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ABSTRACT   

Deep learning (DL) models can be trained on contrast-enhanced mammography (CEM) images to detect and classify 
lesions in the breast. As they often put more emphasis on the masses enhanced in the recombined image, they can fail 
in recognizing microcalcification clusters since these are hardly enhanced and are mainly visible in the (processed) low-
energy image. Therefore, we developed a method to create synthetic data with simulated microcalcification clusters to 
be used for data augmentation and explainability studies when training DL models. At first 3-dimensional voxel models 
of simulated microcalcification clusters based on descriptors of the shape and structure were constructed. In a set of 500 
simulated microcalcification clusters the range of the size and of the number of microcalcifications per cluster followed 
the distribution of real clusters. The insertion of these clusters in real images of non-delineated CEM cases was evaluated 
by radiologists. The realism score was acceptable for single view applications. Radiologists could more easily categorize 
synthetic clusters into benign versus malignant than real clusters. In a second phase of the work, the role of synthetic 
data for training and/or explaining DL models was explored. A Mask R-CNN model was trained with synthetic CEM images 
containing microcalcification clusters. After a training run of 100 epochs the model was found to overfit on a training set 
of 192 images. In an evaluation with multiple test sets, it was found that this high level of sensitivity was due to the model 
being capable of recognizing the image rather than the cluster. Synthetic data could be applied for more tests, such as 
the impact of particular features in both background and lesion models.  
 

 

Keywords: contrast-enhanced mammography, microcalcification clusters, simulation framework, synthetic data, deep 
learning, detection, explainability 
 

1. INTRODUCTION  

New techniques using artificial intelligence for computer aided diagnosis (CAD) in healthcare have been widely developed 
and evaluated. Among other applications, deep learning (DL) models can aid radiologists in interpreting results and 
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predicting outcomes in early screening mammography for breast cancer detection [1], [2]. For less widespread imaging 
modalities, however, the accuracy of such DL models can suffer from a lack of data. Unlike for the conventionally used 
full-field digital mammography (FFDM), large datasets of the more novel contrast-enhanced mammography (CEM) 
technique are not yet available. This can lead to poorer levels of sensitivity in detection or accuracy in classification of 
benign and malignant lesions. 

The aim of CEM is to better enhance the neovascular structures of cancerous regions by injecting an iodine-based 
contrast agent [3], [4]. The subtraction of a high-energy and a low-energy image results in a recombined image in which 
background structures are largely eliminated whereas cancerous structures are enhanced. CEM has proven to induce the 
same level of specificity and sensitivity as breast magnetic resonance imaging (MRI) while maintaining a lower cost and 
faster examination [5], [6]. Thus, when FFDM screening images do not indicate a conclusive outcome or for high risk 
patients, CEM is a good alternative and a DL model can provide the radiologist with more information. 

Whereas CEM is more optimal to enhance mass lesions, calcifications do not show up clearly in the recombined image 
and are difficult to detect [7]. In a preliminary DL model made available for detection of lesions in CEM, more emphasis 
was put on the masses in the recombined image while it had low level of sensitivity in the detection of microcalcification 
clusters. It was hypothesized the detection of such clusters could be further improved by using synthetic data. Such data 
aids in analyzing the model and increases its explainability by providing it with specific data. In this work we present a 
method to generate synthetic cases of CEM containing simulated microcalcification clusters. When feeding this data in a 
controlled manner to the DL model it is possible to investigate how specific changes influence the detection accuracy. 
Our work focused on how a DL model, trained for detection of microcalcification clusters, learns more from the lesion’s 
features or from the image’s features. 

2. METHODS 

2.1 Database 

The CEM database available comprised 1917 cases acquired on a GE Essential system (GE Precision Healthcare, Buc, 
France) in Maastricht UMC+ between 2013 and 2018. All patients were either high-risk or recalled from mammography 
screening. For each patient the set of images consisted of the processed low-energy and recombined image in 
craniocaudal (CC) and mediolateral oblique (MLO) view of both breasts. 

 In 1062 cases lesions were delineated by radiologists and classified based on biopsy. Since the remaining 859 cases did 
not contain suspicious lesions, they could be utilized as background images for the insertion of simulated 
microcalcification clusters without the risk of feeding the DL model images with both real and synthetic lesions. Out of 
all real, delineated cases, 222 breasts contained a cluster of microcalcifications, 63 of which were benign and 159 
malignant. None of the breasts contained more than one cluster.  

2.2 Generating synthetic data 

Starting from a set of individual microcalcifications, new clusters were created based on mathematical properties and 
findings of the shape, size and distribution, as is described in [8]. Benign clusters had less microcalcifications, with their 
individual shape being more spherical whereas malignant clusters generally had more microcalcifications and the 
microcalcifications were more irregular in shape [9], [10]. Taking these considerations into account the individual 
microcalcifications were combined in a 3-dimensional voxel model to create a cluster. Applying random choices on the 
size of the cluster, the number of microcalcifications and the location and rotation of the individual microcalcifications 
ensured every new cluster was unique. 

After the creation of the voxel models of clusters, the next step consisted of inserting them into background images. 
When studying the relative contrast between calcifications and their surrounding background pixels, it was found that 
this was close to zero for the recombined images. This was a consequence of the limited uptake of contrast in 
calcifications as opposed to masses which show up more clearly in recombined images. Therefore, the simulation of 
microcalcification clusters was only performed in the processed low-energy images.  

A simulation tool earlier developed and validated at KU Leuven [11], [12] was extended for realistically inserting voxel 
models into images acquired on a GE Essential system. The cluster and the background image as well as some necessary 
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parameters were given as inputs. These parameters include the system configuration, the spectrum, the attenuation 
coefficient of the simulated material and the breast thickness. The tool then created a template of the voxel model as it 
would be produced by the actual system. Based on findings of the relationship between ‘FOR PROCESSING’ and ‘FOR 
PRESENTATION’ images the template was adapted and then multiplied with the background image to create synthetic 
data. 

When inserting the clusters into the CEM background images, the choice of location is important. Even though 
microcalcifications can occur anywhere in the breast, indications by radiologists showed that regions with higher 
skewness were more typical. Therefore, the choice of insertion location was based on this parameter by computing the 
ten regions with the highest skewness. In order to eliminate problematic regions e.g. at the edge of the breast, the final 
location is hand-picked from the ten possibilities. To ensure the locations in both CC and MLO view corresponded, the 
distance to the nipple and angle with respect to the center of the pectoralis were taken into account as well [13]. Finally, 
a rotation adjusted the voxel model of the cluster to create a realistic projection in both views. 

2.3 Validation of synthetic data 

After inserting these simulated clusters into background processed low-energy CEM cases, a first set was used for 
evaluation by radiologists. In a validation study both real and synthetic cases were shown to radiologists experienced in 
mammography. Since the study did not include a query on the detectability, the cluster of importance was already 
denoted by an enlarged bounding box. As is explained in [8], radiologists would find these clusters to have a realistic 
shape, size and appearance. When showing one view only (CC or MLO) radiologists failed to distinguish real from 
synthetic cases. This denoted the realism of the generated synthetic cases with a faithful insertion in the real background 
image. At the same time, more realism would be needed if combined views are important. 

To ensure a correct label (benign or malignant) was given to the synthetic case, radiologists were asked to rate this 
classification as well. The cluster was rated with a number in the range of 1 to 6 with 1 representing the most confidence 
in a benign cluster whereas 6 denoted that the radiologist was extremely confident the cluster was malignant. This was 
done first with showing both views at the same time. To investigate the importance of the correspondence of location, 
a second study was included as well. In this study half of the cases were shown to the radiologists with one view only 
(this was randomly either the CC or MLO view) whereas the other half still comprised both views. Apart from this, the 
setting was identical to the previous study with the cluster already indicated and a 6-level confidence scale given to rate 
the malignancy of the clusters shown. 

2.4 Deep learning model 

A deep learning model for the detection of microcalcification clusters in contrast-enhanced mammography was 
developed using PyTorch. The architecture was based on the Mask R-CNN model [14], which is capable of detecting 
regions by predicting bounding boxes. For each lesion it can perform segmentation as well and predict a class. This model 
had a MobileNet backbone and the weights were pre-trained on the COCO dataset [15].  

Before providing the model with CEM data, it was first preprocessed to combine the low-energy and recombined images 
in the three channels of an RGB image. Binary masks were converted in such a way that, if multiple lesions were present, 
each lesion was assigned a different value ranging from 1 to the number of lesions to distinguish between unique 
occurrences of lesions. The same label was used for each occurrence of a specific class. Both the mask and the RGB image 
were cropped around the borders of the breast to reduce the size of the data to be processed. Images of the same breast 
in CC and MLO view were handled independently by the Mask R-CNN model. 

As this work focused on studying the use of synthetic data for training and investigating a DL detection model, only 
images containing malignancies were used. This overcomes issues that could occur in the classification stage. The 
accuracy of the segmentation was not investigated at this point either, the focus was on evaluating the predicted 
bounding boxes. This model could be trained with real data only, synthetic data only and the combination of both. 
Specific test sets of synthetic data could be created to evaluate multiple criteria. 
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2.5 Explainability 

Given the method to create synthetic data with the simulated microcalcification clusters and the available simulation 
tool, customized test sets were created. This allowed for specific tests on the DL model and report which changes in data 
would be detectable. Successive tests could be performed to validate or confirm the performance of a new model, and 
more importantly explain the AI. Opportunities included successively: 

 Start from the same breast and same cluster, but change the location of insertion in the same view 

 Start from the same breast and same cluster, but insert the same 2D template in the other view 

 Start from the same patient and same cluster, but insert in the contralateral breast in the same view 

 Start from the same patient and same cluster, but change the intensity of the inserted cluster 

 Start from the same cluster, but insert it in the breast of a different patient at a similar location 

 Start from the same breast and the same location, but insert a different cluster 

 Start from an unseen cluster in the breast of an unseen patient 
 

In this first work we investigated the sensitivity of a new detection model on two new sets. The first (test set A) contained 
16 new CEM images without lesions in which simulated clusters were inserted that were already seen by the model in 
the training data. The new images were collected to have the same laterality, view and breast thickness as the original 
image. The location was chosen to be at the same coordinates as in the training image. When this choice of location was 
impossible due to different boundaries of the breast, a location as close as possible was chosen. In a second test set B 16 
CEM images were used that were already passed to the model during training. Only in this case new simulated clusters 
were inserted at the same location as the previous. Finally, to compare the results on training data, the sensitivity on the 
partial training set (training set A) of the 16 images containing the original cluster in the original image was calculated.  

 

3. RESULTS 

3.1 Validation of synthetic data 

The method described in the first section of 2.2 resulted in a dataset of 3-dimensional voxel models of 250 benign clusters 
and 250 malignant clusters. The size of all clusters varied from 2.25mm to 6.00mm with the number of individual 
microcalcifications per cluster within a range of 8 to 32. The malignant clusters contained on average more individual 
microcalcifications, 22.5 as compared to 11.8 for the benign cases. This is comparable to the differences discussed in [9] 
with a mean of 16.9 and 24.4 for the benign and malignant clusters respectively. The developed method can then create 
dataset of synthetic images with a unique cluster for each case. By randomly assigning a cluster to an image any cluster 
could be inserted in any image as in Figures 1-2.  

For the first validation study with 40 real and 40 simulated clusters, Table 1 shows the statistical results. The high level 
of specificity for the synthetic data for both radiologists revealed a low number of false positives which denoted hardly 
any simulated benign clusters were considered to be malignant. For the simulated malignant clusters on the other hand, 
the sensitivity was 0.7 representing some misclassifications. Upon closer investigation, these appeared to be among the 
smaller clusters with fewer individual microcalcifications within the whole distribution of all simulated malignant clusters. 
Overall, the accuracy as well as the F1-score were higher for synthetic than for real data. This indicated that the simulated 
benign clusters as well as the larger simulated malignant clusters were created in such a way that they could be correctly 
classified. 

Similar results were seen in the second validation study where half of the images were shown with one view only and 
the other half with both views. The values of specificity equal to 1 for the synthetic cases show all benign simulated 
clusters were correctly classified. The simulated malignant clusters were again harder for the radiologists to correctly 
categorize. The overall accuracy also increases for synthetic as compared to real cases. All F1-scores improved for 
synthetic cases as well except for the study with both views evaluated by radiologist B where a small drop can be noted. 
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Figure 1: Simulated cluster in CC view                                   Figure 2: Simulated cluster in MLO view       

Table 1: Results of classification by radiologists 

  Sensitivity Specificity Accuracy F1-score 

Radiologist A Real 0.90 0.55 0.73 0.77 

 Synthetic 0.70 0.95 0.83 0.80 

Radiologist B Real 0.70 0.55 0.63 0.65 

 Synthetic 0.70 1.00 0.85 0.82 

  

Table 2: Results of classification by radiologists with one view only 

    Sensitivity Specificity Accuracy F1-score 

Radiologist A Real 1.00 0.40 0.70 0.77 

  Synthetic 0.80 1.00 0.90 0.89 

Radiologist B Real 0.80 0.40 0.60 0.67 

  Synthetic 0.60 1.00 0.80 0.75 

  

Table 3: Results of classification by radiologists with two views 

    Sensitivity Specificity Accuracy F1-score 

Radiologist A Real 0.80 0.00 0.40 0.57 

  Synthetic 0.80 1.00 0.80 0.80 

Radiologist B Real 0.90 0.40 0.65 0.72 

  Synthetic 0.60 1.00 0.80 0.69 
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3.2 Evaluation of the deep learning detection model 

In a first run the model was trained with 240 synthetic images available containing simulated malignant microcalcification 
clusters. This set was split into 80% (192 images) for training and 20% (48 images) for validation. A training run of 100 
epochs was conducted. Intermediate results were saved as well at each tenth epoch. The first lines in Table 4 show the 
model started to overfit from epoch 50. In later epochs the difference in sensitivity between the training set and the 
validation set increases. 

The sensitivity in the detection of this model was studied with multiple test sets. Sensitivity was calculated by computing 
the overlap between the predicted bounding box and the ground truth bounding box. If the overlapping area was larger 
than 10% of the ground truth area and the prediction score of the predicted bounding box was higher than 0.25, the 
cluster was considered to be detected.  

As expected, the sensitivity for training set A increased (see Table 4) as the model was trained longer. For test set B the 
sensitivity also increased when the number of epochs was increased. This proves the model learned to recognize the 
images it had already seen. The dataset with previously seen clusters inserted into new images, on the other hand, only 
returns a sensitivity of 0.0 at each training point.  

Table 4: Sensitivity of the trained DL detection model 

 Epoch 30 Epoch 50 Epoch 80 Epoch 100 

Validation set 0.00 0.06 0.17 0.17 

Training set A 0.00 0.38 0.88 0.88 

Test set A 0.00 0.00 0.00 0.0 

Test set B 0.00 0.38 0.81 0.75 

4. DISCUSSION 

From the results in the previous section, one can note that the methods in section 2.2 can create a large set of realistic 
simulated microcalcification clusters. The shape of the microcalcifications, the distribution of the size of the 
microcalcifications and the number of microcalcifications per cluster follow properties found earlier for real clusters [10], 
[16]. With the extension of a previously developed simulation tool, new synthetic CEM cases including such clusters were 
created. In the evaluation studies performed by two radiologists experienced in mammography, it was found they could 
more confidently classify the simulated clusters in benign and malignant categories than real clusters. In all studies higher 
values of accuracy were found for synthetic cases. This may be due to the lower level of complexity as they follow more 
strictly set parameters and cannot have as wide a variety of appearance. The simulated benign clusters in particular were 
correctly classified every time, whereas malignant cases appeared to reduce sensitivity. 

A Mask R-CCN model was trained on 192 images containing unique, simulated microcalcification clusters. When 
evaluating this model on test data it was found that the model could not recognize previously seen clusters in a new 
image. Newly simulated clusters inserted at the same location in already passed images, on the other hand, resulted in 
a higher level of detection sensitivity. The reason for this is that this particular model did not learn features of the clusters 
themselves, but recognized the background structure and the location. When training DL models for detection in medical 
images, it is clearly important to consider the number and variety of background images used. 

These results have demonstrated the capability of synthetic data to explain the features learned by a DL model. When 
further evaluating DL models, a wider variety of synthetic test sets could be created to investigate the models behavior. 
This is the case for models trained on real data as well, especially in a medical imaging setting where less annotated data 
is available. For CEM where more cases contain a mass, microcalcification clusters were harder to detect. Our method to 
create synthetic cases containing such simulated clusters and to provide it as a test set could thus be used to improve a 
DL model for detection of all types of lesions in CEM. 
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5. CONCLUSION 

The method described here can produce a new set of synthetic CEM image data using simulated microcalcification 
clusters. A dataset produced with this method was used to train a DL microcalcification detection model and to explain 
the model behavior. While new clusters in previously seen images could be detected, the model could not recognize 
known clusters in new images. This provides information on the features learnt by the DL detection model, where we 
found that not just the lesion itself is utilized by the model. In further work, the training could be extended to combine 
real and synthetic data. More test sets with specifics regarding the simulated lesion or the chosen image can be created 
in order to further understand the DL model and its training scheme. 
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