factors. The risk of developing aggressive prostate cancer tends to increase with age, as older men often 

have higher Gleason scores than younger men (Milonas et al., 2019). Gleason score is a prostate cancer 

grading system where pathologists take two samples from different locations of the prostate gland and 

assign grades on a scale of 1 to 5 based on their similarity to healthy cells (Munjal and Leslie 2023). The 

final score is the sum of both grades, and a low score indicates lower prostate malignancies. Worldwide, 

prostate cancer is most commonly observed in black men of African descent (Rebbeck et al., 2013) and 

incidence rates are highest among black men in the United States and the Caribbean (Sung et al., 2021). 

However, mortality rates are highest among Caribbean and sub-Saharan African men (Sung et al., 2021), 

possibly due to differences in healthcare access, diagnosis, and testing practices (Rebbeck et al., 2013). 

Having a positive family history of prostate cancer has been associated with an increased risk of 

developing the disease, but not with cancer-specific mortality (Ang et al., 2020). Additionally, having a 

single first-degree relative with prostate cancer raises the risk of developing prostate cancer by a factor 

of 2.5, while having two affected relatives increases the risk by 3.5-fold (Johns and Houlston 2003).  

1.3.4 International epidemiology of prostate cancer   

Globally, prostate cancer (ICD-10 code C61) ranks as the second most prevalent cancer among men, just 

behind lung cancer (Figure 1.2). In 2020, approximately 1.4 million new cases were estimated worldwide, 

corresponding to an incidence rate of 37.5 per 100,000 men (Sung et al., 2021). Additionally, prostate 

cancer is the most commonly diagnosed cancer in 112 countries worldwide (Figure 1.3). Incidence rates 

of prostate cancer exhibit significant variation, ranging from 6.3 to 83.4 per 100,000 men across different 

regions. Developed countries such as Australia, the United States (US), and Scandinavian countries 

demonstrate particularly high incidence rates (Figure 1.4), while Asia and Northern Africa exhibit the 

lowest rates. The incidence of prostate cancer shows an approximately 25-fold variation between 

countries with high and low incidence (Center et al., 2012, Ferlay et al., 2015). Notably, mortality rates 

from prostate cancer display different patterns internationally, with the highest mortality rates observed 

among black populations in the Caribbean and sub-Saharan Africa (Figure 1.4) (Dasgupta et al., 2019). 

The variation in diagnostic practices is likely an important factor contributing to the divergent prostate 

cancer incidence rates worldwide.  
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Following the introduction of prostate-specific antigen (PSA) testing in the USA and subsequently in 

Australia as a rebateable item on Medicare Benefit Schedule (MBS) in 1988, these two countries 

experienced a rapid increase in incidence rates as preclinical cancers were detected (Center et al., 

2012). However, there was a subsequent sharp decline in the late 2000s, which has been attributed to a 

decrease in the utilization of PSA testing (Kvåle et al., 2007, Center et al., 2012, Zhou et al., 2016). These 

reductions in testing rates reflect changes in recommendations regarding PSA-based testing for 

asymptomatic men (U.S. Preventive Services Task Force 2008, Royal Australian College of General 

Practitioners 2009, Moyer 2012, Royal Australian College of General Practitioners 2012, Prostate Cancer 

Foundation of Australia and Cancer Council Australia PSA Testing Guidelines Expert Advisory Panel 

2016, Royal Australian College of General Practitioners 2016).  

Area-level patterns and trends 

Men living in urban areas of Western and European countries, including the USA (Fogleman et al., 2015, 

Zahnd et al., 2018), Denmark (Marsa et al., 2008) and Spain (Ocaña-Riola et al., 2004), showed high 

incidence rates compared to rural areas. Similarly, men residing in affluent areas of the USA (Kish et al., 

2014, Houston et al., 2018), Netherlands (Aarts et al., 2010), Denmark (Meijer et al., 2013), the UK 

(Maringe et al., 2013) and Scotland (Morgan et al., 2013) demonstrate higher prostate cancer incidence 

compared to those in disadvantaged areas. In contrast to prostate cancer incidence, prostate cancer 

mortality rates tend to be higher among men living in rural and disadvantaged areas compared to urban 

and affluent areas (Baade et al., 2015). In addition, survival rates also exhibit consistent patterns, with 

men residing in urban areas or affluent areas demonstrating higher survival rates compared to those living 

in rural or disadvantaged areas (Marsa et al., 2008, Shafique and Morrison 2013, Xiao et al., 2015). 

However, there are some studies that showed no difference in survival (Marsh et al., 2017, Vetterlein et 

al., 2017).  

 

Figure 1.2: Worldwide distribution of incidence cases of top 10 common cancers in males. Source: GLOBOCAN 

2020. 
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Figure 1.3: Most commonly diagnosed cancers worldwide among men (excluding keratinocyte cancers). Digits 

with cancer type in legend represents number of countries. Source: GLOBOCAN 2020. 

 

Figure 1.4: Region-specific incidence and mortality age-standardized rates for prostate cancer. Source: 

GLOBOCAN 2020. 

1.3.5 Epidemiology of prostate cancer in Australia  

In Australia, the occurrence of new prostate cancer cases has consistently been high compared to other 

developed countries (Feletto et al., 2015). It was estimated that 24,217 men in Australia will be diagnosed 
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with prostate cancer in 2022, with an incidence rate of 150.8 cases per 100,000 men (Australian Institute 

of Health and Welfare 2022). Additionally, highest incidence rates were observed in men aged 70-74, 

followed by those aged 65-69. However, the incidence rate in 2018 varied by state and territory, being 

highest in Queensland (161.8 cases per 100,000 men) and lowest in the Northern Territory (95.3 cases 

per 100,000 men) compared to the national average (Australian Institute of Health and Welfare 2022).  

The overall incidence of prostate cancer over time showed a notable pattern with its first peak observed 

in 1994, followed by a decline until 1997 (Australian Institute of Health and Welfare 2022, Pathirana et 

al., 2022). The incidence remained stable until 2002 when it started to rise and reached a second peak in 

2009. Subsequently, it declined until 2014. Since 2014, there has been a plateau in the overall national 

incidence trend. This trend is generally observed in all states and territories, but the magnitude varied by 

State or Territory (Australian Institute of Health and Welfare 2022, Pathirana et al., 2022). The peak in 

prostate cancer incidence in 1994 was associated with the introduction of the PSA test in 1989 (Pathirana 

et al., 2022), while the 2009 peak correlates with rise in biopsy rates and a change in the number of cores 

sampled at biopsy (Pathirana et al., 2022) and could be due to changes in Australian PSA testing 

guidelines in 2005 (Royal Australian College of General Practitioners 2005), which recommended that 

general practitioners inform patients of risk and benefits of PSA test for men aged 50 to 75.  

Area-level patterns and trends 

There is significant variability in the incidence and mortality rates of prostate cancer within Australia. 

Prior to 1990, the incidence of prostate cancer was similar in Australian regional/rural and urban areas 

(Coory and Baade 2005). However, more recent patterns indicate that men living in urban areas had 

higher incidence rates compared to those in rural areas (Baade et al., 2015, Calopedos et al., 2019). 

Similarly, men residing in affluent areas demonstrated higher prostate cancer incidence compared to those 

in disadvantaged areas (Cramb et al., 2011). In contrast to prostate cancer incidence, prostate cancer 

mortality rates tended to be higher among men living in rural and disadvantaged areas compared to urban 

and affluent areas of Australia (Baade et al., 2011, Singh et al., 2011). It was recently forecasted that there 

would be a continued rise in the incidence count of prostate cancer in Australia, as well as at the small 

area level (local government area), in the coming years (Wah, Papa et al., 2022). This increase was 

attributed to three main factors: population growth, an aging population, and an increased rate of 

detection, in addition to PSA testing. Conversely, the decline in mortality rates associated with prostate 

cancer was attributed to early detection and improved treatment options (Earnest, Evans et al., 2019). 

Survival rates exhibited consistent patterns, with men residing in urban areas, more accessible regions, 

or affluent areas demonstrating higher survival rates compared to those living in rural, less accessible, or 

disadvantaged areas (Tervonen et al., 2017).  
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Small-area geographical patterns  

To date, the highest geographical resolution of prostate cancer incidence and survival estimates are 

available in the Australian Cancer Atlas (atlas.cancer.org.au). These areas were defined using the 

Statistical Area level 2 (SA2) classification (2,148 areas across Australia), as specified by the Australian 

Bureau of Statistics (ABS) (Australian Bureau of Statistics 2016, 12 July), and revealed marked variation 

in rates across the nation (see Section 1.4, Australian geography).  

Since July 1, 2011, the Australian Statistical Geography Standard (ASGS) (Figure 1.6), a comprehensive 

framework developed by the Australian Bureau of Statistics (ABS), has been used to categorize and 

interpret geographical statistics (Australian Bureau of Statistics 2011). The ASGS Main Structure 

comprises Statistical Area Levels 1 – 4, with Statistical Areas Level 2 (SA2) being medium-sized general-

purpose regions formed by aggregating entire Statistical Areas Level 1. Additionally, whole SA2s are 

combined to create Statistical Areas Level 3 (SA3).  

SA2s represent the smallest geographical units for releasing non-Census and Intercensal statistics by the 

ABS (Australian Bureau of Statistics Jul2021-Jun2026). This data includes information such as the 

Estimated Resident Population and Health & Vitals data. The primary objective of SA2s is to group 

people with similar characteristics either socially or economically. In cases where large areas, typically 

with negligible or no population, such as ports, airports, commercial zones, water bodies, industrial areas, 

defense lands, and national parks, are designated by the ABS as 'zero SA2s.' They serve the purpose of 

representing extensive unpopulated regions that cannot be easily merged with adjacent populated SA2s 

(Australian Bureau of Statistics Jul2021-Jun2026).  

In this thesis, the term SA2 will be referred to as ‘small area’. The incidence map revealed lower-than-

average rates in numerous areas of western and northern Australia, as well as parts of Victoria and 

Tasmania (Figure 1.5) (Australian Cancer Atlas (https://atlas.cancer.org.au)). Conversely, higher-than-

average rates of prostate cancer diagnosis were observed in areas of New South Wales, south-western 

Western Australia, and Central Queensland. Capital cities, such as Sydney, Melbourne, and Perth, 

exhibited areas with increased incidence rates, with the exception of Darwin. The Atlas also illustrated 

that prostate cancer survival rates were generally lower than average across central, western, and northern 

Australia, with notably low rates in several areas of Victoria (Figure 1.5) (Australian Cancer Atlas 

(https://atlas.cancer.org.au)). The Atlas showed that many areas with high incidence had high survival 

(low excess mortality), and likewise for low incidence. This suggests that PSA testing may play a role in 

the early detection of prostate cancers within specific regions.  



14 

 

(A) Prostate Cancer Incidence 

 

(B) Prostate Cancer Excess Mortality within 5 years of diagnosis 

 

 

Figure 1.5: Spatial pattern of (A) Prostate cancer incidence, and (B) Prostate cancer excess mortality (a survival measure) by small areas across Australia, Adapted from the Australian Cancer 

Atlas. 
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1.4 Australian geography  

The Australian Statistical Geography Standard (ASGS) is a classification system established by the 

Australia Bureau of Statistics (ABS) to categorize geographical areas within Australia. It comprises two 

components: ABS Structures and non-ABS Structures (Figure 1.6). ABS Structures are geographies for 

which the ABS collects data to analyze social, demographic, and economic statistics, releasing them 

accordingly. In contrast, non-ABS Structures generally represent administrative regions that are not 

defined by the ABS and provide a limited range of statistics, such as postal areas, which approximate 

postcode boundaries. The blue shaded boxes represent the key areas used in this work: Postal Areas in 

Non ABS Structure (Figure 1.6) approximate the postcodes provided in the dataset, and these are 

converted to Statistical Areas level 2 (SA2s) in the ABS Structure for small area analysis. The conversion 

process of postal areas (approximation of postcodes) to SA2s is discussed in further detail later in Section 

1.5.1.  

Australia is geographically divided into six states (New South Wales, Queensland, South Australia, 

Tasmania, Victoria, and Western Australia) and two territories (Australian Capital Territory and Northern 

Territory) (Figure 1.7(A)). The Greater Capital City Statistical Areas represent the functional areas of the 

eight state and territory capital cities (Australia Bureau of Statistics 2016). These areas include people 

living in urban areas as well as those who regularly visit the cities but reside in surrounding areas.  

In 2011, the Australia Bureau of Statistics divided Australia into 2,196 SA2 regions as part of ASGS 2011, 

ensuring there were no gaps or overlaps in the delineation (Figure 1.7(B)) (Australian Bureau of Statistics 

Jul2021-Jun2026). Generally, SA2s have an average population of around 10,000 individuals, with 

populations ranging from 3,000 to 25,000 persons. Notably, in the 2017-2018 period, the median 

population for men aged 50-79 within SA2s was 1,479 (IQR: 895 - 2,296), while the mean population 

was 1,668 (Range: 4 - 6,191). SA2s located in remote and regional areas typically have smaller 

populations but larger geographical area compared to those in urban areas.  

Remoteness Areas categorize Australia into five classes based on their relative access to services (Figure 

1.7(C)). These areas are determined using the Accessibility/Remoteness Index of Australia Plus (ARIA+) 

(Australia Bureau of Statistics 2011). Additionally, the socio-economic characteristics of each SA2 are 

classified based on the Index of Relative Socio-Economic Advantage and Disadvantage (IRSAD) (Figure 

1.7(D)) (Australia Bureau of Statistics 2013). This comprehensive index combines measures of both 

relative advantage and disadvantage. It is one of four Socio-Economic Indexes for Areas (SEIFA) indexes, 

each of which captures a distinct facet of the socio-economic conditions in an area based on different 

Census data. Due to the diverse variables considered, the same area may receive varying scores across 

these indexes. The IRSAD specifically provides an overview of the economic and social conditions 

experienced by individuals and households within a given area.  
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Figure 1.6: Hierarchies of ABS and Non ABS Structures. The blue box in Non ABS and ABS Structures represents 

the hierarchical level of the collected data and the modified data for small area analysis. Adapted from Australia 

Bureau of Statistics.  
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(A)      State and territories 

 

(B) Small areas in Australia (SA2) 

 
(C) Remoteness categories 

 

(D) Socio-economic categories 

 
Figure 1.7: Geographical representation of (A) States and territories, (B) Small areas, (C) Remoteness categories and (D) Socio-economic status in Australia. 
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1.5 Data  

1.5.1 Medicare Benefit Schedule  

Prostate-specific antigen screening 

The Medicare Benefits Schedule (MBS) comprises a detailed itemized list of healthcare 

services that are subsidized by the Australian government, aiming to provide benefits to patients 

seeking various health services. These benefits are available to individuals holding a Medicare 

card, which is exclusively issued to citizens and permanent residents of Australia.  

Data from the MBS pertaining to Prostate Specific Antigen (PSA) testing among males aged 

50-79 years in 10-year age groups (50-59, 60-69, 70-79) was obtained for the period of 2002-

2018. Approval for the population data of PSA testing was obtained from the Department of 

Health and Aged Care, Australia. The dataset comprises Medicare items, which represent the 

Medicare services subsidized by the Australian government for prostate cancer testing. 

Medicare collect four items under PSA testing (66655, 66656, 66659, 66660). This study 

primarily focuses on the specific MBS item with code 66655, commonly referred to as "PSA 

screening," "screening," or "Prostate specific antigen - quantitation - 1 of this item in a 12-

month period". The item number “66655” is specifically collected for the PSA test in 

asymptomatic men. Whereas item no 66656 is used for monitoring purposes and 66659-60 are 

used for follow-up of ambiguous PSA tests, generally referred to as the “free to total ratio”.  

Throughout this thesis the terms “PSA testing” and “PSA screening” are used in context. 

Testing refers to the broad term of PSA testing and “PSA screening tests” more specifically to 

those tests undertaken in men without symptoms likely used for screening or case finding 

purposes. When using the term “screening” we are not implying a formal system and organised 

screening programme such as is used for bowel, breast, or cervical screening.  Generally, 

Chapters 1, 2, and 7 will use the term "PSA testing" as it is commonly used. However, the 

published (or soon to be published) Chapters 3, 4, 5, and 6 begin by referring to “testing”, but 

use the term "PSA screening" after a description in the methods section as these chapters 

analyse data that are based on Item number 66655, which is considered the “de facto screening” 

measure.  

In Australia, Medicare Benefit Schedule data have been used previously in research for various 

purpose. For instance, investigating differences in prostate cancer incidence, mortality and 

relative survival rates in relation to PSA testing (Threlfall et al., 1998, Luo et al., 2022), costs 

of diagnosing prostate cancer (Mervin et al., 2017), the effect of COVID-19 on prostate cancer 
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testing (Jain et al., 2022), factor associated with PSA testing (Nair-Shalliker et al., 2018) and 

patterns of PSA testing by remoteness and socioeconomic status (Calopedos et al., 2019).  

The primary strength of Medicare data is their accuracy and reliability (Gool et al., 2015). The 

Australian Medicare program includes over 5,700 medical services, each identified by its 

unique Medicare Benefits Schedule (MBS) item number. This list of Medicare items and their 

associated fees are regularly updated. All medical services, whether delivered in an out-of-

hospital context (such as GP or specialist consultations) or within private or public hospitals, 

are included within the Medicare data. These data are maintained and stored by state and 

territory government agencies. Researchers can gain access to this valuable resource upon 

reasonable request (Gool et al., 2015). 

Notably, Australians are unable to purchase additional insurance for Medicare-eligible out-of-

hospital services, making the government the exclusive insurer for such services. Additionally, 

the Medicare data have individual identifiers for each record, enabling individual-based 

analyses, instead of service-based analyses (Gool et al., 2015).  

The primary strength of both Medicare data sources lies in their accuracy, as these data rely on 

payment processes. In many instances, data collection occurs in real-time and is automated, 

significantly reducing the likelihood of errors. Additionally, Medicare Australia has 

implemented multiple processes to validate and verify the data. While not completely immune 

to errors, this system has proven to be more reliable than alternative self-reporting methods and 

is likely a more efficient approach to data collection (Gool et al., 2015). 

Medicare data provide accurate insights into healthcare costs and access to services, including 

monitoring and medication compliance. It also provides insights into the out-of-pocket costs 

associated with these services (Gool et al., 2015).  

However, there are some limitations in using Medicare data. Not all screening tests are captured 

in the Medicare database due to the impact of “coning”. The primary purpose of establishing 

the Medicare database was for administrative functions rather than research oriented. 

Consequently, to limit the pathology benefit paid, only the three most expensive tests are 

documented, or “coned” within an episode of care. Additionally, the PSA test is associated with 

a low scheduled fee ($AUD 20.15). As a result, not all PSA tests are included in the MBS, 

potentially leading to a 22% coning rate for PSA tests (Trevena et al., 2013). Moreover, 

postcodes provide the most detailed geographical information available in the Medicare data. 

To conduct analyses on smaller areas, such as SA2s, the data was subject to probabilistic 

allocation transformation, which introduces the possibility of misassigning some cases to 
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incorrect small areas. There are recording delays in Medicare claims data, resulting in a gap 

between service date and claim date (Gool et al., 2015).  

Converting postcodes to SA2s 

Medicare enrolment requires all eligible people to provide their postal address, including 

postcodes, as a mandatory step (Services Australia - Enrolling 2022). Medicare records patient's 

enrolled postcode to assess services, rather than the location of healthcare services. Patients 

have the option to update their information, including their postal address, on the government 

website (https://my.gov.au/) under the Medicare tab (Services Australia - Medicare Update 

2023). Alternatively, patients can provide an updated postal address when prompted by 

healthcare professionals to access services.  

Since 2009, healthcare professionals have had access to Medicare details through the Health 

Professional Online Services (HPOS) system, particularly when patients don't have their 

physical Medicare card with them (Services Australia - HPOS 2023). HPOS offers a secure 

web portal that grants healthcare providers real-time access to various online services offered 

by the Department of Human Services, including the ability to look up or verify a patient’s 

Medicare number.  

However, the accuracy of a patient's Medicare enrolment postcode may not necessarily 

correspond to their primary residence and cannot be consistently determined (Shergold, Seidel 

et al., 2017). For instance, people who change residences are not necessarily updating their 

address, or the Medicare enrolment postcode could be a PO box address. The analysis in this 

thesis has not been adjusted for non-updated addresses. To increase the reliability of our 

estimates, we excluded postcodes associated with PO boxes from our analysis. Moreover, 

postcodes can change over time, with new postcodes introduced, old postcodes retired, or 

existing postcodes modified, leading to variations in how patients are assigned to geographic 

regions (Australian Institute of Health and Welfare 2020).  

The available geographical information in the Medicare Benefit Schedule (MBS) data was 

limited to postcodes. However, since the estimated resident population data, which is used as 

the denominator for rate calculations, was defined by the SA2 classification, concordance files 

between postcodes and SA2 were applied in this study. This was necessary to establish the 

correspondence between postcodes and SA2 boundaries. It should be noted that SA2 

boundaries could span multiple postcodes, resulting in some uncertainty regarding the specific 

SA2 in which each individual resided. To address this, a postcode to SA2 concordance file 

based on the 2011 boundaries released by the ABS (Australia Bureau of Statistics 2016) was 

utilized. This file provided the approximate proportion of the population in each postcode that 
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belonged to each SA2. Simulation methods were employed to quantify the level of uncertainty 

associated with the final assignment of SA2. Furthermore, methodologies were developed to 

incorporate this uncertainty into the estimated prevalence of PSA testing for each SA2. In this 

thesis the term SA2 will be referred to as ‘small area’.  

1.5.2 Australian cancer database  

Prostate cancer incidence data   

We obtained prostate cancer incidence (ICD-10 C61) data from the Australian Cancer Database, 

which combines information from state and territory cancer registries, for all men diagnosed 

aged 50-79 years between 2012 and 2016. As cancer is a notifiable disease in Australia, this 

dataset encompasses all diagnosed prostate cancers. The data provided SA2 information using 

the 2011 Australian Statistical Geography Standard (ASGS) and were categorized into 5-year 

age groups (50-54, 55-59, 60-64, 65-69, 70-74, 75-79) for the most recent 5-year period 

available at the time of extraction (January 2012 to December 2016).  

We limited our analysis of prostate cancer data to men aged 50-79 years to be consistent with 

PSA testing data, as there is a low incidence of prostate cancer among men younger than 50 

years and guidelines regarding prostate cancer testing generally focus on men aged 50-69 or 

with at least 7 years life expectancy.  

1.5.3 Estimated resident population 

Population data necessary for this study for men aged 50-79 years was sourced from the 

Estimated Resident Population database (Australia Bureau Of Statistics 2019) maintained by 

the Australian Bureau of Statistics (ABS). The data was securely stored, and all analyses were 

conducted within the Secure Unified Research Environment (SURE) facility managed by The 

Sax Institute (The Sax Institute).  

1.6 Motivation, aims, and structure of thesis  

1.6.1 Motivation for this study  

Quantifying the spatial variation in PSA testing, particularly in relation to temporal changes, 

will offer valuable insights into the uptake of PSA testing across the nation and identify 

disparities. Without this knowledge, the development of evidence-based strategies to address 

identified inequity in prostate cancer indicators across Australia is hindered. It is essential to 

interpret variations in testing rates within the framework of the actual effectiveness of PSA as 

a screening tool and adherence to current national guidelines. Through a collaborative effort 
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between the research team and the Australian Cancer Atlas project, the study's findings will be 

integrated into the Atlas, providing greater dissemination of results. 

The primary objective of this analysis is to quantify the trends, spatial patterns, spatio-temporal 

patterns in PSA testing and association between PSA testing and prostate cancer incidence 

across Australia. This study is timely as a systematic review of prostate cancer testing guidelines 

is currently underway, with an expected timeline for completion by late 2024. Baseline evidence 

on the distribution of PSA testing tests is important for future policy and planning in this area.  

1.6.2 Specific aims  

1. Describe PSA testing patterns and trends by State and Territory, remoteness of 

residence and socio-economic status (Chapter 3).  

2. To quantify how PSA testing rates vary by small geographical areas across Australia 

during the period following the release of the 2016 Australian clinical guidelines on 

PSA testing (Chapter 4).  

3. To identify the change in PSA testing rates by small geographic areas over time in 

Australia during the period 2002-2018 (Chapter 5).  

4. To quantify the association between PSA testing and prostate cancer incidence rates at 

the small area level in Australia for men aged 50-79 during the period 2012-2016 

(Chapter 6).  

1.6.3 Chronology of thesis chapters  

Chapter 1 provides an overview of PSA testing and prostate cancer, covering its significance, 

limitations, debates, benefits, and harms. It discusses international guidelines and variations in 

recommendations, including changes in Australian guidelines. The chapter explores patterns of 

PSA testing and introduces prostate cancer development, diagnostic tests, and epidemiology. 

Emphasizing geographical variations, it sets the foundation for understanding complexities and 

controversies regarding testing for prostate cancer.  

Chapter 2 presents a literature review and narrative on the methods focusing on the spatial and 

spatio-temporal methodologies appropriate in the analysis of small area level data. The chapter 

aims to explore the various modeling approaches available, with particular emphasis on kriging 

and Bayesian methods. It highlights the preference for Bayesian modeling due to its ability to 

incorporate prior information and handle confidentiality concerns. Moreover, the advantages of 

adopting a Bayesian framework are discussed, potentially in contrast to alternative modeling 

approaches. Additionally, the chapter outlines the distinction between SAR (Spatial 
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Autoregressive) and CAR (Conditional Autoregressive) models. It also outlines the criteria 

used for evaluating the goodness of fit of Bayesian models, encompassing the Watanabe-Akaike 

information criterion (WAIC) and Deviance information criterion (DIC). The text further 

addresses the identification of spatial autocorrelation following model fitting. Finally, the 

chapter concludes by identifying existing gaps in the literature that require further exploration.  

Chapter 3 is a manuscript published in Cancer Epidemiology titled "Changes in prostate-

specific antigen (PSA) 'screening' patterns by geographic region and socioeconomic status in 

Australia: Analysis of Medicare data in 50–69-year-old men." This population-based cohort 

study aimed to examine trends in PSA testing rates among Australian men aged 50-69 from 

2002 to 2018. The study analyzed data from over 2.7 million men and assessed geographical 

differences across Australia, including state and territories, remoteness, and socioeconomic 

status. This study addressed persisting geographical disparities in prostate cancer incidence and 

survival, emphasizing the need for consistent diagnostic strategies regardless of location of 

residence.  

Chapter 4 is a manuscript published in Public Health titled “Spatial patterns of prostate-specific 

antigen testing in asymptomatic men across Australia: a population-based cohort study, 2017-

2018”. This study provides a comprehensive analysis of the variation in prostate-specific 

antigen (PSA) testing across small geographical areas in Australia, focusing on categories of 

remoteness and socio-economic status. It is a retrospective population-based cohort study that 

includes data from nearly 1 million men aged 50-79 years who underwent PSA testing between 

2017 and 2018. By utilizing Bayesian spatial Leroux model, the study generated smoothed 

indirectly standardized incidence ratios to examine the variation in PSA testing rates. Notably, 

this is the first population-based study to map and describe the small-area geographical 

variation of PSA testing in Australia.  

Chapter 5 is a manuscript ready for submission titled “Spatio-temporal patterns of prostate-

specific antigen testing in asymptomatic men: a population-based cohort study, Australia, 2002-

2018”. This retrospective population-based cohort study focuses on examining how the 

geographical variation in prostate-specific antigen (PSA) testing rates across Australia has 

changed over time from 2002 to 2018. The study utilizes data from the Medicare Benefit 

Schedule, involving more than 9 million men aged 50-79. By mapping postcodes to statistical 

area level 2 and utilizing a Bayesian spatio-temporal Separate model, standardized incidence 

ratios are generated for each small area and each calendar year over the study period. This study 

is the first of its kind to provide insights into the temporal changes in PSA testing rates at the 

small area level. It underscores the evolving geographic variation in PSA testing rates and 



24 

 

emphasizes the importance of further research to ensure equitable access to prostate cancer 

testing services.  

Chapter 6 is a manuscript ready for submission titled “Spatial associations between prostate 

cancer incidence rates and prostate-specific antigen screening test use in Australia, 2012-2016: 

a population-based study”. This study aims to examine the relationship between prostate-

specific antigen (PSA) testing and prostate cancer incidence rates at the small area level in 

Australia, focusing on men aged 50-79 from 2012 to 2016. The study utilizes a dataset of over 

2.5 million men, combining Medicare data on PSA testing and prostate cancer incidence data 

from state and territory cancer registries. Using a Bayesian spatial model, the study calculates 

standardized incidence ratios for PSA testing and prostate cancer incidence for each small area 

and explores the correlation between them. The findings offer valuable insights at the local as 

well as at national level, highlight the need for further research to understand geographical 

disparities and evaluate national PSA guidelines in order to improve prostate cancer mortality 

rates in Australia.  

Chapter 7 offers a summary of the thesis, highlighting its primary focus on examining the 

patterns and inequalities in prostate-specific antigen (PSA) testing for prostate cancer in 

Australia. The chapter starts with an introductory overview of the entire thesis, followed by a 

discussion on the key findings and their implications. Additionally, the strengths and limitations 

of the study are acknowledged. The chapter emphasizes the significance of the research findings 

and suggests future research directions, specifically exploring the influence of age groups on 

spatial and spatio-temporal PSA testing patterns.  

The appendix section encompasses essential study documents necessary for the completion of 

the thesis. It includes ethical approval letters that were obtained for conducting the study on 

PSA testing and prostate cancer data. Additionally, it contains a list of conferences where 

presentations were made throughout the PhD candidature. Lastly, it incorporates a list of other 

research publications achieved during the candidature period. The purpose of the appendix is 

to provide detailed supporting information that supplements the main body of the thesis.  
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CHAPTER 2 

 

2 LITERATURE REVIEW OF SPATIAL AND 

SPATIO-TEMPORAL MODELS  

2.1 Chapter Overview 

Chapter 2 is a methodology-focused review chapter that outlines the diverse options and 

approaches currently available for modeling spatial and spatio-temporal data, and then 

ultimately choosing the most suitable approach for the analysis in this thesis. We are not aware 

that anyone has previously explored or published on the spatial or spatio-temporal patterns of 

prostate-specific antigen (PSA) testing. As outlined in this chapter, there are numerous available 

options for the analyses of these data.  

In addition, this chapter highlights the advantages and disadvantages of non-modeling 

approaches, such as kriging, and model-based approaches, including frequentist and Bayesian 

methods. The chapter discusses various types of kriging methods and their assumptions. It 

emphasizes that kriging can be an optimal interpolator under certain conditions but has 

limitations when assumptions are not met or there are few observations.  

The chapter then explains why the Bayesian framework is preferred in spatial modeling due to 

its ability to incorporate prior information and handle confidentiality and privacy concerns. It 

discusses the challenges associated with frequentist models and the computational obstacles in 

calculating likelihood for generalized linear mixed models. The chapter further categorizes 

spatial models into geostatistical models and lattice models and discusses simultaneous 

autoregressive (SAR) models for spatial variation analysis. It highlights the limitations of SAR 

models and introduces conditional autoregressive (CAR) models as a simpler approach for 

modeling autocorrelated geo-referenced areal data.  

The advantages of Bayesian spatial and spatio-temporal models are discussed, including the 

ability to incorporate diverse sources of information, provide direct probabilistic statements, 

and offer reliable estimates even with limited case counts. The chapter summarizes the 

computational challenges of Bayesian models and discusses user-friendly software options for 

implementing them. The chapter concludes by discussing the importance of checking the 
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convergence of Markov Chain Monte Carlo (MCMC) chains in Bayesian models and provides 

approaches for assessing convergence. It also covers global spatial smoothing and the potential 

issues of oversmoothing in CAR-based models. Finally, the chapter briefly mentions Bayesian 

model fitting criteria, such as the Watanabe-Akaike information criterion (WAIC) and deviance 

information criterion (DIC), for assessing model performance.  

Overall, the chapter discusses different smoothing approaches for spatial and spatio-temporal 

data, highlights the advantages of Bayesian models, and provides insights into model fitting 

and convergence assessment in spatial modeling.  

2.2 Spatial data characteristics  

Spatial data are commonly observed in two forms: point data, such as the addresses of patients 

at specific spatial locations, and areal data, which involves aggregating data over geographical 

subregions like counties or postal codes (Moraga et al., 2017).  

In Australia, postcodes are used by Australia Post for mail delivery, but they lack precise 

geographic boundaries (Australian Bureau of Statistics July 2021 - June 2026). While they 

cover most of Australia, exceptions exist, such as western Tasmania having no designated 

postcodes; this is because there are no people living there. To facilitate comparisons between 

Australian Bureau of Statistics (ABS) data and other datasets using postcodes, the ABS 

introduced Postal Areas (POAs) as approximations of postcode boundaries (Australian Bureau 

of Statistics 2016). Postal Areas exclude certain postcodes that do not pertain to street delivery 

areas. This category incorporates post office boxes, entries for mail back competitions, 

locations catering to large volume receivers, and specialized delivery postcodes. These specific 

postcodes are exclusively applicable to postal addresses and do not represent valid locations for 

population data.  

POAs are integrated into the Australian Statistical Geography Standard (ASGS) as non-ABS 

structures, representing areas approximating administrative or environmental boundaries. 

POAs are created by grouping one or more Statistical Areas Level 1 (SA1s), the smallest units 

for Census data release, based on dwelling distribution (Australian Bureau of Statistics 2016). 

POAs aim to encompass all of geographic Australia, but 'Unclassified POAs' exist, representing 

areas not tied to specific postcodes. These are not depicted as spatial entities within POA digital 

boundaries. This occurs when no SA1 can be definitively linked to a specific postcode, for 

example, when one SA1 covers multiple postcodes, or multiple SA1s partially overlap a 

postcode and are allocated to different postcodes they share areas with.  
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According to 2021 census, the total area of Australia is 7,692,024 km², encompassing 2,644 

postal areas with a population of 25,422,789 people and an average of 3.1 people per household 

(CYBO Company 2005-2023). The average area for postal codes in Australia is 2,910.9 km² 

(Range: 0.561 km² to 1,002,280.6 km²). In Australia, the average population and population 

density for a postal code are 9,075 (Max: 114,408) and 672.5 / km² (Max: 12,528 / km²), 

respectively (Australian Bureau of Statistics 2021). The average number of households per 

postal area is 2,927 (= 9,075 / 3.1).  

In epidemiology, point data are often restricted due to concerns related to confidentiality, 

privacy, or ethics surrounding health records. It is crucial to address these concerns when 

sharing information about small numbers in small areas. As a result, areal data are commonly 

utilized by aggregating point data within geographical subregions (Lawson 2012). Spatial data 

can be sparse, particularly when dealing with smaller areas, leading to noise and unreliable 

estimates. To mitigate this issue, applying smoothing approaches is essential to obtain reliable 

estimates. Smoothing sparse data in epidemiology is critical for data visualization, estimation, 

addressing spatial heterogeneity, identifying clusters or hotspots with higher disease 

occurrences, and facilitating statistical modeling. By reducing noise and capturing underlying 

trends, smoothing techniques enhance model performance and improve the accuracy of 

predictions and inferences. This enhances the quality and reliability of data analysis, 

contributing to a better understanding of disease patterns and informing public health 

interventions. Ultimately, the objective is to comprehend the underlying patterns.   

2.3 Spatial smoothing: Kriging  

There are several approaches available for performing smoothing, one of which is a simple 

spatial smoothing technique known as kriging. This method was developed to smooth over 

point data, but some variants also allow for area-level data to be used.   

Kriging is a geostatistical interpolation technique that reduces prediction errors by calculating 

a weighted average of known function values in the vicinity of a point. It involves two steps: 

first, fitting a variogram to account for spatial correlation, and second, using this information 

to predict or interpolate attribute values at unsampled locations (Bailey and Gatrell 1995). 

While kriging effectively filters out noise and provides uncertainty estimates in most cases, its 

primary purpose is not to estimate the risk within each area (Goovaerts 2005). However, kriging 

has some limitations. Kriging was originally developed to estimate values based on limited set 

of sampled data across a continuous spatial region (Shao 2011). It is sensitive to variogram 

model misspecification, and the assumptions of the kriging model may not be met in many 
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environmental exposures. Additionally, the accuracy of kriging interpolation is limited when 

there are few sampled observations or inadequate spatial correlation (Waller and Gotway 2004).  

Kriging is considered an optimal interpolator when certain conditions are met, such as normally 

distributed data without trends, spatial autocorrelation, and stationarity (consistent mean and 

range across the study area). Table 2.1 presents various types of kriging methods and their 

assumptions, but it is not an exhaustive list, as different combinations are possible.  

Previous studies have utilized kriging methods to examine oral cancer in men and female breast 

cancer in Taiwan between 1997 and 2017 (Tsai et al., 2022). Kriging estimates are based on the 

assumption that the data are located at the centroids of areas (Nagle 2010). Kriging is 

particularly advantageous when the objective is data exploration, ease of use and simplicity 

(Lawson et al., 2000). However, Bayesian methods have several advantages when more 

detailed inferential analyses are required (Lawson et al., 2000); these are described in Section 

2.4.  

Sl No. Kriging type Assumptions 

1 Simple kriging (Waller 

and Gotway 2004) 

Most basic form of kriging that assumes a known mean.  

2 Ordinary kriging 

(Zhang et al., 2011) 

Assumes that the mean and variance of the values are constant 

across the spatial field.  

3 Universal kriging 

(Zhang et al., 2011) 

An extension of ordinary kriging that allows the mean of the 

values to differ for different locations, while only the variance is 

held constant across the entire field.  

4 Block kriging (Waller 

and Gotway 2004) 

Estimates averaged values over gridded "blocks" rather than 

single points.  

5 Cokriging (Waller and 

Gotway 2004, Zhang et 

al., 2011) 

Cokriging is a multivariate linear prediction, allows additional 

observed variables to enhance the precision of the interpolation of 

the variable of interest at each location. It is best suited when co-

variables are strongly correlated, and the secondary variable is 

more densely sampled compared with the primary variable.  

6 Filtered Kriging, or 

kriging with 

measurement error 

(Waller and Gotway 

2004) 

Used for smoothing and prediction for noisy data.  

7 Lognormal Kriging 

(Waller and Gotway 

2004) 

Produces optimal spatial prediction based on the lognormal 

distribution.  
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8 Trans-Gaussian kriging 

(Waller and Gotway 

2004) 

Used for spatial prediction based on transformation of data.  

9 Indicator kriging 

(Waller and Gotway 

2004) 

Probability mapping based on indicator function of data.  

10 Probability kriging 

(Waller and Gotway 

2004) 

Probability mapping based on indicator function of the data.  

11 Disjunctive kriging 

(Waller and Gotway 

2004) 

Non-linear prediction based on univariate functions of data.  

12 Bayesian kriging 

(Waller and Gotway 

2004) 

Incorporates prior information about mean and covariance into 

spatial predictions.  

13 Binomial Cokriging 

(Oliver et al., 1998) 

Utilizes both ordinary and conditional unbiased cokriging for 

estimation.  

14 Poisson kriging 

(Goovaerts and 

Gebreab 2008) 

Used for point and area-to-area implementations to calculate 

incidence counts and disease rates.  

Table 2.1: Types of kriging and their assumptions.  

2.4 Spatial smoothing: Modeling 

Spatial models can be categorized into two main groups: (i) Geostatistical models, which use 

point data, and (ii) lattice models or areal models, which use area-level data (Cressie 2015). An 

example of the latter is disease incidence in predefined geographic regions. Since health data 

are usually available by areas, we will focus on area-level models. Among the lattice models, 

the most commonly used are the simultaneous autoregressive (SAR) and conditional 

autoregressive (CAR) models (Hooten et al., 2014).  

2.4.1 Frequentist vs Bayesian approach  

Spatially varying phenomena have been analyzed using both frequentist (classical) and 

Bayesian analytical methods. However, the Bayesian approach is often preferred due to its 

ability to incorporate information from diverse sources. Within the Bayesian framework, 

questions are addressed through an estimation procedure that combines multiple sources of 

information, such as prior knowledge and the observed data, known as the likelihood (Louzada 

et al., 2021).  
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Bayesian spatial models enhance the stability and precision of estimates by incorporating 

information from neighboring geographical areas, resulting in smoothed estimates for small 

areas. This assumption relies on the notion that people residing in one area share similar 

characteristics, such as exposures and lifestyles, with those in nearby areas (Leroux et al., 2000, 

Cramb et al., 2020, Lines et al., 2022). Bayesian models allow for ranking estimates, comparing 

regions, and providing reliable estimates with associated uncertainty (Kang et al., 2016). 

Numerous Bayesian spatial models are available, differing in terms of neighbor definition, 

model specification, smoothing type, and parametric or semi-parametric forms (Leroux et al., 

2000, Cramb et al., 2020). The selection of final models will involve assessing multiple options 

and comparing their suitability based on goodness of fit, plausibility of estimates, 

computational time, and feasibility (Kang et al., 2016). Smoothing is desirable as it reduces 

estimation uncertainty and reveals underlying spatial trends that may otherwise be obscured by 

noise and other variables (Cramb et al., 2020).  

When mapping diseases, employing a Bayesian approach offers numerous advantages. It allows 

for direct probabilistic statements, such as estimating the probability of increased disease risk 

in a specific area (Kang et al., 2016). The utilization of prior distributions ensures reliable and 

robust estimates, even in scenarios with limited case counts in a particular area, as they provide 

well-defined and stable results (Kang et al., 2016).  

2.4.2 Simultaneous autoregressive (SAR) models  

Simultaneous autoregressive (SAR) models have a general objective of revealing and 

quantifying spatial variation within data, providing summaries of geographical areas by 

identifying spatial clustering and evaluating the influence of explanatory variables on quantities 

of interest. SAR models are capable of simultaneously modeling the distribution of predicted 

values. Detailed discussions on SAR models can be found in the works of Anselin (1988), 

Haining (1990) and Cressie (1993). SAR models have found applications in various fields such 

as ecology, epidemiology, sociology, and environmental science, particularly for data with areal 

spatial support. It is worth noting that any SAR model can be represented as a CAR model, but 

the reverse is not necessarily true. 

In classical mixed model framework, we consider a dataset 𝑦 =  (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇 that originates 

from a data-generating process incorporating both first-moment (mean) and second-moment 

(covariance) structures, where they exhibit linear relationships with a set of covariates 𝑥𝑖 for 

𝑖 = 1, 2, … , 𝑛  along with additive components. An autoregressive model can be formulated as:  

𝑦 = 𝑋𝛽 + 𝑧 +  𝜖 
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Here 𝛽 represents the coefficient vector, 𝑧 denotes the structured random effect, and 𝜖 

represents the unstructured error term. In mixed model specifications, it is common to assume 

normality for 𝑧 and 𝜖 due to the ease of implementation and inference. The covariance matrixΣz, 

for the autoregressive process can be expressed as:  

∑ =  𝜎𝑧
2((𝐼 − 𝐵)(𝐼 − 𝐵𝑇))−1

𝑧
 

In this equation, the diagonal matrix is considered as the identity matrix 𝐼 and 𝐵 captures the 

second-moment dependence in the process.  

SAR models have certain drawbacks, as they are more suitable for maximum likelihood 

estimation or cases with second-order dependency and global spatial autocorrelation, but not 

well-suited for MCMC fitting of Bayesian models (Shekhar and Xiong 2007). Furthermore, 

SAR models do not adhere to the spatial version of the Markov property, which assumes that a 

given geographical area is influenced only by its immediate neighbors and not by neighbors of 

neighbors. In situations where the spatial Markov property holds, conditional autoregressive 

(CAR) models offer a simpler approach to modeling autocorrelated geo-referenced areal data 

(Goodchild and Haining 2004).  

2.4.3 Conditional autoregressive (CAR) models  

Global spatial smoothing refers to the application of consistent smoothing parameters across 

the entire region (Lee and Mitchell 2012). Conditional autoregressive (CAR) models, a type of 

global spatial model, assume a common variance for the smoothing term across the entire region 

while also permitting local smoothing of estimates in neighboring areas (Kang et al., 2016). 

This approach is appropriate when a consistent spatial trend exists across the region, although 

it may not hold true for large areas that exhibit spatial heterogeneity.  

While global CAR-based models are straightforward to implement using various software, they 

have drawbacks. One such disadvantage is the potential for oversmoothing, where 

discontinuities between adjacent areas are smoothed over. Oversmoothing can be defined as the 

process of hiding the underlying spatial patterns. The extent to which oversmoothing occurs 

may depend on the specific context and the objectives of the analysis. For all CAR-based 

models, the strength of the partial autocorrelation depends on the number of neighbouring areas 

rather than on any underlying relationship (Lee and Mitchell 2013). Table 2.2 provides details 

of Bayesian spatial models using global spatial smoothening.  
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Sl. 

No. 

Bayesian Spatial 

Models 

Key Features Advantage / Disadvantage 

Conditional autoregressive (CAR) models: Global smoothing 

1 Intrinsic CAR  Structured spatial random effect is 

the only random effects.  

Unstructured random effect is not 

considered thus have tendency to 

oversmooth estimates and can produce 

biased parameter estimates.  

2 BYM model 

(Besag et al., 

1991) 

Random effects will be the sum of 

structured and unstructured spatial 

random effects. 

The two separate random effects 

components cannot be individually 

identified – only their sum is 

identifiable.  

3 Modified BYM 

or BYM2 model 

(Simpson et al., 

2017) 

Enables the use of meaningful 

penalized complexity priors and 

addresses the scaling issue of the 

original BYM model by 

incorporating a scaled spatially 

structured component and an 

unstructured component.  

It allows for an intuitive parameter 

interpretation and facilitates prior 

assignment.  

4 Leroux model 

(Leroux et al., 

2000) 

Requires only a single set of 

random effects.  

A single set of random effects 

incorporates both structured and 

unstructured random effects thus 

avoiding identifiability issues.  

5 Proper CAR 

model (Besag 

1974) 

Precision matrix is redefined 

because the joint distribution 

becomes improper due to the 

singularity of the precision matrix.  

It may limit the breadth of the posterior 

spatial pattern. For a reasonable amount 

of spatial association, 𝜌 is likely to be 

very close to 1.  

Variant of CAR models: Local smoothing 

6 CAR 

dissimilarity 

models (Lee and 

Mitchell 2012)   

The spatial weights matrix are 

modeled to reduce the partial 

autocorrelations between certain 

adjacent random effects.  

Excluding covariates can ensure the 

spatial structure is consistent in both the 

risk surface and the random effects 

surface.  

7 Weighted sum 

of spatial priors 

(Lawson and 

Clark 2002) 

An extension to the BYM model, 

which incorporates both a spatially 

structured component and an 

unstructured spatial component.  

Model allows for the detection of 

abrupt discontinuities.  

8 Leroux scale 

mixture model 

(Congdon 2017)   

It combines a scale mixture model 

with a Leroux prior.  

If 𝜌 = 0, this reduces to an unstructured 

independent and identically distributed 

scale mixture.  

9 Skew-elliptical 

areal spatial 

models (Nathoo 

and Ghosh 

2013) 

Two versions were proposed, first 

aims to ensure each random effect 

parameter has a skew-elliptical 

distribution. Second, it uses an 

approximation to a Dirichlet 

process to allow for data-driven 

It accommodates uncertainty in the 

mixing structure, and gives greater 

flexibility in the tail behaviour of 

marginal distributions.  
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departures from the parametric 

version.  

10 Localised 

autocorrelation 

or cluster model 

(Lee and Sarran 

2015) 

The random effects are spatially 

smoothed and augmented with a 

piecewise constant intercept.  

The clustering is solely non-spatial, 

while the CAR prior on the Structured 

spatial random effects term accounts for 

spatial autocorrelation.  

11 Locally adaptive 

model (Lee and 

Sarran 2015) 

The boundaries between areas are 

not identified using additional 

information, and the spatial 

weights matrix is binary.  

It is more computational feasible 

compared to existing boundary analysis 

methods because spatial weights matrix 

is updated at each iteration.  

Other models: Global smoothing 

12 Geostatistical 

model 

(Clements et al., 

2006) 

The residual spatial structure in 

this model is represented by a 

Gaussian process.  

By setting the upper and lower bounds 

of rate of decay, a range of possible 

values for the spatial correlation is 

considered in the model.  

13 Global spline 

models (Lang 

and Brezger 

2004) 

Model assumes that the incidence 

cases (counts) are located at the 

centroid of each area.  

The coefficients are penalized to 

control for the level of "wiggliness" 

through a penalty matrix.  

Other models: Local smoothing 

14 Hidden Potts 

model (Green 

and Richardson 

2002) 

Model the spatial random effect on 

the log scale as 𝐾-components 

mixture model.  

Model impose discontinuities on the 

risk surface, potentially leading to 

unrealistic representations. However, it 

is computationally challenging as the 

spatial grid size increases.  

15 Spatial partition 

model (Knorr‐

Held and Rasser 

2000)   

Similar to Hidden Potts model but 

the clusters and the specifications 

of the hyperpriors are defined 

differently.  

Model assume a constant relative risk 

within each cluster, which may not 

accurately capture the underlying 

variability.  

16 Local spline 

models (Goicoa 

et al., 2012) 

An expansion of the global spline 

models. It involves the 

incorporation of unstructured 

random effects. 

The random effect vector follows a 

multivariate normal distribution, 

capturing the unstructured 

heterogeneity.  

Table 2.2: Types of Bayesian spatial model, their advantages/disadvantages. 

Intrinsic CAR model 

The intrinsic conditional autoregressive (ICAR) is a subclass of CAR model that is widely used 

and consider global smoothing over the neighbors of area. This model is employed when the 

areal data comprises a single aggregated measure per areal unit, such as a binary, count, or 

continuous value. The model specifies the following set of conditional distributions for the 

spatial random effect parameter (Besag et al., 1991):  
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R𝑖 =  S𝑖 𝑓𝑜𝑟 𝑎𝑟𝑒𝑎𝑠 𝑖 = 1, … , 𝑁 

𝑆𝑖|𝑠\𝑖 ~ 𝒩 (
1

∑ 𝑤𝑖𝑗𝑗
∑ 𝑤𝑖𝑗𝑠𝑗

𝑗
,

𝜎𝑠
2

∑ 𝑤𝑖𝑗𝑗
) 

𝑤𝑖𝑗 = {
1 if areas 𝑖 and 𝑗 are adjacent

0 otherwise                                 
 

Here, 𝑆𝑖 is structured spatial random effects and 𝑤𝑖𝑗 is the element of a spatial weights matrix. 

This model implies that the conditional expectation of 𝑆𝑖 is equal to the mean of the random 

effects at neighbouring locations. Alternatives to ICAR model are possible and one of them is 

the Proper CAR model, which will be discussed later in the chapter.  

BYM Model 

One of the most popular model used in disease mapping is the Besag, York and Mollié (BYM) 

model (Besag et al., 1991). Successfully applied in the Atlas of Cancer in Queensland report 

(Cramb et al., 2011), the BYM model includes both an ICAR component for spatial smoothing 

and an ordinary random-effects component for non-spatial heterogeneity. Including an 

unstructured effect as well as the structured effect helps minimise biases in parameter estimates 

(Latouche et al., 2007). Here the random effect parameters will be the sum of structured and 

unstructured spatial random effects.  

R𝑖 =  S𝑖 + U𝑖 

𝑈𝑖  ~ N(0, 𝜎𝑈
2) 

A disadvantage of this model is that the two separate random effects components cannot be 

individually identified only their sum is identifiable (Eberly and Carlin 2000). This model has 

also been widely applied in mapping cancers, including investigating factors associated with 

skin cancers in Germany during 2009-2015 (Augustin et al., 2018).  

Modified BYM or BYM2 model 

A new modification was proposed to the parametrization of the BYM model, known as BYM2, 

which improves the identifiability and interpretability of the model's parameters. BYM2 also 

enables the use of meaningful Penalized Complexity priors and addresses the scaling issue of 

the original BYM model by incorporating a scaled spatially structured component (𝑢∗) and an 

unstructured component (𝑣∗) (Simpson et al., 2017). In BYM2, the random effect (𝑏) is defined 

as:  
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𝑏 =
1

√𝑇𝑏

(√1 − 𝜙𝑣∗ + √𝜙𝑢∗) 

with a covariance matrix given by:  

𝑉𝑎𝑟(𝑏|𝑇𝑏 , 𝜙) = 𝑇𝑏
−1((1 − 𝜙)𝐼 + 𝜙𝑄∗

− 

Here 𝑄∗ is the precision matrix of the Besag model that is scaled to provide a modified version 

of the random effect.  

In this formulation, the precision parameter (𝑇𝑏 > 0) controls the contribution of the weighted 

sum of 𝑢∗ and 𝑣∗ to the marginal variance. The mixing parameter (0 ≥ 𝜙 ≤ 1) measures the 

proportion of the marginal variance explained by the structured effect 𝑢∗ (Moraga 2019). The 

spatial random effect (𝑏) represents a compromise between pure overdispersion and spatially 

structured correlation, with 𝜙 indicating the proportion of the marginal variance explained by 

the structured effect. The BYM2 model can be considered as a purely spatial model (BYM) 

when 𝜙 = 1, and it reduces to pure overdispersion with only unstructured spatial noise when 

𝜙 = 0 (Riebler et al., 2016, Moraga 2019).  

By using the standardized 𝑄∗
− and the scaled structured effect (𝑢∗), the marginal variances 

become approximately equal to 
1−𝜙

𝑇𝑏
+

𝜙

𝑇𝑏
. The scaling of the random effect 𝑏 and the 

interpretation of the prior imposed on 𝑇𝑏 are consistent in this formulation. Moreover, the 

hyperparameters 𝑇𝑏 and 𝜙 are now interpretable and no longer confounded (Riebler et al., 

2016).  

This model was used to determine the spatial incidence of cervical cancer and the risk factors 

among HIV positive women in South Africa during 2004-2014 (Tafadzwa et al., 2021). 

Leroux model 

Another alternative to the BYM, which allows a single set of random effects, is the Leroux 

model.  

The Leroux model requires only a single set of random effects (Lee 2011), thus avoiding 

identifiability challenges (Riebler et al., 2016), but allows for both spatial and non-spatial 

smoothing like the BYM. The conditional distribution of 𝑆𝑖 under the Leroux model can be 

expressed as: 

𝑆𝑖|𝑠\𝑖 ~ 𝒩 (
𝜌 ∑ 𝑤𝑖𝑗𝑠𝑗

𝑁
𝑗=1 + (1 − 𝜌)𝜇0

𝜌 ∑ 𝑤𝑖𝑗 + 1 −𝑗 𝜌
,

𝜎𝑠
2

𝜌 ∑ 𝑤𝑖𝑗 + 1 − 𝜌𝑗
) 



44 

 

The precision matrix can be written as: 

𝑇 =  
1

𝜎𝑆
2 [𝜌(𝐷 − 𝑊) + (1 − 𝜌)𝐼] 

Consequently, 𝑆𝑖 has a conditional expectation that combines a weighted average of both the 

independent random effects and the spatially structured random effects.  

The difference between the Leroux model and the BYM2 model lies in the inclusion of the 

factor 𝜙, which is calculated based on the spatial structure of the data (Riebler et al., 2016). It 

should be noted that the Leroux model cannot be scaled due to its construction, as the scaling 

would depend on the value of 𝜙.  

This model has been previously applied to describe spatial changes by small area in cervical 

cancer screening rates in Queensland state of Australia, during 2008-2017 (Dasgupta et al., 

2020), and also in the Australian Cancer Atlas (https://atlas.cancer.org.au).  

Proper CAR model 

The Proper CAR model uses the full conditionals for the ICAR model, but due to the singularity 

of the precision matrix, the joint distribution becomes improper (Besag 1974). There are certain 

disadvantages associated with the Proper CAR prior. One potential disadvantage is that it may 

limit the breadth of the posterior spatial pattern (Banerjee et al., 2003). Additionally, for a 

moderate level of spatial association, 𝜌 is expected to be close to 1 (Banerjee et al., 2003). This 

model has been used to analyse the small area spatial pattern of cancer mortality in Spain and 

its association with social inequalities during 2002-2013 (Santos-Sánchez et al., 2020).  

2.4.4 Variant of CAR models 

While all the previous CAR models described uses global smoothing, assuming the same level 

of smoothing across the entire region of interest, variants have been developed to allow for 

discontinuities in smoothing to occur. ‘Local’ spatial smoothing models allows for differential 

smoothing depending on neighbourhood characteristics. There are many options available, and 

more being developed, but some commonly used approaches are described further in this 

section and are listed in Table 2.2.  

CAR dissimilarity models 

This model is based on the Leroux conditional autoregressive (CAR) prior (Lee and Mitchell 

2012), with 𝜌 set to be 0.99 to ensure strong global spatial smoothing. In this model, the 

elements in the weight matrix (W) are modeled to reduce the partial autocorrelations between 
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certain adjacent random effects (Lee and Mitchell 2012). The approach allows for both binary 

and non-binary elements in W.  

When this model bases discontinuities on a characteristic of the areas (for instance, 

socioeconomic status), then this characteristic should not also be included as a covariate, to 

ensures that the spatial structure is consistent in both the risk surface and the random effects 

surface (Lee and Mitchell 2012). This model was applied to Pennsylvania Cancer Registry data 

to study prostate cancer incidence during 2000-2011 in both Pennsylvania and Philadelphia at 

county level (Wang et al., 2017).  

Weighted sum of spatial priors 

An extension was introduced to the BYM model, which incorporates both a spatially structured 

component, denoted as 𝑆𝑖, and an unstructured spatial component, denoted as 𝑈𝑖 (Lawson and 

Clark 2002). This extension allows for the detection of abrupt discontinuities. The augmented 

model can be expressed as:  

𝑅𝑖 = 𝑝𝑖𝑆𝑖 + (1 − 𝑝𝑖)𝑍𝑖 + 𝑈𝑖  

It is important to note that when 𝑝𝑖 = 1, the model reduces to the original BYM model. 

Conversely, when 𝑝𝑖 = 0, the model exhibits complete discontinuity.  

This method was used to address the spatial variation in incidence of cervical cancer at 

municipalities level in San Luis Potosí, a state in Mexico (Terán-Hernández et al., 2016).  

Leroux scale mixture model 

A new model was proposed, which incorporates a scale mixture model with a Leroux prior 

(Congdon 2017). Specifically, modifications were made to the normality assumption for area 

random effects by incorporating a scale mixture version of the Leroux model. This modification 

enables the model to handle both heterogeneity and clustering within a single set of random 

effects. Additionally, the scale mixture component introduces adaptivity to local discontinuity 

and spatial outliers, enhancing the model's robustness and ability to capture complex spatial 

patterns.  

Skew-elliptical areal spatial models 

In this model, the observed response 𝑅𝑖 is defined as:  

𝑅𝑖 = 𝜂
𝑖

−
1
2(𝛿|𝑍𝑖| + 𝑆𝑖) 
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where 𝛿|𝑍𝑖| represents the skewing component, with 𝑍𝑖 denoting a set of skewing variables 

drawn independently from a standard normal distribution. 𝜂 serves as a scale mixing parameter, 

and 𝑆𝑖 follows a Conditional Autoregressive (CAR) model. Two versions of the model were 

proposed. The first version aims to ensure that each 𝑅𝑖 follows a skew-elliptical distribution, 

where the marginal distribution for each spatial effect belongs to the skew-t family of 

distributions (Nathoo and Ghosh 2013). The second version is a semiparametric approach that 

utilizes an approximation to a Dirichlet process. This allows for data-driven deviations from 

the parametric version, accommodating uncertainty in the mixing structure and providing 

greater flexibility in the tail behavior of marginal distributions (Nathoo and Ghosh 2013).  

Localised autocorrelation  

The random effects in this model are spatially smoothed and augmented with a piecewise 

constant intercept, known as a cluster model. This allows for significant changes in the mean 

surface between adjacent areas if they belong to different clusters. The approach involves 

partitioning the areas into a maximum clusters approach (Lee and Sarran 2015). We must 

specify the maximum number of clusters, but model may choose to use fewer clusters. It is 

important to note that the clustering is solely non-spatial, while the CAR prior on the 𝑆𝑖 term 

accounts for spatial autocorrelation (Lee and Sarran 2015).  

Locally adaptive model 

A similar approach to the dissimilarity model described above is used in this thesis, but with 

some differences. Here, the boundaries between areas are not identified using additional 

information, and the 𝑤𝑖𝑗 values are binary only (Lee and Sarran 2015). The model is based on 

the Leroux CAR model with 𝜇0 = 0 (Lee and Mitchell 2013).  

In this model, 𝜌 can be estimated or fixed at a specified value, typically recommended as 0.99 

(Lee and Mitchell 2013). The spatial weights matrix, W, initially takes the form of a binary, 

first-order adjacency matrix. However, this matrix is updated at each iteration, allowing the 

weights corresponding to neighbors to be estimated as either 1 or 0. By estimating weights only 

for neighboring areas, this approach offers improved computational feasibility compared to 

areal wombling (Lu et al., 2007), where all values in W, are estimated.  

2.4.5 Other model: Global smoothing 

There are alternatives to the CAR priors as well, which were developed for point level data, so 

assume all cases occur at the centroid of areas. Options include the geostatistical model, spline 
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based areal distance smoothing, but these are quite difficult to work on in the Australian context 

with dramatically varying area sizes.  

Geostatistical model 

The residual spatial structure in this model is represented by a Gaussian process using a 

geostatistical design (Clements et al., 2006). The random effects follow a Gaussian distribution. 

This model was applied to investigate the spatial variation and affecting factors of Gastric 

cancer in Shanxi, China, 2014-2016 (Zhang et al., 2018).  

Global spline models 

Two primary methods used in spline modeling are smoothing splines and P-splines (MacNab 

2007). Smoothing splines are penalized splines that incorporate knots at all data points. On the 

other hand, P-splines allow for a reduced number of knots and are typically formulated as 

penalized spline regressions using a "difference penalty" based on coefficients of adjacent B-

spline bases or other spline bases (MacNab 2007).  

This model was used to identify spatial variation in breast cancer survival patients in New 

Jersey, USA, between 2010-2014 (Wiese et al., 2019), and at geographic variation in colon 

cancer survival among patients from 2006 to 2011 using cancer registry data of New Jersey, 

USA (Wiese et al., 2020).  

2.4.6 Other models: Local smoothing 

Hidden Potts model 

The aim of this model is to represent the relative risk as a mixture model with 𝐾 components 

(Green and Richardson 2002). Each component represents a distinct risk category, and the 

assignment of areas to components follows a spatially correlated process. This model was used 

to map colorectal cancer incidence at county-level and identify risk factors associated with the 

colorectal cancer incidence in Florida, 2018 (Dagne 2022).  

 Spatial partition model 

The spatial partition models, which are closely related to the Hidden Potts model, share 

similarities but have distinct characteristics (Knorr‐Held and Rasser 2000, Denison and Holmes 

2001). Like the Hidden Potts model, they involve K clusters of non-overlapping areas, with 

each cluster representing a constant relative risk. The value of K is unknown and estimated by 

the model (Best et al., 2005). However, the main differences lie in how the clusters are defined 

and the specifications of the hyperpriors (Best et al., 2005).  
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It is important to note that both the Hidden Potts model and the spatial partition models have 

faced criticism. One criticism is that they impose discontinuities on the risk surface, potentially 

leading to unrealistic representations. Additionally, these models assume a constant relative risk 

within each cluster, which may not accurately capture the underlying variability (Lawson and 

Clark 2002).  

This method was applied to analyse late-stage diagnosis of breast cancer risks among women 

in Illinois, USA in 2000 (Wang et al., 2012).  

Local spline models 

An expansion of the global spline models mentioned earlier, aimed at achieving a less smooth 

surface, involves the incorporation of unstructured random effects known as the Penalized 

Random Individual Dispersion Effects model (Perperoglou and Eilers 2010).  

𝑅𝑖 = 𝑓(𝑐1𝑖, 𝑐2𝑖) + 𝛾𝑖 

The random effect vector 𝛾𝑖 follows a multivariate normal distribution, capturing the 

unstructured heterogeneity. The covariance matrix of the random effects includes an identity 

matrix multiplied by a variance component, along with the eigenvalues obtained from the P-

spline model component (Goicoa et al., 2012).  

This model was used to predict prostate cancer mortality cases in regions of Spain during 1975-

2008 (Etxeberria et al., 2015).  

2.4.7 Bayesian model applied to other topics 

The Bayesian modeling approach has not only been applied to cancer-related topics but has 

also been extensively applied in other areas of health research. For instance, the utilization of 

Bayesian hierarchical models has facilitated meta-analyses examining the occurrence and 

prevalence of psoriasis (Parisi et al., 2020). Additionally, a Bayesian hierarchical model was 

employed to determine the prevalence of metabolic syndrome among children and adolescents 

(Noubiap et al., 2022). Bayesian regression models were utilized to gain insights into the care 

experiences of individuals with cancer who received mental health services (Lines et al., 2022). 

The Bayesian approach was also employed to estimate the global prevalence of dry eye disease, 

as well as its prevalence within specific sub-groups (Papas 2021). Furthermore, Bayesian 

multivariate regression analysis was employed to estimate national health expenditures 

pertaining to healthcare services (Schneider et al., 2021). Moreover, there is an increasing 

interest in utilizing Bayesian spatial models in meta-analyses of brain imagery. This application 
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aims to pinpoint regions of consistent activation in the brain, which can be valuable for 

diagnosis and treatment purposes (Kang et al., 2011).  

2.5 Spatio-temporal smoothing: Modeling  

In this section, Bayesian spatial models are expanded by incorporating a temporal component 

to investigate the changes in prevalence and geographical patterns of PSA testing over time. 

We will develop, evaluate, and apply Bayesian spatio-temporal models using a methodology 

similar to that employed for the spatial models. The general hierarchical model utilized for 

fitting spatio-temporal data is expressed as follows:  

Y𝑘𝑡|𝜇𝑘𝑡~ 𝑓(y𝑘𝑡|μ𝑘𝑡, 𝜈2)          𝑓𝑜𝑟 𝑘 = 1, … , 𝐾 𝑎𝑟𝑒𝑎𝑠,    𝑡 = 1, … , 𝑁 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 

g(μ𝑘𝑡) =  𝑥𝑘𝑡
𝑇 𝛽 + 𝑂𝑘𝑡 + ψ𝑘𝑡 

𝛽 ~ 𝑁(𝜇𝛽 , Σ𝛽) 

Here, 𝜇𝑘𝑡 represents the expected value of Y𝑘𝑡. The regression parameters 𝛽 are represented as 

a vector, and they follow a multivariate Gaussian prior distribution. The term ψ𝑘𝑡 represents a 

latent component associated with a specific areal unit (k) and time period (t), which 

encompasses one or more collections of spatio-temporally autocorrelated random effects. These 

random effects are denoted by 

𝜓 = (ψ1, … , ψ𝑁), where ψ𝑡 = (ψ1𝑡, … , ψ𝑘𝑡) 

Further, an overview of the range of univariate spatio-temporal models incorporating space-

time random effects are presented (Table 2.3).  

2.5.1 Spatio-temporal models: Global spatial smoothing 

Linear models  

The model presented is an alteration of the one proposed by Bernardinelli in 1995 (Bernardinelli 

et al., 1995). It introduces the estimation of autocorrelated linear time trends for each areal unit 

and this model is suitable when the objective is to estimate the areas that demonstrate increasing 

or decreasing linear trends in the response variable over time. The random effects for this model 

include the following structure:  

𝜓𝑘𝑡 = ϕ𝑘 + (𝛼 + 𝛿𝑘)
𝑡 − 𝑡̅

𝑁
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The random effects ϕ = (ϕ1, … , ϕ𝐾) and  δ =  (δ1, … , δ𝐾) are modeled by Leroux prior. Here 

𝑡 represents the time period, and 𝑁 is the total time period, and 𝛼 is the overall slope parameter.  

This model was used to analyze stomach cancer incidence for people living in Southern 

Portugal between 1998 and 2006 (Papoila et al., 2014). In practice, most area estimates do not 

change monotonically, which makes the model less reliable, especially for prostate cancer and 

PSA testing which exhibit substantial temporal fluctuations. Therefore, we need to consider 

alternative models, such as ANOVA or separate spatial models, because of their advantages in 

incorporating space-time interactions or a separate spatial surface at each time period, 

compared to the linear model.  

ANOVA models 

This model is an alteration of the one proposed by Knorr-Held in 2000 (Knorr-Held 2000). It 

breaks down the spatio-temporal variation in the data into an overall spatial effect shared across 

all time periods, an overall temporal trend shared across all spatial units, and a set of 

independent space-time interactions. The spatio-temporal autocorrelation is modelled by a 

common set of spatial random effects ϕ and a common set of temporal random effects δ, and 

both are modelled by the CAR prior proposed by Leroux (Leroux et al., 2000). The model can 

incorporate an optional set of independent space-time interactions γ. Additionally, ρ𝑆, ρ𝑇 are 

the dependence parameters and τ𝑆
2, τ𝑇

2 , τ𝐼
2 are the variance parameter. This model is suitable 

when the objective is to estimate overall time trends and spatial patterns. However, the random 

effects calculations in ANOVA model involve three terms, making the model more complex 

compared to a separate spatial model. The model formulation is as follows:  

ψ𝑘𝑡 =  ϕ𝑘 +  δ𝑡 +  𝛾𝑘𝑡 

ϕ𝑘|ϕ−𝑘 , W ~ N (
ρ𝑆 ∑ w𝑘𝑗ϕ𝑗

𝐾
𝑗=1

ρ𝑆 ∑ w𝑘𝑗 + 1 − ρ𝑆
𝐾
𝑗=1

,
τ𝑆

2

ρ𝑆 ∑ w𝑘𝑗 + 1 − ρ𝑠
𝐾
𝑗=1

) 

δ𝑡|δ−𝑡 , D ~ N (
ρ𝑇 ∑ d𝑡𝑗δ𝑗

𝑁
𝐽=1

ρ𝑇 ∑ d𝑡𝑗 + 1 − ρ𝑇
𝑁
𝑗=1

,
τ𝑇

2

ρ𝑇 ∑ d𝑡𝑗 + 1 − ρ𝑇
𝑁
𝑗=1

) 

                                           𝛾𝑘𝑡  ~ 𝑁(0, 𝜏𝐼
2) 

                                  τ𝑆
2, τ𝑇

2 , τ𝐼
2 ~ InverseGamma(𝑎, 𝑏) 

                                       ρ𝑆, ρ𝑇 ~ Uniform(0, 1) 

       ϕ = (ϕ1, ϕ2, … , ϕ𝐾),  
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                                 δ =  (δ1, 𝛿2, … , δ𝑁) 

                                               γ = (γ11, γ12, … , γKN) 

This model was used to evaluate breast cancer incidence in 30 provinces of Iran during 2004-

2008 (Jafari-Koshki et al., 2014). 

Separate spatial models 

The separate spatial model is a generalisation of the one proposed by Napier in 2016 (Napier 

et al., 2016). It represents the data as an overall temporal trend and separate spatial surfaces for 

each time period. These spatial surfaces share a common spatial dependence parameter but have 

different spatial variances.  

In this model, an overall temporal trend δ is fitted to the data, which is common to all areal 

units. Additionally, at each time period t, a separate (uncorrelated) spatial surface ϕ𝑡 is 

introduced. The overall temporal trend and each spatial surface are modeled using the 

conditional autoregressive (CAR) prior suggested by Leroux in 2000 (Leroux et al., 2000). The 

spatial surfaces have a common spatial dependence parameter ρ𝑆 but their variance parameter 

τ𝑇
2  varies over time.  

The collection of variance parameters (τ1
2, … , τ𝑁

2 ) allows for an examination of the changes in 

the magnitude of spatial variation in the data over time. This model is suitable when the 

objective is to estimate both a common overall temporal trend and the degree to which the 

spatial variation in the response has changed over time. The separate spatial model has the 

advantage of being parsimonious, requiring fewer terms to calculate random effects. The model 

specification is provided below.  

ψ𝑘𝑡 =  ϕ𝑘𝑡
+ δ𝑡 

ϕ𝑘𝑡|ϕ−𝑘𝑡 , W ~ N (
ρ𝑆 ∑ w𝑘𝑗ϕ𝑗𝑡

𝐾
𝑗=1

ρ𝑆 ∑ w𝑘𝑗 + 1 −  ρ𝑆
𝐾
𝑗=1

,
τ𝑡

2

ρ𝑆 ∑ w𝑘𝑗 + 1 −  ρ𝑠
𝐾
𝑗=1

) 

δ𝑡|δ−𝑡 , D ~ N (
ρ𝑇 ∑ d𝑡𝑗δ𝑗

𝑁
𝐽=1

ρ𝑇 ∑ d𝑡𝑗 + 1 − ρ𝑇
𝑁
𝑗=1

,
τ𝑇

2

ρ𝑇 ∑ d𝑡𝑗 + 1 − ρ𝑇
𝑁
𝑗=1

) 

τ1
2, … , τ𝑁

2 , τ𝑇
2  ~ InverseGamma(𝑎, 𝑏) 

ρ𝑆, ρ𝑇 ~ Uniform(0, 1) 
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ϕ−𝑘,𝑡 = (ϕ1,𝑡, … ,  𝜙𝑘−1,𝑡,  𝜙𝑘+1,𝑡, … , ϕ𝐾,𝑡) 

δ =  (δ1, 𝛿2, … , δ𝑁) 

ϕ𝑡 = (ϕ1𝑡, … , ϕ𝐾𝑡) 

This model was employed to analyze the spatio-temporal pattern of hospital admissions 

involving patients diagnosed with both cancer and dementia in New York State from 2007 to 

2017 (Liu et al., 2021).  

Autoregressive models 

Two versions of the Autoregressive model exist, distinguished by their utilization of either a 

first-order or second-order temporal autoregressive process. The model proposed by Rushworth 

(Rushworth et al., 2014) captures the spatio-temporal structure through a multivariate first-

order autoregressive process. This model incorporates a precision matrix that exhibits spatial 

autocorrelation. The second model builds upon the first model by including a multivariate 

second-order autoregressive process, which also utilizes a precision matrix demonstrating 

spatial autocorrelation. These models are particularly suitable when the objective is to estimate 

the changes in the spatial random effects surface over time. By applying these models, valuable 

insights can be gained regarding the variations in spatial patterns and random effects across 

different time periods. The random effects for first order temporal autoregressive process is 

given by:  

ψ𝑘𝑡 =  ϕ𝑘𝑡
 

ϕ𝑡|ϕ𝑡−1 ~ N(𝜌𝑇𝜙𝑡−1, 𝜏2𝑄(𝑊, 𝜌𝑠)−1 )            𝑡 = 2, … , 𝑁 

The vector ϕ𝑡 = (ϕ1𝑡 , … , ϕ𝑘𝑡) represents the random effects at time period 𝑡. 𝑄(𝑊, 𝜌𝑆) is the 

precision matrix, 𝜌𝑠 𝑎𝑛𝑑 𝜌𝑇 are the dependence parameters. 𝜏2 is the variance parameter.  

2.5.2 Spatio-temporal models: Local spatial smoothing 

Adaptive models 

This model is an extension of the earlier described Autoregressive model. It is also proposed 

by Rushworth (Rushworth et al., 2017) to incorporate spatially adaptive smoothing. This model 

is suitable when the residual spatial autocorrelation in the response, after accounting for the 

covariates, remains consistent over time but exhibits a localized structure. In other words, 

autocorrelation may be strong in certain parts of the study region while weak in others. 

Autoregressive random effects in the model follows a similar structure to the first-order 
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Autoregressive model. However, the key distinction lies in the presence of a single level of 

spatial dependence in autoregressive model that is controlled by the parameter 𝜌𝑆, which 

accounts for the spatial variability in the model.  

ψ𝑘𝑡 =  ϕ𝑘𝑡
 

ϕ𝑡|ϕ𝑡−1 ~ N(𝜌𝑇𝜙𝑡−1, 𝜏2𝑄(𝑊, 𝜌𝑠)−1 )            𝑡 = 2, … , 𝑁 

The model allows for localized spatial autocorrelation by introducing correlation or conditional 

independence among spatially neighboring random effects, which induces smoothness.  

This model was used to investigate spatiotemporal patterns of the incidence in breast and cervix 

uteri cancers in Iranian women during 2004-2009 (Raei et al., 2019).  

Localised models 

The localised model was proposed by Lee and Lawson in 2016 (Lee and Lawson 2016), and 

enhances the smooth spatiotemporal variation in Autoregressive models by incorporating a 

piecewise constant intercept process (λ𝑍𝑘𝑡
). The random effects ϕ𝑡 = (ϕ1𝑡, … , ϕ𝑘𝑡) at time 

period 𝑡 is modeled by autoregressive model. This model is suitable to identify clusters of areas 

that exhibit reduced or elevated values of the response compared to their geographical and 

temporal neighbors. The mean function in the model allows to capture any step-changes in the 

response and its random effects are defined as follows:  

ψ𝑘𝑡 =  λ𝑍𝑘𝑡
+  ϕ𝑘𝑡 

Clustrends models 

This model is proposed by Napier in 2019 (Napier et al., 2019), the random effects uses a 

mixture of temporal trend with fixed parametric forms such as linear or step-change otherwise 

constrained shapes such as monotonically increasing and an overall spatial pattern. One 

disadvantage of this model is it cannot include covariates due to identifiability issues. Model 

can identify clusters of areas that exhibit similar temporal trends. The random effects of this 

model are:  

ψ𝑘𝑡 =  ϕ𝑘 + ∑ 𝜔𝑘𝑠𝑓𝑠(𝑡|𝛾𝑠)

𝑆

𝑠=1

 

This model fits an overall spatial pattern, ϕ𝑘 to the data that is common across all time periods. 

The spatial pattern is modeled using the conditional autoregressive (CAR) prior proposed by 
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Leroux (Leroux et al., 2000). The model clusters areas based on their temporal trends, where 

the S trends are specified by the user in (𝑓1(𝑡|𝛾1), … , 𝑓𝑆(𝑡|𝛾𝑆)). Each area k is assigned to one 

of the S trends through the binary indicator 𝜔𝑘 =  (𝜔𝑘1, … , 𝜔𝑘𝑠). 

Sl. 

No. 

Bayesian spatio-

temporal model 

Features Objective 

Spatio-temporal models: Global spatial smoothing  

1 Linear models 

(Bernardinelli et 

al., 1995) 

It introduces the 

estimation of 

autocorrelated linear time 

trends for each areal unit.  

To estimate the areas that 

demonstrate increasing or 

decreasing linear trends in the 

response variable over time.  

2 ANOVA models 

(Knorr-Held 

2000) 

The spatio-temporal 

autocorrelation is 

modelled by a common 

set of spatial random 

effects and a common set 

of temporal random 

effects.  

To estimate overall spatial effect 

shared across all time periods, an 

overall temporal trend shared 

across all spatial units, and a set of 

independent space-time 

interactions.  

3 Separate spatial 

models (Napier et 

al., 2016) 

An overall temporal trend 

is fitted to the data, which 

is common to all areal 

units.  

To estimate an overall temporal 

trend and separate spatial surfaces 

for each time period.  

4 Autoregressive 

models 

(Rushworth et al., 

2014) 

There are two versions, 

first captures the spatio-

temporal structure 

through a multivariate 

first-order autoregressive 

process. The second 

model extends this by 

incorporating a 

multivariate second-order 

autoregressive process. 

To estimate the evolution of the 

spatial random effects surface over 

time. They provide valuable 

insights into how the spatial 

patterns and random effects 

change over different time periods. 

Spatio-temporal models: Local spatial smoothing 

5 Adaptive models 

(Rushworth et al., 

2017) 

It extends the 

Autoregressive models to 

incorporate spatially 

adaptive smoothing.  

Suitable when the residual spatial 

autocorrelation in the response, 

after accounting for the covariates, 

remains consistent over time but 

exhibits a localized structure.  

6 Localised models 

(Lee and Lawson 

2016) 

It enhances the smooth 

spatiotemporal variation 

in Autoregressive models 

by incorporating a 

To identify clusters of areas that 

exhibit elevated or reduced values 

of the response compared to their 

geographical and temporal 

neighbors.  
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piecewise constant 

intercept process.  

7 Clustrends 

models (Napier et 

al., 2019) 

It represents the latent 

random effects using an 

overall spatial pattern and 

a mixture of temporal 

trend functions with fixed 

parametric forms or 

constrained shapes.  

To identify clusters of areas that 

exhibit similar temporal trends.  

Table 2.3: Types of Bayesian spatio-temporal model and their applications.  

2.5.3 Computation of Bayesian models 

Before recent advances in computational capacity, the computation of Bayesian models was a 

difficult and time-consuming task. However, with the progress in computational power, the 

Bayesian method, particularly the non-informative Bayesian approach where priors and 

hyperprior distributions aim to be non-informative, has gained popularity. Nonetheless, the 

implementation of the non-informative Bayesian approach requires careful attention (Torabi 

2012).  

The estimation of Bayesian models involves dealing with the intricate complexity of the 

posterior marginal distribution, for which the Markov Chain Monte Carlo (MCMC) method is 

commonly employed for numerical integration (Louzada et al., 2021). However, there are 

challenges associated with MCMC estimation, one of which involves assessing the 

convergence of the MCMC chain. Several methods can be utilized for this purpose, although 

none of them are flawless (Cowles and Carlin 1996).  

The two most common approaches to Markov chain Monte Carlo (MCMC) simulation involve 

Gibbs sampling and Metropolis-Hastings’s algorithm which is generalized version of the 

Metropolis algorithm (Nicholas Burke 2018). Gibbs sampling is a specific instance of the 

Metropolis-Hastings algorithm, where conditional distributions are utilized as proposal 

distributions. This method is applicable when the joint distribution is unknown or challenging 

to sample directly, but the conditional distribution of each variable is known and easily sampled. 

On the other hand, the Metropolis-Hastings algorithm employs a full joint density distribution 

to generate a sequence of random samples. It has the capability to draw samples from any 

probability distribution that is symmetric, provided that the function value can be computed.  

There exist several software options such as R, Bayesian inference Using Gibbs Sampling 

(BUGS), Stan and Numerical Inference for statistical Models using Bayesian and Likelihood 

Estimation (NIMBLE) for effectively implementing fully Bayesian spatial or spatio-temporal 

models. These software solutions are user-friendly, computationally efficient, and support 
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various model types, including those with discontinuities. With the continuous improvement in 

data collection and computational tools for spatial data analysis, Bayesian spatial statistics are 

expected to make further inroads into various fields and emerge as one of the leading methods 

for data analysis (Louzada et al., 2021).  

2.5.4 Convergence 

Convergence pertains to the concept that eventually, the chosen Markov Chain Monte Carlo 

(MCMC) technique will reach a stationary distribution. Once in this state, it remains within the 

distribution and fluctuates. When the model has achieved convergence, additional samples from 

a parameter's posterior distribution should not impact the calculation of the mean. To account 

for potential convergence delays, it is recommended to discard the initial MCMC observations 

until convergence is achieved. In some cases, running MCMC chains for an extended period is 

advised since Bayesian models often require more time to converge (Cowles and Carlin 1996). 

However, it is impossible to definitively prove convergence; we can only ascertain when 

convergence has not occurred. It is also important to note that convergence does not indicate a 

good model.  

When analyzing trace plots, one should look for patterns. If the model has converged, the trace 

plot will exhibit movement around the mode of the distribution. Conversely, the presence of 

any patterns suggests a lack of convergence. Trace plots have a limitation: although they may 

indicate convergence, the chain might be temporarily trapped in a local region instead of 

exploring the entire posterior.  

Geweke diagnostics (Geweke 1991) can be used to evaluate convergence. After simulating a 

large number of draws, if a model has converged, the mean and variance of a parameter's 

posterior distribution from the first half of the chain will be equivalent to those from the second 

half. A value ranging from -2 to 2 indicates convergence.  

Another method for testing MCMC chain convergence is the Gelman-Rubin convergence 

diagnostic (Gelman and Rubin 1992), which involves running two or more parallel chains 

(Cowles and Carlin 1996) initialized with different values. By comparing the variance within 

and between chains for each variable, this test can assess convergence. Generally, parameters 

with approximately normal marginal posterior densities yield more reliable indications of 

convergence (Gelman and Rubin 1992).  



57 

 

2.6 Bayesian models fitting criteria  

To evaluate model performance and compare predictive accuracy across different models, 

various measures of goodness of fit are considered. The goal is to identify the best-fitting model 

that explains the maximum amount of variation while utilizing the fewest independent 

variables. Commonly used measures include the Watanabe-Akaike information criterion 

(Watanabe and Opper 2010), deviance information criterion (DIC) (Spiegelhalter et al., 2002), 

Bayesian information criterion BIC (Schwarz 1978), Akaike information criterion AIC (Akaike 

1974) and adjusted R-squared.  

Commonly used in frequentist models, adjusted R-squared is a corrected goodness-of-fit 

measure specifically designed for linear models. It penalizes the inclusion of independent 

variables that do not contribute significantly to predicting the dependent variable in regression 

analysis. Similarly, AIC penalizes models with excessive parameters to avoid overfitting. 

However, both AIC and adjusted R-squared have limitations, as they may include variables that 

are not statistically significant but perform better in predictions. To address overfitting, BIC 

introduces a penalty term for the number of parameters in the model. Compared to AIC, BIC 

imposes a larger penalty, favoring more parsimonious models. 

While DIC and BIC are commonly used for comparing Bayesian models. DIC is defined as 

−2 log 𝑝(𝑦|𝜃), where 𝑝(𝑦|𝜃) represents likelihood (Spiegelhalter et al., 2002, Mallick and Yi 

2013). BIC on the other hand, is defined as −2 log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 𝑝 log (𝑛), where n represents 

the data and p denotes the number of parameters (Wit et al., 2012, Mallick and Yi 2013). BIC 

aims to determine the true model, necessitating the specification of the parameters count, and 

offer model averaging procedure. In contrast, DIC focuses on short-term predictive ability and 

estimates the effective number of parameters. Additionally, DIC does not provides a procedure 

for model averaging (Mallick and Yi 2013). However, WAIC offers several advantages over 

DIC and BIC. WAIC closely approximates Bayesian cross-validation, utilizes the entire 

posterior distribution, and remains invariant to parameterization (Vehtari et al., 2017). 

Moreover, WAIC provides a more comprehensive Bayesian approach for estimating out-of-

sample expectations (Gelman et al., 2014). Smaller values for both DIC and WAIC indicate a 

better fit for the model.  

If a model fits well, then the residuals should not have any remaining spatial autocorrelation. 

Commonly Moran's I (Moran 1950) statistic is employed to assess the presence of spatial 

autocorrelation in residuals. Values close to 0 indicate very low or no spatial autocorrelation, 

while values above 0.2 were considered indicative of some positive spatial autocorrelation 
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(Anderson and Ryan 2017). However, it is important to note that Moran's I can be sensitive to 

the spatial weights matrix to define spatial dependencies between areas. Determining an 

appropriate spatial dependency structure for calculating residual spatial autocorrelation is 

challenging, and therefore it may be preferred for this measure to carry less weight in the 

goodness of fit process.  

2.7 Conclusion  

In conclusion, this chapter has explored various Bayesian approaches for spatial and spatio-

temporal modeling in the context of investigating small-area geographical patterns in the 

prevalence of PSA testing and how they have changed over time. Each presented model has its 

own advantages and considerations. 

The Bayesian approach is often preferred for analyzing areal data as it allows for the 

incorporation of information from diverse sources, resulting in smoothed estimates that enhance 

the stability and precision of the estimates. This approach is particularly useful in small areas 

where data may be limited. 

Previous research has demonstrated that Bayesian models offer numerous advantages in 

mapping diseases. They enable direct probabilistic statements, such as estimating the 

probability of increased disease risk in a specific area. Additionally, Bayesian models are 

straightforward to implement using software, making them accessible for researchers and 

practitioners. 

To uncover spatial trends across regions, conditional autoregressive (CAR) models such as the 

BYM and Leroux models use global spatial smoothing. These models assume a common 

variance for the smoothing term across the entire region while allowing for local smoothing in 

neighboring areas. However, considering the objectives of the analysis, the Leroux model is 

parsimonious and has an advantage over BYM as it employs single spatial random effect 

parameter, allowing for variation in both structured and unstructured spatial random effects 

between geographical areas.  

While the BYM2 model is also parsimonious, the Leroux model has been previously 

implemented and performed well in the Australian context, such as in the Australian Cancer 

Atlas (https://atlas.cancer.org.au/) for multiple cancer types.  

Furthermore, separate spatial and ANOVA models incorporate an overall temporal trend and 

separate spatial surfaces for each time period. However, the separate spatial model is preferred 
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due to its parsimonious nature and the requirement of fewer terms to calculate random effects. 

Moreover, the separate spatial model takes less time to run and converges more quickly 

compared to the ANOVA model.  

Overall, this chapter has not only expanded our understanding of Bayesian approaches for 

spatial and spatio-temporal modeling but has also provided a practical guide to selecting the 

Leroux model and the separate spatial model as the most suitable approaches for spatial and 

spatio-temporal analysis, respectively. This selection is based on careful consideration of the 

type of data and the advantages these models offer in capturing random effects while 

maintaining a parsimonious framework. In addition, the appropriateness of a model lies in the 

trade-offs between smoothness, interpretability, and computational efficiency.  
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CHAPTER 3 

3 Changes in prostate specific antigen (PSA) 

“screening” patterns by geographic region and 

socio-economic status in Australia: analysis of 

Medicare data in 50–69 year old men  

3.1 Chapter overview 

This chapter examines the trends in prostate-specific antigen (PSA) screening among men aged 

50-69 in Australia from 2002 to 2018. The analysis was conducted at the area-specific level, 

taking into account categories including socio-economic status, remoteness, and 

state/territories. In addition, we compare PSA screening rates during two distinct periods: high 

screening (2005-2009) and low screening (2014-2018). By focusing on these area-specific 

categories, we aim to understand the regional variations in PSA screening rates and identify 

potential areas for improvement in screening practices. The comparison of high and low 

screening periods also provides insights into the impact of changes in screening 

recommendations and policies over time. Our findings contribute to the ongoing discussion on 

the effectiveness and appropriateness of PSA screening for prostate cancer, particularly for men 

in the age group of 50-69. The chapter has been published and presented as a final accepted 

manuscript.  
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3.3 Highlights of this manuscript 

• Analysis of individual-level Medicare data in Australia 

• PSA screening tests have declined since 2007 

• Assessed trends by states/territories, remoteness and area disadvantage  

• Trends by geographical area were consistent with the national trends 

• National factors more likely to influence trends than local factors 

3.3.1 What is known before this manuscript 

• Released in 2016, the most recent Australian guidelines state that the current evidence 

does not support a national prostate cancer screening program (a program that offers 

prostate-specific antigen (PSA) testing to all men of a certain age group). However, for 

men at average risk of prostate cancer who have been informed of the benefits and 

harms of testing and who decide to undergo regular testing for prostate cancer, they 

support offering PSA testing every 2 years from ages 50 to 69.  

• Modelled PSA screening rates in Australia peaked in 2007 and have decreased since 

then until 2017. 

• Previous reports using data up to 2009 have shown that for men aged 40 years and over, 

and more specifically 50-79 years, those living in metropolitan and more 

socioeconomically advantaged areas of Australia have higher PSA screening rates 

when compared to men living in rural/remote and disadvantaged areas.  

3.3.2 What is new in this manuscript 

• These results focus on changes over time in the numbers and rates of men aged 50-69 

years who have received a screening PSA test, rather than simply the numbers of PSA 

tests carried out.  

• Overall reductions in PSA screening rates in Australia since 2007 were observed across 

each of the state and territories, remoteness categories and area-level socioeconomic 

quintiles.  

• Remoteness differentials have remained unchanged between 2005-2009 and 2014-

2018. Socio-economic differences in PSA screening rates have reduced over this time. 

• There is some variation in the use of PSA as a screening test by Australian States and 

Territories.  
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• Results suggest that the reasons for the decrease in PSA screening rates over time, while 

unknown, are likely to be similar across jurisdiction, remoteness and area level 

socioeconomic categories. 

• While it is likely that MBS episode coning explains at least some of the differentials 

by remoteness, similar reductions over time between the remoteness categories 

suggests that the main drivers of the temporal changes were independent of coning.  
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3.4 Abstract  

Background: While it is known that national PSA testing rates have decreased in Australia 

since 2007, it is not known whether these trends are consistent by broad geographical areas, nor 

whether previously reported area-specific differences have remained in more recent time 

periods.  

Methods: Population-based cohort study of Australian men (n=2,793,882) aged 50-69 who 

received at least one PSA test (Medicare Benefit Schedule item number 66655) during 2002-

2018. Outcome measures included age-standardised participation rate, annual percentage 

change using JoinPoint regression and indirectly standardised participation rate ratio using 

multivariable Poisson regression. 

Results: During 2005-09, two thirds (68%) of Australian men aged 50-69 had at least one PSA 

test, reducing to about half (48%) during 2014-18. In both periods, testing rates were highest 

among men living in major cities, men aged 50-59 years, and among men living in the most 

advantaged areas. Nationally, the Australian PSA testing rate increased by 9.2% per year 

between 2002 and 2007, but then decreased by 5.0% per year to 2018. This pattern was 

generally consistent across States and Territories, and socio-economic areas, however the 

magnitude of the trends was less pronounced in remote and very remote areas.  

Conclusions: The decreasing trends are consistent with a greater awareness of the current 

guidelines for clinical practice in Australia, which recommend a PSA test be done only with the 

informed consent of individual men who understand the potential benefits and risks. However, 

given there remain substantial geographical disparities in prostate cancer incidence and survival 

in Australia, along with the equivocal evidence for any benefit from PSA screening, there 

remains a need for more effective diagnostic strategies for prostate cancer to be implemented 

consistently regardless of where men live. 
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3.5 Introduction  

Prostate-specific antigen (PSA) testing in asymptomatic men can instigate an early diagnosis 

of prostate cancer, potentially avoiding higher risk disease and enabling the management to be 

more effective. While it remains the most commonly used test for prostate cancer screening or 

monitoring after a prostate cancer diagnosis or its treatment, its use as a screening test for 

prostate cancer is widely debated (Albertsen 2020) due to its  high sensitivity and a low 

specificity (Ankerst and Thompson 2006), its inability to distinguish between cancers and non-

cancer conditions, and the known harms associated with overdiagnosis and over-treatment of 

screen detected cancers (Stamey et al., 2004). Increased rates of PSA testing are typically 

associated with increases in prostate cancer diagnoses and higher observed cause specific 

survival (Alberts et al., 2015). 

While population-based screening for prostate cancer is not endorsed internationally nor 

implemented as policy in any country in the world, during 2005-2009 52% of Australian men 

aged 40 years and over had at least one Medicare-funded PSA “screening” test (Calopedos et 

al., 2019). Medicare reimburses four categories of PSA tests (66655, 66656, 66659 and 66660) 

and for the purposes of this paper we refer to item 66655 as de-facto “screening” tests 

(henceforth referred to as PSA screening tests), as it relates to tests undertaken on asymptomatic 

men. In 2016, the Prostate Cancer Foundation of Australia and Cancer Council Australia 

(Prostate Cancer Foundation of Australia 2016) released national evidence-based guidelines 

that did not recommend a population-based prostate screening program, and instead advised 

informed individual decision-making regarding PSA testing. The guidelines state that men aged 

50 to 69 years who make an informed decision to have a PSA test be offered biennial PSA 

testing. These recommendations are generally consistent with similar USA (Qaseem et al., 

2013, American Academy of Family Physicians 2018, Grossman et al., 2018) and Canadian 

recommendations (The Canadian Task Force on Preventive Health Care 2019). 

In Australia, PSA screening rates have been consistently lower among men living in less 

accessible regional and remote areas of Australia versus the rest of the country (Baade et al., 

2011, Calopedos et al., 2019), and lower in socioeconomically disadvantaged populations 

(Calopedos et al., 2019), however these estimates relate to the period of highest PSA testing 

rates more than ten years ago. While modelled rates have decreased nationally since around 

2007 (Calopedos et al., 2019) it is not known whether these trends are consistent across 

geographical areas, and whether the geographical disparities reported previously (Baade et al., 

2015, Calopedos et al., 2019, Dasgupta et al., 2019) have persisted over time.  



73 

 

The aim of this study is to describe Medicare-funded PSA screening test patterns and trends by 

State and Territory, remoteness of residence and socio-economic status. This information may 

be used to guide policy makers about temporal changes in PSA testing and its implementation, 

and thus inform the development of recommendations or future revisions of the Australian PSA 

testing guidelines.  

3.6 Methods  

3.6.1 Data collection  

A de-identified unit record dataset extracted from the Medicare Benefits Schedule was provided 

by the Commonwealth Department of Health covering the period January 2002 to December 

2018 for specific items numbers related to PSA testing. This included MBS item numbers 

66655, 66656, 66659 and 66660. For the purposes of this paper, we selected just those tests 

categorised as 66655. Data included a unique (deidentified) person number, age at treatment 

(10-year age groups), month and year of service and postcode of residence. Estimated resident 

population data at the SA2 level were obtained from the Australian Bureau of Statistics 

(abs.gov.au). SA2s are small geographical areas covering the entire geographical area of 

Australia without gap or overlap. In Australia there were 2,196 small areas in 2011 (Australia 

Bureau Of Statistics 2011). The median population of included SA2s in 2011 was 505 (IQR: 

312, 795) for men aged 50-69. 

3.6.2 Geographic definitions  

We used a concordance file obtained from the Australian Bureau of Statistics to map postcodes 

to SA2 boundaries. Of the 2,653 postcodes included in the concordance, 1,177 (44%) mapped 

completely (>99.9% overlap) to an individual SA2. For each individual we used the population 

weighted proportions to randomly allocate the postcode to a SA2. We repeated this random 

allocation to assess the potential impact of this non-exact concordance on the results. 

Geographic location information was categorised into State/Territory, remoteness of residence 

and area socioeconomic status based on the Index of Relative Socioeconomic Advantage and 

Disadvantage derived by the Australian Bureau of Statistics (abs.gov.au).  

3.6.3 Statistical analysis  

We calculated the average number of men having a PSA screening test in any given calendar 

year, rather than the number of screening tests in that year. Men who had multiple PSA 

screening tests within a single calendar year were counted only once for that year. We restricted 
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the analysis on men aged 50-69 for consistency with the 2016 Australian PSA testing guidelines 

(Prostate Cancer Foundation of Australia 2016).  

We present PSA screening rates as average annual rates per year for two periods; 2005-2009 

representing the period of highest PSA screening rates (and reported previously for different 

age groups (Calopedos et al., 2019)), and 2014-2018 representing the most recent data available 

at the time of data extraction.  

Directly age-standardised screening rates were calculated using two 10-year age groups and 

standardised to the Australian 2001 population, with standard errors calculated using the 

modified gamma method. Trends were quantified by calculating annual percentage change by 

calendar year using Joinpoint regression (https://surveillance.cancer.gov/joinpoint/) which 

employs a series of regression models using the observed age-standardised testing rates as the 

outcome measure and including their standard errors to determine the best combination of linear 

line segments that fit the data. A maximum of 3 joinpoints (or 4-line segments) were used for 

this analysis. One PSA test for each man per calendar year were included in these trend 

analyses.  

Incidence rate ratios of receiving a PSA screening test over the study period were calculated by 

exponentiating the coefficients from Poisson models. The outcome measure for the Poisson 

model was the observed number of men receiving at least one PSA test during the time period 

and used an offset term defined by the log of the age-specific male population. The significance 

level for each variable was tested using the likelihood ratio test; comparing the model to a 

reduced model where each variable is excluded one at a time. These models also included year 

of testing, 10-year age group, remoteness, area socioeconomic status and State/territory, as well 

as an interaction term between Remoteness and Area socioeconomic status.  

Analyses were conducted using R (version 3.5.3), Joinpoint (version 4.8.0.1) and Stata (version 

16) software. Ethics approval for this study was obtained from the Griffith University Human 

Research Ethics committee (GU Ref no: 2017/777). Data custodian approval was provided by 

the Commonwealth Department of Health after approval from the Chief Data Steward under 

the Health Insurance Act 1973. 

3.7 Results  

In total, there were 7,438,720 Medicare records of PSA screening tests among men aged 50-69 

years between 2002 and 2018. Records were excluded from the study if the provided postcode 

was used exclusively for Post Office boxes rather than a residential street address (n=51,016, 

https://surveillance.cancer.gov/joinpoint/
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0.69%), an invalid postcode (n=43,983, 0.59%) or was a repeated screening test for an 

individual man within the same calendar year (n=2,870, 0.04%). After these exclusions, the 

final study cohort included 7,340,851 PSA screening tests among 2,793,882 men between 2002 

to 2018, counted as one screening test per man per year. 

3.7.1 Trends over time  

Nationally, the Australian PSA screening rate among men aged 50-69 years increased by 9.2% 

per year between 2002 and 2007, but then decreased by 5.0% per year between 2007 and 2018 

(Figure 3.1, Table ST 3.1). The pattern of increasing trend followed by a decrease was generally 

consistent across the Australian states and territories, remoteness categories and socio-

economic areas, however the magnitude of the trends were less pronounced in remote and very 

remote areas (Figure 3.1, Table ST 3.1). The decreasing trend plateaued since the early-mid 

2010s for men living in Remote areas, as well as those in the more socioeconomically 

advantaged areas.  

The peak in modelled PSA screening rates occurred in Australia in 2007. The number of men 

receiving at least one Medicare funded PSA screening test during a five-year period decreased 

nationally from nearly 1.5 million men in the period between 2005 and 2009 to 1.3 million men 

between 2014 and 2018 (Table 3.1). The corresponding age-standardized screening rates 

reduced from 676 men receiving at least one PSA screening test (95% CI: 675.3-677.5) to 482 

per 1,000 men (480.8-482.4). Decreases in both the number and rate of men receiving at least 

one screening test between 2005-2009 and 2014-2018 were observed across all age groups, 

states/territories, remoteness, and socio-economic areas (Table 3.1).  

3.7.2 Differences by population subgroup  

In both 5-year time periods, the screening rate among men aged 60-69 years was 8% lower than 

the rate among men aged 50-59 years (Table 3.1). Screening rates varied across the states and 

territories, with age-standardised rates being higher in Western Australia, Victoria, Queensland 

and South Australia during 2014 to 2018. In both time periods, PSA screening rates were 

highest among men living in major cities, and then reduced with increasing remoteness. While 

screening rates were up to 11% higher among men living in the most advantaged areas in the 

2005-2009 time period, during 2014-2018 the differentials were attenuated with the maximum 

differential being 4% (Table 3.1). 

There was statistically significant evidence (p<0.001 for both time periods) that the association 

between area disadvantage and PSA screening rates varied by geographical remoteness (Table 

3.2). This interaction was highlighted by the limited variability across quintiles of 
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socioeconomic disadvantage in major city, inner regional and outer regional areas, however 

among remote areas PSA screening rates were particularly low in the most disadvantaged areas 

while the rates in very remote areas were low in most disadvantaged and advantaged areas. 

There were generally similar trends over time between the different combinations of remoteness 

and area disadvantage (Figure 3.1, Table ST 3.2), and given the relatively low number of PSA 

tests conducted among men in remote and very remote areas compared to men in the other 

remoteness categories, some caution is needed when interpreting these interactions.  

3.8 Discussion  

3.8.1 Interpretation  

Using a population-based cohort of nearly three million Australian men who had at least one 

Medicare-funded PSA screening test, we found consistency in PSA screening patterns over time 

across states and territories, geographical regions, and area-level socioeconomic status. This 

suggests that the key factors influencing these trends in the use of PSA screening are more 

likely to be driven at a national level such as clinical practice guides, rather than being 

influenced by local or regional factors. There were, however, key differences in the prevalence 

of PSA screening across population groups in the five years up to 2018, with higher rates among 

men aged 50-59 compared to those aged 60-69, men living in major cities compared to regional 

and remote areas, and men living in Western Australia, Victoria, Queensland and South 

Australia compared to other States/Territories, while differences by area level disadvantage 

were less pronounced compared with the peak screening period of 2005-2009, particularly in 

non-remote areas.  

Importantly, this work provides more contemporary information about the differences in PSA 

screening participation across geographical population subgroups than what has been reported 

previously by Calopedos and colleagues (Calopedos et al., 2019). While most of the population-

subgroup patterns have remained, disparities by area level socioeconomic status have decreased 

over the last decade. In addition, while reductions in PSA screening rates over the last decade 

have been previously reported for Australia (Calopedos et al., 2019), Canada (Winnipeg) (Wang 

et al., 2020), Argentina (Martinez et al., 2019), and the United States (Frendl et al., 2020), our 

work highlights that the temporal reductions in PSA screening in Australia are generally 

consistent across broad geographical regions of remoteness, area socioeconomic disadvantage 

quintiles and state/territory jurisdictions. 

Shared decision making has been recommended since the mid-1990s (Australian Health 

Technology Advisory Committee (AHTAC) 1996, The Royal Australian College of General 
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Practitioners (RACGP) 2016). This suggests that the widespread decline in PSA testing may be 

less due to changes in shared decision making and more due to changes in the recommendations 

regarding informed decision making from international organisations such as the United States 

Preventive Services Task Force and Royal Australian College of General Practitioners that 

happened around the same time (Herget et al., 2016).  

The lower rates of PSA screening among men living in the less accessible regional and remote 

areas of Australia are consistent with differences reported in previous years (Baade et al., 2011, 

Calopedos et al., 2019) although a recent systematic review (Dasgupta et al., 2019) found the 

patterns by remoteness were not consistent internationally. One possible explanation for the 

differences by remoteness, particularly in Australia with often large distances to medical 

services, is that men and general practitioners in regional and remote areas might be more 

focused on medical tests or interventions that are motivated by existing symptoms rather than 

including pre-emptive tests or interventions such as PSA screening. In addition to uncertain 

benefits and recognised potential harms, the results of PSA screening may then require long-

distance travel for further clinical work-up or treatment (Baldwin et al., 2013, Calopedos et al., 

2019). 

3.8.2 Strengths and limitations  

Australia’s Medicare database was established and maintained for administration purposes, 

rather than for the purposes of research. As such, the impact of coning, in which the number of 

claims made per episode of care is capped to limit the cost of Medicare benefits paid in a single 

episode, may have impacted the observed results. If, for example, men living in regional and 

remote areas combine multiple tests during a single visit general practitioner visit, the PSA test 

(which is relatively inexpensive) might be excluded from the claims in favour of other, more 

expensive tests. Even still, it has been estimated that up to 40% of PSA tests might be coned 

(Trevena et al., 2013). The extent to which coning varies by geographical area is not known. 

However, a NSW study showed that men who visited general practitioners more often were 

more likely to have a PSA test (Nair-Shalliker et al., 2018), while Australians living in outer 

regional and remote areas were 2.5 and 6 times more likely to report that not having a general 

practitioner nearby was a barrier to seeing one (AIHW 2019). In addition, the use of general 

practitioners is higher in major city areas, and the number of non-hospital medical services per 

capita reduces with increasing remoteness (AIHW 2019). Combined, these suggest that while 

coning may explain at least some of the observed disparities in PSA screening by remoteness, 

the consistency of temporal trends across remoteness categories suggests the recent reductions 

in each category are unlikely to be impacted by coning.  
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3.8.3 Implications  

We specifically focussed on screening participation among Australian men aged 50-69 for 

consistency with the Australian guidelines (Prostate Cancer Foundation of Australia 2016), 

which in turn is guided by the previous evidence (Schroder et al., 2012) that any mortality 

benefit from the early diagnosis of prostate cancer due to PSA testing is not seen within 7 years 

of testing. However, that there is some evidence of a mortality benefit after 7 years of PSA 

testing means that the net benefit of PSA testing is equivocal for those men who are likely to 

live another 7 years. With life expectancy among Australian men continuing to increase (AIHW 

2021), the substantial numbers of men aged over 70 who have had a PSA test (Calopedos et al., 

2019) is not surprising, and it is important that guidance be provided for these men and their 

clinicians as to their decision-making process.  

The debate over the most appropriate use of the PSA test for screening purposes is likely to 

continue. While the 2016 Australian Guidelines (Prostate Cancer Foundation of Australia 2016) 

and similar international guidelines (Qaseem et al., 2013, American Academy of Family 

Physicians 2018, Grossman et al., 2018, The Canadian Task Force on Preventive Health Care 

2019) recommend informed decision making regarding testing for men, a number of more 

recent changes to the way in which men are diagnosed and treated for early stage prostate cancer 

have potentially altered the balance of harms and benefits of screening. The changes include 

the routine use of MRI in the diagnosis of men, a shift in the technical approach to prostate 

biopsy from transrectal to transperineal thus reducing the risk of biopsy related infection, and 

evidence of a significant proportion of men with low-risk disease being managed with active 

surveillance (Papa et al., 2021). As a result, the guidelines are in need of review to account for 

these recent changes in screening, diagnosis, and treatment of prostate cancer. The patterns 

described in this paper provide the most relevant background to any proposed changes to 

Australia’s approach to prostate cancer screening. 

3.9 Conclusion  

Despite current recommendations in Australia supporting individual informed decision-making 

regarding PSA testing rather than the use of the test as a screening tool, about half of Australian 

men aged 50-69 years had at least one Medicare-funded PSA test over the five-year period up 

to 2018. The consistent decreasing trends across State/Territory, geographical remoteness and 

area-level disadvantage are consistent with a greater awareness of the current guidelines for 

clinical practice in Australia. On current evidence, more efficient, informed targeted use of PSA 

testing and post-testing follow-up, in relation to both the potential benefits and harms, could 

help improve prostate cancer outcomes and reduce inequities. Prostate cancer remains the 
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second-leading cause of cancer death in Australian men, with significant disparities in mortality 

between men from different regional and socioeconomic groups. More research is urgently 

needed on ways to utilise existing technologies, including targeted use of PSA testing and 

patient management, diagnostic technology such as MRI and on the development of improved 

risk assessment tools. 
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Figure 3.1: Trends in annual PSA screening test rates for Australian men aged 50 to 69 years, 2002 to 

2018, for Australia, by State, Remoteness, and Area-level Socio-economic Status. 
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Table 3.1: Characteristics of PSA screening participation1 among Australian men aged 50-69 years for 2005-09 and 2014-18. 

Year 2005-09 2014-18 

Category N2 Crude %3 ASR/10004 
IRR5 

 [95% CI] 
N2 Crude %3 ASR/10004 

IRR5 

 [95% CI] 

Australia 1,510,096 67.6 676.4 
 

1,303,898 48.3 481.6   

  
 

  
 

      

Age Group 
 

  
 

      

50-59 years 898,770 68.6 686.0 1.00 704,343 47.5 474.5 1.00 

60-69 years 611,326 66.2 661.7 0.92 [0.92, 0.92] 599,555 49.2 492.4 0.92 [0.92, 0.92] 

  
 

  
 

      

State / Territory5 
 

  
 

      

New South Wales 485,420 66.3 663.1 1.00 400,188 46.0 459.7 1.00 

Victoria 387,415 71.7 717.4 1.15 [1.14, 1.15] 340,773 51.2 510.1 1.23 [1.23, 1.24] 

Queensland 277,880 62.5 626.5 0.91 [0.91, 0.92] 270,909 49.7 496.4 1.19 [1.19, 1.20] 

South Australia 131,958 74.9 748.8 1.34 [1.34, 1.35] 109,419 53.1 525.6 1.38 [1.37, 1.39] 

Western Australia 152,827 67.1 671.0 1.11 [1.10, 1.11] 137,614 48.8 487.5 1.16 [1.15, 1.16] 

Tasmania 42,219 71.5 715.5 1.28 [1.27, 1.30] 22,094 32.2 325.0 0.63 [0.62, 0.64] 

Northern Territory 7,118 35.5 355.6 0.67 [0.66, 0.69] 5,357 22.2 221.7 0.58 [0.56, 0.60] 

Australia Capital Territory 25,259 74.7 745.8 1.15 [1.14, 1.17] 17,544 44.0 439.1 0.96 [0.95, 0.98] 

  
 

  
 

      

Remoteness of residence 
 

  
 

      

Major City 1,038,169 70.1 701.7 1.00 897,575 49.8 497.6 1.00 

Inner Regional 305,648 65.4 655.5 0.93 [0.93, 0.93] 264,592 46.8 467.1 0.96 [0.96, 0.97] 
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Outer Regional 145,419 61.2 611.9 0.91 [0.90, 0.91] 124,327 44.5 443.1 0.94 [0.94, 0.95] 

Remote 15,609 48.2 482.6 0.76 [0.75, 0.77] 12,834 34.6 343.7 0.78 [0.77, 0.79] 

Very Remote 5,251 31.5 317.4 0.52 [0.50, 0.53] 4,570 23.3 234.1 0.58 [0.57, 0.60] 

  
 

  
 

      

Area Socio-Economic Status 
 

  
 

      

Most Disadvantaged 279,675 64.1 641.3 1.00 236,576 46.4 461.9 1.00 

Disadvantaged 298,252 65.9 659.3 1.05 [1.05, 1.06] 261,642 48.5 483.6 1.02 [1.02, 1.03] 

Middle SES 310,638 67.3 673.4 1.09 [1.08, 1.09] 275,714 48.7 485.6 1.03 [1.02, 1.03] 

Advantaged 298,964 70.2 702.2 1.11 [1.10, 1.11] 262,145 49.3 491.6 1.04 [1.03, 1.04] 

Most Advantaged 322,567 70.5 704.7 1.10 [1.09, 1.10] 267,821 48.4 483.8 1.00 [0.99, 1.00] 

 

Notes:  

1 Jervis Bay area was excluded due to no state information. 

2 Total number of men receiving at least one PSA test during the time period. 

3 Percentage of men aged 50-69 years (not age adjusted). 

4 Directly age-standardised rates using the 2001 Australian Standard Population. Note that age-specific ASR are equivalent to crude rates. 

5 IRR = Adjusted Incidence Rate Ratio 
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Table 3.2: Age-standardized incidence rates, and adjusted1 incidence rate ratios showing interaction between Remoteness and SEIFA categories on PSA screening rates for 

Australian men aged 50-69 years, 2005-09 and 2014-18. 

 
  2005-09   2014-18 

Characteristics 
 

Count2 (%) ASR3 IRR4 [95% CI5] P-value6 
 

Count2 (%) ASR3 IRR4 [95% CI5] P-value6 

           

Major City 
    

< 0.001 
    

< 0.001 

Most Disadvantaged 
 

132,059 (8.7) 670.39 1.00 
  

114,810 (8.8) 483.95 1.00 
 

Disadvantaged 
 

138,126 (9.1) 691.91 1.02 [1.01, 1.03] 
  

122,083 (9.4) 505.72 1.03 [1.02, 1.04] 
 

Middle SES 
 

209,472 (13.9) 699.45 1.04 [1.04, 1.05] 
  

186,913 (14.3) 505.84 1.03 [1.03, 1.04] 
 

Advantaged 
 

251,698 (16.7) 717.32 1.06 [1.05, 1.07] 
  

219,296 (16.8) 503.53 1.02 [1.02, 1.03] 
 

Most Advantaged 
 

306,814 (20.3) 708.65 1.05 [1.04, 1.06] 
  

254,473 (19.5) 489.21 1.01 [1.00, 1.02] 
 

           

Outer Regional 
    

< 0.001 
    

< 0.001 

Most Disadvantaged 
 

82,475 (5.5) 636.89 1.00 
  

69,442 (5.3) 462.52 1.00 
 

Disadvantaged 
 

98,825 (6.5) 661.02 1.03 [1.02, 1.04] 
  

85,966 (6.6) 476.73 0.98 [0.97, 0.99] 
 

Middle SES 
 

76,205 (5.0) 658.32 1.02 [1.01, 1.03] 
  

66,946 (5.1) 467.12 0.98 [0.97, 0.99] 
 

Advantaged 
 

36,452 (2.4) 669.25 1.03 [1.01, 1.04] 
  

32,422 (2.5) 463.28 1.00 [0.99, 1.01] 
 

Most Advantaged 
 

11,691 (0.8) 686.25 1.04 [1.02, 1.06] 
  

9,816 (0.8) 431.85 0.92 [0.90, 0.94] 
 

           

Inner Regional 
    

< 0.001 
    

< 0.001 

Most Disadvantaged 
 

59,302 (3.9) 646.43 1.00 
  

48,160 (3.7) 458.80 1.00 
 

Disadvantaged 
 

53,050 (3.5) 597.33 0.97 [0.96, 0.98] 
  

46,064 (3.5) 447.14 0.97 [0.96, 0.98] 
 

Middle SES 
 

19,882 (1.3) 584.25 1.03 [1.01, 1.05] 
  

17,532 (1.3) 425.86 0.97 [0.95, 0.98] 
 

Advantaged 
 

10,096 (0.7) 582.60 1.09 [1.07, 1.11] 
  

9,821 (0.8) 424.32 1.03 [1.01, 1.05] 
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Most Advantaged 
 

3,089 (0.2) 535.61 1.11 [1.07, 1.16] 
  

2,750 (0.2) 339.64 0.96 [0.92, 1.01] 
 

           

Remote 
    

< 0.001 
    

< 0.001 

Most Disadvantaged 
 

3,196 (0.2) 414.67 1.00 
  

2,040 (0.2) 239.39 1.00 
 

Disadvantaged 
 

6,618 (0.4) 580.00 1.41 [1.33, 1.49] 
  

5,982 (0.5) 453.69 1.52 [1.42, 1.62] 
 

Middle SES 
 

4,352 (0.3) 432.60 1.37 [1.28, 1.45] 
  

3,688 (0.3) 315.41 1.43 [1.33, 1.53] 
 

Advantaged 
 

470 (< 0.1) 383.20 1.69 [1.52, 1.89] 
  

342 (0.0) 246.91 1.73 [1.53, 1.96] 
 

Most Advantaged 
 

973 (0.1) 504.04 1.56 [1.43, 1.70] 
  

782 (0.1) 305.96 1.39 [1.26, 1.53] 
 

           

Very Remote 
    

< 0.001 
    

< 0.001 

Most Disadvantaged 
 

2,643 (0.2) 271.54 1.00 
  

2,124 (0.2) 193.65 1.00 
 

Disadvantaged 
 

1,633 (0.1) 537.32 1.38 [1.28, 1.48] 
  

1,547 (0.1) 458.41 1.37 [1.27, 1.48] 
 

Middle SES 
 

727 (< 0.1) 370.64 1.39 [1.28, 1.52] 
  

635 (< 0.1) 292.51 1.34 [1.22, 1.47] 
 

Advantaged 
 

248 (< 0.1) 142.65 0.69 [0.61, 0.79] 
  

264 (< 0.1) 91.99 0.60 [0.52, 0.68] 
 

Most Advantaged 
 

Not Applicable7 
 

Not Applicable7 

 
1 Adjusted for age group, state, and year. 

2 Jervis Bay area was excluded due to no state information. 

3 ASR = Age standardised rate per 1000 men. 

4 IRR = Adjusted Incidence Rate Ratio. 

5 CI = Confidence Interval. 

6 P-value = Based on χ2chi test, < 0.05 is considered as significant. 

7 There are no very remote SA2s in Australia that are also within the most advantaged socioeconomic category. 
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3.11 Supplementary material  

Figure SF 3.1: Interaction between Remoteness and Area-level Socio-economic Status on trends in annual PSA 

screening test rates for Australian men aged 50 to 69 year, 2002 to 2018. 
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Table ST 3.1: Annual percentage changes in PSA screening rates between 2002 and 2018 by Australia, State/Territory, Remoteness and Socio-economic Status categories, 

Australian men aged 50 to 69 years. 

Variable N 
Trend 1 Trend 2 Trend 3 

Year APC [95% CI]1 Year APC [95% CI] 1 Year APC [95% CI] 1 

Australia 7,339,858 2002-2007 9.2 [4.8, 13.8]2 2007-2018 -5.0 [-6.1, -4.0]2     

      
     

Remoteness     
     

Major City 5,060,721 2002-2007 9.2 [4.5, 14.1]2 2007-2018 -5.1 [-6.3, -4.0]2 
  

Inner Regional 1,485,004 2002-2008 7.4 [4.4, 10.6]2 2008-2018 -5.6 [-6.8, -4.4]2 
  

Outer Regional 698,043 2002-2008 6.6 [3.7, 9.5]2 2008-2018 -5.4 [-6.5, -4.2]2 
 

 

Remote 72,790 2002-2008 4.4 [2.4, 6.5]2 2008-2013 -7.2 [-10.3, -4]2 2013-2018 -3.0 [-5.5, -0.3]2 

Very Remote 23,300 2002-2008 3.5 [1.0, 6.0]2 2008-2018 -4.6 [-5.6, -3.6]2 
  

      
     

Socio-economic Status     
     

Most Disadvantaged 1,326,605 2002-2008 8.4 [5.4, 11.5]2 2008-2018 -5.6 [-6.7, -4.4]2 
  

Disadvantaged 1,466,735 2002-2008 7.1 [4.3, 9.8]2 2008-2018 -5.3 [-6.4, -4.3]2 
  

Middle SES 1,526,637 2002-2007 9.3 [5.1, 13.7]2 2007-2018 -4.9 [-5.9, -3.9]2 
  

Advantaged 1,470,661 2002-2008 7.4 [5.1, 9.9]2 2008-2014 -7.6 [-10.1, -5.1]2 2014-2018 -1.7 [-5.7, 2.4]2 

Most Advantaged 1,549,220 2002-2007 8.5 [4.2, 13]2 2007-2014 -7.1 [-9.7, -4.5]2 2014-2018 -1.1 [-6.6, 4.8]2 

            
 

 

State / Territory           
 

 

New South Wales 2,233,285 2002-2006 13.1 [2.5, 24.7]2 2006-2018 -4.9 [-6.5, -3.3]2 
 

 

Victoria 1,923,615 2002-2008 14 [11.1, 17]2 2008-2014 -8.4 [-11, -5.8]2 2014-2018 -2.0 [-6.3, 2.5] 

Queensland 1,454,340 2002-2011 2.3 [0.9, 3.8]2 2011-2018 -5.6 [-7.4, -3.8]2 
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South Australia 653,471 2002-2008 7.5 [5.6, 9.5]2 2008-2014 -9.2 [-11.2, -7.2]2 2014-2018 1.2 [-2.3, 4.9] 

Western Australia 766,203 2002-2009 2.2 [0.9, 3.5]2 2009-2012 -13.9 [-21.5, -5.5]2 2012-2018 -0.1 [-1.7, 1.6] 

Tasmania 164,905 2002-2009 9.3 [7.4, 11.2]2 2009-2012 -28.8 [-37.8, -18.4]2 2012-2018 -2.2 [-5.0, 0.7] 

Northern Territory 29,643 2002-2008 4.8 [1.8, 7.8]2 2008-2012 -11.2 [-18.0, -3.7]2 2012-2018 -4.8 [-7.7, -1.8]2 

Australia Capital Territory 114,396 2002-2008 3.1 [1.9, 4.4]2 2008-2013 -13.8 [-15.9, -11.8]2 2013-2018 0.1 [-1.8, 2.0] 

 

 

Notes: 

1. 95% confidence intervals 

2. Significant (p<0.05) linear trend 
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Table ST 3.2: Annual percentage changes in PSA screening rates between 2002 and 2018 by Remoteness and Socio-economic Status categories, Australian men aged 50 to 69 

years. 

Category N 
Trend 1 Trend 2 Trend 3 Trend 4 

Year APC [95% CI]1 Year APC [95% CI] 1 Year APC [95% CI] 1 Year APC [95% CI] 1 

Major City                   

Most 

Disadvantaged 627,798 2002-2007 13.0 [8.5, 17.7]2 2007-2018 -5.1 [-6.1, -4.1]2 

   
  

Disadvantaged 679,693 2002-2007 10.2 [5.9, 14.7]2 2007-2018 -4.9 [-5.9, -3.9]2 
   

  

Middle SES 1,039,304 2002-2007 9.0 [4.7, 13.4]2 2007-2018 -4.9 [-5.9, -3.8]2 
   

  

Advantaged 1,239,088 2002-2008 7.7 [5.2, 10.2]2 2008-2014 -7.7 [-10.3, -5.1]2 2014-2018 -1.4 [-5.5, 2.9] 
 

  

Most Advantaged 1,474,838 2002-2007 8.5 [4.1, 13.2]2 2007-2014 -7.1 [-9.7, -4.4]2 2014-2018 -1.0 [-6.7, 5.0] 
 

  

      
      

  

Inner Regional     
      

  

Most 

Disadvantaged 393,902 2002-2008 7.7 [3.3, 12.4]2 2008-2018 -5.3 [-7.0, -3.5]2 

   
  

Disadvantaged 484,674 2002-2008 7.4 [4.4, 10.4]2 2008-2018 -5.5 [-6.6, -4.3]2 
   

  

Middle SES 371,137 2002-2008 7.6 [4.9, 10.4]2 2008-2018 -5.8 [-6.8, -4.8]2 
   

  

Advantaged 179,462 2002-2008 6.8 [4.9, 8.8]2 2008-2015 -7.0 [-8.5, -5.5]2 2015-2018 -1.7 [-6.6, 3.4] 
 

  

Most Advantaged 55,829 2002-2008 8.7 [5.8, 11.8]2 2008-2014 -9.5 [-12.4, -6.5]2 2014-2018 -2.2 [-7.0, 2.8] 
 

  

      
      

  

Outer Regional     
      

  

Most 

Disadvantaged 281,596 2002-2008 7.5 [4.8, 10.4]2 2008-2018 -5.7 [-6.8, -4.6]2 

   
  

Disadvantaged 259,669 2002-2008 6.1 [2.7, 9.5]2 2008-2018 -5.1 [-6.4, -3.8]2 
 

 
 

  

Middle SES 92,909 2002-2005 15.2 [6.4, 24.7]2 2005-2008 5.1 [-7.4, 19.3] 2008-2015 -6.6 [-8.5, -4.5]2 2015-2018 1.4 [-5.2, 8.5] 
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Advantaged 49,253 2002-2008 3.7 [0.8, 6.7]2 2008-2018 -4.7 [-5.9, -3.6]2 
   

  

Most Advantaged 14,616 2002-2008 -0.5 [-3.3, 2.3] 2008-2018 -5.8 [-6.9, -4.6]2 
 

  
 

  

      
      

  

Remote     
      

  

Most 

Disadvantaged 12,518 2002-2004 19.6 [-3.7, 48.6] 2004-2008 -0.1 [-8.7, 9.2] 2008-2013 -11.3 [-16.8, -5.4]2 2013-2018 -1.3 [-6.4, 4.0] 

Disadvantaged 34,611 2002-2008 4.3 [2.3, 6.3]2 2008-2018 -4.4 [-5.2, -3.6]2 
   

  

Middle SES 19,843 2002-2008 3.6 [0.7, 6.6]2 2008-2018 -5.1 [-6.2, -3.9]2   
 

  

Advantaged 1,881 2002-2010 7.1 [1.3, 13.3]2 2010-2018 -13.1 [-18.2, -7.6]2  
  

  

Most Advantaged 3,937 2002-2010 3.5 [-0.1, 7.1] 2010-2013 -25.8 [-44.2, -1.2]2 2013-2018 7.9 [0.1, 16.4]2 
 

  

      
      

  

Very Remote     
      

  

Most 

Disadvantaged 10,791 2002-2008 5.2 [3.0, 7.4]2 2008-2013 -7.5 [-10.8, -4.1]2 2013-2018 -1.0 [-3.7, 1.9] 

 
  

Disadvantaged 8,088 2002-2008 5.2 [1.6, 9.0]2 2008-2018 -3.0 [-4.5, -1.5]2 
   

  

Middle SES 3,444 2002-2018 -3.0 [-4.2, -1.7]2 
     

  

Advantaged 977 2002-2018 -3.1 [-5.5, -0.6]2             

 

Notes: 

1. 95% confidence intervals 

2. Significant (p<0.05) linear trend 
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CHAPTER 4 

4 SPATIAL PATTERNS OF PROSTATE-SPECIFIC 

ANTIGEN TESTING IN ASYMPTOMATIC MEN 

ACROSS AUSTRALIA: A POPULATION-BASED 

COHORT STUDY, 2017-2018  

 

4.1 Chapter overview 

This chapter presents a spatial analysis of prostate-specific antigen testing across Australia from 2017-

2018 conducted at a smaller area level. The investigation looks into the degree of geographical variation 

within area-based categories, including socio-economic status, remoteness, and states/territories, while 

utilizing the Bayesian spatial Leroux model. Additionally, it explores the geographical differences 

between greater capital cities and areas outside greater capital cities. The chapter aims to address the 

potential reasons that contribute to the variation in PSA testing. It has been published and presented as 

a final accepted manuscript.  
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4.3 Highlights of this manuscript 

Using Medicare claims data, this is the first study to quantify how patterns of PSA “screening” tests 

varied by small geographical areas in the Australian male population. The marked geographical 

variation in screening within the broader categories of remoteness suggests that small area-specific 

factors, such as GP attitudes and community perceptions, may play a role in this variation. Given the 

national focus of Australian PSA guidelines, reasons for the area variation should be explored further. 

4.3.1 What is known before this manuscript 

Worldwide, prostate cancer is the second most diagnosed cancer in men. In many developed countries 

the prostate-specific antigen (PSA) test has been associated with an increase in the diagnosis of 

asymptomatic prostate cancers.  

We searched articles published in English on PubMed using terms ("PSA testing"[All Fields] OR 

"Prostate cancer screening"[All Fields] OR "PSA screening"[All Fields]) AND ("Geographic 

inequalities"[All Fields] OR "Spatial"[All Fields] OR "Geospatial"[All Fields] OR "Small area"[All 

Fields] OR "recurrence"[MeSH Terms]) NOT ("review"[Heading]) for articles published between 1 

January 2002 and 1 July 2022.  

Our search identified 20 articles, but only two focussed on spatial variation in PSA testing. One found 

substantial variation in PSA screening rates by smaller areas within the United States of America. Other 

study was based on broad geographical patterns of PSA screening in Switzerland. The majority of 

excluded studies focused on the spatial pattern of prostate cancer incidence and mortality, with a number 

of studies posing the question of PSA screening variability being a potential driver for incidence or 

mortality patterns, however no studies quantify the geographical associations in this variability.  

In Australia, PSA testing rates vary by broad geographical areas, men living in advanced socio-

economic status and major cities areas generally have high rates of PSA testing compared to their 

counterpart living in disadvantaged and remote areas. Presently, to our knowledge, there are no 

published studies from Western Pacific countries that quantify PSA screening variation by smaller areas.  

Current guidelines for PSA screening in Australia released by the Cancer Council Australia and Prostate 

Cancer Foundation of Australia (PCFA) in 2016 recommend that men aged 50 to 69 years at risk of 

prostate cancer, having made an informed decision to have a PSA test, should be offered a test every 

two years. These are similar to international guidelines in other developed countries. Following the 

release of the 2016 Australian guidelines, it is not currently known how the use of PSA testing varies 

by small geographical areas across Australia, or within broad geographical areas of remoteness 

categories and area disadvantage.  
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4.3.2 What is new in this manuscript 

This is the first study to quantify how patterns of PSA “screening” tests in the Australian male 

population varied across 2,129 small geographical areas across the country. Bayesian spatial Leroux 

models were used to provide modelled estimates with increased stability and precision. The CARBayes 

package used for analysis incorporated Markov Chain Monte Carlo methods to compute smoothed 

small area-specific standardised incidence ratios (SIRs). Estimates were combined over 50 iterations 

due to probabilistic allocation of postcode to small statistical areas. The model gave consistent results 

when different hyperpriors such as (IG(shape=1, scale=0·1; default in CARBayes), IG(0·1, 0·01) and 

IG(0·5, 0·0005) were used.  

We found 20-fold variation in PSA screening rates between small areas across Australia. On an average 

26·1% Australian men aged 50-79 had a PSA screening test during 2017 and 2018. Among those, men 

aged 60-69 (28·9%) had highest population percent screening compared to age groups 50-59 (23·7%) 

and 70-79 (26·1%). Screening rates in most small areas (83·2%) in Australia were likely to differ from 

the Australian average; either having higher (exceedance probability>80%) than average rates (45·0%) 

or lower (exceedance probability<20%) than average rates (38·2%).  

Compared with major city regions, the median area-specific PSA screening rate was lower in more 

regional and remote regions, however the between-area variation increased. There was little difference 

in the area-specific distributions of PSA screening between the socio-economic categories. The PSA 

screening rates in almost all small areas in Northern Territory (65 out of 66) and Tasmania (95 out of 

95) were lower than the national average. In contrast, screening rates were higher than the national 

average in the majority of small areas in the south of Victoria (276 of 427), South Australia (134 of 

163), south-west Queensland (268 of 512) and coastal areas of Western Australia (150 of 234), along 

with some small areas in north-east New South Wales (144 of 526). There was also considerable 

variation in screening rates evident both between and within capital cities.  
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4.4 Abstract  

Objectives: In Australia, while prostate-specific antigen (PSA) testing rates vary by broad area-based 

categories of remoteness and socio-economic status, little is known about the extent of variation within 

them. This study aims to describe the small-area variation in PSA testing across Australia.  

Study design: Retrospective population-based cohort study. 

Methods: We received data for PSA testing from the Australian Medicare Benefit Schedule. The cohort 

included men (n=925,079) aged 50-79 years who had at least one PSA test during 2017-2018. A 

probability-based concordance was applied across multiple iterations (n=50) to map each postcode to 

small areas (Statistical Areas 2 (SA2); n=2,129). For each iteration, a Bayesian spatial Leroux model 

was used to generate smoothed indirectly standardized incidence ratios (SIRs) across each small area, 

with estimates combined using model-averaging.  

Results: About a quarter (26%) of the male population aged 50-79 had a PSA test during 2017-2018. 

Testing rates among small areas varied 20-fold. Rates were higher (exceedance probability>0·8) 

compared to the Australian average in the majority of small areas in southern Victoria and South 

Australia, south-west Queensland and some coastal regions of Western Australia but lower (exceedance 

probability<0·2) in Tasmania and Northern Territory. 

Conclusions: The substantial geographical variation in PSA testing rates across small areas of Australia 

may be influenced by differences in access to and guidance provided by clinicians, and attitudes and 

preferences of men. Greater understanding of PSA testing patterns by subregions and how these patterns 

relate to health outcomes could inform evidence-based approaches to identifying and managing prostate 

cancer risk. 
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4.5 Introduction  

Prostate-specific antigen (PSA) testing is regularly used opportunistically to test asymptomatic men for 

risk of prostate cancer (Australian Institute of Health and Welfare 2019), however it has a low positive 

predictive value that makes it difficult to distinguish between cancerous and benign prostatic conditions 

(Bryant and Lilja 2014). Consequently, this is a test that is undertaken ad hoc rather than in organized 

population-wide screening programs (Alberts et al., 2015).  

In 2016, the Prostate Cancer Foundation of Australia (PCFA) and Cancer Council Australia released 

national guidelines that recommend if men at average risk of prostate cancer aged 50 to 69 years make 

an informed decision to have a regular PSA test, it should be offered every two years (Prostate Cancer 

Foundation of Australia and Cancer Council Australia PSA Testing Guidelines Expert Advisory Panel 

2016). Summary guidelines from the Royal Australian College of General Practitioners (The Royal 

Australian College of General Practitioners 2016) advise GPs that, due to screening of asymptomatic 

men with PSA not being recommended, GPs are not obliged to offer the test.  Most international 

guidelines on screening and early detection of prostate cancer are similar to Australian PCFA guidelines 

including United States (Grossman et al., 2018), Europe (European Association of Urology 2018), 

Canada (Bell et al., 2014), and the United Kingdom (National Institute for Health and Care Excellence 

2014).  

Higher PSA testing rates have been reported among men living in socio-economically advantaged areas 

compared to those living in disadvantaged areas. In addition, testing rates have been shown to be higher 

for men living in urban areas compared to rural areas (Calopedos et al., 2019, Dasgupta et al., 2019). 

However, the lack of robust estimates for PSA testing at the small area level makes it difficult to interpret 

prostate cancer incidence and survival information in recent disease atlases such as the Australian 

Cancer Atlas (Australian Cancer Atlas 2021).  

This study, using PSA testing data from the Medicare Benefit Schedule, Australian Government’s 

universal health funding scheme, aims to address this gap in knowledge. It will quantify how PSA 

testing rates vary by small geographical areas across Australia during the time period following the 

release of the 2016 Australian clinical guidelines on PSA testing (Prostate Cancer Foundation of 

Australia and Cancer Council Australia PSA Testing Guidelines Expert Advisory Panel 2016).  

4.6 Methods  

4.6.1 Data  

Medicare reimbursed PSA test data for men aged 50-79 years, tested in Australia between January 2017 

and December 2018 were obtained from the Commonwealth Department of Health (under the Health 
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Insurance Act 1973). In Australia, the Medicare Benefits Schedule reimburses item number 66655, 

since it is specifically used for detecting asymptomatic prostate disease in men, which will refer to it as 

a “screening” test. The unit-record data extract contained a deidentified unique person-level ID number, 

postcode of residence recorded by Medicare Benefits Schedule at the time of PSA test, 10-year age 

group, year, and month of the conducted screening test.  

4.6.2 Geography  

A probability-based geographical correspondence file (Australia Bureau of Statistics 2012) was used to 

transform the 2011 postcode information into Statistical Areas 2 (SA2s) information from the 2011 

Australian Statistical Geography Standard (ASGS). In this study, the term SA2 will be referred to as 

“small area”. 

The correspondence file, containing the proportions of the population within each postcode that were 

allocated to each small area, was merged with the postcode-specific PSA dataset. The postcode for each 

record was then randomly assigned to a small area according to these probabilities based on the uniform 

distribution, with the random process carried out 50 times.  

The small areas were categorized by the ABS Remoteness Index and the Index of Relative Socio-

Economic Advantage and Disadvantage (Australia Bureau of Statistics 2011, Australia Bureau of 

Statistics 2011).  

4.6.3 Exclusions  

We selected PSA tests that were undertaken on men aged 50-79 during the period 2017-2018 (Figure 

4.1). Postcodes that were exclusively used for post office boxes were excluded since it was impossible 

to determine its exact geographical catchment area. This study is based on the number of men rather 

than the number of screening tests, therefore only the first test per individual during the study period 

was considered. Records where postcodes did not match with the postcode-small area concordance were 

removed from the cohort.  

We excluded records from 67 SA2s because of male population ≤ 3 men or were classified as remote 

islands (n=3). The final dataset included 2,129 small areas.  

4.6.4 Population  

Estimated resident population (Australian Bureau of Statistics 2021) by small area for men aged 50-79 

years old during 2017-18 were concorded from 2016 ASGS classification to the 2011 ASGS using a 

population-weighted correspondence file (Australian Bureau of Statistics 2016). The included 2,129 

small areas had a median population of 1,479 (interquartile range: 895 - 2,296) men. 
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4.6.5 Statistical analysis  

Spatial models  

Spatial data commonly exhibits autocorrelation, or clustering, and ignoring this can lead to biased 

results (Duncan et al., 2019). To allow for spatial autocorrelation in the data, three Bayesian spatial 

models, all variants of the Intrinsic Conditional Auto-Regressive model, were initially considered to 

model the standardized incidence ratio (SIR): Leroux (Leroux 1999), Besag, York and Mollié (BYM) 

(Besag 1991), and Localised (Lee and Sarran 2015). Each of these models allow for autocorrelation 

through random effect terms on each area. Of the three, the Leroux model was preferred over the 

Localised model due to its more stable estimates (Figure SF 4.1 (a) and (b)). Also, the Leroux model is 

more parsimonious than the BYM model, since it has only one spatial random effect parameter for each 

area, rather than the two per area in BYM, yet still allows for both spatial autocorrelation and random 

variation between areas. 

The Leroux model (File SFile 1) applied a Poisson distribution with an offset of the logged expected 

counts in each small area. Expected counts were calculated by multiplying national age-specific rates 

(total observed count / total population) by the age-specific population in each small area, then summing 

all age-specific expected counts. The expected counts and observed counts were input to the Bayesian 

model to calculate smoothed SIR estimates for each small area compared to the Australian average.  

We undertook modelling using the CARBayes package (version 5·2·3) (Lee 2013) in R (version 4·0·0) 

(R Core Team 2022), which uses Markov Chain Monte Carlo (MCMC) methods for computation. Since 

Bayesian spatial models are too complex to compute analytically, MCMC algorithms are used to sample 

from probability distributions to approximate the desired distribution. There were 150,000 MCMC 

iterations run, with the first 50,000 iterations excluded as burn-in before selecting every 10th iteration 

to generate 10,000 iterations for each model. These small area-specific iterations from 50 models were 

combined with equal weighting, resulting in 500,000 iterations for each small area. Most small area 

results are based on the median value (SIR) of these 500,000 iterations. Markov chain convergence was 

checked by visual inspection of trace plots (Figure SF 4.2). 

Visualization  

Maps  

The R package ggplot2 (version 3·3·6) (Wickham 2016) was used to visualize the results. The color 

scale on the SIR maps ranged from 0·67 to 1·5 including color breaks at 0·8, 1 and 1·25. Blue and red 

shades indicate low and high PSA screening rates respectively compared to the Australian average, as 

shown in yellow. 
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The exceedance probability is equal to the posterior probability of the modelled SIR being above 1 for 

each small area (Cramb et al., 2016). In the exceedance probability thematic map, green represents low 

(<20%) exceedance probabilities and suggests a true lower-than-average PSA screening rate and purple 

represents high (>80%) suggesting a real higher-than-average PSA screening rate.  

Graphs  

Boxplots were used to show how the small area-specific distribution of modelled estimates varied 

according to the categories of remoteness, socio-economic status, states/territories, and greater capital 

cities.  

4.7 Results  

During 2017-18, 1,052,900 PSA screening tests were performed on 938,622 Australian men aged 50-

79 years (Figure 4.1). Of these, 8,398 (0·80%) screening tests were removed due to the postcode 

containing only post office boxes (n=177), 113,366 (10·77%) were duplicate screening tests, 5,997 

(0·57%) tests that were linked to a postcode that did not match with ABS postcode to small area 

correspondence files and 60 (<0·01%) tests were in small areas that had male population aged 50-79 

years less than or equal to three. The final dataset included 925,079 men (one PSA test per man) aged 

50-79 years, tested during 2017-18, giving an overall crude screening rate of 260·6 per 1000 (26·1%) 

men.  

The highest population percent of men screened was among men aged 60-69 (Table 4.1). Population 

screening percentages decreased substantially with remoteness, while screening rates were relatively 

consistent across the area-level socio-economic categories. Population PSA screening rates by states 

and territories were between 23·4% and 31·2%, except for lower rates in Tasmania (16·2%) and the 

Northern Territory (11·1%).  

4.7.1 Prostate-specific antigen screening patterns by smaller areas  

There was a 20-fold (=2/0·1) variation in PSA screening rates (based on the modelled SIRs) across 

small areas of Australia (Figure 4.2), with low (SIR<1) PSA screening rates in many remote areas. 

Approximately 5·3% of the small areas had screening rates that were more than 50% lower (SIR<0·5) 

than the Australian average (SIR=1), and these were more likely to be outside capital cities, in remote 

and very remote areas, and most disadvantaged areas in Tasmania and Northern Territory (Table ST 

4.1). The screening rates in about 1·8% of small areas were more than 50% higher (SIR>1·5) than 

average (Table ST 4.1). Sensitivity analyses showed similar SIR estimates by small area regardless of 

the choice of hyperpriors within the statistical models (Figure SF 4.3 (a) and (b)). 
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Northern Territory (65/66 small areas) and Tasmania (95/95) had consistently lower screening rates than 

the national average. In contrast, screening rates were higher than the national average in the majority 

of small areas in the south of Victoria (276/427), South Australia (134/163), south-west Queensland 

(268/512) and coastal areas of Western Australia (150/234), along with some small areas in north-east 

New South Wales (144/526) (Figure 4.2). Considerable variation in screening rates was evident both 

between and within capital cities. In most small areas within Sydney, PSA rates were lower than the 

national average, along with those within Hobart, Darwin, and Canberra, whereas higher than average 

PSA screening rates were observed in many areas within Melbourne, Brisbane, Adelaide, and Perth 

(Figure 4.2 and SF 4.4 (b)).  

The majority (83%) of small areas had a screening rate likely to differ from the national average (Figure 

4.3). PSA screening in 957/2129 small areas was considered likely to be lower (<20% probability of 

being higher, Figure 4.2) than the national average, and higher (>80% probability, Figure 4.2) in 

814/2129 small areas. Screening rates in the remaining 358 small areas were considered unlikely to be 

different to the national average.  

4.7.2 Distribution of small area-specific estimates within broader areas  

There was no difference in the distribution of small area-specific estimates across categories of socio-

economic status (Figure 4.4 (a)) and this was consistent outside and inside greater capital cities (Figure 

SF 4.4 (c)). However, within some capital cities including Hobart and Adelaide, there was a suggestion 

of contrasting patterns of socio-economic gradients (Figure SF 4.4 (e)) while more populated capital 

cities of Sydney, Melbourne and Brisbane had little variation. Likewise, there was less variability 

between greater capital cities and outside greater capital cities (Figure 4.4 (d)), whereas small areas 

within greater capital cities and outside greater capital cities of Victoria and South Australia consistently 

had higher screening rates than the national average (Figure SF 4.4 (a) and (b)). The small area-specific 

distribution shows lower screening rates and increasing heterogeneity within categories with rising 

remoteness (Figure 4.4 (b)) as well as for outside greater capital cities and greater capital cities by 

remoteness (Figure SF 4.4 (d)). While screening rates in remote areas were generally lower than the 

national average, there were some notable exceptions in remote areas in southern South Australia and 

northwest Victoria (Figure 4.4 (c)), which had very high PSA screening rates compared to the national 

average (Figure 4.2 and Figure 4.3).  
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4.8 Discussion  

4.8.1 Interpretation  

This is, to our knowledge, the first population-based study to map and describe the substantial variation 

in PSA screening tests in Australia by small geographical areas and the characteristics of this variation 

within broader socio-economic groups, remoteness categories, and states and territories.  

Our results of testing patterns relating to the broad geographical classifications of urban and rural 

differences are consistent with international studies from Switzerland (Ulyte et al., 2020), New Zealand 

(Obertová et al., 2016) and the United Kingdom (Williams et al., 2011). These studies found that men 

living in urban areas and regions with high health service supply had higher PSA screening rates. While 

we found limited variation between area-based socio-economic categories, other international studies 

(Williams et al., 2011, Ulyte et al., 2020) have reported generally increased use of PSA testing among 

men living in more affluent areas. 

While previous research (Calopedos et al., 2019, Kohar et al., 2023) has demonstrated variation 

between large geographical regions or remoteness categories in Australia, the results of this study 

highlight the extent of variation within those broad regions. For example, the variation within socio-

economic categories indicates that the PSA screening rate in some ‘disadvantaged’ small areas was 

higher than in some ‘advantaged’ small areas, and vice versa. In addition, not all small areas within 

remote and very remote categories had lower PSA screening rates than the Australian average. This 

emphasizes the importance of examining geographical variation between smaller geographical areas, 

otherwise the heterogeneity within the larger regions is ignored.  

The current Australian prostate cancer screening guidelines (Prostate Cancer Foundation of Australia 

and Cancer Council Australia PSA Testing Guidelines Expert Advisory Panel 2016, The Royal 

Australian College of General Practitioners 2016) do not incorporate any geographical area 

characteristics. Therefore, if the decision-making processes for men and their general practitioners 

across Australia consistently followed the recommended guidelines and had equity in access to the 

resulting follow-up consultations and procedures, we might expect only a small amount of geographical 

variation in testing. Thus, while untangling the likely multifaceted reasons for the substantial 

geographical variation observed in our study requires more detailed investigations, it is likely that at 

least some of the reasons would relate to local area influences rather than factors operating at the 

national level. These could include variations in behaviours and attitudes of general practitioners (GPs), 

who are the gatekeeper to medical services including PSA testing (The Royal Australian College of 

General Practitioners 2016), as well as factors relating to men living in each area, such as the activities 

of local PSA testing advocacy groups, and accessibility to primary care and specialist services. 



104 

 

In general, while GPs in Australia have a good understanding of the benefits and limitations of PSA 

screening, many have limited knowledge of the current guidelines (Ilic et al., 2013). Previous studies 

have highlighted substantial variation in attitudes and practices by Australian GPs toward PSA testing 

(Pickles et al., 2015, Pickles et al., 2018), so this may have contributed to our observed results.  

Some explanations proposed for this variability between Australian GPs relate to the uncertainty about 

the evidence base for PSA testing and the ambiguity in PSA screening guidelines (Pickles et al., 2015), 

personal beliefs or experiences relating to PSA screening (Ilic et al., 2013), clinician motivation to avoid 

either overdiagnosis or underdiagnosis, perceived medicolegal risks during decision-making process 

(Pickles et al., 2015) and financial implications and incentives (Pickles et al., 2018). This variation 

between Australian GPs appears to be in contrast to GPs in the United Kingdom, who are advised not 

to proactively initiate the screening discussion with men, however they can provide information if 

specifically requested (Pickles et al., 2016). UK GPs are more likely than Australian GPs to follow 

organizational guidelines that recommend to only provide PSA testing at the patient request (Pickles et 

al., 2016, Jackson et al., 2022). This may suggest that, in terms of PSA testing, Australian GPs operate 

with greater levels of individual discretion, contributing to the large geographical variation in PSA 

screening observed in this study.  

Another possible explanation for the observed variation could be in Australian men’s knowledge, 

attitudes and behaviors regarding prostate health and prostate cancer testing, although little is known 

about how this varies by geography. Previous surveys tend to suggest low levels of knowledge about 

prostate cancer risks. For example, a survey conducted among Australian men in 2012 (Prostate Cancer 

Foundation of Australia 2012) reported that prostate cancer was considered to be the most important 

health issue facing Australian men by 51% of respondents, and that 55% of men felt they knew at least 

a reasonable amount about testing for prostate cancer. About three quarters (72%) indicated they would 

‘probably or definitely’ have a PSA test sometime in the future (Prostate Cancer Foundation of Australia 

2012).  

Advocacy and awareness campaigns, particularly if locally targeted, may contribute to the observed 

geographic variability in screening participation. While some have a national focus, others have a local 

or regional focus.  Various multistate awareness programmes (Prostate Cancer Foundation of Australia 

2022) include the aim of raising awareness in men about prostate cancer and PSA testing. Other more 

targeted community campaigns use celebrity or sporting identities to endorse community participation 

in screening (Brewer 2021) or involve prominent members of the local community encouraging greater 

involvement in testing in communities where mortality rates are high (Denham et al., 2010) such as the 

‘Little Prick’ campaign in the Hunter region of New South Wales (Beaumont 2019). While there are no 

data on the varying impact of these campaigns on PSA testing rates by geographical area, it is plausible 
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to expect that the reach and impact of campaigns on men’s PSA testing behaviour would not be 

consistent across the country.  

Some of the variations in PSA screening observed between small geographical areas, particularly the 

patterns by remoteness, may also result from differences in access to primary care practitioners, or GPs, 

who usually instigate the screening pathway. Outlying communities are well documented as having a 

lower GP supply (70·5 GPs per 100,000 people in very remote areas compared to 103·5 per 100,000 in 

major cities) (The Royal Australian College of General Practitioners 2019), and men in rural areas 

typically have longer wait times to see a GP (Australian Institute of Health and Welfare 2019 2019). 

Moreover, there are fewer medical specialists (22 per 100,000 people) in very remote areas compared 

to major cities (143 per 100,000 people) (Australian Institute of Health and Welfare 2019 2019). This 

may impact rural residents’ decision whether to be tested, since they would likely have to travel great 

distances to access follow up diagnostic and treatment services (Australian Institute of Health and 

Welfare 2019 2019).  

4.8.2 Strengths and limitations  

One of the main strengths of this study was the use of population-based data that captured the vast 

majority of PSA tests among the eligible Australian male population and is not subject to known 

limitations of self-reported data (Zavala et al., 2016). In addition, reporting on person-based screening 

history, rather than test-based use as in other studies (Pathirana et al., 2022), removed any impact of 

multiple tests over the 2-year study period. Also, the Bayesian modelling approach provides more robust 

estimates of the underlying small-area rates, rather than being unduly impacted by the increased random 

fluctuations associated with small area data (Duncan et al., 2017).  

Medicare claims are restricted to benefits paid to pathology during a single episode of care, known as 

episode coning. It is possible that coning results in differential testing patterns based on geography. For 

example, it may be more common in less accessible areas, because men who travel greater distances to 

see a GP might combine multiple more expensive tests into a single visit (Trevena et al., 2013). 

However, it is less likely to explain small area variation compared with broader variation between urban 

and regional or remote areas. While up to 19% of PSA tests may be coned and hence not included in 

the Medicare data (Trevena et al., 2013), it is not known to what extent this would vary by small 

geographical area. Additionally, Medicare data only captured the postcode of residence, and the 

probabilistic allocation of certain postcodes to multiple SA2s may have misassigned some cases to an 

incorrect area. For this study, the data (2017-18) was received in the fourth quarter of 2019. We were 

not able to receive an updated data extract prior to completion of this study. In addition, by focusing on 

a period before the COVID-19 pandemic it enables us to access the underlying PSA testing patterns 

independently of any behavioral changes through the various COVID-19 management directives.  
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4.9 Conclusion  

In summary, this population-based study identified substantial variation in the PSA screening 

participation rate by small geographical areas across Australia. The challenge remains to ensure that all 

males at risk of prostate cancer have access to the same clinical decision-making process, regardless of 

where they live. This will likely require the development and implementation of more effective 

resources, policies and communication strategies that have broader engagement and application than 

those currently in place.  
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Figure 4.1: Flowchart showing selection of men in analysis aged 50-79, Australia, 2017-18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSA tests among men 50-79 years 

n = 1,052,900 including 938,622 men 

 

n = 8,398 among 177 post office boxes  

Tests among identified postcodes 

n = 1,044,502 covering 931,136 men 

 

One test per man 

n = 931,136 

 

n = 5,997 not matched with ABS 

concordance file 

 

n = 113,366 duplicate tests 

Matched dataset 

n = 925,139 

 

n = 60 small areas that have population <= 

3 men 

 
Men in analysis 

n = 925,079 
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Table 4.1: Demographic characteristics of men aged 50-79 years having at least one Medicare-funded prostate-

specific antigen (PSA) screening test, Australia, 2017-18. 

Characteristics Men Tested (%) Populationa (%) 
Population percent of Men 

Tested (%) 

Australia 925,079 (100) 3,549,392 (100) 26·1 
  

  
Age group (years) 

 
  

  50 - 59 354,339 (38·3) 1,494,873 (42·1) 23·7 

  60 - 69 358,708 (38·8) 1,242,648 (35·0) 28·9 

  70 - 79 212,032 (22·9) 811,871 (22·9) 26·1 
  

  
Remoteness 

 
  

  Major City 633,310 (68·5) 2,353,258 (66·3) 26·9 

  Inner Regional 191,095 (20·7) 761,985 (21·5) 25·1 

  Outer Regional 88,979 (9·6) 366,005 (10·3) 24·3 

  Remoteness 8,673 (0·9) 45,084 (1·3) 19·2 

  Very Remote 3,022 (0·3) 23,059 (0·6) 13·1 
  

  
Socio-economic Statusb 

 
  

  Most Advantaged 187,547 (20·3) 714,676 (20·1) 26·2 

  Advantaged 186,199 (20·1) 691,652 (19·5) 26·9 

  Middle SESc 195,772 (21·2) 743,578 (20·9) 26·3 

  Disadvantaged 189,307 (20·5) 717,915 (20·2) 26·4 

  Most Disadvantaged 166,181 (18·0) 681,437 (19·2) 24·4 
  

  
State / Territoryd 

 
  

  New South Wales 269,171 (29·1) 1,143,786 (32·2) 23·5 

  Victoria 249,597 (27·0) 880,935 (24·8) 28·3 

  Queensland 189,527 (20·5) 719,050 (20·3) 26·4 

  South Australia 84,978 (9·2) 271,968 (7·7) 31·2 

  Western Australia 101,958 (11·0) 363,522 (10·2) 28·0 

  Tasmania 14,741 (1·6) 90,845 (2·6) 16·2 

  Northern Territory 3,143 (0·3) 28,240 (0·8) 11·1 

  Australian Capital Territory 11,952 (1·3) 50,969 (1·4) 23·4 

 

a Average estimated resident population of Australia for 2017-18. 
b Records were excluded that do not have Index of Relative Socio-Economic Advantage and Disadvantage. 
c Middle SES means Middle Socio-Economic Status. 
d Records from Jervis Bay area were excluded due to classified as Other Territory.  
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Figure 4.2: Standardized Incidence Ratios (SIR) of prostate-specific antigen (PSA) screening by small areaa,b, 

Australia, 2017-18. 

 

 

 
a Insets show capital cities of each state and territory. 
b NT – Northern Territory, WA – Western Australia, SA – South Australia, Tas. - Tasmania, Qld. - 

Queensland, NSW – New South Wales, ACT – Australia Capital Territory, Vic. – Victoria. 
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Figure 4.3: Exceedance probabilities of prostate-specific antigen (PSA) screening by small areaa,b, Australia, 

2017-18. 

 

 
a Insets show capital cities of each state and territory. 
b NT – Northern Territory, WA – Western Australia, SA – South Australia, Tas. - Tasmania, Qld. - 

Queensland, NSW – New South Wales, ACT – Australia Capital Territory, Vic. – Victoria. 
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Figure 4.4: Standardized Incidence Ratio of prostate-specific antigen (PSA) screening for 2129 small area during 2017-18 grouped by (a) Socio-economic Status, (b) Remote 

Areas, (c) States / Territories, (d) Outside Greater Capital Cities Vs Greater Capital Cities 

 

(a) Socio-economic Statusa 

  

(b) Remoteness 

  

(c) States / Territories 

  

(d) Outside Greater Capital Cities Vs Greater Capital Cities 

  

Standardized Incidence Ratio 

Note: Australian average is shown as a red vertical line at SIR = 1 

a Middle SES in plot means Middle Socio-Economic Status.
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4.11 Supplementary material  

Figure SF 4.1: Standardized Incidence Ratio (SIR) median comparisons for 2129 small areas between (a) Leroux 

and BYMa model and (b) Leroux and Localised model. 
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(a)  Leroux and BYMa Model 

 

 

(b) Leroux and Localised Model 

 

 

Ranked small area by Median 

 

a BYM means Besag, York and Mollié. 
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File SFile 1: Leroux Model 

y𝑖  ~ Poisson(E𝑖θ𝑖) 

log(θ𝑖) = intercept + S𝑖 

𝑆𝑖|𝑆\𝑖 ~ 𝒩 (
𝜌 ∑ 𝑤𝑖𝑗𝑠𝑗𝑗

𝜌 ∑ 𝑤𝑖𝑗 + 1 −𝑗 𝜌
,

𝜎𝑠
2

𝜌 ∑ 𝑤𝑖𝑗 + 1 − 𝜌𝑗
) 

σs
2 ~ InverseGamma(1, 0 · 01) 

ρ ~ Uniform(0, 1) 

i     = 1 to 2129 small area 

j     = Neighbouring small area of i 

y𝑖   = Count data 

E𝑖  = Expected counts 

θ𝑖  = Standardized incidence ratio 

𝑆𝑖   = Structured spatial random effects 

𝜌    = Spatial dependence parameter 

𝜎𝑠
2  = Variance parameter 

𝑤𝑖𝑗 = Elements of spatial weight matrix , 

      = {
1 if areas 𝑖 and 𝑗 are adjacent

0 otherwise                                 
 

𝑠𝑗   = Spatial autocorrelation random effects 
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Figure SF 4.2: Trace plot and density plot (one model as an example) showing Markov Chain Monte Carlo 

samples distribution for beta parameter. 
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Figure SF 4.3: Sensitivity analysis showing comparisons of standardized incidence ratio (SIR) for 2129 small 

areas using hyperpriors (a) IGa(1, 0·01) with 95% credible interval and IGa(0·1, 0·01) (b) IGa(1, 0·01) with 95% 

credible interval and IGa(0·5, 0·0005). 
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(a) IGa(1, 0·01) with 95% credible interval and IGa(0·1, 0·01) 

 

 

(b) IGa(1, 0·01) with 95% credible interval and IGa(0·5, 0·0005) 

 

 

Ranked small area by Median 

 

a IG means Inverse-Gamma.  
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Table ST 4.1: Small area comparisons for screening rates that were more than 50% higher (SIR>1·5) and more than 

50% lower (SIR<0·5) than the Australian average (SIR=1) by Australia, capital cities, remoteness, socio-economic 

status, and state/territory. 

Characteristics Small Areas (n(%)) SIR1 > 1·5 (n (%)) SIRa < 0·5 (n (%)) 

Australia 2129 (100) 38 (1·8) 113 (5·3) 

  
  

Capital Cities 
 

  

Outside Greater Capital Cities 908 (42·6) 25 (2·8) 89 (9·8) 

Greater Capital Cities 1221 (57·4) 13 (1·1) 24 (2·0) 

  
  

Remoteness 
 

  

Major City 1233 (57·9) 15 (1·2) 6 (0·5) 

Inner Regional 483 (22·7) 5 (1·0) 21 (4·3) 

Outer Regional 317 (14·9) 16 (5·0) 40 (12·6) 

Remote 47 (2·2) 2 (4·3) 17 (36·2) 

Very Remote 49 (2·3) 0 29 (59·2) 

  
  

Socio-economic Statusb 
 

  

Most Disadvantaged 419 (19·7) 10 (2·4) 46 (11·0) 

Disadvantaged 421 (19·8) 9 (2·1) 20 (4·8) 

Middle SESc 419 (19·7) 8 (1·9) 21 (5·0) 

Advantaged 420 (19·7) 5 (1·2) 11 (2·6) 

Most Advantaged 421 (19·8) 6 (1·4) 11 (2·6) 

  
  

State / Territoryd 
 

  

New South Australia 526 (24·7) 6 (1·1) 21 (4·0) 

Victoria 427 (20·1) 10 (2·3) 0 

Queensland 512 (24·0) 6 (1·2) 6 (1·2) 

South Australia 163 (7·7) 8 (4·9) 1 (0·6) 

Western Australia 234 (11·0) 8 (3·4) 25 (10·7) 

Tasmania 95 (4·5) 0 16 (16·8) 

Northern Territory 66 (3·1) 0 40 (60·6) 

Australian Capital Territory 105 (4·9) 0 3 (2·9) 

 

a SIR means Standardised incidence ratio. 
b Small areas were excluded that do not have Index of Relative Socio-Economic Advantage and Disadvantage. 
c Middle SES means Middle Socio-Economic Status. 
d Jervis Bay area was excluded due to classified as Other Territory. 
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Figure SF 4.4: Standardized incidence ratio (SIR) of prostate-specific antigen (PSA) screening for 2129 small areas 

during 2017-18 grouped by combinations of Greater Capital Cities, States/Territories, Socio-economic Status and 

Remoteness. 

(a) Outside Greater Capital Cities by State/Territory 

  

(b) Greater Capital Cities by State/Territory 

 

(c) Outside Greater Capital Cities and Greater Capital Cities by Socio-economic Status 

  

(d) Outside Greater Capital Cities and Greater Capital Cities by Remoteness  
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(e) Greater Capital Cities by Socio-economic Status 

 

  

 

Standardized Incidence Ratio 

Note: Australian average is shown as a red vertical line at SIR = 1. 
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CHAPTER 5 

 

5 SPATIO-TEMPORAL PATTERNS OF PROSTATE-

SPECIFIC ANTIGEN TESTING IN 

ASYMPTOMATIC MEN: A POPULATION-BASED 

COHORT STUDY, AUSTRALIA, 2002-18  

 

5.1 Chapter overview  

This chapter presents a spatio-temporal analysis to identify the variation in prostate-specific antigen (PSA) 

testing rates by smaller areas and over time across Australia during the period 2002 to 2018. It explains the 

process of mapping postcodes to statistical areas and the statistical model used, which involves Bayesian 

spatio-temporal models to analyze the data and generate standardized incidence ratios for each small area. 

It represents the first population-based study conducted worldwide. This smaller area study utilizes 

Medicare data to highlight the temporal trends in PSA testing rates, the variations in testing rates among 

small areas, and the observed geographic patterns. It also discusses the regions that showed divergent trends 

and those with consistently low testing rates. The chapter has been published and presented as a final 

accepted manuscript. 

 

 

Chapter 5 is under internal peer-review as:  

Kohar, A., Cameron, J., Baade, P. D., Pickles, K., Smith, D. P., & Cramb, S. M. (2023). Spatio-temporal 

patterns of prostate-specific antigen testing in asymptomatic men: a population-based study, Australia, 

2002-18. 
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5.3 Highlights of this manuscript  

• This manuscript analyzes Medicare data from the entire Australian population at an individual-level.  

• It is the first population-based study to describe changes in small area PSA screening rates over time.  

• The scope and patterns of geographic disparities in PSA testing rates across small areas have changed 

over time.  

5.3.1 What is known before this manuscript  

• In Australia, national PSA testing rates rose between 2002 and 2008, followed by a decline.  

• Testing rates varied significantly by state and territory and remoteness category but were relatively 

consistent among area-level socio-economic groups.  

• There was substantial variation in PSA testing rates between small areas during 2017-2018.  

• Area-specific PSA screening rates were lower in remote areas compared to major cities. Socio-

economic categories showed little difference in area-specific PSA screening distributions.  

5.3.2 What is new in this manuscript 

• This study identifies changes over time in small-area geographical patterns of PSA screening among 

men aged 50-79 years. The novelty is in the methods used. The manuscript presents the rate of men 

tested, rather than just the absolute number of tests conducted.  

• The study revealed substantial variation in the geographic patterns of PSA screening over time.  

• Not all small areas followed the national trend; from 2002 to 2008, 51% of small areas experienced an 

increase in testing rates, while 29% saw a decrease from 2009 to 2018.  

• Differences in PSA testing behaviors across time and geographic areas likely contribute to these small-

area variations.  
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5.4 Abstract  

Objectives: In Australia, while prostate-specific antigen (PSA) testing rates vary by small geographical 

area, little is known regarding the extent of change in variations over time. This study aims to examine this 

in Australia during 2002-2018.  

Study design: Retrospective population-based cohort study.  

Methods: We received Medicare Benefit Schedule data on PSA testing (n=9,342,134) from the 

Commonwealth Department of Health, Australia for men aged 50-79, in the period 2002 to 2018. Postcodes 

were mapped to statistical area level 2 (n=2133) using a probability-based correspondence file and multiple 

(n=50) iterations. Bayesian spatio-temporal models were used to generate indirectly standardized incidence 

ratios for each small area over time, allowing comparisons with the national average testing rates.  

Results: The annual percentage of men aged 50-79 who received PSA testing in small areas increased until 

2008, peaking at 24.5%, before declining. Geographical patterns of PSA testing varied substantially over 

time, with some areas deviating from the national trend. Between 2002 and 2008, 50.87% of small areas 

experienced increased testing rates, while 29% showed a decrease from 2009 to 2018. Regions on the east 

coast and southwest, primarily major cities and regional areas, exhibited the most divergent temporal trends, 

while many remote areas maintained consistently low testing rates.  

Conclusions: The extent and patterns of geographic variation in PSA testing rates across small areas has 

changed over time. Given the reasons for this variation are likely multifactorial and complex, it remains a 

priority to understand the reasons for this variation and help ensure all men at risk of prostate cancer have 

equitable access to relevant decision-making information.  
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5.5 Introduction  

Prostate cancer is the second most common diagnosed cancer among men worldwide (Zhou et al., 2016). 

Incidence rates have been consistently high in Australia compared to other developed countries (Feletto et 

al., 2015), and approximately 24,000 new prostate cancer cases were estimated to be diagnosed in Australia 

in 2022 (Australian Institute of Health and Welfare 2022). Prostate cancer incidence rates also vary 

markedly across the country (Australian Cancer Atlas 2021).  

One postulated cause of these varying rates is differences in rates of prostate-specific antigen (PSA) testing 

across the nation (Kohar et al., 2023). The PSA test is a blood test that can be used to screen asymptomatic 

men for prostate cancer risk. PSA testing has been controversial over the years due to its low sensitivity and 

issues surrounding potential harms of diagnosis and treatment (Denham et al., 2010). The PSA test became 

a reimbursable item on Medicare, Australia’s universal health care system, in the late 1980s and was rapidly 

adopted as a test used to indicate the presence of prostate abnormalities. Although PSA testing guidelines 

in Australia have changed over time, contemporary guidelines from both the Royal Australian College of 

General Practitioners (The Royal Australian College of General Practitioners 2016) as well as Prostate 

Cancer Foundation of Australia and Cancer Council Australia (Prostate Cancer Foundation of Australia and 

Cancer Council Australia PSA Testing Guidelines Expert Advisory Panel 2016) recommend that men aged 

50-69 years should make an informed decision whether to have a PSA test, after carefully considering the 

risks and benefits.  

In Australia, PSA testing rates have changed over time, with national PSA testing rates increasing from 

2002 to 2008 and then declining (Kohar et al., 2023). Testing rates varied substantially by state or territory 

and remoteness category but were relatively similar between area-level socio-economic groups (Kohar et 

al., 2023). In addition, the trends over time for individual states and territories, area-level socio-economic 

status and remoteness were generally consistent with the national trends (Kohar et al., 2023).  

A recent Australian based study (Wah et al., 2021) evaluated spatio-temporal variations in prostate cancer 

incidence in Victoria and concluded that temporal changes in PSA testing have contributed to an increasing 

temporal trend in prostate cancer incidence. However, prostate cancer incidence patterns over time are 

unclear across small areas in Australia. While there was a large variation in PSA testing rates between small 

areas during 2017-2018, following the introduction of the 2016 Australian guidelines (Kohar et al., 2023), 

there is currently no understanding of how small area patterns have changed over time in Australia. This 

information is particularly relevant and timely as national guidelines are being reviewed as it may help to 

inform future communications and decision making about testing Australian men for prostate cancer.  
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The aim of this study is to identify how the variation in PSA testing rates by smaller areas has changed over 

time in Australia during the period 2002 to 2018.  

5.6 Methods  

5.6.1 Data  

This study used data on prostate-specific antigen (PSA) testing obtained from the Medicare Benefits 

Schedule (MBS) managed by the Australian Department of Health and Aged Care. The data extract included 

details for Australian men aged 50 to 79 years who had a PSA test funded by the MBS over the time period 

2002 to 2018. During the study period there were four MBS item numbers related to PSA testing (66655, 

66656, 66659 and 66660). Item 66655 was defined as “Prostate specific antigen (test) – quantitation – 1 of 

this item in a 12 month period” which was generally used in asymptomatic men. The other PSA test items 

are recommended for monitoring of previously diagnosed prostate disease (66656), or the follow up of 

equivocal PSA results (66659, 66660). In this paper we solely focus on item number 66655 and refer to it 

hereafter as a “screening” PSA test. The other variables obtained in this dataset were year and month of 

test, updated residential postcodes of each man, age grouped in 10-year age bands (50-59, 60-69 and 70-

79) and unique ID number for each individual man. Data were stored and accessed through the Secured 

Unified Research Environment (SURE) (The Sax Institute 2022) for the purposes of security and 

confidentiality. Ethics approval was obtained from Griffith University Human Research Ethics Committee 

(GU Ref no: 2017/777).  

5.6.2 Geography and concordance  

The postcode where each man resided at the time of screening was provided in the Medicare data. We used 

the population-weighted 2011 Australian Bureau of Statistics (ABS) Geographical Correspondence File 

(Australia Bureau of Statistics 2012) to convert the postcodes into the Statistical Area Level 2 (SA2) 

geographic units of the 2011 Australian Statistical Geography Standard (ASGS). Generally, SA2s are 

relatively homogenous small areas with population data available across Australia. The median population 

of all SA2s in 2011 was 400 (IQR: 225, 665) for men aged 50 to 79. Throughout the manuscript we refer 

to SA2 as a “small area”. In 2011, there were 2,196 small areas covering the entire geography of Australia 

without gap or overlap. For this analysis we assumed 2002-2018 postcode boundaries were the same as the 

2011 boundaries.  
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5.6.3 Exclusions  

So that the final dataset was based on the number of men screened per year rather than the number of 

screening tests undertaken, we excluded duplicate tests for an individual in any given calendar year (Figure 

5.1). Screening tests were also excluded if the postcode was solely identified as a Post Office Box, since it 

did not reflect a residential geographical area. Tests were also excluded if the postcode did not match with 

the 2011 ABS concordance file.  

5.6.4 Small area allocation  

A postcode in Australia can encompass either a whole or partial section of one or more SA2s. For each 

postcode, the proportion of the population allocated to each SA2 was defined in the correspondence file 

(Australia Bureau of Statistics 2012). Using these proportions, each record was randomly allocated to a 

relevant SA2 according to the uniform distribution. The allocation process was repeated 50 times to 

incorporate the uncertainty in the postcode-to-SA2 correspondence via the probabilistic allocation of SA2s, 

generating 50 different allocated datasets. For some SA2s with small male populations during 2002-2018 

(n=1 to 15 for different years), this process resulted in the allocated number of men tested being higher than 

the eligible population. For those 31 combinations of small area and year where this occurred, the 2,025 

men from these areas were modified to be equal to the eligible population of those areas (n=664).  

5.6.5 Population  

The annual estimated resident population of each SA2 for men aged 50-79 years between 2002 and 2018 

was obtained from the ABS [5]. Data for 2002 to 2016 was provided for 2011 ASGS boundaries, while data 

for 2017 to 2018 (provided based on the 2016 ASGS) were concorded to the 2011 ASGS using an ABS 

population correspondence file [6].  

5.6.6 Small area exclusion  

In total, we excluded 63 small areas (532 men) from the analysis including areas that had an average annual 

population from 2002-2018 (for men aged 50-79) up to three men (n=60) or were remote islands (n=3) that 

do not have a spatial relationship with the mainland (Christmas, Cocos, and Lord Howe Islands). The final 

population dataset had an average annual population of 473 (Range: 0, 3253) men aged 50-79 years per 

small area during the period 2002-2018 across 2,133 small areas.  



130 

 

5.6.7 Statistical model  

Bayesian spatio-temporal models were used to examine changes in PSA screening over time and by small 

area. We considered two models, the first included an overall time trend and separate geographical patterns 

for each time period (Model 1, based on Napier et al (Napier et al., 2016)). The second model had an overall 

time trend and geographical pattern with a space-time interaction term (Model 2, based on Knorr-Held et 

al (Knorr-Held 2000)). The spatial smoothing was achieved using a Leroux prior while temporal effects 

were given a random walk 1 (RW1) prior. Adjacent small areas were considered neighbors if they shared a 

boundary. Model 1 was preferred over Model 2 based on its stability in estimates and the simplicity of the 

model, which favored parsimony. Results of this study are based on Model 1 and include Standardized 

Incidence Ratio (SIR) maps, exceedance probability maps and temporal analysis. Full details for Models 1 

and 2 are provided, including priors and hyperpriors (File Sfile 1), sensitivity checks (Figure SF 5.1 and SF 

2) and a comparison of modelled results (Figure SF 5.3).  

5.6.8 Expected counts  

The baseline for the SIRs was the Australian average rates over the whole study period. This was achieved 

by calculating the expected counts using national rates that were averaged over the whole study period. The 

resulting SIRs compare an areas’ annual rates with the Australian rates averaged over the whole period, 

2002-2018. Consequently, the baseline will be referred to as the “2002-2018 Australian average”.  

In detail, national age-specific testing rates for each 10-year age group were calculated based on the number 

of screens in the eligible population over the whole time period. Expected counts for each small area and 

year were calculated by multiplying the national age-specific rates by each area’s annual age-specific 

population and summing across the age groups. These were calculated for each of the 50 datasets generated 

by the reallocation from postcode to SA2.  

5.6.9 Model computation and testing  

Spatio-temporal models were run separately on each of the 50 datasets generated by the reallocation 

process. Each dataset contained both expected and observed counts and the models were run for 150,000 

iterations with the first 50,000 discarded and only every 10th sample kept. The models produced modelled 

SIRs of PSA screening for each small area by year. Modeling was performed in R software version 4.1.3 

(R Core Team 2020) using the CARBayesST package version 3.3 (Lee et al., 2018). Model 1 used the 

function ST.CARsepspatial, and model 2 ST.CARanova. Convergence of the Markov chains was checked 

using Geweke diagnostics (value between -2 and 2 indicated convergence). Further, we examined trace 

plots and histograms as a graphical check of convergence of the global parameters. With convergence 
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confirmed, the MCMC samples kept from each of the 50 datasets were pooled to produce overall 

distributions of the parameters. To check model goodness-of-fit, the Moran’s I statistic (Anderson and Ryan 

2017) was used to measure the amount of spatial autocorrelation in the residuals for each year.  

A sensitivity analysis was performed on the 50 datasets for Model 1 to check the robustness of the results, 

specifically the influence of using three different hyperpriors on the variance term in the Leroux prior: IG(1, 

0.01), IG(0.1, 0.01) and IG(0.5, 0.0005) where the Inverse-Gamma distribution is shown as (shape, scale).  

5.6.10 Visualization  

Maps  

Spatial maps of modelled SIRs were generated for each year in the study period (2002-2018) to provide an 

overall description of PSA screening patterns in Australia. The SIR reflects the standardized incidence rates 

of PSA testing for small areas at a specific time point, compared with the Australian average over the whole 

time period (2002-2018).  For every fifth year from 2003 (2003, 2008, 2013, 2018), insets for the spatial 

maps were generated for the capital city areas to illustrate geographical patterns in these densely populated 

but geographically small areas that are not visible on the national map. The gradient color scale of SIR 

maps uses shades of orange/red color for values greater than one, while values lower than one are 

represented by shades of blue/light blue. In addition, Australian average at SIR=1 is represented by pale 

yellow.  

Exceedance probability maps  

While SIRs show the magnitude of variation, they do not indicate if it is likely to differ from the Australian 

average. We used exceedance probabilities (EP) which are the posterior-probability that the SIR is greater 

than 1, to determine which areas were likely to be truly different to the whole-period Australian average. 

Conversely, 1-EP reflects the posterior probability that the SIR is lower than 1. National maps of exceedance 

probabilities by small areas were shown for each calendar year, with insets provided for the same four years 

as above. Purple and green respectively represent evidence that the rates are truly higher (>80% probability) 

than the national average and lower (<20% probability of higher; which equates to >80% probability of 

lower) than the national average for the small areas (Richardson et al., 2004). Using this categorization and 

color coding for the exceedance probabilities, the number of small areas (on y-axis) in each category (<20%, 

20% - 80% and >80%) was plotted against year (on x-axis). R package Ggplot2 version 3.3.6 (Wickham 

2016) was used for visualization.  
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Temporal plot and Sankey diagrams  

Boxplots were used to visualize the distribution of small area-specific PSA screening estimates for each 

year compared to the Australian average (SIR=1). The Sankey diagram visualizes temporal change in PSA 

screening estimates for each small area by categorizing SIR values as 0.67-0.79 (blue), 0.80-0.94 (light 

blue), 0.95-1.05 (yellow), 1.06-1.24 (orange) and 1.25-1.50 (red). Cutpoints below 1 are the inverse of those 

above 1. Colors in the vertical bar represent the current status of small areas ranked by the categories, 

whereas the gap between bars shows the path of small areas changing their category each year. Likewise 

change in exceedance probabilities over time for each small area were represented as <20% (green), 20% - 

80% (yellow) and >80% (purple).  

5.7 Results  

In Australia, during the period 2002 to 2018, a total of 9,458,168 PSA screening tests were performed on 

3,270,817 men aged 50-79 years (Figure 5.1). Records were excluded from the study (totaling 0.64%) if 

their residential postcode was solely a Post Office Box (n=6.84%), if they were a duplicate test for a man 

in a single calendar year (0.04%), if the residential postcode did not match with the ABS concordance file 

(0.55%) or if the matched SA2 of residence had an average population of men aged 50-79 of three or less 

(0.01%). The final dataset included 9,342,134 screening tests among 3,243,849 Australian men aged 50-79 

years with an overall crude rate of 181.53 men screened per 1000 men per year.  

The annual percentage of the male population aged 50-79 having a PSA screening test in a given year varied 

substantially between 2002-2018, with a peak in 2008 (Table 5.1). While men aged 50-59 had the most 

screening tests of the three age groups, they had the lowest screening rate per capita. The percentage of 

eligible men who had a PSA screening test differed by state and territory (Table 5.1).  

There was strong variation in the spatial patterns of PSA screening rates over time (Figure 5.2 (A) and 

Figure 5.3). The maps are visually dominated by the geographically large, but sparsely populated central, 

northern and western areas of the country, however the main changes over time are visible in the smaller, 

more densely populated south-eastern corner of the country. In particular, the PSA screening rate in the 

majority of the areas in the south-eastern part of Australia during 2003 were lower than the 2002-2018 

Australian average. By 2008, however, the screening rates in much of the south-east were higher than the 

2002-2018 combined Australian average. After 2008, many of these areas’ screening rates decreased until 

they were lower than the 2002-2018 Australian average. Similar changes in patterns were also observed in 

smaller pockets of Western Australia, and Queensland. (Figure 5.2 (A), Figure 5.3 and Figure SF 5.4).  
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The exceedance probabilities (Figure 5.2 (B), Figure 5.5 and Figure SF 5.5) provide strong evidence that 

these changes in geographical patterns over time are likely to be real, with the vast majority of areas across 

all calendar years having PSA screening rates considered likely to be truly different to the 2002-2018 

Australian average. Only a few small areas had any year-specific exceedance probabilities between 20 and 

80% (so unlikely to reflect a true difference to the Australian average).  

These area-level temporal patterns are highlighted by the distribution of smoothed SIRs for each small area 

over the study period (Figure 5.6). For example, in 2008 all the interquartile ranges were above the 2002-

2018 Australian average, while from 2015 onward they were all below the 2002-2018 Australian average.  

The trends over time can also be viewed at the small area level (Figure 5.4 (A)), with the trend lines being 

ranked and colored by their screening rates in 2002. There is substantial variation in the small area-specific 

trends over time, with only a small proportion of areas having screening rates that remained relatively low 

over the entire study period. Similarly, the trend lines for changes in exceedance probabilities can also be 

viewed at the small area level (Figure 5.4 (B)). There is substantial variation in the trends of exceedance 

probabilities over time, with most areas initially having rates that were truly below the Australian average, 

peaking above average, and then returning to below average compared to areas with no-real difference. 

However, the timing of this trajectory varied considerably among small areas. Nonetheless, only a few 

small areas consistently exhibited lower (<20%) or higher (>80%) exceedance probabilities over time.  

Although the number of small areas likely to be different to the combined Australian average remained 

fairly constant over time (Figure SF 5.6), the specific small areas within the higher and lower groups 

changed considerably each year.  

Sensitivity analysis suggested the results were robust in terms of the initial model assumptions made, with 

little or no variation in SIR results when different hyperpriors were applied (Figure SF 5.1 and SF 5.2). 

Similar geographical patterns and exceedance probabilities were observed for both models (Model 1 and 

Model 2) over time (Figure SF 5.6).  

5.8 Discussion  

To our knowledge this is the first population-based study to describe the change in PSA screening rates by 

small area over time. Australia is well placed to undertake a study of this type because almost all PSA tests 

were reimbursed by Medicare for the entire study period and the data are available at relatively small 

geographical areas (SA2). This study identified that the geographic patterns of PSA screening varied 

substantially over time. From 2002 to 2008, more than half (50.87%) of the small areas displayed an 
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increase in screening rates, and 29% of small areas showed a decrease in screening rates from 2009 to 2018. 

These small areas that followed the national trend were predominantly in major cities and regional areas, 

while many remote areas’ PSA screening rates remained low throughout the study period.  

While reasons for the different temporal trends for PSA screening cannot be determined from this study, 

they may be influenced by factors relating to the local area such as population characteristics or availability 

of services, systematic changes in screening awareness or behaviours, changes in the interpretation or 

application of the guidelines or variation in the socio-demographic characteristics of small area populations. 

For example, new housing estates may alter the demographic, socio-economic or ethnic composition of 

certain areas thus altering composition of the base population likely to be available and interested in 

screening.  

General practitioner’s attitude and behaviour:  

In Australia, PSA screening tests are most often offered by general practitioners (GPs), so any variations in 

their clinical advice and behaviour is likely to contribute to differences in PSA screening rates. Differences 

in test ordering behaviors by time and geographical areas are likely to result in small area variations. Some 

GPs in the Australian context have reported feeling inadequately supported by the healthcare system when 

making decisions about PSA testing (Pickles et al., 2016) and perceive confusion about whether to test 

individual asymptomatic men. This can often manifest as a dilemma between seeking to avoid 

overdiagnosis (i.e. less PSA testing), compared to trying to prevent a missed or late diagnosis (i.e. more 

PSA testing) and potential harmful outcomes to the patient and possible medico-legal issues that could 

follow (Pickles et al., 2015). As a result, some GPs only initiate discussions within the recommended age 

range, while others discuss screening beyond this range (either initiated by the GP or patient) (Smith et al., 

2022). GPs can also have varying attitudes regarding the optimal age to begin PSA screening (Crowe et al., 

2015). While the two most commonly referenced current Australian guidelines have similarities in the 

general principles of informed decision making, they differ in the way in which this is expressed. RACGP 

guidelines (Royal Australian College of General Practitioners 2016) recommend that GPs are not obligated 

to offer PSA tests to asymptomatic men, while the PCFA/Cancer Council guidelines (Prostate Cancer 

Foundation of Australia and Cancer Council Australia PSA Testing Guidelines Expert Advisory Panel 

2016) take no position on “whether, or how, primary care doctors should raise the topic of prostate cancer 

testing with their male patients. Both guidelines advise that screening with PSA tests is acceptable in men 

who make an informed decision. Elsewhere, in popular media and medical journals, authors have 

incorrectly portrayed the PCFA/Cancer Council guidelines as including a positive recommendation for GPs 

to actively offer screening (Rashid et al., 2023, Timms and Gregory, 2022). Thus, apparently conflicting 
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advice may have compelled some GPs to apply their own screening protocols (Ranasinghe et al., 2015). 

At the time of writing, preparations were underway to update the PCFA/Cancer Council guidelines with a 

view to more consistent and practical messaging for all clinicians involved in PSA testing. 

However, PSA testing rates in Australia are not solely determined by individual GP attitudes towards 

screening or interpretation of published guidelines. Qualitative research has suggested that GP behaviour 

is often more directly influenced by internalised guidelines which are individually developed and socially 

reinforced by personal experience, colleagues, opinion leaders and patients than research publications 

(Gabbay and May, 2004). Thus, some of the clustering of PSA testing we observed may reflect the socially-

mediated influences of GPs’ local community of practice. Current and past healthcare structures, systems, 

and, regulations also significantly influence the attitudes and behaviours that GPs adopt in their practice 

(Pickles et al., 2016). In Australia, GPs are remunerated based on the number of patient care services 

provided, resulting in higher income with an increased number of appointments. Additionally, various 

system factors such as screening culture, funding models, media exposure, referral system, and the 

influence of local or reginal urological specialists may contribute to the variation in prevalence of PSA 

screening in Australia (Pickles et al., 2016). Temporal variations may also be linked to the relocation of 

GPs to or from that area. For instance, an influx of GP registrars to a small area could lead to a rise in 

screening rates as previous work has shown a higher likelihood of registrars ordering PSA tests than more 

experienced GPs in Australia (Magin et al., 2017). However, these explanations are speculative, as data on 

these less tangible measures of practice are not available at smaller geographical areas, nor do we have 

information about how those factors have changed over time.  

Change in men’s PSA screening awareness over the period:  

Previous research has shown that men generally view PSA screening positively (Howard et al., 2013, 

Thomas et al., 2014, James et al., 2017). Men with high anxiety levels, uncertainties associated with PSA 

testing, and those with more concerns about poor outcomes were found to be more likely to undergo PSA 

testing during follow-up visits with their GPs (Pedersen et al., 2015). Many men living in rural areas may 

have less awareness and knowledge regarding prostate cancer screening (Ojewola et al., 2017, Maladze et 

al., 2023), whereas those with higher socioeconomic status, education levels, and income have been noted 

to have higher awareness and knowledge regarding screening (Musalli et al., 2021). A survey found that 

55% of men reported being informed about their right to choose whether or not to undergo testing, 22% 

were informed that some doctors recommend PSA testing while others do not, and 14% were informed that 

the effectiveness of PSA testing in saving lives is still uncertain. Only 10% of men reported receiving this 

information about PSA testing (Leyva et al., 2016). It has been suggested that Australian men are often 
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willing to participate in prostate cancer screening, especially when supported by their social networks or 

healthcare providers (James et al., 2017). While there is no information about how these attitudes have 

changed over time, the very large variation in attitudes among Australian men between different 

geographical and sociodemographic subgroups suggests the potential for these attitude and behaviours to 

have altered over time.  

5.8.2 Strengths and limitations  

This study has several notable strengths. Firstly, it draws on population-based data that covers the entire 

nation of Australia for a 17-year period, from 2002 to 2018. To ensure accuracy and mitigate the impact of 

multiple tests in our analysis, we limited our data to one test per man per year, enabling us to focus on the 

number of men screened annually, rather than the total number of screening tests administered. The use of 

Bayesian spatio-temporal modeling techniques is key strength, a technique designed to produce robust 

estimates. Through combining the dataset available and these methods, we captured a significant proportion 

of PSA tests among eligible Australian males and were able to provide more reliable estimates of the 

underlying small-area rates.  

The study also had some limitations. A small proportion of PSA tests will not have been captured in this 

dataset. Under Medicare, only the three most expensive pathology items in a care episode can be claimed 

during a single episode of care, referred to as ‘episode coning’, potentially resulting in under-reporting of 

pathology tests in less accessible areas where men and their GPs may bundle a number of tests into a single 

episode of care (Hajati et al., 2018). The PSA test can be particularly susceptible to this under-reporting 

due to its low schedule fee ($AUD 20.15) and the extent of variation by small geographical area is unknown. 

Furthermore, Medicare address details may not be updated, so if men move, these changes may not be 

reflected in the results.  

5.9 Conclusion  

To summarize, this study identified significant changes in the geographic disparities in PSA screening rates 

over time. Not all areas followed the national trend, and the reasons behind these disparities are likely 

multifaceted and complex. These findings emphasize the need for further research to better understand the 

underlying factors and ensure equitable access to clinical decision-making for all men at risk of prostate 

cancer, regardless of their area of residence. Achieving this goal will require the development and 

implementation of more effective resources, policies, and communication strategies with broader reach and 

applicability.  
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Figure 5.1: Flowchart showing selection of men aged 50-79 in analysis, 2002-18, Australia. 
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Table 5.1: Demographic characteristics of men aged 50-79 with a record of at least one PSA test reimbursed by 

Medicare per year, 2002-18, Australia. 

Characteristics Number of 

individual 

mena tested 

Number of 

PSA testsb 

Total eligible 

population over 

study periodc 

Average annual 

percentage of men 

having a PSA Testd 

Australia 3,243,849 9,342,134 51,463,109 18.2 

Age group (years)         

50 - 59 1,935,621 3,788,193 23,295,346 16.3 

60 - 69 1,616,084 3,552,231 17,474,943 20.3 

70 - 79 961,462 2,001,710 10,692,820 18.7 

State / Territory   
  

New South Wales 1,085,269 2,850,754 16,918,211 16.9 

Victoria 826,014 2,460,682 12,603,465 19.5 

Queensland 670,159 1,827,650 10,171,674 18.0 

South Australia 273,440 864,252 4,062,456 21.3 

Western Australia 325,570 959,139 5,191,447 18.5 

Tasmania 82,224 206,719 1,350,213 15.3 

Northern Territory 16,739 34,683 420,307 8.3 

Australian Capital Territory 51,000 138,255 745,336 18.5 

Year         

2002 387,239 387,239 2,487,305 15.6 

2003 426,899 426,899 2,546,339 16.8 

2004 475,292 475,292 2,602,030 18.3 

2005 528,982 528,982 2,660,811 19.9 

2006 576,347 576,347 2,721,899 21.2 

2007 651,503 651,503 2,792,627 23.3 

2008 701,549 701,549 2,864,224 24.5 

2009 613,300 613,300 2,939,948 20.9 

2010 605,760 605,760 3,018,126 20.1 

2011 671,837 671,837 3,102,361 21.7 

2012 569,408 569,408 3,181,075 17.9 

2013 543,075 543,075 3,258,849 16.7 

2014 519,011 519,011 3,330,897 15.6 

2015 513,460 513,460 3,395,409 15.1 

2016 520,644 520,644 3,457,265 15.1 

2017 517,801 517,801 3,520,322 14.7 

2018 520,027 520,027 3,583,622 14.5 

 

a Men counted once over the whole time period.   
b Each man only had one test counted per year. 
c Sum of the eligible population over the whole study period.  
d Number of PSA tests divided by the total eligible population
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Figure 5.2: (A) Spatial patterns by year of prostate-specific antigen screening as modelled Standardized Incidence Ratios compared to the Australian averagea 

between 2002-18. 

 
a Average Australian prostate specific antigen screening participation rate between 2002 and 2018  
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(B) Exceedance probabilities by smaller areaa,b,c of prostate-specific antigen screening, 2002-18, Australia. The exceedance probability provides evidence that the 

annual SIRs were truly different to the 2002-2018 Australian average. 

 
a < 20% - Areas where prostate specific antigen screening participation rates were likely to be lower than the 2002-2018 Australian average .  
b 20% - 80% - Unlikely to be different from Australian average between 2002 and 2018  
c > 80% - Areas where prostate specific antigen screening participation rates were likely to be higher than the 2002-2018 Australian average. 
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Figure 5.3: Map showing standardized incidence ratios of prostate specific antigen screening for the selected years 2003, 2008, 2013, 2018, Australia. 
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Figure 5.4: (A) Change in small area rates of prostate-specific antigen screening as modelled Standardized Incidence Ratios compared to the 2002-2018 Australian 

averagea. 

 

 
a Average Australian prostate specific antigen screening participation rate between 2002 and 2018 
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(B) Change in small area exceedance probabilitiesa,b,c of prostate-specific antigen screening, 2002-18, Australia. The exceedance probability provides evidence 

that age-standardized screening rates were truly different to the 2002-2018 Australian average. 

 
a < 20% - Prostate specific antigen screening participation rates were likely lower than the Australian average between 2002 and 2018.  
b 20% - 80% - Unlikely to be different from Australian average between 2002 and 2018  
c > 80% - Prostate specific antigen screening participation rates were likely to be higher than Australian average between 2002 and 2018.  
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Figure 5.5: Map showing exceedance probabilities of prostate specific antigen screening for the selected years 2003, 2008, 2013, 2018, Australia. Exceedance 

probabilities provide evidence that rates were truly different to the 2002-2018 Australian average. 
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Figure 5.6: Boxplots showing the temporal trend in standardized incidence ratios of prostate specific antigen testing by small area and year, 2002-18, Australia. 

 

* The temporal trend shows the modelled rates for all small areas on the y-axis using a log-transformed scale by individual years on x-axis with 

the red horizontal line at SIR = 1 representing the 2002-2018 Australian average. 
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5.11 Supplementary material 

File SFile 1: Model 1 (ST.CARsepspatial) 

Y𝑘𝑡~ Poission(E𝑘𝑡θ𝑘𝑡) 

log(θ𝑘𝑡) =  Intercept + ψ𝑘𝑡 

Intercept ~ 𝒩(0, 100000) 

𝛙𝒌𝒕 =  𝛟𝒌𝒕
+  𝛅𝒕 

𝜹𝒕  =  (𝛅𝟏, 𝜹𝟐, … , 𝛅𝑵) 

𝛟𝒌𝒕
= (𝛟𝟏𝟏

, 𝛟𝟏𝟐
, … , 𝛟𝑲𝒕

) 

ϕ𝑘𝑡
|ϕ−𝑘𝑡

, W ~ N (
ρ𝑆 ∑ w𝑘𝑗ϕ𝑗𝑡

𝐾
𝑗=1

ρ𝑆 ∑ w𝑘𝑗 + 1 −  ρ𝑆
𝐾
𝑗=1

,
τ𝑡

2

ρ𝑆 ∑ w𝑘𝑗 + 1 −  ρ𝑠
𝐾
𝑗=1

) 

δ𝑡|δ−𝑡, D ~ N (
ρ𝑇 ∑ d𝑡𝑗δ𝑗

𝑁
𝐽=1

ρ𝑇 ∑ d𝑡𝑗 + 1 −  ρ𝑇
𝑁
𝑗=1

,
τ𝑇

2

ρ𝑇 ∑ d𝑡𝑗 + 1 −  ρ𝑇
𝑁
𝑗=1

) 

τ1
2, … , τ𝑁

2 , τ𝑇
2  ~ InverseGamma(1, 0.01) 

ρ𝑆, ρ𝑇 ~ Uniform(0, 1) 

k      =  1, 2, …, K  i.e. 1 to 2133 small areas 

t       =  1, 2, …, N i.e. 1 to 17 years for 2002 to 2018 

Y𝑘𝑡   =  Spatio-temporal count data 

𝐸𝑘𝑡  =  Spatio-temporal expected count data 

θ𝑘𝑡  =  Spatio-temporal standardized incidence ratio 

ψ𝑘𝑡  =  Spatio-temporal random effects 

ϕ𝑘  =  Spatial random effects 

δ𝑡    =  Temporal random effects 

W    =  Spatial neighborhood matrix 

D     =  Temporal neighborhood matrix 

ρ𝑆    =  Spatial dependence parameter 

ρ𝑇    =  Temporal dependence parameter 

w𝑘𝑗  =  Elements of spatial weight matrix   =   {
1 if areas 𝑖 and 𝑗 are adjacent

0 otherwise                                 
 

d𝑡𝑗  =  Elements of temporal weight matrix =  {
1 if years 𝑡 and 𝑗 are adjacent

0 otherwise                                 
 

τ𝑡
2    =  Spatial varying variance parameter 

τ𝑇
2     =  Temporal varying variance parameter 
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Model 2 (ST.CARanova) 

Y𝑘𝑡~ Poission(E𝑘𝑡θ𝑘𝑡) 

log(θ𝑘𝑡) =  Intercept + ψ𝑘𝑡 

Intercept ~ 𝒩(0, 100000) 

𝛙𝒌𝒕 =  𝛟𝒌 +  𝛅𝒕 +  𝜸𝒌𝒕 

𝜹𝒕  =  𝛅𝟏, 𝜹𝟐, … , 𝛅𝑵 

𝛟𝒌 = 𝛟𝟏, 𝛟𝟐, … , 𝛟𝑲 

𝛄𝐤𝐭 = 𝛄𝟏𝟏, 𝛄𝟏𝟐, … , 𝛄𝐊𝐍 

ϕ𝑘|ϕ−𝑘, W ~ N (
ρ𝑆 ∑ w𝑘𝑗ϕ𝑗

𝐾
𝑗=1

ρ𝑆 ∑ w𝑘𝑗 + 1 − ρ𝑆
𝐾
𝑗=1

,
τ𝑆

2

ρ𝑆 ∑ w𝑘𝑗 + 1 − ρ𝑠
𝐾
𝑗=1

) 

δ𝑡|δ−𝑡, D ~ N (
ρ𝑇 ∑ d𝑡𝑗δ𝑗

𝑁
𝐽=1

ρ𝑇 ∑ d𝑡𝑗 + 1 −  ρ𝑇
𝑁
𝑗=1

,
τ𝑇

2

ρ𝑇 ∑ d𝑡𝑗 + 1 −  ρ𝑇
𝑁
𝑗=1

) 

𝛾𝑘𝑡 ~ 𝑁(0, 𝜏𝐼
2) 

τ𝑆
2, τ𝑇

2 , τ𝐼
2 ~ InverseGamma(1, 0.01) 

ρ𝑆, ρ𝑇 ~ Uniform(0, 1) 

k      =  1, 2, …, K  i.e. 1 to 2133 small areas 

t       =  1, 2, …, N i.e. 1 to 17 years for 2002 to 2018 

Y𝑘𝑡   =  Spatio-temporal count data 

𝐸𝑘𝑡  =  Spatio-temporal expected count data 

θ𝑘𝑡  =  Spatio-temporal standardized incidence ratio 

ψ𝑘𝑡  =  Spatio-temporal random effects 

ϕ𝑘   =  Spatial random effects 

δ𝑡    =  Temporal random effects 

γ𝑘𝑡   =  Spatio-temporal interactions 

W    =  Spatial neighborhood matrix 

D     =  Temporal neighborhood matrix 

ρ𝑆    =  Spatial dependence parameter 

ρ𝑇    =  Temporal dependence parameter 

w𝑘𝑗  =  Elements of spatial weight matrix   =   {
1 if areas 𝑖 and 𝑗 are adjacent

0 otherwise                                 
 

d𝑡𝑗  =  Elements of temporal weight matrix =  {
1 if years 𝑡 and 𝑗 are adjacent

0 otherwise                                 
 

τ𝑆
2, τ𝑇

2 , τ𝐼
2  =  Spatial, Temporal and Spatio-temporal interaction varying variance parameter respectively 
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Figure SF 5.1: Sensitivity analysis showing comparison between Standardized incidence ratio (SIR) of hyperpriors 

IG(1, 0.01) with 95% credible interval and IG(0.1, 0.01) for 2133 small areas. 
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Figure SF 5.2: Sensitivity analysis showing comparison between Standardized incidence ratio (SIR) of hyperpriors 

IG(1, 0.01) with 95% credible interval and IG(0.5, 0.0005) for 2133 small areas. 
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Figure SF 5.3: Median comparison of Standardized incidence ratio between ST.CARsepspatial and ST.CARanova 

model for 2133 small areas. 

Model 1 (sepspatial) Vs Model 2 (anova) 
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Figure SF 5.4: Map showing standardized incidence ratios of prostate specific antigen screening, 2002-2018, 

Australia.  
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Figure SF 5.5: Map showing Exceedance probabilities of prostate specific antigen screening for 2002-2018, 

Australia. 
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Figure SF 5.6: Comparison of small areas by Exceedance Probabilities for Model 1 and Model 2. 
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CHAPTER 6 

 

6 SPATIAL ASSOCIATIONS BETWEEN PROSTATE 

CANCER INCIDENCE RATES AND PROSTATE-

SPECIFIC ANTIGEN SCREENING TEST USE IN 

AUSTRALIA, 2012-2016: SMALL AREA POPULATION 

BASED COMPARISON  

 

6.1 Chapter overview  

Bayesian spatial models will be expanded to combine, at the statistical area level 2 (SA2) ecological level, 

the smoothed estimates from the prostate cancer incidence, prostate cancer survival and the prostate-

specific antigen (PSA) testing to determine the extent of association between those three measures, and the 

direction of that association.  

 

 

 

 

Chapter 6 is under internal peer-review as:  

Kohar, A., Cramb, S. M., Pickles, K., Baade, P. D., Smith, D. P., & (2023). Small area associations 

between prostate cancer incidence rates and prostate-specific antigen screening test use in 

Australia, 2012-2016: a population based study.  
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6.3 Highlights of this manuscript  

• This manuscript explores the small-area geographical association between PSA testing and prostate 

cancer incidence.  

• It is the first population-based study of its kind at the small-area level.  

• The analysis is based on the number of men rather than the screening test count in Australia.  

• Not all small areas exhibited similar trends in the correlation between PSA screening and prostate 

cancer incidence rates.  

6.3.1 What is known before this manuscript  

• PSA testing and prostate cancer incidence rates exhibit significant variation across small geographical 

areas.  

• Incidence rates vary within socio-economic and remoteness categories.  

• National and broad geographical patterns and trends in PSA testing have generally been consistent 

with prostate cancer incidence rates.  

6.3.2 What is new in this manuscript 

• Overall, a weak correlation existed between PSA testing and prostate cancer incidence across 

Australia at the small area level for men aged 50-79 during the period 2012-2016.  

• This weak correlation persisted when examining area-specific categories, including socio-economic 

status and remoteness.  

• Small areas with low rates (SIR<0.5) typically displayed a broader range of estimates and more 

noticeable differences between prostate cancer incidence and PSA screening than areas with high rates 

(SIR>1.5). 
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6.4 Abstract  

Objectives: In Australia, prostate-specific antigen (PSA) testing and prostate cancer incidence rates vary 

substantially by small geographical area, but little is known about the association between them. This study 

aims to quantify the association between PSA testing and prostate cancer incidence rates at the small area 

level in Australia for men aged 50-79 during the period 2012-2016.  

Study design: Retrospective population-based cohort study.  

Methods: We obtained Medicare data on PSA testing (n=2,665,656) from the Commonwealth Department 

of Health, Australia. We converted (n=50) the postcodes in the PSA data into statistical area level 2 

(n=2158) using 2011 geographical concordance file. We also obtained prostate cancer incidence data from 

all state and territory cancer registries, Australia. We employed a Bayesian spatial model (Leroux model) 

to calculate the indirectly standardized incidence ratios for PSA testing and prostate cancer incidence for 

each small area.  

Results: Approximately half of the male population aged 50-79 underwent PSA testing at least once in the 

study period and 4.5% of men received a prostate cancer diagnosis. Overall, there was a weak (r=0.1) 

correlation between prostate testing and cancer incidence across Australia at the small area level. 

Additionally, the correlation remained weak when stratified by area-specific categories, including socio-

economic status (r= -0.09to0.17), remoteness (r= 0.01to0.26).  

Conclusions: Despite strong consistency in temporal trends, the low correlation between PSA testing and 

prostate cancer incidence at the small area level in this study highlights the complex interaction between 

ad hoc testing and diagnosis for this disease. Further investigation is needed to describe this relationship 

and better understand the drivers of geographical variation in prostate cancer incidence by place of 

residence.  
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6.5 Introduction  

Globally, prostate cancer is the second most diagnosed cancer among males with more than 1.4 million 

new cases diagnosed in 2020 (Sung et al., 2021), and the most common cancer diagnosed in males in 

Australia (Australian Institute of Health and Welfare 2022). Incidence rates often vary within countries: in 

high income countries, more affluent areas generally have higher prostate cancer incidence rates and men 

from higher socio-economic areas (SES) tend to be diagnosed at earlier stages (Kilpeläinen et al., 2016, 

Khadhra et al., 2021) than those from lower SES areas. Similarly, men living in remote areas of Australia 

have lower prostate cancer incidence rates but a slightly higher risk of being diagnosed at later stages 

compared to men from more urban areas (Foley et al., 2022).  

While not part of a formal screening program, the Prostate-Specific Antigen (PSA) test is a blood test 

commonly used to detect prostate abnormalities in asymptomatic men (Albertsen 2020). Use of the test 

peaked in Australia in 2008, where nearly one quarter (24.5%) of men aged 50-79 had a “screening” PSA 

test, with annual rates reducing to 14.5% in 2018 (Kohar et al., 2023). In wealthy countries, higher PSA 

testing rates have been reported among men living in more socio-economically advantaged and urban areas 

compared to those living in more disadvantaged and rural areas (Calopedos et al., 2019, Dasgupta et al., 

2019).  

Since its introduction in the late 1980’s, reported temporal trends in PSA testing have generally been 

consistent with prostate cancer incidence rates (Hu et al., 2017, Pathirana et al., 2022). For example, 

increases in PSA testing have been followed by increases in prostate cancer incidence (Patasius et al., 2019, 

Kensler et al., 2021, Ko et al., 2022, Luo et al., 2022). Similarly, a decline in PSA testing rates was followed 

by a decline in prostate cancer incidence in many high-income countries (Culp et al., 2020, Pathirana et 

al., 2022, Kohar et al., 2023). In addition, declines in PSA testing in the USA were associated with an 

increase in late stage or aggressive prostate cancer rates (Kelly et al., 2018, Wang et al., 2020).  

To date, only a single study has examined the geographical variation in PSA testing rates at a small area-

based level. Furthermore, this population-based study found substantial variation in PSA testing rates 

between smaller areas across Australia for men aged 50-79 for the period 2017-18 (Kohar et al., 2023). 

The study reported that the distribution of small area testing rates was similar across socio-economic 

categories but generally lower in more remote areas.  

In Australia there is an established association between prostate cancer incidence and PSA testing over 

time, both nationally and within broad geographical areas (Luo et al., 2022, Pathirana et al., 2022, Wah et 

al., 2022). However, very little is understood about the association between small area geographical 

patterns of PSA testing and the corresponding patterns for prostate cancer incidence. This study addresses 
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that gap using population-based data on PSA testing collected by Australia’s Medicare Benefit Schedule, 

compared with whole-population prostate cancer incidence data from the Australian Cancer Database.  

6.6 Methods  

6.6.1 Data  

As part of the Australian Cancer Atlas project (Australian Cancer Atlas 2023), data for all prostate cancers 

(ICD-10 C61) diagnosed among men aged 50-79 years during 1 January 2012 to 31 December 2016 were 

obtained from the Australian Cancer Database which combines data from all state and territory cancer 

registries. Since cancer is a notifiable disease in Australia, this contains all prostate cancers diagnosed. 

Data for the most recent 5-year time period available at the time of data extraction, January 2012 to 

December 2016 were obtained. The data were supplied with Statistical Area Level 2 (SA2) information 

using the 2011 Australian Statistical Geography Standard (ASGS) in 5-year age groups (50-54, 55-59, 60-

64, 65-69, 70-74, 75-79). Ethics approval for the prostate cancer incidence data was obtained from four 

ethics committees (New South Wales Population & Health Services Research Ethics Committee 

(2017/HREC0203), QUT University Human Research Ethics Committee (1600000880), Human Research 

Ethics Committee for the Northern Territory Department of Health and Menzies School of Health Research 

((2016-2720) and the Australian Capital Territory Health Human Research Ethics Committee 

(ETHLR.16.235).  

We obtained data on PSA testing from the Medicare Benefit Schedule (MBS), Commonwealth Department 

of Health, Australia. The data were for all Medicare reimbursed PSA tests received between 1 January 

2012 and 31 December 2016 for men aged between 50 and 79 years. There are four PSA testing-related 

MBS items (66655-56, 66659-60) with 66655 generally regarded as the item that best classifies tests for 

"screening" purposes (Kohar et al., 2023). The other three items are primarily used for follow-up of 

previous prostate disease or for monitoring purposes. The data were supplied with a unique identification 

for each man, postcode of residence and age categorized in 10-year age groups. Ethics approval to access 

these PSA data was obtained from the Griffith University Human Research Ethics Committee (2017/777). 

Analyses of both the PSA screening and prostate cancer incidence data were performed within the Secured 

Unified Research Environment managed by The Sax Institute (The Sax Institute 2023).  

6.6.2 Population  

Estimated annual resident populations by SA2 based on 2011 ASGS boundaries for men aged 50-79 by 5-

year age groups between 2012 to 2016 were obtained from the Australian Bureau of Statistics (ABS) 

(Australia Bureau of Statistics 2023).  
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6.6.3 Concordance and small area allocation  

The SA2s (also referred to here as “small area”) are the smallest area for which the ABS releases age-

specific population statistics. In 2011, there were 2,196 small areas covering the entire geographical area 

of Australia without gap and overlap. SA2s vary in area and population size. During 2012-16, the median 

male population aged 50-79 living in those small areas was 1,353 (IQR: 816, 2,134).  

The prostate cancer incidence data extract included SA2 information. For the MBS PSA data, the only 

recorded geographical information was postcode. These postcodes were converted to the 2011 SA2 

classification using an ABS geographical concordance file (Australia Bureau of Statistics 2012). For each 

postcode, the population proportions of each SA2 within that postcode were used to generate a probability 

distribution, and individual men allocated accordingly to an SA2. This postcode to SA2 allocation was 

carried out 50 times to incorporate randomness due to probabilistic allocation of individuals to SA2. Each 

small areas were assigned an ABS Remoteness Area value (Australia Bureau of Statistics 2011) and an 

Index of Relative Socio-Economic Advantage and Disadvantage quintile (Australia Bureau of Statistics 

2011).  

6.6.4 Exclusions  

Small areas that did not match with the ABS concordance file or had an average annual population of three 

or fewer men aged 50-79 years during 2012-16 were excluded from the analysis (n=37) (Figure SF 6.1(A)). 

Lord Howe Island was also excluded, due to its distance from the mainland, leaving 2158 small areas for 

both prostate cancer incidence and PSA screening data. Additionally, for the PSA data, men were excluded 

from the study if their listed residential postcode was solely identified as a post office box postcode since 

it was impossible to identify the correct small area of the individual’s residence (Figure SF 6.1(B)). We 

removed duplicate PSA screening tests in a single year to count only one test per man per year therefore 

each man could be included a maximum of up to five times in the study period. Due to the probabilistic 

allocation of men receiving PSA screening tests, when more men appeared to receive a screening PSA test 

than resided in an area, the number of men having tests was adjusted to be equal to the population. This 

affected three small areas, removing 0.01% (n=53) of the total men.  

6.6.5 Statistical model for spatial estimates 

We used Bayesian spatial hierarchical models for the spatial analysis because they borrow information 

from neighboring areas to ‘smooth’ the estimates and generate robust and reliable estimates even when 

data are sparse (Kang et al., 2016). The Leroux model has been shown to perform well for both cancer and 

PSA small-area analyses previously (Cramb et al., 2018, Kohar et al., 2023), and is a parsimonious way to 

incorporate both spatially structured (local neighbourhood smoothing) and unstructured (global mean 

smoothing) effects. A spatial weights matrix for the Leroux model was calculated for 2158 small areas. For 

full details on model specifications refer to SFile 1.  
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6.6.6 Data input  

For each small area, and separately for prostate cancer incidence and PSA screening, expected counts 

(based on the Australian average) for men aged 50-79 years were calculated by multiplying the relevant 

age-specific national rate by the age-specific population of each small area, and then summing across all 

age groups. The Poisson regression for Leroux model used the log of the expected counts as the offset for 

each small area. For PSA screening, the expected counts were calculated and used similarly to incidence 

data, however these calculations were carried out for each (n=50) random small area allocations.  

6.6.7 Model computation and testing  

To compute our Bayesian models, we used the CARBayes package (version 5.3) (Lee 2013) in R (version 

4.1.3) (R Core Team (2022) 2022) that implements Markov Chain Monte Carlo (MCMC) methods. Out of 

a total of 150,000 iterations, the first 50,000 were excluded to let the model converge. We then selected 

every tenth sample to reduce autocorrelation between samples, providing a total of 10,000 samples for 

each of the 2158 small areas.  

For PSA screening tests this process was performed for each of the 50 probabilistic allocations, resulting 

in 500,000 estimates for each small area. Subsequently, a median was calculated from these 500,000 

estimates for each small area. Convergence of MCMC chain, indicating that the samples generated are 

similar to the true posterior distribution and are no longer influenced by their initial conditions, was 

checked by visually scanning trace plots of the samples of regression parameter (beta) for both the 

screening (n=50) and incidence (n=1) models (Figure SF 6.2).  

6.6.8 Visualization  

The R package ggplot2 (version 3.3.6) (Wickham 2016) was used for visualizing results. Using a 

combination of maps and graphs we present the SIRs for both prostate cancer incidence and PSA screening 

separately, and also the small-area specific correlation between these SIRs.  

6.6.9 Small area correlation  

The overall correlation between modelled small area-specific PSA screening and prostate cancer incidence 

across Australia, and correlations stratified by broader regions, were calculated using Pearson correlation 

coefficient based solely on the median estimates obtained from the spatial models.  

Bivariate maps  

The bivariate spatial map with insets (showing relatively small but densely populated areas of Australia) 

of greater capital cities was used to visualize the associations between PSA screening tests and prostate 

cancer incidence for many highly populated areas in Australia. The small areas in the map are coloured 

according to the exceedance probabilities for the nine combinations of PSA screening and Prostate cancer 
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incidence: Low (Exceedance probability <0.2), Average (0.2≥ Exceedance probability ≤0.8) and High 

(Exceedance probability >0.8) for PSA screening and prostate cancer incidence (Table ST 5.1).  

Bivariate graphs  

The bivariate scatterplot shows the modeled small-area SIR estimates for PSA screening and prostate 

cancer incidence for Australia and by broad regions. These plots were colour-coded by the same nine 

combinations of Low, Average and High exceedance probabilities described above for the bivariate maps 

where each circle represents a small area.  

6.7 Results  

6.7.1 Exclusions  

There were 73,073 Australian men aged 50-79 diagnosed with prostate cancer in the study period (Figure 

SF 6.1(A)). Forty-six men (0.06%) were excluded due to missing geographical information and in an 

additional to 2 (<0.01%) men from 38 excluded small areas were excluded, leaving 73,025 individuals. 

The average annual age standardized incidence rate was 5.1 prostate cancer cases per 1,000 men.  

In total, 2,703,168 PSA screening tests were undertaken during the study period on 1,671,823 men aged 

50-79 years (Figure SF 6.1(B)). Records of PSA tests were excluded for post office box postcodes (n=181, 

0.75%), duplicate tests (n=346, 0.02%), postcodes not matching to the ABS concordance file (n=11,439, 

0.68%) or low populated small areas (n=91, <0.01%). The final PSA screening dataset included 2,665,656 

screening tests among 1,649,427 men aged 50-79 with an average age standardized participation rate of 

159.5 screening tests per 1,000 men per year.  

6.7.2 Demography  

Nearly half of the male population aged 50-79 years had a PSA screening test at least once during 2012-

2016. Over the same time period, approximately 4.5% of men in this age group were diagnosed with 

prostate cancer (Table 6.1). Those aged 70-79 years had the lowest population percent of screening, with 

45.6 tests per 100 men. Conversely, men aged 60-69 years had the highest rate of screening, with 51.1 tests 

per 100 men. The highest ratio of diagnoses to men tested was observed among men aged 70-79 years, 

with 12.4 diagnoses per 100 tests compared to 0.9 diagnoses per 100 tests in men aged 50-59 years (Table 

6.1).  

Residents of the major cities had the highest percentage of men screened, while those in very remote areas 

had the lowest percentage (Table 6.1 and Figure SF 6.3). Due to the smaller sample sizes, very remote 

areas have more variability in the median estimates, resulting in a larger IQR rather than high uncertainty 

(Figure SF 6.3). However, the proportion of men diagnosed over the total screened was higher in men 

living in very remote areas compared to men living in major cities. There was little difference in the 
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percentage of men screened across categories of socio-economic status. The proportion of men diagnosed 

over the total screened was higher in the most advantaged areas and lowest in the most disadvantaged areas 

(Table 6.1 and Figure SF 6.3).  

6.7.3 Associations or correlation between prostate-specific antigen screening and prostate 

cancer incidence by smaller areas  

There was considerable spatial variation in both PSA screening and prostate cancer incidence between 

small areas across Australia and within most greater capital cities (Figure 6.1 and SF 6.4). For PSA 

screening, 90% of areas had rates likely to differ from the national average, and almost 60% of areas for 

prostate cancer (Table ST 6.2) were likely to differ from the average. Overall, there was a weak (r = 0.1) 

correlation as well as lower value of kappa statistics (< 0) between PSA screening and prostate cancer 

incidence by small areas across Australia during the study period (Figure 6.2). Moreover, kappa statistics 

showed low association when small areas were categorized into one of the nine combinations of 

low/average/high for prostate cancer incidence and PSA screening (Table ST 6.1). Additionally, when 

stratified by area-specific categories, the correlation remained weak across most of the categories, 

including socio-economic status (r = -0.09 to 0.17), remoteness (r = 0.01 to 0.26), greater capital cities (r 

= -0.1 to 0.20) and outside greater capital cities (r = 0.09 to 0.34) (Figure 6.3). Overall, small areas with 

low rates (SIR<0.5) tended to have a wider range of estimates and differed more between prostate cancer 

incidence and PSA screening than areas with high rates (SIR>1.5) (Figure 6.2 and 6.3).  

When small areas were categorized into one of nine combinations of low/average/high for prostate cancer 

incidence and PSA screening, there was a large variation across the categories distributed throughout 

Australia (Figures 6.4 and 6.2). Visually, the map (Figure 4) and bottom left quadrant of scatter plot (Figure 

6.2) were dominated by the areas in dark green that indicate both low prostate cancer incidence and low 

screening (Table ST 6.3). However, these small areas were predominately sparsely populated (15.4% of 

study population), representing 63.6% of the total Australia’s land area, but only 16.7% of the total number 

of mapped small areas.  

In addition, those areas with both high incidence and high screening (top right quadrant; Figure 6.2) 

(presented in red) constituted 11.8% of total areas mapped (Table ST 6.3) and 13.7% of the male population 

aged 50-79 years. These areas are less than 1% of total land area and are mainly from greater capital cities 

of Brisbane, Sydney, Melbourne, Perth, and some areas of Adelaide (Figure 6.4). Furthermore, small areas 

in light green (bottom right quadrant), representing 13.6% of the total small areas (4.7% of total land area) 

with low incidence but high screening rates, accounted for nearly 17% of the population and are mainly 

situated in eastern, south-eastern, and some western parts of Australia (Figure 6.4 and Table ST 6.3). 

Finally, the small areas (11.8% of the total or 4.4% of total land area) which have high incidence-low 

screening rates (top left quadrant) in orange were mainly evident in the north-east of Queensland, south-



186 

 

eastern Australia, and the south-west of Western Australia (Figure 6.4 and Table ST 6.3). These areas 

include small areas both outside and inside greater capital city regions.  

6.8 Discussion  

6.8.1 Interpretation  

To the best of our knowledge, this study is the first of its kind to examine the relationship between PSA 

screening and prostate cancer incidence rates at a small area level in a whole-population setting. The chosen 

methodology was the most suitable when dealing with small numbers. While there was significant 

variability in both screening and incidence rates, our findings reveal very low correlation (r = 0.1) between 

these variables by small areas across Australia. Additionally, the correlation at the small area level remained 

low across the different levels of remoteness and socio-economic status. In the study period it appeared 

that variation in prostate cancer incidence rates at small areas was not related to the prevalence of PSA 

screening.  

This consistently low correlation was surprising, because the temporal patterns of prostate cancer incidence 

has been strongly associated with the temporal patterns in PSA screening in Australia. This was particularly 

evident after the initial listing of PSA as a rebateable item on Medicare in 1988, with a resulting significant 

increase in incidence to a peak in 1993 (McCaul et al., 1995). Notably, studies conducted during that period 

demonstrated a strong correlation between the number of PSA tests performed and the incidence of prostate 

cancer in New South Wales (Smith and Armstrong 1998) and Western Australia (Threlfall et al., 1998). 

The temporal change in rates in prostate cancer incidence from 1993 (first peak) to the early 2000s aligned, 

initially with changes in the way in which prostate biopsy was conducted (Royal Australian College of 

General Practitioners 2012) and then with the reduced frequency of PSA screening (Luo et al., 2022). 

Furthermore, following the modification of the Royal Australian College of General Practitioners' 

guidelines for PSA testing in 2009 (Royal Australian College of General Practitioners 2009) (after the 

second peak in 2008) and 2012 (Royal Australian College of General Practitioners 2012), there was a 

subsequent decline in prostate cancer incidence rates (Pathirana et al., 2022). The Australian situation is 

consistent with the correlation observed between temporal patterns in PSA screening and prostate cancer 

incidence in multiple countries at the national level, including the United States of America (Zhou et al., 

2016), Canada (Zhou et al., 2016), Brazil (Zhou et al., 2016), New Zealand (Zhou et al., 2016) and the 

United Kingdom (Zhou et al., 2016).  

To help with the interpretation of the relationships between screening intensity and prostate cancer 

incidence, we divided areas into categories. There was inconsistency in the relationship between screening 

and incidence. We observed that only 25% of small areas had either a high-high or low-low association 

between PSA screening and prostate cancer incidence. There were 13.6% (n=293/2158) of small areas that 

demonstrated high screening and low incidence, indicating a high level of awareness regarding PSA 
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screening in those areas. Potential explanation for these areas could be that testing prior to the study period 

had already diagnosed cancers in this population, or that organised testing campaigns (Beaumont 2019), 

celebrities backing mass screening programs (Brewer 2021) or dedicated prostate cancer organisation 

organizing annual events (Prostate Cancer Foundation of Australia 2022) may have encouraged higher 

rates of testing. As opposed, there was a group of 11.8% (n=255/2158) of small areas that had low screening 

and high incidence, suggesting again that incidence was not strongly related to screening uptake. However, 

98.4% of small areas in this group are from major cities and regional areas.  

The remaining half of the total small areas (n=1069/2133) displayed no evidence that their rates were 

different to the Australian average for either screening, incidence, or both.  

The lack of an association between testing and incidence could potentially be due to the complexity 

between screening patterns and cancer incidence. Additionally, the low association could be attributed to 

the selected time period, which is approximately two decades after the initial major peak for prostate cancer 

incidence in 1993. It is possible that men at risk may have been detected earlier and subsequently removed 

from the at-risk group during the study period. It is plausible that associations may have been stronger in 

an earlier period preceding our study, although we lack the necessary data to substantiate this claim.  

The changes in diagnostic procedures around 2002 may have also contributed to the dissociation between 

testing and incidence. Specifically, the broad threshold for further investigation of PSA levels 4.0 ng/ml 

was reduced to a range of 2.6-4.0 ng/ml depending more on age-specific ranges. This modification resulted 

in a significant rise in the identification of clinically significant cancers by up to 22% and a corresponding 

59% increase in the number of prostate biopsies conducted in New South Wales between 2000 and 2004 

(Smith et al., 2008). These outcomes highlight the impact of diagnostic protocol changes on prostate cancer 

detection and subsequent clinical interventions. Hence, men screened were potentially diagnosed at an 

earlier time period than they would have been if the threshold value had not been changed, and those men 

were not included in our analysis. It is not clear whether the shift in diagnostic practices would have 

differed by geographic regions in Australia.  

The demographic variations in small areas may have influenced testing behaviour and cancer risk 

differentially in small areas. For example, one potential explanation for the limited correlation could be the 

variation in screening rates and cancer risk between migrant men and Australian-born men. Among most 

migrant groups, prostate cancer incidence rates were lower compared to Australian-born males, particularly 

among males originating from Southern and North-East Asian countries, where incidence rates were 50-

60% lower (Yu et al., 2023). These patterns might be influenced by the lower prevalence of prostate-

specific antigen (PSA) screening reported among urban-dwelling males from East Asia and China, around 

30% and 50% less respectively, compared to Australian-born males (Weber et al., 2014). However, a recent 

analysis based on Medicare claims indicated minimal differences in PSA screening across major migrant 
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groups (Nair-Shalliker et al., 2018). Additionally, it is possible that there is a lower uptake of screening in 

areas with a higher concentration of non-English speaking households (Khan et al., 2021). Future work 

should focus on the association between testing behaviour and cancer incidence in both migrant and first 

nations men.  

In this study, the limited number of observations in small areas, especially for prostate cancer, may pose a 

challenge in establishing a strong association. The size of a correlation can be influenced by the sample 

size, with larger samples generally leading to more stable correlations (Hung et al., 2017). While the 

average number of modelled incident prostate cancer cases in the small areas was 33.8 (range: 0.02-135.2), 

this was below the recommended sample size of at least 150 to 200 for correlation analyses (Hung et al., 

2017). However, numbers were ’borrowed’ between neighbouring areas in the modelling of estimates, 

leading to greater reliability than the low numbers imply.  

While no studies have explored small-area associations between PSA and prostate cancer, several studies 

have explored small-area associations between screening and incidence for other cancer types. For 

instance, a study conducted in the United States identified significant inverse associations between 

colorectal cancer screening and incidence rates (Warren Andersen et al., 2019). Similarly, a study utilizing 

data from the California health care system observed a strong correlation between undergoing screening 

colonoscopy and a decreased risk of death from colorectal adenocarcinomas in the colon and rectum 

(Doubeni et al., 2018). Furthermore, in South Korea, a positive association was found between increased 

incidence rates and the extent of screening practices for thyroid cancer (Park et al., 2016). These countries 

have far higher population numbers than Australia and much greater population density in small areas.  

6.8.2 Strengths and limitations  

This study has several notable strengths. Firstly, the analysis relies on population-based data for both PSA 

screening and prostate cancer incidence, sourced from comprehensive datasets such as Medicare Benefit 

Schedule and the cancer registry in Australia, which capture nearly all cases. Secondly, we employed a 

Bayesian modeling approach, which enables the generation of robust estimates for the underlying spatial 

patterns at the small-area level, while mitigating the impact of random fluctuations often associated with 

small area data. The use of Bayesian spatial models also offers the advantage of flexibility in calculating 

appropriate estimates.  

This study is subject to several limitations that warrant consideration. Firstly, it is important to recognize 

that this is an ecological study, therefore, caution is required when interpreting the results, as unmeasured 

and uncontrolled confounding factors may influence the findings. Additionally, there is a possibility of 

underreporting of some PSA tests due to the nature of Medicare claims, which only capture benefits paid 

to pathology during a single episode of care, referred to as episode coning. This may result in differential 

screening patterns based on geographical factors. For instance, it is plausible that men residing in less 
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accessible areas may combine multiple, more expensive tests into a single visit due to the need to travel 

greater distances to see a general practitioner. The geographical information captured by Medicare is 

limited to the postcode of residence, and although we performed probabilistic allocation, there is a 

possibility of misassignment of postcodes to incorrect small areas. However, to mitigate this issue, we 

conducted the analysis 50 times and considered the median. One potential drawback of spatial smoothing 

is the potential for geographic homogeneity to be established between neighboring places, which may 

make it challenging to distinguish between different small areas. Another limitation is the lack of national 

data on the stage of disease at presentation, which could have provided insights into whether higher 

screening rates were associated with higher incidence of lower risk disease and conversely lower screening 

rates associated with more late-stage disease. Moreover, introducing bias in results when rezoning 

boundaries of areal units or aggregating data from smaller areal units to estimate values for larger units is 

a possibility; this phenomenon is commonly known as the Modifiable Areal Unit Problem (Ye and 

Rogerson 2022). The results presented in this study are valid when using the 2011 ASGS SA2 boundaries 

but may alter under different geographical boundaries.  

6.8.3 Implications  

The findings of this study have important implications, indicating substantial variation in both screening 

practices and incidence rates, but little association between them at the small area level. One of the 

enduring questions about prostate cancer screening is whether it results in lower prostate cancer mortality. 

Based on the lack of correlations in this study it is unlikely this study design would be useful in measuring 

the association between screening intensity and prostate cancer mortality. Measuring the relationship 

between screening and mortality would be further challenged by the long latency period between testing 

and death, the possibility of movement of the population between testing and death. Nevertheless, this 

study design can be valuable in investigating other screening methods and cancer types to determine if 

disparities in access to early detection influence incidence rates and potentially impact outcomes such as 

later stage disease or treatment patterns. 

6.9 Conclusion  

This study is the first to examine the geographical association between PSA screening and prostate cancer 

incidence rates by small areas across Australia. Despite observing consistent temporal trends, the low 

correlation between PSA testing and prostate cancer incidence at the small area level emphasizes the 

intricate interplay between ad hoc testing and disease diagnosis. These findings offer valuable insights at 

both local and national levels. Further research is needed to explore the underlying factors that contribute 

to geographical disparities, allowing for a better comprehension of the drivers behind the variation in 

prostate cancer incidence based on residential location. Additionally, a review and reflection on national 

PSA guidelines are warranted to enhance prostate cancer outcomes in Australia.  
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Table 6.1: Demographic characteristics of men who had at least one Medicare-funded prostate-specific antigen (PSA) 

screening test and those who diagnosed with prostate cancer aged 50-79 years, Australia, 2012-16. 

Data Source Australia 

Bureau of 

Statistics 

Data 

Medicare Benefit 

Schedule Data 

Cancer 

Registry 

Data 

Calculated Data 

Characteristics Estimated 

Resident 

Populationa 

(n) 

PSA 

Screening 

Testsb 

(n) 

Number of 

Men 

Screenedc  

(n) 

Men 

Diagnosedc 

(n) 

Population 

Percent of 

Men 

Screenedd 

(%) 

Proportion of 

Men 

Diagnosed 

over the Total 

Screenede  

(%) 

Australia 3,324,744 2,665,656 1,648,707 73,025 49.6 4.4 

 
      

Age group (years)       

  50 - 59 1,462,362 1,048,087 734,819 6,829 50.2 0.9 

  60 - 69 1,174,675 1,048,854 600,459 27,339 51.1 4.6 

  70 - 79 687,707 568,715 313,429 38,857 45.6 12.4 

 
      

Remoteness       

  Major City 2,192,526 1,812,150 1,119,394 48,080 51.1 4.3 

  Inner Regional 714,011 560,298 345,641 16,176 48.4 4.7 

  Outer Regional 349,170 259,244 161,627 7,638 46.3 4.7 

  Remote 45,333 25,650 16,229 817 35.8 5.0 

  Very Remote 23,703 8,314 5,816 314 24.5 5.4 

       

Socio-Economic Statusf       

  Most Advantaged 666,884 523,660 326,064 16,527 48.9 5.1 

  Advantaged 638,163 528,300 324,842 14,212 50.9 4.4 

  Middle SESg 693,053 562,934 346,906 14,939 50.1 4.3 

  Disadvantaged 677,042 549,265 338,247 14,495 50.0 4.3 

  Most Disadvantaged 649,243 501,218 312,468 12,837 48.1 4.1 

 

a Average estimated resident population of Australian men aged 50-79 for 2012-16.  
b One test per man per year.  
c Men counted once over 2012-16. 
d Ratio of Number of men tested and Estimated Resident Population.  
e Ratio of Men Diagnosed and Number of Men Tested.  
f 279 PSA tests were excluded for postcodes that could not be allocated an Index of Relative Socio-Economic Advantage and 

Disadvantage.  
g SES = Socio-Economic Status.  
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Figure 6.1: Spatial variation* in standardized incidence ratios of prostate-specific antigen screening and prostate cancer incidence by small areaa,b for men aged 50-79 years, 

Australia, 2012-16. 

           

a Insets show capital cities of each state and territory. 
b NT – Northern Territory, WA – Western Australia, SA – South Australia, Tas - Tasmania, Qld - Queensland, NSW – New South Wales, ACT – Australia Capital Territory, Vic - Victoria 

*Spatial maps, including insets for capital city regions, show blue and red shades representing modeled SIRs that are lower (SIR<1) and higher (SIR>1) than the 

Australian average (SIR=1) in yellow respectively. For spatial maps and insets, the small areas that have SIR values below 0.67 and above 1.5 were truncated at 

those values. 
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Figure 6.2: Small area correlationa between prostate cancer incidence and prostate-specific antigen screening for men aged 50-79, Australia, 2012-16. 

 

a Low: Exceedance probability < 0.2, Average: 0.2 ≤ Exceedance probability ≥ 0.8, High: Exceedance probability > 0.8.
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Figure 6.3: Associateda correlation between small areas of prostate cancer incidence and prostate-specific antigen 

screening for men aged 50-79 during 2012-16 by (A) Socio-Economic Status, (B) Remoteness, (C) Greater Capital 

Cities, (D) Outside Greater Capital Cities. 

(A) Socio-Economic Status 

 

  (B) Remoteness 
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(C) Greater Capital Cities  

 

(D) Outside Greater Capital Cities 

 

 

a Low: Exceedance probability < 0.2, Average: 0.2 ≥ Exceedance probability ≤ 0.8, High: Exceedance probability > 0.8.
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Figure 6.4: Spatial associationsa between prostate cancer incidence and prostate-specific antigen screening by 

small areab,c for men aged 50-79 years, Australia, 2012-16. 

 

a Low: Exceedance probability < 0.2, Average: 0.2 ≥ Exceedance probability ≤ 0.8, High: Exceedance probability > 0.8.  
b Insets show capital cities of each state and territory. 
c NT – Northern Territory, WA – Western Australia, SA – South Australia, Tas - Tasmania, Qld - Queensland, NSW – New 

South Wales, ACT – Australia Capital Territory, Vic - Victoria 
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6.11 Supplementary material 

Figure SF 6.1: (A) Flowchart displaying selection of prostate cancer incidence cases for men aged 50-79, 2012-

16, Australia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a n = Number of men diagnosed  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Men diagnosed with prostate cancer 

na = 73,073  

 Missing geographical information  

n = 46 from 10 small areas  

 
Diagnosed among small areas 

n = 73,027  

 

Men in Analysis 

n = 73,025 

 

38 Small areas have men population <= 3 

n = 2  
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(B) Flowchart displaying selection of prostate-specific antigen (PSA) screened men aged 50-79, 2012-16, 

Australia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a r = Number of prostate-specific antigen screening tests  

b n = Number of men tested 

 

 

 

 

 

 

 

 

 

PSA Tests among men 50-79 years old 

ra = 2,703,168, nb = 1,671,823  

 
Post office boxes 

r = 20,186 , n = 14,033  

Tests among Identified Postcodes 

r = 2,682,982, n = 1,659,583  

 

One Test Per Man Per Year 

r = 2,682,575, n = 1,659,583  

 
Not matched with ABS concordance file 

r = 16,828, n = 11,439  

 
Matched Dataset 

r = 2,665,747, n = 1,649,477  

 

Duplicate screening tests 

r = 407, n = 346  

38 Small areas have men population <= 3 

r = 91, n = 50  

 
Tests and men in Analysis 

r = 2,665,656, n = 1,649,427  
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File SFile 1: Leroux Model 

y𝑖  ~ Poisson(E𝑖θ𝑖) 

log(θ𝑖) = Intercept + S𝑖 

Intercept ~ 𝒩(0, 100000) 

𝑆𝑖|𝑆\𝑖 ~ 𝒩 (
𝜌 ∑ 𝑤𝑖𝑗𝑠𝑗𝑗

𝜌 ∑ 𝑤𝑖𝑗 + 1 −𝑗 𝜌
,

𝜎𝑠
2

𝜌 ∑ 𝑤𝑖𝑗 + 1 − 𝜌𝑗
) 

σs
2 ~ InverseGamma(1, 0.01) 

ρ ~ Uniform(0, 1) 

i     = 1 to 2129 small area 

j     = Neighboring small area of i 

y𝑖   = Count data 

E𝑖  = Expected counts 

θ𝑖  = Standardized incidence ratio 

Intercept = Overall fixed effects 

𝑆𝑖   = Structured spatial random effects 

𝜌    = Spatial dependence parameter 

𝜎𝑠
2  = Variance parameter 

𝑤𝑖𝑗 = Elements of spatial weight matrix , 

      = {
1 if areas 𝑖 and 𝑗 are adjacent

0 otherwise                                 
 

𝑠𝑗   = Spatial autocorrelation random effects 
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Figure SF 6.2: Trace and density plot showing Markov Chain Monte Carlo samples distribution of beta 

parameters for prostate cancer incidence and prostate-specific antigen screening. 

 

(A) Prostate cancer incidence 

 

(B) Prostate-specific antigen Screening 
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Table ST 6.1: Description of kappa statistics in each category between prostate cancer incidence and prostate-

specific antigen screening. 

Exceedance 

probability of 

prostate cancer  

incidence (PCI) 

High (> 0.8) 0.0 0.0 < 0.01 

Average  

(0.2 ≤ PCI ≥ 0.8) 0.0 0.0 0.0 

Low (< 0.2) < 0.0 0.0 0.0 

 Low (< 0.2) 
Average  

(0.2 ≤ PSA ≥ 0.8) 
High (> 0.8) 

Exceedance probability of prostate-specific antigen (PSA) screening 
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Figure SF 6.3: Boxplots* showing small area median standardized incidence ratio estimates by (A) Socio-economic status, (B) Remoteness, (C) States / Territories, (D) Outside 

Greater Capital Cities Vs Greater Capital Cities for prostate cancer incidence and prostate-specific antigen screening, 2012-16. 

Prostate Cancer Incidence Prostate-Specific Antigen Screening 

(A1) Socio-economic status 

 

(A2) Socio-economic status 

 

(B1) Remoteness 

 

(B2) Remoteness 
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(C1) States / Territories 

 

(C2) States / Territories 

 

(D1) Outside Greater Capital Cities Vs Greater Capital Cities 

 

(D2) Outside Greater Capital Cities Vs Greater Capital Cities 

 

Prostate cancer incidence ratio Prostate-specific antigen screening ratio 

Note: Australian average is represented as red vertical line at SIR = 1 
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*Area-specific boxplot shows inconsistent patterns in socio-economic status as the distribution of small area-specific incidence rates are higher among most 

advantaged areas compared with most disadvantages areas, however there was less variability in the distributions of PSA screening by area disadvantage (Figure 

SF 6.3). In addition, the remoteness patterns for incidence and screening were consistent where rates decrease gradually from major city to very remote area 

however screening is more pronounced than incidence. No specific pattern was noted between outside and inside greater capital cities, incidence and screening 

ratios were nearly equal to Australian average.  
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Figure SF 6.4: Exceedance probabilities* of prostate cancer incidence and prostate-specific antigen (PSA) screening by small areaa,b, Australia, 2012-16. 

             

a Insets show capital cities of each state and territory. 
b NT – Northern Territory, WA – Western Australia, SA – South Australia, Tas - Tasmania, Qld - Queensland, NSW – New South Wales, ACT – Australia Capital Territory, Vic - Victoria 

*The exceedance probability map shows the posterior probability of the area-specific SIR being higher than 1 (national average). Green and purple represent those 

small areas that likely to be genuinely lower (exceedance probability <20%) or higher (>80%) rates than the national average.  
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Table ST 6.2: Comparison of 2158 small areas by exceedance probabilities for prostate cancer incidence and 

prostate-specific antigen screening, Australia, 2012-16. 

Exceedance probabilities Number of small areas for 

prostate cancer incidence  

(n (%)) 

Number of small areas for 

prostate-specific antigen 

screening (n (%)) 

< 0.2 706 (32.7) 1048 (48.6) 

0.2 ≤ EP ≥ 0.8 879 (40.7) 214 (9.9) 

> 0.8 573 (26.6) 896 (41.5) 

TOTAL 2158 (100) 2158 (100) 

 

 

Table ST 6.3: Comparison of 2158 small areas by categories of association between prostate cancer incidence 

(PCI) and prostate-specific antigen (PSA) screening rates, Australia, 2012-16. 

Characteristics Number of small 

areas  

(n (%)) 

Land areaa 

(%) 

Average Median 

SIRb  

(PCI – PSA) 

Prostate cancer incidence - Prostate-specific antigen screening 

Low - Low 361 (16.7) 63.6 0.80 - 0.69 

Low - Average 52 (2.4) 20.3 0.81 - 0.99 

Low - High 293 (13.6) 4.4 0.81 - 1.22 

Average - Low 432 (20.0) 0.4 1.00 - 0.75 

Average - Average 99 (4.6) 0.7 1.01 - 0.99 

Average - High 348 (16.1) 0.3 1.00 - 1.24 

High - Low 255 (11.8) 4.7 1.23 - 0.79 

High - Average 63 (2.9) 4.9 1.22 - 1.00 

High - High 255 (11.8) 0.7 1.23 - 1.21 

a Sum of land area of Category / Total area of Australia * 100 

b SIR means Standardized Incidence Ratio.  
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CHAPTER 7 

 

7 DISCUSSION AND CONCLUSION 

7.1 Chapter overview 

Chapter 7 of the thesis provides an overview of the entire thesis and summarizes the key findings. The 

implications and significance of these findings are addressed, along with the strengths and limitations of 

the research. Overall, the thesis provides essential insights into PSA testing for prostate cancer and 

identifies disparities that can inform evidence-based strategies for addressing them.  
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7.2 Overview of the thesis  

Using PSA tests to screen for prostate cancer has both champions and opponents and remains 

controversial. Prior to this thesis, there was limited understanding of PSA testing uptake across Australia. 

This thesis utilizes the comprehensive Medicare Benefit Schedule dataset, encompassing almost all male 

residents of Australia, to offer unique insights into testing patterns for prostate cancer and shed light on 

geographical and temporal disparities in these patterns. This objective is achieved through four distinct 

steps. Firstly, the study describes the patterns and trends of Medicare-funded PSA testing tests nationally, 

by state and territory, remoteness of residence, and socio-economic status. Secondly, the research 

quantifies the geographical variability in PSA testing rates across small geographical areas in Australia. 

Thirdly, it investigates how the geographical variation in PSA testing rates among smaller areas has 

evolved over time in Australia. Lastly, the study quantified the geographical association between PSA 

testing and prostate cancer incidence rates at the small area level in Australia. In conclusion, this thesis 

presents a comprehensive overview of geographical and temporal variation of PSA testing for prostate 

cancer, providing novel information useful for the development or implementation of evidence-based 

strategies to address disparities in prostate cancer indicators and outcomes across Australia.  

7.3 Recapitulation  

7.3.1 Introduction and background (Chapter 1) 

This chapter provides an overview of the epidemiology, background issues and associated concerns 

regarding prostate-specific antigen (PSA) testing and prostate cancer incidence, both in Australia and 

worldwide. While this chapter does not contain novel findings it sets out the context for why an 

examination of PSA testing rates by small areas is important. Prostate cancer is the most prevalent cancer 

in Australia and holds a similar rank in developed countries. This is likely due, in part, to PSA testing. 

Although guidelines offer recommendations for PSA testing at a national level, it seems that geographical-

based outcomes, such as incidence rates, may be influenced by differences in detection practices. 

Evidence from international randomized controlled trials, including ERSPC, PLCO, and CAP, indicate 

that the harms of PSA testing likely outweigh the benefits. This evidence is crucial in guiding our current 

approach to quantifying the patterns of PSA testing behavior in Australia. Differential usage of PSA is 

likely responsible for the observed variations across countries and over time. Overall, this chapter 

establishes the foundation for comprehending the complexities and controversies surrounding PSA testing 

and prostate cancer in the subsequent chapters. 

7.3.2 Literature review of spatial and spatio-temporal models (Chapter 2) 

This chapter provides an overview of various approaches for smoothing spatial and spatio-temporal data, 

with a particular emphasis on Bayesian models. It discusses their advantages, disadvantages, and 

considerations when selecting a model for analysis. The choice of model appropriateness depends on the 
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trade-offs between smoothness, interpretability, and computational efficiency. Bayesian models offer 

benefits such as the incorporation of prior information and the ability to handle limited case counts. 

Considering the objectives of the analysis in chapters 3 to 6 and the structure of the MBS data, this chapter 

serves as a practical guide for selecting the most suitable models. These include conditional 

autoregressive models, the Leroux spatial model, and the Separate spatial model. These models assume 

a common variance for the smoothing term across the entire region while allowing for local smoothing 

in neighboring areas. Moreover, the selected models are parsimonious and possible to implement using 

free, readily-available software. The decision to choose these models was based on a careful consideration 

of the data type and the advantages they offer in capturing random effects.  

7.4 Key Findings  

7.4.1 Consistent prostate-specific antigen testing trends by broad region (Chapter 3)  

We found consistent trends in PSA testing over time throughout Australia, states and territories, 

remoteness groups, and socioeconomic status levels. However, the magnitude of PSA testing rates varied 

across different geographical regions. This suggests that while national clinical practice guidelines for 

PSA testing are broadly followed, there is regional variation in the manner and extent to which they are 

applied. Disparities in socioeconomic status at the area level have decreased over the past decade, but 

disparities between rural and urban areas persisted. Men living in remote areas were less likely to be 

tested compared to those residing in major cities. While not available in this study, having data on men's 

testing intentions could have provided further clarity, revealing the underlying reasons for seeking or not 

seeking testing, as well as identifying factors contributing to low testing rates in rural areas, such as 

limited healthcare facilities or longer travel times. 

Additionally, there were differences in the prevalence of PSA testing among population groups during 

two different time periods: 2014-2018 and 2005-2009. Men between the ages of 50 and 59 exhibited 

higher testing rates compared to those aged 60-69. Data on shared decision making could have revealed 

underlying reasons for age and time-specific variation, such as the influence of general practitioners, 

persuasion by general practitioners or their peer group, or men's awareness about PSA testing. 

7.4.2 Large variation in spatial patterns of prostate-specific antigen testing (Chapter 4)  

We found significant variation in PSA testing rates across Australia, as well as within broader regions 

encompassing diverse socioeconomic groups, remoteness categories, and states and territories.  

The findings indicated that, overall, there were no noticeable variations in the distribution of PSA testing 

rates in small areas when examined across different socioeconomic status. This pattern held true for both 

greater capital cities and areas outside the greater capital cities. However, contrasting patterns by 

socioeconomic status were observed in Hobart and Adelaide which had strong gradients by SES (higher 
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PSA testing in affluent areas) compared to the more densely populated capital cities, such as Sydney, 

Melbourne, and Brisbane, where minimal variation was observed. Furthermore, substantial heterogeneity 

present within these broader regions, with some "disadvantaged" small areas exhibiting higher PSA 

testing rates compared to some "advantaged" small areas, and vice versa. Similarly, not all small areas 

within remote and very remote categories demonstrated lower PSA testing rates compared to the national 

average. These results emphasize the importance of investigating geographical variation at smaller scales, 

as neglecting heterogeneity within larger regions would overlook crucial insights.  

The outcomes of this study potentially suggest the influence of local area factors, such as testing 

campaigns, on PSA participation. Moreover, previous research has shown that testing rates can be 

influenced by general practitioners' attitudes, perspectives, and practices regarding PSA testing, as well 

as accessibility to primary care practitioners, and the differences in knowledge, attitudes, and behaviors 

of Australian men based on their geographical location. Furthermore, these findings are consistent with a 

range of diverse influences likely impacting decision-making processes concerning PSA testing across 

different regions of the country.  

Additionally, there exists ambiguity between the recommendations of Prostate Cancer Foundation of 

Australia (PCFA) and the Royal Australian College of General Practitioners (RACGP) PSA testing 

guidelines, as subtle differences in wording send different messages to general practitioners regarding the 

approach to testing in Australian men. All of these results are consistent with the hypothesis that 

Australian men are not receiving equal opportunities to be tested based on where they live; otherwise, we 

would expect only a small amount of geographical variation in testing.  

7.4.3 Variation in spatio-temporal patterns of prostate-specific antigen testing (Chapter 

5)  

We found substantial evidence that the geographic variations in PSA testing rates have changed over time. 

These small-area geographic patterns of PSA testing varied substantially over time, with the most 

significant changes observed in densely populated areas, while rates remained consistently low in many 

remote areas. Our study is the first of its kind to examine testing rates at the small-area level over time. 

Notably, not all small areas followed the same temporal trend. Between 2002 and 2008, nearly half of the 

smaller areas showed an increase in testing rates, while almost 29% experienced a decrease from 2009 to 

2018. These changes were primarily observed in major cities and regional areas. Some of the geographical 

differences in temporal trends aligned with trends previously noted in broader geographical regions, but 

not all.  

The variation in PSA testing rates over time suggests the existence of disparities among small areas of 

Australia, both geographically and temporally. This is consistent with men not receiving equal 

opportunities to make shared decisions regarding testing depending on where they live.  
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7.4.4 Low spatial association between prostate-specific antigen testing and prostate 

cancer incidence (Chapter 6)  

We observed considerable geographic variability in both testing and incidence rates, but there was a low 

correlation (r = 0.1) between these variables across small areas in Australia. This suggests that PSA testing 

does not appear to be associated with the variation in prostate cancer incidence at the small-area level. 

Furthermore, the correlation remains low even when stratifying by area-specific factors such as 

remoteness and socioeconomic status. 

The low correlation underscores the complex interaction between PSA testing and prostate cancer 

diagnosis. This indicates that there must be some other underlying factors or reason influencing their 

relationship at the smaller area level. One possible explanation for the lack of a strong association could 

be attributed to the selected time period, which is approximately two decades after the initial peak in 

prostate cancer incidence in 1993. It is possible that men at risk were detected earlier and subsequently 

excluded from the at-risk group during the study period. 

7.5 Strengths and limitations  

7.5.1 Strengths  

This research study has several notable strengths. Firstly, it utilized population-based data from the 

Medicare Benefit Schedule, covering the entirety of Australia over a period of 17 years from 2002 to 

2018. This comprehensive dataset effectively captured the majority of PSA tests conducted among 

eligible Australian males, thereby avoiding the limitations associated with self-reported data (Zavala et 

al., 2016). Furthermore, by using an administrative population-based dataset, the likely occurrence of 

missing data was minimised.  

Additionally, the analysis incorporated population-based data on prostate cancer incidence, sourced from 

the Australian Cancer Database, which through the state- and territory-based cancer registries is 

considered to provide a comprehensive record of all cases of prostate cancer diagnosed within the country 

(Australian Institute of Health and Welfare (AIHW) 2023).  

Another significant strength of our study lies in the utilization of a Bayesian modeling approach. While 

various modeling options were available, we opted for the Bayesian approach due to its robustness in 

handling the unique characteristics of data based on smaller geographical areas. The Bayesian modeling 

approach has the ability to incorporate information from neighboring geographical areas, generating 

smoothed estimates for small areas that are considered to have greater stability and precision for the 

underlying small-area rates, along with measures of uncertainty. By employing this approach, the reported 

estimates in this study were not unduly influenced by random fluctuations associated with small-area data 
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(Duncan et al., 2017). Furthermore, the application of Bayesian spatial models offered the advantage of 

flexibility in specifying the parameters in the model to calculating appropriate estimates.  

Previous reports have described PSA testing trends in Australia. To provide a more relevant interpretation 

of our results, we imposed a restriction of one test per man per year, mitigating the impact of multiple 

tests within the same year. This approach allowed us to focus on a person-based testing history, 

specifically examining the annual number of men screened, as opposed to the total number of screening 

tests administered reported in other studies (Pathirana et al., 2022). This method provided reliable 

estimates when considering the participation in PSA testing by Australian men compared to artificially 

inflated estimates, minimizing the potential for biased results.  

7.5.2 Limitations 

This study is subject to several limitations that necessitate careful consideration. Firstly, the claims made 

through Medicare are restricted to pathology benefits paid during a single episode of care, known as 

episode coning. This means that only the three most expensive pathology items within a care episode can 

be claimed at once, potentially leading to an under-reporting of pathology tests in less accessible areas 

(Hajati et al., 2018). This coning practice may have influenced the observed results, as men residing in 

regional and remote areas who travel longer distances to see a general practitioner may need to combine 

multiple tests during a single visit (Trevena et al., 2013). It has been estimated that up to 19% of PSA 

tests may be coned and thus not included in the Medicare data (Trevena et al., 2013). It is also possible 

that coning leads to differential testing patterns based on geography. However, the extent to which coning 

varies by geographical area remains unknown.  

Furthermore, the available Medicare data only captured the postcode of residence, meaning that there was 

an additional measure of uncertainty of the final estimates due to the imprecision of the postcode to SA2 

concordance and possible misassignment of postcodes to SA2 areas. To address this, we employed 

probabilistic allocation to transform postcodes into small areas (statistical area level 2), and then 

conducted the Bayesian analysis 50 times, combined the MCMC iterations, and considered both the 

median and the distribution of those combined iterations to quantify the greater uncertainty. Additionally, 

it should be noted that the correspondence between postcode and SA2 was not specific to age or sex, so 

it is possible that the probabilities were not always reflective of the 50-79 year old males in our cohort 

due to the individual demographic characteristics of the small areas in the study. 

The study timeframe itself was defined due to the availability of data and to focus on more contemporary 

data. However, it means that we did not have information about the time period when PSA testing was 

initially introduced and reimbursed by Medicare during the late 1980s and 1990s. It is likely that the early 

uptake of the test in certain areas during the "early PSA era" would have influenced the long-term testing 

behaviors of men still living in those area, thus making it difficult to determine which areas were "early 

adopters" of PSA testing prior to the study period. 
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Another limitation arises from the fact that the design is an ecological study, which requires careful 

interpretation of the results due to the potential impact of unmeasured and uncontrolled confounding 

factors on the findings. Ecological studies are vulnerable to the ecological fallacy, where data analyzed 

at a group level are mistakenly assumed to apply at the individual level, leading to potential shortcomings 

or biases in the results (Sedgwick 2014). Adjusting for confounding factors that influence the outcome is 

not feasible in ecological studies. As a result, an observed correlation or, as was the case in this study, the 

absence of a correlation can be misleading. That we did not observe a correlation between PSA testing 

and prostate cancer incidence at the small area level does not mean no association exists; more that we 

have not been able to capture the specific association with the data we were using.  

Furthermore, the lack of national data on the stage of disease at the time of diagnosis for prostate cancer 

is a limitation for the geographical correlation analyses, as comparing localized cancers to PSA testing 

patterns could have offered greater insights into whether testing was being excessively used in certain 

areas. In Australia, Cancer Australia has explored the potential of collecting and reporting national data 

on the stage of certain types of cancer at diagnosis, including prostate cancer, based on pathology records 

(National Cancer Control Indicator 2018). However, this is currently only available at a national level for 

the 2011 calendar year.  

It is worth noting that one potential drawback of spatial smoothing is the assumption of geographic 

homogeneity between neighboring areas, which can present challenges in distinguishing between 

different small areas. Bayesian spatial models incorporate information from neighboring geographical 

areas, resulting in smoothed estimates for small areas. This assumption is based on the idea that 

individuals residing in one area share similar characteristics with those in the surrounding areas (Leroux 

et al., 2000, Cramb et al., 2020, Lines et al., 2022). However, the Localised model performed poorly in 

spatial analysis and yielded misleading results.  

In future analyses, it is worth considering alternative approaches for Bayesian spatial modeling, such as 

Geographically Weighted Regression (GWR) models. The Bayesian GWR model separately samples for 

each location, which means that the parameter dimension does not scale with the number of locations, 

irrespective of the generalized linear model employed (Liu Y et al., 2023). This model works on the 

principle that it reduces random errors but introduces systematic errors. Various variants of the GWR 

model exist, differentiated by their approach to estimate calculation, such as using weighted log-

likelihood (Liu Y et al., 2023) or weighted least squares (Ma et al., 2020). However, they come with 

certain limitations, including computational cost, potential inference challenges in case of limited 

observations, and the use of a globally fixed geographical bandwidth. The latter can be problematic when 

the true data generating process varies considerably in some areas but only slightly in others (Liu Y et al., 

2023).  
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GWR models examine how a relationship varies spatially, making them applicable to models with 

covariates. They are well-suited for exploratory analyses rather than serving as a formal model (Brunsdon 

et al., 1996). Extensions to the GWR model include the Multiscale Geographically Weighted Regression 

(MGWR) and Geographically Weighted Multivariate Multiple Regression (GWMMR). The former 

model offers a flexible and scalable framework for examining multiscale processes, while the latter 

analyzes multiple interrelated response variables and considers correlations across multivariate responses. 

Lastly, the data utilized for this study was obtained in the fourth quarter of 2019, and no updated data 

extract was available before the completion of the study. However, in Australia, during the first half of 

2020, there was a significant decrease in PSA testing rates across all states and territories associated with 

the outbreak of the COVID-19 virus (Cancer Australia 2020). This means that by focusing on a period 

preceding the COVID-19 pandemic, it enabled us to examine the underlying patterns of PSA testing 

independently of any behavioral changes resulting from COVID-19 management directives.  

7.6 Implications and significance of research findings  

This thesis makes a significant contribution to the current understanding of prostate-specific antigen 

(PSA) testing patterns across Australia, specifically within smaller geographical areas. We observed 

substantial variation in the utilization of PSA testing across smaller areas of Australia, both spatially and 

temporally. Furthermore, our findings indicate that men residing in smaller areas of major cities exhibited 

higher testing rates in comparison to those residing in remote areas, but testing rates were consistent 

across socioeconomic categories.  

There was a notable lack of published studies documenting changes in PSA patterns at smaller areas 

across the country and variations within area-specific categories such as remoteness and socioeconomic 

status, so this study fills an important gap in knowledge.  

While several studies have described PSA patterns at a national level or in broad areas such as by state, 

territory, or socioeconomic status (Calopedos et al., 2017, Luo et al., 2022, Pathirana et al., 2022), the 

research conducted in this thesis aims to address these knowledge gaps by providing information for 

smaller areas within those large regions. Clinicians and policymakers can utilize these findings as 

evidence to interpret different outcomes of PSA testing for prostate cancer. Our results suggest significant 

variation in PSA testing rates. Therefore, targeted campaigns focusing on improved education and 

communication regarding informed decision-making for men can be implemented in areas that have been 

identified as being higher or lower than the national average, potentially reducing geographical disparities 

in the coming years.  

The results of this study have provided a comprehensive national perspective on the geographical and 

temporal variations in PSA testing across Australia and its association with observed geographical 

patterns in prostate cancer incidence. This will have the following implications:  
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• Establishing a robust and ongoing evidence base to support advocacy efforts aimed at reducing 

inequalities across Australia is crucial. Testing is just the beginning; our goal is to ensure that men 

have equal opportunities for informed decision-making, follow-up, support, and treatment in 

relation to prostate cancer wherever they live.  

• Useful evidence for the current review of the Australian PSA testing guidelines. Our study provides 

valuable insights into the changing patterns of PSA testing at the small area level in Australia over 

time. While the guidelines are provided at a national level, our results highlight that there must be 

different, currently unmeasured, factors that impact on the participation in PSA testing by 

Australian men. Our research findings highlight the importance of effective communication and 

engagement with health professionals and the general public to ensure the rationale and 

recommendations within current guidelines is widely understood.  

• Motivating and directing research efforts towards understanding and addressing the underlying 

causes of observed geographical disparities in participation in PSA testing.  

• Informing health planners and government policymakers at both state and national levels to allocate 

resources based on the best available evidence. The results of this study and the variation in 

geographic patterns do not necessarily imply over testing or under testing. The difference in testing 

rates are suggestive of differences in behaviors of health care providers and men. While informed 

decision-making regarding PSA testing remains the recommended the approach from peak bodies, 

the challenge is to ensure that the process is equally available to all men, irrespective of where they 

live. So, resources should be allocated to better inform GPs and raise awareness among men. For 

instance, helping health professionals and the general public better understand the significance of 

prostate cancer and the process of PSA testing information in the management of prostate cancer 

is crucial (Chiam et al., 2023).  

Furthermore, this work has the potential to motivate international research collaborations to examine how 

spatial patterns in PSA testing vary between countries. PSA testing has been common in many developed 

countries for the last three decades. Little has been done at the international level to evaluate PSA testing 

levels and the association with prostate cancer incidence. The results of our analyses will hopefully 

motivate other similar studies internationally utilising similar methods to enable direct comparisons 

between the findings.  

For Australian policymakers, the Australian Cancer Atlas already serves as a trusted and nationally 

uniform evidence base for making informed decisions regarding broad-based health and spatial 

inequalities. With appropriate approvals of the data custodians, the results of this study have the potential 

to be included within this existing online platform to enrich the wider understanding of PSA testing 

patterns and their geographic distribution across the country. This enhanced knowledge can assist 
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policymakers in formulating targeted interventions, strategies to address any identified disparities, 

ensuring that decisions about testing are equally available across the country.  

Australian guidelines on PSA testing are national in scope. While specific recommendations focus on 

men at higher risk of prostate cancer, they do not suggest different approaches by socio-demographic or 

geographic characteristics. Therefore, the geographical variability described in this study is either 

suggestive of variation in practices in primary care or variation in attitudes of individual men. Variation 

in clinical practice is not ideal as it can cascade into real differences in outcomes. Future developments 

in guideline development, communication and dissemination should take note of the variations in testing 

practice by geography and tailor resources appropriately.  

7.7 Future directions for research in PSA testing 

To gain a deeper understanding of the variation in PSA testing rates, the following research directions are 

highly recommended based on the findings of this research:  

7.7.1 Exploring the influence of age groups on geographical and temporal patterns in 

PSA testing 

Currently, the highest prevalence of PSA testing in Australia is observed among individuals aged 55-64 

(Calopedos et al., 2017). However, the geographical patterns of PSA testing across different age groups 

remain unknown. To address this gap, Bayesian spatial and spatio-temporal models can be utilized to 

examine how age groups influence these patterns. This can be achieved by conducting stratified analyses 

or incorporating additional interaction terms involving spatial and temporal parameters. Furthermore, a 

future research project using these data could also explore spatial variations in testing utilization beyond 

the recommended PSA testing age groups to identify geographical areas where over-testing is more 

prevalent, such as regions where men under 40 or over 80 are screened at high rates.  

7.7.2 Identifying key novel methods to extend research on observed geographical and 

temporal patterns in PSA testing 

To explore the factors underlying geographical variation in PSA testing prevalence, an important step is 

to incorporate information about the characteristics of small geographical areas into spatial models. These 

ecological factors may include measures of distance from major services, area disadvantage, and 

accessibility to specific healthcare services. Additionally, it would be valuable to consider the area-

specific demographic characteristics such as the percentages of men from non-English speaking 

backgrounds, those who identify as First Nations individuals or where gender diversity is more common. 

All of which may have an influence in early detection related behaviours. Furthermore, conducting a 

comparative analysis can provide insights into the ecological factors associated with areas exhibiting very 

low PSA testing rates in comparison to those with very high rates.  
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The growing use of extensively linked datasets also opens up further possibilities for answering policy 

relevant research questions regarding prostate cancer testing and prostate cancer outcomes. Large, linked 

datasets, that can identify and track an individual’s testing history, cancer registration, hospital 

admissions, radiotherapy episodes, pharmaceuticals use, Medicare reimbursements and death information 

are already being trialled or used in some jurisdictions (O'Callaghan et al., 2021, Cancer Institute NSW 

2022). While still in their infancy these resources are likely to offer many advantages over and above 

ecological analysis in the future.  

It is also important to examine other factors that would not be collected in standard datasets, such as 

psychosocial and cultural factors at the individual level. These might require more a mixed methods type 

of approach, including the possible use of artificial intelligence methods to synthesize large amounts of 

qualitative data.   

7.7.3 Investigating intentions to undergo PSA testing 

In-depth qualitative analysis is recommended to investigate men's intentions to undergo PSA screening 

test, as the currently available data lacks information in this regard. Understanding the factors that 

influence men's decision-making processes regarding PSA testing can provide valuable insights into 

whether areas with low testing rates reflect missed opportunities or if areas with high testing rates reflect 

over-servicing. Face-to-face, online and telephone interviews would be one option, as they would likely 

yield higher completion rates and ensure a higher level of result authenticity (Curasi 2001, Vogl 2013). 

Research questions targeted towards men residing in all remoteness categories, socioeconomic categories, 

and men aged 40 to 80, as this would encompass a broad range of individuals.  Questions could include: 

How did you become aware of PSA testing? Did you have prior knowledge about PSA before undergoing 

the test? Do you want to undergo the PSA test? What are your reasons for wanting to undergo the test? 

What are your reasons for not wanting to undergo the test? Do you believe PSA testing can save your 

life? Has your general practitioner offered you a test? How often do you intend to undergo testing in the 

future?  

7.7.4 Researching attitudes and behaviors of general practitioners 

In addition to investigating men's intentions to undergo PSA screening tests, it is also important to 

research the attitudes and behaviors of general practitioners. Understanding how healthcare providers 

perceive and approach PSA testing can provide valuable insights into the factors influencing testing 

practices. Previous studies have examined general practitioners' practices regarding prostate-specific 

antigen (PSA) testing at a national level in the UK and Australia (Pickles et al., 2016), including variation 

in communication with men regarding PSA testing (Pickles et al., 2018) and their approach to PSA testing 

and overdiagnosis (Pickles et al., 2015). Furthermore, exploring general practitioners' attitudes nationally 

on a large scale and within smaller geographical areas is likely to provide even greater insights. However, 

this area presents challenges due to poor response rates in primary care research. Obtaining 
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comprehensive and representative data from general practitioners can be difficult, and addressing this 

issue is crucial for a more comprehensive understanding of the factors influencing PSA testing decisions. 

Efforts should be made to engage primary care providers in research studies to enhance our knowledge 

in this domain.  

7.8 Overall conclusion  

This thesis comprehensively explored PSA testing patterns by small areas over time and its association 

with prostate cancer incidence. Prostate cancer and prostate cancer testing are likely to continue to be a 

major public health issue requiring high quality local evidence upon which policy decisions can be based. 

This research is unique in providing evidence to advance our knowledge of the landscape of PSA testing 

over the last two decades. This study has demonstrated that PSA testing varies substantially by smaller 

geographical areas, and the characteristics of that variation have changed over time. However, regardless 

of the overall PSA uptake, not all small areas follow the national trends over time. Furthermore, this 

research highlighted a low correlation between PSA testing and prostate cancer when assessed at the small 

area level. This thesis has also identified areas for potential future research focus that aim to continue 

improving prostate cancer mortality rates by understanding PSA testing patterns and their underlying 

reasons correctly. In conclusion, this research has provided novel findings and insights that will form 

important benchmarks and motivation for further investigations, including international collaborations.  
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