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An Improved Kernel for the Flip Distance Problem on Simple Convex
Polygons

Miguel Bosch Calvo Steven Kelk∗

Abstract

The complexity of computing the flip distance between
two triangulations of a simple convex polygon is un-
known. Here we approach the problem from a parame-
terized complexity perspective and improve upon the 2k
kernel of Lucas [10]. Specifically, we describe a kernel of
size 4k

3 and then show how it can be improved to (1+ε)k
for every constant ε > 0. By ensuring that the kernel
consists of a single instance our result yields a kernel
of the same magnitude (up to additive terms) for the
almost equivalent rotation distance problem on rooted,
ordered binary trees. The earlier work of Lucas left the
kernel as a disjoint set of instances, potentially allow-
ing very minor differences in the definition of the size of
instances to accumulate, causing a constant-factor dis-
tortion in the kernel size when switching between flip
distance and rotation distance formulations. Our ap-
proach avoids this sensitivity.

1 Introduction

Triangulating a set of points on a plane is a common
operation in computational geometry. The operation
of flipping a diagonal is defined as removing one edge
of a triangulation, creating a convex quadrangle, and
then adding to the triangulation the opposing diagonal
of that quadrangle, as seen in Figure 1.

Figure 1: Flipping a diagonal of a triangulation of a
simple convex polygon.

The flip distance between two triangulations of the
same set of points on a plane is the minimum number of
flips needed to transform one triangulation into another.
Computing flip distance is NP-hard, even for the case
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of simple polygons [1]. In this article we will be working
in a more restricted setup by considering only triangu-
lations of simple convex polygons. The complexity of
the problem is unknown. Indeed, there is a well known
correspondence - essentially, an equivalence - between
this problem and the computation of rotation distance
between two rooted, ordered binary trees. It has been
an open question for several decades whether rotation
distance is polynomial-time solveable. Some of the re-
sults in this area have been obtained using the rotation
distance formulation, but most of the work has been
undertaken in the flip distance formulation.

Here we adopt a parameterized complexity perspec-
tive; in particular, a kernelization perspective [6].
Cleary et al. [3] proved that the problem is fixed pa-
rameter tractable, by providing a 5k kernel, where the
parameter k is the flip distance. Lucas [10] employed
different reduction strategies to obtain a kernel of size
2k. In this article we will show how to improve upon
the kernelization result of Lucas. We describe a 4k

3 ker-
nel and then extend the approach to yield a (1 + ε)k
kernel for every constant ε > 0; the running time grows
sharply in 1/ε but remains polynomial for fixed ε. Our
article extends the decomposition-based approach of Lu-
cas in two ways. We strengthen the bound on the size
of the kernel, and potentially lower the flip distance,
by solving small decomposed instances to optimality.
Secondly, we show how to “reverse” the decomposition
strategy adopted by Lucas, thus merging the separate
instances into a single reduced instance at the end. This
merging step ensures that the size of the kernel remains
(up to additive terms) unchanged whether we view the
problem from the flip distance or rotation distance per-
spective. As we note in the Discussion section, this is
not as straightforward for Lucas’ kernel result: there a
subtle constant-factor distortion occurs when switching
from one formulation to the other.

2 Preliminaries

We are working here with simple convex polygons. Such
a polygon can be viewed without loss of generality as a
simple cycle on n edges and n vertices. A triangulation
of a simple convex polygon on n edges contains exactly
n−3 diagonals. Hence a triangulation of a simple convex
polygon can be represented as a list of n− 3 edges and
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two triangulations are considered equal if the n−3 edges
(i.e. the diagonals) are identical. Thus, there is a finite
number of triangulations of simple convex polygons of a
given size. Precisely, the number of triangulations of a
simple convex polygon of size n is given by the (n−2)th
Catalan number Cn = 1

n+1

(
2n
n

)
.

We define Pn as the set containing all triangulations
of simple convex polygons of size n. Thus |Pn| = Cn−2.
We say that (P, P ′) ∈ Pn if both P and P ′ are triangu-
lations of simple convex polygons of size n.

Henceforth, for the sake of brevity, we will refer to tri-
angulations of simple convex polygons as triangulations
or simply polygons.

Given (P, P ′) ∈ Pn, we call a shortest path from P to
P ′ to the sequence of polygons P = P0, P1, P2, . . . , Pm =
P ′ such that we can transform Pi into Pi+1 by just flip-
ping one diagonal and m is the minimum among all pos-
sible sequences. Given a pair of polygons (P, P ′) ∈ Pn,
the flip distance d(P, P ′) between P and P ′ is the length
of a shortest path from P to P ′.

One of the earliest results in this area is the upper
bound on flip distance proved by Culik et al. [4]. Pre-
cisely, the flip distance between two polygons (P, P ′) ∈
Pn is at most 2n − 6 for all (P, P ′) ∈ Pn. Later,
Sleator et al. [12] improved the bound to 2n − 10 for
all (P, P ′) ∈ Pn, n > 12, and by making use of hyper-
bolic geometry proved that the bound is tight.

Also, since every flip of a diagonal only affects one
diagonal, the flip distance between (P, P ′) is at least
the number of non-common diagonals of (P, P ′) [10].

There is another result from Sleator et al. [12] that
is of importance to us. It implies that common diago-
nals belong to every polygon of every shortest path, and
therefore that they should not be flipped at any point:
Given (P, P ′) ∈ Pn, if there is a common diagonal be-
tween P and P ′, then every shortest path from P to P ′

does not flip that diagonal.

We now present a formal definition of the Parame-
terized Flip Distance problem, which is the problem
we will be addressing in this article:

Parameterized Flip Distance
Input: A pair of polygons (P, P ′) ∈ Pn and a param-
eter k ∈ N.
Question: Is the flip distance between P and P ′ at
most k?

As is standard in the study of kernelization, we will
apply polynomial-time reduction rules to yield instances
whose size is bounded by a function purely of k. We
omit a formal definition of kernelization, referring to
standard texts such as [6] for more details. We empha-
size that the size of an instance, n, refers to the number
of outer edges in the polygons.

The kernel we propose uses some of the ideas pre-
sented by Lucas at [10] combined with new reduction

P P ′

P1
P2

P3

P4

P ′1
P ′2

P ′3

P ′4

Figure 2: An example of splitting a polygon pair (P, P ′)
along its common diagonals into m disjoint pairs. Here
the instances (P, P ′) have size 12, so (P, P ′) ∈ P12, and
they have 3 common diagonals, so they are divided into
m = 4 disjoint pairs (P1, P

′
1), (P2, P

′
2), (P3, P

′
3), (P4, P

′
4).

rules to tighten the bound on the kernel, plus a new
merging step. Lucas’ idea is based on dividing the orig-
inal pair of polygons along their common diagonals by
using the results by Sleator et al. [12]. An example of
such division is shown in Figure 2.

We will first present the operations that allows us to
obtain a 4k

3 kernel and then we will extend those ideas
to derive the (1 + ε)k kernel.

3 Results

3.1 4k
3 kernel

Lucas [10], using the results of Sleator et al. [12], showed
that given two polygons (P, P ′) ∈ Pn with m− 1 com-
mon diagonals, we can create m disjoint pairs of poly-
gons (Pi, P

′
i ), i ∈ [1,m] by dividing the original poly-

gons along their common diagonals, so each common
diagonal becomes an outer edge of one of the instances
(Pi, P

′
i ) and each pair does not have any common diag-

onal. Thus we derive the following lemma:

Lemma 1 The flip distance of (P, P ′) ∈ Pn is equal
to the sum of the distances between all m pairs (Pi, P

′
i )

resulting from the division of (P, P ′) along its m − 1
common diagonals, i.e. d(P, P ′) =

∑m
i=1 d(Pi, P

′
i ).

It is useful to apply the division along common diag-
onals into m pairs to the parameterized version of the
problem, given by (P, P ′) ∈ Pn, k ∈ N.

Given a set of m pairs of polygons (Pi, P
′
i ) ∈ Pni ,

let di be the number of diagonals of instance i, so that
di = ni − 3.

The upper bound of the problem of roughly 2n can be
applied to every pair, and the pairs do not have any com-
mon diagonal, so we can deduce di ≤ d(Pi, P

′
i ) ≤ 2di.
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Since d(P, P ′) =
∑
d(Pi, P

′
i ) we can output a triv-

ial YES answer if
∑
di ≤ k/2, and a trivial NO if∑

di > k, so for all non-trivial instances we have
k/2 <

∑m
i=1 di ≤ k.

Now we present a trivial observation and a lemma
that will be useful to prove our final result.

Observation 1 A pair of quadrilaterals with no com-
mon diagonals have distance 1. Similarly, a pair of pen-
tagons with no common diagonals have distance 2.

Lemma 2 Given a set of m pairs of polygons (Pi, P
′
i ) ∈

Pni
, we can build a pair of polygons (P, P ′) ∈ Pn with

n =
∑m
i=1 di +m+ 2, and d(P, P ′) =

∑m
i=1 d(Pi, P

′
i ).

Proof. Given two pairs of polygons (P1, P
′
1), (P2, P

′
2)

with sets of outer edges {e11, e12, . . . , e1n1
} and

{e21, e22, . . . , e2n2
} we can create a pair of polygons

with edges:

{e11, e12, . . . , e1n1−1, e
2
1, e

2
2, . . . , e

2
n2−1}

We add to that polygon all diagonals present in both
(P1, P

′
1) and (P2, P

′
2), plus a diagonal δs in place of e1n1

and e2n2
. It is clear that we can add those diagonals and

they will be non-crossing. We can see an example of
this operation in Figure 3.

This way we have a new pair of polygons (P, P ′) in
which the edges {e11, e12, . . . , e1n1−1, δs} induce the poly-
gons (P1, P

′
1) and {e21, e22, . . . , e2n2−1, δs} the polygons

(P2, P
′
2). Since δs is a common diagonal and thus is

never flipped in a shortest path, d(P, P ′) = d(P1, P
′
1) +

d(P2, P
′
2). The size of (P, P ′) is n1+n2−2 = d1+d2+4,

and it has d1 + d2 + 1 diagonals, of which at least one
of them is common. Repeated applications of this op-
eration complete the proof. �

Theorem 3 There is a kernel of size 4k
3 +O(1) for the

Parameterized Flip Distance problem. Specifically,
given a pair of polygons (P, P ′) ∈ Pn and a parameter k
we can output in polynomial time another pair of poly-
gons (P ∗, P ∗′) of size at most 4k

3 + 2, and a parameter
k′ ≤ k such that:

d(P, P ′) ≤ k ⇐⇒ d(P ∗, P ∗′) ≤ k′

Proof. Given (P, P ′) ∈ Pn, and a parameter k, the
following algorithm outputs a kernel of the problem of
size at most 4k

3 + 2.

1. Divide (P, P ′) along their common diagonals to ob-
tain m pairs of polygons (Pi, P

′
i ) and discard all

pairs that have only three edges, because their dis-
tance is 0. Now we have m′ pairs, with m′ ≤ m, so
we re-number the pairs to have (Pi, P

′
i ), i ∈ [1,m′].

P1

e11

e12

e13

e14 e15

e16

e17

e18

P2

e21

e22

e23 e24

e25

e26

P

e11
e12

e13

e14

e15
e16 e17

e21

e22

e23

e24
e25

δs

Figure 3: Given two pairs of polygons (P1, P
′
1) and

(P2, P
′
2) we can generate a new pair (P, P ′) that has

distance equal to the sum of the distances of the orig-
inal pair. In this example (P1, P

′
1) has 8 outer edges

{e11, e12, e13, e14, e15, e16, e17, e18} and (P2, P
′
2) has 6 outer

edges {e21, e22, e23, e24, e25, e26}, resulting in a pair (P, P ′)
with 12 edges {e11, e12, e13, e14, e15, e16, e17, e21, e22, e23, e24, e25}
(in this figure only one of the polygons of the pair is
shown since we operate identically with the other).

2. Making use of Observation 1, discard all pairs with
four edges and reduce the parameter k by one per
each pair removed that way. Proceed the same way
with pairs of five edges reducing the parameter by
two instead and renumber the pairs as we did in
the previous step. We get a new parameter k′ ≤ k.

3. If
∑
di > k′ output NO. If

∑
di ≤ k′/2 output

YES.

4. Use Lemma 2 to create a new polygon (P ∗, P ∗′)
from all the remaining pairs. The new instance is
defined by (P ∗, P ∗′) and k′.

Since we have removed all pairs with di < 3, each pair
has at least 3 diagonals, none of them common, so m
is at most k′/3, or otherwise

∑
di > k′, and we could

have output a trivial NO answer. Also, we have that
k′/2 <

∑m
i=1 di ≤ k′, and by making use of Lemma 2

to obtain the pair of polygons (P ∗, P ∗′), they will be of
size

∑m
i=1 di +m+ 2 ≤ k′ + k′/3 + 2 ≤ 4k/3 + 2.

Also, from Lemma 1, Lemma 2 and Observation 1 it
is clear that d(P, P ′) ≤ k if and only if d(P ∗, P ∗′) ≤ k′,
and Lucas [9] showed that the first step can be done
in O(n2) time, while the last step can be done in time
O(n), completing the proof. �
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3.2 (1 + ε)-kernel

In this section we will show a procedure that allows us
to obtain a kernel of size (1 + ε)k+O(1) in time that is
polynomial in n when ε > 0 is constant. The procedure
is based on the algorithm of the previous section and on
the trivial exponential-time algorithm that allows us to
solve an instance of size n in time O(n2n) by trying all
possible diagonal flips recursively.

Theorem 4 Given a pair of polygons (P, P ′) ∈ Pn and
a parameter k, we can output another pair of polygons
(P ∗, P ∗′) of size at most (1 + ε)k + 2 and a parameter
k′ ≤ k such that:

d(P, P ′) ≤ k ⇐⇒ d(P ∗, P ∗′) ≤ k′

In time O(n2 + f(ε)n), where f(ε) is a function that
only depends on ε.

Proof. Given two polygons (P, P ′) ∈ Pn, a parame-
ter k ∈ N and some ε > 0, apply steps 1 and 2 of the
algorithm described in Theorem 3. Then solve all in-
stances of size less than 1/ε+ 3, i.e. instances that have
fewer than 1/ε diagonals, using the trivial exponential-
time algorithm. We can do this in time O((1/ε)2/ε · n),
(because there can be at most n−2 instances after split-
ting common diagonals) and discard all pairs solved this
way, reducing the parameter k by the sum of the flip dis-
tances of the pairs solved this way. Finally, apply steps
3 and 4 of the algorithm.

Now each remaining pair before step 3 will have at
least 1/ε diagonals, so m must be at most εk′, by
a similar reasoning as in Theorem 3. Then we have
that the polygons (P ∗, P ∗′) will have size at most∑m
i=1 di +m+ 2 ≤ k′ + εk′ + 2 ≤ (1 + ε)k + 2.
Since the steps common with the 4k

3 kernelization
algorithm can be done in time O(n2), and the addi-
tional time spent on solving small instances is at most
O((1/ε)2/ε · n), the total time required to produce the
kernel is O(n2 + (1/ε)2/ε · n) = O(n2 + f(ε)n), as we
wanted to prove. �

We note that by using the recent FPT algorithm of [5]
instead of the trivial exponential-time algorithm, we can
solve an instance of size less than 1/ε in time O(321/ε ·
poly(1/ε)) instead of O((1/ε)2/ε), which is a significant
improvement.

As mentioned earlier there is a near equivalence be-
tween the flip distance problem on simple convex poly-
gons, and the rotation distance problem on two ordered,
rooted binary trees. The definition of the rotation dis-
tance problem is rather technical so we omit details.
In any case, it is well-known that an instance of rota-
tion distance of size n (where the size here denotes the
number of non-leaf nodes in one of the input trees) can
be easily mapped to an instance of flip distance of size

n + 2, such that the distance is preserved. The map-
ping goes both ways [12]. Hence, the kernel obtained in
Theorem 4 (and that of Theorem 3) also goes through
for rotation distance, up to additive terms.

Corollary 5 For each ε > 0 there is a kernel of size
(1 + ε)k for the rotation distance problem.

4 Discussion

Our kernel makes use of the fact that two polygons
of size n with no common diagonals have n − 3 non-
common diagonals, which is a lower bound on the flip
distance. Hence, for such “fully reduced” instances the
ratio of the instance size to the flip distance is at most
n
n−3 which is 1 + o(1). In this sense, our (1 + ε)k kernel
feels like a natural result for this problem. It would be
interesting to explore alternative, less inflated param-
eterizations of the problem. For example, if we let d
denote the number of non-common diagonals in an in-
stance, we could ask: is the flip distance ≤ d + k? It
could also be interesting to study the possibility of re-
duction rules that reduce the number of non-common
diagonals in an instance, since so far all work under-
taken has been done by reducing the common diagonals.
We also note that there has been quite sophisticated
parameterized complexity work undertaken on the flip
distance problem in recent years, although most of it
has been done on more general versions of it: in trian-
gulations of point sets on the plane [5, 8]. We wonder
whether those results can be strengthened in our more
restricted setting i.e. the simple convex polygon case.

We note in passing that our improved kernel does not
lead to an improvement of the polynomial-time approx-
imation algorithm by Cleary et al. [2]. That article uses
a similar technique to Lucas, but the limiting factor
there is the algorithmic upper bound, which is an algo-
rithm that takes in the worse case two flips to fix each
non-common diagonal.

Finally, we return to rotation distance. As stated in
Corollary 5, we obtain (up to an additive difference of 2)
the same kernel result for rotation distance. For us, the
additive term is insignificant, but for Lucas [10] it can
be of importance. Lucas uses the correspondence with
rotation distance to derive the 2k kernel. The bound
there is based on the observation that, after splitting at
common diagonals and deleting distance-0 subinstances,
and letting d be the total number of non-common diag-
onals, there can be at most d subinstances of pairs of
polygons, each with a corresponding pair of trees, and
each such subinstance (i.e. pair of trees) has at least one
non-root interior node. The worst case is when there
are d subinstances, each with exactly one non-root in-
terior node. (In the rotation distance problem non-root
interior nodes correspond to diagonals in the flip dis-
tance problem.) In the rotation distance literature the
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size of an instance is usually taken to be the number of
interior nodes, including the root ([4, 9, 11, 12] among
others). This yields a bound of 2d ≤ 2k. However, when
translated to flip distance, the worst case corresponds
to d subinstances, each of which has exactly one non-
common diagonal (and no common diagonals). Such
subinstances are squares, and in the vast majority of
the literature the size of the polygons is regarded as
the number of outer edges [5, 7, 8, 12]. Taking that
metric, Lucas’ kernel would yield 4d ≤ 4k for flip dis-
tance, not 2k, so the kernel distorts when using the
usual sizes of the problems. In a nutshell: Lucas left
the kernel as a set of subinstances, but this can cause
small additive terms to accumulate when switching be-
tween frameworks. Our kernel avoids such problems by
merging the subinstances into a single instance at the
end; this is the significance of the merging step.
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