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Abstract: Rapid and accurate estimation of forest biomass is essential to drive 21 

sustainable management of forests. Field-based measurements of forest above-22 

ground biomass (AGB) can be costly and difficult to conduct. Multi-source 23 

remote sensing data offers potential to improve the accuracy of modelled AGB 24 

predictions. Here, four machine learning methods: Random Forest (RF), 25 

Gradient Boosting Decision Tree (GBDT), Classification and Regression Trees 26 

(CART) and Minimum Distance (MD) were used to construct forest AGB 27 

models of Taiyue Mountain forest, Shanxi Province, China using single and 28 

multi-sourced remote sensing data and the Google Earth Engine platform. 29 

Results showed that the machine learning method that most accurately 30 

predicted AGB was GBDT and spectral index for coniferous (R2=0.99; 31 

RMSE=65.52 Mg/ha), broadleaved (R2=0.97; RMSE=29.14 Mg/ha), and 32 

mixed species (R2=0.97; RMSE=81.12 Mg/ha) forest types. Models 33 

constructed using bivariate variable combinations that included the spectral 34 

index improved the AGB estimation accuracy of mixed species (R2=0.99; 35 

RMSE=59.52 Mg/ha) forest types and reduced slightly the accuracy of 36 

coniferous (R2=0.99; RMSE=101.46 Mg/ha), and broadleaved (R2=0.97; 37 

RMSE=37.59 Mg/ha) forest AGB estimation. Overall, parameterising machine 38 

learning algorithms with multi-source remote sensing variables can improve 39 

the prediction accuracy of mixed species forests. 40 

Keywords: Google Earth Engine; Mixed Species; Landscape; Satellite; 41 

Spectral; Waveband  42 

1. Introduction 43 

Remote sensing has great utility in the determination of forest above-ground 44 

biomass (AGB) due to the rapid and repeatable acquisition of multi-sensor derived 45 

waveband information that correlates with forest biomass structure. Forests cover 46 

approximately 40% of the global non-ice land area, and their biomass accounts for 47 



about 90% of the terrestrial biomass, as such forests have an irreplaceable role in the 48 

terrestrial carbon (C) cycle (Houghton, 2005). Therefore, estimating forest AGB in 49 

the study of the C cycle and C stocks in terrestrial ecosystems is of high importance 50 

(Vashum, et al. 2012). Traditionally, AGB of forests was determined through 51 

manually intensive collection of forest inventory data; however, the emergence of 52 

portable terrestrial light detection and ranging (LiDAR) scanners has provided high 53 

resolution data to describe forest structure and derive forest inventory metrics 54 

(Wulder, et al. 2012), while satellite and airborne LiDAR has enabled the estimation 55 

of forest biomass from large areas of inaccessible forest. Developments in remote 56 

sensing technology such as synthetic aperture radar (SAR) and interferometric SAR 57 

(InSAR) has, particularly through the application of machine learning (ML) 58 

techniques, provided further opportunities to improve the accuracy of forest AGB 59 

estimates over large areas (Frolking, et al. 2009; Lechner, et al. 2020; Luo, et al. 60 

2020). Recently, LiDAR, optical and radar remote sensing data have been combined 61 

into multi-source datasets for research into land cover change and forest biomass 62 

estimation (Isbaex, et al. 2021), climate change (He et al. 2023), environmental 63 

pollution (Zhang et al. 2023), and forest ecophysiology (Gamon et al. 2023). 64 

The integration of multi-source remote sensing data offers huge potential to 65 

improve the predictive power of ML algorithms used in data science. Hyde et al., 66 

(2007) demonstrated that the prediction of forest AGB could be improved using a 67 

combination of LiDAR, SAR, and InSAR (i.e., LiDAR+SAR/InSAR) rather than 68 

using the three types of data individually. Indeed, spatial modelling methods that 69 



integrate airborne LiDAR with satellite-based SAR data have been shown to provide 70 

spatially explicit AGB estimates over large areas (Tsui et al. 2013). Vafaei 71 

et al., (2018) combined multispectral Sentinel-2A imagery with ALOS-2 and 72 

PALSAR-2 data to estimate forest AGB using four ML methods. The study revealed 73 

that when Sentinel-2A imagery is combined with ALOS-2 and PALSAR-2 data, 74 

forest AGB estimates are improved over Sentinel-2A data alone, and that the support 75 

vector regression (SVR) method yielded the highest level of accuracy. Similarly, 76 

Tamiminia et al., (2022) combined optical, SAR, and airborne LiDAR data to 77 

estimate forest AGB using multiple decision tree-based ML methods to reveal that 78 

optical and SAR data provided the most accurate estimation of forest AGB; however, 79 

there was no significant difference between the ML methods used. Shao et al. (2017) 80 

demonstrated the utility of multi-sourced for the AGB estimation of forests by 81 

integrating optical (Landsat 8 OLI) and SAR (Sentinel-1A) explanatory variables to 82 

parameterize a stacked sparse autoencoder network (SSAE) and show that the data 83 

combination outperformed SAR and optical data variables alone for forest AGB 84 

estimation over large areas. 85 

Most recently, the accuracy of forest AGB estimation was improved by 86 

accounting for tree phenology and dominant tree species with the random forest (RF) 87 

method parameterised with LiDAR and Sentinel-1 and Sentinel-2 data (Zhang 88 

et al 2023). Consensus in recent literature suggests that radar and optical remote 89 

sensing data sources can improve forest AGB estimation over optical or LiDAR data 90 

alone (Velasco et al. 2023) and opportunities remain to further refine methodologies 91 



by evaluating a broader range of multi-source remote sensing data and ML methods. 92 

For example, multi- or hyper-spectral data can be usefully analysed to extract metrics 93 

that describe biophysical characteristics of vegetation, and the differences in 94 

reflectance spectra of vegetation can also be used to identify specific species at 95 

different growth stages (Li, et al. 2012), while transformation of spectral bands using 96 

the tassel cap transformation can be used to generate indices that are proxies for 97 

texture, frequently used to parameterize models of forest biomass.  98 

 Machine learning methods have become prevalent in the development of forest 99 

biomass models as they are able to reveal complicated nonlinear relationships in 100 

complex datasets. Machine learning methods are widely used because of their 101 

adaptiveness, interpretability, and sustainability, and are divided into supervised and 102 

unsupervised categories. Supervised learning enables ML algorithms to use training 103 

datasets to reveal the relationship between input and output data. Algorithms that 104 

require supervised learning include decision trees, logistic regression, support vector 105 

machines, and neural networks (Mountrakis, et al. 2011; Rodríguez-Veiga, et al. 106 

2019; Mas, et al. 2008). Whereas unsupervised learning is a data processing method 107 

that classifies a large sample of the subject under study through data analysis without 108 

category information. Unsupervised classification methods include cluster analysis, 109 

principal component analysis and factor analysis (Olaode, et al. 2014). In the ML-110 

based assessment of forest AGB assessment of a single tree species in northern 111 

Thailand, the RF method demonstrated higher model accuracy compared to traditional 112 

allometric equations and other ML methods (Wongchai, et al. 2022). However, Bulut, 113 



(2023) recommends that multiple ML methods be used with multiple data sources in 114 

different environmental conditions to obtain the most accurate forest AGB esitmates. 115 

Commonly used supervised ML methods for forest biomass models include 116 

Random Forest (RF; Tian, et al. 2017), Classification and Regression Trees (CART; 117 

Breiman, 2017), Gradient Boosting Decision Tree (GBDT; Pham, et al. 2020), and the 118 

Minimum Distance (MD; Yang, et al. 2020) method. These ML methods commonly 119 

used to  estimate forest AGB are evaluated using an R2 based on the coefficient of 120 

determination, root mean square error (RMSE), mean absolute error (MAE), and 121 

relative error (RE) (Isbaex, et al. 2021; Han, et al. 2021).  122 

Google Earth Engine (GEE) is a cloud platform that provides powerful tools 123 

for processing and analysis of remotely sensed data (Lu, et al. 2016). Through the 124 

GEE interface users can access more than 50 petabytes of remote sensing data from 125 

Landsat, Sentinel, SAR and digital elevation models (DEM) (Gorelick, et al. 2017). 126 

Data processing on the GEE platform can be conducted using Javascript and Python 127 

APIs to access Google's compute infrastructure for parallel processing of massive 128 

datasets. Recently, scholars have used GEE to analyse environmental change with a 129 

focus on forest monitoring (Tamiminia, et al. 2020), conduct large-area multi-source 130 

remote sensing-based forest biomass estimation (Yang, et al. 2018) and to develop 131 

online visualisation tools (Yan, et al. 2022).  132 

Although several studies have explored the estimation of forest AGB using 133 

multi-source remote sensing variables, there is currently no specific construction 134 

process to select ML methods and different combinations of remote sensing variables 135 



(Lu, et al. 2006). Here, we use an optimal ML method to construct different forest 136 

AGB models using single input datatypes and construct multi-source remote sensing 137 

variables for comparison to the optimal single variable. Multi-source remote sensing 138 

variable combinations are then constructed according to their importance and 139 

correlation between an array of multi-source remote sensing variables to test the 140 

optimal forest AGB model. However, to obtain accurate determination of biomass in 141 

mixed species forests, it is necessary to consider tree species-specific differences in 142 

remotely sensed data. The objectives of this paper are to: (i) improve the estimation of 143 

AGB in different forest types i.e., broadleaved, coniferous and mixed species forests; 144 

(ii) determine the optimal combination of remotely sensed data to improve the 145 

accuracy of forest AGB estimation using ML approaches; and (iii) to explore the 146 

forests within the Huodong coal mine area under Taiyue Mountain to validate the 147 

selected method. 148 

2. Material and Methods 149 

2.1. Study area 150 

Huodong Mining District (36°30’0’’N, 112°24’0’’E) is a national mining district 151 

within Jinzhong coal basin, one of the 14 large coal basins in China delineated in the 152 

National Mineral Resources Plan (2016-2020). The mining area is a temperate 153 

continental climate, with four distinct seasons and a large temperature difference 154 

between day and night. The mean annual temperature is 9.2 °C. The mean annual 155 

precipitation is 564.1 mm. It is located in the west of Qinshui Coalfield in Shanxi 156 



Province and covers an area of 4,110 km2 with a total coal resource of 36.6 billion 157 

tons. Huodong mining area is not only rich in mineral resources but also has the 158 

largest national Forest Park, Taiyue Mountain Forest Park, in Shanxi province. Taiyue 159 

Mountain Forest is a species diverse forest with 233 species of woody plants 160 

belonging to 44 families and 99 genera: 62 families and more than 500 species of 161 

herbaceous plants. The forest total area exceeds 60,000 hectares and is comprised of 162 

northern China’s main forest species: Larix principis-rupprechtii, Cunninghamia 163 

lanceolata, Pinus tabuliformis with Quercus wutaishanica, Populus spp., Acacia 164 

locust, Betula platyphylla. An overview map of the study area is shown in Figure 1. 165 

 166 

Figure 1. Map of the study area in the southeastern of Shanxi Province, China. The 167 

red line box is the Huodong mining area, the green area is the Taiyue Mountain forest, 168 

Black and purple points are the coniferous and broadleaved forest sampling sites, 169 

respectively. 170 



2.2. Data collection and processing 171 

2.2.1. Data collection 172 

Selection of 128 (30 m × 30 m) forest sample plots (128 mixed, 91 broadleaved, 37 173 

coniferous,) was conducted with the GEE platform using high spatial resolution 174 

images to obtain the coordinates of the center point of each forest sample plot (Figure 175 

2). A total of 128 forest sample plots were surveyed between 1st and 23rd August 176 

2022 using a combination of traditional forest mensuration measurements and mobile 177 

LiDAR (LiBackpack DGC50) with a relative accuracy of 3 cm, absolute accuracy of 178 

5 cm, scanning frequency of 600,000 points/sec. During the measurement process, the 179 

surveyors manually measured diameter at breast height (DBH) and height (H) of all 180 

living trees. The ABG of each tree species was estimated using a regional tree 181 

species-specific allometric equation (Table 1) (Fang, et al. 2001). All remote sensing 182 

data were sourced from datasets available in the GEE cloud platform 183 

(https://developers.google.com/earth-engine/datasets/), with the exception of Landsat 184 

8 Level 2, Collection 2, Tier 1 optical data for each 30 m × 30 m forest sample plot 185 

Topographic data were obtained from NASA SRTM Digital Elevation, and SAR data 186 

were Global PALSAR-2/PALSAR yearly mosaic, and the specific data parameters are 187 

shown in Table 2. 188 

 189 



 190 

Figure 2. Forest sample plot survey (a) single tree diameter at breast height 191 

measurement using a diameter at breast height ruler; (b) scanning the forest sample 192 

plot using a backpack LiDAR; (c) single tree height measurement using a height 193 

gauge; (d) measuring the extent of the forest sample plot using a measuring rope. 194 

Table 1. Allometric equations for estimating the forest species in the study area. AGB 195 

is the above-ground biomass (kg), D is the diameter (cm) at breast height (1.3 m), H is 196 

the height of the tree (m). 197 

 Tree Species Allometric Equation 

Larix principis-rupprechtii AGB = 0.2387114(D2H)0.6784 

Cunninghamia lanceolata AGB = 0.00849(𝐷2𝐻)1.10723 

Populus spp. AGB = 0.07363(𝐷2𝐻)0.7745 

Pinus tabuliformis AGB = 0.14187(𝐷2𝐻)0.8728 

Robinia pseudoacacia AGB = 0.02583(𝐷2𝐻)0.6841 

Quercus wutaishanica AGB = 0.04930(𝐷2𝐻)0.8514 

 198 

Table 2. Remote sensing image collection 199 

Name Earth Engine Snippet Acquisition Date Processin

g Level 

Landsat LANDSAT/LC08/C02/T1_L2 "2022-06-01","2022-08-31" Level 2 



8 

DEM USGS/SRTMGL1_003 “2000-02-11” V3 

SAR JAXA/ALOS/PALSAR/YEARLY/SAR "2020-01-01","2021-01-01" 2.1 

 200 

2.2.2. Data processing 201 

LiDAR generated 3D cloud point data collected in field for each forest sample plot 202 

was preprocessed using the LiDAR360 software (GreenValley International, 203 

Zhongguancun Software Park, Haidian). The processes involved forest sample 204 

screening and clipping, point cloud data thinning and denoising, ground point cloud 205 

segmentation, point cloud normalization and single wood parameter statistics. Finally, 206 

the tree height and diameter of single trees in all forest plots were counted separately 207 

to obtain the forest biomass of the whole plot. 208 

Processing of the Landsat 8, SAR, and DEM datasets involved filtering to extract the 209 

specific study area and removing clouds using a cloud bit mask. Multiple sources of 210 

remote sensing variables were selected from specified bands of different image 211 

collections to obtain the information shown in Table 3.  212 

2.3. Experimental design 213 

Most of the scientific literature does not explain how to select appropriate variables to 214 

develop and evaluate forest AGB models. Based on this knowledge, we designed this 215 

experiment to construct forest AGB models using a combination of multi-source 216 

remote sensing variables and then compared the accuracy of different variable 217 

combinations on forest AGB models to more scientifically follow the optimal 218 



combination of single variables and reveal which combination of variables had the 219 

best fit. 220 

Four experiments were conducted to assess the utility of different variable 221 

combinations and their accuracy in estimating forest AGB: (i) single variable; (ii) 222 

multi-source variable combinations; (iii) variable importance; and (iv) Pearson 223 

correlation coefficient. The four ML methods (RF, CART, GBDT and MD) used in 224 

this study were evaluated with n = 500 decision tree parameters. Each model was 225 

analysed by assessing the following four indicators: R2, RMSE, MAE, and RE. A 226 

flowchart that details the satellite-image processing and the generation of forest AGB 227 

models using ML is shown in Figure 3. 228 

For model training and validation of the model AGB estimates, the location of 229 

each of the 128 forest sample plots was identified using a handheld GNSS receiver 230 

(CHC® LT500T, iGage Mapping Corporation, Salt Lake City, USA), and a field-231 

based forest inventory survey conducted.  232 



 233 

Figure 3. Flowchart for satellite-image processing and the generation of forest above-234 

ground biomass (AGB) models based on machine learning (ML) methods. Among the 235 

six variable types obtained during the data processing, the feature variable synthetic 236 

aperture radar (SAR) was derived from the ALOS-2 PALSAR data. Spectral bands, 237 

spectral indices, Kauth-Thomas (K-T), and gray level co-occurrence matrix (GLCM) 238 

all originate from Landsat 8 SR images. Terrain variables were derived from the 239 

NASA's shuttle radar topography mission (SRTM).  240 

2.4. Machine learning methods 241 

Four decision tree ML methods (RF, CART, GBDT and MD) were selected from the 242 



ML methods available in the GEE platform to construct a forest biomass model. 243 

2.4.1. Random Forest  244 

Random forest is an integration-based decision tree approach (Cutler, et al. 2012) that 245 

is commonly used for classification, regression, and other tasks (Breiman, 2001). It 246 

improves the prediction performance by integrating multiple decision trees, each 247 

constructed by random subsampling and random feature selection. The random forest 248 

approach takes a self-service sampling method (bootstrap sampling), in which k 249 

samples are randomly selected from the original dataset to form a collection of 250 

subsamples, which can increase the randomness and diversity of the training set and 251 

reduce the phenomenon of overfitting. Multiple bootstrap samples are randomly and 252 

repeatedly sampled from the training dataset, and then a decision tree is constructed 253 

for each bootstrap sample. Finally, the regression results of all decision trees are 254 

averaged to obtain the prediction results (Speiser et al. 2019).  255 

2.4.2. Classification and Regression Tree 256 

Classification and regression tree is a decision tree classification and regression 257 

method (Loh, et al. 2008). The CART algorithm recursively constructs a decision tree 258 

by binary slicing of sample features, where each leaf node represents a decision 259 

outcome (Breiman, 2017). For classification problems, the leaf nodes of the decision 260 

tree correspond to a category; for regression problems, the leaf nodes of the decision 261 

tree correspond to a value. The CART algorithm generates interpretable decision trees 262 

with low computational effort and fast training but may produce overfitting for high-263 



dimensional data (Gómez, et al. 2012). 264 

2.4.3. Gradient Boosting Decision Tree 265 

The GBDT algorithm is implemented to model and predict data by integrating 266 

multiple decision trees where in each iteration step, a decision tree is used to fit the 267 

residuals of the current data (Friedman, 2001). Eventually, the predictions of multiple 268 

decision trees are weighted and averaged to obtain the final model predictions (Pham 269 

et al. 2020). The advantages of the GBDT method are that it can effectively handle 270 

many types of data (e.g., numerical, subtypes, and sequential) and can automatically 271 

select important features and handle missing data. In addition, the method has a strong 272 

generalization capability to handle large-scale datasets and yields good performance 273 

in most cases (Li, et al. 2020). 274 

2.4.4. Minimum Distance 275 

The MD method is a classic classification method that classifies samples into different 276 

categories by measuring the distance between them (Wolfowitz et al. 1957). The 277 

method assumes that there is a variability in distance between the sets of samples of 278 

different categories, i.e., the distance between the sets of samples of different 279 

categories is farther and the distance between samples of the same category is closer. 280 

The basic idea of the shortest distance method is that for a new sample, the distance 281 

between it and the sample of each category is calculated, and then it is placed in the 282 

category with the closest distance to it (Mahdianpari, et al. 2020). Euclidean distance 283 

or Manhattan distance is usually used to measure the distance between samples. In 284 



this paper, Euclidean distance is used as a parameter for analysis by default. The 285 

advantage of the shortest distance method is its simplicity and ease of use, as well as 286 

the fact that it does not require complex prior training and conditioning of the 287 

samples. However, it also has some disadvantages, such as sensitivity to outliers and 288 

poor performance on unbalanced datasets (Shaharum, et al. 2020). 289 

2.4.5. Model Parameter 290 

The specific parameters of the four machine learning methods used in this paper are 291 

shown in Table 3. The RF and GBDT methods have six parameters each, while the 292 

CART and MD methods have two parameters each. For a specific parameter 293 

explanation, please see the GEE developer documentation available at 294 

https://developers.google.com/earth-engine/apidocs 295 

Table 3. Specific parameters of the random forest (RF), classification and regression 296 

tree (CART), gradient boosting decision tree (GBDT), minimum distance (MD) 297 

machine learning methods 298 

Parameter RF CART GBDT MD 

numberOfTrees 500 - 500 - 

variablesPerSplit 14 - - - 

minLeafPopulation 1 1 - - 

bagFraction 0.5 - - - 

maxNodes no limit no limit no limit - 

seed  0 - 0 - 

shrinkage - - 0.005 - 

samplingRate - - 0.7 - 

loss - - LeastAbsoluteDeviation - 

metric - - - euclidean 

kNearest - - - 1 

 299 



2.5. Biomass model variable  300 

Biomass model variables involved in the construction were divided into six 301 

categories, which are the spectral bands of Landsat images, spectral indices, 302 

topographic factors, tassel-cap transform (Kauth-Thomas), gray level co-occurrent 303 

matrix (GLCM), and SAR factors, where the texture feature variable consist of 18 304 

components, all of which are applied to SR_B2-B7 bands, respectively, and all of the 305 

total number of multi-source variables is 156, as shown in Table 4. The specific 306 

abbreviated noun explanation is provided in Supplementary. 307 

Table 4. Biomass model single variable 308 

Type of variable Specific variable factors number 

Landsat bands Blue(SR_B2), Green(SR_B3), Red(SR_B4), 

NIR(SR_B5), SWIR1(SR_B6),  SWIR2 (SR_B7) 

6 

Spectral index NDVI, GNDVI, BNDVI, NDWI, NDWI1, MNDWI, 

NDMI, NDSI, SIPI, RECl, EVI, EVI2, SR, LAI, GVI, 

RVI, GRVI, DVI, SAVI, OSAVI, ARVI, VARI, SLAVI, 

NBR, NDGI, GCVI, GRNDVI, GBNDVI, RBNDVI, 

RGRI 

30 

Terrain Elevation, Slope, Aspect, Hillshade 4 

Tassel Cap Transform Brightness, Greenness, Wetness, TCD(Tasseled Cap 

Angle), TCA(Tasseled Cap Distance) 

5 

GLCM ASM(Angular Second Moment), CONTRAST(Contrast), 

CORR(Correlation), VAR(Variance), IDM(Inverse 

Difference Moment), SAVG(Sum Average), SVAR(Sum 

Variance), SENT(Sum Entropy), ENT(Entropy), 

DVAR(Difference variance), DENT(Difference entropy), 

IMCORR1(Information Measure of Corr. 1), 

IMCORR2(Information Measure of Corr. 2), 

MAXCORR(Max Corr. Coefficient), 

DISS(Dissimilarity), INERTIA(Inertia), SHADE(Cluster 

Shade), PROM(Cluster prominence) 

18 

SAR HH(Horizontal transmit/Horizontal receive polarization), 

HV(Horizontal transmit/Vertical receive polarization) 

2 

Spectral bands refer to the electromagnetic waves collected at different 309 



wavelengths by satellite sensors during the process of acquiring remote sensing 310 

images. Different spectral bands have varying reflectivity characteristics for different 311 

features. Therefore, extracting different spectral bands in remote sensing images can 312 

be utilized to describe and differentiate features. The B2-B7 bands in the Landsat SR 313 

data were selected as the spectral band variable. 314 

The spectral index is one of the most important variables for estimation of forest 315 

AGB, especially the vegetation index, which is calculated by analysing vegetation 316 

reflection or radiation data and can provide information on vegetation growth status, 317 

chlorophyll content and vegetation cover (Zeng, et al. 2022). We selected 30 spectral 318 

indices as one of the remote sensing variables to participate in the construction of 319 

biomass models. Supplementary Table B details all the spectral indices and their 320 

abbreviations used in this paper. 321 

Terrain variables play an important role in estimating forest biomass. Elevation 322 

can affect the climate and soil conditions, and therefore, the growth of forests. Slope, 323 

aspect and hillshade can influence microclimate, rates of soil erosion and water 324 

distribution, thereby influencing  forest growth and biomass accumulation. 325 

Spectral transformation is the process of converting raw remote sensing image 326 

data into a different representation space. Its purpose is to extract the features of 327 

different objects in the image for classification, target detection, change detection, and 328 

other applications. Spectral transformation is the process of converting raw remote 329 

sensing image data to another kind of representation space. In this paper, the five 330 



variables in the K-T transformation were selected as the spectral transformation 331 

variables. 332 

GLCM is a common texture analysis method based on the second-order 333 

combined conditional probability density of the image. It calculates the spatial 334 

relationship between different gray levels in the image. Using remote sensing images 335 

to monitor forest textural features can capture detailed features within the forest. 336 

Through image processing and classification of remote sensing images, various forest 337 

types and structural features can be accurately identified. The extraction of the texture 338 

features in this paper was performed using the glcmTexture() function in the GEE 339 

platform. 340 

The SAR data can be used to estimate the height, density, and volume of 341 

vegetation by measuring the radio waves reflected by the vegetation. The HH and HV 342 

(polarization backscattering coefficient) bands in the ALOS-2 PALSAR data were 343 

selected as the SAR variables for constructing the forest AGB model. 344 

2.6. Model Evaluation 345 

2.6.1. Training and validation datasets 346 

To train and validate the model the 128 plots comprised of coniferous, broadleaved 347 

and mixed species forest were allocated into training (70%) and validation (30%) 348 

datasets. The number of training and validation of the forest sample points for each 349 

tree species are shown in Table 5. 350 



Table 5. Training and validation sample points for different tree species 351 

Forest Type Training Points Validation Points Total 

Coniferous 25 12 37 

Broadleaved 63 28 91 

Mixed 89 39 128 

 352 

2.6.2. Feature Importance Analysis 353 

Analysis of variable importance using GEE was conducted to determine the 354 

magnitude and predictive contribution of optimal variables to the prediction of forest 355 

AGB (Zhang, et al. 2019), this analysis method can be used to inform variable 356 

selection, model optimization, and interpretation of model prediction results (Li, et al. 357 

2019). Variable importance analysis is a process of determining the importance 358 

between all multi-source remote sensing variables and the measured biomass. The 359 

biomass of forest sample points is used as training data, and all feature variables as 360 

input properties are input into classifiers, such as RF, as classifier attributes. The 361 

importance of each feature's relationship with forest AGB was determined using the 362 

explain() function in GEE. RF, CART, and GBDT are provided in the developed APP 363 

included in this paper (Section 4.3) for variable importance analysis. 364 

2.6.3. Feature correlation 365 

Pearson correlation coefficient (Eq. 1) was used to assess the degree of linear 366 

correlation between all multi-source remote sensing variables and the field 367 

measurements of forest AGB, which were then ranked from highest to the lowest. 368 
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In the above equation, ix
and iy

are the variables measured, x and y  are the 370 

mean values of the predicted and measured, respectively. 371 

2.6.4. Accuracy assessment 372 

The accuracy of each ML model and variable combination was evaluated by 373 

validation using data that was not included in the model building process. Four 374 

accuracy evaluation indices: coefficient of determination (R2; Eq. 2), root mean 375 

squared error (RMSE, Mg/ha; Eq. 3), mean absolute error (MAE; Eq. 4) and relative 376 

error (RE; Eq. 5) were calculated to compare the predicted and observed values. 377 

(Cohen, et al. 2009). All of the above evaluation indices were implemented online 378 

through the Javascript API of the GEE platform. 379 
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In the above expressions, ip
is the forest AGB predicted by the ML model, 384 

ia
is the measured mangrove AGB, n is the total number of sampling plots, and p385 

and a  are the mean values of the predicted and measured AGBs, respectively. 386 

3. Results 387 

3.1. Comparison of different methods 388 

The performance of the four ML methods for predicting the coniferous, broadleaved 389 

and mixed species forest types using a single spectral variable is shown in Table 6. 390 

Irrespective of forest type the R2 for each of the four ML methods was consistent 391 

whilst the differences in RMSE, MAE, and RE metrics enabled selection of the best 392 

model. The error metrics of the GBDT method was the smallest and the error metrics 393 

of the MD method were largest. Overall, the error metrics of the GBDT method 394 

tended to be the smallest and the error metrics of the MD method were the largest. 395 

The ranked order of ML method performance by error for broadleaved forest was RF 396 

< GBDT < CART < MD, for coniferous forest was GBDT < RF < CART < MD, and 397 

for mixed species forest was CART < RF < GBDT < MD. In aggregate, the GBDT 398 

method performed best to estimate forest AGB for both univariate and multivariate 399 

input datasets. 400 

Table 6. Comparison of random forest (RF), classification and regression tree 401 

(CART), gradient boosting decision tree (GBDT), minimum distance (MD) machine 402 

learning methods to estimate forest aboveground biomass.  403 

Forest Type 
Performance 

Indicator 

Algorithm 

RF CART GBDT MD 

Broadleaved R2 0.69  0.69  0.69  0.69  



RMSE 39.59  51.14  40.45  813.97  

MAE 27.80  34.51  28.96  731.24  

RE 0.68  0.83  0.71  18.73  

Coniferous 

R2 0.71  0.71  0.71  0.71  

RMSE 80.34  113.40  76.72  646.23  

MAE 61.76  94.31  54.89  576.25  

RE 0.23  0.40  0.20  2.88  

Mixed 

R2 0.83  0.83  0.83  0.83  

RMSE 88.67  85.63  89.13  624.61  

MAE 65.89  65.11  66.46  514.01  

RE 0.63  0.47  0.60  8.19  

 404 

3.2. Single and multi-source variables model evaluation 405 

3.2.1. single variable biomass model construction 406 

The results of the forest AGB models parameterised with a single remotely sensed 407 

variable for the three forest types are shown in Table 7. Among the six different 408 

univariately constructed models, the RMSE was larger in coniferous forest than in 409 

broadleaved and the mixed-species (undifferentiated) forests. For all models with a 410 

single variable, spectral index had the highest fit and GLCM had the lowest fit.  411 

For the broadleaved forest type the variable that resulted in the highest correlation 412 

between predicted and measured forest AGB was spectral index (R2=0.97) , however 413 

the GLCM variable produced the largest error with an R2 of 0.01. RMSE, MAE and 414 

RE errors of spectral index model are lower than GLCM model. In the coniferous 415 

forest spectral index again resulted in the highest R2 of 0.99, however the GLCM 416 

variable produced the lowest correlation with an R2 of 0.04. Similarly, the strongest 417 

correlation of spectral indices in mixed forests had an R2 of 0.97, while the model 418 

constructed by GLCM had the lowest accuracy (R2 = 0.02). Consistency with R2 was 419 



demonstrated in the model evaluation results for RMSE and MAE in all forest 420 

species. 421 

Table 7. Precision evaluation of single variable models for different tree species. 422 

Forest Type Variables R2 RMSE (Mg/ha) MAE RE 

Broadleaved 

Terrain 0.05 31.00  25.08  0.46  

Band 0.69 40.45 28.96 0.71 

Index 0.97 29.14 21.40 0.35 

SAR 0.17 46.75 33.90 0.61 

K-T 0.10 33.94 28.94 0.52 

GLCM 0.01 30.11 24.45 0.62 

Coniferous 

Terrain 0.11 74.24 56.64 0.25 

Band 0.71 76.72 54.89 0.20 

Index 0.99 65.52 50.92 0.28 

SAR 0.48 82.68 68.44 0.32 

K-T 0.72 104.93 95.98 0.65 

GLCM 0.04 111.75 93.75 0.95 

Mixed 

Terrain 0.01  63.99 45.83 0.70 

Band 0.83 89.13 66.46 0.60 

Index 0.97 81.12 51.18 0.61 

SAR 0.22 64.90 47.53 0.82 

K-T 0.48 76.84 52.77 0.55 

GLCM 0.02 92.55 66.92 0.53 

 423 

The spatial distribution of forest AGB constructed using a single variable for 424 

different forest types are shown in Figure 4. The forest AGB of coniferous and 425 

broadleaved forests in the region differs greatly, with coniferous forests 426 

predominating and broadleaved forests having a more scattered distribution, and the 427 

forest AGB of coniferous forest is higher than that of broadleaved forest. The forest 428 

biomass distribution without distinguishing tree species (Figure 4b) can more clearly 429 

distinguish the difference in forest biomass distribution in the study area. 430 



 431 

Figure 4. Biomass distribution of single variable (spectral index) for different tree 432 

species. (a) broadleaved forest; (b) mixed-species forest; (c) coniferous forest. 433 

3.2.2. Combined biomass model with multi-wavelength variables 434 

In this experiment, 30 variable combinations were compiled Table A 435 

(Supplementary), We selected only variable combinations where the model accuracy 436 

(R2) of AGB estimation was > 0.5 as shown in Table 8. 437 

Table 8. Performance comparison of variable combination used in ML to estimate 438 

forest AGB. 439 

Variable 

ID 

Variables 

combination 
Mixed Broadleaved Coniferous 

  R2 RMSE R2 RMSE R2 RMSE 

V8 SAR + K-T 0.64 46.94 0.46 34.89 0.43 92.88 

V10 Index + Band 0.99 59.52 0.97 37.95 0.99 101.46 

V11 Index + K-T 0.98 60.54 0.99 27.68 0.99 109.39 

V12 Index + GLCM 0.97 86.41 0.98 49.9 0.99 94.05 

V13 Band + K-T 0.91 51.94 0.59 30.61 0.81 85.25 

V14 Band + GLCM 0.94 84.21 0.28 28.2 0.82 85.05 

V15 K-T + GLCM 0.64 82.21 0.01 38.65 0.46 83.37 

V20 
Band + Index + K-

T 
0.58 80.97 0.55 28.18 0.63 73.16 

V22 
K-T + GLCM + 

Index 
0.65 69.57 0.32 36.6 0.81 96.98 

V23 
Band + GLCM + 

Index 
0.92 55.24 0.51 26.01 0.7 78.08 

 440 



Among the combinations of multi-source variables, the highest R2 (>0.96) 441 

between measured and predicted AGB obtained for models using the GBDT method 442 

constructed with bivariate combination of spectral indices with spectral bands, K-T 443 

transform, and GLCM variables (i.e., V10, V11 and V12, respectively), without 444 

distinguishing between forest types.  445 

Models constructed by combining spectral bands with the K-T and GLCM 446 

variables had an R2 >0.8 (mixed-species and coniferous forest types). Based on these 447 

results, models were constructed using three, four, and five combinations of variables, 448 

but the R2 values of the models were lower than those of the bivariate models. Among 449 

them, the model R2 values of the coniferous forest type and mixed species 450 

(undifferentiated) forest type in the three variable combinations showed consistency 451 

in their estimates, but the model fit accuracy of broadleaved forest was much lower. 452 

From the V20-V23 multi-source variable combination, it is easy to conclude that 453 

coniferous forest outperforms the mixed species forest in terms of fitting accuracy. 454 



 455 

Figure 5. Predicted Forest AGB distribution maps for V10, V11 and V12 variable 456 

combinations. Broadleaved forest is shown in panels (a), (d), (f). Mixed species forest 457 

shown in panels (b), (e), (h). The coniferous forest shown in (c), (f), (i). 458 

The forest distributions of different forest types have a high degree of 459 

consistency (Figure 5). However, because of the differences in the training samples, 460 

the predicted values of the forest biomass model are more stable without 461 

differentiating the tree species. The coniferous forest biomass predictions had the 462 

greatest variation because only 37 sample data point were available, and the 463 

coniferous biomass varied more between sample sites. 464 



3.3. Importance analysis of importance variables 465 

Using the importance analysis method in the GEE platform, all the multi-source 466 

remote sensing variables were analysed separately with the forest AGB of the sample 467 

site, and the importance results were ranked in descending order. Every five variables 468 

were stacked in turn to form a new variable combination (Ci_1 to Ci_21) as the input 469 

variables of the forest AGB model. Because there were only 105 variables with non-470 

zero values in the results of the variable importance analysis, there were only 21 471 

variable combinations, and the model fitting accuracy results are shown in Figure 6. 472 

From the results, it is apparent that there is no strong correlation between the fitting 473 

accuracy of variable combinations with varying importance and the number of 474 

variables. The biomass models constructed according to the combination of variable 475 

importance had low fitting accuracy, and the highest fitting accuracy was only R2 = 476 

0.23 for Ci_6. 477 



 478 

Figure 6. Variable importance model fit R2 results for 21 different variable 479 

combinations. 480 

3.4. Pearson correlation analysis 481 

Pearson correlation analysis was conducted using the RF method for all multi-source 482 

remote sensing variables generating a predicted forest AGB and measured forest 483 

AGB, and the correlation results were ranked from highest to lowest. First, the five 484 

variables with the highest correlation ranking were selected as the initial group of 485 

model variables to participate in the biomass model construction. Later, the 486 

combination of variables participating in the model construction was added based on 487 

the basis of the first group of models, and the cumulative total of 5 variables. Thus, 488 

separately validating the resulting forest biomass prediction model after combining 489 



the correlation analysis from high to low variables. However, there were only 150 490 

variables with non-empty value values in the results of the variable importance 491 

analysis, there were only 30 variable combinations. A new combination of variables 492 

(Cp_1 to Cp_30) was formed as the variables of the forest biomass model by 493 

superimposing every five variables in turn (Figure 7). In the variable Pearson 494 

correlation analysis, the forest biomass model was constructed without distinguishing 495 

between tree species in order to reduce the influence of an insufficient number of 496 

forest sample points on the results. The results showed that the accuracy of the model 497 

fitted by the cumulative equivariant variables tended to first decrease and then 498 

gradually increase and stabilise with an increased in the order of correlation of 499 

variables. The forest AGB model with the highest accuracy (R2 = 0.5154) was 500 

parameterised using the Cp_22 combination of variables (Figure 7). 501 

 502 



 503 

Figure 7. Variable correlation model R2 results  504 

4. Discussion  505 

The objective of this study was to develop a framework for selecting ML methods and 506 

variable combinations to construct a forest AGB model that accurately predicts forest 507 

AGB in different forest types. Many studies have reported superior performance of 508 

the RF method in predicting forest AGB using remotely sensed data (Chen et al, 2017; 509 

Zhang et al, 2023). In this paper, it was found that the GBDT method exhibits higher 510 

forest AGB prediction accuracy, particularly when the number of samples points in 511 

the training data are large . However, there was not a significant difference between 512 



the RF and GBDT methods, which aligns with the findings of previous studies 513 

(Tamiminia et al, 2022). The method and process of selecting the optimal forest AGB 514 

model used in this study is suitable for all forest AGB modelling. Despite the study 515 

area being a mixed species forest located in complex terrain it was still possible to 516 

make accurate predictions of forest AGB. By comparing the biomass models built 517 

with different variable combinations, the results showed that the number of variables 518 

is not directly related to the model accuracy, and in a two-variable combination, the 519 

model precision is better than models built with combinations of three or more 520 

variables. The forest AGB model built by the variable after importance and 521 

correlation screening was less accurate than the optimal single variability 522 

combination. 523 

Forest AGB models that do not distinguish between tree species reduce the 524 

accuracy of forest AGB estimation. Distinguishing between different tree species to 525 

construct species-specific forest AGB models is likely to result in a more accurate 526 

assess forest AGB over large areas using remote sensing. However, the construction 527 

of species-specific forest AGB models requires a large effort and resource base to 528 

obtain forest sample plots for training and validation. In the Huodong coal mine area 529 

under Taiyue Mountain forest the broadleaved trees are mostly distributed at lower 530 

elevations, leading to the sampling points being located near residential areas and a 531 

fragmented distribution of forest sample plots, which may have led to a low overall fit 532 

of other single variables with the exception of the spectral index (Zhang et al, 2023). 533 

In contrast, coniferous forest was mostly distributed in sparsely populated areas at 534 



high altitudes, which makes forest inventory data collection more difficult and 535 

explains the limited sample site available for training and validation in this study. 536 

Despite the limitations of sample size, it was still possible to estimate coniferous 537 

forest AGB with reasonable accuracy because the patches of conifer forests tend to be 538 

located in distinct patches that are not often disturbed. However, due to the small 539 

sample size available for coniferous species, the construction of variable importance 540 

and correlation variables may have led to instability in model fitting accuracy due to 541 

insufficient sample points. Therefore, if ML methods are subsequently used for 542 

biomass model construction, it is recommended that sufficient sample points be 543 

collected to allow for training and validation activities (Qiuli et al, 2023). According 544 

to the experimental results of this paper, at least 100 sample points for a single tree 545 

species biomass model are needed. 546 

In both univariate and multi-source variable biomass prediction models, the 547 

number of samples determines the accuracy of the model, as shown in Figures A and 548 

B (Supplementary). Even when no distinction is made between tree species, the 549 

prediction of the model for mixed forest AGB were better than those for broadleaved 550 

and coniferous forests individually. Among the different combinations of variables, 551 

the optimal models that were constructed with spectral indices and K-T best predicted 552 

the AGB for broadleaved forests, whilst for coniferous and mixed forests the optimal 553 

combination of variables was spectral indices, texture features, spectral indices and 554 

bands. In particular, the coniferous forest AGB model parameterised with texture 555 



features and spectral indices appeared to compensate for the lower prediction 556 

accuracy due to the smaller training and validation sample size. 557 

4.1. Different forest species models 558 

The optimal ML method for estimating forest AGB in the three different forest types 559 

was not consistent. Wongchai et al. (2022) reported that many studies have been 560 

conducted where different tree species have been analyzed using the same ML 561 

methods, with the rationale that canopy information is tree species-specific. In the 562 

present study the AGB model prediction error for the three different forest types was 563 

ranked from high to low (i.e., coniferous forest > mixed species forest > broadleaved 564 

forest) in both single and multi-source variables. The main reason for the higher error 565 

in coniferous forest than broadleaved forest is that the sample points collected in 566 

broadleaved forest are mostly concentrated near the roadside, where the most 567 

abundant tree species is poplar (Populus spp.), and the average tree age is similar. 568 

However, the sampling data of coniferous forest are concentrated in the higher 569 

elevation area, where there is an uneven age distribution, so the difference in sample 570 

biomass data is more obvious, which leads to a higher error in broadleaved forest. As 571 

the forest inventory plots were sampled in August, all experiments in this paper only 572 

considered the prediction and evaluation of forest AGB models during the vegetation 573 

growing season, and future model tests will be conducted for different seasons and 574 

forest species based on the available results so as to verify the limitations and 575 

applicability of the models. 576 



4.2. Accuracy comparison of different combinations of variables 577 

In the ML model construction with a single variable, the optimal forest AGB variable 578 

was the spectral index variable, which has been often reported (Wang et al, 2020), 579 

followed by the spectral band, irrespective of whether it is a broadleaved, coniferous, 580 

or mixed-species forest type with the exception of attempts to parameterise using the 581 

GLCM variable. In ML models constructed using multi-source variables, the fitted 582 

values based on the spectral index superimposed on other variables were better than 583 

the other variable models. The fitted values of the models constructed by equal 584 

difference series of variable importance and correlation ranking were lower than those 585 

of the single and multi-source models constructed by spectral index variables, 586 

regardless of the number. The overall level of model accuracy did not depend on the 587 

number of variables, in fact the forest AGB models constructed with single variables 588 

with high fit values for multi-source variables provided the most accurate forest AGB 589 

estimates. Explanatory variables used in AGB model construction were analysed for 590 

multicollinearity using a pairwise comparison of Pearson correlation coefficients, 591 

which indicated a strong autocorrelation between the spectral index and the spectral 592 

band. Additionally, there was a strong autocorrelation among the SAR HV variables. 593 

However, there was no significant autocorrelation observed in the terrain features and 594 

GLCM variables. Therefore, incorporating the spectral index/spectral band with other 595 

variables can effectively improve the accuracy of the forest AGB model. This is 596 

consistent with the results of the multi-source feature variable combinations in 597 

Section 3.2. 598 



4.3. Biomass prediction model application 599 

To aid visualisation and interpretation, three GEE-based applications were developed, 600 

namely the Forest Biomass and Variable Correlation Analysis Application 601 

(https://bqt2000204051.users.earthengine.app/view/forest-agb-variables-correlation-602 

analysis), the Forest Biomass and Variable Importance Analysis Application 603 

(https://bqt2000204051.users.earthengine.app/view/forest-agb-variable-importance-604 

analysis) and the Forest Biomass Prediction Application 605 

(https://bqt2000204051.users.earthengine.app/view/forest-aboveground-biomass-606 

prediction) to correlate selected multi-source remote sensing variables with the 607 

collected forest biomass and to filter the remote sensing variables with high 608 

correlation based on correlation coefficients for biomass modelling. 609 

The correlation analysis results for hundreds of variables include correlation 610 

coefficients and p-values. The Forest Biomass and Variable Importance Analysis 611 

Application performs variable importance analysis based on multi-source remote 612 

sensing variables and forest biomass and selects multi-source remote sensing 613 

variables for model building based on the variable importance results with the RF, 614 

CART, and GBDT ML methods are provided in the variable importance analysis. The 615 

Forest Biomass Prediction Application is based on the aforementioned applications 616 

but extends them by permitting users to select different ML methods for biomass 617 

model prediction using the 30 multi-source variable combinations used in this 618 

analysis enabling the assessment of forest AGB estimates and accuracy (i.e., R2, 619 

RMSE, MAE, and RE) to be compared online. 620 



5. Conclusion 621 

In this study, four ML methods were used in the GEE cloud platform to construct 622 

forest AGB models using single and multi-source variable combination and their 623 

performance evaluated using variable importance values and Pearson correlation 624 

coefficients between predicted and measured AGB values. A complete model 625 

evaluation system that included R2, RMSE, MAE, and RE was used to determine best 626 

model to predict forest AGB. The results showed the optimal model results were 627 

obtained using the GBDT ML method. The most accurate estimation of biomass was 628 

achieved for mixed species forests. Multisource remote sensing data and ML methods 629 

was able to accurately estimate forest AGB biomass enabling rapid estimation of 630 

forest productivity, standing biomass and C stocks in complex topographical 631 

landscapes. 632 
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