

Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models

Yan, Xingguang; Li, Jing; Smith, Andy; Yang, Di; Ma, Tianyue; Su, Yiting; Shao, Jiahao

International Journal of Digital Earth

DOI: 10.1080/17538947.2023.2270459

Published: 01/11/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Yan, X., Li, J., Smith, A., Yang, D., Ma, T., Su, Y., & Shao, J. (2023). Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models. International Journal of Digital Earth, 16(2), Article 4471-4491. https://doi.org/10.1080/17538947.2023.2270459

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Evaluation of machine	learning methods and multi-source remote
2	sensing data combination	ons to construct forest above-ground biomass
3	models	
4		
5	Xingguang Yan ^{a,b,c} , Jing	Li ^{a*} , Andrew R. Smith ^{b,c} , Di Yang ^d , Tianyue
6	Ma ^a , YiTing Su ^a and Jiah	nao Shao ^a
7	^a College of Geoscience and S	Surveying Engineering, China University of Mining and
8	Technology-Beijing, Beijing	100083, China;
9	^b School of Natural Sciences,	Bangor University, Bangor, Gwynedd, LL57 2UW, UK
10	^c Environment Centre Wales,	Bangor University, Bangor, Gwynedd, LL57 2UW, UK
11	^d Wyoming Geographic Inform	nation Science Center, University of Wyoming, WY
12	82070, USA	
13		
14	*Author for Correspondence	: Jing Li, Email: lijing@cumtb.edu.cn
15	ORCID	
16	Xingguang Yan	https://orcid.org/0009-0001-8280-4568
17	Andrew R. Smith	http://orchid.org/0000-0001-8580-278X
18	Di Yang	http://orchid.org/0000-0002-4010-6163
19		
20		

21	Abstract: Rapid and accurate estimation of forest biomass is essential to drive
22	sustainable management of forests. Field-based measurements of forest above-
23	ground biomass (AGB) can be costly and difficult to conduct. Multi-source
24	remote sensing data offers potential to improve the accuracy of modelled AGB
25	predictions. Here, four machine learning methods: Random Forest (RF),
26	Gradient Boosting Decision Tree (GBDT), Classification and Regression Trees
27	(CART) and Minimum Distance (MD) were used to construct forest AGB
28	models of Taiyue Mountain forest, Shanxi Province, China using single and
29	multi-sourced remote sensing data and the Google Earth Engine platform.
30	Results showed that the machine learning method that most accurately
31	predicted AGB was GBDT and spectral index for coniferous (R ² =0.99;
32	RMSE=65.52 Mg/ha), broadleaved (R ² =0.97; RMSE=29.14 Mg/ha), and
33	mixed species (R ² =0.97; RMSE=81.12 Mg/ha) forest types. Models
34	constructed using bivariate variable combinations that included the spectral
35	index improved the AGB estimation accuracy of mixed species (R ² =0.99;
36	RMSE=59.52 Mg/ha) forest types and reduced slightly the accuracy of
37	coniferous (R ² =0.99; RMSE=101.46 Mg/ha), and broadleaved (R ² =0.97;
38	RMSE=37.59 Mg/ha) forest AGB estimation. Overall, parameterising machine
39	learning algorithms with multi-source remote sensing variables can improve
40	the prediction accuracy of mixed species forests.
41	Keywords: Google Earth Engine; Mixed Species; Landscape; Satellite;
42	Spectral; Waveband

43 **1. Introduction**

Remote sensing has great utility in the determination of forest above-ground
biomass (AGB) due to the rapid and repeatable acquisition of multi-sensor derived
waveband information that correlates with forest biomass structure. Forests cover
approximately 40% of the global non-ice land area, and their biomass accounts for

48	about 90% of the terrestrial biomass, as such forests have an irreplaceable role in the
49	terrestrial carbon (C) cycle (Houghton, 2005). Therefore, estimating forest AGB in
50	the study of the C cycle and C stocks in terrestrial ecosystems is of high importance
51	(Vashum, et al. 2012). Traditionally, AGB of forests was determined through
52	manually intensive collection of forest inventory data; however, the emergence of
53	portable terrestrial light detection and ranging (LiDAR) scanners has provided high
54	resolution data to describe forest structure and derive forest inventory metrics
55	(Wulder, et al. 2012), while satellite and airborne LiDAR has enabled the estimation
56	of forest biomass from large areas of inaccessible forest. Developments in remote
57	sensing technology such as synthetic aperture radar (SAR) and interferometric SAR
58	(InSAR) has, particularly through the application of machine learning (ML)
59	techniques, provided further opportunities to improve the accuracy of forest AGB
60	estimates over large areas (Frolking, et al. 2009; Lechner, et al. 2020; Luo, et al.
61	2020). Recently, LiDAR, optical and radar remote sensing data have been combined
62	into multi-source datasets for research into land cover change and forest biomass
63	estimation (Isbaex, et al. 2021), climate change (He et al. 2023), environmental
64	pollution (Zhang et al. 2023), and forest ecophysiology (Gamon et al. 2023).
65	The integration of multi-source remote sensing data offers huge potential to
66	improve the predictive power of ML algorithms used in data science. Hyde et al.,
67	(2007) demonstrated that the prediction of forest AGB could be improved using a
68	combination of LiDAR, SAR, and InSAR (i.e., LiDAR+SAR/InSAR) rather than
69	using the three types of data individually. Indeed, spatial modelling methods that

70	integrate airborne LiDAR with satellite-based SAR data have been shown to provide
71	spatially explicit AGB estimates over large areas (Tsui et al. 2013). Vafaei
72	et al., (2018) combined multispectral Sentinel-2A imagery with ALOS-2 and
73	PALSAR-2 data to estimate forest AGB using four ML methods. The study revealed
74	that when Sentinel-2A imagery is combined with ALOS-2 and PALSAR-2 data,
75	forest AGB estimates are improved over Sentinel-2A data alone, and that the support
76	vector regression (SVR) method yielded the highest level of accuracy. Similarly,
77	Tamiminia et al., (2022) combined optical, SAR, and airborne LiDAR data to
78	estimate forest AGB using multiple decision tree-based ML methods to reveal that
79	optical and SAR data provided the most accurate estimation of forest AGB; however,
80	there was no significant difference between the ML methods used. Shao et al. (2017)
81	demonstrated the utility of multi-sourced for the AGB estimation of forests by
82	integrating optical (Landsat 8 OLI) and SAR (Sentinel-1A) explanatory variables to
83	parameterize a stacked sparse autoencoder network (SSAE) and show that the data
84	combination outperformed SAR and optical data variables alone for forest AGB
85	estimation over large areas.
86	Most recently, the accuracy of forest AGB estimation was improved by
87	accounting for tree phenology and dominant tree species with the random forest (RF)
88	method parameterised with LiDAR and Sentinel-1 and Sentinel-2 data (Zhang
89	et al 2023). Consensus in recent literature suggests that radar and optical remote
90	sensing data sources can improve forest AGB estimation over optical or LiDAR data
91	alone (Velasco et al. 2023) and opportunities remain to further refine methodologies

92	by evaluating a broader range of multi-source remote sensing data and ML methods.
93	For example, multi- or hyper-spectral data can be usefully analysed to extract metrics
94	that describe biophysical characteristics of vegetation, and the differences in
95	reflectance spectra of vegetation can also be used to identify specific species at
96	different growth stages (Li, et al. 2012), while transformation of spectral bands using
97	the tassel cap transformation can be used to generate indices that are proxies for
98	texture, frequently used to parameterize models of forest biomass.
99	Machine learning methods have become prevalent in the development of forest
100	biomass models as they are able to reveal complicated nonlinear relationships in
101	complex datasets. Machine learning methods are widely used because of their
102	adaptiveness, interpretability, and sustainability, and are divided into supervised and
103	unsupervised categories. Supervised learning enables ML algorithms to use training
104	datasets to reveal the relationship between input and output data. Algorithms that
105	require supervised learning include decision trees, logistic regression, support vector
106	machines, and neural networks (Mountrakis, et al. 2011; Rodríguez-Veiga, et al.
107	2019; Mas, et al. 2008). Whereas unsupervised learning is a data processing method
108	that classifies a large sample of the subject under study through data analysis without
109	category information. Unsupervised classification methods include cluster analysis,
110	principal component analysis and factor analysis (Olaode, et al. 2014). In the ML-
111	based assessment of forest AGB assessment of a single tree species in northern
112	Thailand, the RF method demonstrated higher model accuracy compared to traditional
113	allometric equations and other ML methods (Wongchai, et al. 2022). However, Bulut,

114	(2023) recommends that multiple ML methods be used with multiple data sources in
115	different environmental conditions to obtain the most accurate forest AGB esitmates.
116	Commonly used supervised ML methods for forest biomass models include
117	Random Forest (RF; Tian, et al. 2017), Classification and Regression Trees (CART;
118	Breiman, 2017), Gradient Boosting Decision Tree (GBDT; Pham, et al. 2020), and the
119	Minimum Distance (MD; Yang, et al. 2020) method. These ML methods commonly
120	used to estimate forest AGB are evaluated using an R^2 based on the coefficient of
121	determination, root mean square error (RMSE), mean absolute error (MAE), and
122	relative error (RE) (Isbaex, et al. 2021; Han, et al. 2021).
123	Google Earth Engine (GEE) is a cloud platform that provides powerful tools
124	for processing and analysis of remotely sensed data (Lu, et al. 2016). Through the
125	GEE interface users can access more than 50 petabytes of remote sensing data from
126	Landsat, Sentinel, SAR and digital elevation models (DEM) (Gorelick, et al. 2017).
127	Data processing on the GEE platform can be conducted using Javascript and Python
128	APIs to access Google's compute infrastructure for parallel processing of massive
129	datasets. Recently, scholars have used GEE to analyse environmental change with a
130	focus on forest monitoring (Tamiminia, et al. 2020), conduct large-area multi-source
131	remote sensing-based forest biomass estimation (Yang, et al. 2018) and to develop
132	online visualisation tools (Yan, et al. 2022).
133	Although several studies have explored the estimation of forest AGB using
134	multi-source remote sensing variables, there is currently no specific construction
135	process to select ML methods and different combinations of remote sensing variables

(Lu, et al. 2006). Here, we use an optimal ML method to construct different forest 136 AGB models using single input datatypes and construct multi-source remote sensing 137 variables for comparison to the optimal single variable. Multi-source remote sensing 138 variable combinations are then constructed according to their importance and 139 correlation between an array of multi-source remote sensing variables to test the 140 optimal forest AGB model. However, to obtain accurate determination of biomass in 141 mixed species forests, it is necessary to consider tree species-specific differences in 142 remotely sensed data. The objectives of this paper are to: (i) improve the estimation of 143 144 AGB in different forest types i.e., broadleaved, coniferous and mixed species forests; (ii) determine the optimal combination of remotely sensed data to improve the 145 accuracy of forest AGB estimation using ML approaches; and (iii) to explore the 146 forests within the Huodong coal mine area under Taiyue Mountain to validate the 147 selected method. 148

149 2. Material and Methods

150 2.1. Study area

Huodong Mining District (36°30'0''N, 112°24'0''E) is a national mining district
within Jinzhong coal basin, one of the 14 large coal basins in China delineated in the
National Mineral Resources Plan (2016-2020). The mining area is a temperate
continental climate, with four distinct seasons and a large temperature difference
between day and night. The mean annual temperature is 9.2 °C. The mean annual
precipitation is 564.1 mm. It is located in the west of Qinshui Coalfield in Shanxi

locust, Betula platyphylla. An overview map of the study area is shown in Figure 1.

Figure 1. Map of the study area in the southeastern of Shanxi Province, China. The
red line box is the Huodong mining area, the green area is the Taiyue Mountain forest,
Black and purple points are the coniferous and broadleaved forest sampling sites,
respectively.

171 2.2. Data collection and processing

172 2.2.1. Data collection

173	Selection of 128 (30 m \times 30 m) forest sample plots (128 mixed, 91 broadleaved, 37
174	coniferous,) was conducted with the GEE platform using high spatial resolution
175	images to obtain the coordinates of the center point of each forest sample plot (Figure
176	2). A total of 128 forest sample plots were surveyed between 1st and 23rd August
177	2022 using a combination of traditional forest mensuration measurements and mobile
178	LiDAR (LiBackpack DGC50) with a relative accuracy of 3 cm, absolute accuracy of
179	5 cm, scanning frequency of 600,000 points/sec. During the measurement process, the
180	surveyors manually measured diameter at breast height (DBH) and height (H) of all
181	living trees. The ABG of each tree species was estimated using a regional tree
182	species-specific allometric equation (Table 1) (Fang, et al. 2001). All remote sensing
183	data were sourced from datasets available in the GEE cloud platform
184	(https://developers.google.com/earth-engine/datasets/), with the exception of Landsat
185	8 Level 2, Collection 2, Tier 1 optical data for each 30 m \times 30 m forest sample plot
186	Topographic data were obtained from NASA SRTM Digital Elevation, and SAR data
187	were Global PALSAR-2/PALSAR yearly mosaic, and the specific data parameters are
188	shown in Table 2.
189	

191 Figure 2. Forest sample plot survey (a) single tree diameter at breast height

192 measurement using a diameter at breast height ruler; (b) scanning the forest sample

193 plot using a backpack LiDAR; (c) single tree height measurement using a height

194 gauge; (d) measuring the extent of the forest sample plot using a measuring rope.

195 Table 1. Allometric equations for estimating the forest species in the study area. AGB

is the above-ground biomass (kg), D is the diameter (cm) at breast height (1.3 m), H is

197 the height of the tree (m).

Tree Species	Allometric Equation	
Larix principis-rupprechtii	$AGB = 0.2387114 (D^2H)^{0.6784}$	_
Cunninghamia lanceolata	$AGB = 0.00849 (D^2 H)^{1.10723}$	
Populus spp.	$AGB = 0.07363 (D^2 H)^{0.7745}$	
Pinus tabuliformis	$AGB = 0.14187 (D^2 H)^{0.8728}$	
Robinia pseudoacacia	$AGB = 0.02583 (D^2 H)^{0.6841}$	
Quercus wutaishanica	$AGB = 0.04930 (D^2 H)^{0.8514}$	

198

199 Table 2. Remote sensing image collection

Name	Earth Engine Snippet	Acquisition Date	Processin
			g Level
Landsat	LANDSAT/LC08/C02/T1 L2	"2022-06-01","2022-08-31"	Level 2

8			
DEM	USGS/SRTMGL1_003	"2000-02-11"	V3
SAR	JAXA/ALOS/PALSAR/YEARLY/SAR	"2020-01-01","2021-01-01"	2.1

201 *2.2.2. Data processing*

202	LiDAR generated 3D cloud point data collected in field for each forest sample plot
203	was preprocessed using the LiDAR360 software (GreenValley International,
204	Zhongguancun Software Park, Haidian). The processes involved forest sample
205	screening and clipping, point cloud data thinning and denoising, ground point cloud
206	segmentation, point cloud normalization and single wood parameter statistics. Finally,
207	the tree height and diameter of single trees in all forest plots were counted separately
208	to obtain the forest biomass of the whole plot.
209	Processing of the Landsat 8, SAR, and DEM datasets involved filtering to extract the
210	specific study area and removing clouds using a cloud bit mask. Multiple sources of
211	remote sensing variables were selected from specified bands of different image
212	collections to obtain the information shown in Table 3.
213	2.3. Experimental design

214 Most of the scientific literature does not explain how to select appropriate variables to

develop and evaluate forest AGB models. Based on this knowledge, we designed this

- experiment to construct forest AGB models using a combination of multi-source
- remote sensing variables and then compared the accuracy of different variable
- combinations on forest AGB models to more scientifically follow the optimal

combination of single variables and reveal which combination of variables had thebest fit.

221	Four experiments were conducted to assess the utility of different variable
222	combinations and their accuracy in estimating forest AGB: (i) single variable; (ii)
223	multi-source variable combinations; (iii) variable importance; and (iv) Pearson
224	correlation coefficient. The four ML methods (RF, CART, GBDT and MD) used in
225	this study were evaluated with $n = 500$ decision tree parameters. Each model was
226	analysed by assessing the following four indicators: R ² , RMSE, MAE, and RE. A
227	flowchart that details the satellite-image processing and the generation of forest AGB
228	models using ML is shown in Figure 3.
229	For model training and validation of the model AGB estimates, the location of
230	each of the 128 forest sample plots was identified using a handheld GNSS receiver
231	(CHC® LT500T, iGage Mapping Corporation, Salt Lake City, USA), and a field-
232	based forest inventory survey conducted.

Figure 3. Flowchart for satellite-image processing and the generation of forest aboveground biomass (AGB) models based on machine learning (ML) methods. Among the six variable types obtained during the data processing, the feature variable synthetic aperture radar (SAR) was derived from the ALOS-2 PALSAR data. Spectral bands, spectral indices, Kauth-Thomas (K-T), and gray level co-occurrence matrix (GLCM) all originate from Landsat 8 SR images. Terrain variables were derived from the NASA's shuttle radar topography mission (SRTM).

241 2.4. Machine learning methods

Four decision tree ML methods (RF, CART, GBDT and MD) were selected from the

243 ML methods available in the GEE platform to construct a forest biomass model.

244 2.4.1. Random Forest

245	Random forest is an integration-based decision tree approach (Cutler, et al. 2012) that
246	is commonly used for classification, regression, and other tasks (Breiman, 2001). It
247	improves the prediction performance by integrating multiple decision trees, each
248	constructed by random subsampling and random feature selection. The random forest
249	approach takes a self-service sampling method (bootstrap sampling), in which k
250	samples are randomly selected from the original dataset to form a collection of
251	subsamples, which can increase the randomness and diversity of the training set and
252	reduce the phenomenon of overfitting. Multiple bootstrap samples are randomly and
253	repeatedly sampled from the training dataset, and then a decision tree is constructed
254	for each bootstrap sample. Finally, the regression results of all decision trees are
255	averaged to obtain the prediction results (Speiser et al. 2019).

256 2.4.2. Classification and Regression Tree

257 Classification and regression tree is a decision tree classification and regression

258 method (Loh, et al. 2008). The CART algorithm recursively constructs a decision tree

by binary slicing of sample features, where each leaf node represents a decision

outcome (Breiman, 2017). For classification problems, the leaf nodes of the decision

- tree correspond to a category; for regression problems, the leaf nodes of the decision
- tree correspond to a value. The CART algorithm generates interpretable decision trees
- with low computational effort and fast training but may produce overfitting for high-

dimensional data (Gómez, et al. 2012).

265 2.4.3. Gradient Boosting Decision Tree

266 The GBDT algorithm is implemented to model and predict data by integrating multiple decision trees where in each iteration step, a decision tree is used to fit the 267 residuals of the current data (Friedman, 2001). Eventually, the predictions of multiple 268 decision trees are weighted and averaged to obtain the final model predictions (Pham 269 et al. 2020). The advantages of the GBDT method are that it can effectively handle 270 many types of data (e.g., numerical, subtypes, and sequential) and can automatically 271 272 select important features and handle missing data. In addition, the method has a strong generalization capability to handle large-scale datasets and yields good performance 273 274 in most cases (Li, et al. 2020).

275 2.4.4. Minimum Distance

The MD method is a classic classification method that classifies samples into different 276 categories by measuring the distance between them (Wolfowitz et al. 1957). The 277 method assumes that there is a variability in distance between the sets of samples of 278 different categories, i.e., the distance between the sets of samples of different 279 categories is farther and the distance between samples of the same category is closer. 280 The basic idea of the shortest distance method is that for a new sample, the distance 281 282 between it and the sample of each category is calculated, and then it is placed in the category with the closest distance to it (Mahdianpari, et al. 2020). Euclidean distance 283 or Manhattan distance is usually used to measure the distance between samples. In 284

this paper, Euclidean distance is used as a parameter for analysis by default. The

advantage of the shortest distance method is its simplicity and ease of use, as well as

the fact that it does not require complex prior training and conditioning of the

- samples. However, it also has some disadvantages, such as sensitivity to outliers and
- poor performance on unbalanced datasets (Shaharum, et al. 2020).

290 2.4.5. Model Parameter

The specific parameters of the four machine learning methods used in this paper are shown in Table 3. The RF and GBDT methods have six parameters each, while the CART and MD methods have two parameters each. For a specific parameter explanation, please see the GEE developer documentation available at https://developers.google.com/earth-engine/apidocs

Table 3. Specific parameters of the random forest (RF), classification and regression
tree (CART), gradient boosting decision tree (GBDT), minimum distance (MD)
machine learning methods

Parameter	RF	CART	GBDT	MD
numberOfTrees	500	-	500	-
variablesPerSplit	14	-	-	-
minLeafPopulation	1	1	-	-
bagFraction	0.5	-	-	-
maxNodes	no limit	no limit	no limit	-
seed	0	-	0	-
shrinkage	-	-	0.005	-
samplingRate	-	-	0.7	-
loss	-	-	LeastAbsoluteDeviation	-
metric	-	-	-	euclidean
kNearest	-	-	-	1

300 2.5. Biomass model variable

Biomass model variables involved in the construction were divided into six
categories, which are the spectral bands of Landsat images, spectral indices,
topographic factors, tassel-cap transform (Kauth-Thomas), gray level co-occurrent
matrix (GLCM), and SAR factors, where the texture feature variable consist of 18
components, all of which are applied to SR_B2-B7 bands, respectively, and all of the
total number of multi-source variables is 156, as shown in Table 4. The specific
abbreviated noun explanation is provided in Supplementary.

308 Table 4. Biomass model single variable

309

Type of variable	Specific variable factors	number
Landsat bands	Blue(SR_B2), Green(SR_B3), Red(SR_B4),	6
	NIR(SR_B5), SWIR1(SR_B6), SWIR2 (SR_B7)	
Spectral index	NDVI, GNDVI, BNDVI, NDWI, NDWI1, MNDWI,	30
	NDMI, NDSI, SIPI, RECl, EVI, EVI2, SR, LAI, GVI,	
	RVI, GRVI, DVI, SAVI, OSAVI, ARVI, VARI, SLAVI,	
	NBR, NDGI, GCVI, GRNDVI, GBNDVI, RBNDVI,	
	RGRI	
Terrain	Elevation, Slope, Aspect, Hillshade	4
Tassel Cap Transform	Brightness, Greenness, Wetness, TCD(Tasseled Cap	5
	Angle), TCA(Tasseled Cap Distance)	
GLCM	ASM(Angular Second Moment), CONTRAST(Contrast),	18
	CORR(Correlation), VAR(Variance), IDM(Inverse	
	Difference Moment), SAVG(Sum Average), SVAR(Sum	
	Variance), SENT(Sum Entropy), ENT(Entropy),	
	DVAR(Difference variance), DENT(Difference entropy),	
	IMCORR1(Information Measure of Corr. 1),	
	IMCORR2(Information Measure of Corr. 2),	
	MAXCORR(Max Corr. Coefficient),	
	DISS(Dissimilarity), INERTIA(Inertia), SHADE(Cluster	
	Shade), PROM(Cluster prominence)	
SAR	HH(Horizontal transmit/Horizontal receive polarization),	2
	HV(Horizontal transmit/Vertical receive polarization)	

Spectral bands refer to the electromagnetic waves collected at different

wavelengths by satellite sensors during the process of acquiring remote sensing
images. Different spectral bands have varying reflectivity characteristics for different
features. Therefore, extracting different spectral bands in remote sensing images can
be utilized to describe and differentiate features. The B2-B7 bands in the Landsat SR
data were selected as the spectral band variable.

The spectral index is one of the most important variables for estimation of forest AGB, especially the vegetation index, which is calculated by analysing vegetation reflection or radiation data and can provide information on vegetation growth status, chlorophyll content and vegetation cover (Zeng, et al. 2022). We selected 30 spectral indices as one of the remote sensing variables to participate in the construction of biomass models. Supplementary Table B details all the spectral indices and their abbreviations used in this paper.

Terrain variables play an important role in estimating forest biomass. Elevation can affect the climate and soil conditions, and therefore, the growth of forests. Slope, aspect and hillshade can influence microclimate, rates of soil erosion and water distribution, thereby influencing forest growth and biomass accumulation.

326 Spectral transformation is the process of converting raw remote sensing image 327 data into a different representation space. Its purpose is to extract the features of 328 different objects in the image for classification, target detection, change detection, and 329 other applications. Spectral transformation is the process of converting raw remote 330 sensing image data to another kind of representation space. In this paper, the five variables in the K-T transformation were selected as the spectral transformationvariables.

333	GLCM is a common texture analysis method based on the second-order
334	combined conditional probability density of the image. It calculates the spatial
335	relationship between different gray levels in the image. Using remote sensing images
336	to monitor forest textural features can capture detailed features within the forest.
337	Through image processing and classification of remote sensing images, various forest
338	types and structural features can be accurately identified. The extraction of the texture
339	features in this paper was performed using the glcmTexture() function in the GEE
340	platform.

341	The SAR data can be used to estimate the height, density, and volume of
342	vegetation by measuring the radio waves reflected by the vegetation. The HH and HV
343	(polarization backscattering coefficient) bands in the ALOS-2 PALSAR data were
344	selected as the SAR variables for constructing the forest AGB model.

345 2.6. Model Evaluation

346 2.6.1. Training and validation datasets

To train and validate the model the 128 plots comprised of coniferous, broadleaved

and mixed species forest were allocated into training (70%) and validation (30%)

349 datasets. The number of training and validation of the forest sample points for each

tree species are shown in Table 5.

_					
	Forest Type	Training Points	Validation Points	Total	
	Coniferous	25	12	37	
	Broadleaved	63	28	91	
	Mixed	89	39	128	

351 Table 5. Training and validation sample points for different tree species

353 2.6.2. Feature Importance Analysis

Analysis of variable importance using GEE was conducted to determine the 354 magnitude and predictive contribution of optimal variables to the prediction of forest 355 AGB (Zhang, et al. 2019), this analysis method can be used to inform variable 356 selection, model optimization, and interpretation of model prediction results (Li, et al. 357 2019). Variable importance analysis is a process of determining the importance 358 between all multi-source remote sensing variables and the measured biomass. The 359 360 biomass of forest sample points is used as training data, and all feature variables as input properties are input into classifiers, such as RF, as classifier attributes. The 361 importance of each feature's relationship with forest AGB was determined using the 362 explain() function in GEE. RF, CART, and GBDT are provided in the developed APP 363 included in this paper (Section 4.3) for variable importance analysis. 364

365 *2.6.3. Feature correlation*

366 F	Pearson	correlation	coefficient	(Eq.	1)	was i	used	to	assess	the	degree	of	linea	ır
-------	---------	-------------	-------------	------	----	-------	------	----	--------	-----	--------	----	-------	----

- 367 correlation between all multi-source remote sensing variables and the field
- 368 measurements of forest AGB, which were then ranked from highest to the lowest.

369
$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(1)

In the above equation, x_i and y_i are the variables measured, \overline{x} and \overline{y} are the mean values of the predicted and measured, respectively.

372 2.6.4. Accuracy assessment

381

The accuracy of each ML model and variable combination was evaluated by

validation using data that was not included in the model building process. Four

accuracy evaluation indices: coefficient of determination (R^2 ; Eq. 2), root mean

squared error (RMSE, Mg/ha; Eq. 3), mean absolute error (MAE; Eq. 4) and relative

error (RE; Eq. 5) were calculated to compare the predicted and observed values.

378 (Cohen, et al. 2009). All of the above evaluation indices were implemented online

through the Javascript API of the GEE platform.

380
$$R^{2} = \frac{\sum_{i=1}^{n} (p_{i} - \overline{p})(a_{i} - \overline{a})}{\sqrt{\sum_{i=1}^{n} (p_{i} - \overline{p})^{2}(a_{i} - \overline{a})^{2}}}$$
(2)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (p_i - a_i)}{n}}$$
(3)

382
$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - a_i|$$
(4)

383
$$RE = \frac{(p_i - a_i)}{a_i} * 100\%$$
(5)

In the above expressions, p_i is the forest AGB predicted by the ML model, a_i is the measured mangrove AGB, n is the total number of sampling plots, and \overline{p} and \overline{a} are the mean values of the predicted and measured AGBs, respectively.

387 **3. Results**

388 3.1. Comparison of different methods

389	The performance of the four ML methods for predicting the coniferous, broadleaved
390	and mixed species forest types using a single spectral variable is shown in Table 6.
391	Irrespective of forest type the R^2 for each of the four ML methods was consistent
392	whilst the differences in RMSE, MAE, and RE metrics enabled selection of the best
393	model. The error metrics of the GBDT method was the smallest and the error metrics
394	of the MD method were largest. Overall, the error metrics of the GBDT method
395	tended to be the smallest and the error metrics of the MD method were the largest.
396	The ranked order of ML method performance by error for broadleaved forest was RF
397	< GBDT $<$ CART $<$ MD, for coniferous forest was GBDT $<$ RF $<$ CART $<$ MD, and
398	for mixed species forest was CART < RF < GBDT < MD. In aggregate, the GBDT
399	method performed best to estimate forest AGB for both univariate and multivariate
400	input datasets.

401 Table 6. Comparison of random forest (RF), classification and regression tree

402 (CART), gradient boosting decision tree (GBDT), minimum distance (MD) machine

403 learning methods to estimate forest aboveground biomass.

Forest Tures	Performance	Algorithm						
Forest Type	Indicator	RF	CART	GBDT	MD			
Broadleaved	\mathbb{R}^2	0.69	0.69	0.69	0.69			

	RMSE	39.59	51.14	40.45	813.97
	MAE	27.80	34.51	28.96	731.24
	RE	0.68	0.83	0.71	18.73
	\mathbb{R}^2	0.71	0.71	0.71	0.71
Coniforma	RMSE	80.34	113.40	76.72	646.23
Confierous	MAE	61.76	94.31	54.89	576.25
	RE	0.23	0.40	0.20	2.88
	\mathbb{R}^2	0.83	0.83	0.83	0.83
Mirrad	RMSE	88.67	85.63	89.13	624.61
Mixed	MAE	65.89	65.11	66.46	514.01
	RE	0.63	0.47	0.60	8.19

405 *3.2. Single and multi-source variables model evaluation*

406 *3.2.1. single variable biomass model construction*

407	The results of the forest AGB models parameterised with a single remotely sensed
408	variable for the three forest types are shown in Table 7. Among the six different
409	univariately constructed models, the RMSE was larger in coniferous forest than in
410	broadleaved and the mixed-species (undifferentiated) forests. For all models with a
411	single variable, spectral index had the highest fit and GLCM had the lowest fit.
412	For the broadleaved forest type the variable that resulted in the highest correlation

413 between predicted and measured forest AGB was spectral index ($R^2=0.97$), however

the GLCM variable produced the largest error with an R^2 of 0.01. RMSE, MAE and

RE errors of spectral index model are lower than GLCM model. In the coniferous

416 forest spectral index again resulted in the highest R^2 of 0.99, however the GLCM

417 variable produced the lowest correlation with an R^2 of 0.04. Similarly, the strongest

418 correlation of spectral indices in mixed forests had an R2 of 0.97, while the model

419 constructed by GLCM had the lowest accuracy (R2 = 0.02). Consistency with R^2 was

- 420 demonstrated in the model evaluation results for RMSE and MAE in all forest
- 421 species.

		e			1
Forest Type	Variables	R ²	RMSE (Mg/ha)	MAE	RE
	Terrain	0.05	31.00	25.08	0.46
	Band	0.69	40.45	28.96	0.71
Broadleaved	Index	0.97	29.14	21.40	0.35
	SAR	0.17	46.75	33.90	0.61
	K-T	0.10	33.94	28.94	0.52
	GLCM	0.01	30.11	24.45	0.62
	Terrain	0.11	74.24	56.64	0.25
	Band	0.71	76.72	54.89	0.20
Coniformi	Index	0.99	65.52	50.92	0.28
Coniferous	SAR	0.48	82.68	68.44	0.32
	K-T	0.72	104.93	95.98	0.65
	GLCM	0.04	111.75	93.75	0.95
	Terrain	0.01	63.99	45.83	0.70
	Band	0.83	89.13	66.46	0.60
Mixed	Index	0.97	81.12	51.18	0.61
	SAR	0.22	64.90	47.53	0.82
	K-T	0.48	76.84	52.77	0.55
	GLCM	0.02	92.55	66.92	0.53

422 Table 7. Precision evaluation of single variable models for different tree species.

424	The spatial distribution of forest AGB constructed using a single variable for
425	different forest types are shown in Figure 4. The forest AGB of coniferous and
426	broadleaved forests in the region differs greatly, with coniferous forests
427	predominating and broadleaved forests having a more scattered distribution, and the
428	forest AGB of coniferous forest is higher than that of broadleaved forest. The forest
429	biomass distribution without distinguishing tree species (Figure 4b) can more clearly
430	distinguish the difference in forest biomass distribution in the study area.

Figure 4. Biomass distribution of single variable (spectral index) for different tree
species. (a) broadleaved forest; (b) mixed-species forest; (c) coniferous forest.

434 *3.2.2. Combined biomass model with multi-wavelength variables*

435 In this experiment, 30 variable combinations were compiled Table A

436 (Supplementary), We selected only variable combinations where the model accuracy

437 (\mathbb{R}^2) of AGB estimation was > 0.5 as shown in Table 8.

438 Table 8. Performance comparison of variable combination used in ML to estimate

439 forest AGB.

Variable ID	Variables combination	М	ixed	Broadle	eaved	Conif	erous
		\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE
V8	SAR + K-T	0.64	46.94	0.46	34.89	0.43	92.88
V10	Index + Band	0.99	59.52	0.97	37.95	0.99	101.46
V11	Index + K-T	0.98	60.54	0.99	27.68	0.99	109.39
V12	Index + GLCM	0.97	86.41	0.98	49.9	0.99	94.05
V13	Band $+$ K-T	0.91	51.94	0.59	30.61	0.81	85.25
V14	Band + GLCM	0.94	84.21	0.28	28.2	0.82	85.05
V15	K-T + GLCM	0.64	82.21	0.01	38.65	0.46	83.37
V20	Band + Index + K- T	0.58	80.97	0.55	28.18	0.63	73.16
V22	K-T + GLCM + Index	0.65	69.57	0.32	36.6	0.81	96.98
V23	Band + GLCM + Index	0.92	55.24	0.51	26.01	0.7	78.08

441	Among the combinations of multi-source variables, the highest R^2 (>0.96)
442	between measured and predicted AGB obtained for models using the GBDT method
443	constructed with bivariate combination of spectral indices with spectral bands, K-T
444	transform, and GLCM variables (i.e., V10, V11 and V12, respectively), without
445	distinguishing between forest types.
446	Models constructed by combining spectral bands with the K-T and GLCM
447	variables had an $R^2 > 0.8$ (mixed-species and coniferous forest types). Based on these
448	results, models were constructed using three, four, and five combinations of variables,
449	but the R ² values of the models were lower than those of the bivariate models. Among
450	them, the model R^2 values of the coniferous forest type and mixed species
451	(undifferentiated) forest type in the three variable combinations showed consistency
452	in their estimates, but the model fit accuracy of broadleaved forest was much lower.
453	From the V20-V23 multi-source variable combination, it is easy to conclude that
454	coniferous forest outperforms the mixed species forest in terms of fitting accuracy.

459 The forest distributions of different forest types have a high degree of

460 consistency (Figure 5). However, because of the differences in the training samples,

- the predicted values of the forest biomass model are more stable without
- differentiating the tree species. The coniferous forest biomass predictions had the
- 463 greatest variation because only 37 sample data point were available, and the
- 464 coniferous biomass varied more between sample sites.

3.3. Importance analysis of importance variables

466	Using the importance analysis method in the GEE platform, all the multi-source
467	remote sensing variables were analysed separately with the forest AGB of the sample
468	site, and the importance results were ranked in descending order. Every five variables
469	were stacked in turn to form a new variable combination (Ci_1 to Ci_21) as the input
470	variables of the forest AGB model. Because there were only 105 variables with non-
471	zero values in the results of the variable importance analysis, there were only 21
472	variable combinations, and the model fitting accuracy results are shown in Figure 6.
473	From the results, it is apparent that there is no strong correlation between the fitting
474	accuracy of variable combinations with varying importance and the number of
475	variables. The biomass models constructed according to the combination of variable
476	importance had low fitting accuracy, and the highest fitting accuracy was only $R^2 =$
477	0.23 for Ci_6.

479 Figure 6. Variable importance model fit R² results for 21 different variable
480 combinations.

481 3.4. Pearson correlation analysis

Pearson correlation analysis was conducted using the RF method for all multi-source 482 remote sensing variables generating a predicted forest AGB and measured forest 483 AGB, and the correlation results were ranked from highest to lowest. First, the five 484 variables with the highest correlation ranking were selected as the initial group of 485 model variables to participate in the biomass model construction. Later, the 486 combination of variables participating in the model construction was added based on 487 the basis of the first group of models, and the cumulative total of 5 variables. Thus, 488 489 separately validating the resulting forest biomass prediction model after combining

490	the correlation analysis from high to low variables. However, there were only 150
491	variables with non-empty value values in the results of the variable importance
492	analysis, there were only 30 variable combinations. A new combination of variables
493	(Cp_1 to Cp_30) was formed as the variables of the forest biomass model by
494	superimposing every five variables in turn (Figure 7). In the variable Pearson
495	correlation analysis, the forest biomass model was constructed without distinguishing
496	between tree species in order to reduce the influence of an insufficient number of
497	forest sample points on the results. The results showed that the accuracy of the model
498	fitted by the cumulative equivariant variables tended to first decrease and then
499	gradually increase and stabilise with an increased in the order of correlation of
500	variables. The forest AGB model with the highest accuracy ($R^2 = 0.5154$) was
501	parameterised using the Cp_22 combination of variables (Figure 7).
502	

504 Figure 7. Variable correlation model R^2 results

505 **4. Discussion**

The objective of this study was to develop a framework for selecting ML methods and variable combinations to construct a forest AGB model that accurately predicts forest AGB in different forest types. Many studies have reported superior performance of the RF method in predicting forest AGB using remotely sensed data (Chen et al, 2017; Zhang et al, 2023). In this paper, it was found that the GBDT method exhibits higher forest AGB prediction accuracy, particularly when the number of samples points in the training data are large . However, there was not a significant difference between

513	the RF and GBDT methods, which aligns with the findings of previous studies
514	(Tamiminia et al, 2022). The method and process of selecting the optimal forest AGB
515	model used in this study is suitable for all forest AGB modelling. Despite the study
516	area being a mixed species forest located in complex terrain it was still possible to
517	make accurate predictions of forest AGB. By comparing the biomass models built
518	with different variable combinations, the results showed that the number of variables
519	is not directly related to the model accuracy, and in a two-variable combination, the
520	model precision is better than models built with combinations of three or more
521	variables. The forest AGB model built by the variable after importance and
522	correlation screening was less accurate than the optimal single variability
523	combination.
524	Forest AGB models that do not distinguish between tree species reduce the
525	accuracy of forest AGB estimation. Distinguishing between different tree species to
526	construct species-specific forest AGB models is likely to result in a more accurate
527	assess forest AGB over large areas using remote sensing. However, the construction
528	of species-specific forest AGB models requires a large effort and resource base to

529 obtain forest sample plots for training and validation. In the Huodong coal mine area

530 under Taiyue Mountain forest the broadleaved trees are mostly distributed at lower

elevations, leading to the sampling points being located near residential areas and a

fragmented distribution of forest sample plots, which may have led to a low overall fit

of other single variables with the exception of the spectral index (Zhang et al, 2023).

534 In contrast, coniferous forest was mostly distributed in sparsely populated areas at

535	high altitudes, which makes forest inventory data collection more difficult and
536	explains the limited sample site available for training and validation in this study.
537	Despite the limitations of sample size, it was still possible to estimate coniferous
538	forest AGB with reasonable accuracy because the patches of conifer forests tend to be
539	located in distinct patches that are not often disturbed. However, due to the small
540	sample size available for coniferous species, the construction of variable importance
541	and correlation variables may have led to instability in model fitting accuracy due to
542	insufficient sample points. Therefore, if ML methods are subsequently used for
543	biomass model construction, it is recommended that sufficient sample points be
544	collected to allow for training and validation activities (Qiuli et al, 2023). According
545	to the experimental results of this paper, at least 100 sample points for a single tree
546	species biomass model are needed.
547	In both univariate and multi-source variable biomass prediction models, the
548	number of samples determines the accuracy of the model, as shown in Figures A and
549	B (Supplementary). Even when no distinction is made between tree species, the
550	prediction of the model for mixed forest AGB were better than those for broadleaved
551	and coniferous forests individually. Among the different combinations of variables,
552	the optimal models that were constructed with spectral indices and K-T best predicted
553	the AGB for broadleaved forests, whilst for coniferous and mixed forests the optimal
554	combination of variables was spectral indices, texture features, spectral indices and

bands. In particular, the coniferous forest AGB model parameterised with texture

556	features	and spectral	indices	appeared	to compensation	ate for t	the lower	prediction
-----	----------	--------------	---------	----------	-----------------	-----------	-----------	------------

accuracy due to the smaller training and validation sample size.

558 4.1. Different forest species models

The optimal ML method for estimating forest AGB in the three different forest types 559 was not consistent. Wongchai et al. (2022) reported that many studies have been 560 conducted where different tree species have been analyzed using the same ML 561 methods, with the rationale that canopy information is tree species-specific. In the 562 present study the AGB model prediction error for the three different forest types was 563 564 ranked from high to low (i.e., coniferous forest > mixed species forest > broadleaved forest) in both single and multi-source variables. The main reason for the higher error 565 in coniferous forest than broadleaved forest is that the sample points collected in 566 broadleaved forest are mostly concentrated near the roadside, where the most 567 abundant tree species is poplar (*Populus* spp.), and the average tree age is similar. 568 However, the sampling data of coniferous forest are concentrated in the higher 569 570 elevation area, where there is an uneven age distribution, so the difference in sample biomass data is more obvious, which leads to a higher error in broadleaved forest. As 571 the forest inventory plots were sampled in August, all experiments in this paper only 572 considered the prediction and evaluation of forest AGB models during the vegetation 573 growing season, and future model tests will be conducted for different seasons and 574 forest species based on the available results so as to verify the limitations and 575 applicability of the models. 576

577 4.2. Accuracy comparison of different combinations of variables

578	In the ML model construction with a single variable, the optimal forest AGB variable
579	was the spectral index variable, which has been often reported (Wang et al, 2020),
580	followed by the spectral band, irrespective of whether it is a broadleaved, coniferous,
581	or mixed-species forest type with the exception of attempts to parameterise using the
582	GLCM variable. In ML models constructed using multi-source variables, the fitted
583	values based on the spectral index superimposed on other variables were better than
584	the other variable models. The fitted values of the models constructed by equal
585	difference series of variable importance and correlation ranking were lower than those
586	of the single and multi-source models constructed by spectral index variables,
587	regardless of the number. The overall level of model accuracy did not depend on the
588	number of variables, in fact the forest AGB models constructed with single variables
589	with high fit values for multi-source variables provided the most accurate forest AGB
590	estimates. Explanatory variables used in AGB model construction were analysed for
591	multicollinearity using a pairwise comparison of Pearson correlation coefficients,
592	which indicated a strong autocorrelation between the spectral index and the spectral
593	band. Additionally, there was a strong autocorrelation among the SAR HV variables.
594	However, there was no significant autocorrelation observed in the terrain features and
595	GLCM variables. Therefore, incorporating the spectral index/spectral band with other
596	variables can effectively improve the accuracy of the forest AGB model. This is
597	consistent with the results of the multi-source feature variable combinations in
598	Section 3.2.

599 4.3. Biomass prediction model application

- 600 To aid visualisation and interpretation, three GEE-based applications were developed,
- namely the Forest Biomass and Variable Correlation Analysis Application
- 602 (https://bqt2000204051.users.earthengine.app/view/forest-agb-variables-correlation-
- 603 <u>analysis</u>), the Forest Biomass and Variable Importance Analysis Application
- 604 (https://bqt2000204051.users.earthengine.app/view/forest-agb-variable-importance-
- 605 <u>analysis</u>) and the Forest Biomass Prediction Application
- 606 (https://bqt2000204051.users.earthengine.app/view/forest-aboveground-biomass-
- 607 <u>prediction</u>) to correlate selected multi-source remote sensing variables with the
- 608 collected forest biomass and to filter the remote sensing variables with high
- 609 correlation based on correlation coefficients for biomass modelling.
- The correlation analysis results for hundreds of variables include correlation
- 611 coefficients and p-values. The Forest Biomass and Variable Importance Analysis
- 612 Application performs variable importance analysis based on multi-source remote
- sensing variables and forest biomass and selects multi-source remote sensing
- variables for model building based on the variable importance results with the RF,
- 615 CART, and GBDT ML methods are provided in the variable importance analysis. The
- 616 Forest Biomass Prediction Application is based on the aforementioned applications
- but extends them by permitting users to select different ML methods for biomass
- model prediction using the 30 multi-source variable combinations used in this
- analysis enabling the assessment of forest AGB estimates and accuracy (i.e., R^2 ,
- 620 RMSE, MAE, and RE) to be compared online.

621 5. Conclusion

In this study, four ML methods were used in the GEE cloud platform to construct

- 623 forest AGB models using single and multi-source variable combination and their
- 624 performance evaluated using variable importance values and Pearson correlation
- 625 coefficients between predicted and measured AGB values. A complete model
- evaluation system that included R^2 , RMSE, MAE, and RE was used to determine best
- model to predict forest AGB. The results showed the optimal model results were
- obtained using the GBDT ML method. The most accurate estimation of biomass was
- achieved for mixed species forests. Multisource remote sensing data and ML methods
- 630 was able to accurately estimate forest AGB biomass enabling rapid estimation of
- 631 forest productivity, standing biomass and C stocks in complex topographical
- 632 landscapes.

633 Funding

This work was support by the National Key Research and Development Program of China
(Intergovernmental and international cooperation in science, technology and innovation) under
Grant Number 2022YFE0127700; Royal Society International Exchanges 2022 Cost Share (NSFC)
under Grant number IEC\NSFC\223567.

638 Acknowledgements

The authors sincerely thank the National Aeronautics and Space Administration (NASA) and United
States Geological Survey (USGS) for providing the Landsat and DEM data. The authors thank the
Japan Aerospace Exploration Agency (JAXA) for providing Global PALSAR-2/PALSAR Yearly
Mosaic data. We would like to express our gratitude to Google Earth Engine for offering free cloud
computing services. The authors thank the anonymous reviewers for their valuable comments.

644 Disclosure statement

645 The authors declare no conflict of interest.

646 **References**

Benesty, Jacob, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. "Pearson Correlation
Coefficient." *In Noise reduction in speech processing*, 1-4.

in the mountainous conditions of Central Europe." Ecological Engineering 100:219-652 653 230. https://doi.org/10.1016/j.ecoleng.2016.12.004. 654 Bulut, Sinan. 2023. "Machine learning prediction of above-ground biomass in pure Calabrian pine (Pinus brutia Ten.) stands of the Mediterranean region, Türkiye." Ecological 655 Informatics 74:101951. 656 Burke, Marshall, and David B Lobell. 2017. "Satellite-based assessment of yield variation and 657 its determinants in smallholder African systems." Proceedings of the National 658 Academy of Sciences 114 (9):2189-2194. https://doi.org/10.1073/pnas.1616919114. 659 Chen, Lin, Chunying Ren, Bai Zhang, Zongming Wang, and Yanbiao Xi. 2018. "Estimation of 660 661 forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery." Forests 9 (10):582. https://doi:10.3390/f9100582. 662 Cohen, Israel, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, 663 Yiteng Huang, and Israel Cohen. 2009. "Pearson correlation coefficient." Noise 664 665 reduction in speech processing:1-4. 666 Fang, Jing-Yun, and Zhang Ming Wang. 2001. "Forest biomass estimation at regional and global levels, with special reference to China's forest biomass." Ecological Research 667 16:587-592. 668 Friedman, Jerome H. 2001. "Greedy function approximation: a gradient boosting machine." 669 Annals of statistics:1189-1232. 670 Frolking, Stephen, Michael W Palace, DB Clark, Jeffrey O Chambers, HH Shugart, and 671 George C Hurtt. 2009. "Forest disturbance and recovery: A general review in the 672 context of spaceborne remote sensing of impacts on aboveground biomass and 673 canopy structure." Journal of Geophysical Research: Biogeosciences 114 (G2). 674 Gamon, John A, Ran Wang, and Sabrina E Russo. 2023. "Contrasting photoprotective 675 responses of forest trees revealed using PRI light responses sampled with airborne 676 677 imaging spectrometry." New Phytologist 238 (3):1318-1332. 678 https://doi.org/10.1111/nph.18754 Gao, Bo-Cai. 1996. "NDWI-A normalized difference water index for remote sensing of 679 vegetation liquid water from space." Remote Sensing of Environment 58 (3):257-266. 680 681 Gitelson, Anatoly A, Yoram J Kaufman, and Mark N Merzlyak. 1996. "Use of a green channel 682 in remote sensing of global vegetation from EOS-MODIS." Remote Sensing of Environment 58 (3):289-298. 683 Gitelson, Anatoly A, Andrés Viña, Verónica Ciganda, Donald C Rundquist, and Timothy J 684 Arkebauer. 2005. "Remote estimation of canopy chlorophyll content in crops." 685 Geophysical Research Letters 32 (8). https://doi.org/10.1029/2005gl022688 686 Gómez, Cristina, Michael A. Wulder, Fernando Montes, and José A. Delgado. 2012. 687 "Modeling Forest Structural Parameters in the Mediterranean Pines of Central Spain 688 689 using QuickBird-2 Imagery and Classification and Regression Tree Analysis 690 (CART)." Remote Sensing 4 (1):135-159. https://doi.org/10.3390/rs4010135. Gorelick, Noel, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca 691 Moore. 2017. "Google Earth Engine: Planetary-scale geospatial analysis for 692

Breiman, Leo. 2001. "Random forests." Machine learning 45:5-32.

Brovkina, Olga, Jan Novotny, Emil Cienciala, Frantisek Zemek, and Radek Russ. 2017.

"Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data

649

650

651

693	everyone." Remote Sensing of Environment 202:18-27.
694	https://doi.org/10.1016/j.rse.2017.06.031.
695	Hall, Dorothy K, and George A Riggs. 2010. "Normalized-difference snow index (NDSI)."
696	Encyclopedia of snow, ice and glaciers.
697	Han, Haoshuang, Rongrong Wan, and Bing Li. 2021. "Estimating Forest Aboveground
698	Biomass Using Gaofen-1 Images, Sentinel-1 Images, and Machine Learning
699	Algorithms: A Case Study of the Dabie Mountain Region, China." Remote Sensing 14
700	(1). <u>https://doi.org/10.3390/rs14010176.</u>
701	He, Kai, Chenjing Fan, Mingchuan Zhong, Fuliang Cao, Guibin Wang, and Lin Cao. 2023.
702	"Evaluation of Habitat Suitability for Asian Elephants in Sipsongpanna under Climate
703	Change by Coupling Multi-Source Remote Sensing Products with MaxEnt Model."
704	Remote Sensing 15 (4):1047.
705	Houghton, R. A. 2005. "Aboveground Forest Biomass and the Global Carbon Balance."
706	Global Change Biology 11 (6):945-958. https://doi.org/10.1111/j.1365-
707	2486.2005.00955.x.
708	Huete, AR, and RD Jackson. 1987. "Suitability of spectral indices for evaluating vegetation
709	characteristics on arid rangelands." Remote Sensing of Environment 23 (2):213-
710	IN218.
711	Huete, Alfredo R. 1988. "A soil-adjusted vegetation index (SAVI)." Remote Sensing of
712	Environment 25 (3):295-309.
713	Hyde, Peter, Ross Nelson, Dan Kimes, and Elissa Levine. 2007. "Exploring LiDAR-RaDAR
714	synergy-predicting aboveground biomass in a southwestern ponderosa pine forest
715	using LiDAR, SAR and InSAR." Remote Sensing of Environment 106 (1):28-38.
716	https://doi.org/10.1016/j.rse.2006.07.017.
717	Jahromi, Mojtaba Naghdyzadegan, Maryam Naghdizadegan Jahromi, Babak Zolghadr-Asli,
718	Hamid Reza Pourghasemi, and Seyed Kazem Alavipanah. 2021. "Google Earth
719	Engine and its application in forest sciences." Spatial Modeling in Forest Resources
720	Management: Rural Livelihood and Sustainable Development:629-649.
721	Jin, Suming, and Steven A. Sader. 2005. "Comparison of time series tasseled cap wetness and
722	the normalized difference moisture index in detecting forest disturbances." Remote
723	Sensing of Environment 94 (3):364-372. https://doi.org/10.1016/j.rse.2004.10.012.
724	Jordan, Michael I, and Tom M Mitchell. 2015. "Machine learning: Trends, perspectives, and
725	prospects." Science 349 (6245):255-260.
726	Key, CH, and NC Benson. 1999. "The Normalized Burn Ratio, a Landsat TM radiometric
727	index of burn severity incorporating multi-temporal differencing." US Geological
728	<i>Survey</i> :2000.
729	Lechner, Alex M., Giles M. Foody, and Doreen S. Boyd. 2020. "Applications in Remote
730	Sensing to Forest Ecology and Management." One Earth 2 (5):405-412.
731	https://doi.org/10.1016/j.oneear.2020.05.001.
732	Le Toan, Thuy, S Quegan, MWJ Davidson, Heiko Balzter, Philippe Paillou, Konstantinos
733	Papathanassiou, S Plummer, F Rocca, S Saatchi, and H Shugart. 2011. "The
734	BIOMASS mission: Mapping global forest biomass to better understand the
735	terrestrial carbon cycle." Remote Sensing of Environment 115 (11):2850-2860.
736	https://doi:10.1016/j.rse.2011.03.020.

Li, Deren, Changwei Wang, Yueming Hu, and Shuguang Liu. 2012. "General review on 737 remote sensing-based biomass estimation." Geomatics and Information, Science of 738 Wuhan University 37 (6):631-635. 739 740 Li, Xiao, Yu Wang, Sumanta Basu, Karl Kumbier, and Bin Yu. 2019. "A debiased MDI feature 741 importance measure for random forests." Advances in Neural Information Processing 742 Systems 32. Li, Yingchang, Mingyang Li, Chao Li, and Zhenzhen Liu. 2020. "Forest aboveground 743 biomass estimation using Landsat 8 and Sentinel-1A data with machine learning 744 algorithms." Scientific reports 10 (1):9952. https://doi: 10.1038/s41598-020-67024-3. 745 Liu, Hui Qing, and Alfredo Huete. 1995. "A feedback based modification of the NDVI to 746 minimize canopy background and atmospheric noise." IEEE transactions on 747 748 geoscience and remote sensing 33 (2):457-465. 749 Loh, Wei-Yin. 2008. "Classification and regression tree methods." Encyclopedia of statistics in quality and reliability 1:315-323. 750 Loh, Wei-Yin. 2011. "Classification and regression trees." Wiley interdisciplinary reviews: 751 752 data mining and knowledge discovery 1 (1):14-23. 753 Lu, Dengsheng. 2007. "The potential and challenge of remote sensing-based biomass 754 estimation." International Journal of Remote Sensing 27 (7):1297-1328. https://doi.org/10.1080/01431160500486732. 755 756 Lu, Dengsheng, Qi Chen, Guangxing Wang, Lijuan Liu, Guiying Li, and Emilio Moran. 2014. "A survey of remote sensing-based aboveground biomass estimation methods in 757 forest ecosystems." International Journal of Digital Earth 9 (1):63-105. 758 https://doi.org/10.1080/17538947.2014.990526. 759 760 Luo, Weixue, Hyun Seok Kim, Xiuhai Zhao, Daun Ryu, Ilbin Jung, Hyunkook Cho, Nancy Harris, Sayon Ghosh, Chunyu Zhang, and Jingjing Liang. 2020. "New forest biomass 761 carbon stock estimates in Northeast Asia based on multisource data." Global Change 762 763 Biology 26 (12):7045-7066. Luo, Weixue, Hyun Seok Kim, Xiuhai Zhao, Daun Ryu, Ilbin Jung, Hyunkook Cho, Nancy 764 Harris, Sayon Ghosh, Chunyu Zhang, and Jingjing Liang. 2020. "New forest biomass 765 766 carbon stock estimates in Northeast Asia based on multisource data." Global Change Biology 26 (12):7045-7066. 767 Lymburner, Leo, Paul J Beggs, and Carol R Jacobson. 2000. "Estimation of canopy-average 768 769 surface-specific leaf area using Landsat TM data." Photogrammetric Engineering and 770 Remote Sensing 66 (2):183-192. Mahdianpari, M., H. Jafarzadeh, J. E. Granger, F. Mohammadimanesh, B. Brisco, B. Salehi, 771 772 S. Homayouni, and Q. Weng. 2020. "A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: a case study in 773 GIScience & Remote Sensing 57 (8):1102-1124. 774 Newfoundland." https://doi.org/10.1080/15481603.2020.1846948. 775 Mahesh, Batta. 2020. "Machine learning algorithms-a review." International Journal of 776 777 Science and Research (IJSR). [Internet] 9:381-386. Mas, Jean F, and Juan J Flores. 2008. "The application of artificial neural networks to the 778 analysis of remotely sensed data." International Journal of Remote Sensing 29 779 (3):617-663. https://doi: 10.1080/01431160701352154. 780

781	Menze, Bjoern H, B Michael Kelm, Ralf Masuch, Uwe Himmelreich, Peter Bachert,
782	Wolfgang Petrich, and Fred A Hamprecht. 2009. "A comparison of random forest and
783	its Gini importance with standard chemometric methods for the feature selection and
784	classification of spectral data." BMC Bioinformatics 10:1-16.
785	https://doi.org/10.1186/1471-2105-10-213.
786	Mountrakis, Giorgos, Jungho Im, and Caesar Ogole. 2011. "Support vector machines in
787	remote sensing: A review." ISPRS Journal of Photogrammetry and Remote Sensing
788	66 (3):247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001.
789	Olaode, Abass, Golshah Naghdy, and Catherine Todd. 2014. "Unsupervised classification of
790	images: a review." International Journal of Image Processing 8 (5):325-342.
791	https://doi: 10.1016/j.isprsjprs.2010.11.001
792	Penuelas, J, Frédéric Baret, and I Filella. 1995. "Semi-empirical indices to assess
793	carotenoids/chlorophyll a ratio from leaf spectral reflectance." Photosynthetica 31
794	(2):221-230.
795	Pham, Tien Dat, Nga Nhu Le, Nam Thang Ha, Luong Viet Nguyen, Junshi Xia, Naoto
796	Yokoya, Tu Trong To, Hong Xuan Trinh, Lap Quoc Kieu, and Wataru Takeuchi. 2020.
797	"Estimating Mangrove Above-Ground Biomass Using Extreme Gradient Boosting
798	Decision Trees Algorithm with Fused Sentinel-2 and ALOS-2 PALSAR-2 Data in
799	Can Gio Biosphere Reserve, Vietnam." Remote Sensing 12 (5).
800	https://doi.org/10.3390/rs12050777.
801	Popescu, Sorin C, Kaiguang Zhao, Amy Neuenschwander, and Chinsu Lin. 2011. "Satellite
802	lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground
803	biomass estimates and forest structure metrics at footprint level." Remote Sensing of
804	Environment 115 (11):2786-2797. https://doi:10.1016/j.rse.2011.01.026.
805	Rahman, M Mahmudur, and Josaphat Tetuko Sri Sumantyo. 2013. "Retrieval of tropical forest
806	biomass information from ALOS PALSAR data." Geocarto International 28 (5):382-
807	403. https://doi:10.1080/10106049.2012.710652.
808	Rodríguez-Veiga, Pedro, Shaun Quegan, Joao Carreiras, Henrik J. Persson, Johan E. S.
809	Fransson, Agata Hoscilo, Dariusz Ziółkowski, et al. 2019. "Forest biomass retrieval
810	approaches from earth observation in different biomes." International Journal of
811	Applied Earth Observation and Geoinformation 77:53-68.
812	https://doi.org/10.1016/j.jag.2018.12.008.
813	Rondeaux, Geneviève, Michael Steven, and Frédéric Baret. 1996. "Optimization of soil-
814	adjusted vegetation indices." Remote Sensing of Environment 55 (2):95-107.
815	Sazib, Nazmus, Iliana Mladenova, and John Bolten. 2018. "Leveraging the Google Earth
816	Engine for drought assessment using global soil moisture data." Remote Sensing 10
817	(8):1265. https://doi.org/10.3390/rs10081265.
818	Shaharum, Nur Shafira Nisa, Helmi Zulhaidi Mohd Shafri, Wan Azlina Wan Ab Karim Ghani,
819	Sheila Samsatli, Mohammed Mustafa Abdulrahman Al-Habshi, and Badronnisa
820	Yusuf. 2020. "Oil palm mapping over Peninsular Malaysia using Google Earth
821	Engine and machine learning algorithms." Remote Sensing Applications: Society and
822	Environment 17. https://doi.org/10.1016/j.rsase.2020.100287.
823	Shao, Zhenfeng, Linjing Zhang, and Lei Wang. 2017. "Stacked Sparse Autoencoder Modeling
824	Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map

Forest Above-Ground Biomass." IEEE Journal of Selected Topics in Applied Earth 825 Observations and Remote Sensing 10 (12):5569-5582. 826 https://doi.org/10.1109/jstars.2017.2748341. 827 Sims, Daniel A, and John A Gamon. 2002. "Relationships between leaf pigment content and 828 829 spectral reflectance across a wide range of species, leaf structures and developmental 830 stages." Remote Sensing of Environment 81 (2-3):337-354. Sinha, Suman, C Jeganathan, LK Sharma, MS Nathawat, Anup K Das, and Shiv Mohan. 831 2016. "Developing synergy regression models with space-borne ALOS PALSAR and 832 Landsat TM sensors for retrieving tropical forest biomass." Journal of Earth System 833 Science 125:725-735. https://doi.org/10.1007/s12040-016-0692-z. 834 Speiser, Jaime Lynn, Michael E Miller, Janet Tooze, and Edward Ip. 2019. "A comparison of 835 random forest variable selection methods for classification prediction modeling." 836 837 Expert Systems with Applications 134:93-101. https://doi.org/10.1016/j.eswa.2019.05.028. 838 Su, Yanjun, Qinghua Guo, Baolin Xue, Tianyu Hu, Otto Alvarez, Shengli Tao, and Jingyun 839 Fang. 2016. "Spatial distribution of forest aboveground biomass in China: Estimation 840 841 through combination of spaceborne lidar, optical imagery, and forest inventory data." 842 Remote Sensing of Environment 173:187-199. https://doi.org/10.1016/j.rse.2015.12.002. 843 Sun, Guoqing, K Jon Ranson, Z Guo, Z Zhang, P Montesano, and D Kimes. 2011. "Forest 844 biomass mapping from lidar and radar synergies." Remote Sensing of Environment 845 115 (11):2906-2916. https://doi.org/10.1016/j.rse.2011.03.021. 846 Sun, Shaobo, Yafei Wang, Zhaoliang Song, Chu Chen, Yonggen Zhang, Xi Chen, Wei Chen, 847 et al. 2021. "Modelling Aboveground Biomass Carbon Stock of the Bohai Rim 848 Coastal Wetlands by Integrating Remote Sensing, Terrain, and Climate Data." 849 Remote Sensing 13 (21). https://doi.org/10.3390/rs13214321. 850 851 Tamiminia, Haifa, Bahram Salehi, Masoud Mahdianpari, Lindi Quackenbush, Sarina Adeli, and Brian Brisco. 2020. "Google Earth Engine for geo-big data applications: A meta-852 853 analysis and systematic review." ISPRS Journal of Photogrammetry and Remote 854 Sensing 164:152-170. https://doi.org/10.1016/j.isprsjprs.2020.04.001. Tamiminia, Haifa, Bahram Salehi, Masoud Mahdianpari, Colin M Beier, Lucas Johnson, 855 Daniel B Phoenix, and Michael Mahoney. 2022. "Decision tree-based machine 856 learning models for above-ground biomass estimation using multi-source remote 857 858 sensing data and object-based image analysis." Geocarto International 37 (26):12763-12791.https://doi.org/10.1080/10106049.2022.2071475 859 860 Tanaka, S, S Goto, M Maki, T Akiyama, Y Muramoto, and K Yoshida. 2007. "Estimation of leaf chlorophyll concentration in winter wheat [Triticum aestivum] before maturing 861 stage by a newly developed vegetation index-RBNDVI." Journal of the Japanese 862 Agricultural Systems Society (Japan). 863 Tian, Xin, Min Yan, Christiaan van der Tol, Zengyuan Li, Zhongbo Su, Erxue Chen, Xin Li, 864 865 et al. 2017. "Modeling forest above-ground biomass dynamics using multi-source 866 data and incorporated models: A case study over the gilian mountains." Agricultural and Forest Meteorology 246:1-14. https://doi.org/10.1016/j.agrformet.2017.05.026. 867 Tucker, Compton J. 1979. "Red and photographic infrared linear combinations for monitoring 868

869	vegetation." Remote Sensing of Environment 8 (2):127-150.
870	Tsui, Olivier W, Nicholas C Coops, Michael A Wulder, and Peter L Marshall. 2013.
871	"Integrating airborne LiDAR and space-borne radar via multivariate kriging to
872	estimate above-ground biomass." Remote Sensing of Environment 139:340-352.
873	https://doi.org/10.1016/j.rse.2013.08.012.
874	Vafaei, Sasan, Javad Soosani, Kamran Adeli, Hadi Fadaei, Hamed Naghavi, Tien Dat Pham,
875	and Dieu Tien Bui. 2018. "Improving accuracy estimation of Forest Aboveground
876	Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and
877	machine learning: A case study of the Hyrcanian forest area (Iran)." Remote Sensing
878	10 (2):172.
879	Vashum, Kuimi T, and S Jayakumar. 2012. "Methods to estimate above-ground biomass and
880	carbon stock in natural forests-a review." Journal of Ecosystem & Ecography 2 (4):1-
881	7.
882	Velasco Pereira, Edward A, María A Varo Martínez, Francisco J Ruiz Gómez, and Rafael M
883	Navarro-Cerrillo. 2023. "Temporal Changes in Mediterranean Pine Forest Biomass
884	Using Synergy Models of ALOS PALSAR-Sentinel 1-Landsat 8 Sensors." Remote
885	Sensing 15 (13):3430. https://doi.org/10.3390/rs15133430
886	Verrelst, Jochem, Michael E Schaepman, Benjamin Koetz, and Matthias Kneubühler. 2008.
887	"Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA
888	data." Remote Sensing of Environment 112 (5):2341-2353.
889	https://doi.org/10.1016/j.rse.2007.11.001.
890	Wang, Fumin, Huang Jingfeng, Tang Yanlin, and Wang Xiuzhen. 2007. "New vegetation
891	index and its application in estimating leaf area index of rice." Rice Science 14
892	(3):195-203.
893	Wang, Dezhi, Bo Wan, Jing Liu, Yanjun Su, Qinghua Guo, Penghua Qiu, and Xincai Wu.
894	2020. "Estimating aboveground biomass of the mangrove forests on northeast Hainan
895	Island in China using an upscaling method from field plots, UAV-LiDAR data and
896	Sentinel-2 imagery." International Journal of Applied Earth Observation and
897	Geoinformation 85:101986.
898	Willmott, Cort J, Steven G Ackleson, Robert E Davis, Johannes J Feddema, Katherine M
899	Klink, David R Legates, James O'donnell, and Clinton M Rowe. 1985. "Statistics for
900	the evaluation and comparison of models." Journal of Geophysical Research: Oceans
901	90 (C5):8995-9005.
902	Wolfowitz, Jacob. 1957. "The minimum distance method." The Annals of Mathematical
903	Statistics:75-88.
904	Wongchai, Warakhom, Thossaporn Onsree, Natthida Sukkam, Anucha Promwungkwa, and
905	Nakorn Tippayawong. 2022. "Machine learning models for estimating above ground
906	biomass of fast growing trees." Expert Systems with Applications 199:117186.
907	Wulder, Michael A, Joanne C White, Ross F Nelson, Erik Næsset, Hans Ole Ørka, Nicholas C
908	Coops, Thomas Hilker, Christopher W Bater, and Terje Gobakken. 2012. "Lidar
909	sampling for large-area forest characterization: A review." Remote Sensing of
910	Environment 121:196-209.
911	Xu, Hanqiu. 2007. "Modification of normalised difference water index (NDWI) to enhance
912	open water features in remotely sensed imagery." International Journal of Remote

913	Sensing 27 (14):3025-3033. https://doi.org/10.1080/01431160600589179.
914	Yan, Xingguang, Jing Li, Di Yang, Jiwei Li, Tianyue Ma, Yiting Su, Jiahao Shao, and Rui
915	Zhang. 2022. "A Random Forest Algorithm for Landsat Image Chromatic Aberration
916	Restoration Based on GEE Cloud Platform—A Case Study of Yucatán Peninsula,
917	Mexico." Remote Sensing 14 (20). https://doi.org/10.3390/rs14205154.
918	Yang, Lu, Shunlin Liang, and Yuzhen Zhang. 2020. "A New Method for Generating a Global
919	Forest Aboveground Biomass Map From Multiple High-Level Satellite Products and
920	Ancillary Information." <i>IEEE Journal of Selected Topics in Applied Earth</i>
921	Observations and Remote Sensing 13:2587-2597.
922	https://doi.org/10.1109/istars.2020.2987951.
923	Yang, Oiuli, Chunvue Niu, Xiaoqiang Liu, Yuhao Feng, Oin Ma, Xuejing Wang, Hao Tang,
924	and Oinghua Guo. 2023. "Mapping high-resolution forest aboveground biomass of
925	China using multisource remote sensing data." GIScience & Remote Sensing 60
926	(1):2203303 https://doi.org/10.1080/15481603.2023.2203303
927	Yang Wei Hideki Kobayashi Cong Wang Miaogen Shen. Jin Chen, Bunkei Matsushita
928	Yanhong Tang et al 2019 "A semi-analytical snow-free vegetation index for
929	improving estimation of plant phenology in tundra and grassland ecosystems "
930	Remote Sensing of Environment 228:31-44 https://doi.org/10.1016/j.rse.2019.03.028
930	Vang Zelong Wenwen Li Oi Chen Sheng Wu Shanjun Liu and Jianya Gong 2018 "A
937	scalable cyberinfrastructure and cloud computing platform for forest aboveground
033	biomass estimation based on the Google Earth Engine "International Journal of
021	Digital Earth 12 (0):005 1012 https://doi.org/10.1080/17538047.2018.1404761
954 025	Zhang Linjing Xiaoyue Zhang Zhenfeng Shao Wenhao Jiang and Huimin Gao 2023
026	"Integrating Sentinel 1 and 2 with LiDAP data to estimate aboveground biomass of
027	subtropical forests in portheast Guangdong, China "International Journal of Digital
957	Subtropical forests in northeast Guangdong, China. <i>Thernational Sournal of Digital</i> Easth 16 (1):152–122. https://doi.org/10.1020/17522047.2022.2165120
920	Zhang Vieng Levin Li Llue Zhey Veging Zhey and Dinggong Shen 2010 "Tensor
939	Znang, Xiang, Lexin Li, Hua Znou, Yeqing Znou, and Dinggang Snen. 2019. Tensor
940	20 (4) 1077
941	29 (4):1977.
942	Zhang, Yuzhen, Jun Ma, Shuhlin Liang, Xisheng Li, and Manyao Li. 2020. "An Evaluation of
943	Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass
944	Estimation from Multiple Satellite Data Products." <i>Remote Sensing</i> 12 (24).
945	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
946	Zhang, Yali, Ni Wang, Yuliang Wang, and Mingshi Li. 2023. "A new strategy for improving
947	the accuracy of forest aboveground biomass estimates in an alpine region based on
948	multi-source remote sensing." GIScience & Remote Sensing 60 (1):21635/4.
949	https://doi.org/10.1080/15481603.2022.2163574
950	Zhao, Yifan, Weiwei Zhu, Panpan Wei, Peng Fang, Xiwang Zhang, Nana Yan, Wenjun Liu,
951	Hao Zhao, and Qirui Wu. 2022. "Classification of Zambian grasslands using random
952	torest feature importance selection during the optimal phenological period."
953	<i>Ecological Indicators</i> 135. https://doi.org/10.1016/j.ecolind.2021.108529.
954	Zhang, Zheyuan, Jia Wang, Nina Xiong, Boyi Liang, and Zong Wang. 2023. "Air Pollution
955	Exposure Based on Nighttime Light Remote Sensing and Multi-source Geographic
956	Data in Beijing." Chinese Geographical Science 33 (2):320-332.