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ABSTRACT

We live in an uncertain world, intermittently making decisions based on the knowledge we
have accumulated so far. In such a world, how to make decisions to mitigate regrets is probably
one of the most pressing concerns. In today’s information-oriented society, such expectations
are not limited to people, but also to computers that are programmed to maximize gains. Given
such universal sequential decision-making problems under uncertainty, what decision-making
procedures would be desirable in order to minimize regret?

A bandit problem is one of the most fundamental models in the field of statistical machine
learning for dealing with such a sequential decision-making problem under uncertainty. In this
problem, the learner sequentially selects an action from a given set of actions under the assump-
tion the learner incurs and observes the loss for the selected action, and the goal of the learner
is to minimize the cumulative loss. Instead of the cumulative loss, it is typical to consider the
regret, which is the difference between the cumulative loss incurred by the learner and that of an
optimal action. The most basic model of the bandit problem, the multi-armed bandit problem,
was invented in the 1930s with clinical trial applications in mind. This model has been stud-
ied separately in two very different streams: the stochastic regime in which losses are obtained
according to a certain distribution, and the adversarial regime in which arbitrary bounded loss
vectors are given. Later, around 2010, with the rapid development of Internet technology and
its accompanying web advertising, the bandit problem and its algorithms have been extensively
investigated, broadening their scope of applications.

In the course of this development, it became clear that the simple multi-armed bandit problem,
which does not take into account the correlation between actions and the information available at
each time, cannot effectively make decisions in highly complex real-world problems. To address
this issue, a new framework, commonly called structured bandits that appropriately incorporates
the structure of the problem under investigation, has been actively investigated.

Adaptivity of algorithms is one of the most fundamental keywords in statistical machine learn-
ing, playing an important role in improving the performance of bandit algorithms. While bandit
algorithms have historically been designed for a certain worst-case scenario, recent adaptive al-
gorithms are based on the idea that performance can be improved by making decisions adaptively
to an underlying structure and loss sequences.

An important example of adaptability is adaptation to loss distributions in the stochastic
regime. While most existing algorithms aim to attain a favorable regret upper bound assum-
ing that the underlying distribution is the most unfavorable one to the learner, such distribution
is rarely encountered in real-world problems. Hence, an adaptive action selection procedure with
respect to the distribution behind losses is expected to yield better performance than an algorithm
that aims to improve performance for the worst-case distribution.

A second important example of adaptivity is data dependence in the adversarial regime. In
the adversarial regime, as well as in the stochastic regime, a large number of algorithms have been
developed that perform well for a loss sequence that is very annoying for the learner. However,
losses in real problems have good properties. For example, a loss vector has almost the same
value as in the previous time, or losses for the optimal action are close to zero. Therefore, it can
be expected that an algorithm that works adaptively to such quantities should perform well in
practice.

A third important example of adaptivity is best-of-both-worlds. When employing a bandit
algorithm in a real-world problem, it is often the case that the underlying environment is unknown.
Moreover, it is known that algorithms for the stochastic regime suffer from a linear regret in the
adversarial regime, and classical algorithms for the adversarial regime perform much worse in the
stochastic regime than algorithms for the stochastic regime. Therefore, it is desirable to achieve
optimality in both environments without knowing the underlying environment, and an algorithm
with such a property is called a best-of-both-worlds algorithm.

Despite the importance of such adaptability in applying the bandit algorithm to real-world
problems, it has not been sufficiently investigated in the structured bandit problem, which has
expanded its field of application significantly in recent years. In this dissertation, to overcome this
limitation, we aim to realize the three adaptive properties in several structured bandit problems.
We deal with the following problems: online learning with full information, multi-armed bandits,
combinatorial semi-bandits, and partial monitoring. The organization of this dissertation is as
follows.



In Chapter 1, we review the history of the bandit problem and then provide a concise back-
ground and contributions of this dissertation.

In Chapter 2, we present the fundamentals of the bandit problem, its algorithms, and the
detailed background of this dissertation. First, representative results for the stochastic and adver-
sarial regimes are presented, and in particular, the theoretical framework of the algorithm that
plays a major role in this dissertation is detailed. We then review the history of adaptivity in the
bandit problem, and in particular, the best-of-both-worlds property. Finally, we introduce some
important examples of structured bandits and their concrete applications.

Chapters 3 through 6 are the main results of this dissertation.
In Chapter 3, we consider partial monitoring in the stochastic regime. Partial monitoring

is the setting in which the learner can observe only abstract feedback symbols instead of losses
and includes many important problems as special cases, such as the multi-armed bandit problem,
dynamic pricing, and efficient label prediction. To further the applicability of partial monitoring,
we aim to construct an algorithm that is adaptive to distribution and empirically powerful. We
design an algorithm based on Thompson sampling, known for its splendid empirical performance
in some bandit problems, and show that the algorithm can achieve a logarithmic distribution-
dependent regret bound.

In Chapter 4, we continue to focus on partial monitoring and investigate best-of-both-worlds
adaptivity for it. Existing best-of-both-worlds algorithms have been constructed only for rela-
tively simple bandit problems, and it has been left unclear whether best-of-both-worlds can be
achieved in a setting where only abstract feedback can be observed. To obtain a best-of-both-
world algorithm for partial monitoring, we base our study on the follow-the-regularized-leader
framework, which was first established as an algorithmic framework for the adversarial regime
and emerged as a representative approach to constructing best-of-both-worlds algorithms. To ap-
ply this framework to partial monitoring, we advance the theory of adaptive learning rate and that
of determining the action selection probability by optimization, which is a technique for main-
taining the stability of the follow-the-regularized-leader. This development allows us to realize
best-of-both-worlds algorithms for partial monitoring.

In Chapter 5, we further develop the follow-the-regularized-leader, a powerful framework
for achieving adaptivity. Looking at the history of the adaptive learning rate of follow-the-
regularized-leader, one can see that it depends on only one of the terms that appear in a regret
upper bound, either the stability term or the term related to the strength of regularization. How-
ever, the induced property by adapting to each term is different from each other. Based on this
observation, we establish an adaptive learning rate framework that depends on each of these terms
simultaneously. We demonstrate that this allows us to simultaneously achieve best-of-both-worlds
and certain data-dependent bounds for multi-armed bandits and partial monitoring, whereas ex-
isting approaches can achieve only one of those adaptivities.

In Chapter 6, we construct an adaptive algorithm for the combinatorial semi-bandit problem in
which the action set involves a combinatorial structure. Existing regret bounds of the best-of-both-
worlds algorithms in the stochastic regime are called optimal, only focusing on the dependence on
the mean of the loss distribution. However, the bounds have a gap with the true optimality that is
determined not only by the mean but also by the higher-order information of the distribution. To
fill this gap and improve the performance of the best-of-both-worlds algorithms in the stochastic
regime by exploiting the higher-order information of an underlying distribution, we develop an
adaptive learning rate in the follow-the-regularized-leader that is adaptive to variances of the
underlying distribution. This allows us to derive a regret upper bound that depends on the action
variance in a stochastic regime and several data-dependent regret upper bounds in the adversarial
regime.

Finally, in Chapter 7, we summarize the contributions of this dissertation and discuss future
research challenges in sequential decision-making problems.



論文要旨

人はこれまで得られた知識を基に，断続的に意思決定を繰り返しながら不確実な世界を
生きている．どのように意思決定をすれば後悔を減らすことができるかは，大きな関心事
の一つだろう．情報化が進んだ現代社会では，人だけでなく，利益を最大化するようプロ
グラムされた計算機にもそのような期待が寄せられる．このように普遍的に存在する不確
実性のもとでの逐次的意思決定問題において，後悔を最小限に抑えるにはどのような意思
決定の手続きが望ましいだろうか．
バンディット問題は，統計的機械学習の分野において，不確実性のもとでの逐次的意思

決定問題を扱う最も基礎的なモデルの 1つである．この問題では，学習者が複数の行動の
選択肢から 1つを選択し，選択した行動についてのみ損失を観測するという枠組みのもと
で，累積損失を最小化することを目指す．ここでは，累積損失の代わりに，学習者が被っ
た累積損失と最適な行動の被る累積損失の差であるリグレットを評価指標として考えるこ
とが一般的である．バンディット問題の最も基礎的なモデルである多腕バンディット問題
は，1930年代に治験への応用を念頭に考案された．このモデルは，損失がある分布に従っ
て得られる確率的な環境と任意の有界な値が与えられる敵対的な環境の大きく異なる潮流
の中で別々に研究がなされてきた．その後，2010年ごろからインターネット技術の進展と
それに伴うウェブ広告の急速な発展により，バンディット問題とそのアルゴリズムはその
活躍の場を大きく広げ盛んに研究されてきた．
この発展の過程で，行動の選択肢間の相関や，各時刻で得られる情報を利用することが

できない単純な多腕バンディット問題の枠組みでは，高度に複雑化した実問題で効果的に
意思決定を行うことができないことが明らかになった．この問題を解決するために，一般
に構造化バンディット問題と呼ばれる，対象とする問題の構造を適切に取り込んだ枠組み
が盛んに研究されてきた．
アルゴリズムの適応性は統計的機械学習において最も重要なキーワードの 1つである．

バンディット問題においても，適応性はアルゴリズムの性能向上に重要な役割を果たす．伝
統的なバンディットアルゴリズムはある種の最悪ケースを考慮した設計がなされてきた一
方で，適応的アルゴリズムは背後の構造や損失系列に対して適応的に意思決定することで
性能を改善できないだろうかという思想に基づく．
一つ目の適応性の重要な例が，確率的環境における損失分布に対する適応性である．既

存の多くのアルゴリズムは，背後の分布が学習者にとって最も都合が悪いものであるとし
た上で良いリグレット上界を達成することを目標としていたが，実問題ではそのような性
質の分布が登場することは稀である．そこで背後の分布に対して，適応的に行動を選択を
行うことができれば，悪い分布に対しての性能改善を目指すアルゴリズムより良好な性能
が得られると考えられる．
二つ目の適応性の重要な例が，敵対的環境におけるデータ依存性である．敵対的環境に

対しても確率的な環境と同様に学習者にとって非常に厄介な損失系列が与えられたもとで
も良好に動作するアルゴリズムが構築されてきた．しかし実問題に登場する損失は，例え
ば前時刻とほとんど変わらない損失値を持っていたり，最適な行動の損失値は限りなくゼ
ロに近いなど性質が良い場合が多く存在する．このような問題の性質の良さを定量的に表
す量に対して適応的に動作するアルゴリズムは実用上も良い性能を達成すると考えられる．
三つ目の重要な適応性の例が，確率的環境と敵対的環境の両方で単一のアルゴリズムで



同時に最適性を達成することを目指す両環境最適性である．実問題においてバンディット
問題を利用するとき，背後の環境が確率的であるか敵対的であるかは未知であることが多
い．また，確率的環境のためのアルゴリズムは敵対的環境においては線形リグレットを被
ることが多く，一方で伝統的な敵対的環境のためのアルゴリズムは確率的環境において非
常に性能が悪い．そこで，背後の環境を知らずして両環境における最適性を達成すること
が望まれ，このような性質を持つアルゴリズムは両環境最適であると呼ばれる．
このような適応性は実問題におけるバンディットアルゴリズムの適用において非常に重

要であるにもかかわらず，近年活躍の場を大きく広げている構造化バンディット問題にお
いては十分研究がなされていない．そこで本博士論文では，この限界を克服しバンディッ
ト問題の利用可能性を向上させるべく，上で挙げた三つの適応性を複数の構造化バンディッ
ト問題において実現することを目指す．具体的には，我々は全情報が得られるオンライン
学習，多腕バンディット問題，組合せ半バンディット問題，部分観測問題の四つの問題を扱
う．以下に本博士論文の構成を示す．
第一章では，バンディット問題の歴史と本博士論文の背景を簡潔に振り返り，本博士論

文の貢献を議論する．
第二章では，バンディット問題の基礎的な理論とそのアルゴリズム，および本博士論文

の詳細な背景をまとめる．はじめに確率的環境と敵対的環境の代表的な結果を紹介し，特
に本博士論文で主要な役割を果たすアルゴリズムの理論的な枠組みについて詳述する．そ
して，バンディット問題における適応性，特に両環境最適性の歴史を振り返り，最後に構
造化バンディット問題の重要な例とその具体的な応用例を紹介する．
第三章から第六章の四つの章は，本博士論文の主結果である．
第三章では，確率的環境における部分観測問題を考える．部分観測問題は，損失が直接

観測される代わりに，抽象的なフィードバック記号のみが観測される設定であり，多腕バ
ンディット問題や動的価格設定，効率的ラベル予測など非常に多くの重要な問題を特別な
ケースとして含む．そこで，このような複雑な構造を持つ逐次的意思決定問題において，
分布に対して適応的であり，経験的に強力に動作するアルゴリズムの構築を目指す．具体
的には，基本的なバンディット問題においてその経験的な性能の良さで知られるトンプソ
ンサンプリングアルゴリズムをこの設定に対して設計し，背後のフィードバックの分布に
適応的な対数オーダーのリグレットを達成できることを明らかにする．
第四章では，引き続き部分観測問題を対象とし，両環境最適性に焦点を当てる．これま

での両環境最適なアルゴリズムは，比較的単純なバンディット問題のみに対して構築されて
おり，抽象的なフィードバックのみしか観測できない設定においても両環境最適性を達成
できるかは不明であった．そこで部分観測問題における両環境最適なアルゴリズムの構築
をするために， follow-the-regularized-leaderの枠組みを基礎とする．この枠組みは，もとも
と敵対的環境を念頭に発展し，近年における両環境最適アルゴリズムを実現するための代
表的な枠組みである．これを部分観測問題に適用するために， follow-the-regularized-leader

の安定性を維持する技術である最適化によって行動探索割合の決定理論および適応的学習
率の技術を発展させる．ここで発展させた技術を活用し，部分観測問題において両環境最
適性を達成できることを明らかにする．
第五章では，適応性獲得のための強力な枠組みである follow-the-regularized-leaderをさ

らに発展させる．Follow-the-regularized-leaderの適応的学習率の歴史を紐解くと，これら
はいずれもリグレット上界に現れる安定性の項あるいは正則化の強さに関する項どちらか



一方のみに依存していることがわかり，これらの依存性によって実現可能な適応性の種類
は異なる．この観察をもとに，それぞれの構成要素に同時に依存するような適応的学習率
の枠組みを確立する．これによって，多腕バンディット問題と部分観測問題において，両
環境最適性およびあるデータ依存の上界を同時に達成できることを示す．
第六章では，行動の選択肢が組合せ構造を持つ設定である組合せ半バンディット問題にお

ける適応的アルゴリズムの構築を行う．既存の両環境最適なアルゴリズムの確率的環境に
おける上界は，損失分布の期待値のみを考慮した意味での最適性であり，分布の高次の情報
から定まる真の最適性との乖離があった．そこで，この乖離を埋め，分布の高次の情報を利
用することで両環境最適なアルゴリズムの性能を向上させるために，follow-the-regularized-

leaderにおいて背後の分布の分散に適応的に動作する学習率を設計する．これにより，確
率的環境においては行動の分散に依存したリグレット上界を，敵対的環境においては複数
のデータ依存リグレット上界を導出する．
最後に，第七章では，本博士論文における貢献をまとめる．また，今後の逐次的意思決

定問題，バンディット問題における研究課題について述べる．
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Chapter 1

Introduction

We human beings live in an uncertain world, making decisions intermittently, consciously
or unconsciously, based on prior existing knowledge. Decision-making is not always de-
ductive. We often make decisions by inductively extracting knowledge that is approxi-
mately plausible from the limited information that we have received in the past. It is not
only humans who make decisions. In today’s highly information-oriented world, people
program computers to make desirable decisions. In this way, decision-making problems
under uncertainty are universal in the real world. But, can they be formulated mathemat-
ically in a form that is useful to people? Moreover, to what extent can we make decisions
“adaptively” to empirically available information? This dissertation aims to give partial
answers to these questions using the framework of the bandit problem, the most represen-
tative mathematical model of sequential decision-making problems under uncertainty.

1.1 Statistical Machine Learning and Sequential Decision Making under
Uncertainty

What is the ideal way to make decisions based on the finite amount of experience avail-
able so far? Statistical machine learning is a research field that aims to realize this goal
in mathematically grounded ways. There are three major frameworks in machine learn-
ing: supervised learning, unsupervised learning, and reinforcement learning. Supervised
learning is the problem of finding a function that takes an input as its argument and out-
puts a label as accurately as possible, given a finite number of inputs and labels obtained
according to certain rules. In general, it is common to evaluate the performance of the
function with respect to new inputs. For example, consider the problem of predicting
whether a new input image is a dog or a cat, given images of dogs and cats and labels
indicating which one an image is. This problem is called (binary) classification and is
an example of supervised learning. The problem of dividing a given set of inputs into
multiple sets is called clustering, and is an example of unsupervised learning. Reinforce-
ment learning, on the other hand, has characteristics that differ significantly from these
frameworks.

Reinforcement learning is a general framework of sequential decision-making under
uncertainty. Since there are various settings in reinforcement learning, let us consider one
fundamental formulation here. In this framework, there is an agent and an environment,
and we are initially given the set of states S in which the agent goes through transitions and
the set of actions A (|A| <∞) that the agent can take. For each episode t ∈ {1, . . . , T},
the environment has a function rt : S×A→ [0, 1] that determines the reward according
to the agent’s state and action pairs, and a transition functionPt : S×A→ S that gives the
next state. In each episode, the agent sequentially determines what action to take in each
state based on policy π : S→ P|A|, receives a next state and reward from the environment,
and then moves to the next state. At the end of each episode, using the experience of the
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Agent
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action a
state s
reward r

policy πt : S→ P|A|

transition function Pt : S×A→ S

reward function rt : S×A→ [0, 1]

Figure 1.1: Overview of reinforcement learning.

previous episodes {1, . . . , τ−1}, policy π : S→ P|A|, the function that determines what
action to take in each state, is updated. Here, Pk is the (k − 1)-dimensional probability
simplex. The overview of reinforcement learning is given in Figure 1.1. For example,
consider the problem where there are 3 × 3 integer lattice points each of which has an
unknown reward, and the agent moves from the start (lower left) to the goal (upper right),
choosing whether to move up or right at each lattice point, so as to obtain the reward as
much as possible. Then, one can see that this problem can be described as a reinforcement
learning problem by appropriately defining the functions given above. To summarize,
the framework of reinforcement learning deals with sequentially obtained data and is
thus considerably different from the framework of supervised learning and unsupervised
learning, in which we make inferences based on a finite amount of data given in advance.

This reinforcement learning framework is developing at an unprecedented rate, es-
pecially in its applications. In Othello, Go, and the computer game Atari, which have
been frequently used for assessing performance of reinforcement learning algorithms
since the early days of the field, it is now possible to achieve performance that far sur-
passes even that of human professionals. Other applications include robotics (Degrave
et al., 2022; Ibarz et al., 2021), machine translation (Wu et al., 2018), and even magnetic
control of tokamak plasmas (Degrave et al., 2022). Furthermore, at the time of writing
this dissertation (April 6th, 2023), ChatGPT, a large-scale language model using rein-
forcement learning from human feedback, demonstrated capabilities that could replace
search engines that have been the most basic means of obtaining information. As such,
the reinforcement learning framework as a sequential decision-making model has been
developed as a modern scientific and significantly powerful technology.

Bandit problems belong to the framework of reinforcement learning. In fact, the
problem corresponds to a reinforcement learning problem where there is only one state,
|S| = 1, and the number of action choices within each episode is one. Despite its seem-
ingly simple setup, the bandit problem can model a tremendous number of important
real-world problems. Because of its simplicity, its theory and algorithms are supported
by a very strong mathematical foundation, and theoretical advances in the bandit problem
are often strongly associated with its numerical performance. Informally, the most basic
model of the bandit problem, the multi-armed bandit problem, is a problem in which k
slot machines are presented and played for a total amount of T times to maximize the
cumulative reward. Formally, k arms (or actions) are given at the beginning, and the
learner (corresponding to the agent in reinforcement learning) selects one arm At ∈ [k]
from these arms. At the same time, the underlying environment (or adversary) deter-
mines losses (negative reward) ℓt = (ℓt1, . . . , ℓtk)

⊤ ∈ [0, 1]k. The learner then suffers
a loss ℓtAt of the chosen arm and can observe only that loss. One of the most important
characteristics of the bandit problem is that the learner can only observe losses of the
selected arm, and thus there is an exploration and exploitation tradeoff : either to select
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an arm that currently appears optimal or to select an arm that has the potential to become
truly optimal. The goal of the learner is to minimize the cumulative loss. Equivalently,
the learner aims to minimize a regret, which is a shifted metric of the cumulative loss,
namely, the expectation of a difference between the cumulative loss of the selected arms
and the cumulative loss of the optimal arm. If the regret of an algorithm is o(T ), then
the loss difference from the optimal choice suffered per round approaches 0 as T →∞,
meaning that the algorithm is “learning”.

The origin of the bandit problem dates back to the 1930s when it was invented with
its use in clinical trials in mind (Thompson, 1933). Here, the experimental conditions,
such as drugs and dosing regimen, correspond to the arms, the number of patients cor-
responds to the total round of samples, and the result corresponds to the loss for each
condition. Since then, the bandit problem has been developed in two different streams:
a stochastic regime (stochastic environment) and an adversarial regime (adversarial en-
vironment). The stochastic regime is a setting in which losses (ℓt) are independently
and identically distributed (i.i.d.) by a certain distribution decided by the environment,
whereas the adversarial regime is a setting where (ℓt) can be arbitrarily determined. The
achievable regrets in these regimes are rather different. For multi-armed bandits with loss
vectors ℓt in [0, 1]k, it is possible to achieveO(log T ) andO(

√
T ) regrets for the stochas-

tic and adversarial regimes, respectively, both of which are known to be optimal. While
a number of algorithms have been developed that can achieve these optimal bounds, their
underlying ideas for designing algorithms are rather different (Lai and Robbins, 1985;
Auer et al., 2002b,a), which we will see in the next chapter. An optimal algorithm for the
stochastic regime has the advantage of achieving a very small regret of O(log T ) if the
underlying environment can be regarded as stochastic. In contrast, an optimal algorithm
for the adversarial regime can achieve a certain degree of regret even when the underlying
environment is highly unpredictable or can abruptly change. Thereafter, the bandit prob-
lem has been extensively studied since around 2010 due to the rapid advances in Internet
technology and the accompanying rapid development of web advertising.

Over the course of its development, it has become clear that the framework of the
vanilla multi-armed bandits introduced so far is not sufficient to apply it to real-world
problems. For example, consider the problem where users visit a website at regular in-
tervals and we recommend products that they would like to purchase. If we apply the
vanilla multi-armed bandits framework to this problem, each product is considered as an
independent arm, and the product with the highest estimated probability of purchase is
recommended. However, this model totally ignores the features of users and products in
its formulation and does not fully exploit the structure of the problem. Other important re-
alistic problems include the problem setup where the losses cannot be directly observed,
such as the spam/ham decision problem for e-mails, and the problem setup in which the
set of actions has a combinatorial structure, such as the problem of transporting data over
a network graph, both of which cannot be handled by the vanilla multi-armed bandits. To
address this issue, a framework has been investigated that captures the highly complex
real-world problems in a structured manner: structured bandits. The Structured bandit
is a class of problem that incorporates a specific structure into the vanilla multi-armed
bandit problem, it includes partial monitoring, combinatorial semi-bandits, and linear
bandits, which will be discussed in the following, as an instance. In this dissertation, we
focus on this concept that has become very important in recent years. A further detailed
background mentioned here is provided in Chapter 2.
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1.2 Major Challenges in Bandit Problems

Adaptivity is an extremely important keyword in the field of statistical machine learn-
ing. Efforts to adaptively exploit the underlying structure of a given problem to improve
task performance can be found in a wide range of setups. These include Lasso (Tibshi-
rani, 1996) that exploits the sparsity of features in linear regression to improve prediction
performance and interpretability, and matrix completion (Candes and Plan, 2010) that
exploits the low-rank property of matrices to complement missing values.

Such adaptivity also plays an important role in the bandit problem to improve the
performance of algorithms. Adaptivity in the bandit problem is based on the principle
that if the sequence of losses has a certain benign structure, the algorithm should be
adaptive to it and achieve a small regret, which will be illustrated below. However, there
has been little amount of studies aiming to construct sufficiently adaptive algorithms for
structured bandits, which have been rapidly advancing in recent years. In this dissertation,
we consider how far we can go in pursuit of adaptivity mainly for structured bandits.

Environment Adaptivity in Bandits What kind of adaptivity can be considered in
the bandit problem? As mentioned above, it is known that in the bandit problem, given a
distribution of losses behind the stochastic regime, it is possible to achieve a distribution-
dependent bound of O(log T ). This type of bounds has been well studied in relatively
simple settings such as multi-armed bandits (Lai and Robbins, 1985; Burnetas and Kate-
hakis, 1996). However, such a distribution-dependent bound has not been sufficiently
studied for structured bandits with complex structures, while a minimax optimal bound
of O(

√
T ), which is optimal for the worst-case distribution, has been extensively inves-

tigated (Auer, 2002; Abbasi-Yadkori et al., 2011; Chu et al., 2011; Bartók et al., 2011).
Such distribution-dependent bounds that fully exploit the information of the underlying
distribution can be regarded as a certain kind of algorithmic adaptivity.

Another example of adaptivity is a data-dependent bound in the adversarial regime.
As mentioned above, the regret achievable in the adversarial regime isO(

√
T ). However,

this bound is a very pessimistic result because one needs to consider all possibilities of
losses in the adversarial regime, and we rarely encounter such a worst-case scenario in
real-world problems. In a practical scenario, a loss vector ℓt at each time may often be
similar to that at the previous time, i.e., ℓta ≃ ℓt+1,a for all a ∈ [k] (Chiang et al., 2013;
Wei and Luo, 2018), or there could be a setting where the optimal arm a∗ suffers a loss
0 most of the time, i.e., ℓta∗ = 0 for almost all t ∈ [T ] (Allenberg et al., 2006). Such
settings are clearly benign compared to the most pessimistic cases. In fact, it is known
that we can achieve regret upper bounds that depend on such quantities

∑T
t=2∥ℓt− ℓt−1∥

or mina∈[k]
∑T

t=1 ℓta, and regret upper bounds that depend on such quantities are called
data-dependent bounds (Allenberg et al., 2006; Hazan and Kale, 2011; Wei and Luo,
2018; Bubeck et al., 2018).

Another very important example of adaptivity we investigate is the simultaneous op-
timality in stochastic and adversarial regimes. As mentioned above, bandit games are
classified into stochastic and adversarial regimes dependent on how losses are generated,
and in the case of multi-armed bandits, O(log T ) for the stochastic regime and O(

√
T )

for the adversarial regime are the best achievable bounds. However, in many real-world
problems, we often have no prior knowledge on whether the underlying environment is
stochastic or adversarial. Existing algorithms specialized for the stochastic regime suffer
a linear regret in the adversarial regime, while the classical algorithms intended for the
adversarial regime cannot achieve good performance in the stochastic regime. Hence,
the following question arises. Can we establish a single algorithm that is optimal in
both stochastic and adversarial regimes? Algorithms with such adaptivity are called
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best-of-both-worlds algorithms and have been actively studied in recent years (Bubeck
and Slivkins 2012; Seldin and Slivkins 2014; Auer and Chiang 2016; Seldin and Lugosi
2017; Wei and Luo 2018; Zimmert and Seldin 2019, to name a few). What about the
intermediate environments between these two? Many of the real-world problems belong
to environments that are neither completely stochastic nor adversarial. Therefore, it is
desirable to construct an algorithm that achieves good performance in a setting in which
losses are essentially stochastic and some adversarial noise is added to the observed losses
or feedback. Such an environment is called stochastic regime with adversarial corrup-
tions (Lykouris et al., 2018). Despite the practical importance of developing best-of-both-
worlds algorithms with a favorable guarantee in the stochastic regime with adversarial
corruptions, most existing best-of-both-worlds algorithms have only been considered in
relatively simple settings such as the vanilla multi-armed bandits and have not been very
well studied in structured bandits. The precise definitions of the various concepts that
have appeared so far are given in Chapter 2.

1.3 Contributions of this Dissertation

This dissertation primarily explores adaptivity in structured bandits. The major research
results of this dissertation are as follows:

In several structured bandit problems, we can establish bandit algorithms with fur-
ther adaptive guarantees by exploiting properties behind the problem and an under-
lying environment through environment-adaptive regret analysis.

The contributions of each chapter are briefly presented in the following.

1.3.1 Chapter 3: Thompson Sampling for Partial Monitoring

Motivation We begin with partial monitoring, a very generic instance of structured
bandits dealing with limited feedback (Rustichini, 1999; Piccolboni and Schindelhauer,
2001). Partial monitoring is attracting broad interest because it includes a wide range of
problems such as the multi-armed bandit problem (Lai and Robbins, 1985; Auer et al.,
2002b,a), a linear optimization problem with full or bandit feedback (Zinkevich, 2003;
Dani et al., 2008), dynamic pricing (Kleinberg and Leighton, 2003), and label efficient
prediction (Cesa-Bianchi et al., 2005).

Several studies have investigated partial monitoring in the stochasitc regime (Bartók
et al., 2012; Vanchinathan et al., 2014; Komiyama et al., 2015a). However, all of these
algorithms only have a guarantee with respect to a worst-case feedback distribution or
need to solve the optimization problem every round to deal with limited feedback, both
of which result in poor performance in a realistic number of rounds. Therefore, we
aim to design and analyze Thompson sampling, which is generally considered to have
the best performance in the stochastic regime, for partial monitoring, with an O(log T )
distribution-dependent bound.

Contribution Using the accept-reject sampling, we propose a new Thompson-sampling-
based algorithm for PM, which is equipped with a numerical scheme to obtain a posterior
sample from the complicated posterior distribution. We derive anO(log T ) distribution-
dependent regret bound for the proposed algorithm on locally observable games for a
linearized variant of the problem. This is the first regret bound for Thompson sampling
on locally observable games. Finally, we compare the performance of the proposed al-
gorithm with existing algorithms in numerical experiments and show that the proposed
algorithm outperforms existing algorithms.
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1.3.2 Chapter 4: Best of Both Worlds Algorithms for Partial Monitoring

Motivation While Thomson sampling is a very strong algorithm in the stochastic regime,
it is known that the algorithm suffers linear regret even in a slightly stochastic regime.
Recall that, as discussed in Section 1.2, it is not often the case that feedback is generated
in a completely stochastic manner. Hence, it is desirable to build an algorithm that per-
forms well not only in the stochastic regime but also in the adversarial regime and in the
stochastic regime with adversarial corruptions. Can we construct such a best-of-both-
worlds algorithm for partial monitoring, which is a very complex structured bandit?

Contribution We resolve this question affirmatively by establishing new best-of-both-
worlds algorithms for partial monitoring. Our algorithm is based on the follow-the-
regularized-leader framework, which was originally developed in the context of online
optimization and recently adopted to achieve a best-of-both-world guarantee in the vanilla
multi-armed bandits. We rely on two recent theoretical advances: a framework of ex-
ploration by optimization, a method for enhancing the stability of algorithms, which is
important in partial monitoring, and a method for adjusting the learning rate in follow-
the-regularized-leader when dealing with indirect feedback. We show that for easy partial
monitoring games, the regret is O((log T )2) in the stochastic regime and O(

√
T log T )

in the adversarial regime. Moreover, we show that for hard partial monitoring games,
the regret is O((log T )2) in the stochastic regime and O((T log T )2/3) in the adversarial
regime, both of which are nearly-optimal in their class of games. We also provide regret
bounds for the stochastic regime with adversarial corruptions.

1.3.3 Chapter 5: Stability-penalty-adaptive Follow-the-regularized-leader: Spar-
sity, Game dependency, Best of both worlds

Motivation As we see in Chapters 4 and 6, follow-the-regularized-leader is a power-
ful tool for exploiting loss adaptivity, which is made possible by properly designing the
learning rate, which is a component of the regularizer in follow-the-regularized-leader,
based on the observations observed so far. Still, looking at the history of adaptive learn-
ing rates, we notice that they are designed to depend on only one of the two components
that appear in the regret upper bound of follow-the-regularized-leader. Then, what if we
could construct the learning rate so that it depends on these components simultaneously?
Would it enhance the adaptivity of follow-the-regularized-leader?

Contribution We answer this question affirmatively by developing a generic adaptive
learning rate that jointly depends on the two components. This result yields algorithms
that have best-of-both-worlds guarantees and data-dependent bounds simultaneously. In
particular, leveraging the new adaptive learning rate framework, we establish the first
best-of-both-worlds algorithm with a sparsity-dependent bound that becomes small when
the underlying losses are sparse. Additionally, we explore partial monitoring and demon-
strate that the proposed learning rate framework allows us to achieve both a best-of-both-
worlds guarantee and a game-dependent bound that becomes small when the essential
difficulty of the underlying problem is easier than the worst-case game, which is often
the case in the practical scenario.

1.3.4 Chapter 6: Further Adaptive Algorithms for Combinatorial Semi-bandits

Motivation In this chapter, we consider combinatorial semi-bandits as one example of
structured bandits. Combinatorial semi-bandits include practically important problems
such as the online shortest path problem and online advertisement placement, and thus it
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is important to develop adaptive algorithms for this structured bandit problem. Suppose
that in the ads allocation problem and the online shortest path problem, the losses are
generated in a stochastic manner. In the ads allocation problem, the user click rate is
very small, and in the shortest path problem, there is basically no significant change in
the time required to move from a start to a goal. Hence, variances of the distributions of
arms in each problem are considered to be very small. Can we exploit the smallness of
variances by constructing an algorithm with a variance-dependent bound? Meanwhile,
in the adversarial regime, we also consider what kind of data-dependent bound can be
achieved while guaranteeing the best-of-both-worlds performance.

Contribution We show that all of these can be accomplished simultaneously with a
single algorithm. In particular, we establish best-of-both-worlds algorithms based on
follow-the-regularized-leader as done in Chapters 4 and 5, establishing a new regularizer
and its learning rate leading to the desired properties. In the stochastic regime, we prove
a variance-dependent regret bound dependent with a tight suboptimality gap. Addition-
ally, in the adversarial regime, we show that the same algorithm simultaneously achieves
various data-dependent regret bounds. We also numerically test the proposed algorithm
and confirm its superior or competitive performance over existing algorithms, including
Thompson sampling under most settings.

1.4 Organization of this Dissertation

The organization of this dissertation is summarized as follows. In Chapter 2, we in-
troduce the fundamentals of the bandit problem and its algorithm and then provide a
detailed background of the dissertation. We also detail the follow-the-regularized-leader
and structured bandits, which are central subjects of this dissertation. Chapters 3 and 4
focus on partial monitoring, a very complex sequential decision-making problem. In
particular, in Chapter 3, we construct a numerically high-performance algorithm that
achieves a data-dependent regret bound in a stochastic regime based on Thompson sam-
pling. In Chapter 4, we construct best-of-both-worlds algorithms for partial monitor-
ing based on the follow-the-regularized-leader framework. In Chapter 5, we establish
a generic adaptive learning rate framework for follow-the-regularized-leader, which en-
ables us to achieve simultaneous adaptivity of best-of-both-worlds and data-dependent
bounds in multi-armed bandits and partial monitoring. In Chapter 6, we target combi-
natorial semi-bandits and construct an algorithm that simultaneously achieves best-of-
both-worlds, several important data-dependent bounds, and bounds adaptive to the arm
variance in a stochastic regime. Chapters 3 through 6, which provide the major contribu-
tions of this dissertation, provide sufficient information to be read on their own. Finally,
Chapter 7 concludes this dissertation. The organization of this dissertation can be found
in Figure 1.2.
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Chapter 2

Preliminaries: Foundations of Bandit Problems and
its Algorithms

In this chapter, we begin with formulating the most fundamental model in the bandit
problem, the multi-armed bandits. In the literature, the bandit problem has been studied
in two regimes: the stochastic regime and the adversarial regime. First, we introduce
the stochastic regime, the achievable lower bounds, and representative algorithms. Next,
we present the definition of the adversarial regime, its achievable lower bounds, and its
seminal algorithms. Furthermore, we review the definition and background of the best-
of-both-worlds property, which has been developed rapidly in recent years. Finally, a
formulation of structured bandits, which is a model incorporating a structure into multi-
armed bandits, is presented, as well as specific applications of each formulation.

2.1 Notation

Let R, R+, N, and Z be the set of all real numbers, the set of all non-negative real num-
bers, the set of all natural numbers, and the set of all integers, respectively. For n ∈ N,
define [n] = {1, . . . , n}. For an eventA, we define the indicator function 1[A] to take the
value 1 if A occurs and 0 otherwise. Let ∥x∥, ∥x∥1, and ∥x∥∞ be the Euclidian, ℓ1-, and
ℓ∞-norms for a vector x respectively, and let ∥x∥A =

√
x⊤Ax for a positive semidef-

inite matrix A ⪰ 0. Let ∥A∥∞ = maxi,j |Aij | be the maximum norm for a matrix A.
Let Pk = {p ∈ [0, 1]k : ∥p∥1 = 1} be the (k − 1)-dimensional probability simplex.
A vector ea ∈ {0, 1}k is the a-th orthonormal basis of Rk. 1 is the all-one vector. Let
H(p) =

∑k
a=1 pa log (1/pa) be the Shannon entropy for a probability vector p ∈ Pk.

LetD (p∥q) =
∑k

a=1 pa log(pa/qa) be the Kullback-Leibler divergence of p from q. For
a convex functionψ : Rk → R, letDψ : Rk×dom(ψ)→ R+ be the Bregman divergence
induced by ψ, i.e., Dψ(p, q) = ψ(p)− ψ(q)− ⟨∇ψ(q), p− q⟩ .

2.2 Formulations of Multi-armed Bandits

This section formulates multi-armed bandits, which are one of the fundamental models
for all bandit models. Informally, the multi-armed bandit problem is a problem in which
k slot machines, called an arm or action, are presented and played for a total amount of T
times to minimize the cumulative loss (or equivalently maximize the cumulative reward.)
Formally, let T ∈ N be horizon that is the number of time the learner can select arm. In
multi-armed bandits with k-arms, at each round t ∈ [T ], the environment determines the
loss vector ℓt = (ℓt1, ℓt2, . . . , ℓtk)

⊤ ∈ [0, 1]k.1 The learner then chooses an armAt ∈ [k]

1In stochastic bandit problems, which will be introduced later, we sometimes consider the whole real
number Rk as a domain of the loss, but this dissertation only deals with bounded losses.
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Algorithm 2.1: The procedure of multi-armed bandits
1 input: horizon T , number of arms k
2 for t = 1, 2, . . . , T do
3 The environment determines the loss vector

ℓt = (ℓt1, ℓt2, . . . , ℓtk)
⊤ ∈ [0, 1]k.

4 The learner chooses an arm At ∈ [k] := {1, . . . , k} without knowing ℓt.
5 The learner incurs and observes the loss ℓtAt for the chosen arm.

without knowing ℓt. After that, the learner observes only the loss ℓtAt for the chosen arm.
This procedure of the multi-armed bandit problem is given in Algorithm 2.1.

The performance of the learner (or algorithm) π is evaluated by the regret2 RegT ,
which is the difference between the cumulative loss of the learner and the single optimal
arm, that is,

RegπT = E

[
T∑
t=1

(ℓtAt − ℓta∗)

]
for a∗ = argmin

a∈[k]
E

[
T∑
t=1

ℓta

]
, (2.1)

where the expectation is taken with respect to the internal randomness of the algorithm
and the randomness of the loss vectors (ℓt)Tt=1. We omit the superscript π when it is clear
from the context. If the regret of an algorithm is o(T ), then the loss difference from the
optimal choice suffered per round approaches 0, meaning that the algorithm is learning.
Table 2.1 summarizes the notation used for multi-armed bandits.

One of the most important characteristics of the multi-armed bandit problem is that
we can only observe the loss for the taken arm. This characteristic causes the challenge
of exploration and exploitation tradeoffs: on the one hand, we want to select the arm with
the fewest losses incurred so far (exploitation), and on the other hand, we prefer to select
the arm with less information in order to look for an arm that can possibly have a smaller
loss (exploitation). These are not always possible at the same time, and it is necessary to
balance them effectively when selecting an arm.

Historically, two major regimes have been considered, stochastic and adversarial, de-
pending on the procedure by which loss vectors are selected. In the following sections, we
will introduce the definitions and achievable regrets of each regime and some fundamen-
tal algorithms for each regime. Since most of our contributions are based on algorithms

Table 2.1: Notation for multi-armed bandits

Symbol Meaning

k ∈ N number of arms
T ∈ N horizon
ℓt = (ℓt1, . . . ℓtk)

⊤ ∈ [0, 1]k loss vector at round t
At ∈ [k] taken action at round t
a∗ ∈ [k] optimal arm

ν∗ underlying distribution of arms
µ = Eℓt∼ν∗ [ℓt] ∈ Rk loss mean
∆a ∈ (0, 1] suboptimality gap for suboptimal arm a ̸= a∗

∆min = mina ̸=a∗ ∆a minimum suboptimality gap
RegπT (pseudo-)regret of algorithm π with horizon T

2There are several definitions of a regret, and the regret here is sometimes called pseudo-regret. We will
only focus on this definition of a regret in this dissertation.
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originally considered only for the adversarial regime, we will provide a more detailed
analysis of algorithms in the adversarial regime.

2.3 Stochastic Regime and its Algorithms

In this section, we formally define the stochastic regime for multi-armed bandits and
then discuss achievable regret bounds. We also briefly introduce the well-known algo-
rithms, the UCB algorithm and Thompson sampling, which are known to be optimal in
the stochastic regime.

2.3.1 Definitions and Achievable Regret for Stochastic Regime

In the stochastic regime, a sequence of loss vector ℓ1, ℓ2, . . . follows an unknown distri-
bution ν∗ with mean µ ∈ [0, 1]k in an i.i.d. manner. Define the minimum suboptimality
gap by∆min = mina ̸=a∗ ∆a for∆a = Eℓt∼ν∗ [(ℓta−ℓta∗)]. In the literature, in stochastic
regimes, it is common in the literature to consider the reward, which corresponds to the
inverse sign of the loss plus an appropriate constant. Still, to clarify the correspondence
with the adversarial regime, we will proceed with the loss here.

Lower Bound Let RegπT (ν∗) be the regret when the underlying distribution of arms
is ν∗. A bandit algorithm π is consistent if for any absolute constant α > 0 and any
loss distribution ν∗ it holds that E[RegπT (ν∗)] = o(Tα). Then we have the following
distribution-dependent lower bound:

Theorem 2.1 (Lai and Robbins 1985; Burnetas and Katehakis 1996). Consider a multi-
armed bandit with Bernoulli distribution ν∗ with mean µ ∈ [0, 1]k.3 Then for any con-
sistent algorithm π,

lim inf
T→∞

RegπT (ν
∗)

log T
≥

∑
a : ∆a>0

∆a

kl (µa, µa∗)
, (2.2)

where kl (x, y) = x log(x/y)+ (1−x) log((1−x)/(1− y)) is the KL divergence of the
Bernoulli distributions with mean x from that with mean y.

This implies that in the stochastic regime, by Pinsker’s inequality, kl (x, y) ≥ 2(x−
y)2, the optimal regret is approximately expressed as RegT = O(

∑
a : ∆a>0

log T
∆a

).
What is the favorable way to choose the arm at time t from the information obtained

up to time t − 1? Let Na(t) = |{s ≤ t − 1 : As = a}| be the number of times arm
a is selected before the t-th round, and let µ̂t−1(a) = 1

Na(t)

∑t−1
s=1 ℓsa1[As = a] be the

empirical expected loss of arm a at round t. One of the most naive ideas is to choose an
arm that minimizes the empirical expected losses so far, i.e., At = argmina∈[k] µ̂(a).
However, this only exploits and does not explore, and thus the learner suffers a linear
regret. In the following, we present the two most representative algorithms that achieve
the regret upper bound of O(log T ).

2.3.2 UCB Algorithm

One of the most classical algorithms in the stochastic regime is the Upper Confidence
Bound (UCB) algorithm (Auer et al., 2002a). The UCB algorithm optimistically esti-
mates the expected value (µa) of the underlying loss distribution and selects arms based

3In fact, similar lower bounds can be shown for more general and unbounded distributions. See Lai and
Robbins (1985); Burnetas and Katehakis (1996); Lattimore and Szepesvári (2020a) for details.
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on the estimates. Specifically, the UCB algorithm selects the arm at time t by the follow-
ing procedure:

At = argmin
a∈[k]

ν̂t−1(a)−

√
2 log T

Na(t)
.

The argument of argmax in the above expression represents the empirical mean of the
loss ν̂t−1(a) minus the correction term

√
2 log T
Na(t)

, which increases as the number of times
it is chosen decreases and corresponds to an upper confidence bound of the expected re-
ward of each arm a. In other words, the procedure is to decide what arm to take optimisti-
cally based on the information obtained so far, and this idea called optimism in the face
of uncertainty is the basic design principle of algorithms for the stochastic regime (Auer
et al., 2002a; Abbasi-Yadkori et al., 2011). In fact, this enables us to deal with the ex-
ploration and exploitation tradeoff mentioned above: we exploit the knowledge so far by
basically relying on empirical average losses, but the correction term allows us to mod-
erately pull uninformed arms for exploration. It is known that this UCB algorithm can
achieve a regret upper bound of O(

∑
a ̸=a∗

log T
∆a

) (Auer et al., 2002a). An extension of
this, the KL-UCB algorithm, is known to be able to achieve the theoretical limit of Theo-
rem 2.1 (Cappé et al., 2013). The UCB algorithm is relatively simple to analyze and has
been extended for many structured bandits such as combinatorial bandits (Kveton et al.,
2015) and linear bandits (Dani et al., 2008; Abbasi-Yadkori et al., 2011).

2.3.3 Thompson Sampling

Thompson sampling (Thompson, 1933) is another one of the most fundamental algo-
rithms for bandits and is known for its strong empirical performance in the stochastic
regime (Chapelle and Li, 2011).

The idea of Thompson sampling is very simple and based on Bayes statistics. First, we
determine an appropriate prior distribution as the distribution that each arm’s expected
loss (µa)a∈[k] follows. We then sample from the current distribution of each arm and
select the arm with the smallest sampled value. Finally, we update the distribution of
each arm using the results observed at this round to obtain the posterior distribution.

Thompson sampling is one of the most promising algorithms for a variety of online
decision-making problems such as the multi-armed bandits (Kaufmann et al., 2012b),
linear bandits (Agrawal and Goyal, 2013b), and partial monitoring (Vanchinathan et al.,
2014; Tsuchiya et al., 2020), and the effectiveness of Thompson sampling has been in-
vestigated both empirically (Chapelle and Li, 2011) and theoretically (Kaufmann et al.,
2012a; Agrawal and Goyal, 2013a). It is known that Thompson sampling can achieve a
theoretical lower bound of Theorem 2.1 as KL-UCB (Kaufmann et al., 2012a; Agrawal
and Goyal, 2013a).

2.4 Adversarial Regime and its Algorithms

The stochastic regime we have seen so far assumes that the losses of each arm follow
a certain distribution in an i.i.d. manner, which is a relatively strong assumption for a
realistic problem. Can we formulate the bandit problem under weaker assumptions? In
this section, we formally define the adversarial regime for multi-armed bandits and then
discuss achievable regret bounds. We then introduce and analyze fundamental algorithms
in the adversarial regime, which is heavily exploited in this dissertation.
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2.4.1 Definitions of Adversarial Regime and its Lower Bound

In the adversarial regime (a.k.a. non-stochastic regime), we do not assume any stochastic
structure for the losses, and they can be chosen in an arbitrary manner only with the
assumption that they are bounded.. We only assume that the loss vector is bounded, and
for simplicity in this chapter we assume that ℓt ∈ [0, 1]k.

In the adversarial regime, there are two types of loss-generating schemes: oblivious
adversary and adaptive adversary. The oblivious adversary determines the loss vectors
ℓt before the game starts, whereas the adaptive adversary can decide ℓt depending on the
past history until the (t− 1)-th round, (As)t−1

s=1. In the analysis of the regret we consider
(defined in e.g., (2.1) for multi-armed bandits), which we consider in this dissertation,
these differences do not make a difference in the analysis, as we only need to evaluate the
loss difference from a fixed arm a∗ ∈ [k].

Lower Bound In the adversarial regime, the best possible upper bound is ofΩ(
√
kT ) (Auer

et al., 2002b). Formally, we have the following lower bound:

Theorem 2.2 (Auer et al. 2002b, Theorem 5.1). For any algorithm π for multi-armed
bandits, there exists a sequence of losses such that

RegπT ≥
1

20
min

{√
kT , T

}
.

It is known that the follow-the-regularized-leader framework (explained later) with
(negative) Tsallis entropy regularization achieves O(

√
kT )-regret bounds (Audibert and

Bubeck, 2009; Abernethy et al., 2015), which we will prove in Section 2.4.6.

2.4.2 Loss Estimation

Since the value of losses is arbitrarily determined in the adversarial regime, the empirical
expected losses µ̂a(t) used in the stochastic regime are almost useless. Instead, the inverse
weighted estimator ℓ̂t ∈ Rk defined in the following is commonly used:

ℓ̂ta =
ℓta1[At = a]

pta
. (2.3)

This estimator is also referred to as the inverse propensity score or inverse probability
score (IPS) in the field of economics (Wooldridge, 2002). This estimator is common in
the literature and useful for its unbiasedness, i.e.,

EAt∼pt

[
ℓ̂t

∣∣∣ pt] = ℓt .

The downside of this inverse weighted estimator is that the worst-case variance can be
very large. This can be a major cause of suffering large regret in some algorithms.

Hence, with appropriately chosen mt ∈ [0, 1]k, we sometimes use the following
reduced variance estimator:

ℓ̂ta =
(ℓta −mta)1[At = a]

pta
+mta for a ∈ [k] .

One can see that this estimator is also unbiased. In this chapter, we will only focus on the
inverse weighted estimator in (2.3).
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2.4.3 Exp3 Algorithm

In the adversarial regime, the Exp3 (Exponential weight algorithm for Exploration and
Exploitation, Auer et al., 2002b) algorithm is one of the most representative and im-
portant algorithms. In the literature, Exp3 is called by various names, such as Multi-
plicative Weight Update (MWU), Hedge, or, more simply, exponential weight. A variety
of algorithms in the literature are based on the Exp3 algorithm; for example, the Exp4
algorithm for contextual bandits (Auer et al., 2002b), the Exp2 algorithm for adversar-
ial linear bandits (Dani et al., 2008; Bubeck et al., 2012), ComBand for combinatorial
bandits (Cesa-Bianchi and Lugosi, 2012), and exploration by optimization for partial
monitoring (Lattimore and Szepesvári, 2020b; Tsuchiya et al., 2023a), to mention a few.

The Exp3 algorithm determines the arm selection probability pt ∈ Pk at time t ∈ [T ]
as follows:

pta =
exp

(
−ηt

∑t−1
s=1 ℓ̂sa

)
∑

b∈[k] exp
(
−ηt

∑t−1
s=1 ℓ̂sb

) for a ∈ [k] , (2.4)

where ηt > 0 is the learning rate. The smaller the cumulative estimated loss, the greater
the probability of selection.

It is known that the Exp3 algorithm with ηt = Θ(log(k)/(kT )) can achieve the
regret upper bound of O(

√
kT log k) (proven in Theorem 2.3). The Exp3 algorithm is

a special case of the follow-the-regularized-leader framework, which will be presented
in a subsequent section, and its general analysis results will be used to prove this upper
bound.

2.4.4 Follow-the-Regularized-Leader

Follow-the-Regularized-Leader (FTRL) is a generalization of the Exp3 algorithm. In
the FTRL framework, we choose arm selection probability at time t to minimize the
expectation of cumulative estimated loss so far

〈∑t−1
s=1 ℓ̂s, p

〉
plus a convex regularizer

ψt(p). In other words, a probability vector pt ∈ Pk over the action set [k] is given as

pt ∈ argmin
p∈Pk

〈
t−1∑
s=1

ℓ̂s, p

〉
+ ψt(p) ,

where the vector ℓ̂t ∈ Rk is an unbiased estimator of ℓt and ψt is a convex regularizer. If
there were not a convex regularizer, the cumulative expected loss would be completely
trusted, and the arm selection probability would be a point on the border of the probability
simplex. However, an appropriately chosen convex regularizer prevents this situation and
allows us to tackle the exploitation and exploitation tradeoff.

Remark. Originally, FTRL and online mirror descent, which will be explained in the
next section, were not designed exclusively for the bandit problem but are closely related
to the history of online learning and online optimization. For further details, see e.g.,
Orabona (2019); Lattimore and Szepesvári (2020a).

Remark. Here we only consider the case using pt directly as the arm selection probabil-
ity, but when applying FTRL to the bandit problem, the output of FTRL are sometimes
transformed to compute the arm-selection probability. One of its roles is to reduce the
variance of the loss estimator ℓ̂t, and in Chapters 4 and 5, we consider FTRL to perform
such a transformation.
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Figure 2.1: Contour maps of typical regularizers used in FTRL on two-dimensional probability
simplex

Regularizes In the following, we introduce several common regularizers used in FTRL.
The most common form of regularizer is the one that can be written as ψt(p) = 1

ηt
ϕ(p)

with a certain learning rate ηt and ϕ : Pk → R. The following functions are typical
examples of ϕ.

• Negative Shannon entropy (a.k.a. negentropy, entropic regularizer) is defined by

ϕ(p) = −
k∑
a=1

pa log

(
1

pa

)
= −H(p) =: ψnS(p) . (2.5)

One can easily check that if we use negative Shannon entropy with learning rate
ηt, FTRL becomes the Exp3 algorithm, i.e., pt ∈ Pk is expressed as (2.4).

• Negative α-Tsallis entropy for α ∈ (0, 1) (Tsallis, 1988) is defined by4

ϕ(p) =
1−

∑k
a=1 p

α
a

1− α
=: ψnT

α (p) .

It is known that FTRL with negativeα-Tsallis entropy using absolute constantα can
achieve the minimax regret of O(

√
kT ) (Audibert and Bubeck, 2009; Abernethy

et al., 2015), which matches the lower bound in Theorem 2.2 and will be proven in
the following section (Theorem 2.4).

• Log barrier regularizer is defined by

ϕ(p) = −
k∑
a=1

log(pa) =: ψ
LB(p) .

In the following, we will often omit “negative” and just write Shannon entropy and Tsallis
entropy.

What is the relationship between these three regularizers? One of the most important
facts when considering their application to the bandit problem is that the Tsallis entropy
interpolates the Shannon entropy and the log-barrier regularizer. To confirm this, con-
sider the second derivative of the regularizer, an important concept that determines the
behavior of FTRL. The Hessian of each of the Shannon entropy, α-Tsallis entropy, and
log-barrier regularizer is diag(Θ(1/pa)), diag(Θ(1/p2−αa )), diag(Θ(1/p2a)). From this

4The definition of Tsallis entropy may be accompanied with a constant factor or linear term difference,
but these are mostly for the sake of brevity of description.
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Figure 2.2: Examples of “easy” loss data. Figures 2.2a, 2.2b, and 2.2c show that examples of ℓt
such that its first-order quantity, second-order quantity, and path-length quantity are
small.

fact, we can expect α-Tsallis entropy to behave like a Shannon entropy when α→ 1 and
a log-barrier regularizer when α → 0.5 Figure 2.1 shows these regularizers on the two-
dimensional probability simplex. We can see that as the regularizers change from the
Shannon entropy to the log barrier, the contour lines of the regularizers become denser
around the boundary.

We sometimes use a hybrid regularizer that is a linear combination of the above
regularizers and their variants. The hybrid regularizer is introduced basically in order
to stabilize the behavior of the arm selection probability in the aim of achieving various
objectives (Bubeck et al. 2018; Luo et al. 2018; Zheng et al. 2019; Lee et al. 2020; Ito
2021a; Erez and Koren 2021; Ito et al. 2022b,a; Tsuchiya et al. 2023a,b, to name a few),
and will be heavily exploited in this dissertation (Chapters 4, 5, and 6).

It is worth noting that another common regularizer in FTRL is squared 2-normϕ(p) =
∥p∥2. However, while this regularizer is sometimes used in the field of online optimiza-
tion, it is rarely used in bandit problems. In order for the bandit algorithm to be “stable”,
a regularizer must be Legendre, namely as it approaches the border of a feasible region
of FTRL (Pk in multi-armed bandits), the norm of the gradient of the regularizer goes to
∞, and this is why the squared 2-norm is basically not used in the bandit problem.

2.4.5 Data-dependent Bounds

The adversarial regime is a very pessimistic setting since it allows arbitrary loss se-
quences. As shown in Theorem 2.2, the best achievable bound isO(

√
kT ) in this regime.

But, what if the underlying losses are benign to handle? Can we improve the regret bound
for such loss sequences? Here, benign losses could be, for example, losses for an opti-
mal arm is 0 in almost all rounds or losses that have basically the same loss values as
the previous round. For these benign losses, the regret upper bound that depends on the
quantity measuring “easiness” is called the data-dependent bound.

Typical examples of data-dependent bounds are first-order bounds dependent on the
cumulative loss and second-order bounds dependent on sample variances in losses. Al-
lenberg et al. (2006) provided an algorithm with a first-order regret bound ofO(

√
kL∗ log k)

for L∗ = mina∈A
∑T

t=1 ⟨ℓt, a⟩. Second-order regret bounds have been shown in some

5In the α-Tsallis entropy if we let α → 1 directly and use L’Hôpital’s theorem, one can see that it
coincides with the Shannon entropy except for a constant factor and a constant additive term. Also, in the
case of α → 0, by modifying the definition of regularizer only by a constant factor as done by Zimmert and
Seldin (2021), one can confirm that it agrees with log-barrier, up to a constant factor and a constant additive
term.
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studies, e.g., by Hazan and Kale (2011); Wei and Luo (2018); Bubeck et al. (2018). In
particular, Bubeck et al. (2018) provided the regret bound of O(

√
Q2 log k) for Q2 =∑T

t=1∥ℓt − ℓ̄∥2. Other examples of data-dependent bounds include path-length bounds
in the form of O(

√
kV1 log T ) for V1 =

∑T−1
t=1 ∥ℓt − ℓt+1∥1. Figure 2.2 shows examples

of the losses whose data-dependent quantities become smaller compared to the worst-
case quantity of Θ(T ). We will investigate the first-order, second-order, and path-length
bounds for combinatorial semi-bandits in Chapter 6.

A sparsity-dependent bound is another important data-dependent bound (Kwon and
Perchet, 2016; Bubeck et al., 2019b, 2018; Wei and Luo, 2018; Zheng et al., 2019). The
study on a sparse-dependent bound was initiated by Kwon and Perchet (2016), who pro-
vided the algorithm achieving RegT = Õ(

√
sT ) and proved the matching (up to loga-

rithmic factor) lower bound of RegT = Ω(
√
sT ). We will further discuss and investigate

a sparsity-dependent bound for multi-armed bandits in Chapter 5.

2.4.6 Analysis of Follow-the-Regularized-Leader

In this section, we prove the bound of O(
√
kT log k) for the Exp3 algorithm presented

above, the minimax optimal bound ofO(
√
kT ), and the first-order bound ofO(

√
kL∗ log T )

introduced in Section 2.4.5.

General Result for FTRL The regret analysis of FTRL boils down to the evaluation
of
∑T

t=1

〈
ℓ̂t, pt − p

〉
, which is bounded using the following lemma:

Lemma 2.1. Let X ⊂ Rd be a convex body and g1, . . . , gT ∈ Rk. Let ψ1, . . . , ψT , ψT+1

be convex and differentiable functions and

xt = argmin
x∈X

〈
t−1∑
s=1

gs, x

〉
+ ψt(x) .

Then, for any u ∈ X it holds that

T∑
t=1

⟨gt, xt − u⟩ ≤
T∑
t=1

(
ψt(xt+1)− ψt+1(xt+1)

)
+ ψT+1(u)− ψ1(x1)︸ ︷︷ ︸

penalty term

+
T∑
t=1

(⟨gt, xt − xt+1⟩ −Dψt(xt+1, xt))︸ ︷︷ ︸
stability term

. (2.6)

We refer to the terms in (2.6) as penalty and stability terms following, e.g., Zimmert
and Seldin (2021). The first term of the stability term increases if the variation of FTRL
outputs in the adjacent rounds is large, whereas the penalty term comes from the strength
of the regularization. The proof of this lemma is standard in the literature and similar
results can be found in Lattimore and Szepesvári (2020a, Chapter 28) and Orabona (2019,
Chapter 7). In the following, we give representative results and their proof for multi-
armed bandits based on the above lemma. Before going into the main results, we provide
an auxiliary lemma for bounding the stability term.

Lemma 2.2. Let X ⊂ Rd be a convex body and ψ : X → R be a convex and twice
differentiable function in the interior of X. Then for any g ∈ Rd and x, y ∈ X there
exists α ∈ [0, 1] such that z = αx+ (1− α)y and

⟨g, x− y⟩ −Dψ(y, x) ≤
1

2
∥g∥2(∇2ψ(z))−1 .
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Proof. By Taylor’s theorem, there exists α ∈ [0, 1] such that z = αx + (1 − α)y and
Dψ(x, y) =

1
2∥x− y∥

2
∇2ψ(z). Using this, we have

⟨g, x− y⟩ −Dψ(y, x) ≤ ∥g∥(∇2ψ(z))−1∥x− y∥∇2ψ(z) −
1

2
∥x− y∥2∇2ψ(z)

≤ 1

2
∥g∥2(∇2ψ(z))−1 ,

where the first inequality follows by Cauchy–Schwarz inequality and the last inequality
takes the worst-case with respect to ∥x− y∥2(∇2ψ(z)).

Remark. In this chapter, we will use Lemma 2.2 to bound the stability term in (2.6) in
order to illustrate the effect of the Hessian of the regularizer on the regret upper bound,
but we do not necessarily need to use this lemma. In fact, in our analysis in Chapters 4
to 6, we will simply take the worst-case for y (corresponding to pt+1). This analysis has
the advantage that a tight upper bound can sometimes be obtained, and a straightforward
analysis can be performed, especially when we use a hybrid regularizer.

FTRL with negative Shannon entropy regularizer (Exp3) We first show that the
Exp3 algorithm achieves nearly optimal regret bounds in the adversarial regime:

Theorem 2.3. Consider the multi-armed bandit problem with ℓt ∈ [0, 1]k. Then FTRL
with the negative Shannon entropy ψt(p) = − 1

ηH(p) and η =
√
2 log k/(kT ) achieves

RegT ≤
√
2kT log k .

Remark. In the analysis of the Exp3 algorithm, it was more common to use the potential-
based proof (Auer et al., 2002b). Since the analysis based on FTRL is more straightfor-
ward, we here provide the proof based on it.

Proof. It holds that

RegT = E

[
T∑
t=1

ℓtAt −
T∑
t=1

ℓta∗

]
= E

[
T∑
t=1

⟨ℓt, pt − ea∗⟩

]
= E

[
T∑
t=1

〈
ℓ̂t, pt − ea∗

〉]
,

where the last equality follows by E
[
ℓ̂t
∣∣ pt] = ℓt. Then using Lemma 2.1,

T∑
t=1

〈
ℓ̂t, pt − ea∗

〉
≤ H(p1)

η
+

T∑
t=1

(〈
pt − pt+1, ℓ̂t

〉
−Dψt(pt+1, pt)

)
.

The upper bound of the penalty term in the RHS of the last inequality is bounded by log k
η

since the entropy is bounded by log k.
Hence in the following, we consider the stability term. When ptAt ≤ pt+1,At , it is

trivial that the stability term is bounded by 0 since ℓ̂t ≥ 0. Hence we consider the case
of ptAt > pt+1,At in the following. Using Lemma 2.2, the stability term is bounded as〈

pt − pt+1, ℓ̂t

〉
−Dψt(pt+1, pt) ≤

1

2
∥ℓ̂t∥2diag((ηqta)a) =

η

2

k∑
a=1

qtaℓ̂
2
ta ≤

η

2
ptAt ℓ̂

2
tAt

,

where qt = αpt + (1 − α)pt+1 for some α ∈ [0, 1] and the last inequality follows by
ptAt > pt+1,At and the definition of ℓ̂t. Summing up the above arguments,

RegT ≤ E

[
log k

η
+
η

2

T∑
t=1

ptAt ℓ̂
2
tAt

]
≤ log k

η
+
ηkT

2
=
√
2kT log k ,

which completes the proof of Theorem 2.3.
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FTRL with negative Tsallis entropy regularizer The Exp3 algorithm is suboptimal
compared to the minimax optimal bounds by only log k multipcalitive factor. Can we
improve this? This can be done by balancing the penalty and stability terms in terms of
their dependence on the arm selection probabilities, which can be made possible by the
Tsallis entropy regularizer.

Theorem 2.4. Consider the multi-armed bandit problem with ℓt ∈ [0, 1]k. Then FTRL
with the negative Tsallis entropy ψt(p) = − 4

η

∑k
a=1

√
pa and ηt = 8√

T
achieves

RegT ≤ 2
√
2kT .

Remark. The same results can be obtained for the Tsallis entropy with an exponent of
any absolute constant α ∈ (0, 1), while here we only consider the case of α = 1/2 for
notational simplicity.

Proof. It holds that

RegT = E

[
T∑
t=1

ℓtAt −
T∑
t=1

ℓta∗

]
= E

[
T∑
t=1

⟨ℓt, pt − ea∗⟩

]
= E

[
T∑
t=1

〈
ℓ̂t, pt − ea∗

〉]
,

where the last equality follows by E
[
ℓ̂t
∣∣ pt] = ℓt. Then using Lemma 2.1,

T∑
t=1

〈
ℓ̂t, pt − ea∗

〉
≤

4
∑k

a=1

√
p1a

η
+

T∑
t=1

(〈
pt − pt+1, ℓ̂t

〉
−Dψt(pt+1, pt)

)
.

The penalty term is bounded by 4
√
k

η by Cauchy-Schwarz inequality.
In the following we consider the stability term. We rely on a similar argument as that

of the proof of Corollary 2.3. When ptAt ≤ pt+1,At , it is trivial that the stability term
is bounded by 0 since ℓ̂t ≥ 0. Hence we consider the case of ptAt > pt+1,At in the
following. Using Lemma 2.2, the stability term is bounded as〈

pt − pt+1, ℓ̂t

〉
−Dψt(pt+1, pt)

≤ 1

2
∥ℓ̂t∥2

diag((ηq
3/2
ta )a)

=
η

2

k∑
a=1

q
3/2
ta ℓ̂2ta ≤

η

2
p
3/2
tAt
ℓ̂2tAt

,

where qt = αpt + (1 − α)pt+1 for some α ∈ [0, 1] and the last inequality follows by
ptAt > pt+1,At and the definition of ℓ̂t.

Summing up the above arguments and using Cauchy-Schwarz inequality,

RegT ≤ E

[
4
√
k

η
+
η

2

T∑
t=1

p
3/2
tAt
ℓ̂2tAt

]
≤ 4
√
k

η
+
ηT
√
k

2
= 2
√
2kT ,

which completes the proof of Theorem 2.4.

FTRL with log-barrier regularizer

Theorem 2.5. Consider the multi-armed bandit problem with ℓt ∈ [0, 1]k. Then FTRL
with the log-barrier regularizer ψt(p) = − 1

ηt
ψLB(p) and

ηt =
c√

1 +
∑t−1

s=1 ℓ
2
sAs

with c =
√
k log T

achieves

RegT ≤ 4
√
k log T (1 + L∗) + k ,

where L∗ = mina∈[k]
∑T

t=1 ℓta.
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This upper bound is the first-order bound explained in Section 2.4.5, and when the cu-
mulative loss of the optimal arm is of a constant order, the regret is bounded byO(

√
k log T+

k), which is much smaller than the worst-case bound of
√
kT .

Proof. Define p∗ ∈ Pk by

p∗ =

(
1− k

T

)
ea∗ +

1

T
1 .

Then, using the definition of the algorithm,

RegT = E

[
T∑
t=1

⟨ℓt, pt − p∗⟩

]
+ E

[
T∑
t=1

⟨ℓt, p∗ − ea∗⟩

]
≤ E

[
T∑
t=1

〈
ℓ̂t, pt − p∗

〉]
+ k ,

where the inequality follows from E
[
ℓ̂t
∣∣ pt] = ℓt, the definition of p∗, and Cauchy-

Schwarz inequality. Then using Lemma 2.1,
T∑
t=1

〈
ℓ̂t, pt − ea∗

〉
≤ ψLB(p∗)

ηT+1
+

T∑
t=1

(〈
pt − pt+1, ℓ̂t

〉
−Dψt(pt+1, pt)

)
.

Since p∗i ≥ 1/T , the penalty term is bounded as

ψLB(p∗)

ηT+1
=

1

ηT+1

k∑
a=1

log(1/p∗a) ≤
k log T

ηT+1
.

In the following we consider the stability term. We rely on a similar argument as that
of the proof of Corollary 2.3. When ptAt ≤ pt+1,At , it is trivial that the stability term
is bounded by 0 since ℓ̂t ≥ 0. Hence we consider the case of ptAt > pt+1,At in the
following. Using Lemma 2.2, the stability term is bounded as〈

pt − pt+1, ℓ̂t

〉
−Dψt(pt+1, pt)

≤ 1

2
∥ℓ̂t∥2diag((ηtq2ta)a) =

ηt
2

k∑
a=1

q2taℓ̂
2
ta ≤

ηt
2
p2tAt

ℓ̂2tAt
=
ηtℓ

2
tAt

2
,

where qt = αpt + (1 − α)pt+1 for some α ∈ [0, 1] and the last inequality follows by
ptAt > pt+1,At and the definition of ℓ̂t.

Taking the summation over t ∈ [T ] and using the definition of ηt , the stability term
is further bounded as

T∑
t=1

ηtℓ
2
tAt

=
T∑
t=1

cℓ2tAt√
1 +

∑t−1
s=1 ℓ

2
sAs

≤ 2
T∑
t=1

cℓ2tAt√∑t
s=1 ℓ

2
sAs

+
√∑t−1

s=1 ℓ
2
sAs

= 2c

T∑
t=1


√√√√ t∑

s=1

ℓ2sAs
−

√√√√ t−1∑
s=1

ℓ2sAs

 = 2c

√√√√ T∑
t=1

ℓ2tAt
.

(Note that the case of
∑t

s=1 ℓ
2
tAs

= 0 is trivially bounded, although the precise argument
is omitted for simplicity.) Summing up the above arguments,

RegT ≤ E

k log T
ηT+1

+ c

√√√√ T∑
t=1

ℓ2tAt

+ k ≤ 2

√√√√k log T

(
1 + E

[
T∑
t=1

ℓ2tAt

])
+ k .

Combining this with E
[∑T

t=1 ℓ
2
tAt

]
≤ RegT + mina∈[k]

∑T
t=1 ℓta = RegT + L∗ and

the fact that x ≤
√
ax+ b for a, b > 0 implies x ≤ a + 2

√
b completes the proof of

Theorem 2.5.
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Figure 2.3: Contour maps of the Bregman divergence Dψt(p, pt−1) induced by the log-barrier
regularizer with different qt on two-dimensional probability simplex

2.4.7 Online Mirror Descent

Online mirror descent (OMD) can also be regarded as a generalization of the Exp3 al-
gorithm. In the OMD framework, a probability vector pt ∈ Pk over the action set [k] is
computed so that it minimizes the expected loss

〈
ℓ̂t−1, p

〉
based on the estimated loss

vector at the previous round plus Bregman divergence Dψt(p, pt−1), namely

pt ∈ argmin
p∈Pk

〈
ℓ̂t−1, p

〉
+Dψt(p, pt−1) ,

where the vector ℓ̂t ∈ Rk is an unbiased estimator of ℓt and ψt is a convex regularizer.
It is common to consider a form of ψt = 1

ηt
ψ with a learning rate ηt. When ηt = η

for all t ∈ [T ], one can confirm that OMD with (negative) Shannon entropy regularizer
in (2.5) coincides with the Exp3 algorithm. Figure 2.3 shows the contour maps of Breg-
man divergence induced by the log-barrier regularize on the two-dimensional probability
simplex.

When ηt = η for all t ∈ [T ], the regularizer is Legendre, and the feasible region
satisfies the appropriate conditions, OMD coincides with FTRL. There are also several
important differences. Since OMD only considers only the loss ℓ̂t of the previous round,
it is known that OMD can achieve good performance when the learner needs to track
abrupt changes in the loss vectors. For example, it can achieve the path-length bounds
introduced in Section 2.4.5 with an optimal order of O(

√
kV∞) (Bubeck et al., 2019a).

In contrast, FTRL is known to have an advantage over OMD in that it is more robust in
the stochastic regime with some adversarial noise (Amir et al., 2020). This dissertation
mainly aims to achieve a good performance in such an environment and thus heavily relys
on FTRL.

2.5 Best of Both Worlds: Simultaneously Achieving Optimality for Both
Stochastic and Adversarial Regimes

Motivation As we have seen, the regret upper bound achievable in the stochastic and
adversarial regimes are different: in the stochastic regime, O(log T ) can be achieved by
the UCB algorithm and Thompson sampling, andO(

√
T ) in the adversarial regime by the

Exp3 algorithm or more generally by FTRL. While algorithms for the stochastic regime
is based on estimating the underlying expected loss based on the empirical average loss,
algorithms for the adversarial regime basically does not involve such a thing.
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Figure 2.4: Idea of best-of-both-worlds

We now consider formulating a real-world problem as a bandit problem. Then we
realize that it is unclear which regime’s algorithms are better suited to practical appli-
cations. In fact, it is known that algorithms specialized for the stochastic regime suffer
a linear regret even in the almost stochastic environment (Zimmert and Seldin, 2021).
In contrast, classical algorithms for the adversarial regime work poorly in the stochastic
regime since the algorithm needs to consider the worst-case scenarios. Since it is dif-
ficult to know the underlying regime in practical scenarios, it is desirable to obtain an
algorithm that obtains anO(log T ) regret for the stochastic regime and anO(

√
T ) regret

for the adversarial regime without knowing the underlying environment.

Definition To achieve this goal, particularly in the classical multi-armed bandits, the
Best-of-Both-Worlds (BOBW) algorithms that perform well in both stochastic and adver-
sarial regimes have been developed. The concept of a best-of-both-worlds algorithm in
the stochastic and adversarial regimes is illustrated in Figure 2.4. We formally define the
BOBW algorithm as follows:

Definition 2.1 (Best-of-both-worlds algorithm for multi-armed bandit problems). Con-
sider a multi-armed bandit problem and ℓt ∈ [0, 1]k for all t ∈ [T ]. A bandit algorithm
π for multi-armed bandits has the best-of-both-worlds property if the (pseudo-)regret in
the adversarial regime satisfies RegπT ≤ Õ(

√
T ) and in the stochastic regime satisfies

RegπT ≤ O((log T )α) for some absolute constant α > 0.6

For more general problem class P, we define the best-of-both-worlds propoerty as
follows:

Definition 2.2 (Best-of-both-worlds algorithm for general bandit problems). Consider a
bandit problem P. Suppose that the optimal dependence on horizon T is f(T ) for the
adversarial regime and g(T ) for the stochastic regime. Then a bandit algorithm π for
P has the best-of-both-worlds property if the (pseudo-)regret in the adversarial regime
is bounded as RegπT = Õ(f(T )) and in the stochastic regime is bounded as RegπT ≤
Õ(g(T )), where Õ(·) ignores the logarithmic factors.

2.5.1 History

BOBW for multi-armed bandits The study of the BOBW algorithm started with a
seminal paper by Bubeck and Slivkins (2012) and was followed by several other stud-
ies (Seldin and Slivkins, 2014; Auer and Chiang, 2016; Seldin and Lugosi, 2017). The
basic idea of the approaches by Bubeck and Slivkins (2012); Auer and Chiang (2016) is

6In the literature, the best-of-both-worlds algorithm has not been formally defined.
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to first run the algorithm for stochastic regime assuming that the underlying environment
is stochastic. Then, if a precisely designed hypothesis test shows that this assumption
does not hold, it switches to the algorithm for the adversarial regime. On the other hand,
the approaches by Seldin and Slivkins (2014); Seldin and Lugosi (2017) first assume the
adversarial regime, and when the environment is found to be stochastic, it switches to
an algorithm for the stochastic regime. However, their performance guarantees are sub-
optimal and not adaptive enough due to the lack of realistic performance caused by the
explicit switching of algorithms. Therefore, it would be desirable if it is possible to obtain
the BOBW guarantee without switching explicitly between the algorithms specialized for
the stochastic and adversarial regimes. It would be further desirable if we could obtain
the BOBW guarantee by a simple algorithm.

This desire was accomplished by an OMD-based algorithm by by Wei and Luo (2018).
Following this work, the celebrated Tsallis-INF algorithm, which is FTRL with the Tsal-
lis entropy regularization, was proposed by Zimmert and Seldin (2019, 2021). This
Tsallis-INF algorithm achieves a O(

√
kT ) regret bound for the adversarial regime and

O(
∑

a ̸=a∗
log T
∆a

) for the stochastic regime, and importantly empirically performs signif-
icantly well compared to the previous BOBW algorithms. The use of Tsallis entropy is
not considered to have any information-theoretic meaning, and Tsallis entropy was just
considered to achieve a minimax optimal regret upper bound O(

√
kT ) in an adversarial

regime, as discussed in 2.4.6. In fact, as described below, by allowing a certain loose
of regret of the logarithmic factor in the adversarial regime, the BOBW guarantees are
obtained with FTRL with log-barrier and that with Shannon entropy regularizer.

In the multi-armed bandit problem, the regret upper bound that can actually be achieved
is notO(

∑
a ̸=a∗

log T
∆a

) but (2.2). Hence, one might wonder if it is possible to achieve the
truly optimal regret upper bound given by (2.2) in the stochastic regime while maintain-
ing good performance in the adversarial regime. This is an important open problem as
discussed in Chapter 7. However, as a first step toward this, there is an algorithm that
takes into account the variance (Ito et al., 2022b). In particular, the algorithm therein
achieves a regret bound of O(

∑
a ̸=a∗(

σ2
a

∆a
+ 1) log T ) for loss variances σ2a of arm a.

BOBW beyond bandits Very recently, BOBW algorithms have been extensively in-
vestigated in many online-decision making problems beyond the multi-armed bandits.
For structured bandits, BOBW algorithms have been developed for the problem of pre-
diction with expert advice (de Rooij et al., 2014; Gaillard et al., 2014; Luo and Schapire,
2015; Mourtada and Gaïffas, 2019), online learning with feedback graphs (Erez and Ko-
ren, 2021; Ito et al., 2022a; Rouyer et al., 2022), online linear optimization (Huang et al.,
2017), online submodular minimization (Ito, 2022), dueling bandits (Saha and Gaillard,
2022), linear bandits (Lee et al., 2021), combinatorial semi-bandits (Wei and Luo, 2018;
Zimmert et al., 2019; Ito, 2021a; Tsuchiya et al., 2023b), position-based model (Chen
et al., 2022a), contextual bandits (Pacchiano et al., 2022), partial monitoring (Tsuchiya
et al., 2023a,c), and episodic Markov decision processes (Jin and Luo, 2020; Jin et al.,
2021). There are also a decoupled setting, in which a different arm can be selected for
exploration and exploitation (Rouyer and Seldin, 2020), a setting with switching cost,
where we incur certain losses when the learner changes the arm to choose in addition to
the regret (Rouyer et al., 2021; Amir et al., 2022), delayed feedback setting, where there
is a delay until the loss of the selected arm is observed (Masoudian et al., 2022), and a
setting where the underlying loss distributions are heavy-tailed (Huang et al., 2022).

Very recently, there have been several numbers of studies that aim to achieve BOBW
and data-dependent bounds simultaneously. Wei and Luo (2018) devised an algorithm
to achieve BOBW and first-order bounds simultaneously, Ito (2021c); Ito et al. (2022b);
Tsuchiya et al. (2023b) to achieve BOBW and first-, second-, and path-length bounds,
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Tsuchiya et al. (2023c) to achieve BOBW and sparsity-dependent bounds.

2.5.2 Self-Bounding Technique

It is becoming very common to use FTRL to realize BOBW algorithms, and a self-
bounding technique is one of the key techinques to prove a BOBW guarantee (Gaillard
et al., 2014; Wei and Luo, 2018; Zimmert and Seldin, 2021). In the self-bounding tech-
nique, we first derive upper and lower bounds of regret using a variable depending on
the arm selection probability and then derive a regret bound by combining the upper and
lower bounds.

In the following, we introduce one of the strategies to give an intuition. Suppose that
we can derive the upper and lower bounds of regret using a random variable P ∈ [0, T ]
satisfying RegT ≤ O(polylog(T )

√
P ). The bound for the adversarial regime of Õ(

√
T )

can be directly obtained by taking the worst-case with respect to P in the last inequality.
For the stochastic regime, suppose that we have a lower bound of RegT ≥ O(P ), which
can often be readily obtained in stochastic regimes by the definition of regret. We then
can derive the (poly-)logarithmic regret bound from these bounds as

RegT = 2RegT − RegT ≤ O(polylog(T )
√
P − P ) ≤ O(polylog(T )) .

We can prove a BOBW guarantee in a similar way as above by deriving different types
of upper bounds depending on desirable properties we want in the regret upper bound.

2.5.3 Intermediate Regime between Stochastic and Adversarial Regimes

So far, we have discussed BOBW algorithms, which achieve optimality simultaneously
in both stochastic and adversarial regimes. However, both regimes have extreme char-
acteristics. The stochastic regime assumes that losses are obtained in an i.i.d. manner,
which is a somewhat strong assumption in a practical scenario. In contrast, the adver-
sarial regime assumes arbitrary bounded losses, which is a very pessimistic assumption.
Then, a natural question arises. Is there an intermediate regime between these regimes,
or is there a regime that interpolates between them? In this section, we first introduce the
stochastic regime with adversarial corruptions and the stochastically constrained adver-
sarial regime as intermediate regimes between the stochastic regime and the adversarial
regime. We then present the adversarial regime with a self-bounding constraint, which
includes all the regimes introduced so far as special cases.

Stochastic Regime with Adversarial Corruptions One of the most representative in-
termediate regimes is the stochastic regime with adversarial corruptions (Lykouris et al.,
2018). In this regime, a temporary loss ℓ′t ∈ [0, 1]k is sampled from an unknown dis-
tribution ν∗, and then the adversary corrupts ℓ′t to ℓt. We define the corruption level
C ∈ [0, T ] by

C = E

[
T∑
t=1

∥ℓt − ℓ′t∥∞

]
.

If C = 0, this regime coincides with the stochastic regime, and if C = T , this regime
corresponds to the adversarial regime. Figure 2.5a shows an example of the stochastic
regime with adversarial corruptions.

Stochastically Constrained Adversarial Regime The stochastically constrained ad-
versarial regime was first considered by Wei and Luo (2018) and also discussed in Zim-
mert and Seldin (2021) in the context of the multi-armed bandit problem. We say that a
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Figure 2.5: Examples of intermediate regimes between stochastic and adversarial regimes with
k = 2. Figures 2.5a and 2.5b are the examples of stochastic regimes with adversar-
ial corruptions and stochastically constrained adversarial regimes, respectively. The
black crosses and red circles denote (ℓt1)t and (ℓt2)t, respectively.

regime is the stochastically constrained adversarial regime if for any a ̸= a∗ there exists
∆̃a,a∗ > 0 such that

Eℓt∼ν∗ [ℓta − ℓta∗ |ℓ1, . . . , ℓt−1] ≥ ∆̃a,a∗ .

From a practical standpoint, this setting is modeling a case where, for example, the dif-
ferences of probabilities of purchasing products are always the same for all the time, but
the willingness to buy varies uniformly with the weather. Figure 2.5a shows an example
of the stochastically constrained adversarial regimes.

Adversarial Regime with a Self-Bounding Constraint The following adversarial
regime with a self-bounding constraint, developed originally in the multi-armed ban-
dits (Zimmert and Seldin, 2021), includes the regimes that appeared so far.

Definition 2.3. Let ∆ ∈ [0, 1]k and C ≥ 0. The regime is in an adversarial regime with
a (∆, C, T ) self-bounding constraint if it holds for any algorithm that

RegT ≥ E

[
T∑
t=1

∆At − C

]
.

One can see that the regimes that have appeared so far are included in the adversarial
regime with a self-bounding constraint. Note that these regimes can also be defined for
structured bandits and formal definitions of them are given in the following chapters. For
multi-armed bandits, the optimal robustness of this regime has been investigated by Ito
(2021b). They showed that RegT = Ω( k

∆min
+
√

Ck
∆min

) under a certain condition, where
∆min = mina ̸=a∗ ∆a with ∆ in Definition 5.1.

Remark. Importantly, most FTRL-based BOBW algorithms can achieve a near-optimal
regret in an adversarial regime with a self-bounding constraint without knowing C, and
in fact, most of the algorithms introduced in Section 2.5 can do so (Zimmert and Seldin
2021; Ito 2021c; Jin et al. 2021; Masoudian and Seldin 2021; Tsuchiya et al. 2023a, to
mention a few). This can be easily proven by a slight modification of the self-bounding
technique. BOBW algorithms that achieve good performance in the intermediate regime
are sometimes called best-of-three-worlds algorithms or best-of-all-algorithms. In fact,
however, algorithms with best-of-three-worlds or best-of-all-worlds properties are often
simply called best-of-both-worlds, and we will follow this convention in this dissertation.
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Figure 2.6: An example of feedback graphs G used in the problem of online learning with feed-
back graphs.

2.6 Structured Bandits

In this section, we introduce several structured bandits, which is a model of multi-armed
bandits with structure. In particular, we discuss online learning with feedback graphs,
partial monitoring, and combinatorial bandits. Not only do they have many interesting
theoretical properties, but more importantly, they have applications to many real-world
problems, which will also be discussed.

2.6.1 Full Information Setting

We start by introducing the full information setting before discussing structured bandits.
In the full information setting, the entire loss vector ℓt = (ℓ1, . . . , ℓk)

⊤ can be observed
independently of which arm the learner takes, whereas in the multi-armed bandits setting,
only the loss for the selected arm ℓtAt is observed.

One of the most representative algorithms in the full information setting is the Hedge
algorithm (Freund and Schapire, 1997). This corresponds to the Exp3 algorithm de-
scribed above in which the estimated vector ℓ̂t is replaced by the actually observed vector
ℓt. (Note that historically, the Hedge algorithm was developed before the Exp3 algo-
rithm.)

Using this Hedge algorithm, we can achieve a regret upper bound of O(
√
T log k)

in the adversarial regime, which matches the lower bound (Freund and Schapire, 1997;
Cesa-Bianchi and Lugosi, 2006). One can confirm that this bound holds by checking that
the stability term, which appeared in the analysis of Section 2.4.6, is reduced to a smaller
value since the entire loss vector is observed. It is also known that we can achieve an
optimal regret of O( log k∆ ) in the stochastic regime (Mourtada and Gaïffas, 2019).

2.6.2 Online Learning with Feedback Graphs

We next introduce online learning with feedback graphs (Mannor and Shamir, 2011)
(a.k.a. bandits with feedback graphs), which interpolates between multi-armed bandits
and online learning (in fact, even extrapolating!). In this problem, we are given a directed
feedback graph G = (V,E), where V = [k] is the set of arms (or actions), and E ⊆
V ×V is the structure of feedback for choosing arms. At each round t = 1, 2, . . . , T , the
learner chooses an actionAt ∈ V and the adversary simultaneously selects a loss function
ℓt : V → [0, 1]. The learner then incurs the loss of ℓt(At) and observes feedback of ℓt(a)
for all a such that the feedback graph G has an edge from At to a.

The model of online learning with feedback graphs includes a variety of sequential
decision-making problems. IfG consists of only self-loops, i.e., ifE = {(a, a) : a ∈ V },
the problem corresponds to the multi-armed bandit problem. If G is a complete directed
graph with self-loops, i.e., E = V × V , the problem corresponds to the full information
setting.
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Algorithm 2.2: The procedure of partial monitoring game G = (L,Φ)

1 input: horizon T , number of actions k, number of outcomes d, set of feedback
symbols Σ

2 The learner observes L and Φ.
3 for t = 1, 2, . . . , T do
4 The learner chooses an action At ∈ [k].
5 The opponent simultaneously chooses an outcome xt ∈ [d].
6 The learner suffers an unobserved loss LAtxt , and receives a feedback

symbol σt = ΦAtxt .

Online learning with feedback graphs was initiated by Mannor and Shamir (2011)
and was given a very important characterization by Alon et al. (2015). In particular,
Alon et al. (2015) classified the difficulty of problems according to the structure of the
feedback graph and revealed the regret achievable in each problem class (see Alon et al.
2015 for details). Their algorithm is based on the Exp3 algorithm, which again indicates
the usefulness of the Exp3 algorithm.

Application An amusing application is the newsvender problem. In this problem, one
can choose the amount of newspapers to print from [k], and the goal is to maximize the
profit by appropriately choosing the amount of newspapers to print on each day. An
important characteristic of this problem is that it has a structure where the more copies
one prints, the more information one gains. For example, if you print 100 newspapers,
you do not know how much profit you get for printing 200 newspapers, whereas if you
print 200 newspapers, you know how much profit you get for printing 100 newspapers.
The feedback graph corresponding to this problem is shown in Figure 2.6.

2.6.3 Partial Monitoring

Partial monitoring (PM) is a general sequential decision-making problem with limited
feedback, which can be seen as a generalization of the bandit problem and online learning
with feedback graphs. A PM game G = (L,Φ) is defined by the pair of a loss matrix
L ∈ [0, 1]k×d and feedback matrix Φ ∈ Σk×d, where k is the number of actions, d is
the number of outcomes, and Σ is a set of feedback symbols. The game is sequentially
played by a learner and opponent for T rounds. At the beginning of the game, the learner
observes L and Φ. At every round t ∈ [T ], the opponent chooses an outcome xt ∈
[d], and then the learner chooses an action At ∈ [k], suffers an unobserved loss LAtxt ,
and receives a feedback symbol σt = ΦAtxt , where Lax is the (a, x)-th element of L.
The procedure of a PM game is given in Algorithm 2.2. In general, the learner cannot
directly observe the outcome and loss, and can only observe the feedback symbol. As
in the case of online learning with feedback graphs, all PM games are classified into
four disjoint classes based on how much information the feedback matrix gives about the
loss matrix, and achievable regrets are different in each class. In particular, PM games
can be classified into trivial, easy, hard, and hopeless games, for which their minimax
regrets are 0, Θ̃(

√
T ), Θ(T 2/3), and Θ(T ), respectively (Bartók et al., 2011; Lattimore

and Szepesvári, 2019b). Further detailed descriptions and many properties of PM are
given in Chapters 3, 4, and 5.

Application Partial monitoring includes many online decision-making problems as a
special case. Here, we introduce several important examples.
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• Multi-armed bandits: PM includes the vanilla multi-armed bandits with finite loss
support as a special case. For example, k-armed Bernoulli bandits is expressed
as k × 2k loss and feedback matrices, and in particular, when k = 2, they can be
expressed as

L =

(
0 1 0 1
0 0 1 1

)
, Φ =

(
0 1 0 1
0 0 1 1

)
.

It is known that the multi-armed bandit belongs to the class of easy games.

• Apple tasting, matching pennies: Suppose that we sequentially need to determine
whether a product (apple) flowing on a conveyor belt isP (positive) orN (negative).
As commodity inspectors, we have three choices of actions: (i) determine that the
commodity is P, (ii) determine that the commodity is N, or (iii) disassemble and
inspect the commodity and determine whether it is P or N. Note that the commod-
ity cannot be determined whether it is P or N without actually disassembling it. If
P (resp. N) is wrongly determined to be N (resp. P), the learner suffers a loss of
cP→N > 0 (resp. cP→N > 0). Suppose that decomposition and inspection costs
cq ≥ 0. How should the learner choose action so that they can minimize the cost
as much as possible? This problem, called apple tasting or matching pennies, can
be defined using the following loss matrix L and feedback matrix Φ:

L =

 0 cN→P

cP→N 0
cq cq

 , and Φ =

None None
None None
P N

 .

Many other problems can be formulated in the same manner. For example, in the
problem of determining whether a large number of e-mails sequentially delivered
to a mailbox are ham or spam, a certain cost is incurred when we misclassify them,
and it is impossible to tell whether they are actually ham or spam without asking a
human. It is known that this problem falls into easy or hard games depending on
the parameters in L. For example, when cN→P = cP→N = 1, the problem is easy
if cq ∈ (0, 1/2), hard if cq > 1/2, and trivial if cq = 0 (Lattimore and Szepesvári,
2020b).

• Dynamic pricing: Dynamic pricing is another important example of PM games.
In the dynamic pricing game, the learner corresponds to a seller, and the opponent
corresponds to a buyer. At each round t ∈ [T ], the seller sells an item with a
specific price of At ∈ [k], and the buyer comes with an evaluation price xt ∈ [d]
for the item, where the selling price and the evaluation price correspond to the
action and outcome, respectively. The buyer buys the item if the selling price At
is smaller than or equal to xt and not otherwise. The seller can only know if the
buyer bought the item (denoted as feedback 0) or did not buy the item (denoted
as 1). The goal of the seller is to minimize the cumulative loss, and there are two
types of definitions for the loss, where each induced game falls into the easy and
hard games. We call them dp-easy and dp-hard games, respectively.
In both cases, the seller incurs the constant loss c > 0 when the item is not bought
due to the loss of opportunity to sell the item. When the item is not bought, the loss
incurred to the seller is different between these settings. The seller in the dp-easy
game does not take the buyer’s evaluation price into account. In other words, the
seller gains the selling price At as a reward (equivalently incurs−At as a loss). In
particular, the loss for selling price At and evaluation price xt is given by

LAtxt = −At1[At ≤ xt] + c1[At > xt] .
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G = (V, E)

Figure 2.7: An example of network routing formalized as combinatorial bandits. In this example,
d = |E| = 12.

In a matrix form, the loss matrix L ∈ Rk×k and feedback matrix Φ ∈ Rk×k of the
dp-easy game are given by7

L =


−1 −1 . . . −1
c −2 . . . −2
... . . . . . . ...
c . . . c −k

 and Φ =


0 0 . . . 0
1 0 . . . 0
... . . . . . . ...
1 . . . 1 0

 ,

where the feedback 0 (resp. 1) denotes the events that the buyer do (resp. does
not) buy products. This setting can be regarded as a generalized version of the
online posted price mechanism, which was addressed in, e.g., Blum et al. (2004)
and Cesa-Bianchi et al. (2006), and an example of easy games.
On the other hand, the seller in the dp-hard game does take the buyer’s evaluation
price into account when the item is bought. In other words, the seller incurs the
difference between the opponent evaluation and the selling price xt −At as a loss
because the seller could have made more profit if the seller had sold at the price
xt. Namely, the loss incurred at time t is given by

LAtxt = (xt −At)1[At ≤ xt] + c1[At > xt] .

In the matrix form, the loss matrix and feedback matrix of the dp-hard setting is
given by

L =


0 1 . . . k − 1
c 0 . . . k − 2
... . . . . . . ...
c . . . c 0

 and Φ =


0 0 . . . 0
1 0 . . . 0
... . . . . . . ...
1 . . . 1 0

 ,

This setting is also addressed in Cesa-Bianchi et al. (2006) and belongs to the class
of hard games.

2.6.4 Combinatorial Bandits

In combinatorial bandits, the learner and environment play the game sequentially. The
learner is given an action set A ⊂ {0, 1}d, where d ∈ N is the dimension of the ac-
tion set.8 For every round t ∈ [T ], the environment chooses a loss ℓ(t) ∈ [0, 1]d, and

7L ∈ [0, 1]k is not satisfied here, but we present a loss matrix following the convention. Dividing by k
is enough to get L ∈ [0, 1]k.

8Here, d corresponds to the number of arms k in multi-armed bandits. In this dissertation, d is used
instead of k, following the convention.
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the learner then chooses an action a(t) ∈ A (also called a super-arm), incurs a loss
⟨ℓ(t), a(t)⟩. In the combinatorial bandit problem, there are two types of feedback for
the learner: semi-bandit feedback and full-bandit feedback. In the semi-bandit setting,
the learner observes ℓi(t) for all i ∈ [d] such that ai(t) = 1, whereas in the full-
bandit setting, the learner observes only the sum of losses for the taken action, that is,∑

i∈[d]:ai(t)=1 ℓi(t). We refer to each index i ∈ [d] as base-arm i. Further detailed de-
scriptions of combinatorial semi-bandits are given in Chapter 6.

Application One of the representative problems of combinatorial bandits is the ad-
vertisement placement problem. Consider the following setup: a company managing a
website has d advertisements at hand that can be placed on the web, and selects m < d
of them to place on the web (Anantharam et al., 1987; Chen et al., 2013). Suppose that
the company can observe whether the placed ads are actually clicked or not, and based on
the results they determine a strategy for ad placement for the next time period. The goal
of the company is to maximize its cumulative reward by properly selecting and placing
the ads. This problem can be viewed as a combinatorial semi-bandits problem with the
action set A = {a ∈ {0, 1}d : ∥a∥1 = m}. This problem belongs to a class of m-set
problems among combinatorial bandits.

Another representative example is the online shortest path problem used for network
routing (Gai et al., 2012). Figure 2.7 illustrates this problem. In this problem, we are
given a connected directed weighted graphG = (V,E) with start s ∈ V and goal g ∈ V .
HereE corresponds to the set of base-arms, and thus |E| = d. Under these conditions, we
consider how to minimize the cumulative transportation cost when sending packets from
S to G sequentially. This problem can be viewed as a combinatorial bandits problem by
setting the action set to A = {a ∈ {0, 1}d : a ∈ E}. Here, a ∈ E means that if ai = 1
then edge i is included in E. This corresponds to a semi-bandits setting if the weights
of each edge are observed individually and to a full-bandits setting if only the sum of the
weights of each edge can be observed.

The combinatorial semi-bandit problem also includes many practical problems such
as multi-task bandits (Cesa-Bianchi and Lugosi, 2012), crowdsourcing (ul Hassan and
Curry, 2016), learning spectrum allocations (Gai et al., 2012), and recommender sys-
tems (Qin et al., 2014).
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Chapter 3

Analysis and Design of Thompson Sampling for
Stochastic Partial Monitoring

In this chapter, we investigate finite stochastic partial monitoring, which is a general
model for sequential learning with limited feedback. While Thompson sampling is one
of the most promising algorithms for a variety of online decision-making problems, its
properties for stochastic partial monitoring have not been theoretically investigated, and
the existing algorithm relies on a heuristic approximation of the posterior distribution.
To mitigate these problems, we present a novel Thompson-sampling-based algorithm,
which enables us to exactly sample the target parameter from the posterior distribution.
Besides, to theoretically justify the proposed algorithm, we consider the linearized vari-
ant of the partial monitoring problem with local observability. For this problem, we prove
that a special case of the new algorithm achieves the logarithmic distribution-dependent
expected pseudo-regretO(log T ). This result is the first regret bound of Thompson sam-
pling for partial monitoring, which also becomes the first logarithmic regret bound of
Thompson sampling for linear bandits.

3.1 Introduction

Partial monitoring (PM) is a general sequential decision-making problem with limited
feedback (Rustichini, 1999; Piccolboni and Schindelhauer, 2001). PM is attracting broad
interest because it includes a wide range of problems such as the multi-armed bandit
problem (Lai and Robbins, 1985), a linear optimization problem with full or bandit feed-
back (Zinkevich, 2003; Dani et al., 2008), dynamic pricing (Kleinberg and Leighton,
2003), and label efficient prediction (Cesa-Bianchi et al., 2005).

A PM game can be seen as a sequential game that is played by two players: a learner
and an opponent. At every round, the learner chooses an action, while the opponent
chooses an outcome. Then, the learner suffers an unobserved loss and receives a feedback
symbol, both of which are determined from the selected action and outcome. The main
characteristic of this game is that the learner cannot directly observe the outcome and
loss. The goal of the learner is to minimize his/her cumulative loss over all rounds. The
performance of the learner is evaluated by the regret, which is defined as the difference
between the cumulative losses of the learner and the optimal action (i.e., the action whose
expected loss is the smallest).

There are mainly two types of PM games, which are the stochastic and adversarial
settings (Piccolboni and Schindelhauer, 2001; Bartók et al., 2011). In the stochastic set-
ting, the outcome at each round is determined from the opponent’s strategy, which is a
probability vector over the opponent’s possible choices. On the other hand, in the ad-
versarial setting, the outcomes are arbitrarily decided by the opponent. We refer to the
PM game with finite actions and finite outcomes as a finite PM game. In this chapter, we
focus on the stochastic finite game.
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One of the first algorithms for PM was considered by Piccolboni and Schindelhauer
(2001). They proposed the FeedExp3 algorithm, the key idea of which is to use an unbi-
ased estimator of the losses. They showed that the FeedExp3 algorithm attains Õ(T 3/4)
minimax regret for a certain class of PM games, and showed that any algorithm suffers
linear minimax regret Ω(T ) for the other class. Here T is the time horizon and the no-
tation Õ(·) hides polylogarithmic factors. The upper bound Õ(T 3/4) is later improved
by Cesa-Bianchi et al. (2006) toO(T 2/3), and they also provided a game with a matching
lower bound.

In the seminal paper by Bartók et al. (2011), they classified PM games into four
classes based on their minimax regrets. To be more specific, they classified games into
trivial, easy, hard, and hopeless games, where their minimax regrets are 0, Θ̃(

√
T ),

Θ(T 2/3), and Θ(T ), respectively. Note that the easy game is also called a locally ob-
servable game. After their work, several algorithms have been proposed for the finite
PM problem (Bartók et al., 2012; Vanchinathan et al., 2014; Komiyama et al., 2015a).
For the problem-dependent regret analysis, Komiyama et al. (2015a) proposed an algo-
rithm that achievesO(log T ) regret with the optimal constant factor. However, it requires
solving a time-consuming optimization problem with infinitely many constraints at each
round. In addition, this algorithm relies on the forced exploration to achieve the optimal-
ity, which makes the empirical performance near-optimal only after prohibitively many
rounds, say, 105 or 106.

Thompson sampling (TS, Thompson, 1933) is one of the most promising algorithms
on a variety of online decision-making problems such as the multi-armed bandit (Lai
and Robbins, 1985) and the linear bandit (Agrawal and Goyal, 2013b), and the effec-
tiveness of TS has been investigated both empirically (Chapelle and Li, 2011) and the-
oretically (Kaufmann et al., 2012a; Agrawal and Goyal, 2013a; Honda and Takemura,
2014). In the literature on PM, Vanchinathan et al. (2014) proposed a TS-based algorithm
called BPM-TS (Bayes-update for PM based on TS) for stochastic PM, which empirically
achieved state-of-the-art performance. Their algorithm uses Gaussian approximation to
handle the complicated posterior distribution of the opponent’s strategy. However, this
approximation is somewhat heuristic and can degrade the empirical performance due to
the discrepancy from the exact posterior distribution. Furthermore, no theoretical guar-
antee is provided for BPM-TS.

Our goals are to establish a new TS-based algorithm for stochastic PM, which al-
lows us to sample the opponent’s strategy parameter from the exact posterior distribu-
tion, and investigate whether the TS-based algorithm can achieve sub-linear regret in
stochastic PM. Using the accept-reject sampling, we propose a new TS-based algorithm
for PM (TSPM), which is equipped with a numerical scheme to obtain a posterior sam-
ple from the complicated posterior distribution. We derive a logarithmic regret upper
bound O(log T ) for a variant of the proposed algorithm, TSPM-Gaussian, on the locally
observable game under a linearized variant of the problem. This is the first regret bound
for TS on the locally observable game. Moreover, our setting includes the linear bandit
problem and our result is also the first logarithmic expected regret bound of TS for the
linear bandit, whereas a high-probability bound was provided, for example, in Agrawal
and Goyal (2013b). Finally, we compare the performance of TSPM with existing algo-
rithms in numerical experiments, and show that TSPM and TSPM-Gaussian outperform
existing algorithms.

3.2 Preliminaries

A PM game with k actions and d outcomes is defined by a pair of a loss matrix L ∈ Rk×d
and a feedback matrix Φ ∈ Σk×d, where Σ is a set of feedback symbols. In this chapter,
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Table 3.1: List of symbols used in this chapter.

Symbol Meaning
k, d ∈ N number of actions and outcomes
Σ set of feedback symbols
m number of feedback symbols
L ∈ Rk×d loss matrix
Φ ∈ Σk×d feedback matrix
p∗ ∈ Pd opponent’s strategy
Sa ∈ {0, 1}m×d signal matrix of action a
At ∈ [k] action taken at round t
xt ∈ [d] outcome chosen by opponent at round t
σt ∈ Σ feedback symbol observed at round t in discrete setting
y(t) ∈ {0, 1}m feedback symbol vector observed at round t in linear setting
Na(t) number of times action a is taken before time t ∈ [T ]
Ca ⊂ Pd cell of action a

Ft(p) unnormalized posterior distribution in (3.1)
ft(p) probability density function corresponding to Ft(p)
Gt(p) unnormalized proposal distribution for Ft(p) in (3.2)
gt(p) probability density function corresponding to Gt(p)
q
(t)
a ∈ Pd empirical feedback distribution of action a by time t
qa,n ∈ Pd empirical feedback distribution of action a after the action is taken n times

we let Σ = [m] = {1, . . . ,m} without loss of generality.
A PM game can be seen as a sequential game that is played by two players: the learner

and the opponent. At each round t = 1, 2, . . . , T , the learner selects action At ∈ [k],
and at the same time the opponent selects an outcome based on the opponent’s strategy
p∗ ∈ Pd, where Pn = {p ∈ Rn : pk ≥ 0,

∑n
k=1 pk = 1} is the (n − 1)-dimensional

probability simplex. The outcome xt of each round is an independent and identically
distributed sample from p∗, and then, the learner suffers loss LAtxt at round t. The
learner cannot directly observe the value of this loss, but instead observes the feedback
symbol σt = ΦAtxt ∈ [A]. The setting explained above has been widely studied in the
literature of stochastic PM (Bartók et al., 2011; Komiyama et al., 2015a), and we call
this the discrete setting. In Section 3.4, we also introduce a linear setting for theoretical
analysis, which is a slightly different setting from the discrete one.

The learner aims to minimize the cumulative loss over T rounds. The expected loss
of action a is given by L⊤

a p
∗, where La is the a-th column of L⊤. We say action a

is optimal under strategy p∗ if (La − Lb)⊤p∗ ≤ 0 for any b ̸= a. We assume that the
optimal action is unique, and without loss of generality that the optimal action is action
1. Let ∆a = (La − L1)

⊤p∗ ≥ 0 for a ∈ [k] and Na(t) be the number of times action a
is selected before the t-th round. When the time step is clear from the context, we use na
instead of Na(t). We use the (pseudo-)regret to measure the performance:

RegT = E
[
R̂egT

]
for R̂egT =

T∑
t=1

∆At =

k∑
a=1

∆aNa(T + 1) .

This is the relative performance of the algorithm against the oracle, which knows the
optimal action 1 before the game starts.

We introduce the following definitions to clarify the class of PM games, for which we
develop an algorithm and derive a regret upper bound. The following cell decomposition
is the concept to divide the simplex Pd based on the loss matrix to identify the optimal
action, which depends on the opponent’s strategy p∗.
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C1

C2

Figure 3.1: An example of cell decomposition. The points • correspond to Pareto-optimal ac-
tions. Cells C1 and C2 are neighbors.

Definition 3.1 (Cell decomposition and Pareto-optimality). For action a ∈ [k], cell a

Ca =
{
p ∈ Pd : (La − Lb)⊤p ≤ 0, ∀b ̸= a

}
is the set of opponent’s strategies for which action a is optimal. Action a is Pareto-optimal
if there exists an opponent’s strategy p∗ under which action a is optimal.

Each cell is a convex closed polytope. Next, we define neighbors between two Pareto-
optimal actions, which intuitively means that the two actions “touch” each other on their
surfaces. An example of cell decomposition is given in Figure 3.1.

Definition 3.2 (Neighbors and neighborhood action). Two Pareto-optimal actions a and
b are neighbors if Ca ∩ Cb is an (d − 2)-dimensional polytope. For two neighboring
actions a, b ∈ [k], the neighborhood action set is defined as

N+
a,b = {c ∈ [k] : Ca ∩ Cb ⊆ Cc} .

Note that the neighborhood action setN+
a,b includes actions a and b from its definition.

Next, we define the signal matrix, which encodes the information of the feedback matrix
Φ so that we can utilize the feedback information.

Definition 3.3 (Signal matrix). The signal matrix Sa ∈ {0, 1}m×d of action a is defined
as

(Sa)σ,x = 1[Φax = σ] .

Note that if we define the signal matrix as above, Sap∗ ∈ Rm is a probability vector
over feedback symbols of action a. The following local observability condition separates
easy and hard games, This condition intuitively means that the information obtained by
taking actions in the neighborhood action set N+

a,b is sufficient to distinguish the loss
difference between actions a and b.

Definition 3.4 (Local observability). A partial monitoring game is said to be locally
observable if for all pairs a, b of neighboring actions, La − Lb ∈ ⊕c∈N+

a,b
ImS⊤

c ,

La − Lb ∈ ⊕c∈N+
a,b

ImS⊤
c ,

where ImV is the image of the linear map V , and V ⊕W is the direct sum between the
vector spaces V and W .
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We also consider the concept of the strong local observability condition, which im-
plies the above local observability condition.

Definition 3.5 (Strong local observability). A partial monitoring game is said to be strongly
locally observable if for all pairs a, b ∈ [k],

La − Lb ∈ ImS⊤
a ⊕ ImS⊤

b .

This condition was assumed in the theoretical analysis in Vanchinathan et al. (2014),
and we also assume this condition in theoretical analysis in Section 3.4. Note that the
strong local observability means that, for any a ̸= b, there exists za,b ̸= 0 ∈ R2m such
that La − Lb = (S⊤

a , S
⊤
b ) za,b.

Notation Let ∥·∥ and ∥·∥p be the Euclidean norm and p-norm, and let ∥x∥A =
√
x⊤Ax

be the norm induced by the positive semidefinite matrix A ⪰ 0. The vector ei ∈ Rd
is the i-th orthonormal basis of Rd, and 1n = [1, . . . , 1]⊤ is the n-dimensional all-
one vector. Let q(t)a be the empirical feedback distribution of action a at round t, i.e.,
q
(t)
a = [na1/na, . . . , nam/na]

⊤ ∈ Pm, where nay =
∑t

s=1 1[As = a, σs = y] and
na =

∑m
y=1 nay. The notation used in this chapter is summarized in Table 3.1.

Methods for Sampling from Posterior Distribution We briefly review the methods
to draw a sample from the posterior distribution. While TS is one of the most promising
algorithms, the posterior distribution can be in a quite complicated form, which makes
obtaining a sample from it computationally hard. To overcome this issue, a variety of
approximate posterior sampling methods have been considered, such as Gibbs sampling,
Langevin Monte Carlo, Laplace approximation, and the bootstrap (Russo et al., 2018,
Section 5). Recent work (Lu and Van Roy, 2017) proposed a flexible approximation
method, which can even efficiently be applied to quite complex models such as neural
networks. However, more recent work revealed that algorithms based on such an approx-
imation procedure can suffer a linear regret (Phan et al., 2019), even if the approximation
error in terms of the α-divergence is small enough.

Although BPM-TS is one of the best methods for stochastic PM, it approximates the
posterior by a Gaussian distribution in a heuristic way, which can degrade the empirical
performance due to the distributional discrepancy from the exact posterior distribution.
Furthermore, no theoretical guarantee is provided for BPM-TS. To address this issue, we
mitigate these problems by providing a new algorithm for stochastic PM, which allows us
to exactly draw samples from the posterior distribution. We also give theoretical analysis
for the proposed algorithm.

3.3 Thompson-sampling-based Algorithm for Partial Monitoring

In this section, we present a new algorithm for stochastic PM games, where we name the
algorithm TSPM (TS-based algorithm for PM). The algorithm is given in Algorithm 3.1,
and we will explain the subroutines in the following.

3.3.1 Accept-Reject Sampling

We adopt the accept-reject sampling (Casella et al., 2004) to exactly draw samples from
the posterior distribution. The accept-reject sampling is a technique to draw samples
from a specific distribution f , and a key feature is to use a proposal distribution g, from
which we can easily draw a sample and whose ratio to f , that is f/g, is bounded by a
constant value R. To obtain samples from f , (i) we generate samples X ∼ g; (ii) accept
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Algorithm 3.1: TSPM Algorithm
Input: prior parameter λ > 0

1 Set B0 ← λId, b0 ← 0.
2 Take each action for n ≥ 1 times.
3 for t = 1, 2, . . . , T do
4 Sample p̃t ∼ π(p | {As, σs}t−1

s=1) based on the accept-reject sampling
(Algorithm 3.2).

5 Take action At = argmina∈[k] L
⊤
a p̃t and observe feedback σt.

6 Update Bt ← Bt−1 + S⊤
At
SAt , bt ← bt−1 + S⊤

At
eσt .

Algorithm 3.2: Accept-Reject
Sampling

Input: constant R ∈ [0, 1]
1 while true do
2 Sample p̃t ∼ gt(p)

(Algorithm 3.3).
3 Sample ũ ∼ U([0, 1]).
4 if Rũ < Ft(p̃t)/Gt(p̃t) then
5 return p̃t.

Algorithm 3.3: Sampling from
gt(p)

1 Compute B̃t, b̃t from Bt, bt.
2 repeat
3 Sample

p(α) ∼ N(B̃−1
t b̃t, B̃

−1
t ).

4 until p(α) ∈ Pd−1 ;
5 return

p̃ = [p(α)
⊤
, 1−

∑d−1
i=1 (p

(α))i]
⊤.

X with probability f(X)/Rg(X). Note that f and g do not have to be normalized when
the acceptance probability is calculated.

Let π(p) be a prior distribution for p. Then an unnormalized density of the posterior
distribution for p can be expressed as

Ft(p) = π(p)
k∏
a=1

exp
(
−naD

(
q(t)a ∥Sap

))
, (3.1)

the detailed derivation of which is given in Section 3.6.1. We use the proposal distribution
with unnormalized density

Gt(p) = π(p)

k∏
a=1

exp

(
−1

2
na∥q(t)a − Sap∥2

)
. (3.2)

Based on these distributions, we use Algorithm 3.2 for exact sampling from the poste-
rior distribution, where U([0, 1]) is the uniform distribution over [0, 1] and gt(p) is the
distribution corresponding to the unnormalized density Gt(p) in (3.2). The following
proposition shows that setting R = 1 realizes the exact sampling.

Proposition 3.1. Let ft(p) be the distribution corresponding to the unnormalized density
Ft(p) in (3.1). Then, the output of Algorithm 3.2 with R = 1 follows ft(p).

This proposition can easily be proved by Pinsker’s inequality, which is detailed in
Section 3.6.1.

In practice, R ∈ [0, 1] is a parameter to balance the amount of over-exploration and
the computational efficiency. As R decreases from 1, the algorithm tends to accept a
point p far from the mode. The case R = 0 corresponds to the TSPM algorithm where
the proposal distribution is used without the accept-reject sampling, which we call TSPM-
Gaussian. As we will see in Section 3.4, TSPM-Gaussian corresponds to exact sampling
of the posterior distribution when the feedback follows a Gaussian distribution rather than
a multinomial distribution.
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TSPM-Gaussian can be related to BPM-TS (Vanchinathan et al., 2014) in the sense
that both of them use samples from Gaussian distributions. Nevertheless, they use differ-
ent Gaussians and TSPM-Gaussian performs much better than BPM-TS as we will see
in the experiments. Details on the relation between TSPM-Gaussian and BPM-TS are
described in Section 3.6.3.

In general, we can realize efficient sampling with a small number of rejections if the
proposal distribution and the target distribution are close to each other. On the other
hand, in our problem, the densities in (3.1) and (3.2) for each fixed point p exponentially
decay with the number of samples na if the empirical feedback distribution q(t)a con-
verges. This means that Ft(p) andGt(p) have an exponentially large relative gap in most
rounds. Nevertheless, the number of rejections does not increase with t as we will see
in the experiments, which suggests that the proposal distribution approximates the target
distribution well.

3.3.2 Sampling from Proposal Distribution

When we consider Gaussian density N(0, λId) truncated over Pd as a prior, the proposal
distribution also has the Gaussian density N(B−1

t bt, B
−1
t ) over Pd, where

Bt=λId+

k∑
a=1

naS
⊤
a Sa=Bt−1+S

⊤
At
SAt , bt=

k∑
a=1

naS
⊤
a q

(t)
a =bt−1+S

⊤
At
eσt . (3.3)

Here note that the probability simplex Pd is in an (d− 1)-dimensional space and a sam-
ple from N(0, λId) is not contained in Pd with probability one. In the literature, e.g.,
Altmann et al. (2014), sampling methods for Gaussian distributions truncated on a sim-
plex have been discussed. We use one of these procedures summarized in Algorithm 3.3,
where we first sample d− 1 elements of p from another Gaussian distribution and deter-
mine the remaining element by the constraint

∑d
i=1 pi = 1.

Proposition 3.2. Sampling from gt(p) is equivalent to Algorithm 3.3 with

B̃t = Ct − 2Dt + ft1d−11
⊤
d−1 , b̃t = ft1d−1 − gt + b

(α)
t − b(d)1d−1 ,

where Bt =
[
Ct gt
g⊤t ft

]
for Ct ∈ Rd−1×d−1, gt ∈ Rd−1, ft ∈ R, bt = [b

(α)
t

⊤
, b

(d)
t ]⊤ ∈

Rd−1 × R, and Dt =
1
2(gt1

⊤
d−1 + 1d−1g

⊤
t ).

We give the proof of this proposition for self-containedness in Section 3.6.2.

3.4 Theoretical Analysis

This section considers a regret upper bound of the TSPM-Gaussian algorithm. In the
theoretical analysis, we consider a linear setting of PM called linear partial monitoring.
In the linear PM, the learner suffers the expected loss L⊤

At
p∗ as in the discrete setting,

and receives feedback vector

y(t) = SAtp
∗ + ϵt for ϵt ∼ N(0, Id) , (3.4)

instead of σt whereas the one-hot representation of y(t) is distributed by the probability
vector Sap∗ in the discrete setting. In general, the linear PM setting considered in (3.4)
does not include discrete PM. However, if we allow ϵt to be an action-dependent sub-
Gaussian distribution instead of a Gaussian distribution, then linear PM includes discrete
PM as a special case, and such a formulation is recently investigated (Kirschner et al.,
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2023). It is worth noting the linear PM also includes the linear bandit problem, where
the feedback vector is expressed as L⊤

a p
∗ + ϵt.

In the linear PM, Gt(p) in (3.2) becomes the exact posterior distribution rather than
a proposal distribution. The definition of the cell decomposition for this setting is largely
the same as that of discrete setting and detailed in Section 3.6.5. Therefore, TS with exact
posterior sampling in the linear PM corresponds to TSPM-Gaussian. In the linear PM,
the unknown parameter p∗ is in Rd rather than in Pd, and therefore we consider the prior
π(p) = N(0, λId) over Rd, where the posterior distribution becomes N(B−1

t bt, B
−1
t ).

There are a few works that analyze TS for the PM because of its difficulty. For ex-
ample in Vanchinathan et al. (2014), an analysis of the TS-based algorithm (BPM-TS)
is not given despite the fact that its performance is better than the algorithm based on a
confidence ellipsoid (BPM-LEAST). Zimmert and Lattimore (2019) considered the the-
oretical aspect of a variant of TS for the linear PM in view of the Bayes regret, but this
algorithm is based on the knowledge on the time horizon and different from the family
of TS used in practice. More specifically, their algorithm considers the posterior distri-
bution for regret (not pseudo-regret), and an action is chosen according to the posterior
probability that each arm minimizes the cumulative regret. Thus, the time horizon also
needs to be known.

Types of Regret Bounds We focus on the (a) problem-dependent (b) expected pseudo-
regret. (a) In the literature, a minimax (or problem-independent) regret bound has mainly
been considered, for example, to classify difficulties of the PM problem (Bartók et al.,
2010; Bartók et al., 2011). On the other hand, a problem-dependent regret bound often
reflects the empirical performance more clearly than the minimax regret (Bartók et al.,
2012; Vanchinathan et al., 2014; Komiyama et al., 2015a). For this reason, we consider
this problem-dependent regret bound. (b) In complicated settings of bandit problems, a
high-probability regret bound has mainly been considered (Abbasi-Yadkori et al., 2011;
Agrawal and Goyal, 2013b), which bounds the pseudo-regret with high probability 1−δ.
Though such a bound can be transformed to an expected regret bound, this type of analysis
often sacrifices the tightness since a linear regret might be suffered with small probability
δ. This is why the analysis in Vanchinathan et al. (2014) for BPM-LEAST finally yielded
an Õ(

√
T ) expected regret bound whereas their high-probability bound is O(log T ).

3.4.1 Regret Upper Bound

In the following theorem, we show that logarithmic problem-dependent expected regret
is achievable by the TSPM-Gaussian algorithm.

Theorem 3.1 (Regret upper bound). Consider any finite stochastic linear partial mon-
itoring game with Gaussian noise. Assume that the game is strongly locally observable
and∆a = (La−L1)

⊤p∗ > 0 for any a ̸= 1. Then, the regret of TSPM-Gaussian satisfies
for sufficiently large T that

RegT = O

(
mk2dmaxa∈[k]∆a log T

Λ2

)
,

where Λ := mina ̸=1 Λa for Λa = ∆a/∥z1,a∥ with z1,a defined after Definition 3.5.

Remark. In the proof of Theorem 3.1, it is sufficient to assume that L1−La ∈ ImS⊤
1 ⊕

ImS⊤
a for a ∈ [k], which is weaker than the strong local observability, though it is still

sometimes stronger than the local observability condition.
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The proof of Theorem 3.1 is given in Section 3.6.5. This result is the first problem-
dependent bound of TS for PM, which also becomes the first logarithmic regret bound of
TS for linear bandits.

The norm of za,b in Λ intuitively indicates the difficulty of the problem. Whereas we
can estimate (Sap, Sbp) with noise through taking actions a and b, the actual interest is
the gap of the losses p⊤(La − Lb) = (Sap, Sbp)

⊤za,b. Thus, if ∥za,b∥ is large, the gap
estimation becomes difficult since the noise is enhanced through za,b.

Unfortunately, the derived bound in Theorem 3.1 has quadratic dependence on k,
which does not seem tight. This quadratic dependence comes from the difficulty of the
expected regret analysis. In general, we evaluate the regret before and after the conver-
gence of the statistics separately. Whereas the latter one usually becomes dominant, the
main difficulty comes from the analysis of the former one, which might become large
with small probability (Agrawal and Goyal, 2012; Kaufmann et al., 2012a; Agrawal and
Goyal, 2013a).

In our analysis, we were not able to bound the former one within a non-dominant
order, though it is still logarithmic in T . In fact, our analysis shows that the regret after
convergence is O(

∑
a ̸=1∆a

m
Λ2 log T ) as shown in Lemma 3.10 in Section 3.6.5, which

will become the regret with high probability. In particular, if we consider the classic
bandit problem as a PM game, we can confirm that the derived bound after convergence
becomes the best possible bound

O

(∑
a ̸=1

log T

∆a

)

by considering Λa depending on each suboptimal arm a as the difficulty measure in-
stead of Λ. Still, deriving a regret bound for the term before convergence within an
non-dominant order is an important future work.

3.4.2 Technical Difficulties of the Analysis

The main difficulty of this regret analysis is that PM requires consideration of the statistics
of all actions when the number of selectionsNa(t) of some action a is evaluated. This is
in stark contrast to the analysis of the classic bandit problems, where it becomes sufficient
to evaluate statistics of action a and optimal action 1. This makes the analysis remarkably
complicated in PM, where we need to separately consider the randomness caused by the
feedback and TS.

To overcome this difficulty, we handle the effect of actions of no interest in two dif-
ferent novel ways depending on each decomposed regret. The first one is to evaluate
the worst-case effect of these actions based on an argument (Lemma 3.4) related to the
law of the iterated logarithm (LIL), which is sometimes used in the best-arm identifica-
tion literature to improve the performance (Jamieson et al., 2014). The second one is
to bound the action-selection probability of TS using an argument of (super-)martingale
(Theorem 3.4), which is of independent interest. Whereas such a technique is often used
for the construction of confidence bounds (Abbasi-Yadkori et al., 2011), we reveal that
it is also useful for evaluation of the regret of TS.

We only focused on the Gaussian noise ϵt ∼ N(0, Id), rather than the more general
sub-Gaussian noise. This restriction to the Gaussian noise comes from the essential diffi-
culty of the problem-dependent analysis of TS, where lower bounds for some probabilities
are needed whereas the sub-Gaussian assumption is suited for obtaining upper bounds.
To the best of our knowledge, the problem-dependent regret analysis for TS on the sub-
Gaussian case has never been investigated even for the multi-armed bandit setting, which
is quite simple compared to that of PM. In the literature of the problem-dependent regret
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analysis, the noise distribution is restricted to distributions with explicitly given forms,
e.g., Bernoulli, Gaussian, or more generally a one-dimensional canonical exponential
family (Kaufmann et al., 2012a; Agrawal and Goyal, 2013a; Korda et al., 2013). Their
analysis relies on the specific characteristic of the distribution to bound the problem-
dependent regret.

3.5 Experiments

In this section, we numerically compare the performance of TSPM and TSPM-Gaussian
against existing methods, which are RandomPM (the algorithm which selects action ran-
domly), FeedExp3 (Piccolboni and Schindelhauer, 2001), and BPM-TS (Vanchinathan
et al., 2014). Recently, Lattimore and Szepesvári (2019a) considered the sampling-based
algorithm called Mario sampling for easy games. Mario sampling coincides with TS
(except for the difference between pseudo-regret and regret with known time horizon)
mentioned in the last section when any pair of actions is a neighbor. As shown in Sec-
tion 3.6.6, this property is indeed satisfied for dp-easy games defined in the following.
Therefore, the performance is essentially the same between TSPM withR = 1 and Mario
sampling. To compare the performance, we consider a dynamic pricing problem intro-
duced in Chapter 2, which is a typical example of PM games. We conducted experiments
on the discrete setting because the experiments for PM has mainly focused on the discrete
setting.

In the dynamic pricing game, the player corresponds to a seller, and the opponent
corresponds to a buyer. At each round, the seller sells an item for a specific priceAt, and
the buyer comes with an evaluation price xt for the item, where the selling price and the
evaluation price correspond to the action and outcome, respectively. The buyer buys the
item if the selling price At is smaller than or equal to xt and not otherwise. The seller
can only know if the buyer bought the item (denoted as feedback 0) or did not buy the
item (denoted as 1). The seller aims to minimize the cumulative “loss”, and there are two
types of definitions for the loss, where each induced game falls into the easy and hard
games. We call them dp-easy and dp-hard games, respectively.

In both cases, the seller incurs the constant loss c > 0 when the item is not bought
due to the loss of opportunity to sell the item. In contrast, when the item is not bought,
the loss incurred to the seller is different between these settings. The seller in the dp-easy
game does not take the buyer’s evaluation price into account. In other words, the seller
gains the selling price At as a reward (equivalently incurs −At as a loss). Therefore, the
loss for the selling price At and the evaluation xt is

LAtxt = −At1[At ≤ xt] + c1[At > xt] .

This setting can be regarded as a generalized version of the online posted price mecha-
nism, which was addressed in, e.g., Blum et al. (2004) and Cesa-Bianchi et al. (2006),
and an example of strongly locally observable games.

On the other hand, the seller in dp-hard game does take the buyer’s evaluation price
into account when the item is bought. In other words, the seller incurs the difference
between the opponent evaluation and the selling price xt−At as a loss because the seller
could have made more profit if the seller had sold the item at the price xt. Therefore, the
loss incurred at time t is

LAtxt = (xt −At)1[At ≤ xt] + c1[At > xt] .

This setting is also addressed in Cesa-Bianchi et al. (2006), and belongs to the class of
hard games. Note that our algorithm can also be applied to a hard game, though there is
no theoretical guarantee.
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(a) dp-easy, k = d = 3
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(b) dp-easy, k = d = 5
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(c) dp-easy, k = d = 7
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(d) dp-hard, k = d = 3
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(e) dp-hard, k = d = 5
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Figure 3.2: Regret-round plots of algorithms. The solid lines indicate the average over 100 in-
dependent trials. The thin fillings are the standard error.
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(a) dp-easy, k = d = 3
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(b) dp-easy, k = d = 5
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Figure 3.3: The number of rejected times by the accept-reject sampling. The solid lines indicate
the average over 100 independent trials after taking moving average with window
size 100.

Setup In both dp-easy and dp-hard games, we fixed k = d ∈ {3, 5, 7} and c = 2. We
fixed the time horizon T to 10000 and simulated 100 times. For FeedExp3 and BPM-TS,
the setup of hyperparameters follows their original papers. For TSPM, we set λ = 0.001,
and R was selected from {0.01, 1.0}. Here, recall that TSPM with R = 1 and R = 0
correspond to the exact sampling and TSPM-Gaussian, respectively, and a smaller value
of R gives the higher acceptance probability in the accept-reject sampling. Therefore,
using smallRmakes the algorithm time-efficient, although it can worsen the performance
since it over-explores the tail of the posterior distributions. To stabilize sampling from
the proposal distribution in Algorithm 3.3, we used an initialization that takes each action
n = 10m times. The detailed settings of the experiments with more results are given in
Section 3.6.7.

Results Figure 3.2 is the empirical comparison of the proposed algorithms against the
benchmark methods. This result shows that, in all cases, the TSPM with exact sampling
gives the best performance. TSPM-Gaussian also outperforms BPM-TS even though
both of them use Gaussian distributions as posteriors. Besides, the experimental results
suggest that our algorithm performs reasonably well even for a hard game. It can be
observed that the proposed methods outperform BPM-TS more significantly for a larger
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number of outcomes. Further discussion for this observation is given in Section 3.6.3.
Figure 3.3 shows the number of rejections at each time step in the accept-reject sam-

pling. We counted the number of times that either Line 4 in Algorithm 3.2 or Line 4
in Algorithm 3.3 was not satisfied. In the accept-reject sampling, it is desirable that the
frequency of rejection does not increase as the time-step t and does not increase rapidly
with the number of outcomes. We can see that the former one is indeed satisfied. For
the latter property, the frequency of rejection becomes unfortunately large when exact
sampling (R = 1) is conducted. Still, we can substantially improve this frequency by
setting R to be a small value or zero, which still keeps regret tremendously better than
that of BPM with almost the same time-efficiency as BPM-TS.

3.6 Deferred Discussion and Proofs

3.6.1 Posterior Distribution and Proposal Distribution in Section 3.3

In this section, we discuss the representation of the posterior distribution and its relation
with the proposal distribution.

Proposition 3.3. Ft(p) in (3.1) is proportional to the posterior distribution of the oppo-
nent’s strategy, and Ft(p) ≤ Gt(p) for all p ∈ Pd.

Proof. The posterior distribution of the opponent’s strategy parameterπ
(
p
∣∣ {As, σs}ts=1

)
is rewritten as

π
(
p
∣∣ {As, σs}ts=1

)
∝ π

(
p, {As, σs}ts=1

)
∝ π(p)

t∏
s=1

P{σs | As, p}

= π(p)

k∏
a=1

A∏
y=1

(Sa,yp)
nay

∝ π(p)
k∏
a=1

exp
(
−naD

(
q(t)a ∥Sap

))
,

where Sa,y is the y-th row of the signal matrix Sa ∈ {0, 1}m×d, and note that q(t)a is the
empirical feedback distribution of action a at time t, that is, q(t)a = [na1/na, . . . , nam/na]

⊤ ∈
Pm for nay =

∑t
s=1 1[As = a, σs = y] and na =

∑m
y=1 nay.

Next, we show that Ft(p) ≤ Gt(p) holds for all p ∈ Pd. Using Pinsker’s inequality,
the unnormalized posterior distribution Ft(p) can be bounded from above as

Ft(p) = π(p)
k∏
a=1

exp
(
−naD

(
q(t)a ∥Sap

))
≤ π(p)

k∏
a=1

exp
(
−1

2
na∥q(t)a − Sap∥21

)
(by Pinsker’s inequality)

= π(p) exp
(
−1

2

k∑
a=1

na∥q(t)a − Sap∥21
)

≤ π(p) exp
(
−1

2

k∑
a=1

na∥q(t)a − Sap∥2
) (

by ∥q(t)a − Sap∥1 ≥ ∥q(t)a − Sap∥
)

= Gt(p) .
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Remark. The unnormalized density Gt(p) is indeed Gaussian. Recalling that Bt and bt
are defined in (3.3) as

Bt =
k∑
a=1

naS
⊤
a Sa =

t∑
s=1

S⊤
As
SAs = Bt−1 + S⊤

At
SAt , bt =

k∑
a=1

naS
⊤
a q

(t)
a = bt−1 + S⊤

At
eσt ,

we have
k∑
a=1

na∥q(t)a − Sap∥2 =
k∑
a=1

na(q
(t)
a − Sap)⊤(q(t)a − Sap)

= p⊤
( k∑
a=1

naS
⊤
a Sa

)
︸ ︷︷ ︸

Bt

p,−2
( k∑
a=1

naS
⊤
a q

(t)
a

)⊤
︸ ︷︷ ︸

bt

p+

k∑
a=1

na∥q(t)a ∥2︸ ︷︷ ︸
ct

= p⊤Btp− 2b⊤t p+ ct

= (p−B−1
t bt)

⊤Bt(p−B−1
t bt) + ct − b⊤t B−1

t bt .

Therefore, we have

exp
(
−1

2

k∑
a=1

na∥q(t)a − Sap∥2
)
∝ exp

(
−1

2
(p−B−1

t bt)
⊤Bt(p−B−1

t bt)
)
.

3.6.2 Proof of Proposition 3.2

We will see that the procedure of sampling p̃t from gt(p) and Algorithm 3.3 are equiva-
lent. First, we derive the Gaussian density of gt(p) projected onto {p ∈ Rd :

∑d
i=1 pi =

1}.
For simplicity, we omit the subscript t and write, e.g., B instead of Bt. We define

p = [p(α)
⊤
, pd]

⊤ ∈ Rd−1×R. Let h = B−1b, and define h = [h(α)
⊤
, hd]

⊤ ∈ Rd−1×R.

Let B =

[
C g
g⊤ f

]
, where C ∈ Rd−1×d−1, d ∈ Rd−1, and f ∈ R. Also, let b =

[b(α)
⊤
, b(d)]⊤ ∈ Rd−1 × R.

Using the decomposition

(p−B−1b)⊤B(p−B−1b) = p⊤Bp︸ ︷︷ ︸
(a)

−2h⊤Bp︸ ︷︷ ︸
(b)

+h⊤Bh .

We then rewrite each term by restricting the domain of p so that it satisfies the condition∑d
i=1 pi = 1. Now the first term (a) is rewritten as

(a) = p(α)
⊤
Cp(α) + 2p(α)

⊤
gpd + fp2d

= p(α)
⊤
Cp(α) + 2 p(α)

⊤
g
(
1−

d−1∑
i=1

pi

)
︸ ︷︷ ︸

(a1)

+f
(
1−

d−1∑
i=1

pi

)2
︸ ︷︷ ︸

(a2)

.

The term (a1) is rewritten as

(a1) = p(α)
⊤
g − p(α)⊤g

d−1∑
i=1

pi

= p(α)
⊤
g − p(α)⊤g1⊤d−1p

(α)

= p(α)
⊤
g − p(α)⊤Dp(α)

(
D =

1

2

(
g1⊤d−1 + 1d−1g

⊤
))

,
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and the term (a2) is rewritten as

(a2) =
(
1−

d−1∑
i=1

pi

)2
= 1− 2

d−1∑
i=1

pi +
(d−1∑
i=1

pi

)2
= 1− 21⊤d−1p

(α) + p(α)
⊤
1d−11

⊤
d−1p

(α) .

Therefore,

(a) = p(α)
⊤
(C − 2D + f1d−11

⊤
d−1)︸ ︷︷ ︸

B̃

p(α) − 2(f1d−1 − g)⊤p(α) + f .

With regard to the term (b), we have

(b) = b⊤p

= b(α)
⊤
p(α)

⊤
+ b(d)pd

= (b(α) − b(d)1d−1)
⊤p(α) + b(d) .

Therefore,

(p−B−1b)⊤B(p−B−1b)

= p(α)
⊤
B̃p(α) − 2(f1d−1 − g + b(α) − b(d)1d−1︸ ︷︷ ︸

b̃

)⊤p(α) + f − 2b(d) + h⊤Bh

= (p(α) − B̃−1b̃)⊤B̃(p(α) − B̃−1b̃) + f − 2b(d) − b̃⊤B̃−1b̃+ b⊤B−1b ,

where the last equality follows by h⊤Bh = b⊤B−1b. From the above argument, the
densityN(B̃−1b, B̃−1) is the Gaussian distribution of gt(p) on {p ∈ Rd :

∑d
i=1 pi = 1}.

Therefore, the p = [p(α)
⊤
, 1 −

∑d−1
i=1 (p

(α))i]
⊤ for p(α) ∼ N(B̃−1b, B̃−1) is supported

over {p ∈ Rd :
∑d

i=1 pi = 1}.
If the sample p(α) fromN(B̃−1b, B̃−1) is inPd−1, then we can obtain the last element

p(d) by p(d) = 1−
∑d−1

i=1 (p
(α))i. Otherwise, the probability that p(α) is the first (d− 1)

elements of the sample from gt(p) is zero, and hence, [p(α)⊤, p(d)]⊤ cannot be a sample
from gt(p). Therefore, sampling p̃t from gt(p) and Algorithm 3.3 are equivalent.

3.6.3 Relation between TSPM-Gaussian and BPM-TS

In this section, we discuss the relation between TSPM-Gaussian and BPM-TS (Vanchi-
nathan et al., 2014).

Underlying Feedback Structure Here, we discuss the underlying feedback structure
behind TSPM-Gaussian and BPM-TS.

We first consider the underlying feedback structure behind BPM-TS. In the following,
we see that the feedback structure

y(t) = SAtp+ SAtϵ , ϵ ∼ N(0, Id)

induces the posterior distribution in BPM-TS. Under this feedback structure, we have
y(t) ∼ N(SAtp, SAtS

⊤
At
).
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When we take the prior distribution π(p) as N(0, σ20Id), the posterior distribution for
the opponent’s strategy parameter can be written as

π
(
p
∣∣ {As, y(s)}ts=1

)
∝ π(p)

t∏
s=1

π(y(s) | As, p)

= π(p)

t∏
s=1

Py∼N(SAsp,SAsS
⊤
As

) {y = y(s)}

= exp

(
−p

⊤p

2σ20

) t∏
s=1

exp

(
−1

2
(y(s)− SAsp)

⊤(SAsS
⊤
As
)−1(y(s)− SAsp)

)

= exp

(
−1

2

(
p⊤
(

1

σ20
Id +

t∑
s=1

S⊤
As
(SAsS

⊤
As
)−1SAs

)
p

)

− 2

( t∑
s=1

y(s)⊤(SAsS
⊤
As
)−1SAsp

)
+ (a term independent of p)

)

∝ exp

(
−1

2
(p⊤BBPM

t p− 2bBPM
t

⊤
p)

)
∝ exp

(
−1

2
(p−BBPM

t
−1
bBPM
t )⊤BBPM

t (p−BBPM
t

−1
bBPM
t )

)
,

where

BBPM
t =

1

σ20
Id +

t∑
s=1

S⊤
As
(SAsS

⊤
As
)−1SAs = BBPM

t−1 + S⊤
At
(SAtS

⊤
At
)−1SAt ,

bBPM
t =

t∑
s=1

S⊤
As
(SAsS

⊤
As
)−1y(s) = bBPM

t−1 + S⊤
At
(SAtS

⊤
At
)−1y(t) .

Therefore, the posterior distribution π
(
p | {As, y(s)}ts=1

)
is

1√
(2π)d|BBPM

t
−1|

exp

(
−1

2
(p−BBPM

t
−1
bBPM
t )⊤BBPM

t (p−BBPM
t

−1
bBPM
t )

)
.

and this distribution indeed corresponds to the posterior distribution in BPM-TS (Vanchi-
nathan et al., 2014) with BBPM

t = Σ−1
t .

Using the same argument, we can confirm that the feedback structure

yt = Sap+ ϵ , ϵ ∼ N(0, Id) .

induces

ḡt(p) :=
1√

(2π)d|B−1
t |

exp

(
−1

2

∥∥p−B−1
t bt

∥∥2
Bt

)
,

which corresponds to the posterior distribution for TSPM in linear partial monitoring.

Covariances in TSPM-Gaussian and BPM-TS In the linear partial monitoring, TSPM
assumes noise with covariance Id, which is compatible with the fact that the discrete set-
ting can be regarded as linear PM with Id-sub-Gaussian noise. On the other hand, BPM-
TS assumes covariance SaS⊤

a , and in general Id ⪯ SaS
⊤
a holds. Therefore, BPM-TS

assumes unnecessarily larger covariance, which makes learning slow down.
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3.6.4 Preliminaries for Regret Analysis

In this section, we give some technical lemmas, which are used for the derivation of the
regret bound in Section 3.6.5. Here, we write X ⪰ Y to denote X − Y ⪰ 0. For
a, b ∈ R, let a∧ b be a if a ≤ b otherwise b, and a∨ b be b if a ≤ b otherwise a. We use
h(a) := PX∼χ2

d
{X ≥ a} to evaluate the behavior of the posterior samples, where χ2

d is
the chi-squared distribution with d degree of freedom.

3.6.4.1 Basic Lemmas

Fact 3.2 (Moment generating function of squared-Gaussian distribution). Let X be the
random variable following the standard normal distribution. Then, the moment generat-
ing function of X2 is E

[
exp(ξX2)

]
= (1− 2ξ)−1/2 for ξ < 1/2.

Lemma 3.1 (Chernoff bound for chi-squared random variable). Let X be the random
variable following the chi-squared distribution with k degree of freedom. Then, for any
x ≥ 0 and 0 ≤ ξ < 1/2,

P{X ≥ a} ≤ e−ξa(1− 2ξ)−
k
2 .

Proof. By Markov’s inequality, the LHS can be bounded as

P{X ≥ x} = P

{
k∑
i=1

X2
i ≥ x

}
(X1, . . . , Xk

i.i.d.∼ N(0, 1))

= P

{
exp
(
ξ

k∑
i=1

X2
i

)
≥ exp(ξa)

}

≤ e−ξa
(
E
[
eξX

2
1

])k
(by Markov’s inequality)

= e−ξa(1− 2ξ)−
k
2 (by Fact 3.2) ,

which completes the proof.

3.6.4.2 Property of Strong Local Observability

Recall that ∆a = (La −L1)
⊤p∗ > 0 for a ∈ [k], which is the difference of the expected

loss of actions a and 1. Using this define

ϵ :=

(
1

2
√
m

min
a ̸=1

∆a

∥z1,a∥

)
∧
(
min
p∈Cc

1

4

3
∥p− p∗∥

)
, (3.5)

which is used throughout the proof of this section and Section 3.6.5. The following
lemma provides the key property of the strong local observability condition.

Lemma 3.2. For any partial monitoring game with strong local observability and p ∈
Rd, any of the conditions 1–3 in the following is not satisfied:

1. L⊤
1 p > L⊤

a p (Worse action a looks better under p.)

2. ∥S1p− S1p∗∥ ≤ ϵ

3. ∥Sap− Sap∗∥ ≤ ϵ .
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Proof. We prove this by contradiction. Assume that there exists p ∈ Rd such that con-
ditions 1–3 are simultaneously satisfied.

Now, by conditions 2 and 3, we have

|S1p− S1p∗| ⪯ ϵ1m ,
|Sap− Sap∗| ⪯ ϵ1m .

Here, | · | is the element-wise absolute value and⪯means that the inequality≤ holds for
each element. Therefore, ∣∣∣∣( S1

Sa

)
(p− p∗)

∣∣∣∣ ⪯ ϵ12m . (3.6)

On the other hand, by the strong local observability condition, for any k ̸= 1, there exists
z1,a ̸= 0 ∈ R2m such that

(L1 − La)⊤ = z⊤1,a

(
S1
Sa

)
. (3.7)

Now, we have

z⊤1,a

(
S1
Sa

)
(p− p∗)

≤ ∥z1,a∥
∥∥∥∥( S1

Sa

)
(p− p∗)

∥∥∥∥ (by Cauchy-Schwarz inequality)

≤
√
2mϵ∥z1,a∥ (by (3.6)) , (3.8)

and

z⊤1,a

(
S1
Sa

)
(p− p∗)

= (L1 − La)⊤(p− p∗) (by (3.7))

= (L1 − La)⊤p+ (La − L1)
⊤p∗

≥ ∆k (by Condition 1 & def. of ∆a) . (3.9)

Therefore, from (3.8) and (3.9), we have

∆a ≤
√
2mϵ∥z1,a∥ .

This inequality does not hold for all a ̸= 1 for the predefined value of ϵ, since we have

ϵ ≤ 1

2
√
m

min
a ̸=1

∆a

∥z1,a∥
.

Therefore, the proof is completed by contradiction.

Remark. The similar result holds when the optimal action 1 is replaced with action a ̸= b
such that ∆a,b := (La − Lb)⊤p∗ > 0 by taking ϵ satisfying

ϵ ≤ 1

2
√
m

min
a ̸=b:∆a,b>0

∆a,b

∥za,b∥
.

From Lemma 3.2, we have the following corollary.

Corollary 3.1. For any p ∈ Rd satisfying p ∈ Ca and ∥S1p− S1p∗∥ ≤ ϵ, we have

∥Sap− Sap∗∥ > ϵ .
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Proof. Note that p ∈ Ca is equivalent to (L1 − La)⊤p∗ > 0 for any a ̸= 1. Therefore,
the desired result directly follows from Lemma 3.2.

The next lemma is the property of Mahalanobis distance corresponding to ḡt(p).

Lemma 3.3. Define Ta = {p ∈ Rd : ∥Sap − Sap∗∥ > ϵ}. Assume that Na(t) ≥ na,
∥Sap̂t − Sap∗∥ ≤ ϵ/4. Then, for any 0 ≤ ξ < 1/2

h

(
inf
p∈Ta
∥B1/2

t (p− p̂t)∥2
)
≤ exp

(
− 9

16
ξϵ2na

)
(1− 2ξ)−d/2 .

Proof. To bound the LHS of the above inequality, we bound ∥B1/2
t (p−p̂t)∥2 from below

for p ∈ Ta. Using the triangle inequality and the assumptions, we have

∥Sa(p− p̂t)∥ ≥ ∥Sap− Sap∗∥ − ∥Sap̂t − Sap∗∥
> ϵ− ϵ/4 > 0 . (3.10)

Therefore, we have

∥B1/2
t (p− p̂t)∥2 ≥

∑
b∈[k]

Nb(t)∥Sb(p− p̂t)∥2 (by def. of Bt)

≥ na∥Sa(p− p̂t)∥2 (Na(t) ≥ na)

>
9

16
ϵ2na (by (3.10)) .

By the Chernoff bound for a chi-squared random variable in Lemma 3.1, we now have

h(x) ≤ e−ξx(1− 2ξ)−d/2 ,

for any a ≥ 0 and 0 ≤ ξ < 1/2. Hence, using the fact that ∥B1/2
t (p− p̂t)∥2 follows the

chi-squared distribution with d degree of freedom, we have

h

(
inf
p∈Ta
∥B1/2

t (p− p̂t)∥2
)
≤ h

( 9

16
ϵ2na

)
≤ exp

(
− 9

16
ξϵ2na

)
(1− 2ξ)−d/2 ,

which completes the proof.

3.6.4.3 Statistics of Uninterested Actions

For any a ̸= i and na ∈ [T ], define

Zna
:= na∥qa,na − Sap∗∥2 ,

Z\i :=
∑
a ̸=i

max
na∈[T ]

Zna .

In this section, we bound E
[
Z\i
]

from above. Note that Z\i is independent of the ran-
domness of Thompson sampling.

Lemma 3.4 (Upper bound for the expectation of Z\i).

E
[
Z\i
]
≤ 4k

(
log T +

m

2
log 2 + 1

)
.
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Proof. Recall that in linear partial monitoring, the feedback y(t) ∈ Rm for action a is
given by

yt = Sap
∗ + ϵ , ϵ ∼ N(0, Im)

at round t ∈ [T ], Therefore, y(t)−Skp∗ ∼ N(0, Im). Since qa,na = 1
na

∑
s∈[T ]:As=a

y(s)
for any na ∈ [T ], we have

qa,na − Sap∗ =
1

na

∑
s∈[T ]:As=a

(y(s)− Sap∗) ∼ N(0, Im/na) .

Therefore,
√
na(qa,na − Sap∗) ∼ N(0, Im) ,

and thus

nk∥qa,na − Sap∗∥2 = ∥
√
na(qa,na − Sap∗)∥2 ∼ χ2

m .

Therefore, for any 0 ≤ ξ < 1/2,

E
[
max
na∈[T ]

Zna

]
=

∫ ∞

0
P
{

max
na∈[T ]

Zna ≥ x
}
dx

≤
∫ ∞

0
[1 ∧ T · P{Z1 ≥ x}] dx (by the union bound)

≤
∫ ∞

0

[
1 ∧ T · e−ξx(1− 2ξ)−

m
2

]
dx

(
by Z1 ∼ χ2

m and Lemma 3.1
)

=

∫ x∗

0
dx+

∫ ∞

x∗
T · e−ξx(1− 2ξ)−

m
2 dx

≤ x∗ + T ·
∫ ∞

x∗
e−ξx(1− 2ξ)−

m
2 dx

= x∗ + T (1− 2ξ)−
m
2

[
−1

ξ
e−ξx

]∞
x∗

=
1

ξ

{
log T − m

2
log(1− 2ξ) + 1

}
,

where x∗ := 1
ξ

{
log T − m

2 log(1− 2ξ)
}

. Therefore, taking ξ = 1/4, we have

E
[
Z\i
]
= E

∑
a ̸=i

max
nk∈[T ]

Zna


≤
∑
a ̸=i

E
[
max
na∈[T ]

Zna

]
≤ (k − 1)

1

ξ

{
log T − m

2
log(1− 2ξ) + 1

}
≤ 4k

(
log T +

m

2
log 2 + 1

)
,

which completes the proof.
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3.6.4.4 Mahalanobis Distance Process

Discussions in this section are essentially very similar to Abbasi-Yadkori et al. (2011,
Lemma 11), but their results are not directly applicable and we give the full derivation
for self-containedness. To maximize the applicability here we only assume sub-Gaussian
noise rather than a Gaussian one.

Let ϵt be zero-mean 1-sub-Gaussian random variable, which satisfies

E
[
eλ

⊤ϵt
]
≤ e−

∥λ∥2
2

for any λ ∈ Rd.

Lemma 3.5. For any vector v ∈ Rd and positive definite matrix V ∈ Rd×d such that
V ≻ I ,

Eϵt

[
e

∥ϵt+v∥2
V −1

2

]
≤

√
|V |√
|V − I|

e
1
2
v⊤(V−I)−1v .

Proof. For any x ∈ Rd

Eλ∼N(0,V −1)

[
eλ

⊤x
]
= e

∥x∥2
V −1
2 .

Therefore, by letting x = ϵt + v we see that

e
∥ϵt+v∥2

V −1
2 = Eλ∼N(0,V −1)

[
eλ

⊤(ϵt+v)
]
.

As a result, by the definition of sub-Gaussian random variables, we have

Eϵt

[
e

∥ϵt+v∥2
V −1

2

]
= Eλ∼N(0,V −1)

[
Eϵt
[
eλ

⊤(ϵt+v)
]]

= Eλ∼N(0,V −1)

[
eλ

⊤vEϵt
[
eλ

⊤ϵt
]]

≤ Eλ∼N(0,V −1)

[
eλ

⊤ve∥λ∥
2/2
]

=
1

(2π)d/2
√
|V −1|

∫
eλ

⊤ve∥λ∥
2/2e−∥λ∥2V /2dλ

=
1

(2π)d/2
√
|V −1|

∫
e−

1
2(λ

⊤(V−I)λ−2v⊤λ)dλ

=

√
|V − I|

(2π)d/2
√
|V −1||V − I|

∫
e−

1
2((λ−(V−I)−1v)⊤(V−I)(λ−(V−I)−1v)−v⊤(V−I)−1v)dλ

=

√
|V |√
|V − I|

e
1
2
v⊤(V−I)−1v .

Lemma 3.6.

E
[
exp

(
1

2

(
∥p̂t − p∗∥2Bt

− ∥p̂t−1 − p∗∥2Bt−1

)) ∣∣∣∣ p̂t−1, Bt−1, Si(t−1)

]
≤

√
|Bt|
|Bt−1|

.

Proof. Let Zt := −λp∗ +
∑t

s=1 S
⊤
As
ϵs, and we have
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• Bt = λI +
∑t

s=1 S
⊤
As
SAs ,

• bt =
∑t

s=1 S
⊤
As
y(s) = Btp

∗ + Zt,

• p̂t = B−1
t bt = p∗ +B−1

t Zt.

In the following, we omit the conditioning on (p̂t−1, Bt−1, SAt−1) for notational
simplicity. We also define St := SAt for notational simplicity only in the proof of this
lemma.

Let us define Ct := StBt−1S
⊤
t and dt := StB

−1
t−1Zt−1 = St(p̂t − p∗). Then, using

the Sherman-Morrison-Woodbury formula we have

∥p̂t − p∗∥2Bt
− ∥p̂t−1 − p∗∥2Bt−1

= Z⊤
t B

−1
t Zt − Z⊤

t−1B
−1
t−1Zt−1

= (Z⊤
t−1 + ϵ⊤t St)(B

−1
t−1 −B

−1
t−1S

⊤
t (I + StB

−1
t−1S

⊤
t )

−1StB
−1
t−1)(Zt−1 + S⊤

t ϵt)− Z⊤
t−1B

−1
t−1Zt−1

= (Z⊤
t−1 + ϵ⊤t St)B

−1
t−1(Zt−1 + S⊤

t ϵt)− Z⊤
t−1B

−1
t Zt−1

− (Z⊤
t−1 + ϵ⊤t St)B

−1
t−1S

⊤
t (I + StB

−1
t−1S

⊤
t )

−1StB
−1
t−1(Zt−1 + S⊤

t ϵt)

= ϵ⊤t StB
−1
t−1S

⊤
t ϵt + 2Z⊤

t−1B
−1
t−1S

⊤
t ϵt

− (Z⊤
t−1 + ϵ⊤t St)B

−1
t−1S

⊤
t (I + StB

−1
t−1S

⊤
t )

−1StB
−1
t−1(Zt−1 + S⊤

t ϵt)

= ϵ⊤t Ctϵt + 2d⊤t ϵt − (d⊤t + ϵ⊤t Ct)(I + Ct)
−1(dt + Ctϵt)

= ϵ⊤t Ct(I − (I + Ct)
−1Ct)ϵt + 2d⊤t (I − (I + Ct)

−1Ct)ϵt − d⊤t (I + Ct)
−1dt

= ϵ⊤t Ct(I + Ct)
−1ϵt + 2d⊤t (I + Ct)

−1ϵt − d⊤t (I + Ct)
−1dt

=
∥∥ϵt + C−1

t dt
∥∥2
Ct(I+Ct)−1 − d⊤t (I + Ct)

−1C−1
t dt − d⊤t (I + Ct)

−1dt

=
∥∥ϵt + C−1

t dt
∥∥2
Ct(I+Ct)−1 − d⊤t (I + Ct)

−1(I + C−1
t )dt .

Therefore, Lemma 3.5 with V :=
(
Ct(I + Ct)

−1
)−1

= (I + Ct)C
−1
t , v := C−1

t dt
yields

E
[
exp

(
1

2

(
∥p̂t − p∗∥2Bt

− ∥p̂t−1 − p∗∥2Bt−1

))]

≤

√
|(I + Ct)C

−1
t |√

|(I + Ct)C
−1
t − I|

e
1
2
d⊤t C

−1
t ((I+Ct)C

−1
t −I)−1C−1

t dte−
1
2
d⊤t (I+Ct)−1(I+C−1

t )dt

≤

√
|(I + Ct)C

−1
t |√

|C−1
t |

e
1
2
d⊤t C

−1
t (C−1

t )−1C−1
t dte−

1
2
d⊤t (I+Ct)−1(I+C−1

t )dt

=
√
|(I + Ct)|

=

√
|Bt|
|Bt−1|

,

where see, e.g., Abbasi-Yadkori et al. (2011, Lemma 11) for the last equality.

3.6.4.5 Norms under Perturbations

In the following two lemmas, we give some analysis of norms under perturbations.
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Lemma 3.7. Let A be a positive definite matrix. Let a ∈ Rd and ϵ > 0 be such that
ϵ < ∥a∥ /3. Then

min
x:∥x∥≤2ϵ

max
x′:∥x′∥≤ϵ

{
(a+ x+ x′)⊤A(a+ x+ x′)

}
= min

x′′:∥x′′∥≤ϵ

{
(a+ x′′)⊤A(a+ x′′)

}
.

Proof. By considering the Lagrangian multiplier we see that any stationary point of the
function (a+ x′′)⊤A(a+ x′′) over {(x, x′) : ∥x∥ ≤ 2ϵ, ∥x′∥ ≤ ϵ} satisfies

A(a+ x+ x′)− λ1x = 0 ,

A(a+ x+ x′)− λ2x′ = 0 ,

x⊤x = 4ϵ2 ,

x′⊤x′ = ϵ2 , (3.11)

and therefore λ1x = λ2x
′. Considering the last two conditions of (3.11) we have λ2 =

±2λ1, implying that

x′ = −(3A− 2λ1I)Aa (3.12)

or

x′ = (A− 2λ1I)Aa (3.13)

for λ1 satisfying x′⊤x′ = ϵ2.
Note that it holds for any positive definite matrix B that

d2

dλ2
a(B + λI)−2a = a(B + λI)−4a =

∥∥(B + λI)−2a
∥∥2 ,

which is positive almost everywhere, meaning that a(B+λI)−2a is strictly convex with
respect to λ ∈ R. Therefore, there exists at most two λ′1’s satisfying (3.12) and x′⊤x′ =
ϵ2, and there exists at most two λ′1’s satisfying (3.13) and x′⊤x′ = ϵ2. In summary, there
at most four stationary points of (a+x′′)⊤A(a+x′′) over {(x, x′) : ∥x∥ ≤ 2ϵ, ∥x′∥ ≤ ϵ}.

On the other hand, two optimization problems

min
x:∥x∥≤2ϵ

min
x′:∥x′∥≤ϵ

{
(a+ x+ x′)⊤A(a+ x+ x′)

}
= min

x′′:∥x′′∥≤3ϵ

{
(a+ x′′)⊤A(a+ x′′)

}

and

max
x:∥x∥≤2ϵ

max
x′:∥x′∥≤ϵ

{
(a+ x+ x′)⊤A(a+ x+ x′)

}
= max

x′′:∥x′′∥≤3ϵ

{
(a+ x′′)⊤A(a+ x′′)

}

can be easily solved by an elementary calculation and the optimal values are equal to
those corresponding to (3.12).

Therefore, the optimal solutions of the two minimax problems

max
x:∥x∥≤2ϵ

min
x′:∥x′∥≤ϵ

{
(a+ x+ x′)⊤A(a+ x+ x′)

}
(3.14)

and

min
x:∥x∥≤2ϵ

max
x′:∥x′∥≤ϵ

{
(a+ x+ x′)⊤A(a+ x+ x′)

}
(3.15)
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correspond to two points corresponding to (3.13).
We can see again from an elementary calculation that the optimal solutions for two

optimization problems

min
x′′:∥x′′∥≤ϵ

{
(a+ x′′)⊤A(a+ x′′)

}
max

x′′:∥x′′∥≤ϵ

{
(a+ x′′)⊤A(a+ x′′)

}
have the same necessary and sufficient conditions as (3.13) and we complete the proof
by noticing that (3.14) is less than (3.15).

Lemma 3.8. Let A ⪰ nS⊤
1 S1 be a positive-definite matrix with minimum eigenvalue at

least λ > 0. Then, for any p̂ ∈ Rd and ϵ > 0 satisfying ϵ < ∥p̂− p∗∥ /3,

∥p̂− p∗∥2m − inf
p:∥p−p∗∥≤2ϵ

sup
p′:∥p′−p∥≤ϵ

∥∥p′ − p̂∥∥2
A
≥ ϵ
√
nλ ∥S1(p̂− p∗)∥ .

Proof. Let a = p̂− p∗. By Lemma 3.7, we have

inf
p:∥p−p∗∥≤2ϵ

sup
p′:∥p′−p∥≤ϵ

∥∥p′ − p̂∥∥2
A

= inf
x:∥x∥≤2ϵ

sup
x′:∥x′∥≤ϵ

∥∥a+ x+ x′
∥∥2
A

= inf
x:∥x∥≤ϵ

∥a+ x∥2A .

Now define Sϵ′,A = {x : ∥x∥A ≤ ϵ′}. Then, we see that Sϵ√λ,A ⊂ {x : ∥x∥ ≤ ϵ}.
Therefore, an elementary calculation using the Lagrange multiplier technique shows

inf
x:∥x∥≤ϵ

∥∥p′ − p̂∥∥2
A
≤ inf

x∈Sϵ√λ,A

∥p− p̂∥2A

=
(
∥a∥A − ϵ

√
λ
)2

.

As a result, we see that

∥p∗ − p̂∥2m − inf
p:∥p−p∗∥≤2ϵ

sup
p′:∥p′−p∥≤ϵ

∥∥p′ − p̂∥∥2
A
≥ ∥a∥2A −

(
∥a∥A − ϵ

√
λ
)2

= ϵ
√
λ
(
∥a∥A + ∥a∥A − ϵ

√
λ
)

≥ ϵ
√
λ
(
∥a∥A + ∥a∥

√
λ− ϵ

√
λ
)

= ϵ
√
λ
(
∥a∥A +

√
λ(∥a∥ − ϵ)

)
≥ ϵ
√
λ ∥a∥A

≥ ϵ
√
nλ ∥S1a∥ .

For the subsets ofRn,X andY, letX+Y := {x+ y : x ∈ X, y ∈ Y} be the Minkowski
sum, and let Bn

r (p) be the n-dimensional Euclidian ball of radius r at point p ∈ Rn (the
superscript n can be omitted when it is clear from context). We also let ϵ′ be

ϵ′ :=
ϵ(

16maxi∈[k]∥Si∥
)
∨
(

1√
m
maxi∈[k]

∥Li−L1∥
∥z1,i∥

) , (3.16)

which is also used throughout the proof of this section and Section 3.6.5 as ϵ in (3.5).
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Theorem 3.3. Let ϵ′′ ∈ (0, ϵ) be a constant for ϵ defined in (3.5). Let p̂ ∈ Ck + Bd
ϵ′(0)

be satisfying ∥Sk(p̂− p∗)∥ ≤ ϵ′′. Then, there exists δ > 0 satisfying for any n ≥ 0 and
A ⪰ nS⊤

1 S1 + λI that

∥p∗ − p̂∥2m − inf
p:∥p−p∗∥≤2ϵ

sup
p′:∥p′−p∥≤ϵ

∥∥p′ − p̂∥∥2
A
≥ ϵδ
√
λn .

Proof. Recall that ϵ′′ < ϵ ≤ minp∈Cc
1
∥p− p∗∥ /3. It is enough from Lemma 3.8 to

prove that

δ := min
p̂∈{p∈Ck+B

d
ϵ′ (0):∥Sk(p−p∗)∥≤ϵ′′}

∥S1(p̂− p∗)∥

is positive.
We prove by contradiction and the proof is basically same as that of Lemma 3.2 but

more general in the sense that the condition on p̂ is not p̂ ∈ Ck but p̂ ∈ Ck + Bd
ϵ′(0).

Assume that δ = 0, that is, there exists p̂ ∈ Ck +Bd
ϵ′(0) satisfying ∥Sk(p− p∗)∥ ≤ ϵ′′}

and ∥S1(p̂ − p∗)∥ = 0. Note that ∥S1(p̂ − p∗)∥ = 0 implies ∥S1(p̂ − p∗)∥ ≤ ϵ′′.
Therefore, we now have following conditions on p̂:

• p̂ ∈ Ck +Bd
ϵ′(0)

• ∥S1(p̂− p∗)∥ ≤ ϵ′′

• ∥Sk(p̂− p∗)∥ ≤ ϵ′′ .

Following the same argument as the proof of Lemma 3.2, we have

z⊤1,k

(
S1
Sk

)
(p̂− p∗) ≤

√
2mϵ′′∥z1,k∥ . (3.17)

On the other hand, since p̂ ∈ Ck + Bd
ϵ′(0) we can take p̄ ∈ Ck such that ∥p̂ − p̄∥ ≤ ϵ′.

Hence,

z⊤1,k

(
S1
Sk

)
(p̂− p∗) = (L1 − Lk)⊤(p̂− p∗)

= −(Lk − L1)
⊤(p̂− p̄) + (L1 − Lk)⊤p̄+ (Lk − L1)

⊤p∗

≥ −(Lk − L1)
⊤(p̂− p∗) + ∆k . (by p̄ ∈ Ck and def. of ∆k)

(3.18)

From (3.17) and (3.18), we have

∆k − (Lk − L1)
⊤(p̂− p∗) ≤

√
2mϵ′′∥z1,k∥ . (3.19)

Now, the left hand side of (3.19) is bounded from below as

∆k − (Lk − L1)
⊤(p̂− p̄) ≥ ∆k − ∥Lk − L1∥∥p̂− p̄∥

≥ ∆k − ∥Lk − L1∥ϵ′

= ∆k − ∥Lk − L1∥
ϵ

1√
m
maxi

∥L1−Li∥
∥z1,i∥

= ∆k − ∥Lk − L1∥
1

2
√
m
mini

∆i
∥z1,i∥

1√
m
maxi

∥L1−Li∥
∥z1,i∥

≥ ∆k −∆k/2 .

On the other hand, using the definition of ϵ′′, the right hand side of (3.19) is bounded
from above as

√
2mϵ′′∥z1,k∥ < ∆k/2 .

Therefore, the proof is completed by contradiction.
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3.6.4.6 Exit Time Analysis

We next consider the exit time. Let At be an event deterministic given Ft, and Bt be a
random event such that if Bt occurred then At′ never occurs for t′ = t + 1, t + 2, . . . .
Let Pt, t = 1, 2, . . . , T , be a stochastic process satisfying Pt ≤ P{Bt|Ft} a.s. and P−1

t

is a supermartingale with respect to the filtration induced by Ft.

Theorem 3.4. Let τ be the stopping time defined as

τ =

{
min{t ∈ [T ] : At} if At occurs for some t ∈ [T ].
T + 1 otherwise.

(3.20)

Then we almost surely have

E

[
T∑
t=1

1[At]

∣∣∣∣∣ Fτ
]
≤

{
P−1
τ τ ≤ T,

0 τ = T + 1.

We prove this theorem based on the following lemma.

Lemma 3.9. Let (Qi)∞i=1 ⊂ [0, 1] be an arbitrary stochastic process such that (Q−1
i )∞i=1

is a supermartingale with respect to a filtration (Gi)
∞
i=1. Then, for any G0 ⊂ G1,

E

 T∑
i=1

i∏
j=1

(1−Qj)

∣∣∣∣∣∣ G0

 ≤ E
[
Q−1

1 |G0

]
− 1 a.s.

Proof. Let

Nk((Qi,Gi)
∞
i=1, G0) = E

 k∑
i=1

i∏
j=1

(1−Qj)

∣∣∣∣∣∣ G0


Nk((Qi,Gi)

∞
i=1, G0) = E

 ∞∑
i=1

i∏
j=1

(1−Qj)

∣∣∣∣∣∣ G0

 where Qj = Qk for j > k.

We show Nk((Qi,Gi)
∞
i=1, G0) ≤ E[Q−1

1 |G0] − 1 a.s. for any (Qi, Gi)
∞
i=1, G0 ⊂ G1

and k ∈ N by induction. First, for k = 1 the statement holds since

N1((Qi,Gi)
∞
i=1, G0) = E

 ∞∑
i=1

i∏
j=1

(1−Q1)

∣∣∣∣∣∣ G0


= E

[
Q−1

1 − 1
∣∣ G0

]
= E

[
Q−1

1

∣∣ G0

]
− 1

Next, assume that the statement holds for all (Qi, Gi)ki=1, G0 ⊂ G1 and k ≤ k0. Then,
we almost surely have

Nk0+1((Qi,Gi)
∞
i=1, G0) = E

(1−Q1)E

1 + ∞∑
i=2

i∏
j=2

(1−Qj)

∣∣∣∣∣∣ G1

 ∣∣∣∣∣∣ G0


= E

[
(1−Q1)(1 +Nk0((Qi,Gi)

∞
i=2, G1))

∣∣ G0

]
≤ E

[
(1−Q1)E[Q−1

2

∣∣ G1]
∣∣ G0

]
(assumption of the induction)

≤ E
[
Q−1

1

∣∣ G0

]
− 1

(
Q−1
i is a supermartingale.

)
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We obtain the lemma from

E

 k∑
i=1

i∏
j=1

(1−Qj)

∣∣∣∣∣∣ G0

 = Nk((Qi,Gi)
∞
i=1, G0) ≤ Nk((Qi,Gi)

∞
i=1, G0) a.s.

Proof of Theorem 3.4. The statement is obvious for the case τ = T +1 and we consider
the other case in the following.

Let τi be the time of the i-th occurrence of At. More formally, we define τi as the
stopping time τ1 = τ and

τi+1 =

{
min

{
t ∈ [T ] :

∑T
t′=1 1[At′ ] = i+ 1

} ∑T
t′=1 1[At′ ] ≥ i+ 1,

τi + 1 otherwise.

Then (P ′
i ) = (Pτi) is a stochastic process measurable by the filtration induced by

(F′
i) = (Fτi). By Lemma 3.9 we obtain

E

[
T∑
t=1

1[At]

∣∣∣∣∣ Fτ
]
= E

[
T∑
n=1

1

[
T∑
t=1

1[At] ≥ n

∣∣∣∣∣ Fτ
]]

≤ 1 + E

[
T∑
n=2

1

[
T∑
t=1

1[At] ≥ n

∣∣∣∣∣ Fτ
]]

≤ 1 + E

 T∑
i=1

i∏
j=1

(1− P ′
j)

∣∣∣∣∣∣ F′
1


≤ 1 + E

[
(P ′

1)
−1|F′

1

]
− 1

= P−1
τ .

3.6.5 Regret Analysis of TSPM Algorithm

In this section, we give the proof of Theorem 3.1. Note that the cells are defined for
the decomposition of Rd, not Pd. In other words, cell Ca is here defined as Ca ={
p ∈ Rd : action a is optimal

}
. For the linear setting, the empirical feedback distribu-

tion q(t)a and qa,n are defined as

q(t)a =
1

Na(t)

∑
s∈[t−1]:As=a

y(s) ,

qa,n = the value of q(t)a after taking action a for n times.

Recall that p̂t = B−1
t bt, which is the mode of ḡt(p).

3.6.5.1 Regret Decomposition

Here, we break the regret into several terms. For any i ∈ [k], we define events

Ai(t) =
{
∥Sip̂t − Sip∗∥ ≤

ϵ

4

}
,

Ãi(t) = {∥Sip̃t − Sip∗∥ ≤ ϵ} .
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We first decompose the regret as

R̂egT =

T∑
t=1

∆At

≤
T∑
t=1

(
∆At1

[
Ã1(t)

]
+max

j∈[k]
∆j1

[
Ãc

1(t)
])

=
∑
i ̸=1

T∑
t=1

∆i1

[
At = i, Ã1(t)

]
+max

j∈[k]
∆j

T∑
t=1

1

[
Ãc

1(t)
]

≤
∑
i ̸=1

∆i

T∑
t=1

(
1

[
At = i, Ã1(t), Ai(t)

]
︸ ︷︷ ︸

(A)

+1[At = i, Ac
i (t)]︸ ︷︷ ︸

(B)

)
+max

j∈[k]
∆j

T∑
t=1

1

[
Ãc

1(t)
]
.

(3.21)

To decompose the last term, we define the following notation. We define for any
i ∈ [k]

Pi(t) := P{p̃t ∈ Ci | Ft} .

We also define

Ci,t := Ci ∩Bϵ′(p̂t) ,

where ϵ′ is defined in (3.16), and

īt := argmax
i∈[k]

P{p̃t ∈ Ci,t | Ft} .

We define p̄t as an arbitrary point in Cīt,t. Then, we define

Āi(t) :=
{
∥Sip̄t − Sip∗∥ ≤

ϵ

8

}
.

Using these notations, the last term in (3.21) can be decomposed as

1

[
Ãc

1(t)
]
≤

k∑
i=1

1

[
p̄t ∈ Ci, Ã

c
1(t)
]

=
k∑
i=1

1

[
p̄t ∈ Ci, Ā

c
i (t), Ã

c
1(t)
]
+

k∑
i=1

1

[
p̄t ∈ Ck, Āi(t), Ã

c
1(t)
]

≤
k∑
i=1

1
[
p̄t ∈ Ci, Ā

c
i (t)
]

︸ ︷︷ ︸
(C)

+1

[
p̄t ∈ C1, Ā1(t), Ã

c
1(t)
]

︸ ︷︷ ︸
(D)

+

k∑
i=2

1
[
p̄t ∈ Ci, Āk(t)

]
︸ ︷︷ ︸

(E)

.

We will bound the expectation of each term in the following and complete the proof of
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Theorem 3.1 as

RegT =
∑
i ̸=1

∆i

(
O

(
1

ϵ2
log T

)
+O

(
k

ϵ2
log T

))

+max
j∈[k]

∆j

(
k∑
i=1

O

(
kd

ϵ2
log T

)
+O(1) +

k∑
i=2

O(1)

)

= O

(
max

{
k
∑

i∈[k]∆i

ϵ2
,
k2dmaxi∈[k]∆i

ϵ2

}
log T

)

= O

(
mk2dmaxi∈[k]∆i log T

Λ2

)
,

where the last transformation follows from the definition of ϵ in (3.5).

3.6.5.2 Analysis for Case (A)

Lemma 3.10. For any i ̸= 1,

E

[
T∑
t=1

1

[
At = i, Ã1(t), Ai(t)

]]
≤ 64

9ϵ2
log T + 2d/2 .

To prove Lemma 3.10, we prove the following lemma using Corollary 3.1 and Lemma 3.3.

Lemma 3.11. For any 0 ≤ ξ < 1/2,

P{p̃t ∈ Vi | Ai(t), Ni(t) > ni} ≤ exp
(
− 9

16
ξϵ2ni

)
(1− 2ξ)−d/2 ,

where Vi := {p ∈ Ci : ∥S1p− S1p∗∥ ≤ ϵ}.

Proof. Since p̃t ∼ N(p̂t, B
−1
t ) for p̂t = B−1

t bt, the squared Mahalanobis distance
∥B1/2

t (p̃t − p̂t)∥2 follows the chi-squared distribution with d degree of freedom. There-
fore, we have

P{p̃t ∈ Vi | Ai(t), Ni(t) > ni} ≤ h
(
inf
p∈Vi

∥B1/2
t (p− p̂t)∥2

)
,

whereh(x) = PX∼χ2
d
{X ≥ x}. To use Lemma 3.3, we check the condition of Lemma 3.3

is indeed satisfied. First, it is obvious that the assumptions Ni(t) ≥ ni and ∥Sip̂t −
Sip

∗∥ < ϵ/4 are satisfied. Besides, p ∈ Vi implies p ∈ Ti = {p ∈ Rd : ∥Sip− Sip∗∥ ≥
ϵ} from Corollary 3.1. Thus, applying Lemma 3.3 concludes the proof.

Proof of Lemma 3.10. For any ni > 0,

T∑
t=1

1

[
At = i, Ã1(t), Ai(t)

]
=

T∑
t=1

1

[
At = i, Ã1(t), Ai(t), Ni(t) ≤ ni

]
+

T∑
t=1

1

[
At = i, Ã1(t), Ai(t), Ni(t) > ni

]
≤ ni +

T∑
t=1

1

[
At = i, Ã1(t), Ai(t), Ni(t) > ni

]
.
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The second term is bounded from above as

E

[
T∑
t=1

1

[
At = i, Ã1(t), Ai(t), Ni(t) > ni

]]

=
T∑
t=1

P
{
At = i, Ã1(t), Ai(t), Ni(t) > ni

}
≤

T∑
t=1

P
{
At = i, Ã1(t)

∣∣∣ Ai(t), Ni(t) > ni

}
=

T∑
t=1

P
{
At = i, Ã1(t), p̃t ∈ Ci

∣∣∣ Ai(t), Ni(t) > ni

}
(At = i implies p̃t ∈ Ci)

≤
T∑
t=1

P{p̃t ∈ Vi | Ai(t), Ni(t) > ni} .

To obtain an upper bound for P{p̃t ∈ Vi | Ai(t), Ni(t) > ni}, we use Lemma 3.11. By
taking ni = 16

9
1
ξϵ2

log T with ξ = 1/4, we have

E

[
T∑
t=1

1

[
At = i, Ã1(t), Ai(t)

]]
≤ ni +

T∑
t=1

P{p̃t ∈ Vi | Ai(t), Ni(t) > ni}

≤ ni +
T∑
t=1

exp
(
− 9

16
ξϵ2ni

)
(1− 2ξ)−d/2

=
16

9

1

ξϵ2
log T + (1− 2ξ)−d/2

=
64

9ϵ2
log T + 2d/2 ,

where the second inequality follows by Lemma 3.11. This completes the proof.

3.6.5.3 Analysis for Case (B)

Lemma 3.12. For any i ̸= 1,

E

[
T∑
t=1

1[At = i, Ac
i (t)]

]
≤

256k
(
log T + m

2 log 2 + 1
)

ϵ2
+

16A2

ϵ2

The regret in this case can intuitively be bounded because as the round proceeds the
event At = i makes Sip̂t close to Sip∗, which implies that the expected number of times
the event Ac

i (t) occurs is not large.
Before going to the analysis of Lemma 3.12, we prove useful inequalities between

∥q(t)i − Sip∗∥, ∥q
(t)
i − Sip̂t∥, and ∥Sip̂t − Sip∗∥.

Lemma 3.13. Assume Ni(t) > 0. Then,

∥q(t)i − Sip̂t∥
2 ≤

Z\i

Ni(t)
+ ∥q(t)i − Sip

∗∥2 .

Proof. Recall that p̂t is the maximizer of ḡt(p), and we have

p̂t = argmax
p∈Rd

ḡt(p)

= argmax
p∈Rd

k∏
i=1

exp
{
−1

2
Ni(t)∥q(t)i − Sip∥

2
}
= argmin

p∈Rd

k∑
i=1

Ni(t)∥q(t)i − Sip∥
2 .
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Using this and the definition of Z\i, we have

Ni(t)∥q(t)i − Sip̂t∥
2 ≤

∑
a∈[k]

Na(t)∥q(t)a − Sap̂t∥2

≤
∑
a∈[k]

Na(t)∥q(t)a − Sap∗∥2

≤ Z\i +Ni(t)∥q(t)i − Sip
∗∥2 .

Dividing by Ni(t) on the both sides completes the proof.

Lemma 3.14. Assume that Ac
i (t) and Ni(t) > 0 hold. Then,

∥q(t)i − Sip
∗∥ > 1

2

(
ϵ

4
−

√
Z\i

Ni(t)

)
. (3.22)

Proof. By the triangle inequality,

∥q(t)i − Sip
∗∥ ≥ ∥Sip̂t − Sip∗∥ − ∥q(t)i − Sip̂t∥

>
ϵ

4
−

√
Z\i

Ni(t)
+ ∥q(t)i − Sip∗∥2 (by Ac

i (t) and Lemma 3.13)

≥ ϵ

4
−

√
Z\i

Ni(t)
− ∥q(t)i − Sip

∗∥
(
by
√
x+ y ≤

√
x+
√
y for x, y ≥ 0

)
,

which is equivalent to (3.22).

Proof of Lemma 3.12. We first bound the expectation conditioned on Z\i, and then take
the expectation for Z\i. Now,

E

[
T∑
t=1

1[At = i, Ac
i (t)]

∣∣∣∣∣ Z\i

]

= E

[
T∑
t=1

1

[
At = i, Ac

i (t), Ni(t) ≤
64Z\i

ϵ2

] ∣∣∣∣∣ Z\i

]

+ E

[
T∑
t=1

1

[
At = i, Ac

i (t), Ni(t) >
64Z\i

ϵ2

] ∣∣∣∣∣ Z\i

]

≤
64Z\i

ϵ2
+ E

[
T∑
t=1

1

[
At = i, Ac

i (t), Ni(t) >
64Z\i

ϵ2

] ∣∣∣∣∣ Z\i

]
(At = i for all t ∈ [T ]) .

The first term becomes 256k
(
log T + m

2 log 2 + 1
)
/ϵ2 by taking expectation over Z\i

using Lemma 3.4. Then, we bound the second term. From Lemma 3.14, Ac
i (t) and
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Ni(t) >
64Z\i
ϵ2

imply ∥q(t)i − Sip∗∥ > ϵ/16. Therefore,

E

[
T∑
t=1

1

[
At = i, Ac

i (t), Ni(t) >
64Z\i

ϵ2

] ∣∣∣∣∣ Z\i

]

≤ E

[
T∑
t=1

1

[
At = i, ∥q(t)i − Sip

∗∥ > ϵ

16

]]

≤ E

 T∑
t=1

1

At = i,
⋃
y∈[A]

|(q(t)i )y − (Si)yp
∗| > ϵ

16
√
m


≤ E

 m∑
y=1

T∑
t=1

1

[
At = i, |(q(t)i )y − (Si)yp

∗| > ϵ

16
√
m

]
≤ E

 m∑
y=1

T∑
ni=1

T∑
t=1

1

[
At = i, Ni(t) = ni, |(q(t)i )y − (Si)yp

∗| > ϵ

16
√
m

]
= E

 m∑
y=1

T∑
ni=1

1

[
T⋃
t=1

{
At = i, Ni(t) = ni, |(q(t)i )y − (Si)yp

∗| > ϵ

16
√
m

}]
(The event {At = i, Ni(t) = ni} occurs at most once for fixed ni.)

≤
m∑
y=1

T∑
ni=1

P
{
|(qi,ni)y − (Si)yp

∗| > ϵ

4
√
m

}

≤
m∑
y=1

T∑
ni=1

2 exp

(
−2ni

(
ϵ

4
√
m

)2)
(by Hoeffding’s inequality)

≤ 2m

∞∑
ni=1

exp
(
−niϵ

2

8m

)
= 2m

1

exp
(
ϵ2

8m

)
− 1

≤ 2m
1
ϵ2

8m

(by ex ≥ 1 + x)

=
16m2

ϵ2
.

By summing up the above argument, the proof is completed.

3.6.5.4 Analysis for Case (C)

Before going to the analysis of cases (C), (D), and (E), we recall some notations. Recall
that

Pi(t) = P{p̃t ∈ Ci | Ft} ,

Ci,t = Ci ∩ Bϵ′(p̂t), īt = argmaxi∈[k] P{p̃t ∈ Ci,t|Ft}, and p̄t is an arbitrary point in
Cīt,t. Also recall that

Āi(t) =
{
∥Sip̄t − Sip∗∥ ≤

ϵ

8

}
.
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Lemma 3.15. For any i ∈ [k],

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t)
]]
≤ k

p0

(
25d log T

ϵ2
+ eλ∥p

∗∥2/2
(

1

λT
+

L

dλ

)d/2 1

1− e−ϵ2/25

)
,

where L = maxi

√
trace(S⊤

i Si) = maxi ∥Si∥F.

Before proving the above lemma, we give two lemmas.

Lemma 3.16.

P
{
p̃t ∈ Cīt

∣∣ Ft} ≥ P
{
p̃t ∈ Cīt,t

∣∣ Ft} ≥ p0/k ,
where p0 := 1− h((λϵ′)2).

Proof. First, we prove

P

p̃t ∈ ⋃
i∈[k]

Ci,t

∣∣∣∣∣∣ Ft
 ≥ 1− h((λϵ′)2) .

This follows from

P

p̃t ̸∈ ⋃
i∈[k]

Ci,t

∣∣∣∣∣∣ Ft
 = P{p̃t ∈ Bϵ′(p̂t) | Ft}

≤ h
(

inf
p∈{p:∥p−p̂t∥>ϵ′}

∥B1/2
t (p− p̂t)∥2

)
≤ h

(
λ∥p− p̂t∥2

)
≤ h((λϵ′)2) .

Using the definition of īt completes the proof.

Lemma 3.17. For any i ∈ [k], the event Āc
i (t) implies ∥Sip̂t − Sip∗∥ ≥ ϵ/16.

Proof. Using the triangle inequality, we have

∥Sip̂t − Sip∗∥ ≥ ∥Sip̄t − Sip∗∥ − ∥Sip̄t − Sip̂t∥
≥ ϵ/8− ∥Si∥∥p̄t − p̂t∥

≥ ϵ/8− ∥Si∥
ϵ

16maxi∥Si∥
≥ ϵ/8− ϵ/16 = ϵ/16 .

Proof of Lemma 3.15. For any n0, which is specified later, we have

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t)
]]

= E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) < n0

]]
+ E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) ≥ n0

]]
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The first term can be bounded by (p0/k)−1 ·n0 from Lemma 3.16. The rigorous proof
can be obtained by the almost same argument as the following analysis of the second term
using Theorem 3.4.

Then, we will bound the second term. Specifically, we will prove that for n0 =
d log T
(ϵ/16)2

,

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) ≥ n0

]]
= O(1) .

First we have

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) ≥ n0

]]

≤
∞∑

m=n0

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) = m

]]
.

Let

τ = min
{
t : p̄t ∈ Ci, Ā

c
i (t), Ni(t) = m

}
∧ (T + 1)

be the first time such that p̄t ∈ Ci, Ā
c
i (t) andNi(t) = m occur. LettingAt :=

{
p̄t ∈ Ci, Ā

c
i (t), Ni(t) = m

}
,

Bt := {At = i} and Pt := p0/k in Theorem 3.4, we have

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) = m

]]
≤ k

p0
P{τ ≤ T} . (3.23)

Here τ ≤ T implies that

∥p̂τ − p∗∥Bτ = (p̂τ − p∗)⊤
λI + ∑

j∈[k]

Nj(τ)S
⊤
j Sj

 (p̂τ − p∗)

≥ m(p̂τ − p∗)⊤
(
S⊤
i Si

)
(p̂τ − p∗)

= m ∥Si(p̂τ − p∗)∥2 ≥ m(ϵ/16)2 ,

where the last inequality follows from Lemma 3.17. Therefore we have

E
[
exp(∥p̂τ − p∗∥2Bτ

/2)
]
≥ E

[
1[τ ≤ T ] exp(∥p̂τ − p∗∥2Bτ

/2)
]

≥ exp(m(ϵ/16)2/2)P{τ ≤ T} . (3.24)

Note that |Bτ | ≤ |BT | ≤ (1 + TL/d)d for L = maxi

√
trace(S⊤

i Si) = maxi ∥Si∥F by
Lemma 10 of Abbasi-Yadkori et al. (2011), where ∥·∥F is the Frobenius norm. Therefore
we have

E[exp(∥p̂τ − p∗∥Bτ /2)] ≤ E

[√
|Bτ | ·

exp(∥p̂τ − p∗∥2Bτ
/2)√

|Bτ |

]

≤ (1 + TL/d)d/2E

[
exp(∥p̂τ − p∗∥2Bτ

/2)√
|Bτ |

]

≤ (1 + TL/d)d/2E

[
exp(∥p̂0 − p∗∥2B0

/2)√
|B0|

]
(3.25)

=

(
1 +

TL

dλ

)d/2
eλ∥p

∗∥2/2 , (3.26)
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where (3.25) holds since
exp(∥p̂t−p∗∥2Bt

/2)√
|Bt|

is a supermartingale from Lemma 3.6. Com-
bining (3.23), (3.24), and (3.26), we obtain
∞∑

m=n0

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Ā

c
i (t), Ni(t) = m

]]
≤ k

p0

(
1

λ
+
TL

dλ

)d/2
eλ∥p

∗∥2/2
∞∑

m=n0

e−m(ϵ/16)2/2

≤ k

p0

(
1

λ
+
TL

dλ

)d/2
eλ∥p

∗∥2/2 e−n0ϵ2/2

1− e−(ϵ/16)2/2
.

By choosing n0 = d log T
(ϵ/16)2

we obtain the lemma.

3.6.5.5 Analysis for Case (D)

Lemma 3.18. For any i ∈ [k],

E

[
T∑
t=1

1

[
p̄t ∈ Ci, Āi(t), Ã

c
i (t)
]]
≤ 48

9

d+ 2

ϵ2
k

p0
.

Remark. To prove the regret upper bound, it is enough to prove Lemma 3.18 only for
i = 1. However, for the sake of generality, we prove the lemma for any i ∈ [k].

Before proving Lemma 3.18, we give two following lemmas.

Lemma 3.19. For any i ∈ [k], the event Āi(t) implies Ai(t).

Proof. Using the triangle inequality, we have

∥Sip∗ − Sip̂t∥ ≤ ∥Sip∗ − Sip̄t∥+ ∥Sip̄t − Sip̂t∥

≤ ϵ/8 + ∥Si∥ ·
ϵ

16maxi∥Si∥
< ϵ/4 ,

which completes the proof.

Now, Lemma 3.18 can be intuitively proven because from Lemma 3.19, Āi(t) implies
Ai(t), and the events Ai(t) and Ãc

i (t) does not simultaneously occur many times.
Let t = σ1, . . . , σm be the time of the firstm times that the event {p̄t ∈ Ci, Ai(t), Ni(t) =

ni} occurred (not {p̄t ∈ Ci, Āi(t), Ni(t) = ni}). In other words, we define

• σ1 : the first time that p̄t ∈ Ci, Ai(t) and Ni(t) = ni occurred

• σ2 : the second time that p̄t ∈ Ci, Ai(t) and Ni(t) = ni occurred

• . . . .

Now we prove the following lemma using Lemma 3.3.

Lemma 3.20. For any 0 ≤ ξ < 1/2,

P
{
Ãc
i (t)

∣∣∣ Ai(t), σk = t
}
≤ exp

(
− 9

16
ξϵ2ni

)
(1− 2ξ)−d/2 . (3.27)

Proof. Recall that Ti =
{
p ∈ Rd : ∥Sip− Sip∗∥ > ϵ

}
. We follow a similar argument

as the analysis for Lemma 3.11. Since p̃t ∼ N(B−1
t bt, B

−1
t ), the squared Mahalanobis

distance ∥B1/2
t (p− p̂t)∥2 follows the chi-squared distribution with d degree of freedom.

Hence, for h(x) = PX∼χ2
d
{X ≥ x}, we have

P
{
Ãc
i (t)

∣∣∣ Ai,ni , σk = t
}
≤ h

(
inf
p∈Ti
∥B1/2

t (p− p̂t)∥2
)
.

Then, (3.27) directly follows from Lemma 3.3.
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Proof of Lemma 3.18. From Lemma 3.19, the event Āi(t) implies Ai(t). Hence, it is
enough to derive the upper bound for

E

[
T∑
t=1

1

[
p̄t ∈ Ci, Ai(t), Ã

c
i (t)
]]

instead of the bound for

E

[
T∑
t=1

1

[
p̄t ∈ Ci, Āi(t), Ã

c
i (t)
]]
.

Using Lemma 3.20, we can bound the term for case (D) from above as

E

[
T∑
t=1

1

[
p̄t ∈ Ci, Ai(t), Ã

c
i (t)
]]

= E

[
T∑

ni=1

T∑
t=1

1

[
Ai(t), Ã

c
i (t), Ni(t) = ni

]]

=

T∑
ni=1

T∑
t=1

P
{
Ai(t), Ã

c
i (t), Ni(t) = ni

}

=
T∑

ni=1

T∑
t=1

T∑
k=1

P
{
Ai(t), Ã

c
i (t), σk = t

}
(the event {σk = t} is exclusive for fixed ni)

=
T∑

ni=1

T∑
t=1

T∑
k=1

P{Ai(t), σk = t}P
{
Ãc
i (t)

∣∣∣ Ai(t), σk = t
}

≤
T∑

ni=1

T∑
t=1

T∑
k=1

P{Ai(t), σk = t}Ce−niι (by Lemma 3.20)

=

T∑
ni=1

Ce−niι
T∑
t=1

T∑
k=1

P{Ai(t), σk = t}

≤
T∑

ni=1

Ce−niι
T∑
t=1

T∑
k=1

P{σk = t}

≤
T∑

ni=1

Ce−niι
T∑
k=1

P{σk exists}

≤
T∑

ni=1

Ce−niι
T∑
k=1

(
1− p0

k

)k−1
(by p̃σs ̸∈ Ci for s = 1, . . . , k − 1)

≤ 3C
1

eι − 1

k

p0

≤ 48

9

d+ 2

ϵ2
k

p0
,

where ι = 9ξϵ2

16 , C = (1 − 2ξ)−
d
2 , and in the last inequality we select the optimal ξ and

use 1 + x ≤ ex.
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3.6.5.6 Analysis for Case (E)

Lemma 3.21. For any i ̸= 1,

E

[
T∑
t=1

1
[
p̄t ∈ Ci, Āi(t)

]]
≤ 25d/2+7Γ(d/2 + 1)eλ

2∥p∗∥2/2

δ2ϵd+2λd/2+1
, (3.28)

where ϵ is defined in (3.5) and satisfies ϵ ≤ minp∈Cc
1
∥p− p∗∥ /3, and

δ := min
p̂:(L1−Li)⊤p̂≥0, ∥Si(p̂−p∗)∥≤ϵ/8

∥S1(p̂− p∗)∥ .

We prove Lemma 3.21 using Lemma 3.6 and Theorem 3.4.

Remark. The upper bound in (3.28) goes to infinite when we set λ = 0, that is, a flat
prior is used. However, this is not the essential effect of the prior but just comes from
the minimum eigenvalue of B1. In fact, we can see from the proof that a similar bound
can be obtained for λ = 0 if we run some deterministic initialization until Bt becomes
positive definite.

Proof. We evaluate each term in the summation using Theorem 3.4 with

At = {p̄t ∈ Ci, ∥Si(p̄t − p∗)∥ ≤ ϵ/8, N1(t) = n} ,
Bt = {p̃t ∈ C1} .

for n ∈ [T ]. Recall that

ḡt(p) =
1√

(2π)d|B−1
t |

exp

(
−1

2
∥p− p̂t∥2Bt

)

is the probability density function of p̂t given Ft = {Bt, bt}. Using τ defined in (3.20),
it holds for any τ ∈ [T ] that

P{Bτ |Fτ} = P{p̃τ ∈ C1 | Fτ}

=

∫
p∈C1

ḡτ (p)dp

≥
∫
p:∥p−p∗∥≤3ϵ

ḡτ (p)dp

≥ sup
p:∥p−p∗∥≤2ϵ

∫
p′:∥p′−p∥≤ϵ

ḡτ (p
′)dp′ (3.29)

≥ sup
p:∥p−p∗∥≤2ϵ

inf
p′:∥p′−p∥≤ϵ

ḡτ (p
′)Vol({p′′ :

∥∥p′′ − p∥∥ ≤ ϵ})
=

(
√
πϵ)d

Γ(d/2 + 1)
sup

p:∥p−p∗∥≤2ϵ
inf

p′:∥p′−p∥≤ϵ
ḡτ (p

′)

=
(ϵ/
√
2)d
√
|Bτ |

Γ(d/2 + 1)
exp

{
−1

2

(
inf

p:∥p−p∗∥≤2ϵ
sup

p′:∥p′−p∥≤ϵ

∥∥p′ − p̂τ∥∥2Bτ

)}

≥
(ϵ/
√
2)d
√
|Bτ |

Γ(d/2 + 1)
exp

{
−
∥p̂τ − p∗∥2Bτ

− ϵδ
√
λn

2

}
, (3.30)

where (3.29) follows since {p : ∥p− p∗∥ ≤ 3ϵ} ⊃ {p′ : ∥p′ − p0∥ ≤ ϵ} for any p0
such that ∥p0 − p∗∥ ≤ 2ϵ, and the last inequality follows from Theorem 3.3. To apply
Theorem 3.3, we used Lemma 3.19.
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Now we define a stochastic process corresponds to (3.30) as

Pt =
(ϵ/
√
2)d
√
|Bt|

Γ(d/2 + 1)
exp

{
−
∥p̂t − p∗∥2Bt

− ϵδ
√
λn

2

}
.

Then, by Lemma 3.6,

E[P−1
t+1|Ft] ≤

Γ(d/2 + 1)

(ϵ/
√
2)d

e−ϵδ
√
λn/2E

[
1√
|Bt+1|

E

[
exp

(
∥p̂t − p∗∥2Bt+1

2

) ∣∣∣∣∣ Ft, Si(t)
] ∣∣∣∣∣ Ft

]

≤ Γ(d/2 + 1)

(ϵ/
√
2)d

e−ϵδ
√
λn/2E

[
1√
|Bt|

exp

(
∥p̂t − p∗∥2Bt

2

) ∣∣∣∣∣ Ft
]

= P−1
t ,

which means that P−1
t is a supermartingale. Therefore we can apply Theorem 3.4 and

obtain

E

[
T∑
t=1

1[p̂t ∈ Ci, ∥Si(p̄t − p∗)∥ ≤ ϵ/8, N1(t) = n]

]
≤ E

[
1[τ ≤ T ]P−1

τ

]
≤ E

[
P−1
τ

]
≤ E

[
P−1
1

]
=

Γ(d/2 + 1)eλ
2∥p∗∥2/2

(ϵ
√
λ/2)d

e−ϵδ
√
λn/2 .

Finally we have

E

[
T∑
t=1

1[p̄t ∈ Ci, ∥Si(p̄t − p∗)∥ ≤ ϵ/8]

]

=
T∑
n=1

E

[
T∑
t=1

1[p̄t ∈ Ci, ∥Si(p̄t − p∗)∥ ≤ ϵ/8, N1(t) = n]

]

≤ Γ(d/2 + 1)eλ
2∥p∗∥2/2

(ϵ
√
λ/2)d

∞∑
n=1

e−ϵδ
√
λn/2

≤ Γ(d/2 + 1)eλ
2∥p∗∥2/2

(ϵ
√
λ/2)d

∫ ∞

0
e−ϵδ

√
λx/2dx

=
Γ(d/2 + 1)eλ

2∥p∗∥2/2

(ϵ
√
λ/2)d

2

(ϵδ
√
λ/2)2

Γ(2)

=
2d/2+3Γ(d/2 + 1)eλ

2∥p∗∥2/2

δ2ϵd+2λd/2+1
,

which completes the proof.

3.6.6 Property of Dynamic Pricing Games

In this section, we investigate a property of dp-easy games.

Proposition 3.4. Consider any dp-easy games with c > −1. Then, any two actions in
the game are neighbors.
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Remark. In section 6.6, we considered dp-easy games with c > 0, but this can be relaxed
to c > −1 to prove Proposition 3.4.

Proof. Take any two different actions a, b ∈ [k] such that a < b. From the definition of
the loss matrix in dp-easy games, we have ea ∈ Ca and eb ∈ Cb.

First, we will find α ∈ [0, 1] such that

αea + (1− α)eb ∈ Ca ∩ Cb . (3.31)

From the definition of the loss matrix, the i-th element of L(αea + (1− α)eb) ∈ Pd
is 

−i (1 ≤ i ≤ a)
αc+ (1− α) · (−i) (a+ 1 ≤ i ≤ b)
c (b < i ≤ k)

. (3.32)

It is easy to see that the indices which give the minimum value in (3.32) is a or b. Thus,
to achieve the condition (3.31), the following should be satisfied,

−a = αc+ (1− α) · (−b) ,

which is equivalent to

α =
b− a
c+ b

(=: α∗) .

Note that we have 0 ≤ α ≤ 1 for any c > −1.
Next, we introduce the following definitions.

p(a,b) := α∗ea + (1− α∗)eb ∈ Ca ∩ Cb ,

Ball(a,b)ϵ :=
{
p ∈ Pd : ∥p− p(a,b)∥ ≤ ϵ

}
,

L(x) := L(p(a,b) + x) ∈ Rk .

To prove the proposition, it is enough to prove the following: there exists ϵ > 0,
Ball

(a,b)
ϵ ⊂ Ca ∪ Cb.
To prove this, it is enough to prove that, there exists ϵ > 0,

min
x∈Rd : ∥x∥≤ϵ

min
i∈[k]\{a,b}

(
(L(x))i − (L(x))a

)
∨
(
(L(x))i − (L(x))b

)
> 0 . (3.33)

We will prove (3.33) in the following. Take any i ∈ [k]\{a, b} and

ϵ := min
i:1≤i<a

1

2

a− i
∥La − Li∥

∧ min
i:a<i<b

1

2

(1− α∗)(b− i)
∥Li − Lb∥

∧ min
i:b<i≤k

1

2

c+ a

∥La − Li∥
.

Note that the ϵ used here is different from the one used in the proof of the regret upper
bounds.
Case (A): When 1 ≤ i < a, using Cauchy–Schwarz inequality, we have(

(L(x))i − (L(x))a

)
∨
(
(L(x))i − (L(x))b

)
≥ (L(x))i − (L(x))a

= (−i+ L⊤
i x)− (−a+ L⊤

a x)

= (a− i)− (La − Li)⊤x
≥ (a− i)− ∥La − Lb∥∥x∥
≥ (a− i)− ϵ∥La − Li∥

≥ 1

2
(a− i)

> 0 .
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The arguments for cases (B) and (C) follow in the similar manner as case (A).
Case (B): When a < i < b, we have(

(L(x))i − (L(x))a

)
∨
(
(L(x))i − (L(x))b

)
≥ (L(x))i − (L(x))b

=
{
α∗c+ (1− α∗) · (−i) + L⊤

i x
}
−
{
α∗c+ (1− α∗) · (−b) + L⊤

k x
}

= (1− α∗)(b− i)− (Li − Lb)⊤x
≥ (1− α∗)(b− i)− ϵ(Li − Lb)⊤

≥ 1

2
(1− α∗)(b− i) > 0 .

Case (C): When b < i ≤ k, we have(
(L(x))i − (L(x))a

)
∨
(
(L(x))i − (L(x))b

)
≥ (L(x))i − (L(x))a

= (c+ L⊤
i x)− (−a+ L⊤

a x)

≥ c+ a− ∥La − Li∥∥x∥
≥ c+ a− ϵ∥La − Li∥

≥ 1

2
(c+ a)

> 0 .

Summing up the argument for cases (A) to (C), the proof is completed.

3.6.7 Details and Additional Results of Experiments

Here we give the specific values of the opponent’s strategy used in Section 6.6 and show
the extended experimental results for performance comparison. Table 3.2 summarizes
the values of opponent’s strategy used in this section and Section 6.6. Figure 3.4 shows
the empirical comparison of the proposed algorithms against the benchmark methods,
and Figure 3.5 shows the number of the rejected times. We can see the same tendency
as Section 6.6, that is, TSPM performs the best and the number of rejections does not
increase with the time step t.

Table 3.2: The values of the opponent’s strategy.
# of outcomes d opponent’s strategy p∗

2 [0.7, 0.3]
3 [0.5, 0.3, 0.2]
4 [0.3, 0.3, 0.3, 0.1]
5 [0.2, 0.3, 0.3, 0.1, 0.1]
6 [0.2, 0.2, 0.3, 0.1, 0.1, 0.1]
7 [0.2, 0.2, 0.3, 0.1, 0.1, 0.05, 0.05]

3.7 Conclusion

This chapter investigated Thompson sampling (TS) for stochastic partial monitoring from
the algorithmic and theoretical viewpoints. We provided a new algorithm that enables
exact sampling from the posterior distribution, and numerically showed that the pro-
posed algorithm outperforms existing methods. Besides, we provided an upper bound
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Figure 3.4: Regret-round plots of the algorithms. The solid lines indicate the average over 100
independent trials. The thin fillings are the standard error.

for the problem-dependent logarithmic expected pseudo-regret for the linearized version
of the partial monitoring. To our knowledge, this bound is the first logarithmic problem-
dependent expected pseudo-regret bound of a TS-based algorithm for linear bandit prob-
lems and strongly locally observable partial monitoring games.

There are several remaining questions. As mentioned in Section 3.4, Kirschner et al.
(2020) considered linear partial monitoring with the feedback structure y(t) = SAtp

∗ +
ϵt, where (ϵt)

T
t=1 is a sequence of independent sub-Gaussian noise vector in Rd. This

setting is the generalization of our linear setting, where (ϵt)
T
t=1 are i.i.d. Gaussian vec-

tors. Therefore, a natural question that arises is whether we can extend our analysis on
TSPM-Gaussian to the sub-Gaussian case, although we believe it would be not straight-
forward as discussed in Section 3.4. It is also an important open problem to derive a
regret bound on TSPM using the exact posterior sampling for the discrete partial mon-
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Figure 3.5: The number of rejected times by the accept-reject sampling. The solid lines indicate
the average over 100 independent trials after taking moving average with window
size 100.

itoring. Although we conjecture that the algorithm also achieves logarithmic regret for
the setting, there still remain some difficulties in the analysis. In particular, we have to
handle the KL divergence in ft(p) and consider the restriction of the support of the op-
ponent’s strategy to Pd, which make the analysis much more complicated. Besides, it is
worth noting that the theoretical analysis of TS for hard games has never been theoreti-
cally investigated. We believe that in general TS suffers linear regret in the minimax sense
due to its greediness. However, we conjecture that TS can achieve the sub-linear regret
for some specific instances of hard games in the sense of the problem-dependent regret,
as empirically observed in the experiments. Finally, it is an important open problem to
derive the minimax regret for anytime TS-based algorithms. This needs more detailed
analysis on o(log T ) terms in the regret bound, which were dropped in our main result.
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Chapter 4

Best of Both Worlds Algorithms for Partial
Monitoring

This chapter continues to consider the partial monitoring problem with k-actions and
d-outcomes. In the previous chapter, we constructed an algorithm that achieves good
performance in the stochastic regime, but the underlying environment is not necessarily
stochastic. To address this issue, in this chapter, we aim to construct the first best-of-both-
worlds partial monitoring algorithms that performs well not only in the stochastic regime
but also in the adversarial regime. In particular, we show that for non-degenerate lo-
cally observable games, the regret is O(m2k4 log(T ) log(kΠT )/∆min) in the stochastic
regime and O(mk3/2

√
T log(T ) log kΠ) in the adversarial regime, where T is the num-

ber of rounds,m is the maximum number of distinct observations per action, ∆min is the
minimum suboptimality gap, and kΠ is the number of Pareto optimal actions. Moreover,
we show that for globally observable games, the regret is O(c2G log(T ) log(kΠT )/∆

2
min)

in the stochastic regime and O((c2G log(T ) log(kΠT ))
1/3T 2/3) in the adversarial regime,

where cG is a game-dependent constant. We also provide regret bounds for a stochas-
tic regime with adversarial corruptions. Our algorithms are based on the follow-the-
regularized-leader framework and are inspired by the approach of exploration by op-
timization and the adaptive learning rate in the field of online learning with feedback
graphs.

4.1 Introduction

Partial monitoring (PM) is a general sequential decision-making problem with limited
feedback, which can be seen as a generalization of the bandit problem. A PM game
G = (L,Φ) is defined by the pair of a loss matrix L ∈ [0, 1]k×d and feedback matrix
Φ ∈ Σk×d, where k is the number of actions, d is the number of outcomes, and Σ is a
set of feedback symbols. The game is sequentially played by a learner and opponent for
T ≥ 3 rounds. At the beginning of the game, the learner observes L and Φ. At every
round t ∈ [T ], the opponent chooses an outcome xt ∈ [d], and then the learner chooses
an action At ∈ [k], suffers an unobserved loss LAtxt , and receives a feedback symbol
σt = ΦAtxt , where Lax is the (a, x)-th element of L. In general, the learner cannot
directly observe the outcome or loss, and can only observe the feedback symbol. The
learner’s goal is to minimize their cumulative loss over all rounds. The performance of
the learner is evaluated by the regret RegT , which is defined as the difference between
the cumulative loss of the learner and the single optimal action a∗ fixed in hindsight,
that is, a∗ = argmina∈[k] E

[∑T
t=1Laxt

]
and RegT = E

[∑T
t=1

(
LAtxt − La∗xt

)]
=

E
[∑T

t=1 ⟨ℓAt − ℓa∗ , ext⟩
]
, where ℓa ∈ Rd is the a-th row of L, and ex ∈ {0, 1}d is the

x-th standard basis of Rd.
PM has been investigated in two regimes: the stochastic and adversarial regimes.
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In the stochastic regime, outcomes (xt)Tt=1 are sampled from a fixed distribution ν∗ in
an i.i.d. manner, whereas in the adversarial regime, the outcomes are arbitrarily decided
from the set of outcomes [d] possibly depending on the history of the actions (As)t−1

s=1.
Some of the first investigations on PM originate from the work by Rustichini (1999);

Piccolboni and Schindelhauer (2001). The seminal work was conducted by Cesa-Bianchi
et al. (2006); Bartók et al. (2011), the latter of which showed that all PM games can be
classified into four classes based on their minimax regrets. They classified PM games into
trivial, easy, hard, and hopeless games, for which their minimax regrets are 0, Θ̃(

√
T ),

Θ(T 2/3), and Θ(T ), respectively. The easy and hard games are also called locally ob-
servable and globally observable games, respectively.

PM algorithms have been established for both the stochastic and adversarial regimes.
In the adversarial regime, the most common form of algorithms is an Exp3-type one (Fre-
und and Schapire, 1997; Auer et al., 2002b). Recently, Lattimore and Szepesvári (2020b)
showed that an Exp3-type algorithm with the approach of exploration by optimization
obtains the aforementioned minimax bounds. Notably, they proved the regret bounds of
O(mk3/2

√
T log k) for non-degenerate locally observable games, andO((cGT )

2/3(log k)1/3)
for globally observable games, where m ≤ min{|Σ|, d} is the maximum number of dis-
tinct observations per action and cG is a game-dependent constant defined in Section 4.5.
PM has also been investigated in the stochastic regime and some algorithms exploiting
the stochastic structure of the problem can achieveO(log T ) regret bounds (Vanchinathan
et al., 2014; Komiyama et al., 2015a; Tsuchiya et al., 2020).

Algorithms assuming the stochastic model for losses can suffer linear regret in the
adversarial regime, whereas algorithms for the adversarial regime tend to perform poorly
in the stochastic regime. Since knowing the underlying regime is difficult in practice,
obtaining favorable performance for both the stochastic and adversarial regimes without
knowing the underlying regime is desirable.

To achieve this goal, particularly in the classical multi-armed bandits, the Best-of-
Both-Worlds (BOBW) algorithms that perform well in both stochastic and adversarial
regimes have been developed. The first BOBW algorithm was developed in a seminal
paper by Bubeck and Slivkins (2012), and the celebrated Tsallis-INF algorithm was re-
cently proposed by Zimmert and Seldin (2021). BOBW algorithms have also been devel-
oped beyond the multi-armed bandits (e.g., Gaillard et al. 2014; Luo and Schapire 2015;
Erez and Koren 2021; Zimmert et al. 2019; Lee et al. 2021; Jin and Luo 2020; Huang
et al. 2022; Saha and Gaillard 2022), whereas they have never been investigated in PM.

Some BOBW algorithms are known to perform well also in the stochastic regime with
adversarial corruptions (Lykouris et al., 2018), which is an intermediate regime between
the stochastic and adversarial regimes. This regime is advantageous in practice, since the
stochastic assumption on outcomes is too strong whereas the adversarial assumption is
too pessimistic. Therefore it is also practically important to develop BOBW algorithms
that cover this intermediate regime.

4.1.1 Contributions of this Chapter

This study establishes new BOBW algorithms for PM based on the Follow-the-Regularized-
Leader (FTRL) framework (McMahan, 2011). We rely on two recent theoretical ad-
vances: (i) the Exp3-type algorithm for PM developed with the approach of exploration
by optimization (Lattimore and Szepesvári, 2020b) and (ii) the adaptive learning rate for
online learning with feedback graphs (Ito et al., 2022b), for which BOBW algorithms
have been developed (Erez and Koren, 2021; Ito et al., 2022a; Rouyer et al., 2022; Kong
et al., 2022). Note that it is known that the FTRL with the (negative) Shannon entropy
regularizer corresponds to the Exp3 algorithm.

The regret bounds of the proposed algorithms are as follows. We define the number
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Table 4.1: Regret upper bounds for PM. The constantC ≥ 0 is the corruption level, and Rloc and
Rglo are the regret upper bounds of the proposed algorithm in the stochastic regime
for locally and globally games, respectively. “observ.” means observability. TSPM is
the bound by Tsuchiya et al. (2020); refer to the paper for the definition of Λ′. ExpPM
is by Lattimore and Szepesvári (2020b). PM-DEMD is by Komiyama et al. (2015a),
and D(ν∗) is a distribution-dependent constant.

observ. algorithm stochastic (stoc.) adversarial stoc. w/ corruptions

locally TSPM O
(
mk2d log(T )

Λ′2

)
– –

obs. ExpPM – O(mk3/2
√
T log k) –

Proposed O
(
m2k4 log(T ) log(kΠT )

∆min

)
O(mk3/2

√
T log(T ) log kΠ) Rloc +

√
CRloc

globally PM-DMED O(D(ν∗) log T ) – –
obs. ExpPM – O((cGT )

2/3(log k)1/3) –
Proposed O

(
c2G log(T ) log(kΠT )

∆2
min

)
O((cGT )

2/3(log(T ) log(kΠT ))
1/3) Rglo + (C2Rglo)1/3

of Pareto optimal actions by kΠ ≤ k, and the minimum suboptimality gap by ∆min =
mina∈[k]\{a∗}∆a, where ∆a = (ℓa − ℓa∗)

⊤ν∗ ≥ 0 for a ∈ [k] is the loss gap be-
tween action a and optimal action a∗. We show that for non-degenerate locally observ-
able games, the regret is O(m2k4 log(T ) log(kΠT )/∆min) in the stochastic regime and
O(mk3/2

√
T log(T ) log kΠ) in the adversarial regime. We also show that for globally

observable games, the regret is O(c2G log(T ) log(kΠT )/∆
2
min) in the stochastic regime

and O((cGT )
2/3(log(T ) log(kΠT ))

1/3) in the adversarial regime. In addition, we also
consider some intermediate regimes, such as the stochastic regime with adversarial cor-
ruptions (Lykouris et al., 2018), which we define in PM based on the corruptions on
outcomes. To our knowledge, the proposed algorithms are the first BOBW algorithms
for PM. Table 5.2 lists the regret bounds provided in this study and summarizes compar-
isons with existing work. Our algorithm is not the best in the strict sense. For example
in the stochastic regime, compared to Komiyama et al. (2015a), the dependence on T of
their bound is log T , whereas that of ours is (log T )2. Nevertheless, this kind of looseness
often appears in the BOBW literature (Bubeck and Slivkins, 2012; Seldin and Slivkins,
2014; Seldin and Lugosi, 2017; Ito et al., 2022a) and it is an important future work to
close this gap as was done by Zimmert and Seldin (2021) in the case of multi-armed
bandits.

4.1.2 Technical Summary

For locally observable games, we develop the algorithm based on the approach of explo-
ration by optimization (Lattimore and Szepesvári, 2020b) with the Shannon entropy reg-
ularizer. This approach is promising especially in locally observable games for bounding
a component of regret, in which we consider a certain optimization problem with respect
to the action selection probability. To obtain BOBW guarantees, we consider using a
self-bounding technique (Zimmert and Seldin, 2021). In the self-bounding technique,
we first derive upper and lower bounds of regret using a random variable depending on
the action selection probability, and then derive a regret bound by combining the upper
and lower bounds. However, using the exploration by optimization may make some ac-
tion selection probabilities extremely small, preventing derivation of a meaningful lower
bound. To handle this problem, we consider an optimization over a restricted feasible
set. This restriction enables us to lower bound the regret such that the self-bounding
technique is applicable, and we show that even with the optimization over the restricted
feasible set, the component of regret is favorably bounded. In addition, we consider the
upper truncation of the learning rate developed by Ito et al. (2022a) to collaborate with
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the theory of exploration by optimization.
For globally observable games, we develop the algorithm using the Shannon entropy

regularizer as for locally observable games. To derive BOBW guarantees, we use the
technique of adaptive learning rate developed in online learning with feedback graphs
by Ito et al. (2022a), but in a modified way. Their work uses a regularization called hy-
brid regularizers, which combines a Shannon entropy of the compensation of the action
selection probability with typical regularizers (Zimmert et al., 2019; Ito et al., 2022b,a).
We think that naively applying this regularization also yields BOBW guarantees, but it
loses the closed form of the action selection probability in FTRL updates and requires
solving an optimization problem each round. This study shows that we can obtain the
BOBW guarantee even only with the standard Shannon entropy regularization, and con-
sequently, the proposed algorithm does not need to solve the optimization problem every
round and can be implemented efficiently.

4.1.3 Related Work

In the adversarial regime, FeedExp3 is a first Exp3-type algorithm, which has a first non-
asymptotic regret bound (Piccolboni and Schindelhauer, 2001) and is known to achieve
a minimax regret of O(T 2/3) (Cesa-Bianchi et al., 2006). Since then, Exp3-type algo-
rithms have been used in many contexts. Bartók (2013) relied on an Exp3-type algorithm
as a subroutine of their algorithm. Lattimore and Szepesvári (2019b) showed that for a
variant of the locally observable game (point-locally observable games), an Exp3-type al-
gorithm achieves anO(

√
T ) regret. Recently, Lattimore and Szepesvári (2020b) showed

that an Exp3-type algorithm using exploration by optimization can obtain bounds with
good leading constants for both easy and hard games. There are also a few algorithms
that are not Exp3-type (Bartók et al., 2011; Foster and Rakhlin, 2012).

PM has also been investigated in the stochastic regime, although less extensively
than the adversarial regime (Bartók et al., 2012). One study (Komiyama et al., 2015a)
is based on DMED (Honda and Takemura, 2011), in which the algorithm heavily ex-
ploits the stochastic structure, and the algorithm was shown to achieve an O(log T ) re-
gret with a distribution-optimal constant factor for globally observable games. Two other
approaches (Vanchinathan et al., 2014; Tsuchiya et al., 2020) are based on Thompson
sampling (Thompson, 1933). They focus on another variant of locally observable games
(strongly locally observable games), and the algorithms presented a strong empirical per-
formance in the stochastic regime with anO(log T ) regret bound (Tsuchiya et al., 2020).

It is worth noting that PM has been studied in a variety of contexts with somewhat dif-
ferent settings, e.g., with feedback graphs (Alon et al., 2015) or with linear feedback (Lin
et al., 2014). While our focus in this chapter is the locally and globally observable games,
there has been some literature for hopeless games; we basically cannot do anything with
the current definition of the regret, but some research has been done by modifying the
definition of the regret (Rustichini, 1999; Mannor and Shimkin, 2003; Perchet, 2011;
Mannor et al., 2014).

4.2 Background

Notation Let ∥x∥, ∥x∥1, and ∥x∥∞ be the Euclidian, ℓ1-, and ℓ∞-norms for a vector
x respectively, and ∥A∥∞ = maxi,j |Aij | be the maximum norm for a matrix A. Let
Pk = {p ∈ [0, 1]k : ∥p∥1 = 1} be the (k−1)-dimensional probability simplex. A vector
ea ∈ {0, 1}k is the a-th standard basis of Rk, and 1 is the all-one vector.

Partial Monitoring Consider any PM game G = (L,Φ). Let m ≤ |Σ| be the max-
imum number of distinct symbols in a single row of Φ ∈ Σk×d over all rows. In the
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following, we introduce several concepts in PM. Different actions a and b are duplicate
if ℓa = ℓb. We can decompose possible distributions of d outcomes in Pd based on the
loss matrix: for every action a ∈ [k], cell Ca = {u ∈ Pd : maxb∈[k](ℓa − ℓb)⊤u ≤ 0}
is the set of probability vectors in Pd for which action a is optimal. Each cell is a convex
closed polytope. Let dim(Ca) be the dimension of the affine hull of Ca. If Ca = ∅, action
a is dominated. For non-dominated actions, if dim(Ca) = d− 1 then action a is Pareto
optimal, and if dim(Ca) < d−1 then action a is degenerate. We denote the set of Pareto
optimal actions by Π, and the number of Pareto optimal actions by kΠ = |Π|. Two Pareto
optimal actions a, b ∈ Π are neighbors if dim(Ca ∩ Cb) = d− 2, and this notion is used
to define the difficulty of PM games. It is known that the undirected graph induced by
the above neighborhood relations is connected (see e.g., Bartók et al. 2012, Lattimore
and Szepesvári 2020a, Lemma 37.7), and this is useful for loss difference estimations
between distinct Pareto optimal actions. A PM game is called non-degenerate if it has no
degenerate actions. An example of cell decomposition is given in Figure 3.1 in Chapter 3.
From hereon, we assume that PM game G is non-degenerate and contains no duplicate
actions. The following observability conditions characterize the difficulty of PM games.

Definition 4.1. Neighbouring actions a and b are globally observable if there exists func-
tion we : [k]× Σ→ R such that

k∑
c=1

we(c,Φcx) = Lax − Lbx for all x ∈ [d] . (4.1)

Neighbouring actions a and b are locally observable if there exists we = wab satisfy-
ing (4.1) and we(c, σ) = 0 for c ̸∈ {a, b}. A PM game is called globally (resp. locally)
observable if all neighboring actions are globally (resp. locally) observable.

It is easy to see from the above definition that any locally observable games are glob-
ally observable, and this chapter assumes that G is globally observable.

Loss Difference Estimation Next, we introduce a method of loss difference estima-
tions used in PM. Let H be the set of all functions from [k]×Σ to Rd. In the following,
we show that for globally observable games we can estimate loss differences between any
Pareto optimal actions using some G ∈ H based on (4.1).

Lemma 4.1 (Lattimore and Szepesvári 2020b, Lemma 4). Consider any globally ob-
servable game. Then there exists a function G ∈ H such that for all b, c ∈ Π, we have

k∑
a=1

(G(a,Φax)b −G(a,Φax)c) = Lbx − Lcx for all x ∈ [d] . (4.2)

This result straightforwardly follows from the fact that the graph induced by the set of
Pareto optimal actions is connected. Let T be a tree overΠ induced by the neighborhood
relations. Lattimore and Szepesvári (2020b) provides the following example of G:

G(a, σ)b =
∑

e∈pathT (b)

we(a, σ) for a ∈ Π , (4.3)

where pathT (b) is the set of edges from b ∈ Π to an arbitrarily chosen root c ∈ Π on
T .
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Intermediate Regimes between Stochastic and Adversarial Regimes Here, we dis-
cuss intermediate regimes between the stochastic and adversarial regimes: the stochastic
regime with adversarial corruptions and an adversarial regime with a self-bounding con-
straint.

The stochastic regime with adversarial corruptions was originally considered by Lyk-
ouris et al. (2018) in the classical multi-armed bandits. We define this regime in PM
by considering the corruptions on the sequence of outcomes (xt)Tt=1. In this regime, a
temporary outcome x′t ∈ [d] is sampled from an unknown distribution ν∗, and the ad-
versary then corrupts x′t to xt without knowing At. We define the corruption level by
C = E

[∑T
t=1∥Lext −Lex′t∥∞

]
≥ 0. If C = 0, this regime corresponds to the stochas-

tic regime, and if C ≥ T , this regime corresponds to the adversarial regime. As we
will see, the proposed algorithms work without knowing the corruption level C. We also
define another intermediate regime, a stochastically constrained adversarial regime, in
Section 4.6.1.

In this work, we consider an adversarial regime with a self-bounding constraint, de-
veloped in the multi-armed bandits (Zimmert and Seldin, 2021) and includes the regimes
that appeared so far.

Definition 4.2. Let ∆ ∈ [0, 1]k and C ≥ 0. The environment is in an adversar-
ial regime with a (∆, C, T ) self-bounding constraint if it holds for any algorithm that
RegT ≥ E

[∑T
t=1∆At − C

]
.

We can show that the regimes that have appeared so far are included in the adversarial
regime with a self-bounding constraint; the details are discussed in Section 4.6.1.

In this study, we assume that there exists a unique optimal action. This assumption
has been employed by many studies aiming to develop BOBW algorithms (Gaillard et al.,
2014; Luo and Schapire, 2015; Wei and Luo, 2018; Ito, 2021a; Zimmert and Seldin,
2021).

4.3 Follow-the-Regularized-Leader

This section recalls the FTRL framework, which was introduced in Chapter 2, and pro-
vides some fundamental bounds used in the analysis. We recall that Π is the set of Pareto
optimal actions. In the FTRL framework, a probability vector pt ∈ Pk over the action
set [k] is given as

qt ∈ argmin
q∈P(Π)

〈
t−1∑
s=1

ŷs, q

〉
+ ψt(q) , pt = Tt(qt) , (4.4)

where the set P(B) := {p ∈ Pk : pa = 0 for a ̸∈ B} for B ⊂ [k] is a convex closed
polytope on the probability simplex with nonzero elements at indices in B, ŷs ∈ Rk is an
estimator of the loss at round t,ψt : Pk → R is a convex regularizer, and Tt : P(Π)→ Pk
is a map from qt to an action selection probability vector pt. We use the Shannon entropy
for ψt, which is defined as

ψt(p) =
1

ηt

k∑
a=1

pa log(pa) = −
1

ηt
H(p) . (4.5)

We can easily check that if we use the Shannon entropy with learning rate ηt, qt ∈ P(Π)
is expressed as

qt,a =
1[a ∈ Π] exp

(
−ηt

∑t−1
s=1 ŷsa

)
∑

b∈Π exp
(
−ηt

∑t−1
s=1 ŷsb

) for a ∈ [k] . (4.6)
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We set an estimator to ŷt = Gt(At, σt)/ptAt (Lattimore and Szepesvári, 2020b), where
for locally observable games, Gt is obtained by minimizing a certain optimization prob-
lem, whereas for globally observable games Gt is set to (4.3). The regret analysis of
FTRL boils down to the evaluation of

∑T
t=1

∑k
a=1 pta(ŷta − ŷta∗). We can decompose

this quantity into

T∑
t=1

k∑
a=1

pta(ŷta − ŷta∗) ≤
T∑
t=1

(
ψt(qt+1)− ψt+1(qt+1)

)
+ ψT+1(ea∗)− ψ1(q1)

+

T∑
t=1

(
⟨qt − qt+1, ŷt⟩ −Dt(qt+1, qt)

)
:::::::::::::::::::::::::::::::

+

T∑
t=1

k∑
a=1

(qt,a − pta)(ŷta − ŷta∗) ,(4.7)

where the inequality follows from the standard analysis of the FTRL framework as given
in Lemma 2.1 in Chapter 2, andDt : Rk×Rk → R+ is the Bregman divergence induced
by ψt, i.e., Dt(p, q) = ψt(p) − ψt(q) − ⟨∇ψt(q), p− q⟩. We refer to the terms with
dashed,

:::::
wavy, and straight underlines in (5.2) as the penalty, stability, and transformation

terms, respectively.
We use a self-bounding technique to bound the regret in the stochastic regime, which

requires a lower bound of the regret. To this end, we introduce parameters Q(a∗) and
Q̄(a∗) given by

Q(a∗) =

T∑
t=1

(1− qt,a∗) and Q̄(a∗) = E [Q(a∗)] . (4.8)

Note that 0 ≤ Q̄(a∗) ≤ T for any a∗ ∈ [k]. Based on the quantity Q̄(a∗), the regret
in the adversarial regime with a self-bounding constraint can be bounded from below as
follows.

Lemma 4.2. In the adversarial regime with a self-bounding constraint, if there exists
c ∈ (0, 1] such that pta ≥ c qt,a for t ∈ [T ] and a ∈ [k], the regret is bounded as
RegT ≥ c∆minQ̄(a∗)− C .

All omitted proofs are given in Section 4.6. This lemma is used to derive poly-
logarithmic regret bounds in the adversarial regime with a self-bounding constraint.

4.4 Locally Observable Case

This section provides a BOBW algorithm for locally observable games and derives its
regret bounds.

4.4.1 Exploration by Optimization in PM

We first briefly explain the approach of exploration by optimization by Lattimore and
Szepesvári (2020b), based on which our algorithm for locally observable games is de-
veloped. In locally observable games, the achievable regret is generally smaller than in
globally observable games. Hence, we need to exploit this easiness to achieve small re-
gret, for which we rely on exploration-by-optimization. Intuitively, in locally observable
games, a loss estimator may suffer a large variance because an informative action might
not be selected due to its large losses. To overcome this issue, Lattimore and Szepesvári
(2020b) proposed exploration-by-optimization, which improves regret bound by optimiz-
ing the stability that corresponds to the variance.
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The key idea behind the approach is to minimize a part of a regret upper bound of an
Exp3-type algorithm (equivalently, FTRL with the Shannon entropy). In particular, they
consider the optimization on variables G : [k] × Σ → Rk and p ∈ Pk. Their algorithm
computes every round the function G and the action selection probability vector p by
optimizing a part of the regret upper bound of FTRL, expressed as

minimize
G∈H, p∈Pk

max
x∈[d]

[
(p− q)⊤Lex

η
+

biasq(G;x)

η
+

1

η2

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉]
,

(4.9)

where ξ(x) = e−x + x − 1 (we abuse the notation by applying ξ in an element-wise
manner), and

biasq(G;x) =

〈
q, Lex −

k∑
a=1

G(a,Φax)

〉
+max

c∈Π

( k∑
a=1

G(a,Φax)c − Lcx

)
,(4.10)

is the bias function. In the optimization problem (4.9), the first term corresponds to
the transformation term, the second term corresponds to the regret for using a biased
estimator, and the third term comes from a part of the stability term. Note that the bias
term does not appear when G satisfies (4.2). Note also that the optimization problem
in (4.9) is convex and can be solved numerically by using standard solvers as discussed
in Lattimore and Szepesvári (2020b).

4.4.2 Proposed Algorithm

This section describes the proposed algorithm for locally observable games. Although
exploration-by-optimization significantly improves the regret bound for locally observ-
able games, they only consider the adversarial regimes, and some modification is required
for making it valid also for the stochastic regime. To obtain BOBW guarantees, we often
rely on a self-bounding technique, which requires a certain lower bound on the action
selection probability p (Gaillard et al., 2014; Wei and Luo, 2018; Zimmert and Seldin,
2021). However, solving the optimization problem (4.9) may result in pa = 0 for a certain
a ∈ [k], which precludes the use of the technique. The proposed algorithm considers the
minimization problem over a restricted feasible set for p instead of over Pk. Let P′

k(q)
for q ∈ P(Π) be P′

k(q) = {p ∈ Pk : pa ≥ qa/(2k) for all a ∈ [k]} ⊂ Pk. We then
consider the following optimization problem:

minimize
G∈H, p∈P′

k(q)
max
x∈[d]

[
(p− q)⊤Lex

η
+

biasq(G;x)

η
+

1

η2

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉]
,

(4.11)

which implies that the solution p of the optimization problem (4.11) satisfies p ≥ q/(2k).
This property is useful when applying the self-bounding technique to bound the regret
in the stochastic regime (possibly with adversarial corruptions). We define the optimal
value of the optimization problem (4.11) by opt′q(η) and its truncation at round t by
V ′
t = max{0, opt′qt(ηt)}.

Regularizer and Learning Rate We use the Shannon entropy with learning rate ηt
in (4.5) as a regularizer. The learning rate ηt is defined as follows. Let β′1 = c1 ≥ 1 and

β′t+1 = β′t +
c1√

1 + (log kΠ)−1
∑t

s=1H(qs)
, βt = max

{
B, β′

t

}
, and ηt =

1

βt

(4.12)

79



Algorithm 4.1: BOBW algorithm for locally observable games
1 input: B
2 for t = 1, 2, . . . do
3 Compute ηt using (4.12) and qt using (4.6)
4 Solve (4.11) with η ← ηt and q ← qt to determine V ′

t = max{0, opt′qt(ηt)}
and the corresponding solution pt and Gt.

5 Sample At ∼ pt, observe σt ∈ Σ, compute ŷt = Gt(At, σt)/ptAt , update β′t
using (4.12).

for c1 > 0 (determined in Theorem 4.1). The fundamental idea of this learning rate was
developed by Ito et al. (2022a), and we use its variant by the upper truncation of β′t. The
truncation is required when applying the following lemma to bound opt′q(η).

Lemma 4.3. For non-degenerate locally observable games and η ≤ 1/(2mk2), we have

opt′∗(η) := sup
q∈Pk

opt′q(η) ≤ 3m2k3 .

This lemma is a slightly stronger version of Lattimore and Szepesvári (2020b, Propo-
sition 8), in which the same upper bound is derived for the minimum value over larger
feasible set Pk ⊃ P′

k(q) in (4.9) instead of (4.11). Since the objective function of (4.9)
and (4.11) originally comes from a component of the regret, this lemma means that the
restriction of the feasible set does not harm the regret bound. Algorithm 4.1 provides the
proposed algorithm for locally observable games.

4.4.3 Regret Analysis for Locally Observable Games

With the above algorithm, we can prove the following regret bound for locally observable
games.

Theorem 4.1. Consider any locally observable non-degenerate partial monitoring game.
If we run Algorithm 4.1 with B ≥ 2mk2 and c1 = Θ

(
mk3/2

√
(log T )/(log kΠ)

)
, we

have the following bounds. For the adversarial regime with a (∆, C, T ) self-bounding
constraint, we have

RegT = O

(
m2k4 log(T ) log(kΠT )

∆min
+

√
Cm2k4 log(T ) log(kΠT )

∆min

)
, (4.13)

and for the adversarial regime, we have

RegT = O
(
mk3/2

√
T log(T ) log kΠ

)
+B log kΠ .

Note that (4.13) with C = 0 yields the bound in the stochastic regime. The bound for
the adversarial regime is a factor of

√
log(T ) log(kΠ)/ log k worse for large enough T

than the algorithm by Lattimore and Szepesvári (2020b). This comes from the difficulty
of obtaining the BOBW guarantee, where we need to aggressively change the learning
rate when the environment looks not so much adversarial. Note that exactly solving the
optimization problem (4.11) is not necessary, and we discuss regret bounds for this case
in Section 4.6.11. In the rest of this section, we provide a sketch of the analysis.

We start by decomposing the regret as follows.

Lemma 4.4. RegT ≤ E
[∑T

t=1

(
η−1
t+1 − η

−1
t

)
H(qt+1) +H(q1)/η1 +

∑T
t=1 ηtV

′
t

]
.
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This can be proven by refining the analysis of the penalty term of Theorem 6 in Lat-
timore and Szepesvári (2020b), in which we rely on the standard analysis in (5.2), and
the first and remaining terms correspond to the penalty term and the sum of the transfor-
mation and stability terms, respectively. As will be shown in the proof of Theorem 4.1,
the RHS of Lemma 4.4 can be bounded in terms of

∑T
t=1H(qt), for which we have the

following bound.

Lemma 4.5. For any a∗ ∈ [k], we have
∑T

t=1H(qt) ≤ Q(a∗) log(ekΠT/Q(a∗)).

We can show this lemma similarly to Ito et al. (2022a, Lemma 4) by noting that
qt,a = 0 for a ̸∈ Π. Finally, we are ready to prove Theorem 4.1. Here, we only sketch
the proof and provide the complete proof can be found in Section 4.6.6.
Proof sketch of Theorem 4.1. We prove this theorem by bounding the RHS of Lemma 4.4.

(Bounding the penalty term) Since β′t+1 is non-decreasing and β′t ≤ βt from the
definition of learning rate in (4.12), it holds that

T∑
t=1

(
ηt+1

−1 − ηt−1
)
H(qt+1) ≤

T∑
t=1

(β′t+1 − β′t)H(qt+1) =

T∑
t=1

c1
√
log kΠH(qt+1)√

log kΠ +
∑t

s=1H(qs)

≤ c1
√

log kΠ

T∑
t=1

2H(qt+1)√∑t+1
s=1H(qs) +

√∑t
s=1H(qs)

≤ 2c1
√

log kΠ

√√√√ T∑
t=1

H(qt) ,(4.14)

where the second inequality follows from 0 ≤ H(qt+1) ≤ log kΠ, and the last inequality
follows by sequentially applying b/(

√
a+ b +

√
a) =

√
a+ b −

√
a for a, b > 0, the

telescoping argument,
√
a+ b−

√
b ≤
√
a for a, b ≥ 0, and H(qT+1) ≤ H(q1).

(Bounding the sum of the transformation and part of stability terms) It holds that

T∑
t=1

ηtV
′
t ≤ max

s∈[T ]
V ′
s

T∑
t=1

ηt ≤ 3m2k3
T∑
t=1

ηt ≤
3m2k3(1 + log T )

c1

√√√√1 +
1

log kΠ

T∑
t=1

H(qt) ,

(4.15)

where the second inequality follows from Lemma 4.3 and the last inequality follows since
the lower bound β′t = c1 +

∑t−1
u=1

c1√
1+(log kΠ)−1

∑u
s=1H(qs)

≥ c1t√
1+(log kΠ)−1

∑t
s=1H(qs)

implies that

T∑
t=1

ηt ≤
T∑
t=1

1

β′t
≤

T∑
t=1

1

c1t

√√√√1 +
1

log kΠ

t∑
s=1

H(qs) ≤
1 + log T

c1

√√√√1 +
1

log kΠ

T∑
t=1

H(qt) .

(Summing up arguments and applying a self-bounding technique) By bounding the
RHS of Lemma 4.4 by (4.14) and (4.15) with c1 = Θ

(
mk3/2

√
log(T )/log kΠ

)
, we have

RegT = O
(
mk3/2

√
log(T )

∑T
t=1H(qt) + mk3/2

√
log(T ) log kΠ

)
+ 2mk2 log kΠ .

Since
∑T

t=1H(qt) ≤ T log kΠ, the desired bound for the adversarial regime is ob-
tained. We consider the adversarial regime with a self-bounding constraint in the fol-
lowing. Here, we only consider the case of Q(a∗) ≥ e, since otherwise we easily ob-
tain the desired bound. Note that Lemma 5.2 with Q(a∗) ≥ e implies

∑T
t=1H(qt) ≤
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Algorithm 4.2: BOBW algorithm for globally observable games
1 for t = 1, 2, . . . do
2 Compute qt using (4.6).
3 Compute at, bt in (4.17), γ′t, γt in (4.16), and pt from qt by (4.18).
4 Sample At ∼ pt, observe σt ∈ Σ, compute ŷt = G(At, σt)/ptAt , and update

βt using (4.16).

Q(a∗) log(kΠT ). Hence, for any λ > 0

RegT = (1 + λ)RegT − λRegT

≤ E
[
(1 + λ)O

(
mk3/2

√
log(T ) log(kΠT )Q(a∗)

)
− λ∆minQ(a∗)

2k

]
+ λC

≤ O
(
Rloc + λ(Rloc + C) + Rloc/λ

)
,

where the first inequality follows by Lemma 4.2 with c = 1/(2k), and the second inequal-
ity follows from a

√
x−bx/2 ≤ a2/(2b) for a, b, x ≥ 0 andRloc = m2k4 log(T ) log(kΠT )/∆min.

Appropriately choosing λ gives the desired bound.

4.5 Globally Observable Case

This section proposes an algorithm for globally observable games and derives its BOBW
regret bound. We use G defined in (4.3) and let cG = max{1, k∥G∥∞} be the game-
dependent constant.

4.5.1 Proposed Algorithm

In the proposed algorithm for globally observable games, we use the regularizer ψt
in (4.5) as used in the locally observable case, but with different parameters. We de-
fine βt, γt ∈ R by β1 = max{c2, 2cG} and

γ′t =
1

4

c1bt

c1 +
(∑t

s=1 bs
)1/3 , βt+1 = βt +

c2bt

γ′t

(
c1 +

∑t−1
s=1

bsas+1

γ′s

)1/2 , γt = γ′t +
cG
2βt

,

(4.16)

where c1 and c2 are parameters satisfying c1 ≥ max{1, log kΠ}, and at and bt are defined
by

at = H(qt) = −
∑
a∈Π

qt,a log(qt,a) and bt = 1−max
a∈Π

qt,a . (4.17)

Note that we have ψt(0) = 0, and using βt ≥ β1 ≥ 2cG and bt ≤
∑k

a=1 qt,a ≤ 1 we
have γt ≤ c1bt/(4c1) + cG/(2cG) ≤ 1/2. We use the following transform from qt to pt:

pt = Tt(qt) = (1− γt)qt +
γt
k
1 . (4.18)

Algorithm 4.2 presents the proposed algorithm for globally observable games.
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4.5.2 Regret Analysis for Globally Observable Games

With the above algorithm, we can prove the following regret bound for globally observ-
able games.

Theorem 4.2. Consider any globally observable partial monitoring game. If we run
Algorithm 4.2 with c1 = Θ

((
c2G log(T ) log(kΠT )

)1/3) and c2 = Θ
(√

c2G log T
)

, we
have the following bounds. For the adversarial regime with a (∆, C, T ) self-bounding
constraint, we have

RegT = O

(
c2G log(T ) log(kΠT )

∆2
min

+

(
C2c2G log(T ) log(kΠT )

∆2
min

)1/3)
, (4.19)

and for the adversarial regime, we have

RegT = O
((
c2G log(T ) log(kΠT )

)1/3
T 2/3

)
,

where in the last big-O notation, the terms of o(poly(k, cG)(T log T )2/3) are ignored.

Note that (4.19) with C = 0 yields the bound in the stochastic regime. The bound for
the adversarial regime is a factor of (log(T ) log(kΠT )/ log k)1/3 worse than the algo-
rithm by Lattimore and Szepesvári (2020b). This comes from the difficulty of obtaining
the BOBW guarantee, where we need to aggressively change the learning rate when the
environment looks not so much adversarial.

We begin the analysis by decomposing the regret as follows.

Lemma 4.6. The regret of Algorithm 4.2 is bounded as

RegT ≤ E

[
T∑
t=1

γt +

T∑
t=1

(
⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt)

)
+

T∑
t=1

(
ψt(qt+1)− ψt+1(qt+1)

)
+ ψT+1(ea∗)− ψ1(q1)

]
.

This lemma can be proven based on the fact that we can estimate loss differences be-
tween Pareto optimal actions, and boundedness ofL, combined with the standard analysis
of FTRL given in (5.2). Note that the first, second, and last terms correspond to the trans-
formation, stability, and penalty terms, respectively. We can bound the stability term on
the RHS of Lemma 4.6 as follows.

Lemma 4.7. If ψt is given by (4.5) and bt is defined by (4.17), then we have

E[⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt)] ≤ E
[
2c2Gbt/(βtγt)

]
. (4.20)

Remark. Globally observable PM is a generalization of the weakly observable setting in
online learning with feedback graphs (Alon et al., 2015). For this online learning prob-
lem, the regularizer in the form of −H(p) − H(1 − p) rather than (4.6) is introduced
in Ito et al. (2022a) to make the LHS of (4.20) easy to bound. However, FTRL with this
regularizer requires solving a convex optimization every round. This study shows that
the LHS of (4.20) can be favorably bounded without the regularization of −H(1 − p).
The key to the proof of this lemma is that for any a′ ∈ [k] it holds that ⟨ŷt, qt − qt+1⟩ −
Dt(qt+1, qt) = ⟨ŷt − ŷta′1, qt − qt+1⟩−Dt(qt+1, qt) ≤ βt

∑k
a=1 qt,aξ ((ŷta − ŷta′)/βt) ,

which enables us to bound the stability term with bt in (4.17), leading to the regret upper
bound depending on Q(a∗) in Proposition 4.1.
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Using the definition of βt and γt in (4.16) with Lemmas 4.6 and 4.7, we can bound
the regret as follows.

Proposition 4.1. Assume βt and γt are given by (4.16). Then, the regret is bounded as

RegT = O
(
E
[
c1B

2/3
T + c̃

√
c21 + (log kΠ +AT )

(
c1 +B

1/3
T

)]
+ β1 log kΠ

)
, where

AT =
∑T

t=1 at, BT =
∑T

t=1 bt, and c̃ = O
(

1√
c1

(
c2
G
log T

c2
+ c2

))
= O

(
c1√

log(kΠT )

)
.

The proof of this lemma is similar to Proposition 2 of Ito et al. (2022a). Now we
are ready to prove Theorem 4.2, whose proof is sketched below and completed in Ap-
pendix 4.6.10.
Proof sketch of Theorem 4.2. We first consider the adversarial regime. In the ad-
versarial regime, Proposition 4.1 with AT ≤ T log kΠ and BT ≤ T immediately leads
to

RegT = O
(
c1T

2/3+ c̃
√
c21 + (log kΠ + T log kΠ)(c1 + T 1/3)

)
= O

((
c1 + c̃

√
log kΠ

)
T 2/3

)
. (4.21)

We next consider the adversarial regime with a self-bounding constraint. Here, we
only consider the case of Q(a∗) > max{e, c31}, since otherwise we can easily obtain the
desired bound. Note that AT ≤ Q(a∗) log(kΠT ) by Lemma 5.2 with Q(a∗) ≥ e and
BT =

∑T
t=1 (1−maxa∈Π qt,a) ≤

∑T
t=1 (1− qt,a∗) = Q(a∗). Then, Proposition 4.1

with these inequalities and Q(a∗) > c31 gives

RegT ≤ O
(
E
[
c1Q(a∗)2/3 + c̃

√
log(kΠT )Q(a∗)4/3

])
≤ O

((
c1 + c̃

√
log(kΠT )

)
Q̄(a∗)2/3

)
. (4.22)

By (4.21) and (4.22), there exists ĉ = O
(
c1 + c̃

√
log(kΠT )

)
satisfying RegT ≤

ĉ T 2/3 for the adversarial regime and RegT ≤ ĉ Q̄(a∗)2/3 for the adversarial regime
with a self-bounding constraint. Recalling the definitions of c1 and c2, we have ĉ =
O
(
(c2G log(T ) log(kΠT ))

1/3
)
, which gives the desired bounds for the adversarial regime.

For the adversarial regime with a self-bounding constraint, usingRegT ≤ ĉ Q̄(a∗)2/3 and
Lemma 4.2 with c = 1/2 for any λ ∈ (0, 1] it holds that

RegT = (1 + λ)RegT − λRegT ≤ (1 + λ)ĉ · Q̄(a∗)2/3 − λ∆minQ̄(a∗)/2 + λC .

Taking the worst case of this with respect to Q̄(a∗) and taking λ ∈ (0, 1] appropriately
gives the desired bound for the adversarial regime with a self-bounding constraint.

4.6 Deferred Discussion and Proofs

4.6.1 Intermediate Regimes between Stochastic and Adversarial Regimes in Par-
tial Monotoring

This section details the discussion on intermediate regimes between stochastic and ad-
versarial regimes given in Section 4.2. This section first defines the stochastically con-
strained adversarial regime in PM, and then shows that the stochastic regime, adversarial
regime, stochastically constrained adversarial regime, and stochastic regime with adver-
sarial corruptions are indeed adversarial regimes with a self-bounding constraint defined
in Definition 5.1.
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The stochastically constrained adversarial regime was initially considered by Wei and
Luo (2018) and also discussed in Zimmert and Seldin (2021) in the context of the multi-
armed bandit problem. We say that the environment is the stochastically constrained
adversarial regime if for any a ̸= a∗ there exists ∆̃a,a∗ > 0 such that Ext∼ν∗ [Laxt −
La∗xt |x1, . . . , xt−1] ≥ ∆̃a,a∗ .

Next, we show that the stochastic regime, adversarial regime, stochastically con-
strained adversarial regime, and stochastic regime with adversarial corruptions are indeed
included in the adversarial regime with a self-bounding constraint. We first consider the
stochastic regime. Indeed, if outcomes (xt)t follow a distribution ν∗ independently for
t = 1, 2, . . . , T , we have RegT = maxa∗∈[k] E[

∑T
t=1(LAtxt −La∗xt)] = E[

∑T
t=1∆At ],

where we define ∆ ∈ [0, 1]k by ∆a = Ex∼ν∗ [Lax−La∗x]. This implies that the stochas-
tic regime is in the adversarial regime with a (∆, 0, T ) self-bounding constraint. We next
consider the stochastic regime with adversarial corruptions. In fact, using the definition
of the corruption level C, we have

RegT = E

[
T∑
t=1

(LAtxt − La∗xt)

]

= E

[
T∑
t=1

(
LAtx′t

− La∗x′t

)]
+ E

[
T∑
t=1

(
LAtxt − LAtx′t

)]
+ E

[
T∑
t=1

(
La∗x′t − La∗xt

)]

≥ E

[
T∑
t=1

∆At

]
− 2C ,

which implies that the stochastic regime with adversarial corruption with corruption lev-
els C is an adversarial regime with a (∆, 2C, T ) self-bounding constraint. It is also
easy to see that adversarial regimes are the adversarial regime with a (∆, 2T, T ) self-
bounding constraint, and the stochastically constrained adversarial regime are the ad-
versarial regime with a (∆, 0, T ) self-bounding constraint by defining ∆ ∈ [0, 1]k by
∆a = ∆̃a,a∗ .

4.6.2 Proof of Lemma 4.2

Proof. Note that the environment is the adversarial regime with a self-bounding con-
straint with ∆ ∈ [0, 1]k such that ∆a ≥ ∆min for all a ∈ [k] \ {a∗}. Hence, the regret is
then bounded as

RegT ≥ E

[
T∑
t=1

∆At

]
− C = E

[
T∑
t=1

k∑
a=1

pta∆a

]
− C

≥ E

[
T∑
t=1

k∑
a=1

c qt,a∆a

]
− C ≥ c∆minQ̄(a∗)− C ,

where the first inequality follows from Definition 5.1, the equality follows from At ∼
pt, the second inequality follows from the definition of pt given in (5.1), and the last
inequality follows from the assumption pta ≥ c qt,a for all t ∈ [T ], a ∈ [k] and the
definition of Q̄(a∗) given in (4.8). This completes the proof of Lemma 4.2.

4.6.3 Proof of Lemma 4.3

Before proving Lemma 4.3, we review the definition and property of the water transfer
operatorWν introduced by Lattimore and Szepesvári (2019c). We refer to T ⊂ [k]× [k]
representing the edges of a directed tree with vertices [k] as in-tree with vertex set [k] and
define E = {(a, b) ∈ [k]× [k] : a and b are neighbors}.
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Lemma 4.8 (Lattimore and Szepesvári, 2019c). Assume that partial monitoring game G
is non-degenerate and locally observable and let ν ∈ Pd. Then there exists a function
Wν : Pk → Pk such that the following hold for all q ∈ Pk: (a) (Wν(q)− q)⊤Lν ≤ 0;
(b) Wν(q)a ≥ qa/k for all a ∈ [k]; and (c) there exists an in-tree T ⊂ E over [k] such
that Wν(q)a ≤Wν(q)b for all (a, b) ∈ T .

Using this, we prove the generalized version of Lattimore and Szepesvári (2020b,
Proposition 8), where the proof follows a quite similar argument as their proof therein.
Proof of Lemma 4.3. We define the set of functions that satisfy (4.2) by

H◦ =

{
G : (eb − ec)⊤

k∑
a=1

G(a,Φax) = Lbx − Lcx for all b, c ∈ Π and x ∈ [d]

}
.

Take any q ∈ Pk. By Sion’s minimax theorem, we have

opt′q(η) ≤ min
G∈H◦, p∈P′

k(q)
max
ν∈Pd

[
1

η
(p− q)⊤Lν + 1

η2

d∑
x=1

νx

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉]

= max
ν∈Pd

min
G∈H◦, p∈P′

k(q)

[
1

η
(p− q)⊤Lν + 1

η2

d∑
x=1

νx

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉]
,

where the first inequality follows since we added the constraint that G ∈ H◦, which
makes the bias term zero. Take any ν ∈ Pd and let T be the in-tree over [k] decided
based on Lemma 4.8. Using these variables, we define the action selection probability
vector p ∈ P′

k(q) by

p = (1− γ)u+
γ

k
1 , where u =Wν(q) , and γ =

ηmk2

2
.

Here, Wν : Pk → Pk is the water operator. It is worth noting that from the assumption
that η ≤ 1/(mk2), we have γ ≤ 1/2 and pa ≥ ua/2 =Wν(q)a/2 ≥ qa/(2k), where the
last inequality follows from Part (b) of Lemma 4.8, and this indeed implies p ∈ P′

k(q).
We takeG ∈ H◦ defined in (4.3), where we recall thatG(a, σ)b =

∑
e∈pathT(b)we(a, σ).

By Lattimore and Szepesvári (2020b, Lemma 20) and the assumption that G is non-
degenerate, we can be chosen so that ∥we∥∞ ≤ m/2. Since paths in T have length at
most k, we have ∥G∥∞ ≤ km/2. From the above definitions, for any x ∈ [d] we have

ηG(a,Φax)

pa
≥ −ηmk

2

2γ
= −1 .

Hence, using Parts (b) and (c) of Lemma 4.8, we have

1

η2

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉
≤

k∑
a=1

1

pa

k∑
b=1

qb (G(a,Φax)b)
2

≤ 2
k∑
a=1

1

ua

k∑
b=1

qb (G(a,Φax)b)
2

= 2

k∑
b=1

k∑
a=1

qb
ua

 ∑
e∈pathT(b)

we(a,Φax)

2

≤ m2

2

k∑
b=1

k∑
a=1

qb
ua

 ∑
e∈pathT(b)

1[a ∈ e]

2

≤ 2m2k3 ,
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where the first inequality follows from

ξ(x) = exp(−x) + x− 1 ≤ x2 for x ≥ −1 , (4.23)

the second inequality follows since pa ≥ ua/2, the third inequality follows since ∥we∥∞ ≤
m/2, and the last inequality follows from Part (b) of Lemma 4.8 to implying that qb ≤ kub
and Part (c) implying that ua ≥ ub for a ∈ pathT(b). Finally,

1

η
(p− q)⊤Lν =

1

η
(u− q)⊤Lν + γ

η

(
1

k
1− u

)⊤
Lν ≤ γ

η

(
1

k
1− u

)⊤
Lν ≤ mk2 ,

where the first inequality follows from Part (a) of Lemma 4.8. Summing up the above
arguments, we have opt′q(η) ≤ 3m2k3, which completes the proof of Lemma 4.3.

4.6.4 Proof of Lemma 4.4

We first analyze the stability term in (5.2) for ψt defined in (4.5).

Lemma 4.9. If ψt is given by (4.5), it holds for any ℓ ∈ Rk and p, q ∈ Pk that

⟨ℓ, p− q⟩ −Dt(q, p) ≤ βt
k∑
a=1

paξ

(
ℓa
βt

)
,

where we recall that ξ(x) = exp(−x) + x− 1.

Proof. For any x, y ∈ (0, 1), we let d(y, x) ≥ 0 be the Bregman divergence over (0, 1)
induced by ψ(x) = x log x, i.e.,

d(y, x) = y log y − x log x− (log x+ 1)(y − x) = y log
y

x
+ x− y .

Using this, the Bregman divergence induced by ψt(p) = (1/ηt)
∑k

a=1 pa log(pa) =

βt
∑k

a=1 pa log(pa) in (4.5) can be written as

Dt(q, p) = ψt(p)− ψt(q)− ⟨∇ψt(q), p− q⟩ = βt

k∑
a=1

d(qa, pa) .

From this, we have

⟨ℓ, p− q⟩ −Dt(q, p) ≤
k∑
a=1

(ℓa(pa − qa)− βtd(qa, pa)) . (4.24)

We show

ℓa(pa − qa)− βtd(qa, pa) ≤ βtpaξ
(
ℓa
βt

)
. (4.25)

As ℓa(pa − qa) − βtd(qa, pa) is concave in q, its maximum subject to q ∈ R is attained
when the derivative of it is equal to zero, i.e.,

∂

∂qa
(ℓa(pa − qa)− βtd(qa, pa)) = −ℓa − βt (log qa − log pa) = 0 .
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This implies that the maximum is attained when qa = q∗a := pa exp (−ℓa/βt). Hence,
we obtain (4.25) by

ℓa(pa − qa)− βtd(qa, pa) ≤ ℓa(pa − q∗a)− βtd(q∗a, pa)
= ℓa(pa − q∗a)− βt (q∗a log q∗a − pa log pa − (log pa + 1)(q∗a − pa))
= ℓapa − βt (q∗a log pa − pa log pa − (log pa + 1)(q∗a − pa))

= ℓapa + βt(q
∗
a − pa) = βtpa

(
exp

(
−ℓa
βt

)
+
ℓa
βt
− 1

)
= βtpaξ

(
ℓa
βt

)
,

where the second equality follows from log q∗a = log pa − ℓa/βt, and the fourth equality
follows from q∗a = pa exp (−ℓa/βt). Combining (4.24) and (4.25) completes the proof.

Proof of Lemma 4.4. Let a∗ = argmina∈[k] E
[∑T

t=1Laxt
]
∈ Π be the optimal action

in hindsight. We have

RegT = E

[
T∑
t=1

(LAtxt − La∗xt)

]
= E

[
T∑
t=1

k∑
b=1

ptb(Lbxt − La∗xt)

]

= E

[
T∑
t=1

k∑
b=1

(ptb − qt,b)(Lbxt − La∗xt) +
T∑
t=1

k∑
b=1

qt,b(Lbxt − La∗xt)

]
.(4.26)

The first term in (4.26) is equal to E
[∑T

t=1(pt − qt)⊤Lext
]
. The second term in (4.26)

can be bounded as

E

[
k∑
b=1

qt,b(Lbxt − La∗xt)

]
= E

[
k∑
b=1

q⊤t Lext − La∗xt

]

= E

[
k∑
b=1

q⊤t Lext − q⊤t
k∑
a=1

Gt(a,Φaxt) +
k∑
a=1

Gt(a,Φaxt)a∗ − La∗xt

]

+ E

[
q⊤t

k∑
a=1

Gt(a,Φaxt)−
k∑
a=1

Gt(a,Φaxt)a∗

]
≤ E[biasqt(G;xt)] + E

[
q⊤t ŷt − ŷta∗

]
, (4.27)

where in the last inequality we used the definition in (4.10) and Lemma 4.1 with a∗ ∈ Π
and qt,a = 0 for a ̸∈ Π. The sum over t ∈ [T ] of the last term in (4.27) can be bounded
using (5.2) and the definition of the regularizer (4.5) as

E

[
T∑
t=1

k∑
b=1

qt,b(ŷtb − ŷta∗)

]

≤ E

[
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

(
⟨qt − qt+1, ŷt⟩ −Dt(qt+1, qt)

)]

≤ E

[
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

⟨qt, ξ(ηtŷt)⟩
ηt

]

= E

[
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

1

ηt

k∑
a=1

pta

〈
qt, ξ

(
ηtG(a, σt)

pta

)〉]
,

(4.28)
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where in the second inequality we used the following inequality obtained by Lemma 4.9:

⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt) ≤ βt
k∑
a=1

qt,aξ

(
ŷta
βt

)
=
⟨qt, ξ(ηtŷt)⟩

ηt
.

Using the definition of the optimization problem (4.11) and V ′
t = max{0, opt′qt(ηt)},

we have

(pt − qt)⊤Lext + biasqt(G;xt) +
1

ηt

k∑
a=1

pta

〈
qt, ξ

(
ηtG(a, σt)

pta

)〉
≤ ηtV ′

t .(4.29)

Summing up the arguments in (4.26), (4.27), (4.28), and (4.29), we have

RegT ≤ E

[
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

ηtV
′
t

]
,

which completes the proof.

4.6.5 Proof of Lemma 5.2

Proof. For any q ∈ P(Π) and a∗ ∈ Π, we have

H(p) =
∑
a∈Π

qa log
1

qa
=

∑
a∈Π\{a∗}

qa log
1

qa
+ qa∗ log

(
1 +

1− qa∗
qa∗

)
≤ (kΠ − 1)

∑
a∈Π\{a∗}

1

kΠ − 1
qa log

1

qa
+ qa∗

1− qa∗
qa∗

≤ (kΠ − 1) ·
∑

a∈Π\{a∗} qa

kΠ − 1
log

kΠ − 1∑
a∈Π\{a∗} qa

+ qa∗
1− qa∗
qa∗

= (1− qa∗)
(
log

kΠ − 1

1− qa∗
+ 1

)
≤ (1− qa∗) log

ekΠ
1− qa∗

, (4.30)

where the first inequality follows from log(1 + x) ≤ x for x ≥ 0, the last inequality
follows from Jensen’s inequality, and the last equality follows from

∑
a∈Π qa = 1. Us-

ing (4.30), for any a∗ ∈ [k] we have

T∑
t=1

at =
T∑
t=1

H(qt) ≤
T∑
t=1

(1− qta∗) log
ekΠ

1− qta∗

= T
T∑
t=1

1

T
(1− qt,a∗) log

ekΠ
1− qt,a∗

≤ T

(
T∑
t=1

1

T
(1− qt,a∗)

)
log

ekΠ∑T
t=1

1
T (1− qt,a∗)

= T
Q(a∗)

T
log

ekΠT

Q(a∗)
= Q(a∗)

(
log

ekΠT

Q(a∗)

)
,

where in the second inequality we used Jensen’s inequality since f(x) = x log(1/x) is
concave, and in the third inequality we used the definition of Q(a∗) in (4.8).

4.6.6 Proof of Theorem 4.1

Proof. We prove this theorem by bounding the RHS of Lemma 4.4.
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(Bounding the penalty term) Let t0 = min{t ∈ [T ] : β′t ≥ B}. Then, the definition
of the learning rate (4.12) gives that

T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) =

T∑
t=1

(βt+1 − βt)H(qt+1)

=

t0−2∑
t=1

(βt+1 − βt)H(qt+1) + (βt0 − βt0−1)H(qt+1) +

T∑
t=t0

(βt+1 − βt)H(qt+1)

≤ 0 +
(
β′t0 − β

′
t0−1

)
H(qt+1) +

T∑
t=t0

(
β′t+1 − β′t

)
H(qt+1)

≤
T∑
t=1

(
β′t+1 − β′t

)
H(qt+1) ,

where in the first inequality we used the fact that β′t+1 is non-decreasing, βt+1 = βt for
t ≤ t0 − 1, β′t ≤ βt, and β′t = βt for t ≥ t0. Using this inequality, we have

T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) ≤

T∑
t=1

(
β′t+1 − β′t

)
H(qt+1)

=
T∑
t=1

c1√
1 + (log kΠ)−1

∑t
s=1H(qs)

·H(qt+1)

= 2c1
√
log kΠ

T∑
t=1

H(qt+1)√
log kΠ +

∑t
s=1H(qs) +

√
log kΠ +

∑t
s=1H(qs)

≤ 2c1
√
log kΠ

T∑
t=1

H(qt+1)√∑t+1
s=1H(qs) +

√∑t
s=1H(qs)

= 2c1
√

log kΠ

T∑
t=1


√√√√ t+1∑

s=1

H(qs)−

√√√√ t∑
s=1

H(qs)


= 2c1

√
log kΠ


√√√√T+1∑

s=1

H(qs)−
√
H(q1)


≤ 2c1

√
log kΠ


√√√√T+1∑

s=2

H(qs)

 ≤ 2c1
√

log kΠ

√√√√ T∑
t=1

H(qt) , (4.31)

where the second inequality follows from 0 ≤ H(qt+1) ≤ log kΠ, the third inequality
follows from the inequality

√
a+ b −

√
b ≤

√
a that holds for a, b ≥ 0, and the last

inequality follows since H(qT+1) ≤ H(q1).

(Bounding the sum of the transformation and part of stability term) Using the
definition of β′t in (4.12), we can bound β′t as

β′t = c1 +
t−1∑
u=1

c1√
1 + (log kΠ)−1

∑u
s=1H(qs)

≥ c1t√
1 + (log kΠ)−1

∑t
s=1H(qs)

.
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Using this inequality, we have

T∑
t=1

ηt ≤
T∑
t=1

1

β′t
≤

T∑
t=1

1

c1t

√√√√1 +
1

log kΠ

t∑
s=1

H(qs) ≤
1 + log T

c1

√√√√1 +
1

log kΠ

T∑
t=1

H(qt) .

(4.32)

Further, we have

T∑
t=1

ηtV
′
t ≤ max

s∈[T ]
V ′
s

T∑
t=1

ηt =

(
max
s∈[T ]

max
{
0, opt′∗(ηs)

}) T∑
t=1

ηt ≤ 3m2k3
T∑
t=1

ηt ,(4.33)

where in the last inequality we used Lemma 4.3 with ηt ≤ 1/(2mk2).

(Summing up the above arguments with a self-bounding technique) By bounding
the RHS of Lemma 4.4 using (4.31), (4.32), and (4.33), we have

RegT ≤ 3m2k3E

1 + log T

c1

√√√√1 + (log kΠ)−1

T∑
t=1

H(qt)

+ 2c1
√
log kΠ E


√√√√ T∑

t=1

H(qt)

+
log kΠ
η1

= O

mk3/2
√√√√log(T )

T∑
t=1

H(qt) +mk3/2
√

log(T ) log kΠ

+ 2mk2 log kΠ ,

(4.34)

where we set c1 = Θ
(
mk3/2

√
log T
log kΠ

)
.

The desired bound is obtained for the adversarial regime, since
∑T

t=1H(qt) ≤ T log kΠ.
We consider the stochastic regime in the following. If Q(a∗) ≤ e, Lemma 5.2 implies∑T

t=1H(qt) ≤ e log(kΠT ) since kΠT ≥ e, and otherwise we have
∑T

t=1H(qt) ≤
Q(a∗) log(kΠT ). In the former case, we can trivially obtain the desired bound immedi-
ately from (4.34). For the latter case, using the inequality

∑T
t=1H(qt) ≤ Q(a∗) log(kΠT ), (4.33),

and Lemma 4.2 with c = 1/(2k), we have for any λ > 0 that

RegT = (1 + λ)RegT − λRegT

≤ E
[
(1 + λ)O

(
mk3/2

√
log(T ) log(kΠT )Q(a∗)

)
− λ∆min

2k
Q(a∗)

]
+ λC

≤ O
(
(1 + λ)2m2k4 log(T ) log(kΠT )

λ∆min

)
+ λC

= O

(
m2k4 log(T ) log(kΠT )

∆min
+ λ

(
m2k4 log(T ) log(kΠT )

∆min
+ C

)
+

1

λ

m2k4 log(T ) log(kΠT )

∆min

)
,

(4.35)

where the second inequality follows from a
√
x − bx/2 ≤ a2/(2b), which holds for any

a, b, x ≥ 0. Taking

λ = O

(√
m2k4 log(T ) log(kΠT )

/(m2k4 log(T ) log(kΠT )

∆min
+ C

))

completes the proof.
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4.6.7 Proof of Lemma 4.6

Proof. Let a∗ = argmina∈[k] E
[∑T

t=1Laxt
]

be the optimal action in hindsight, where
ties are broken so that a∗ ∈ Π. Note that since action a with dim(Ca) < d− 1 cannot be
uniquely optimal, one can see that we can take action b ∈ Π instead of such a with the
same loss. We have

RegT = E

[
T∑
t=1

(LAt,xt − La∗,xt)

]
= E

[
T∑
t=1

⟨pt − ea∗ ,Lext⟩

]

= E

[
T∑
t=1

⟨qt − ea∗ ,Lext⟩+
T∑
t=1

γt

〈
1

k
1− qt,Lext

〉]

≤ E

[
T∑
t=1

⟨qt − ea∗ ,Lext⟩+
T∑
t=1

γt

]
= E

[
T∑
t=1

k∑
a=1

qt,a (Laxt − La∗xt) +
T∑
t=1

γt

]

= E

[
T∑
t=1

k∑
a=1

qt,a (ŷta − ŷta∗) +
T∑
t=1

γt

]
= E

[
T∑
t=1

⟨qt − ea∗ , ŷt⟩+
T∑
t=1

γt

]
,

where the inequality follows from the boundedness of L, the fourth equality follows since
a∗ ∈ Π, qt,a = 0 for a ̸∈ Π, and Lemma 4.1, and the fifth equality follows from the
definitions of ŷ and qt,a = 0 for a ̸∈ Π. Combining the above inequality and (5.2)
completes the proof.

4.6.8 Proof of Lemma 4.7

Proof. We first bound the stability term. Using Lemma 4.9, for any a′ ∈ A it holds that

⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt) = ⟨ŷt − ŷta′1, qt − qt+1⟩ −Dt(qt+1, qt)

≤ βt
k∑
a=1

qt,aξ

(
ŷta − ŷta′

βt

)
.

We evaluate the RHS of this inequality. As we define pt by (4.18), we have pta ≥ γt/k for
any a ∈ [k]. We first show that |(ŷta − ŷta′)/βt| ≤ 1 for all a, a′ ∈ [k]. Let τ = ∥G∥∞.
Recall that cG = max{1, kτ}. Then we have

ŷt
βt

=
G(a,Φax)

βt ptAt

≥ − τ

βt ptAt

1 ≥ −1

2
1 ,

where the inequalities here are element-wise, the first inequality follows from the defini-
tion of τ , and in the last inequality we used pta ≥ γt/k ≥ cG/(2βtk) ≥ τ/(2βt) for all
a ∈ [k]. In a similar manner we have

ŷt
βt

=
G(a,Φax)

βt ptAt

≤ τ

βt ptAt

1 ≤ 1

2
1 .

These arguments conclude that |(ŷta − ŷta′)/βt| ≤ |ŷta/βt|+|ŷta′/βt| ≤ 1 for all a, a′ ∈
[k]. Hence, we have

⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt) ≤ min
a′∈[k]

βt

k∑
a=1

qt,a

(
ŷta − ŷta′

βt

)2

=
1

βt
min
a′∈[k]

k∑
a=1

qt,a (ŷta − ŷta′)2

=
1

βt
min
a′∈[k]

∑
a ̸=a′

qt,a (ŷta − ŷta′)2 , (4.36)
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where the inequality follows from (4.23). Now, for any a ∈ A we have

E
[
ŷ2ta
]
= E

[(
G(At,ΦAtxt)

ptAt

)2
]
≤ E

[
k∑
a=1

pta
∥G∥2∞
p2ta

]
≤

k∑
a=1

k∥G∥2∞
γt

=
c2G
γt
,(4.37)

where the last inequality follows from pta ≥ γt/k. Hence, using (4.37) it holds that

E

 1

βt
min
a′∈[k]

∑
a ̸=a′

qt,a (ŷta − ŷta′)2
 ≤ E

 2

βt
min
a′∈[k]

∑
a ̸=a′

qt,a
c2G
γt


= E

[
2mina′∈[k](1− qta′)c2G

βtγt

]
= E

[
2c2Gbt

βtγt

]
.(4.38)

Combining (4.36) and (4.38) yields

E[⟨ŷt, qt − qt+1⟩ −Dt(qt+1, qt)] ≤ E

[
2c2Gbt

βtγt

]
,

which completes the proof.

4.6.9 Proof of Proposition 4.1

Proof. Note that the penalty term can be rewritten as

T∑
t=1

(ψt(qt+1)− ψt+1(qt+1)) + ψT+1(ea∗)− ψ1(q1)

=

T∑
t=1

(βt − βt+1) (−H(qt+1)) + β1H(q1) =

T∑
t=1

(βt+1 − βt) at+1 + β1a1 ,

where we recall that the definition of at in (4.17). Combining this with Lemmas 4.6
and 4.7, we have

RegT ≤
T∑
t=1

(
γ′t +

cG
2βt

)
︸ ︷︷ ︸

transformation term

+

T∑
t=1

2c2Gbt

βtγt︸ ︷︷ ︸
stability term

+

T∑
t=1

((βt+1 − βt)at+1) + β1a1︸ ︷︷ ︸
penalty term

, (4.39)

where the first, second, and remaining terms correspond to the transformation, stabil-
ity, and penalty terms, respectively. We bound each term of the RHS in (4.39) in the
following.

Note that bt ≤ 1 and

bt = 1−max
a∈[k]

qt,a ≤ −max
a∈[k]

qt,a log

(
max
a′∈[k]

qt,a′

)
≤ −

∑
a∈[k]

qt,a log qt,a = at ≤ log kΠ ,

(4.40)

where the first inequality follows from the inequality 1 − x ≤ −x log x for x > 0. We
define zt = at+1bt

γ′t
and Zt =

∑t
s=1 zs.
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(Bounding the penalty term) From the definition of γ′t, we can bound zt from below
as

zt =
at+1bt
γ′t

=
4at+1

c1

(
c1 +B

1/3
t

)
≥ 4at+1 ≥ 4bt+1 , (4.41)

where the second inequality follows from bt ≤ at in (4.40). Further, we can bound zt
from above as

zt =
4at+1

c1

(
c1 +B

1/3
t

)
≤ 4

(
c1 +B

1/3
t

)
≤ 4

c1 +
(
b1 +

t−1∑
s=1

zs

)1/3
 ≤ 8 (c1 + Zt−1) ,

(4.42)

where the first inequality follows from at+1 ≤ log kΠ and c1 ≥ log kΠ, and the second
inequality follows from Bt = b1 +

∑t−1
s=1 bs+1 ≤ b1 +

∑t−1
s=1 zs, and the last inequality

follows from b1 ≤ 1 ≤ c1. From this, since βt satisfies βt+1 − βt = zt
at+1

c2
(c1+Zt−1)1/2

,
we can bound the penalty term in (4.39) as

T∑
t=1

(βt+1 − βt)at+1 = c2

T∑
t=1

zt√
c1 + Zt−1

= 5c2

T∑
t=1

Zt − Zt−1

4
√
c1 + Zt−1 +

√
c1 + Zt−1

< 5c2

T∑
t=1

Zt − Zt−1√
c1 + Zt +

√
c1 + Zt−1

= 5c2

T∑
t=1

(√
c1 + Zt −

√
c1 + Zt−1

)
≤ 5c2

√
ZT ,

(4.43)

where the first equality follows from the definitions of βt and zt, and the first inequality
follows since √

c1 + Zt ≤
√
c1 + Zt−1 +

√
zt < 4

√
c1 + Zt−1 ,

where the last inequality follows from (4.42).

(Bounding the stability term and transformation terms) We define wt = bt
γ′t

and
Wt =

∑t
s=1ws. From the definition of γ′t, we have

wt =
bt
γ′t

= 4

(
1 +

1

c1
B

1/3
t

)
≥ 4 . (4.44)

Using bt ≤ 1, we can confirm that wt satisfies

w1 ≤ 8 , wt+1 = 4

(
1 +

1

c1
B

1/3
t+1

)
≤
(
1 +

1

c1
(Bt + 1)1/3

)
≤ 2wt , wt ≤ 4(1 + t1/3) .

(4.45)

Then βt can be bounded as

βt ≥ c2 + c2

t−1∑
s=1

ws√
c1 + Zs−1

≥ c2√
c1 + Zt

(
1 +

t−1∑
s=1

ws

)
=

c2√
c1 + Zt

(1 +Wt−1) (4.46)

≥ c2t√
c1 + Zt

, (4.47)

where the second inequality follows from (4.44).
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Using the above inequalities, we can bound the stability term in (4.39) as

T∑
t=1

bt
γtβt

≤
T∑
t=1

bt
γ′tβt

≤
T∑
t=1

√
c1 + Zt
c2

wt
1 +Wt−1

≤
√
c1 + ZT
c2

T∑
t=1

wt
1 +Wt−1

≤ O
(√

c1 + ZT
c2

log (1 +WT )

)
≤ O

(√
c1 + ZT
c2

log T

)
, (4.48)

where the first inequality follows from (4.46), the last inequality follows from (4.45), and
the fourth inequality can be shown by taking the sum of the following inequality:

log(1 +Wt)− log(1 +Wt−1) = log
1 +Wt

1 +Wt−1
= log

(
1 +

wt
1 +Wt−1

)
≥ 1

2
· wt
1 +Wt−1

,

where the inequality follows from the fact that log(1 + x) ≥ 1
2x holds for any x ∈ [0, 2]

and that (4.45) implies wt
1+Wt−1

≤ wt
1+wt/2

≤ 2 for all t ∈ [T ].
Using (4.47), we can bound the second part of the transformation term in (4.39) as

T∑
t=1

1

βt
≤

T∑
t=1

√
c1 + Zt
c2t

≤
√
c1 + ZT
c2

T∑
t=1

1

t
= O

(√
c1 + ZT
c2

log T

)
. (4.49)

In addition, from the definition of γ′t, we can bound the remaining part of the transfor-
mation term in (4.39) as

T∑
t=1

γ′t =
c1
4

T∑
t=1

bt

c1 +B
1/3
t

≤ 3c1
8

T∑
t=1

(
B

2/3
t −B2/3

t−1

)
≤ 3c1

8
B

2/3
T , (4.50)

where the first inequality follows from y2/3−x2/3 ≥ 2
3(y−x)y

−1/3, which holds for any
y ≥ x > 0. Combining (4.43), (4.48), (4.49), and (4.50), we can bound the right-hand
side of (4.39) as

T∑
t=1

(
γt +

2c2Gbt

γtβt
+ (βt+1 − βt)at+1

)
+ β1a1

=

T∑
t=1

(
γ′t +

cG
2βt

+
2c2Gbt

γtβt
+ (βt+1 − βt)at+1

)
+ β1a1

= O

(
c1B

2/3
T +

(
c2G log T

c2
+ c2

)√
c1 + ZT + β1a1

)

= O

c1B2/3
T +

(
c2G log T

c2
+ c2

)√√√√c1 +
T∑
t=1

at+1

c1

(
c1 +B

1/3
t

)
+ β1a1


= O

(
c1B

2/3
T +

1
√
c1

(
c2G log T

c2
+ c2

)√
c21 + (log kΠ +AT )

(
c1 +B

1/3
T

)
+ β1 log kΠ

)
,

where in the third inequality we used (4.41) and in the last equality we used aT+1 =
O(log kΠ).

4.6.10 Proof of Theorem 4.2

Proof. We define c1 and c2 by

c1 = Θ
((
c2G log(T ) log(kΠT )

)1/3) and c2 = Θ
(√

c2G log T
)
, (4.51)
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which implies that c̃ = c1/
√

log(kΠT ). We have

BT =
T∑
t=1

(
1−max

a∈Π
qt,a

)
≤

T∑
t=1

(1− qt,a∗) = Q(a∗) . (4.52)

We first consider the adversarial regime. Since AT ≤ T log kΠ and BT ≤ T , using
Proposition 4.1 we have

RegT = O

(
c1T

2/3 + c̃
√
c21 + (log kΠ + T log kΠ)(c1 + T 1/3) + β1 log kΠ

)
= O

((
c1 + c̃

√
log kΠ

)
T 2/3 +

√
log kΠ

log(kΠT )
c
3/2
1 T 1/2 +

c21√
log(kΠT )

+ β1 log kΠ

)
.

(4.53)

We next consider the adversarial regime with a self-bounding constraint. WhenQ(a∗) ≤
c31 we can show that the obtained bound is smaller than the desired bound as follows.
When Q(a∗) ≤ e ≤ c31, using Lemma 5.2 and (4.52), we have AT ≤ e log(kΠT ) and
BT ≤ e. Hence, from Proposition 4.1, we have

RegT = O

(
c1 + c̃

√
c21 + log(kΠT )c1 + β1 log kΠ

)
= O

(
c21√

log(kΠT )
+ β1 log kΠ

)
= O

(
c31
)
.

When e < Q(a∗) ≤ c31, using Lemma 5.2 and (4.52) we have AT ≤ c31 log(kΠT ) and
BT ≤ c31. Hence, from Proposition 4.1, we have

RegT = O

(
c31 + c̃

√
c21 +

(
log kΠ + c31 log(kΠT )

)
c1 + β1 log kΠ

)
= O

(
c2G log(T ) log(kΠT )

)
= O

(
c31
)
.

Hence, we only need to consider the case ofQ(a∗) > c31 in the following. SinceQ(a∗) ≥
ewe haveAT ≤ Q(a∗) log(kΠT ). Using Proposition 4.1 with this inequality, Lemma 5.2,
and (4.52), we have

RegT = O

(
E
[
c1Q(a∗)2/3 + c̃

√
c21 +

(
log kΠ +Q(a∗) log(kΠT )

) (
c1 +Q(a∗)1/3

)]
+ β1 log kΠ

)
≤ O

(
E
[
c1Q(a∗)2/3 + c̃

√
Q(a∗) log(kΠT )Q(a∗)1/3

])
≤ O

((
c1 + c̃

√
log(kΠT )

)
Q̄(a∗)2/3

)
, (4.54)

where the first inequality follows from Q(a∗) > c31, and the second inequality follows
from Jensen’s inequality. Hence, by (4.53) and (4.54), there exists ĉ = O

(
c1 + c̃

√
log(kΠT )

)
satisfying and RegT ≤ ĉ Q̄(a∗)2/3 for the adversarial regime with a self-bounding con-
straint and RegT ≤ ĉ T 2/3 for the adversarial regime.

Now, by recalling the definitions of c1 and c2 in (4.51), we have

ĉ = O

((
c2G log(T ) log(kΠT )

)1/3
+

1
√
c1

(
c2G log T

c2
+ c2

)√
log(kΠT )

)
= O

(
(c2G log(T ) log(kΠT ))

1/3
)
, (4.55)
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which gives the desired bounds for the adversarial regime.
For the adversarial regime with a self-bounding constraint, from the above inequality

RegT ≤ ĉ Q̄(a∗)2/3 and Lemma 4.2 with c = 1/2 ≤ 1− γt, we have for any λ ∈ (0, 1]
that

RegT = (1 + λ)RegT − λRegT ≤ (1 + λ)ĉ · Q̄(a∗)2/3 − λ

2
∆minQ̄(a∗) + λC

≤ O
(
(1 + λ)3ĉ3

λ2∆2
min

)
+ λC = O

((
1 +

1

λ2

)
ĉ3

∆2
min

)
+ λC , (4.56)

where the first inequality follows from the inequality ax2/3− b(x/2) ≤ 16a3/(27b2) for
a, b > 0, and the last equality follows since λ ∈ (0, 1]. Combining (4.55) and (4.56), and
taking λ = O

(
c2
G
log(T ) log(kΠT )

C∆2
min

)
, we have the desired result for the adversarial regime

with a self-bounding constraint.

4.6.11 Regret Bounds when the Optimization Problem is Not Exactly Solved

This section discusses the regret bound when the optimization problem (4.11) is not ex-
actly solved, on which a similar discussion is given in Lattimore and Szepesvári (2020a,
Chapter 37). We say that the optimization problem (4.11) can be solved with precision
ϵ ≥ 0, if we can obtain G ∈ H and p ∈ P′

k(q) such that

max
x∈[d]

[
(p− q)⊤Lex + biasq(G;x)

η
+

1

η2

k∑
a=1

pa

〈
q, ξ

(
ηG(a,Φax)

pa

)〉]
≤ opt′q(η) + ϵ .

Then if we run Algorithm 4.1 solving (4.11) with precision ϵ, one can see that we can
obtain the following regret bounds. For the adversarial regime with a (∆, C, T ) self-
bounding constraint, we have

RegT = O

(mk2 + ϵ2/(mk)
)2

log(T ) log(kΠT )

∆min
+

√
C
(
mk2 + ϵ2/(mk)

)2
log(T ) log(kΠT )

∆min

 ,

and for the adversarial regime, we have

RegT = O

(
mk3/2

√
T log(T ) log kΠ + ϵ

√
T log(kΠ) log(T )

mk3/2

)
.

Here, we give an overview of the analysis. Considering that the optimization problem
in (4.11) can be solved with precision ϵ ≥ 0, the RHS of (4.29) can be replaced with
3m2k3 + ϵ. Then a similar analysis as the proof of Theorem 4.1 leads to

RegT ≤ O

(mk3/2 + ϵ

mk3/2

)√√√√log(T )
T∑
t=1

H(qt)

 .

Using
∑T

t=1H(qt) ≤ T log kΠ gives the bound for the adversarial regime. Replacing
m2k4 with

(
mk2 + ϵ

mk

)2 in (4.35) and appropriately choose λ (note that we can take
λ depending on ϵ), we obtain the desired bound for the adversarial regime with a self-
bounding constraint.
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4.7 Conclusion

In this chapter, we considered PM and provided the first best-of-both-worlds algorithms
for both locally and globally observable games, both of which are based on the FTRL
framework. For non-degenerate locally observable games, we showed that the regret is
O(m2k4 log(T ) log(kΠT )/∆min) in the stochastic regime andO(mk3/2

√
T log(T ) log kΠ)

in the adversarial regime. To obtain this bound, we advanced the technique of exploration
by optimization, which is a technique for bounding the stability component of regret, by
considering the optimization problem over the restricted feasible set. This enabled us
to use the self-bounding technique to prove the BOBW guarantee. We also show for
globally observable games, the regret is O(c2G log(T ) log(kΠT )/∆

2
min) in the stochastic

regime and O((c2G log(T ) log(kΠT ))
1/3T 2/3) in the adversarial regime. To obtain this

goal, we modified the technique of adaptive learning rate developed in online learning
with feedback graphs. Moreover, we developed a novel analysis to circumvent the opti-
mization problem in computing the FTRL, which enabled us to implement the proposed
algorithm efficiently.
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Chapter 5

Stability-penalty-adaptive Follow the Regularized
Leader: Sparsity, Game dependency, and Best of
Both Worlds

Adaptivity to the difficulties of a problem is a key property in sequential decision-making
problems to broaden the applicability of algorithms. Follow-the-regularized-leader has
recently emerged as one of the most promising approaches for obtaining various types of
adaptivity in bandit problems. In fact in the previous chapter, we observed that the follow-
the-regularized-leader is a quite strong framework to achieve the best-of-both-worlds
guarantee, which aims to achieve a near-optimal regret in both the stochastic and adversar-
ial regimes. Aiming to further generalize this adaptivity, we develop a generic adaptive
learning rate, called stability-penalty-adaptive learning rate for follow-the-regularized-
leader. This learning rate yields a regret bound jointly depending on stability and penalty
of the algorithm, into which the regret of follow-the-regularized-leader is typically de-
composed. With this result, we establish several algorithms with three types of adap-
tivity: sparsity, game-dependency, and best-of-both-worlds. Sparsity frequently appears
in real-world problems. However, existing sparse multi-armed bandit algorithms with
k-arms assume that the sparsity level s ≤ k is known in advance, which is often not the
case in real-world scenarios. To address this problem, with the help of the new learning
rate framework, we establish s-agnostic algorithms with regret bounds of Õ(

√
sT ) in the

adversarial regime for T rounds, which matches the existing lower bound up to a loga-
rithmic factor. Furthermore, leveraging the new adaptive learning rate framework and a
novel analysis to bound the variation in follow-the-regularized-leader output in response
to changes in a regularizer, we establish the first best-of-both-worlds algorithm with a
sparsity-dependent bound. Additionally, we explore partial monitoring and demonstrate
that the proposed learning rate framework allows us to achieve the best-of-both-worlds
and game-dependent bounds simultaneously.

5.1 Introduction

This study considers the Multi-Armed Bandits (MAB) and Partial Monitoring (PM). In
the MAB problem, the learner selects one of k arms, and the adversary simultaneously
determines the loss of each arm, ℓt = (ℓt1, . . . , ℓtk)

⊤ in [0, 1]k or [−1, 1]k. After that,
the learner observes only the loss for the chosen arm. The learner’s goal is to minimize
the regret, which is the difference between the learner’s total loss and the total loss of an
optimal arm fixed in hindsight. PM is a generalization of MAB, and the learner observes
feedback symbols instead of the losses.

One of the most promising frameworks for MABs and PM is Follow-the-Regularized-
Leader (FTRL) (Auer et al., 2002b; Cesa-Bianchi et al., 2006), which determines the arm
selection probability at each round by minimizing the sum of the cumulative (estimated)
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losses so far plus a convex regularizer. Note that the well-known Exp3 algorithm devel-
oped in Auer et al. (2002b) is equivalent to FTRL with the (negative) Shannon entropy
regularizer. FTRL is also known to perform well for the classic expert problem (Freund
and Schapire, 1997) and reinforcement learning (Zimin and Neu, 2013). Furthermore,
when the problem is “benign”, it is known that FTRL can exploit the underlying structure
to adaptively improve its performance. Typical examples of such adaptive improvements
are (i) data-dependent bounds and (ii) Best-of-Both-Worlds (BOBW).

Data-dependent bounds have been investigated to enhance the adaptivity of algo-
rithms to a given structure of losses in the adversarial regime, where feedback (e.g.,
losses in MABs) is decided in an arbitrary manner. There are various examples of
data-dependent bounds, and this study considers sparsity-dependent bounds and game-
dependent bounds.

A sparsity-dependent bound is an important example of data-dependent bounds, as
sparsity frequently appears in real-world problems. For example, in online advertisement
allocation, it is often the case that only a fraction of the ads is clicked. Although there
are some studies for sparse MABs (Kwon and Perchet, 2016; Bubeck et al., 2018; Zheng
et al., 2019), all of them assume that (an upper bound of) sparsity level s ≥ ∥ℓt∥0 =
|{i ∈ [k] : ℓti ̸= 0}| is known beforehand, which in many practical scenarios does not
hold.

The concept of a game-dependent bound was recently introduced by Lattimore and
Szepesvári (2020b) to derive a regret upper bound that depends on the game the learner
is facing. As the authors suggest, one of the motivations for the game-dependent bound
is that previous PM algorithms are “quite conservative and not practical for normal prob-
lems”. For example, whereas the Bernoulli MAB is expressed as a PM, algorithms for
PM do not always achieve the minimax regret of MAB (Auer et al., 2002b). The game-
dependent bound enables the learner to automatically adapt to the essential difficulty of
the game the algorithm is actually facing.

The BOBW algorithm aims to achieve near-optimal regret bounds in stochastic and
adversarial regimes, where the feedback is stochastically generated in the stochastic regime.
Since we often do not know the underlying regime, it is desirable for an algorithm to si-
multaneously obtain a near-optimal performance both for the stochastic and adversarial
regimes. Bubeck and Slivkins (2012) developed the first BOBW algorithm, and Zimmert
and Seldin (2021) proposed the well-known Tsallis-INF algorithm, which achieves the
optimal regret for both regimes. The Tsallis-INF algorithm also achieves favorable regret
guarantees in the adversarial regime with a self-bounding constraint, which interpolates
between the stochastic and adversarial regimes.

To realize the aforementioned adaptivity in FTRL, the adaptive learning rate (a.k.a. time-
varying learning rate) is one of the most representative approaches. This approach adjusts
the learning rate based on previous observations. In the literature, adaptive learning rates
have been designed to depend on stability or penalty, which are components of a regret
upper bound of FTRL. The stability term increases if the variation of FTRL outputs in
the adjacent rounds is large, and stability-dependent learning rates have been used in
a considerable number of algorithms available in the literature, e.g., McMahan (2011);
Lattimore and Szepesvári (2020b); Orabona (2019) and references therein. In contrast,
the penalty term comes from the strength of the regularization, and recently penalty-
dependent learning rates were considered to achieve BOBW guarantees (Ito et al., 2022a;
Tsuchiya et al., 2023a). However, existing stability-dependent (resp. penalty-dependent)
learning rates are designed with the worst-case penalty (resp. stability), which could po-
tentially limit the adaptivity and performance of FTRL. (There are numerous studies
related to this chapter and we include additional related work in Section 5.7.2.)
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5.1.1 Contributions of this Chapter

In this chapter, to further broaden the applicability of FTRL, we establish a generic frame-
work for designing an adaptive learning rate that depends on both the stability and penalty
components simultaneously, which we call a Stability-Penalty-Adaptive (SPA) learning
rate (Definition 5.2). This enables us to bound a regret approximately by Õ

(√∑T
t=1 ztht+1

)
for a stability component (zt) and a penalty component (ht), which we call a SPA regret
bound (Theorem 5.1). With appropriate selections of zt and ht, this result yields the
three important adaptive bounds mentioned earlier, namely sparsity, game-dependency,
and BOBW. In particular, our contributions are as follows (see also Tables 5.1 and 5.2):

• (Section 5.5.1) We initially provide new algorithms for sparse MABs as prelim-
inaries for establishing a BOBW algorithm with a sparsity-dependent bound. In
Section 5.5.1.1, we propose a novel estimator of the sparsity level, which is linked
to a stability component and induces L2 =

∑T
t=1∥ℓt∥22 ≤ sT . We demonstrate

that a learning rate using this estimator with the Shannon entropy regularizer and
Θ̃((kT )−2/3) uniform exploration immediately results in an O(

√
L2 log k) regret

bound for ℓt ∈ [0, 1]k. In Section 5.5.1.2, we investigate possibly negative losses
ℓt ∈ [−1, 1]k. We employ the time-invariant log-barrier proposed in Bubeck et al.
(2018) and control the stability term. This allows us to achieve an O(

√
L2 log k)

regret bound for losses in [−1, 1]k even without the Θ̃((kT )−2/3) uniform explo-
ration. This is a key factor for the BOBW property that we discuss next. Note that
Section 5.5.1 serves as preliminary findings for the subsequent section.

• (Section 5.5.2) We establish a BOBW algorithm with a sparsity-dependent bound.
In order to achieve this goal, we make another major technical development: we an-
alyze the variation in the FTRL output when the regularizer changes (Lemma 5.8),
which holds thanks to the time-invariant log-barrier and may be of independent
interest. This analysis is necessary since we use a time-varying learning rate,
whereas Bubeck et al. (2018) uses a constant learning rate. This technical devel-
opment successfully allows us to achieve the goal (Theorem 5.2) in combination
with the SPA learning rate developed in Section 5.4 and a technique for exploiting
sparsity in Section 5.5.1.2.

• (Section 5.6) We show that the SPA learning rate established in Section 5.4 can
also be used to achieve a game-dependent bound and a BOBW guarantee simulta-
neously, which further highlights the usefulness of the SPA learning rate.

5.2 Setup

This section introduces the preliminaries of this study. Sections 5.2.1 and 5.2.2 formulate
the MAB and PM problems, respectively, and Section 5.2.3 defines regimes considered
in this chapter.

Notation Let ∥x∥, ∥x∥1, and ∥x∥∞ be the Euclidian, ℓ1-, and ℓ∞-norms for a vector x,
respectively. Let ∥x∥0 be the number of non-zero elements for a vector x. Let Pk = {p ∈
[0, 1]k : ∥p∥1 = 1} be the (k−1)-dimensional probability simplex. A vector ei ∈ {0, 1}k
is the i-th orthonormal basis of Rk, and 1 is the all-one vector. LetDψ : Rk×Rk → R+

be the Bregman divergence induced by ψ : Rk → R, i.e., Dψ(p, q) = ψ(p) − ψ(q) −
⟨∇ψ(q), p− q⟩.
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Table 5.1: Regret upper bounds with sparsity-dependent bounds. T is the time horizon. s ≤ k
is the level of sparsity in losses. We define L2 =

∑T
t=1∥ℓt∥22 and ∥ℓt∥0 ≤ s implies

L2 =
∑T
t=1∥ℓt∥22 ≤ sT since ∥ℓt∥∞ ≤ 1. ∆min is the minimum suboptimality

gap. Adv. and Stoc. are the abbreviations of the adversarial and stochastic regime,
respectively.

Reference s-agnostic? Range of ℓti Regime Regret bound

Kwon and Perchet (2016) – [0, 1] Adv. Ω(
√
sT )

Kwon and Perchet (2016) No [0, 1] Adv. 2
√
e
√

sT log(k/s)

Ours (Sec. 5.5.1.1, Cor. 5.1) Yes [0, 1] Adv. 2
√
2
√

L2 log k +O((kT log k)1/3)

Bubeck et al. (2018) No [−1, 1] Adv. 10
√

L2 log k + 20k log T

Ours (Sec. 5.5.1.2, Cor. 5.2) Yes [−1, 1] Adv. 4
√
2
√

L2 log k + 2k log T

Ours (Sec. 5.5.2, Thm. 5.2) Yes [−1, 1] Adv. 4
√

L2 log k log T +O(k log T )
Stoc. O(k log(T ) log(kT )/∆min)

Table 5.2: Regret bounds for non-degenerate local PM games. Vt, V ′
t , and V̄ ′ are game-

dependent quantities satisfying Vt ≤ V ′
t ≤ V̄ (see Section 5.6 for definitions). H(qt)

is the Shannon entropy for FTRL output qt.
Reference Game-dependent? BOBW? Order of regret bound

Many existing studies on PM No No –

Lattimore and Szepesvári (2020b) Yes No
√∑T

t=1 Vt log k

Tsuchiya et al. (2023a) No (only game-class-dependent) Yes
√

V̄
∑T

t=1 H(qt+1)

Ours (Sec. 5.6, Cor. 5.3) Yes Yes
√∑T

t=1 V
′
t H(qt+1) log T

5.2.1 Multi-armed Bandits

In MAB with k-arms, at each round t ∈ [T ] := {1, 2, . . . , T}, the environment de-
termines the loss vector ℓt = (ℓt1, ℓt2, . . . , ℓtk)

⊤ in [0, 1]k or [−1, 1]k, and the learner
simultaneously chooses an arm At ∈ [k] without knowing ℓt. After that, the learner
observes only the loss ℓtAt for the chosen arm. The performance of the learner is eval-
uated by the regret RegT , which is the difference between the cumulative loss of the
learner and of the single optimal arm, that is, a∗ = argmina∈[k] E

[∑T
t=1 ℓta

]
and

RegT = E
[∑T

t=1(ℓtAt − ℓta∗)
]
, where the expectation is taken with respect to the inter-

nal randomness of the algorithm and the randomness of the loss vectors (ℓt)Tt=1.

5.2.2 Partial Monitoring

Formulation A PM game G = (L,Φ) with k-actions and d-outcomes is defined by
a pair of a loss matrix L ∈ [0, 1]k×d and feedback matrix Φ ∈ Σk×d, where Σ is a
set of feedback symbols. The game is played in a sequential manner by a learner and
an opponent across T rounds. The learner begins the game with knowledge of L and
Φ. For every round t ∈ [T ], the opponent selects an outcome xt ∈ [d], and the learner
simultaneously chooses an action At ∈ [k]. Then the learner suffers an unobserved
loss LAtxt and receives only a feedback symbol σt = ΦAtxt , where Lax is the (a, x)-th
element of L. The learner’s performance in the game is evaluated by the regret RegT
as in the MAB case: a∗ = argmina∈[k] E

[∑T
t=1Laxt

]
and RegT = E

[∑T
t=1(LAtxt −

La∗xt)
]
= E

[∑T
t=1 ⟨ℓAt − ℓa∗ , ext⟩

]
, where ℓa ∈ Rd is the a-th row of L.

Several concepts in PM Let m ≤ |Σ| be the maximum number of distinct symbols in
a single row of Φ ∈ Σk×d. Different actions a and b are duplicate if ℓa = ℓb. We can
decompose possible distributions of d outcomes inPd based on the loss matrix. For every
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action a ∈ [k], cell Ca = {u ∈ Pd : maxb∈[k](ℓa − ℓb)⊤u ≤ 0} is the set of probability
vectors in Pd for which action a is optimal. Each cell is a closed convex polytope.

Define dim(Ca) as the dimension of the affine hull of Ca. Action a is said to be
dominated if Ca = ∅. For non-dominated actions, action a is said to be Pareto optimal if
dim(Ca) = d−1, and degenerate if dim(Ca) < d−1. Let Π be the set of Pareto optimal
actions. Two Pareto optimal actions a, b ∈ Π are called neighbors if dim(Ca ∩ Cb) =
d− 2, which is used to define the difficulty of PM games. A PM game is said to be non-
degenerate if it has no degenerate actions. We assume that PM game G is non-degenerate
and contains no duplicate actions.

The difficulty of PM games are characterized by the following observability condi-
tions. Neighbouring actions a and b are locally observable if there existswab : [k]×Σ→
R such that wab(c, σ) = 0 for c ̸∈ {a, b} and

∑k
c=1wab(c,Φcx) = Lax−Lbx for all x ∈

[d]. A PM game is locally observable if all neighboring actions are locally observable,
and this study considers locally observable games.

Loss difference estimation Let H be the set of all functions from [k] × Σ to Rd.
For any locally observable games, there exists G ∈ H such that for any b, c ∈ Π,∑k

a=1(G(a,Φax)b−G(a,Φax)c) = Lbx−Lcx for all x ∈ [d] Lattimore and Szepesvári
(2020b). For example, we can takeG = G0 defined byG0(a, σ)b =

∑
e∈pathT (b)we(a, σ)

for a ∈ Π, where T is a tree over Π induced by neighborhood relations and pathT (b)
is the set of edges from b ∈ Π to an arbitrarily chosen root c ∈ Π on T (Lattimore and
Szepesvári, 2020b). See Section 5.7.2 and (Lattimore and Szepesvári, 2020a, Chapter
37) for a more detailed explanation and background of PM.

5.2.3 Considered Regimes

We consider three regimes on the assumptions for losses in MABs and outcomes in PM.
In the stochastic regime, a sequence of loss vector (ℓt) in MAB and that of outcome vector
(xt) in PM follow an unknown distribution ν∗ in an i.i.d. manner. Define the minimum
suboptimality gap in ∆min = mina ̸=a∗ ∆a for ∆a = Eℓt∼ν∗

[
(ℓta − ℓta∗)

]
in MAB and

∆a = Ext∼ν∗
[
(ℓa− ℓa∗)⊤ext

]
in PM. Note that the definitions of ℓ in MAB and PM are

different.
In contrast, the adversarial regime does not assume any stochastic structure for the

losses or outcomes, and they can be chosen in an arbitrarily manner. In this regime, the
environment can choose ℓt for MAB and xt for PM depending on the past history until
the (t− 1)-th round, (As)t−1

s=1.
We also consider a general regime, adversarial regime with a self-bounding con-

straint (Zimmert and Seldin, 2021).

Definition 5.1. Let ∆ ∈ [0, 2]k and C ≥ 0. The environment is in an adversar-
ial regime with a (∆, C, T ) self-bounding constraint if it holds for any algorithm that
RegT ≥ E

[∑T
t=1∆At − C

]
.

One can see that the stochastic and adversarial regimes are indeed instances of this
regime, and that well-known stochastic regimes with adversarial corruptions (Lykouris
et al., 2018) are also in this regime (see Zimmert and Seldin (2021) and Tsuchiya et al.
(2023a) for definitions in MAB and PM, respectively).

We assume that there exists a unique optimal arm (or action) a∗, which was employed
by many studies aiming at developing BOBW algorithms (Gaillard et al., 2014; Luo and
Schapire, 2015; Wei and Luo, 2018; Zimmert and Seldin, 2021).
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5.3 Preliminaries

This section provides preliminaries for developing and analyzing algorithms. We first
introduce FTRL, upon which we develop our algorithms, and then describe the self-
bounding technique, which is a common technique for proving a BOBW guarantee.

Follow-the-regularized-leader In the FTRL framework, an arm selection probability
pt ∈ Pk at round t is given by

qt ∈ argmin
q∈Pk

〈
t−1∑
s=1

ŷs, q

〉
+ ψt(q) and pt = Tt(qt) , (5.1)

where ŷs ∈ Rk is an estimator of loss ℓt at round t, ψt : Pk → R is a convex regularizer,
and Tt : Pk → Pk is a map from the output of FTRL qt to an arm selection probability
vector pt.

In the analysis of FTRL, it is common to evaluate
∑T

t=1 ⟨ŷt, pt − p⟩ =
∑T

t=1 ⟨ŷt, qt − p⟩+∑T
t=1 ⟨ŷt, pt − qt⟩ for some p ∈ Pk. As introduce in Lemma 2.1 in Chapter 2, it is known

that quantity
∑T

t=1 ⟨ŷt, qt − p⟩ is bounded from above by

T∑
t=1

(ψt(qt+1)− ψt+1(qt+1)︸ ︷︷ ︸
penalty term

) + ψT+1(p)− ψ1(q1) +

T∑
t=1

(⟨qt − qt+1, ŷt⟩ −Dψt(qt+1, qt)︸ ︷︷ ︸
stability term

) .

(5.2)

We refer to the terms in (5.2) as a penalty and stability terms, and to the quantity ⟨ŷt, pt − qt⟩
as a transformation term. Note that, though this study focuses on example in which
ΦT+1(p) is not dominant, this term may be dominant dependent on the choice of regu-
larizers.

Self-bounding technique A self-bounding technique is a common method for proving
a BOBW guarantee (Gaillard et al., 2014; Wei and Luo, 2018; Zimmert and Seldin, 2021).
In the self-bounding technique, we first derive regret upper and lower bounds in terms of
a variable dependent on the arm selection probability, and then derive a regret bound by
combining the upper and lower bounds. We use a version proposed in Ito et al. (2022a).
We consider Q(i), Q̄(i), P (i), and P̄ (i) for i ∈ [k] defined by Q(i) =

∑T
t=1(1 − qti),

Q̄(i) = E [Q(i)] , P (i) =
∑T

t=1(1− pti), and P̄ (i) = E [P (i)] . Note that Q̄(i), P̄ (i) ∈
[0, T ] for any i ∈ [k]. In terms of Q̄(i) or P̄ (i), we can obtain the lower bound of the
regret for the adversarial regime with a self-bounding constraint as follows:

Lemma 5.1 (Lemma 4.2 in Chapter 4). In the adversarial regime with a self-bounding
constraint (Definition 5.1), if there exists c′ ∈ (0, 1] such that pti ≥ c′ qti for all t ∈ [T ]
and i ∈ [k], then RegT ≥ ∆minP̄ (a

∗)− C ≥ c′∆minQ̄(a∗)− C .

It is known that the sums of the entropy H(·) of (pt) is bounded by P (i) as follows:

Lemma 5.2 (Ito et al. 2022a, Lemma 4). Let (qt)Tt=1 be any sequence of probability
vectors and define Q(i) =

∑T
t=1(1 − qti). Then for any i ∈ [k],

∑T
t=1H(qt) ≤

Q(i) log(ekT/Q(i)).

Based on Lemmas 5.1 and 5.2, it suffices to showRegT ≲ E
[√∑T

t=1H(qt) polylog(T )
]

to prove a BOBW gurantee in MAB. This is because, for the adversarial regime, using
H(qt) ≤ log k implies a Õ(

√
T ) bound, and for the stochastic regime, using Lemmas 5.1

and 5.2 roughly bounds the regret as RegT = 2RegT − RegT ≲
√
Q̄(a∗) polylog(T )−

∆minQ̄(a∗) ≲ polylog(T )/∆min.
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5.4 Stability-Penalty-Adaptive Learning Rate and Regret Bound

This section proposes a new adaptive learning rate, which yields a regret upper bound de-
pendent on both the stability component zt and penalty component ht for various choices
of zt and ht. When we use a learning rate ηt, the analysis of FTRL boils down to the eval-
uation of

R̂eg
SP

T =

T∑
t=1

(
1

ηt+1
− 1

ηt

)
ht+1 + λ

T∑
t=1

ηtzt for some λ > 0 . (5.3)

In particular, when we use the Exp3 algorithm, ht is the Shannon entropy of the FTRL
output at round t. This can be confirmed by checking the existing studies (e.g., Ito et al.
2022a; Tsuchiya et al. 2023a) or the proofs in Sections 5.7.5, 5.7.6, 5.7.7.2, and 5.7.8.
To favorably bound R̂eg

SP

T , we develop a new learning rate framework, which we call
the jointly stability- and penalty-adaptive learning rate, or the Stability-Penalty-Adaptive
(SPA) learning rate for short:

Definition 5.2 (Stability-penalty-adaptive learning rate). Let ((ht, zt, z̄t))Tt=1 be non-
negative reals such that h1 ≥ ht for all t ∈ [T ], (z̄th1 +

∑t
s=1 zshs+1)

T
t=1 is non-

decreasing, and z̄th1 ≥ ztht+1 for all t ∈ [T ]. Let c1, c2 > 0. Then, a sequence of
(ηt)

T
t=1 is a SPA learning rate if it has a form of

β1 > 0 , βt+1 = βt +
c1zt√

c2 + z̄th1 +
∑t−1

s=1 zshs+1

, and ηt =
1

βt
. (5.4)

Remark. To the best of our knowledge, this is the first learning rate that depends on
both the stability and penalty components. Note that when we set the penalties to their
worst-case value, that is, ht = h1 for all t ∈ [T ] (recalling ht ≤ h1), the SPA learning
rate in (5.4) becomes equivalent to the standard type of the learning rate, which depends
only on the stability and has the form of βt = 1/ηt ≃ c1√

h1

√
z̄1 +

∑t−1
s=1 zs .On the other

hand, when we set the stabilities to be their worst-case value, that is, z ≥ maxt∈[T ] zt, the
SPA learning rate in (5.4) corresponds to the learning rate dependent only on the penalty
in Ito et al. (2022a); Tsuchiya et al. (2023a).

Using the learning rate (ηt) in (5.4), we can bound R̂eg
SP

T as follows.

Theorem 5.1 (Stability-penalty-adaptive regret bound). Let (ηt)Tt=1 be a SPA learning
rate in Definition 5.2. Then R̂eg

SP

T in (5.3) is bounded as follows:
(I) If ((ht, zt, z̄t))Tt=1 in (ηt) satisfies

√
c2 + z̄th1
c1

(β1 + βt) ≥ ϵ+ zt for all t ∈ [T ]

for some ϵ > 0 (stability condition (S1)), then

R̂eg
SP

T ≤ 2

(
c1 +

λ

c1
log

(
1 +

T∑
u=1

zu
ϵ

))√√√√c2 + z̄th1 +

T∑
t=1

ztht+1 . (5.5)

(II) If ht = h1 for all t ∈ [T ], c2 = 0, and ((ht, zt, z̄t))
T
t=1 in (ηt) satisfies βt ≥

ac1√
h1

√∑t
s=1 zs for some a > 0 (stability condition (S2)), then

R̂eg
SP

T ≤ 2

(
c1 +

λ

ac1

)√√√√h1

T∑
t=1

zt .
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The proof is given in Section 5.7.3. Note that the component R̂eg
SP

T of the regret
often becomes dominant when we use the Shanon entropy regularizer, and bounding it
immediately leads to the regret bound in our framework. In Part (I) of Theorem 5.1, we
can see that R̂eg

SP

T is bounded by
√∑T

t=1 ztht+1, which will enable us to obtain BOBW
and data-dependent bounds simultaneously.

5.5 Sparsity-dependent Bound

This section establishes several sparsity-dependent bounds. We use the FTRL framework
in (5.1) with the inverse weighted estimator ŷt ∈ Rk given by ŷti = ℓti1[At = i]/pti.This
estimator is common in the literature and is useful for its unbiasedness, i.e.,EAt∼pt [ŷt | pt] =
ℓt. We first propose algorithms that achieve sparsity-dependent bounds using stability-
dependent learning rates in Section 5.5.1 as preliminaries for the subsequent section. Fol-
lowing that, in Section 5.5.2, we establish a BOBW algorithm with a sparsity-dependent
bound based on the SPA learning rate. More specific steps are summarized as follows.

• Section 5.5.1.1 discusses the case of ℓt ∈ [0, 1]k and shows that appropriately
choosing zt in the SPA learning rate (5.4) with the Shannon entropy regularizer and
Θ̃((kT )−2/3) uniform exploration achieves a O(

√
L2 log k) regret for ℓt ∈ [0, 1]k

without knowing L2.

• Section 5.5.1.2 considers the case of ℓt ∈ [−1, 1]k, which is known to be more
challenging than ℓt ∈ [0, 1]k. We show that the time-invariant log-barrier enables
us to choose a “tighter” zt in (5.4), which removes the uniform exploration used
in Section 5.5.1.1. This not only results in the bound of O(

√
L2 log k) for ℓt ∈

[−1, 1]k but also becomes one of the key properties to achieve BOBW.

• Section 5.5.2 presents a BOBW algorithm with a sparsity-dependent bound using
the technique developed in Section 5.5.1 and Theorem 5.1. While Theorem 5.1
itself is a strong tool leading directly to the result for PM (Section 5.6), its ap-
plication does not lead to the desired bounds. In particular, in this setting the
Õ
(√∑T

t=1 ztht+1

)
term derived through Theorem 5.1 does not immediately im-

ply a BOBW guarantee with a sparsity-dependent bound. To solve this problem,
we develop a novel technique to analyze the variation in FTRL outputs qt in re-
sponse to the change in a regularizer (Lemma 5.8), and prove a BOBW bound
with a sparsity-dependent bound of O(

√
L2 log k log T ).

5.5.1 Parameter-agnostic Sparsity-dependent Bounds

This section establishes s-agnostic algorithms to achieve sparsity-dependent bounds for
the adversarial regime, which are preliminaries for Section 5.5.2.

5.5.1.1 L2-agnostic algorithm with O(
√
L2 log k) bound for ℓt ∈ [0, 1]k

Here, we use pt = Tt(qt) for Tt(q) = (1− γ)q + γ
k1 and γ = k1/3(log k)1/3

T 2/3 and assume
γ ∈ [0, 1/2] (this holds when T ≥

√
8k log k), which implies 2pt ≥ qt . We use the

Shannon entropy regularizer ψt(p) = − 1
ηt
H(p) = 1

ηt
ψnS(p) = 1

ηt

∑k
i=1 pi log pi with

the following learning rate:

β1 =
2c1√
h1

√
k

γ
and βt+1 = βt +

c1ωt
√
log k

√
k
γ +

∑t−1
s=1 ωs

for ωt :=
ℓ2tAt

ptAt

, (5.6)
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which corresponds to the learning rate in Definition 5.2 with ht ← H(q1) = log k, zt ←
ωt, z̄t ← k/γ, and c2 ← 0. The uniform exploration is used to satisfy stability condition
(S2) in Theorem 5.1, the amount of which is determined by balancing the regret coming
from the uniform exploration and stability condition (S2). Theorem 5.1 immediately
gives the following bound.

Corollary 5.1. When T ≥
√
8k log k, the above algorithm with c1 = 1/

√
2 achieves

RegT ≤ 2
√
2
√
L2 log k + (2

√
2 + 1)(kT log k)1/3 without knowing L2. In particular,

when T ≥ 7k2/s3 ,

RegT ≤ (4
√
2 + 1)

√
sT log k .

The proof is given in Section 5.7.5. The most striking feature of the algorithm is its
L2 (or s)-agnostic property. This is essentially made possible by the learning rate using
the data-dependent quantity ωt in (5.6), which satisfies

E


√√√√ T∑

t=1

ωt

 ≤
√√√√ T∑

t=1

E[ωt] =

√√√√ T∑
t=1

k∑
i=1

ℓ2ti =
√
L2 .

The leading constant of the bound is better than the existing bounds, as shown in Ta-
ble 5.1, despite its agnostic property.

Remark. If ℓt ∈ [0, 1]k, the first-order bound by Wei and Luo (2018) implies sparsity
bounds. This, however, does not hold when ℓt ∈ [−1, 1]k. In fact, let us consider the
case where ℓt is a zero vector except that only one arm’s loss is −1 for some t ∈ [T ].
Then the sparsity-dependent bound becomes O(

√
T ). On the other hand, the first-order

bound in Wei and Luo (2018) is not directly applicable, and we need to transform losses
to range [0, 1]. This implies that the first-order bound becomesO(

√
kT ), which is worse

than the sparsity-dependent bound.

We will see in Section 5.5.1.2 that this assumption can be totally removed by adding
a time-invariant log-barrier regularization.

5.5.1.2 L2-agnostic algorithm with O(
√
L2 log k+ k log T ) bound for ℓt ∈ [−1, 1]k

Here, we consider the case of ℓt ∈ [−1, 1]k. It is worth noting that the negative loss
cannot be handled by simply shifting the loss since it removes the sparsity from the losses
(ℓt); see Kwon and Perchet (2016); Bubeck et al. (2018) for further details. We directly
use the output qt as pt, that is, pt = qt. We use the hybrid regularizer consisting of the
negative Shannon entropy and the log-barrier function, ψt(p) = 1

ηt
ψnS(p) + 2ψLB(p),

where ψLB(p) =
∑k

i=1 log(1/xi). We use the learning rate given by

β1 =
c21
8h1

and βt+1 = βt +
c1νt

√
log k

√
νt +

∑t−1
s=1 νs

for νt := ωtmin

{
1,
ptAt

2ηt

}
,(5.7)

where ωt is defined in (5.6). Learning rate (5.7) corresponds to that in Definition 5.2
with ht ← H(q1) = log k, zt ← νt, z̄t ← νt, and c2 ← 0. We then have the following
bound:

Corollary 5.2. If we run the above algorithm with c1 =
√
2,

RegT ≤ 4
√
2
√
L2 log k + 2k log T + k + 1/4 ,

which implies that RegT ≤ 4
√
2
√
sT log k + 2k log T + k + 1/4.
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The proof is given in Section 5.7.6. Corollary 5.2 removes the assumption of T ≥
7k2/s3 in Corollary 5.1, and it also improves the leading constant of the regret in Bubeck
et al. (2018). Note that one can prove a bound of the same order, but with a worse leading
constant, by setting β1 ≥ 15k and combining the analysis similar to that in Section 5.5.1.1
and the stability bound in Bubeck et al. (2018). We successfully remove the assumption
of T ≥ 7k2/s3 thanks to the following lemma, which serves as one of the key elements
in achieving a BOBW guarantee with a sparsity-dependent bound (The proof is given in
Section 5.7.6.):

Lemma 5.3 (Stability bound for negative losses). Let ℓt ∈ [−1, 1]k and ŷt = ℓti1[At = i]/pti
be the inverse weighted estimator. Assume that qt ≤ δpt for some δ ≥ 1. Then the sta-
bility term of FTRL with the hybrid regularizer ψt = 1

ηt
ψnS + 2δ ψLB is bounded as

〈
qt − qt+1, ℓ̂t

〉
−Dψt(qt+1, qt) ≤ δηt

ℓ2tAt

ptAt

min

{
1,
ptAt

2ηt

}
= δηtνt .

Remark. We can observe from Lemma 5.3 that the stability term is bounded in terms
of νt, and the most important observation is that this νt is bounded by the inverse of
the learning rate 1/(2ηt) = βt/2, i.e., νt ≤ βt/2. This enables us to guarantee the
stability condition (S2) in Theorem 5.1 without needing to mix the Θ̃((kT )−2/3) uniform
exploration used in Section 5.5.1.1. Moreover, this will be a key property to prove a
BOBW with a sparsity-dependent bound in the next section.

As a minor contribution, by directly bounding the stability component, the RHS of
Lemma 5.3 has a smaller leading constant than the bound obtained by using the bound
in Bubeck et al. (2018).

5.5.2 Best-of-both-worlds Guarantee with Sparsity-dependent Bound

Finally, we are ready to establish a BOBW algorithm with a sparsity-dependent bound
and derive its regret bound. We use pt = Tt(qt) = (1 − γ)qt + γ

k1 with γ = k
T (i.e.,

Θ(1/T ) uniform exploration) and assume γ ∈ [0, 1/2], which implies 2pt ≥ qt and
νt ≤ T. We use the hybrid regularizer ψt = 1

ηt
ψnS + 4ψLB with the following learning

rate depending on both the stability and penalty components:

β1 = 15k and βt+1 = βt +
c1νt√

81c21 + νtht+1 +
∑t−1

s=1 νshs+1

with ht =
1

1− k
T

H(pt) ,

(5.8)

where νt is defined in (5.7). This corresponds to the SPA learning rate in Definition 5.2
with zt ← νt, z̄t ← νtht+1/h1, and c2 ← 81c21. One can see that stability assumption
(S1) in Part (I) of Theorem 5.1 are satisfied thanks to νt ≤ βt (see Section 5.7.7 for the
proof). We then have the following bound.

Theorem 5.2 (BOBW with sparsity-dependent bound). Suppose that T ≥ 2k. Then the
above algorithm with c1 =

√
2 log (1 + T/β1) (Algorithm 5.2 in Section 5.7.7) achieves

RegT = O

k log(T ) log(kT )
∆min

+

√
Ck log(T ) log(kT )

∆min


for the adversarial regime with a (∆, C, T ) self-bounding constraint, and

RegT ≤ 4
√
L2 log(k) log(1 + T ) +O(k log T )

for the adversarial regime.
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The proof is given in Section 5.7.7. This is the first BOBW bound with the sparsity-
dependent bound. The bound in the stochastic regime is suboptimal in two respects: its
dependence on ∆min and (log T )2. Concurrently, two separate studies improve each sub-
optimality (Jin et al. 2023 for ∆min and Dann et al. 2023 for (log T )2), but it is highly
uncertain if we can prove a BOBW with a sparsity-dependent bound based on their ap-
proach, and it is an important future work to investigate this problem.

Key elements of the proof In the following, we describe some key elements of the
proof of Theorem 5.2. We need to solve one remaining technical issue. Using Part (I) of

Theorem 5.1, we can show that the regret is roughly bounded by E
[√∑T

t=1 νtht+1

]
≤√∑T

t=1 E[νtht+1]. However, this quantity cannot be straightforwardly bounded since
ht+1 depends on νt.

To address this issue, we analyze the behavior of arm selection probabilities when
the regularizer changes. In particular, we first prove in Lemma 5.8 that ht+1 ≤ ht +
k (βt+1/βt − 1)ht+1.This lemma can be proven by a novel analysis evaluating the changes
of the FTRL outputs when the learning rate varies (given Sections 5.7.7.1 and 5.7.7.2),
which is not considered and required when we use a time-invariant learning rate (e.g.,
Bubeck et al. 2018). Using the last inequality, we have√√√√ T∑

t=1

E[νtht+1] ≲

√√√√ T∑
t=1

E[νtht] + k

T∑
t=1

E
[
νt

(
βt+1

βt
− 1

)
ht+1

]

≲

√√√√ T∑
t=1

E[νtht] + k
T∑
t=1

E[(βt+1 − βt)ht+1]

≲

√√√√√ T∑
t=1

E[νtht] + k
T∑
t=1

E


√√√√ T∑

t=1

νtht+1

 ≲

√√√√ T∑
t=1

E[νtht] + k ,

which holds thanks again to νt ≤ βt and based on the fact that x ≤
√
a+ bx for a, b, x >

0 implies x ≲
√
b + a (here we ignore some logarithmic factors). This combined with

the self-bounding technique leads to a BOBW guarantee in the stochastic regime.

Implementation One may wonder how to compute βt+1 satisfying (5.8) since ht+1 =
ht+1(βt+1) depends on βt+1. In fact, this can be computed by definingFt : [βt, βt+T ]→
R as Ft(α) = α −

(
βt + c1νt/

√
81c21 + νtht+1(α) +

∑t−1
s=1 νshs+1

)
and setting βt+1 to be a

root of Ft(α) = 0. Such α can be computed using the bisection method because Ft is
continuous (proved in Proposition 5.2 in Section 5.7.7.3). The detailed discussion can be
found in Section 5.7.7.3.

5.6 Best-of-both-worlds with Game-dependent Bound for Partial Monitor-
ing

This section discusses the result of a BOBW guarantee with a game-dependent bound for
PM. We also consider full information (FI) and MAB as well as non-degenerate locally
observable PM (PM-local), and let M be a such underlying model. The desired bound is
obtained by direct application of the SPA learning rate and Theorem 5.1, which highlights
the usefulness of the SPA learning rate.
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5.6.1 Exploration by Optimization and its Extension

Exploration-by-optimization We rely on the Exploration by Optimization (EbO) by Lat-
timore and Szepesvári (2020b). which is a strong technique to bound the regret in PM
with local observability. The key idea behind EbO is to minimize a part of a regret upper
bound of the FTRL with the Shannon entropy. Recall that H is the set of all functions
from [k]×Σ to Rd. Then in EbO we consider the choice of (pt, Gt) ∈ Pk ×H to mini-
mize the sum of the stability and transformation terms for the worst-case outcome given
as follows:

ST(p,G; qt, ηt) = max
x∈[d]

[
(p− qt)⊤Lex

ηt
+
biasqt(G;x)

ηt
+

1

η2t

k∑
a=1

paΨqt

(
ηtG(a,Φax)

pa

)]
.

(5.9)

Note that the first and third terms in (5.9) corresponds to the stability and transformation
terms (divided by the learning rate ηt), respectively. We define the optimal value of the
optimization problem by optq(η) = min(p,G)∈Pk×H ST(p,G; qt, η) and its truncation at
round t by Vt = max{0, optqt(ηt)} (appeared in Table 5.2). Note that this optimization
problem is convex and can be solved numerically by using standard solvers (Lattimore
and Szepesvári, 2020b).

Extending exploration-by-optimization While the vanilla EbO is a strong tool to de-
rive a regret bound in PM-local, it only has a guarantee for the adversarial regime. Recall
that in the self-bounding technique, we require a lower bound of the regret expressed in
terms of qt (see Lemma 5.1). However, when we use the vanilla EbO, it may make a
certain action selection probability pta for some action a become extremely small even
when the output of FTRL qta is far from zero (Lattimore and Szepesvári, 2020b), which
makes it impossible for us to use the self-bounding technique.

To solve this problem, the vanilla EbO was recently extended so that it is applicable
to the stochastic regime (and the adversarial regime with a self-bounding constraint) for
PM-local in Chapter 4. We define P′

k(q,M) for a class of games M by

P′
k(q,M) = {p ∈ Pk : cond(q,M)} with cond(q,M) =

{
p = q if M is FI or MAB ,
p ≥ q/(2k) if M is PM-local .

We then consider the following optimization problem, which can be seen as a slight gen-
eralization of the approach developed in Chapter 4:

(pt, Gt) = argmin
p∈P′

k(qt,M), G∈H
ST(p,G; qt, ηt) , (5.10)

where the feasible region Pk of p is replaced with P′
k(q,M). We define the optimal value

of (5.10) by opt′q(η,M) and its truncation at round t by V ′
t (M) = max{0, opt′qt(ηt,M)}.

We will abbreviate M when it is clear from a context. The following proposition shows
that the component of the regret in (5.9) can be made small enough even if the feasible
region is restricted to P′

k(q,M) ⊂ Pk.

Proposition 5.1. Let M be an underlying model. If M is FI, MAB, or PM-local with
η ≤ 1/(2mk2),

opt′∗(η) := sup
q∈Pk

opt′q(η) ≤ V̄ (M) :=


1/2 if M is FI
k/2 if M is MAB
3m2k3 if M is PM-local .

One can immediately obtain this result by following the same lines as (Lattimore and
Szepesvári, 2020b, Propositions 11 and 12) and Lemma 5 in Chapter 4.
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Algorithm 5.1: BOBW algorithm with a game-dependent bound for locally
observable games
1 input: B
2 for t = 1, 2, . . . do
3 Compute qt using (5.1).
4 Solve (5.10) to determine V ′

t = max{0, opt′qt(ηt)} and the corresponding
solution pt and Gt.

5 Sample At ∼ pt and observe feedback σt ∈ Σ.
6 Compute ŷt = Gt(At, σt)/ptAt and update βt using (5.11).

5.6.2 Algorithm

We use the negative Shanon entropy regularizer ψt = 1
ηt
ψnS for (5.1) with a learning

rate given by

β1 = B

√
log(1 + T )

log k
and βt+1 = βt +

c1V
′
t√

V̄ h1 +
∑t−1

s=1 V
′
shs+1

, (5.11)

with B = 1/2 for FI, B = k/2 for MAB, and B = 2mk2 for PM-local, which corre-
sponds to the learning rate in Definition 5.2 with ht ← H(qt), zt ← V ′

t , z̄t ← 0, and
c2 ← 0. Algorithm 5.1 summarizes the proposed algorithm.

5.6.3 Main Result

Let rM be 1 if M is FI or MAB, and 2k if M is PM-local. Then we have the following
bound.

Corollary 5.3. Let M be FI, MAB, or PM-local. Then the above algorithm with c1 =√
log(1 + T )/2 (Algorithm 5.1) achieves

RegT ≤ E

[√√√√2
T∑
t=1

V ′
t log(k) log(1 + T )

]
+O(B

√
log(k) log(T ))

for the adversarial regime, and

RegT = O

(
rMV̄ log(T ) log(kT )

∆min
+

√
CrMV̄ log(T ) log(kT )

∆min
+B

√
log(k) log(T )

)

for the adversarial regime with a (∆, C, T ) self-bounding constraint.

The bound for the adversarial regime with a self-bounding constraint with C = 0
yields the bound in the stochastic regime, which is optimal up to logarithmic factors in
FI and MAB, and has the same order as the bounds Theorem 6 in Chapter 4.

The bound for the adversarial regime has a form similar to Lattimore and Szepesvári
(2020b) and is game-dependent in the sense that it can be bounded by the empirical
difficulty V ′

t of the current game. In addition, we can also obtain the worst-case bound
by replacing V ′

t with its upper bound V̄ . This bound is optimal up to log(T ) factor in FI
and log(k) log(T ) factor in MAB, and is a factor of

√
log T worse than the best known

bound in Lattimore and Szepesvári (2020b), which can be seen as the cost for the BOBW
guarantee (see also Table 5.2).
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5.7 Deferred Discussion and Proofs

5.7.1 Notation

Table 5.3 summarizes the symbols used in this chapter.

Table 5.3: Notation

Symbol Meaning

Pk (k − 1)-dimensional probability simplex
T ∈ N time horizon
k ∈ N number of arms (or actions)
At ∈ [k] arm (or action) chosen by learner at round t

s ≤ k maxt∥ℓt∥0, sparsity level of losses
L2

∑T
t=1∥ℓt∥2

L ∈ [0, 1]k×d loss matrix
Σ set of feedback symbols
Φ ∈ Σk×d feedback matrix
d ∈ N number of outcomes
m ∈ N maximum number of distinct symbols in a single row of Φ
xt ∈ [d] outcome chosen by opponent at round t

qt ∈ Pk output of FTRL at round t
pt ∈ Pk arm selection probability at round t
ψt : Pk → R regularizer of FTRL at round t
ηt = 1/βt > 0 learning rate of FTRL at round t
ψnS : Rk+ → R

∑k
i=1 xi log xi, negative Shannon entropy

ψLB : Rk+ → R
∑k

i=1 log(1/xi), log-barrier
ϕnS : R+ → R x log(1/x)
ϕLB : R+ → R log(1/x)

ht penalty component at round t
zt stability component at round t

ωt stability component zt introduced in (5.6) (Section 5.5.1.1)
νt stability component zt introduced in (5.7) (Section 5.5.1.2)
V ′
t stability component zt introduced in (5.11) (Section 5.6)

C ≥ 0 corruption level

5.7.2 Additional Related Work

This section provides additional related work, some of which has never mentioned in this
chapter.

Multi-armed bandits In the stochastic regime, it is known that the optimal regret is
approximately expressed as RegT = O(k log T/∆min) (Lai and Robbins, 1985). In
the adversarial regime (a.k.a. non-stochastic regime), it is known that the Online Mir-
ror Descent (OMD) framework with the (negative) Tsallis entropy regularizer achieves
O(
√
kT ) regret bounds (Audibert and Bubeck, 2009; Abernethy et al., 2015), which

match the lower bound of Ω(
√
kT ) (Auer et al., 2002b).

In the adversarial MAB, algorithms with various data-dependent regret bounds have
been developed. Typical examples of such bounds are first-order bounds dependent on the
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cumulative loss and second-order bounds depending on sample variances in losses. Al-
lenberg et al. (2006) provided an algorithm with a first-order regret bound ofO(

√
kL∗ log k)

for L∗ = mina∈A
∑T

t=1 ⟨ℓt, a⟩. Second-order regret bounds have been shown in some
studies, e.g., by Hazan and Kale (2011); Wei and Luo (2018); Bubeck et al. (2018), In
particular, Bubeck et al. (2018) provided the regret bound of O(

√
Q2 log k) for Q2 =∑T

t=1∥ℓt− ℓ̄∥2. Other examples of data-dependent bounds include path-length bounds in
the form of O(

√
kV1 log T ) for V1 =

∑T−1
t=1 ∥ℓt− ℓt+1∥1 as well as a sparsity-dependent

bound, which have been investigated by Kwon and Perchet (2016); Bubeck et al. (2019b,
2018); Wei and Luo (2018); Zheng et al. (2019).

The study on a sparsity-dependent bound was initiated by Kwon and Perchet (2016),
who showed that when ℓt ∈ [0, 1]k, the OMD with Tsallis entropy can achieve the bound
of RegT ≤ 2

√
e
√
sT log(k/s)) and prove the matching (up to logarithmic factor) lower

bound of RegT = Ω(
√
sT ) when T ≥ k3/(4s2). Bubeck et al. (2018) also showed

that OMD with a hybrid-regularizer consisting of the Shannon entropy and a log-barrier
can achieve RegT ≤ 10

√
L2 log k + 20k log T when ℓt ∈ [−1, 1]k. Zheng et al. (2019)

investigated the sparse MAB problem in the context of the switching regret. Although
their result is not directly related to our study, they show that sparsity is useful in some
cases. Note that all of these algorithms assume the knowledge of the sparsity level and
do not have a BOBW guarantee.

The stability-dependent learning rate is quite ubiquitous (see Orabona 2019 and the
references therein). To our knowledge, the literature on the penalty-dependent bound is
quite scarce in bandits and considered in the context of BOBW algorithms (Ito et al.,
2022a; Tsuchiya et al., 2023a), both of which consider the Shannon entropy regularizer.

Best-of-both-worlds Since the seminal study by Bubeck and Slivkins (2012), BOBW
algorithms have been developed for many online decision-making problems. Although
they have been investigated mainly in the context of an MAB (Seldin and Lugosi, 2017;
Zimmert and Seldin, 2021), other settings have also been investigated, Gaillard et al.
(2014); Wei and Luo (2018); Jin et al. (2021), to name a few.

FTRL and OMD are now one of the most common approaches to achieving a BOBW
guarantee owing to the usefulness of the self-bounding technique (Gaillard et al., 2014;
Wei and Luo, 2018; Zimmert and Seldin, 2021), while the first (Bubeck and Slivkins,
2012) and earlier work (Seldin and Slivkins, 2014; Seldin and Lugosi, 2017) on BOBW
do not rely on the technique. Most of the recent algorithms beyond the MAB are also
based on FTRL (to name a few, Wei and Luo 2018; Jin et al. 2021; Saha and Gaillard
2022).

Our BOBW algorithm with the sparsity-dependent bound can be seen as one of the
studies that aim to achieve BOBW and data-dependent bound simultaneously. There is
not so much existing research, and we are only aware of Wei and Luo (2018); Ito (2021c);
Ito et al. (2022b); Tsuchiya et al. (2023b). They consider first-, second-order, and path-
length bound, and we are the first to investigate the sparsity-dependent bound in this line
of work.

Log-barrier regularizer and hybrid regularizer The log-barrier regularizer has been
used in various studies (to name a few, Foster et al. 2016; Wei and Luo 2018; Luo et al.
2018; Pogodin and Lattimore 2020; Erez and Koren 2021). The time-invariant log-barrier
(a.k.a. constant amount of log-barrier Lee et al. 2020), whose properties are extensively
exploited in this chapter, was invented by Bubeck et al. (2018) and has been used in
several subsequent studies (Zheng et al., 2019; Lee et al., 2020).
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Partial monitoring Starting from the work by Rustichini (1999), PM has been investi-
gated in many works in the literature (Piccolboni and Schindelhauer, 2001; Cesa-Bianchi
et al., 2006; Bartók et al., 2011). It is known that all PM games can be classified into four
classes based on their minimax regrets (Bartók et al., 2011; Lattimore and Szepesvári,
2019b). In particular, all PM games fall into trivial, easy, hard, and hopeless games,
for which its minimax regrets is 0, Θ(

√
T ), Θ(T 2/3), and Θ(T ), respectively. PM has

also been investigated in both the adversarial and stochastic regimes as for MAB. In the
stochastic regime, there are relatively small amount of works (Bartók et al., 2012; Vanchi-
nathan et al., 2014; Komiyama et al., 2015a; Tsuchiya et al., 2020), some of which are
proven to achieve an instance-dependent O(log T ) regrets for locally or globally observ-
able games. In the adversarial regime, since the development of the FeedExp3 algo-
rithm (Piccolboni and Schindelhauer, 2001; Cesa-Bianchi et al., 2006), many algorithms
achieving the minimax optimal regret have been developed (Bartók et al., 2011; Foster
and Rakhlin, 2012; Bartók, 2013; Lattimore and Szepesvári, 2020a).

5.7.3 Proof of Theorem 5.1

Proof. We first prove (5.5) in Part (I).

(Penalty) First, we consider the penalty term
∑T

t=1

(
1

ηt+1
− 1

ηt

)
ht+1. By the defini-

tion of βt in (5.4),
T∑
t=1

(
1

ηt+1
− 1

ηt

)
ht+1 =

T∑
t=1

(βt+1 − βt)ht+1 =
T∑
t=1

c1ztht+1√
c2 + z̄th1 +

∑t−1
s=1 zshs+1

≤ c1
T∑
t=1

ztht+1√∑t
s=1 zshs+1

≤ c1
∫ ∑T

t=1 ztht+1

0

1√
x
dx = 2c1

√√√√ T∑
t=1

ztht+1 , (5.12)

where the first inequality follows from z̄th1 ≥ ztht+1 and the second inequality follows
by Lemma 5.9 given in Section 5.7.9.

(Stability) Next, we consider the stability term
∑T

t=1 ηtzt. Using the definition of βt
in (5.4) and defining Ut =

√
c2 + z̄th1 +

∑t−1
s=1 zshs+1 for t ∈ {0} ∪ [T ], we bound βt

from below as

βt = β1 +
t−1∑
u=1

c1zu√
c2 + z̄uh1 +

∑u−1
s=1 zshs+1

= β1 +
t−1∑
u=1

c1zu
Uu
≥ β1 +

c1
UT

t−1∑
u=1

zu ,

where the inequality follows since (Ut) is non-decreasing. Using the last inequality, we
can bound

∑T
t=1 ηtzt as

T∑
t=1

ηtzt = 2
T∑
t=1

zt
βt + βt

≤ 2
T∑
t=1

zt

βt + β1 +
c1
UT

∑t−1
s=1 zs

=
2UT
c1

T∑
t=1

zt
UT
c1

(βt + β1) +
∑t−1

s=1 zs
.

(5.13)

Since we have UT
c1
(β1 + βt) ≥

√
c2+z̄th1
c1

(β1 + βt) ≥ ϵ+ zt by the assumption, a part of
the last inequality is further bounded as

T∑
t=1

zt
UT
c1

(βt + β1) +
∑t−1

s=1 zs
≤

T∑
t=1

zt

ϵ+
∑t

s=1 zs
≤
∫ ϵ+

∑T
t=1 zt

ϵ

1

x
dx ≤ log

(
1 +

T∑
t=1

zt
ϵ

)
,

(5.14)
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where the second inequality follows by Lemma 5.9. Combining (5.13) and (5.14) yields

T∑
t=1

ηtzt ≤
2UT
c1

log

(
1 +

T∑
t=1

zt
ϵ

)
=

2

c1
log

(
1 +

T∑
t=1

zt
ϵ

)√√√√c2 + z̄Th1 +

T∑
t=1

ztht+1 .

(5.15)

Combining (5.12) and (5.15) completes the proof of (5.5) in Part (I).
We next prove Part (II). For the penalty term, setting ht = h1 for all t ∈ [T ] in (5.12)

gives

T∑
t=1

(
1

ηt+1
− 1

ηt

)
ht+1 ≤ 2c1

√√√√h1

T∑
t=1

zt .

For the stability term, since there exists a > 0 such that βt ≥ ac1√
h1

√∑t
s=1 zs for any

t ∈ [T ] by the assumption,

T∑
t=1

ηtzt =
T∑
t=1

zt
βt
≤
√
h1
ac1

T∑
t=1

zt√∑t
s=1 zs

≤ 2

ac1

√√√√h1

T∑
t=1

zt .

Summing up the above arguments completes the proof of Part (II).

5.7.4 Basic Facts to Bound Stability Terms

Here, we introduce basic facts, which is useful to bound the stability term. We have

ξ(x) := exp(−x) + x− 1 ≤

{
1
2x

2 for x ≥ 0

x2 for x ≥ −1 ,
(5.16)

ζ(x) := x− log(1 + x) ≤ x2 for x ∈
[
−1

2
,
1

2

]
. (5.17)

We also have the following inequalities for ϕnS(x) = x log x and ϕLB(x) = log(1/x),
which are components of the negative Shannon entropy and log-barrier function:

max
y∈R

{
a(x− y)−DϕnS(y, x)

}
= xξ(a) for a ∈ R , (5.18)

max
y∈R

{
a(x− y)−DϕLB(y, x)

}
= ζ(ax) for a ≥ −1

x
. (5.19)

It is easy to prove these facts by the standard calculus and you can find the proofs of (5.18)
and (5.19) in Lemma 15 in Chapter 4 and Ito et al. (2022b, Lemma 5), respectively.

5.7.5 Proof of Corollary 5.1

Let RegT (a) = E
[∑T

t=1(ℓtAt − ℓta)
]

for a ∈ [k]. Here we provide the complete proof
of Corollary 5.1.

Proof of Corollary 5.1. Fix i∗ ∈ [k]. Since pt = (1− γ)qt + γ
k1, it holds that

RegT (i
∗) = E

[
T∑
t=1

ℓtAt −
T∑
t=1

ℓti∗

]
= E

[
T∑
t=1

⟨ℓt, pt − ei∗⟩

]

= E

[
T∑
t=1

⟨ℓt, qt − ei∗⟩

]
+ E

[
γ

T∑
t=1

〈
ℓt,

1

k
1− qt

〉]
≤ E

[
T∑
t=1

⟨ŷt, qt − ei∗⟩

]
+ γT ,
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where the last inequality follows by E[ŷt | qt] = ℓt and the Cauchy-Schwarz inequality.
Then, using the standard analysis of the FTRL described in Section 5.3, the first term in
the last inequality is bounded as

T∑
t=1

⟨ŷt, qt − ei∗⟩ ≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

(⟨qt − qt+1, ŷt⟩ −Dψt(qt+1, qt)) .

By (5.16) and (5.18) given in Section 5.7.4, the stability term ⟨qt − qt+1, ŷt⟩−Dψt(qt+1, qt)
in the last inequality is bounded as

⟨qt − qt+1, ŷt⟩ −Dψt(qt+1, qt) = ⟨qt − qt+1, ŷt⟩ −
1

ηt
DψnS(qt+1, qt)

=

k∑
i=1

(
ŷti(qti − qt+1,i)−

1

ηt
DϕnS(qt+1,i, qti)

)

≤
k∑
i=1

1

ηt
qti ξ (ηtŷti) ≤

1

2
ηt

k∑
i=1

qtiŷ
2
ti ≤ ηtωt ,

where the first inequality follows from (5.18), the second inequality follows by (5.16)
with ŷt ≥ 0, and the last inequality holds since

∑k
i=1 qtiŷ

2
ti ≤

∑k
i=1 2ptiŷ

2
ti = 2ωt.

We will confirm that the assumptions for Part (II) of Theorem 5.1 are indeed satisfied.
Using the definition of βt in (5.6), We have

βt = β1 +
1√
h1

t−1∑
u=1

c1ωu√
k
γ +

∑u−1
s=1 ωs

= β1 +
2c1√
h1

t−1∑
u=1

ωu√
k
γ +

∑u−1
s=1 ωs +

√
k
γ +

∑u−1
s=1 ωs

≥ β1 +
2c1√
h1

t−1∑
u=1

ωu√
k
γ +

∑u
s=1 ωs +

√
k
γ +

∑u−1
s=1 ωs

= β1 +
2c1√
h1

t−1∑
u=1

√√√√k

γ
+

u∑
s=1

ωs −

√√√√k

γ
+
u−1∑
s=1

ωs


= β1 +

2c1√
h1


√√√√k

γ
+

t−1∑
s=1

ωs −

√
k

γ

 ≥ 2c1√
h1

√√√√ t∑
s=1

ωs ,

where the last inequality follows since β1 = 2c1√
h1

√
k
γ and k

γ ≥ ωt. Hence, stability
condition (S2) in Theorem 5.1 is satisfied with a = 2, and one can see that the other
assumptions are trivially satisfied. Hence, by Part (II) of Theorem 5.1,

T∑
t=1

⟨ŷt, qt − ei∗⟩ ≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

T∑
t=1

ηtωt +
H(q1)

η1

≤ 2

(
c1 +

1

2c1

)√√√√h1

T∑
t=1

ωt +
log k

η1
,

where in the last inequality we used h1 ≤ log k. Now,

E


√√√√ T∑

t=1

ωt

 ≤
√√√√ T∑

t=1

E[ωt] =

√√√√ T∑
t=1

E

[
ℓ2tAt

ptAt

]
=

√√√√ T∑
t=1

k∑
i=1

ℓ2ti =

√√√√ T∑
t=1

∥ℓt∥22 =
√
L2 .
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Summing up the above arguments and setting c1 = 1/
√
2, we have

RegT ≤ 2
√
2
√
L2 log k +

log k

η1
+ γT = 2

√
2
√
L2 log k + (

√
2 + 1)(kT log k)1/3 ,

which completes the proof of Corollary 5.1.

5.7.6 Proof of Corollary 5.2

We first prove Lemma 5.3.

Proof of Lemma 5.3. Recall thatψt(p) = 1
ηt
ψnS(p)+2δψLB(p). SinceDψt =

1
ηt
DψnS+

2δDψLB andDψnS(x, y) =
∑k

i=1DϕnS(xi, yi) andDψLB(x, y) =
∑k

i=1DϕLB(xi, yi), we
can bound the stability term as

⟨qt − qt+1, ŷt⟩ −Dψt(qt+1, qt)

≤ ⟨qt − qt+1, ŷt⟩ −max

{
1

ηt
DψnS(qt+1, qt), 2δDψLB(qt+1, qt)

}
≤

k∑
i=1

(
ŷti(qti − qt+1,i)−max

{
1

ηt
DϕnS(qt+1,i, qti), 2δDϕLB(qt+1,i, qti)

})

≤
k∑
i=1

min

{
1

ηt
qti ξ (ηtŷti) , 2δ ζ

(
1

2δ
qtiŷti

)}
, (5.20)

where in the last inequality we used (5.18) and (5.19) with
ŷti
2δ
≥ − 1

2δpti
≥ − 1

2δ(qti/δ)
≥ − 1

qti
,

where the first inequality follows by the definition of ŷt and the second inequality follows
by pti ≥ qti/δ.

Next, we will prove that for any i ∈ [k],

min

{
1

ηt
qti ξ (ηtŷti) , 2δ ζ

(
1

2δ
qtiŷti

)}
≤ δηt

ℓ2ti
pti

min

{
1,
pti
2ηt

}
1[At = i] .(5.21)

Fix i ∈ [k]. By qti ≤ δpti,
1

2δ
qtiŷti =

1

2
ptiŷti ≤

1

2
.

Using this and ζ(x) ≤ x2 for x ∈ [−1
2 ,

1
2 ] in (5.17), it holds for any pti ∈ [0, 1] that

2δ ζ

(
1

2δ
qtiŷti

)
≤ 2δ

(
1

2δ
qtiŷti

)2

≤ δ

2
ℓ2ti1[At = i] , (5.22)

where in the last inequality we used qti ≤ δpti. In particular, when pti ≤ ηt, i.e., the
probability of selecting arm i is small to some extent, the last inequality can be further
bounded as

2δ ζ

(
1

2δ
qtiŷti

)
≤ ηt
pti

δ

2
ℓ2ti1[At = i] ≤ δηt

ℓ2ti
pti
1[At = i] . (5.23)

On the other hand when pti > ηt, we have ηtŷti ≥ −1. Hence, using the inequality
ξ(x) ≤ x2 for x ≥ −1 in (5.16), we have

1

ηt
qtiξ (ηtŷti) ≤

1

ηt
δpti(ηtŷti)

2 = δηt
ℓ2ti
pti
1[At = i] . (5.24)

Hence, combining (5.22), (5.23), and (5.24) completes the proof of (5.21). Finally, by
combining (5.20) and (5.21) we completes the proof of Lemma 5.3.
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Remark. When ℓt can be negative, the Shannon entropy regularizer alone cannot bound
the stability term if the arm selection probability is small, i.e., pti ≤ ηt. Introducing a
time-invariant log-barrier regularizer enables us to bound the stability term even when the
arm selection probability is small. This idea was proposed by Bubeck et al. (2018), who
analyzed the variation of arm selection probability for the change of cumulative losses.
Unlike their analysis, our proof directly analyses the stability term, enabling us to obtain
the tighter regret bound. More importantly, we will utilize the property νt ≤ O(1/ηt)
many times, which directly follows from Lemma 5.3 in the subsequent sections to prove
the BOBW guarantee with the sparsity-dependent bound.

Now, we are ready to prove Corollary 5.2.

Proof of Corollary 5.2. Fix i∗ ∈ [k]. Define p∗ ∈ Pk by

p∗ =

(
1− k

T

)
ei∗ +

1

T
1 .

Then, using the definition of the algorithm,

RegT (i
∗) = E

[
T∑
t=1

ℓtAt −
T∑
t=1

ℓti∗

]
= E

[
T∑
t=1

⟨ℓt, pt − ei∗⟩

]

= E

[
T∑
t=1

⟨ℓt, pt − p∗⟩

]
+ E

[
T∑
t=1

⟨ℓt, p∗ − ei∗⟩

]

≤ E

[
T∑
t=1

⟨ŷt, pt − p∗⟩

]
+ k ,

where the inequality follows from the definition of p∗ and the Cauchy-Schwarz inequality.
By the standard analysis of the FTRL, described in Section 5.3,

T∑
t=1

⟨ŷt, pt − p∗⟩ ≤
T∑
t=1

(
ψt(pt+1)− Φt+1(pt+1)

)
+Φt+1(p

∗)− Φ1(p1)

+

T∑
t=1

(
⟨pt − pt+1, ŷt⟩ −Dψt(pt+1, pt)

)
.

For the penalty term, since ψt(p) = 1
ηt
ψnS(p) + 2ψLB(p),

T∑
t=1

(
ψt(pt+1)− Φt+1(pt+1)

)
+Φt+1(p

∗)− Φ1(p1)

≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(pt+1) +

H(p1)

η1
+ 2

k∑
i=1

log

(
1

p∗i

)

≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(pt+1) +

log k

η1
+ 2k log T ,

where in the last inequality we used the fact that p∗i ≥ 1/T for all i ∈ [k].
For the stability term, by Lemma 5.3 with δ = 1 (since pt = qt),

T∑
t=1

(
⟨pt − pt+1, ŷt⟩ −Dψt(pt+1, pt)

)
≤

T∑
t=1

ηtνt .
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We will confirm that the assumptions for Part (II) of Theorem 5.1 are indeed satisfied.
By the definition of the learning rate in (5.7),

βt = β1 +

t−1∑
u=1

c1νu√
h1
√∑u

s=1 νs
≥ β1 +

c1√
h1

t−1∑
u=1

νu√∑u
s=1 νs +

√∑u−1
s=1 νs

≥ β1 +
c1√
h1

t−1∑
u=1

√√√√ u∑
s=1

νs −

√√√√u−1∑
s=1

νs

 = β1 +
c1√
h1

√√√√ t−1∑
s=1

νs .

Using this inequality, βt is bounded from below as

2βt = βt + βt ≥ 2νt + β1 +
c1√
h1

√√√√ t−1∑
s=1

νs ≥ 2
√
2β1νt +

c1√
h1

√√√√ t−1∑
s=1

νs ≥
c1√
h1

√√√√ t∑
s=1

νs ,

where the first inequality follows by νt ≤ βt/2 and the above inequality, the second in-
equality follows by the AM-GM inequality, and the last inequality follows from 2

√
2β1 ≥

c1√
h1

and
√
x +
√
y ≥

√
x+ y for x, y ≥ 0. Dividing the both sides by 2, we can see

stability condition (S2) in Theorem 5.1 is satisfied with a = 1/2. One can also see that
the other assumptions are trivially satisfied. Hence, by Part (II) of Theorem 5.1,

T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(pt+1) +

T∑
t=1

ηtνt ≤ 2

(
c1 +

2

c1

)√√√√h1

T∑
t=1

νt .

Using the last inequality with E
[√∑T

t=1 νt

]
≤ E

[√∑T
t=1 ωt

]
≤
√
L2, and setting

c1 =
√
2, we have

RegT (i
∗) ≤ E

2(c1 + 2

c1

)√√√√h1

T∑
t=1

νt +
log k

η1
+ 2k log T + k


≤ 4
√
2
√
L2 log k + 2k log T + k +

1

4
,

which completes the proof of Corollary 5.2.

5.7.7 Proof of Results in Section 5.5.2

Section 5.7.7.1 provides preliminary results, which will be used to quantify the difference
between qt and qt+1 in Section 5.7.7.2 and will be used to prove the continuity of Ft in
Section 5.7.7.3. Section 5.7.7.2 proves Theorem 5.2 and Section 5.7.7.3 discusses the
bisection method to compute βt+1.

5.7.7.1 Some stability results

Before proving Theorem 5.2, we prove several important lemmas. Consider the following
three optimization problems:

p ∈ argmin
p′∈Pk

〈
L− ξe1, p′

〉
+ βψ(p′) ,

q ∈ argmin
q′∈Pk

〈
L, q′

〉
+ βψ(q′) ,

r ∈ argmin
r′∈Pk

〈
L, r′

〉
+ β′ψ′(r′)

(5.25)
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with L ∈ Rk+, 0 ≤ ξ ≤ mini∈[k] Li, and β, β′ > 0 satisfying β′ ≥ β,

ψ(q) =
k∑
i=1

(qi log qi − qi)−
c

β

k∑
i=1

log qi and ψ′(q) =

k∑
i=1

(qi log qi − qi)−
c

β′

k∑
i=1

log qi

for c > 0. Note that the outputs of FTRL with ψ(q) and with−H(q)−(c/β)
∑k

i=1 log qi
are identical since adding a constant to ψ does not change the output of the above opti-
mization problems.

In the following lemma, we bound H(q) by H(p).

Lemma 5.4. Consider p and q in (5.25). Then, under η := 1/β ≤ 1
15k ,

H(q) ≤ 3H(p) .

Proof. By Bubeck et al. (2018, Lemma 8) we have qi ≤ 3pi for all i ∈ [k]. Using this
inequality and the concavity of entropy, H(q) is bounded by a linear approximation as

H(q) ≤ H(p) + ⟨∇H(p), q − p⟩ =
k∑
i=1

(
pi log

(
1

pi

)
+

(
log

(
1

pi

)
− 1

)
(qi − pi)

)

= H(p) +
k∑
i=1

(qi − pi) log
(

1

pi

)
≤ H(p) +

k∑
i=1

(3pi − pi) log
(

1

pi

)
= 3H(p) ,

where the last inequality follows by qi ≤ 3pi.

In the following lemma, we investigate the relation between q and r in (5.25).

Lemma 5.5. Consider q and r in (5.25). Then,

ri ≤ qβ/β
′

i .

Proof. From the KKT conditions there exist µ, µ′ ∈ R such that

L+ β∇ψ(q) + µ1 = 0 and L+ β′ψ′(r) + µ′1 = 0 ,

which implies, by (∇ψ(q))i = log qi − c
βqi

, that

Li + β log qi −
c

qi
+ µ = 0 and η′Li + β log ri −

c

ri
+ µ′ = 0 (5.26)

for all i ∈ [k]. This is equivalent to

qi = exp

(
− 1

β

(
Li −

c

qi
+ µ

))
and ri = exp

(
− 1

β′

(
Li −

c

ri
+ µ′

))
.

Removing Li from these equalities yields that

ri = q
β/β′

i exp

(
c

β′

(
1

ri
− 1

qi

))
exp

(
1

β′
(µ− µ′)

)
. (5.27)

We will prove dµ
dβ > 0. Taking derivative with respect to β of (5.26), we have

log qi +

(
1

qi
+

c

q2i

)
dqi
dβ

+
dµ

dβ
= 0 .
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Multiplying
(

1
qi
+ c

q2i

)−1
and summing over i ∈ [k] in the last equality, we have

−
(
1

qi
+

c

q2i

)−1

log(1/qi) +

k∑
i=1

dqi
dβ

+

(
1

qi
+

c

q2i

)−1 dµ

dβ
= 0 ,

which with the fact
∑k

i=1
dqi
dβ = 0 implies dµ

dβ > 0. Hence, since β ≤ β′ we have µ ≤ µ′.
When ri ≤ qi, it is obvious that we get ri ≤ qβ/β

′

i .
When ri > qi, using (5.27) with the inequalities β ≤ β′ and µ ≤ µ′,

ri = q
β/β′

i exp

(
c

β′

(
1

ri
− 1

qi

))
exp

(
1

β′
(µ− µ′)

)
≤ qβ/β

′

i ,

which is the desired bound.

Lemma 5.6. Consider p, q, and r in (5.25). Then, under η := 1/β ≤ 1
15k , we have

ri ≤ 3p
β/β′

i .

Proof. By Bubeck et al. (2018, Lemma 8) we have qi ≤ 3pi for all i ∈ [k]. Using this
with Lemma 5.5, we have

ri ≤ qβ/β
′

i ≤ 3q
β/β′

i .

5.7.7.2 Proof of Theorem 5.2

In this section, we will provide the proof of Theorem 5.2. We first see that the ratio
βt/βt+1 is close to one to some extent.

Lemma 5.7. The learning rate βt in (5.8) satisfies

1− βt
βt+1

∈ (0, 1/10] .

Proof. Recall thatβt = β1+
∑t−1

u=1 bu with bu = c1νu
Uu

andUt =
√
c2 + z̄th1 +

∑t−1
s=1 zshs+1

for t ∈ {0} ∪ [T ]. It suffices to show

βt
βt+1

=
βt

βt + bt
≥ 9

10
⇔ βt ≥ 9bt .

This indeed follows since using νt ≤ βt/2 we have

bt =
c1νt√

81c21 +
∑t−1

s=1 zshs + ztht+1

≤ c1νt√
81c21

=
νt
9
≤ βt

9
.

Finally, we are ready to prove one of the key lemmas for proving the BOBW regret
bound with the sparsity-dependent bound. Recall that we have pt =

(
1− k

T

)
qt+

1
T 1 and

ht =
1

1− k
T

H(pt). Using the result in Section 5.7.7.1, we will show that ht+1 is bounded
in terms of ht.
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Lemma 5.8. Suppose that βt is defined as (5.8). Then,

ht+1 ≤ 3ht +
20k

9

(
βt+1

βt
− 1

)
log

(
T

k

)
ht+1 .

Proof. Let us recall that qt and qt+1 are defined as

qt ∈ argmin
q∈Pk

〈
t−1∑
s=1

ŷs, q

〉
+ ψt(q) and qt+1 ∈ argmin

q∈Pk

〈
t∑

s=1

ŷs, q

〉
+Φt+1(q) ,

which corresponds to optimization problems (5.25) with p = qt,L =
∑t

s=1 ŷs, ξ = ŷtAt ,
ψ = ψt/βt, η = 1/βt, r = qt+1, ψ′ = Φt+1/βt+1, and η′ = 1/βt+1.

Since H is concave, by pti = (1− k
T )qti +

1
T and Jensen’s inequality we have(

1− k

T

)
ht = H(pt) ≥

(
1− k

T

)
H(qt) +

k

T
H

(
1

k
1

)
≥
(
1− k

T

)
H(qt) ,

which implies ht ≥ H(qt). By Lemma 5.6 we also have qt+1,i ≤ 3q
βt/βt+1

ti , which
implies that

pt+1,i =

(
1− k

T

)
qt+1,i +

1

T
≤
(
1− k

T

)
3q
βt/βt+1

ti +
1

T
≤ 6p

βt/βt+1

ti .

The last inequality follows since when
(
1− k

T

)
3q
βt/βt+1

ti ≤ 1
T ,(

1− k

T

)
3q
βt/βt+1

ti +
1

T
≤ 2

T
≤ 2

(
1

T

)βt/βt+1

≤ 2

((
1− k

T

)
qti +

1

T

)βt/βt+1

= 2p
β/βt+1

ti ,

and otherwise(
1− k

T

)
3q
βt/βt+1

ti +
1

T
≤ 6

(
1− k

T

)βt/βt+1

q
βt/βt+1

ti ≤ 6p
β/βt+1

ti .

Using these inequalities, we have

ht+1 − 3ht =
1

1− k
T

(H(pt+1)− 3H(pt))

≤ 1

1− k
T

(H(pt) + ⟨∇H(pt), pt+1 − pt⟩ − 3H(pt))

=
1

1− k
T

k∑
i=1

(pt+1,i − 3pti) log

(
1

pti

)

≤
k∑
i=1

(qt+1,i − 3qti) log

(
1

pti

)
, (5.28)

where the first inequality follows by the concavity of H , the second inequality follows
since pt+1,i−3pti ≤

(
1− k

T

)
(qt+1,i−qti).Defining Qt = {i ∈ [k] : qt+1,i−3qti ≥ 0},
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(5.28) is further bounded as

k∑
i=1

(qt+1,i − 3qti) log

(
1

pti

)
=
∑
i∈Qt

(qt+1,i − 3qti) log

(
1

pti

)
+
∑
i ̸∈Qt

(qt+1,i − 3qti) log

(
1

pti

)

≤ βt+1

βt

∑
i∈Qt

(qt+1,i − 3qti) log

(
1

pt+1,i

)
+ 0

≤ 10

9

∑
i∈Qt

(qt+1,i − 3qti) log

(
1

pt+1,i

)
≤ 10

9

∑
i∈Qt

(
qt+1,i − qβt+1/βt

t+1,i

)
log

(
1

pt+1,i

)

=
10

9

∑
i∈Qt

qt+1,i

(
1− q

βt+1
βt

−1

t+1,i

)
log

(
1

pt+1,i

)
, (5.29)

where the first inequality follows by pt+1,i ≤ 6p
βt/βt+1

t , the second follows by Lemma 5.7,
and the last inequality follows by qt+1,i ≤ 3q

βt/βt+1

ti . Since for any ϵ > 0, x ∈ [0, 1], and
γ ∈ [0, 1], it holds that

x(1− xϵ) ≤ x log
(

1

xϵ

)
= ϵx log

(
1

x

)
≤ ϵ

((
log

1

γ
− 1

)
(x− r) + γ log

1

γ

)
≤ ϵ log

(
1

γ

)
(γ + (1− γ)x) ,(5.30)

setting γ = k/T in (5.30) implies that the RHS of (5.29) is further bounded as

ht+1 − 3ht

≤ 10

9

∑
i∈Qt

(
βt+1

βt
− 1

)
log(T/k)

(
k

T
+

(
1− k

T

)
qt+1,i

)
log

(
1

pt+1,i

)

≤ 10k

9

(
βt+1

βt
− 1

)
log(T/k)

k∑
i=1

(
1

T
+

(
1− k

T

)
qt+1,i

)
log

(
1

pt+1,i

)
≤ 20k

9

(
βt+1

βt
− 1

)
log(T/k)ht+1 ,

where the second inequality follows by Lemma 5.7 and the last inequality follows by the
definition of ht+1.

Finally we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Fix i∗ ∈ [k] and define p∗ ∈ Pk by

p∗ =

(
1− k

T

)
ei∗ +

1

T
1 .
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Then, using the definition of the algorithm,

RegT (i
∗) = E

[
T∑
t=1

ℓtAt −
T∑
t=1

ℓti∗

]
= E

[
T∑
t=1

⟨ℓt, pt − ei∗⟩

]

= E

[
T∑
t=1

⟨ℓt, qt − ei∗⟩

]
+ E

[
γ

T∑
t=1

〈
ℓt,

1

k
1− qt

〉]

≤ E

[
T∑
t=1

⟨ℓt, qt − p∗⟩

]
+ E

[
T∑
t=1

⟨ℓt, p∗ − ei∗⟩

]
+ γT

≤ E

[
T∑
t=1

⟨ŷt, qt − p∗⟩

]
+ 2k ,

where the first inequality follows since pt = (1−γ)qt+ γ
k1 and the last inequality follows

by the definition of p∗ and γ = k
T . By the standard analysis of the FTRL described in

Section 5.3,

T∑
t=1

⟨ŷt, qt − p∗⟩ ≤
T∑
t=1

(
ψt(qt+1)− Φt+1(qt+1)

)
+Φt+1(p

∗)− Φ1(q1)

+

T∑
t=1

(
⟨qt − qt+1, ŷt⟩ −Dψt(qt+1, qt)

)
.

We first consider the penalty term. Since ψt = 1
ηt
ψnS + 4ψLB,

T∑
t=1

(
ψt(qt+1)− Φt+1(qt+1)

)
+Φt+1(p

∗)− Φ1(q1)

≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+ 4

k∑
i=1

log

(
1

p∗i

)

≤
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

log k

η1
+ 4k log T ,

where in the last inequality we used the fact that p∗i ≥ 1/T for all i ∈ [k].
For the stability term, by Lemma 5.3 with δ = 2,

T∑
t=1

(
⟨qt − qt+1, ŷt⟩ −Dψt(qt+1, qt)

)
≤ 2

T∑
t=1

ηtνt .

We will confirm that the assumptions for Part (I) of Theorem 5.1 are indeed satisfied.
By the definition of the learning rate in (5.8) and νt ≤ βt/2,

√
c2
c1

(β1 + βt) ≥ 9(β1 + νt) ≥ β1 + νt .

Hence stability condition (S1) of Theorem 5.1 is satisfied and one can also see that the
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other assumptions are trivially satisfied. Hence, by Part (I) of Theorem 5.1,

T∑
t=1

(
1

ηt+1
− 1

ηt

)
+ 2

T∑
t=1

ηtνt ≤ 2

(
c1 +

2

c1
log

(
1 +

T∑
s=1

νs
β1

))√√√√c2 +

T+1∑
t=1

νtht+1

≤ 2

(
c1 +

2

c1
log

(
1 +

T 2

β1

))√√√√c2 +
T+1∑
t=1

νtht+1 ,

= 2

√
2 log

(
1 +

T 2

β1

)√√√√c2 +
T+1∑
t=1

νtht+1 ,

where in the last inequality we used νt ≤ T and in the equality we set c1 =
√
2 log

(
1 + T 2

β1

)
.

By summing up the above arguments and Jensen’s inequality, we have

RegT (i
∗) ≤ E

2√2 log

(
1 +

T 2

β1

)√√√√c2 +

T+1∑
t=1

νtht+1

+ 2k + 4k log T +
log k

η1

≤ 2

√
2 log

(
1 +

T 2

β1

)√√√√c2 + E

[
T+1∑
t=1

νtht+1

]
+ 2k + 4k log T + 15k log k

≤ 2

√
2 log

(
1 +

T 2

β1

)√√√√E

[
T∑
t=1

νtht+1

]
+O(k log T ) . (5.31)

(Adversarial regime) We first consider the adversarial regime. Recall thatE
[√∑T

t=1 νt

]
≤

E
[√∑T

t=1 ωt

]
≤
√
L2 as was done in the proof of Corollary 5.2. Hence (5.31) with

ht ≤ 2 log k (since T ≥ 2k) yields that

RegT ≤ 4

√
L2 log(k) log

(
1 +

T 2

β1

)
+O(k log T ) .

(Adversarial regime with a self-bounding constraint) Next we consider the adver-
sarial regime with a self-bounding constraint. We will bound a component of (5.31). By

Lemma 5.8,
√
E
[∑T

t=1 νtht+1

]
is bounded as

Xt :=

√√√√E

[
T∑
t=1

νtht+1

]

≤

√√√√3E

[
T∑
t=1

νtht

]
+

20k

9
log

(
T

k

)
E

[
T∑
t=1

νt

(
βt+1

βt
− 1

)
ht+1

]

≤

√√√√3E

[
T∑
t=1

νtht

]
+

10k

9
log

(
T

k

)
E

[
T∑
t=1

(βt+1 − βt)ht+1

]

=

√√√√√3E

[
T∑
t=1

νtht

]
+

10k

9
log

(
T

k

)
E

 T∑
t=1

c1νtht+1√
c2 +

∑T
t=1 νshs+1


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Algorithm 5.2: BOBW algorithm with a sparsity-dependent bound in Sec-
tion 5.5.2
1 for t = 1, 2, . . . , T do
2 Compute qt using (5.1).
3 Sample At ∼ pt, observe ℓtAt ∈ [−1, 1], and compute ŷt.
4 Update βt using (5.8) based on the bisection method (Algorithm 5.3).

≤

√√√√√3E

[
T∑
t=1

νtht

]
+

20k

9
log

(
T

k

)
E


√√√√ T∑

t=1

νtht+1


=

√√√√3E

[
T∑
t=1

νtht

]
+

20k

9
log

(
T

k

)
Xt ,

where the first inequality follows by Lemma 5.8, the second inequality follows by νt ≤
βt/2, the last inequality follows by Lemma 5.9. Since x ≤

√
a+ bx for x > 0 implies

x ≤ 2
√
a+ b, we have

Xt ≤ 2

√√√√3E

[
T∑
t=1

νtht

]
+

20k

9
log

(
T

k

)
= 2

√√√√3E

[
T∑
t=1

E[νt | pt]ht

]
+

20k

9
log

(
T

k

)

≤ 2

√√√√6kE

[
T∑
t=1

H(pt)

]
+

20k

9
log

(
T

k

)
.

We consider the case ofP (a∗) ≥ e, since otherwise Lemma 5.2 implies
∑T

t=1H(pt) ≤
e log(kT ) and thus the desired bound is trivially obtained. When P (a∗) ≥ e, Lemma 5.2
implies that

∑T
t=1H(pt) ≤ P (a∗) log(kT ). Then from the self-bounding technique, for

any λ ∈ (0, 1] it holds that

RegT = (1 + λ)RegT − λRegT
≤ E

[
(1 + λ)O

(√
k log(T ) log(kT )P (a∗)

)
− λ∆minP (a

∗)
]
+ λC +O(k log T )

≤ O

(
(1 + λ)2k log(T ) log(kT )

λ∆min
+ λC

)

= O

(
k log(T ) log(kT )

∆min
+ λ

(
k log(T ) log(kT )

∆min
+ C

)
+

1

λ

k log(T ) log(kT )

∆min

)
,

where the first inequality follows by Lemma 5.1 and the second inequality follows from
a
√
x− bx/2 ≤ a2/(2b) for a, b, x ≥ 0. Setting λ ∈ (0, 1] to

λ =

√
k log(T ) log(kT )

∆min

/(k log(T ) log(kT )
∆min

+ C

)
gives the desired bound for the adversarial regime with a self-bounding constraint.

5.7.7.3 Discussion on Bisection Method for Computing βt+1

This section describes the bisection method to compute βt+1 described in Section 5.5.2.
Recall that Ft : [βt, βt + T ] → R is defined by the difference of the both sides of the
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Algorithm 5.3: Bisection method for computing βt+1

1 input: Ft
2 left← βt, right← βt + T
3 while true do
4 center← (left + right)/2
5 if Ft(center) < 0 then
6 left← center
7 else if Ft(center) > 0 then
8 right← center
9 else

10 break

11 return center

update rule of (βt) in (5.8):

Ft(α) = α−

βt + c1νt√
c2 + νtht+1(α) +

∑t−1
s=1 νshs+1

 , (5.32)

where ht+1(α) =
1

1− k
T

H(pt+1(α)), and pt+1(α) is the FTRL output with the regularizer

ψt = αψnS + 4ψLB. Note that c1νt/
√
c2 + νtht+1(α) +

∑t−1
s=1 νshs+1 ≤ c1νt/c2 ≤ T/9 since

νt ≤ T .
Assume that Ft is continuous. Then we can see that there exists α ∈ [βt, βt+T ] such

that Ft(α) = 0. In fact, if ptAt = 0 then βt+1 = βt, and otherwise, we have Ft(βt) ≤ 0
and Ft(βt+T ) > 0. Using the intermediate value theorem with the assumption that Ft is
continuous, there indeed exists α ∈ [βt, βt + T ] satisfying Ft(α) = 0. We can compute
such α by the bisection method. In particular, we first set the range of α to [βt, βt +
T ], and then iteratively halve it by evaluating the value of Ft at the middle point. Such
bisection method (binary search) are also used in Wei et al. (2016), although the computed
target is different. The whole BOBW algorithm with the sparsity-dependent bound in
Section 5.5.2 is given in Algorithm 5.2, and the concrete procedure of the bisection given
in Algorithm 5.3.

Now, all that remains is to show that Ft is continuous. To prove this, it suffices to
prove that ht+1(α) =

1
1− k

T

H(pt+1(α)) is continuous with respect to α.

Proposition 5.2. Ft in (5.32) is continuous with respect to α.

Proof of Proposition 5.2. Take any α ∈ [βt, βt + T ] and then consider the following
optimization problem:

qt+1(α) = argmin
q∈Pk

〈
t∑

s=1

ŷs, q

〉
+Φt+1(q) ,

where Φt+1 = αψnS + 4ψLB. Now using Corollary 8.1 of Hogan (1973) with the fact
that the solution of the above optimization problem is unique, qt+1(α) is continuous
with respect to α. This completes the proof since pt+1 is continuous with respect to
qt+1, 1/T ≤ pt+1,i(α) ≤ 1 − k/T , and H(p) is continuous in a neighborhood of p =
pt+1(α).
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5.7.8 Proof of Corollary 5.3

This section proves Corollary 5.3. Recall that B = 1/2 for FI, B = k/2 for MAB,
and B = 2mk2 for PM-local, and rM is 1 if M is FI or MAB, and 2k if M is PM-
local, which are appeared in Section 5.6. Let RegT (a) = E

[∑T
t=1

(
LAtxt − Laxt

)]
=

E
[∑T

t=1 ⟨ℓAt − ℓa, ext⟩
]

for a ∈ [k].

Proof. Fix i∗ ∈ [k]. From Lemma 7 in Chapter 4, if ηt > 0, we have

RegT (i
∗) ≤ E

[
T∑
t=1

(
1

ηt+1
− 1

ηt

)
H(qt+1) +

H(q1)

η1
+

T∑
t=1

ηtV
′
t

]
. (5.33)

We will confirm that the assumptions for Part (I) of Theorem 5.1 are indeed satisfied.
Since

√
c2 + z̄th1
c1

(βt + β1) ≥

√
2V̄ log k

log(1 + T )
· 2B

√
log(1 + T )

log k
≥
√
2
(
V̄ + V̄t

)
,

stability condition (S1) is satisfied. One can also see that the other conditions are trivially
satisfied. Hence, using Part (I) of Theorem 5.1, we can bound the RHS of (5.33) as

RegT (i
∗) ≤ E

(2c1 + 1

c1
log

(
1 +

T∑
u=1

V ′
u

V̄

))√√√√V̄ H(q1) +
T∑
t=1

V ′
tH(qt+1)

+
H(q1)

η1

≤
(
2c1 +

1

c1
log (1 + T )

)√√√√E

[
T∑
t=1

V ′
tH(qt+1)

]

+O

(√
V̄ log(k) log(T ) +B

√
log(k) log T

)

=
√

2 log(1 + T )

√√√√E

[
T∑
t=1

V ′
tH(qt+1)

]
+O

(
B
√

log(k) log(T )
)
, (5.34)

where the second inequality follows from V ′
u/V̄ ≤ 1 and in the equality we set c1 =√

log(1+T )
2 and used

√
V̄ ≤ B.

(Adversarial regime) For the adversarial regime, since H(qt) ≤ log k, (5.34) imme-
diately implies

RegT ≤ E


√√√√2

T∑
t=1

V ′
t log(k) log(1 + T ) +O

(
B
√

log(k) log(T )
) ,

which is the desired bound.

(Adversarial regime with a self-bounding constraint) Next, we consider the adver-
sarial regime with a self-bounding constraint. We consider the case of Q(a∗) ≥ e,
since otherwise Lemma 5.2 implies

∑T
t=1H(pt) ≤ e log(kT ) and thus the desired

bound is trivially obtained. When Q(a∗) ≥ e, Lemma 5.2 implies that
∑T

t=1H(qt) ≤
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Q(a∗) log(kT ). Then from the self-bounding technique, for any λ ∈ (0, 1]

RegT = (1 + λ)RegT − λRegT

≤ E
[
(1 + λ)O

(√
V̄ log(T ) log(kT )Q(a∗)

)
− λ∆minQ(a∗)

rM

]
+ λC

≤ (1 + λ)O

(√
V̄ log(T ) log(kT )Q̄(a∗)

)
− λ∆minQ̄(a∗)

rM
+ λC

≤ O
(
(1 + λ)2rM log(T ) log(kT )

λ∆min
+ λC

)
= O

(
rMV̄ log(T ) log(kT )

∆min
+ λ

(
rMV̄ log(T ) log(kT )

∆min
+ C

)
+

1

λ

rMV̄ log(T ) log(kT )

∆min

)
,

where the first inequality follows by (5.34) and Lemma 5.1 with c′ = rM and the second
inequality follows from a

√
x− bx/2 ≤ a2/(2b) for a, b, x ≥ 0. Setting λ ∈ (0, 1] to

λ =

√
rMV̄ log(T ) log(kT )

∆min

/(rMV̄ log(T ) log(kT )

∆min
+ C

)
gives the desired bound for the adversarial regime with a self-bounding constraint.

5.7.9 Basic Lemma

Lemma 5.9 (Orabona 2019, Lemma 4.13). Let a0 ≥ 0, (at)Tt=1 be non-negative reals
and f : R+ → R+ be a non-increasing function. Then,

T∑
t=1

atf

(
a0 +

t∑
s=1

as

)
≤
∫ ∑T

t=0 at

a0

f(x)dx .

We include the proof for the completeness.

Proof. LetAt =
∑t

s=0 as. Then summing the following inequality over t completes the
proof:

atf

(
a0 +

t∑
s=1

as

)
= atf(At) =

∫ At

At−1

f(At)dx ≤
∫ At

At−1

f(x)dx .

5.8 Conclusion

In this chapter, we established the framework for designing a learning rate that jointly
depends on the stability and penalty components (Theorem 5.1). This result combined
with a novel stability analysis enables us to achieve BOBW and data-dependent bounds
(sparsity- and game-dependent bounds) simultaneously in MAB and PM. There are some
remaining questions. First, while we only used the Shannon entropy as a dominant regu-
larizer, it might be interesting to consider the other regularizers, such as negative Tsallis
entropy. Second, we only considered the PM game with local observability, and it is an
interesting open question to investigate if game-dependent bound with BOBW guarantee
is possible in PM only with global observability.
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Chapter 6

Further Adaptive Best of Both Worlds Algorithm
for Combinatorial Semi-Bandits

There are numerous sequential decision-making problems with combinatorial structures
in our daily lives, such as the online advertisement placement problem and the online
shortest path problem. While most of these problems can be formulated as a partial
monitoring game, such a formulation sometime fails to sufficiently model the combina-
torial structure inherent in these problems. In this chapter, we investigate the combinato-
rial semi-bandit problem that involves such a combinatorial structure in its formulation.
We first present a new algorithm with a best-of-both-worlds regret guarantee, in which
the regrets are near-optimally bounded in the stochastic and adversarial regimes. In the
stochastic regime, we prove a variance-dependent regret bound depending on the tight
suboptimality gap introduced by Kveton et al. (2015) with a good leading constant. In the
adversarial regime, we show that the same algorithm simultaneously obtains various data-
dependent regret bounds. Our algorithm is based on the follow-the-regularized-leader
framework with a refined regularizer and adaptive learning rate. Finally, we numerically
test the proposed algorithm and confirm its superior or competitive performance over
existing algorithms, including Thompson sampling under most settings.

6.1 Introduction

The combinatorial semi-bandit problem is an online decision-making problem, and it
includes many practical problems such as multi-task bandits (Cesa-Bianchi and Lugosi,
2012), crowdsourcing (ul Hassan and Curry, 2016), learning spectrum allocations (Gai
et al., 2012), shortest path problem (Gai et al., 2012), and recommender systems (Qin
et al., 2014). In combinatorial semi-bandits, the learner and environment play the game
sequentially. The learner is given an action set A ⊂ {0, 1}d, where d ∈ N is the di-
mension of the action set. For every round t ∈ [T ] := {1, . . . , T}, the environment
chooses a loss ℓ(t) ∈ [0, 1]d, and the learner then chooses an action a(t) ∈ A (also
called a super-arm), incurs a loss ⟨ℓ(t), a(t)⟩, and observes ℓi(t) for all i ∈ [d] such that
ai(t) = 1. We refer to each index i ∈ [d] as base-arm i. The goal of the learner is to
minimize their cumulative loss over all rounds. The performance of the learner is evalu-
ated based on regret RegT defined as the difference between the cumulative losses of the
learner and the single optimal action a∗ fixed in terms of the expected cumulative loss,
i.e., a∗ = argmina∈A E[

∑T
t=1 ⟨ℓ(t), a⟩] and

RegT = E

[
T∑
t=1

⟨ℓ(t), a(t)− a∗⟩

]
,

where the expectation is taken w.r.t. the randomness of ℓ(t) and the internal randomness
of the algorithm.
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The combinatorial semi-bandit problem, or more broadly, a variety of online-decision
making problems, have been investigated within mainly two regimes: stochastic and ad-
versarial regimes. In the stochastic regime, the sequence of losses (ℓ(t))Tt=1 is sampled
from a fixed distribution D in an i.i.d. manner with mean µ = Eℓ∼D[ℓ]. In the adver-
sarial regime, the losses are arbitrarily decided from [0, 1]d (Kveton et al., 2015; Neu,
2015; Wang and Chen, 2018) or more generally from Sd for some bounded S ⊂ R (Wei
and Luo, 2018; Zimmert et al., 2019) possibly depending on the past history of learner’s
actions.

There have been a considerable number of studies on combinatorial semi-bandits for
both adversarial and stochastic regimes. In the adversarial regime, the regret bound of
O(
√
mdT ) was proved for m = maxa∈A∥a∥1 (Audibert et al., 2014), which matches

the lower bound of Ω(
√
mdT ) (Audibert et al., 2014). In the stochastic regime, many al-

gorithms have been shown to achieve logarithmic regrets depending on the minimum
suboptimality gap, which is defined by ∆ = min{µ⊤(a − a∗) : a ∈ A \ {a∗}}.
Kveton et al. (2015) and Wang and Chen (2018) derived gap-dependent regret bounds
given by O(dm log(T )/∆) for general action sets and O((d−m) log(T )/∆) for ma-
troid semi-bandits. Furthermore, Kveton et al. (2015) derived a refined bound given
by O(

∑
i:a∗i=1(m/∆i,min) log T ) depending on ∆i,min = min{⟨µ, a− a∗⟩ : a ∈ A \

{a∗}, ai = 1} ≥ ∆ of each base-arm i rather than on ∆.
It is unclear which regime’s algorithms are better suited to practical applications. Al-

gorithms specialized for the stochastic regime occasionally suffer a linear regret, whereas
algorithms for the adversarial regime work poorly in the stochastic regime. Because it is
difficult to know it in practice, it is desirable to obtain a near-optimal performance both
for the stochastic and adversarial regimes without knowing the underlying environment.

To this end, particulary in the classical multi-armed bandits, the Best-of-Both-Worlds
(BOBW) algorithm has been developed, which performs near-optimally both in the stochas-
tic and adversarial regimes. In a seminal study, Bubeck and Slivkins (2012) developed
the first BOBW algorithm, and the celebrated Tsallis-INF algorithm was recently pro-
posed by Zimmert and Seldin (2021). For combinatorial semi-bandits, we are aware of
the works by Wei and Luo (2018), Zimmert et al. (2019), and Ito (2021a). Some BOBW
algorithms achieve favorable regret guarantees also in the stochastic regime with adver-
sarial corruptions (Lykouris et al., 2018), which is an intermediate regime between the
stochastic and adversarial regimes. This intermediate regime is advantageous in prac-
tice since the stochastic assumption on losses often fails to hold, whereas the adversarial
assumption is excessively pessimistic.

Adaptive algorithms that exploit the characteristics of a sequence of losses have been
actively developed for both the adversarial and stochastic regimes. In the adversarial
regime, data-dependent regret bounds have been recently investigated to enhance the
adaptivity of the algorithm to a given structure of the loss data. Well-known examples are
the first-order bounds depending on the cumulative lossL∗ = mina∈A E[

∑T
t=1 ⟨ℓ(t), a⟩],

second-order bounds depending on the empirical variations of lossesQ2 = E[
∑T

t=1∥ℓ(t)−
ℓ̄∥2] defined with ℓ̄ = T−1E[

∑T
t=1 ℓ(t)], and path-length bounds depending on the vari-

ation of losses V1 = E[
∑T−1

t=1 ∥ℓ(t) − ℓ(t + 1)∥1]. For the semi-bandit problem, Wei
and Luo (2018) presented the first-order regret bound of O(

√
dL∗ log T ), second-order

bound of O(
√
dQ2 log T ), and the path-length bound of O(

√
dV1 log T ). Note that the

data-dependent bounds developed by Wei and Luo (2018) cannot be achieved using the
same algorithm. Table 6.1 summarizes notation used in this chapter.

In the stochastic regime, one of the most promising approaches to making an algo-
rithm more adaptive is to estimate and use distributional information. In the multi-armed
bandit problem, algorithms that exploit the variance of losses have been developed (Au-
dibert et al., 2007; Ito et al., 2022b), and (co)variance-aware algorithms for semi-bandits
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Table 6.1: Notation used in this chapter
Symbol Meaning

A ∈ {0, 1}d Action set
d ∈ N Dimensionality of action set
m ≤ d m = maxa∈A∥a∥1
a∗ ∈ A Optimal action
I∗ ⊂ [d] {i ∈ [d] : a∗i = 1}, set of optimal base-arms
J∗ ⊂ [d] [d] \ I∗, set of sub-optimal base-arms

µi ∈ [0, 1] E[ℓi], mean of base-arm i
σ2
i ∈ [0, 1/4] E[(ℓi − µi)2], variance of base-arm i

∆ ∈ (0,m] min{⟨µ, a− a∗⟩ : a ∈ A \ {a∗}}
∆i,min ≥ ∆ min{⟨µ, a− a∗⟩ : a ∈ A \ {a∗}, ai = 1}
∆′
i,min ≥ ∆ min{⟨µ, a− a∗⟩ : a ∈ A \ {a∗}, ai = 0}

w(A) ≤ m Action-set-dependent constant (Section 6.5)

L∗ mina∈A E[
∑T
t=1 ⟨ℓ(t), a⟩]

Q2 E[
∑T
t=1∥ℓ(t)− ℓ̄∥2] (ℓ̄ = T−1E[

∑T
t=1 ℓ(t)])

V1 E[
∑T−1
t=1 ∥ℓ(t)− ℓ(t+ 1)∥1]

C ∈ [0, T ] E[
∑T
t=1∥ℓ(t)− ℓ′(t)∥∞], corruption level

have also been investigated (Komiyama et al., 2015b; Degenne and Perchet, 2016; Merlis
and Mannor, 2019; Perrault et al., 2020; Vial et al., 2022; Liu et al., 2022). The variance-
aware algorithm is highly advantageous in real-world applications since the variances of
losses for each base-arm i, σ2i = Eℓ∼D[(ℓi−µi)2] ∈ [0, 1/4], are extremely small in many
real-world applications, whereas the variance can be 1/4 in the worst case scenario. For
example, for a search engine, the click-through rate is usually below 0.05 (Komiyama
et al., 2017), implying that the variance of the base-arm is much smaller than 1/4. Ad-
ditionally, in the shortest path problem (György et al., 2007), the congestion level of the
road does not change substantially in many cases, and hence the variance is expected to
be much smaller than in the worst-case scenario also of this problem. Indeed, variance-
aware algorithms are known to be highly effective in the problem of online eco-routing
for electric vehicles (Chen et al., 2022b). Accordingly, we aim to achieve a variance-
dependent regret bounds in the stochastic regime with multiple data-dependent regret
bounds simultaneously in the adversarial regime by the same algorithm.

Contribution of This Chapter In this study, we establish a new BOBW algorithm for
the combinatorial semi-bandit problem. The proposed algorithm is based on the Opti-
mistic Follow-the-Regularized-Leader (OFTRL) framework (McMahan, 2011; Rakhlin
and Sridharan, 2013b,a) with a refined regularizer and adaptive learning rate inspired
by Ito et al. (2022b). Let I∗ = {i ∈ [d] : a∗i = 1} and J∗ = [d] \ I∗. OFTRL has
a component called an optimistic prediction and the proposed algorithm considers two
methods for its estimation: the Least Square (LS) and Gradient Descent (GD) based on
past observations. Let w(A) ≤ m be an action-set-dependent constant defined in Sec-
tion 6.5. We drop A when it is clear from context. The regret of the proposed algorithm
with the LS and GD is then bounded as follows.

Theorem 6.1 (Informal). For the stochastic regime, the proposed algorithm with LS
achieves

RegT ≤

(∑
i∈J∗

max
{
4
wσ2i
∆i,min

+ c log
(
1 +

wσ2i
∆i,min

)
, 2(1 + ϵ)

}
+ 2(1 + ϵ)|I∗|

)
log T

+ o(log T ) =: RLS ,
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Table 6.2: Regret upper bounds for combinatorial semi-bandits. w = w(A) ≤ m is an action-
set-dependent constant. Some terms are omitted due to the space constraint.

Reference Regime Regret bound

Audibert et al. (2014) Adv. O(
√
dmT )

Kveton et al. (2015) Stoc. 534
∑
i∈J∗

m

∆i,min
log T +O(dm)

Zimmert et al. (2019) Adv. O(
√
dmT )

Stoc. O

(
dm

∆
log T

)
=: RZLS

Stoc. w/ adv. RZLS +O(
√
CmRZLS)

Ito (2021a) Adv. O(
√
dmin{L∗, Q2, V1} log T )

Stoc. O

(
dm

∆
log T

)
=: RI

Stoc. w/ adv. RI +
√
CmRI

Proposed (LS) Adv.
√

4dmin{L∗,mT − L∗, Q2} log T

Stoc.
(∑
i∈J∗

max

{
4wσ2

i

∆i,min
+o
( wσ2

i

∆i,min

)
, O(ϵ)

})
log T =: RLS

Stoc. w/ adv. RLS +O(
√
CmRLS)

Proposed (GD) Adv.

√
4d

1− 2η

(
min

{
L∗,mT − L∗, Q2,

2V1
η

}
+
d

η

)
log T

Stoc.
1

1−2η

(∑
i∈J∗

max

{
4wσ2

i

∆i,min
+o
( wσ2

i

∆i,min

)
, O(ϵ)

})
log T =:RGD

Stoc. w/ adv. RGD +O(
√
CmRGD)

where ϵ ∈ (0, 1/2] is an input parameter for the algorithm and c = O((log ϵ−1)2).
Further, for the adversarial regime, the algorithm achieves

RegT ≤
√
4dmin {L∗,mT − L∗, Q2} log T
+O(d log T ) + d2 + d(1 + 2δ) .

Additionally, for the stochastic regime with adversarial corruptions, we have RegT ≤
RLS +O(

√
CmRLS).

Theorem 6.2 (Informal). For the stochastic regime, the proposed algorithm with GD
estimations with a step size η ∈ (0, 1/2) achieves

RegT ≤
1

1− 2η

(∑
i∈J∗

max
{
4
wσ2i
∆i,min

+ c log
(
1 +

wσ2i
∆i,min

)
, 2(1 + ϵ)

}
+ 2(1 + ϵ)|I∗|

)
log T

+ o(log T ) =: RGD .

For the adversarial regime, the algorithm achieves

RegT ≤

√
4d

1− 2η

(
min

{
L∗,mT−L∗, Q2,

2V1
η

}
+
d

η

)
log T

+O(d log T ) + d2 + d(1 + 2δ) .

Additionally, for the stochastic regime with adversarial corruptions, we have RegT ≤
RGD +O(

√
CmRGD).
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A comparison with existing bounds is given in Section 6.5.
The proposed algorithm is inspired by the algorithm proposed by Ito (2021a); how-

ever, their bound depends on ∆ and not either on σ2i or on ∆i,min. The proposed algo-
rithm takes care of the characteristics of the instances, and specifically, we modify the
regularizer and optimistic prediction in OFTRL and refine the analysis. As a result, the
bounds of the proposed algorithm depend on σ2i and ∆i,min, and a leading constant of
our bounds are at least 81 times better than their bound. The resulting regret upper bound
in Theorem 6.1 is at most approximately twice as large as the achievable lower bounds
(Section 6.5). Note that one can prove the same order of upper bounds as in Theorem 6.2
for the algorithm in Ito (2021a) by using the analysis given in Section 6.5. Table 6.2
lists the regret bounds provided in this study and summarizes comparisons with existing
work.

Our regret bounds are favorable compared to those reported in existing studies in that
enjoying following properties:

1. Our algorithm enjoys BOBW guarantees and works well even in the stochastic
regime with adversarial corruptions.

2. The leading constant of the regret bound in Theorem 6.1 (resp. Theorem 6.2) for
the stochastic regime is only twice (resp. 2/(1−η)) as large as an achievable lower
bound.

3. The regret bounds in the stochastic regime depend on the tighter suboptimality gap
∆i,min rather than the minimal suboptimality gap ∆.

4. The regret bounds in the stochastic regime depend on the variances of base-arms,
which can be tremendously small value under certain practical scenarios.

5. The regret in the adversarial regime enjoys data-dependent regret bounds.

Note that the first and fifth properties are already realized in existing studies, (e.g., Zim-
mert et al. 2019; Ito 2021a.) We consider using a self-bounding technique (Zimmert and
Seldin, 2021) to obtain BOBW guarantees. In the self-bounding technique, we first derive
upper and lower bounds of the regret using a variable depending on the (base-)arm se-
lection probability, and we then derive a regret bound by combining the upper and lower
bounds. For bounding the regret with the tight suboptimality gap ∆i,min in the stochastic
regime, we derive a new regret lower bound.

To prove the variance-dependent regret upper bound, we consider an algorithm in-
spired by the learning rate and regularizer developed by Ito et al. (2022b), which focuses
on the classical multi-armed bandit problem. However, their theoretical analysis is based
on the fact that the sum of the arm selection probabilities equals 1, which does not hold
in the semi-bandit problem. Our analysis uses a new approach to handle this problem by
deriving a regret upper bound that collaborates well with the new regret lower bound.

Further, we empirically investigate the performance of the proposed algorithm, whereas
experiments are often missing in studies on the BOBW algorithm such as Wei and Luo
(2018), Lee et al. (2021), and Ito (2021a). The results of this study show that the proposed
algorithm empirically works the best in the adversarial regime and as well as Thompson
sampling in the practical stochastic regime.

6.2 Related Work

György et al. (2007) and Uchiya et al. (2010) initiated research on the combinatorial
semi-bandit problem for the adversarial regime, and since then, many algorithms with
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O(
√
T )-regret bounds have been developed (e.g., Neu and Bartók 2013; Audibert et al.

2014; Neu 2015; Wei and Luo 2018).
Combinatorial semi-bandits have been also investigated in the stochastic regime, and

algorithms in the literature are significantly different from those in the adversarial regime.
Most are based on index-based approaches, where the algorithm estimates the loss means
for each base-arm and pessimistically predicts the true value of the losses. Kveton et al.
(2015) and Wang and Chen (2018) prove gap-dependent regret bounds depending on
∆i,min rather than ∆, and they also consider special action sets such as the size-invariant
and matroid semi-bandits.

Since the seminal study conducted by Bubeck and Slivkins (2012), BOBW algorithms
have been developed for many online-decision making problems beyond the multi-armed
bandits (Zimmert and Seldin, 2021; Seldin and Lugosi, 2017; Rouyer and Seldin, 2020;
Huang et al., 2022): the problem of prediction with expert advice (Gaillard et al., 2014;
Luo and Schapire, 2015), dueling bandits (Saha and Gaillard, 2022), online learning
with feedback graphs (Erez and Koren, 2021; Ito et al., 2022a), linear bandits (Lee et al.,
2021), and episodic Markov decision processes (Jin and Luo, 2020; Jin et al., 2021). For
combinatorial semi-bandits, we are aware of the works by Wei and Luo (2018), Zimmert
et al. (2019), and Ito (2021a).

6.3 Preliminaries

This section introduces the preliminaries for this study. Let ∥x∥, ∥x∥1, and ∥x∥∞ be the
Euclidian, ℓ1, and ℓ∞-norms for vector x, respectively, and 1 be the all-one vector.

6.3.1 Combinatorial Semi-Bandits

We consider the combinatorial semi-bandit problem with action set A ⊂ {0, 1}d, where
each element a ∈ A is called an action. We assume that for all i ∈ [d], there exists a ∈ A

such that ai = 1. Define m = maxa∈A∥a∥1.
In the combinatorial semi-bandit problem, the learner observes entry-wise bandit

feedback. At each step t ∈ [T ], when the learner takes action a(t) ∈ A, they observe the
elements in It = {i ∈ [d] : ai(t) = 1}, whereas the elements in Jt = [d] \ It are not
observed. We assume that T ≥ max{d, 55}.

This study also considers the special cases of action sets: size-invariant semi-bandits
and matroid semi-bandits. For size-invariant semi-bandits, the size of action ∥a∥1 is fixed
to m, i.e., A ⊂ {a ∈ {0, 1}d : ∥a∥1 = m}. For the matroid semi-bandits, a special case
of size-invariant semi-bandits, an action set A corresponds to the bases of a matroid. The
well-knownm-set semi-bandits, in which A = {a ∈ {0, 1}d : ∥a∥1 = m}, is an example
of the matroid semi-bandit problem.

In this study, we assume that there exists a unique optimal action a∗ ∈ A. This
assumption has been employed by many studies aiming at the development of BOBW
algorithms (Gaillard et al., 2014; Luo and Schapire, 2015; Wei and Luo, 2018; Zimmert
and Seldin, 2021).

6.3.2 Considered Regimes

We consider three regimes as the assumptions for the losses. In the stochastic regime, the
loss vectors (ℓ(t)) follow an unknown distribution D in an i.i.d. manner for all t ∈ [T ].
We define the expectation of the losses by µ = Eℓ∼D[ℓ].

By contrast, the adversarial regime does not assume any stochastic structure for the
losses and the losses can be chosen in an arbitrarily manner. In this regime, the envi-
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ronment can choose ℓ(t) depending on the past history until the (t − 1)-th round, i.e.,
{(ℓ(s), a(s))}t−1

s=1.
We also consider an intermediate regime between the stochastic and adversarial regimes.

One of the most representative intermediate regimes is the stochastic regime with adver-
sarial corruptions. In this regime, a temporary loss ℓ′(t) ∈ [0, 1]d is sampled from an
unknown distribution D, and then the adversary corrupts ℓ′(t) to ℓ(t). We define the
corruption level by C = E

[∑T
t=1∥ℓ(t)− ℓ′(t)∥∞

]
≥ 0. If C = 0, this regime coincides

with the stochastic regime, and if C = T , this regime corresponds to the adversarial
regime. We will see that the proposed algorithm works without the knowledge of the
corruption level C.

6.3.3 Optimistic Follow-the-Regularized-Leader

We establish the algorithm based on the Optimistic follow-the-regularized-leader (OFTRL)
framework, which has occasionally been used in the development of BOBW algorithms (Wei
and Luo, 2018; Ito, 2021c). Let X = conv(A) be the convex hull of the action set A.
OFTRL maintains x(t) ∈ X, and it then chooses a(t) ∈ A so that E[a(t)|x(t)] = x(t).
The OFTRL update rule is expressed as

x(t) ∈ argmin
x∈X

〈
m(t) +

t−1∑
s=1

ℓ̂(s), x

〉
+ ψt(x) , (6.1)

wherem(t) ∈ [0, 1]d corresponds to an optimistic prediction (also known as a hint vector)
of the true loss vector ℓ(t), the vector ℓ̂(t) ∈ Rd is an unbiased estimator of ℓ(t), and ψt
is a convex regularizer function over X.

6.4 Proposed Algorithm

This section describes details of the proposed algorithm (Logarithmic Barrier Implicit
Normalized Forecaster considering Variances for semi-bandits; LBINFV) by specifying
the optimistic prediction m(t), estimator ℓ̂(t), and convex regularization ψt in (6.1).

We consider two different methods for estimating optimistic predictions; these meth-
ods result in regret upper bounds that differ by a constant factor in the stochastic regime
and have different data-dependent bounds. One method is a least square (LS) estimation
based on the losses thus far, i.e., we define m(t) = (m1(t), . . . ,md(t))

⊤ ∈ [0, 1]d by

mi(t) =
1

1 +Ni(t− 1)

(
1

2
+

t−1∑
s=1

ai(s) ℓi(s)

)
, (6.2)

where Ni(t) is the number of times the base-arm i is chosen until the t-th round, i.e.,
Ni(t) = |{s ∈ [t] : ai(t) = 1}|. The other method is based on the gradient descent
(GD), where we define m(t) by mi(1) = 1/2 and

mi(t+ 1) =

{
(1− η)mi(t) + ηℓi(t) if i ∈ I(t)
mi(t) otherwise

(6.3)

for i ∈ [d] with a step size η ∈ (0, 1/2).
Let a(t) ∈ A be an action selected at round t and I(t) = {i ∈ [d] : ai(t) = 1} be the

set of base-arms selected at round t. Note that {ai(t) = 1} is equivalent to {i ∈ I(t)}
and Pr[i ∈ I(t)|xi(t)] = Pr[ai(t) = 1|xi(t)] = xi(t).

The design of LS is to reduce the leading constant in the regret, and GD is to derive
a path-length bound. LS was developed by Ito et al. (2022b). The original idea of GD
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comes from online learning literature (Herbster and Warmuth, 2001), and Ito (2021a)
developed the idea in semi-bandits.

We use an unbiased estimator ℓ̂(t) = (ℓ̂1(t), . . . , ℓ̂d(t))
⊤ ∈ Rd of ℓ(t) given by

ℓ̂i(t) = mi(t) +
ai(t)

xi(t)
(ℓi(t)−mi(t)) (6.4)

for i ∈ [d]. This is indeed an unbiased estimator of ℓ(t) since E[ℓ̂i(t)|x(t)] = mi(t) +
xi(t)
xi(t)

(ℓi(t) − mi(t)) = ℓi(t). The optimistic prediction m(t) in (6.4) plays a role in
reducing the variance of ℓ̂(t); the better m(t) predicts ℓ(t), the smaller the variance in
ℓ̂(t) becomes.

The regularizer function ψt : Rd → R is given by

ψt(x) =
d∑
i=1

βi(t)ϕ(xi) , (6.5)

where ϕ : R→ R is defined as

ϕ(z) = z − 1− log z + γ (z + (1− z) log(1− z)) (6.6)

with γ = log T and regularization parameters βi(t) ≥ 0. Our regularizer in (6.5)
comprises the logarithmic barrier − log xi and the (negative) Shannon entropy (1 −
xi) log(1 − xi) for the complement of xi ∈ [0, 1]. Such a regularizer is called a hybrid
regularizer, and this type of regularizer was employed in existing studies for bounding a
component of the regret (Zimmert et al., 2019; Ito et al., 2022b,a). The affine part of the
regularizer in (6.6), z − 1 + γz, is introduced to simplify the analysis and yields smaller
constant factors, which is also used by Ito et al. (2022b).

Regularization parameters βi(t) are defined as

βi(t) =

√√√√(1 + ϵ)2 +
1

γ

t−1∑
s=1

αi(s) , (6.7)

where ϵ ∈ (0, 1/2] is an input parameter and

αi(t)=ai(t)(ℓi(t)−mi(t))
2min

{
1,

2(1− xi(t))
xi(t)2γ

}
. (6.8)

We design αi(t) in (6.8) so that it corresponds to an upper bound of the component of
regret, which appears when we use a standard analysis of (O)FTRL with regularizer (6.5).
We can introduce a 2(1 − xi(t))/(xi(t)2γ) part in αi(t) thanks to the Shannon entropy
part in regularizer (6.5). This part allows us to bound the regret corresponding to optimal
base-arms. The (ℓi(t)−mi(t))

2 part ofαi(t) comes from the use of optimistic predictions
and can be related to the base-arm variances by using the LS and GD methods to estimate
m(t). Algorithm 6.1 summarizes the proposed algorithms.

From the intuitive viewpoint, αi(t) determines the strength of the regularization, and
as αi(t) increases, the algorithm further explores base-arm i. Since (ℓi(t) − mi(t))

2

in (6.8) represents the squared error of the optimistic prediction, the algorithm becomes
more explorative when the loss is unpredictable or has a high variance. Also note that
µi ≃ 1 corresponds to the base-arm with the almost worst expected loss with the least
variance. The factor (1− xi(t)) in (6.8) contributes to a fast elimination of such a base-
arm since the regularization does not become strong when xi(t) = 1 is observed.
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Algorithm 6.1: LBINFV for semi-bandits
1 input: action set A, time horizon T
2 for t = 1, 2, . . . , T do
3 Compute x(t) ∈ X by (6.1) with ℓ̂(t) in (6.4) and ψt in (6.5).
4 Sample a(t) such that E[a(t)|x(t)] = x(t).
5 Take action a(t) and observe feedback ℓi(t) for i such that ai(t) = 1.
6 Update the regularization parameters βi(t) in (6.7) and optimistic prediction

mi(t) using (6.2) or (6.3).

6.5 Regret Analysis

This section derives the regret upper bounds of the proposed algorithm. We define the
minimum suboptimality gaps that contain and do not contain base-arm i by

∆i,min = min{⟨µ, a− a∗⟩ : a ∈ A \ {a∗}, ai = 1} ;
∆′
i,min = min{⟨µ, a− a∗⟩ : a ∈ A \ {a∗}, ai = 0} .

We define constants v(A) and w(A) depending on the action set A by

v(A) =

{
2 A is a matroid
2min{|I∗|, d−m} otherwise

and

w(A) =


2 A is a matroid
2min{m, d−m} A is size-invariant
2min{m, |J∗|} otherwise .

6.5.1 Regret Upper Bounds

This section introduces regret upper bounds of the proposed algorithm for each optimistic
prediction method.

Theorem 6.3 (Formal version of Theorem 6.1). Consider Algorithm 6.1 using the least
square method in (6.2) for optimistic predictions. Then, for the stochastic regime,

RegT ≤

(∑
i∈J∗

max
{
4
w(A)σ2i
∆i,min

+ c log
(
1 +

w(A)σ2i
∆i,min

)
, 2(1 + ϵ)

}
+ 2(1 + ϵ)|I∗|

)
log T

+O

(∑
i∈I∗

v(A)

∆′
i,min

√
log T

)
+ o(

√
log T ) , (6.9)

where ϵ ∈ (0, 1/2] is an input parameter for the algorithm and c = O((log ϵ−1)2).
Further, for the adversarial regime,

RegT ≤
√
4dmin {L∗,mT − L∗, Q∞} log T
+O(d log T ) + d2 + d(1 + 2δ) . (6.10)

Additionally, in the stochastic regime with adversarial corruptions, we have RegT ≤
RLS +O(

√
CmRLS), where RLS is the RHS of (6.9).
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Theorem 6.4 (Formal version of Theorem 6.2). Consider Algorithm 6.1 using the gradi-
ent descent method with a step size η ∈ (0, 1/2) in (6.3) for optimistic predictions. Then,
for the stochastic regime,

RegT ≤
1

1− 2η

(∑
i∈J∗

max
{
4
w(A)σ2i
∆i,min

+ c log
(
1+

w(A)σ2i
∆i,min

)
, 2(1 + ϵ)

}
+ 2(1 + ϵ)|I∗|

)
log T

+O

((∑
i∈I∗

v(A)

∆′
i,min

+
d√

η(1− 2η)

)√
log T

)
+ o(

√
log T ) . (6.11)

Further, for the adversarial regime,

RegT ≤

√
4d

1− 2η

(
min

{
L∗,mT − L∗, Q2,

2V1
η

}
+
d

η

)
log T

+O(d log T ) + d2 + d(1 + 2δ) . (6.12)

Additionally, in the stochastic regime with adversarial corruptions, we have RegT ≤
RGD +O(

√
CmRGD), where RGD is the RHS of (6.11).

Note that the proposed algorithm does not require any prior knowledge onσ2i ,∆i, L
∗, Q∞,

andC. Theorem 6.4 indicates that the leading constant worsens by a factor of 1/(1−2η)
in the stochastic regime compared to the bound in Theorem 6.3. This is at the expense
of the path-length bound depending on V1 in the adversarial regime.

6.5.2 Comparison with Existing Regret Bounds

The regret upper bounds for the stochastic regime in Theorems 6.3 and 6.4 improve on
the existing regret upper bounds in three aspects: (i) dependence on the tight subop-
timality gap ∆i,min, (ii) the dependence on the variance of base-arms σ2i , and (iii) the
leading constants particularly in the stochastic regime. For the suboptimality gap, our
upper bounds are of the same order as the regret upper bound by Kveton et al. (2015),
which is an algorithm specialized for the stochastic regime, and our bounds are up to d
times better than the regret upper bounds by Zimmert et al. (2019) and Ito (2021a). For
the variance dependency, in the stochastic regime, bounds in Theorems 6.3 and 6.4 im-
prove the results in Ito (2021a) by replacing a constant in their bound with variance σ2i ,
which can be considerably small under certain practical scenarios such as ad allocations.
Finally, it is worth noting that the leading constants are also significantly improved. The
leading constant of our bounds are at least 81 times better than the bound by Ito (2021a).
Moreover, the resulting regret upper bound in Theorem 6.3 and (resp. Theorem 6.4) are
approximately at most twice (resp. 2/(1− 2η)) as large as the achievable lower bounds,
which can be confirmed by comparing the bounds with Ito et al. (2022b, Proposition 1).

6.5.3 Key Technique and Analysis

To obtain the regret bound depending on∆i,min in the stochastic regime and the stochastic
regime with adversarial corruptions, we prove the following regret lower bound.

Lemma 6.1. In the stochastic regime with adversarial corruptions, for any algorithm
and any action set A, the regret is bounded from below as

RegT ≥ E

[
T∑
t=1

(
1

v(A)

∑
i∈I∗

∆′
i,min(1− ai(t)) +

1

w(A)

∑
i∈J∗

∆i,minai(t)

)]
− 2Cm .
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Note that if a∗ ∈ A is unique, i ∈ I∗ implies that ∆′
i,min > 0, and i ∈ J∗ implies that

∆i,min > 0. This regret lower bound improves Ito (2021a, Lemma 4) for general action
sets.

To prove the variance-dependent regret bounds, we make use of the learning rate
inspired by Ito et al. (2022b), in which the classical multi-armed bandit problem is con-
sidered. However, their theoretical analysis is based on the fact that the sum of the arm
selection probabilities equals 1, which does not hold in the semi-bandits. To handle this
problem, we introduce a technique developed in Ito (2021a) and sophisticate the analysis
to derive a regret upper bound that collaborates well with the regret lower bound.

In the following, we provide a sketch of analysis commonly used to prove Theo-
rems 6.3 and 6.4, and see that that the regret lower bound in Lemma 6.1 indeed helps
us obtain the desired regret bound. In the subsequent analysis, we will mainly focus on
terms that are dominant for sufficiently large T , and will not include the other terms.
Let γ = log T . Using the similar analysis given by Ito et al. (2022b), we first show in
Lemma 6.3 that the regret of the proposed algorithm is roughly bounded as

RegT = O

(
γ

d∑
i=1

E [βi(T + 1)]

)
= O

 d∑
i=1

√√√√E

[
γ

T∑
t=1

αi(t)

] .

Define (Pi) and (Qi) by

Pi = E

[
T∑
t=1

xi(t)

]
, Qi = E

[
T∑
t=1

(1− xi(t))

]
,

which will be used in the self-bounding argument in the following. Using this and com-
bining the analysis given by Ito et al. (2022b) and Ito (2021a), we can show that the regret
is further bounded as

RegT
γ

= O

∑
i∈J∗

√
β20 +

σ2i Pi
γ

+
∑
i∗∈I∗

√
Qi

γ3/2

 . (6.13)

For the stochastic regime, using the upper bound (6.13) and lower bound (Lemma 6.1
with C = 0), the regret can be further roughly bounded as

RegT
γ

= 2
RegT
γ
− RegT

γ

≤ O

∑
i∈J∗

√
β20 +

σ2i Pi
γ

+
∑
i∈I∗

√
Qi

γ3/2

− 1

γ

(
1

v(A)

∑
i∈I∗

∆′
i,minQi +

1

w(A)

∑
i∈J∗

∆i,minPi

)

= O

(∑
i∈J∗

(√
β20 +

σ2i Pi
γ
− ∆i,min

w(A)

Pi
γ

)∑
i∈I∗

(√
Qi

γ3/2
−

∆′
i,min

v(A)

Qi
γ

))

≤ O

(∑
i∈J∗

w(A)σ2i
∆i,min

+ |I∗| 1√
γ

v(A)

∆′
i,min

)
,

where the first inequality follows by (6.13) and Lemma 6.1 with C = 0, and in the
last inequality we considered the worst case in terms of (Pi)i∈J∗ and (Qi)i∈I∗ . This
result corresponds to the desired bounds in Theorems 6.3 and 6.4. A more complete and
detailed analysis are deferred to the following sections.
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(b) Stochastic regime, d = 5,
m = 2

0 2000 4000 6000 8000 10000

round

0

25

50

75

100

125

150

175

200

p
se

u
d

o-
re

gr
et

LBINFV-LS

LBINFV-GD

CombUCB1

TS

LBINF

HYBRID

(c) Stoc. regime with adv. corrup-
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(d) Stochastic regime, d = 6,
m = 3
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(e) Stochastic regime, d = 8,m =
3
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(f) Stochastic regime, d = 10,
m = 3

Figure 6.1: Regret-round plots of algorithms used for synthetic and semi-synthetic data. The
solid lines indicate the average over 20 independent trials. The thin fillings represent
the standard error.

6.6 Experiments

This section presents the results of the numerical investigation of the empirical per-
formance of the proposed LBINFV algorithm with ϵ = 0.2. The proposed algorithm
with LS and GD (with η = 1/4) estimations for the optimistic predictions are denoted
by LBINFV-LS and LBINFV-GD, respectively. We use the following baselines. The al-
gorithms for the stochastic regime are CombUCB1 (Kveton et al., 2015) and Thompson

sampling (TS) (Komiyama et al., 2015b; Wang and Chen, 2018). The algorithms with
BOBW guarantees are HYBRID (Zimmert et al., 2019) and LBINF (Ito, 2021a).

To compare the performance, we consider the m-set semi-bandits with T = 104. In
them-set semi-bandit setting, it is known that we can sample a(t) satisfyingE[a(t)|x(t)] =
x(t) at an O(d log d) computational cost (Zimmert et al., 2019, Appendix B.2), and we
employ this sampling technique. We repeat the simulations 20 times.

6.6.1 Setup

Synthetic data In the synthetic data experiments, we set d = 5 and m = 2 and con-
sider the stochastic regime and stochastic regime with adversarial corruptions. In the
stochastic regime, we consider two instances, where each base-arm is associated with a
Bernoulli distribution. We set expectations µ for each instance to (0.5, 0.5, 0.9, 0.9, 0.9)
and (0.5, 0.5, 0.6, 0.6, 0.6), respectively. In the stochastic regime with adversarial cor-
ruptions, we consider an instance considered by Zimmert et al. (2019). The environment
alternates between two stochastic settings, (i) and (ii), where the losses are sampled from
Bernoulli distributions with the following time-varying loss means. In setting (i), the ex-
pected losses are 0 for the optimal base-arms i ∈ I∗, and∆′ for the suboptimal base-arms
i ∈ J∗. In setting (ii), the expected losses are 1 − ∆′ for the optimal base-arms, and 1
for the suboptimal arms. We set ∆′ = 0.1. The number of rounds between alternations
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Table 6.3: Reward means for the semi-synthetic data.
Instance d m Reward means 1− µ

(d) 6 3 (0.0315, 0.0208, 0.0193, 0.0182, 0.0179, 0.0177)
(e) 8 3 (0.0370, 0.0275, 0.0266, 0.0266, 0.0231, 0.0192, 0.0143, 0.0107)
(f) 10 3 (0.0774, 0.0709, 0.0669, 0.0631, 0.0430, 0.0393, 0.0296, 0.0217, 0.00797, 0.00219)

increases exponentially with a factor of 1.6 after each alternation. Note that this instance
also belongs to the stochastically constrained adversarial regime (Wei and Luo, 2018;
Zimmert and Seldin, 2021).

Semi-synthetic data In semi-synthetic data experiments, we consider the stochastic
regime. We used the KDD Cup 2012 track 2 dataset (Tencent Inc., 2012), which was used
in the studies on multiple-play bandit problem (Komiyama et al., 2015b; Lagrée et al.,
2016; Komiyama et al., 2017), which is equivalent to the m-set semi-bandit problem.
The dataset includes session logs of the Tencent search engine, soso.com. We use the
estimated reward means of Komiyama et al. (2017) although the rewards therein are
estimated under a different context, where the reward mean for base-arm i is defined
by 1− µi corresponding to the click-through rate for example. Table 6.3 lists the reward
means used in the experiments. One characteristic of this type of dataset is that the reward
mean for each base-arm is extremely small (smaller than 0.05 in most cases). Hence,
each σ2i is supposed to be extremely small, and algorithms with adaptivity to variances
are desirable.

6.6.2 Numerical Results

Figure 6.1 shows an empirical comparison of the proposed algorithm against the base-
lines. The experimental results from the synthetic data in (a) and (b) indicate that the
proposed LBINFV-LS and LBINFV-GD algorithms achieve the best performance in the
stochastic regime, except for Thompson sampling. Further, under the setting in (a),
where the variances of the base-arms are small, the proposed algorithm shows a signif-
icant improvement compared to HYBRID. Additionally, these figures also confirm that
LBINFV-LS performs better in the stochastic regime than LBINF. This indicates that the
modification of the regularizer and the optimistic prediction contribute not only to the
better leading constant of the regret upper bound but also to the empirical performance.

The proposed algorithm achieves the best performance in the adversarial regime,
whereas CombUCB1 and Thompson sampling highly degrade their performance. We can
also see from (a) and (b) that the performance of LBINFV-GD becomes slightly worse than
that of LBINF-LS in most cases, as suggested by the theoretical results, whereas in (c) the
performance of LBINFV-GD is better than that of LBINFV-LS, which seemingly occurs
because the adversarial instance in this experiment is a regime with a small path-length
and the former algorithm has the path-length bound.

The experimental results using the semi-synthetic data in (d)–(f) indicate that LBINFV-LS
and LBINFV-GD perform comparably well to Thompson sampling. These results can be
attributed to the fact that the variance is small for semi-synthetic data. Furthermore, (d)–
(f), where the variances of the base-arms are extremely small, indicates that CombUCB1
performs significantly worse than the other variance-aware algorithms. This observation
indicates the importance of variance-aware algorithms in practical applications.
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6.7 Deferred Proofs

6.7.1 Common Analysis

In this section, we provide preliminary and common analysis used in the subsequent
sections.

6.7.1.1 General Regret Upper Bound

Define β0 = 1 + ϵ. Let Dt be the Bregman divergence induced by ψt, i.e.,

Dt(y, x) = ψt(y)− ψt(x)− ⟨∇ψt(x), y − x⟩ .

Then, the regret for OFTRL is bounded as follows.

Lemma 6.2. If x(t) is given by the OFTRL update (6.1), for any x∗ ∈ X ∩ Rd+ we have

T∑
t=1

〈
ℓ̂(t), x(t)− x∗

〉
≤ ψT+1(x

∗)− ψ1(y(1)) +

T∑
t=1

(ψt(x(t+ 1))− ψt+1(x(t+ 1)))︸ ︷︷ ︸
penalty term

+

T∑
t=1

(〈
ℓ̂(t)−m(t), x(t)− y(t+ 1)

〉
−Dt(y(t+ 1), x(t))

)
︸ ︷︷ ︸

stability term

,

(6.14)

where we define y(t) ∈ argminx∈X

{〈∑t−1
s=1 ℓ̂(s), x

〉
+ ψt(x)

}
.

This lemma is standard in the literature and can be found e.g., in Orabona (2019,
Chapter 7) and Ito et al. (2022b, Lemma 2). In the RHS of the above inequality (6.14),
we refer to the sum of the first three terms as the penalty term and the remaining term as
the stability term.

First, we prove the following lemma.

Lemma 6.3. The regret of the proposed algorithm is bounded as

RegT ≤ γ
d∑
i=1

E
[
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

]
+ d2 + d(1 + 2δ) ,(6.15)

where δ > 0 is defined by

δ = (1 + ϵ)3 log
1 + ϵ

ϵ
− (1 + ϵ)2 − 1 + ϵ

2
≤ 27

8
log

3

2ϵ
− 3

2
= O

(
log

1

ϵ

)
.

Proof. Using x0 ∈ X such that (x0)i ≥ 1/d for all i ∈ [d], let

x∗ =

(
1− d

T

)
a∗ +

d

T
x0 .

Using this and the equality E[ℓ̂|xt] = ℓ, we have

RegT = E

[
T∑
t=1

⟨ℓ(t), x(t)− a∗⟩

]
= E

[
T∑
t=1

⟨ℓ(t), x(t)− x∗⟩+
T∑
t=1

⟨ℓ(t), x∗ − a∗⟩

]

= E

[
T∑
t=1

〈
ℓ̂(t), x(t)− x∗

〉
+
d

T

T∑
t=1

⟨ℓ(t), x0 − a∗⟩

]
≤ E

[
T∑
t=1

〈
ℓ̂(t), x(t)− x∗

〉]
+ d2 ,

(6.16)
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where in the last inequality we used
∑T

t=1 ⟨ℓ(t), x0 − a∗⟩ ≤ T∥x0 − a∗∥1 ≤ Td.
The first term in (6.16) is bounded by (6.14) in Lemma 6.2, the components of which

we will bound in the following. We first consider the penalty term. The remaining part
of the proof follows a similar argument as that in Ito et al. (2022b), and we include the
argument for completeness.

Bounding the penalty term in (6.14) Using the definition of the regularizer ψt(x) =∑d
i=1 βi(t)ϕ(pi) defined in (6.5), we have

ψt(x
∗) =

d∑
i=1

βi(t)ϕ(x
∗
i ) ≤

d∑
i=1

βi(t) max
x∈[1/T,1]

ϕ(x) ≤
d∑
i=1

βi(t)max{ϕ(1/T ), ϕ(1)} ,

(6.17)

where the first inequality follows since the definition of x∗ implies x∗i ≥ d
T (x0)i ≥ 1/T

for i ∈ [d] and the second inequality holds since ϕ is a convex function. Further, from
the definition of ϕ in (6.6), we have

max{ϕ(1/T ), ϕ(1)} = max

{
1

T
− 1 + log T + γ

(
1

T
+

(
1− 1

T

)
log

(
1− 1

T

))
, γ

}
≤ max

{
1 + γ

T
− 1 + log T, γ

}
= γ ,

where the last inequality follows from γ = log T . From this and (6.17), we have

ψT+1(x
∗) ≤ γ

d∑
i=1

βi(T + 1) . (6.18)

Further, as we have βi(t) ≤ βi(t + 1) from (6.7) and ϕ(x) ≥ 0 for any x ∈ (0, 1], we
have

− ψ1(y(1)) +
T∑
t=1

(ψt(y(t+ 1))− ψt+1(y(t+ 1)))

= −
d∑
i=1

(
βi(1)ϕ(yi(1)) +

T∑
t=1

(βi(t+ 1)− βi(t))ϕ(yi(t+ 1))

)
≤ 0 . (6.19)

Combining (6.18) and (6.19), we can bound the penalty term in (6.14) as

ψT+1(x
∗)− ψ1(y(1)) +

T∑
t=1

(ψt(y(t+ 1))− ψt+1(y(t+ 1)))

≤ γ
d∑
i=1

βi(T + 1) . (6.20)

Bounding the stability term in (6.14) The Bregman divergenceDt(x, y) is expressed
as

Dt(x, y) =
d∑
i=1

(
βi(t)D

(1)(xi, yi) + βi(t)γD
(2)(xi, yi)

)
≥

d∑
i=1

max
{
βi(t)D

(1)(xi, yi), βi(t)γD
(2)(xi, yi)

}
,
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whereD(1) andD(2) are Bregman divergences induced byϕ(1)(x) = − log x andϕ(2)(x) =
(1− x) log(1− x), respectively. We hence have〈
ℓ̂(t)−m(t), x(t)− y(t+ 1)

〉
−Dt(y(t+ 1), x(t))

≤
d∑
i=1

(
(ℓ̂i(t)−mi(t))(xi(t)− yi(t+ 1))

− βi(t)max
{
D(1)(yi(t+ 1), xi(t)), γD

(2)(yi(t+ 1), xi(t))
})

≤
d∑
i=1

(
min

{
βi(t)g

(
pi(t)(ℓ̂i(t)−mi(t))

βi(t)

)
, βi(t)γ(1− xi(t))h

(
ℓ̂i(t)−mi(t)

γβi(t)

)})
,

(6.21)

where the last inequality follows from the standard technique to boudn the staiblity term
(see e.g., Ito et al. 2022b, Lemma 5), and g and h are defined as

g(x) = x− log(x+ 1) ≤ 1

2
x2 + δ|x|3

(
x ≥ − 1

β0

)
, (6.22)

h(x) = exp(x)− x− 1 ≤ x2 (x ≤ 1) . (6.23)

Note that g(0) = h(0) = 0 and it holds from (6.4) that

ℓ̂j(t)−mj(t) =

{
(ℓj(t)−mj(t))/xj(t) if j ∈ I(t)
0 otherwise . (6.24)

Therefore, the LHS of (6.21) is further bounded as〈
ℓ̂(t)−m(t), x(t)− y(t+ 1)

〉
−Dt(y(t+ 1), x(t))

≤
∑
j∈I(t)

min

{
βj(t) g

(
ℓj(t)−mj(t)

βj(t)

)
, βj(t)γ(1− xj(t))h

(
ℓj(t)−mj(t)

γβj(t)xj(t)

)}

≤


∑

j∈I(t)

(
(ℓj(t)−mj(t))

2

2βj(t)
+

δ|ℓj(t)−mj(t)|3
βj(t)2

)
if γxj(t) ≤ 1∑

j∈I(t)min
{

(ℓj(t)−mj(t))
2

2βj(t)
+

δ|ℓj(t)−mj(t)|3
βj(t)2

,
(1−xj(t))(ℓj(t)−mj(t))

2

γxj(t)2βj(t)

}
otherwise

≤
∑
j∈I(t)

min

{
(ℓj(t)−mj(t))

2

2βj(t)
+
δ|ℓj(t)−mj(t)|3

βj(t)2
,
(1− xj(t))(ℓj(t)−mj(t))

2

γxj(t)2βj(t)

}

≤
∑
j∈I(t)

(
1

2βj(t)
+

δ

βj(t)2

)
(ℓj(t)−mj(t))

2min

{
1,

2(1− xj(t))
γxj(t)2

}

=
d∑
i=1

(
1

2βi(t)
+

δ

βi(t)2

)
αi(t) , (6.25)

where the first inequality follows from (6.21) and (6.24), the second inequality follows
from (6.22), (6.23), and the fact that | ℓj(t)−mj(t)

βj(t)
| ≤ 1

β0
≤ 1, and the third inequality

holds since γxj(t) ≤ 1 means 1−xj(t)
γxj(t)2

≥ 1−1/γ
γ(1/γ)2

= γ − 1 ≥ 1
2 + δ, which implies

(ℓj(t)−mj(t))
2

2βj(t)
+
δ|ℓj(t)−mj(t)|3

βj(t)2
≤ (1− xj(t))(ℓj(t)−mj(t))

2

γxj(t)2βj(t)
.

We hence have
T∑
t=1

(〈
ℓ̂(t)−m(t), x(t)− y(t+ 1)

〉
−Dt(y(t+ 1), x(t))

)
≤

d∑
i=1

T∑
t=1

(
1

2βi(t)
+

δ

βi(t)2

)
αi(t) .

(6.26)
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We can show that a part of (6.26) is bounded as

T∑
t=1

αi(t)

2βi(t)
≤γ


√√√√β20−

1

γ
+
1

γ

T∑
t=1

αi(t)−
√
β20−

1

γ

≤γ (βi(T + 1)− β0) .(6.27)

The first inequality in (6.27) holds since√√√√β20 −
1

γ
+

1

γ

t∑
s=1

αi(s)−

√√√√β20 −
1

γ
+

1

γ

t−1∑
s=1

αi(s)

=
αi(t)

γ
(√

β20 − 1
γ + 1

γ

∑t
s=1 αi(s) +

√
β20 − 1

γ + 1
γ

∑t−1
s=1 αi(s)

)
≥ αi(t)

2γ
√
β20 +

1
γ

∑t−1
s=1 αi(s)

=
αi(t)

2γβi(t)
,

where the inequality follows by αi(t) ≤ 1. The second inequality in (6.27) follows from√√√√β20 −
1

γ
+

1

γ

T∑
t=1

αi(t)−
√
β20 −

1

γ
≤

√√√√β20 −
1

γ
+

1

γ

T∑
t=1

αi(t)− β0 +
1

γ

≤ βi(T + 1)− β0 +
1

γ
,

where the first inequality follows from
√
x−
√
x− y ≤ y/

√
x for x ≥ y ≥ 0 and β0 ≥ 1.

Similarly, we can show

T∑
t=1

αi(t)

βi(t)2
=

T∑
t=1

αi(t)

β20 +
1
γ

∑t−1
s=1 αi(s)

= γ
T∑
t=1

αi(t)

γβ2
0 +

∑t−1
s=1 αi(s)

≤ γ log

(
1 +

1

γβ2
0 − 1

T∑
t=1

αi(t)

)
≤ 2γ log

βi(T + 1)

βi(1)
+ 2 . (6.28)

The first inequality in (6.28) follows since

log

(
1 +

1

γβ2
0 − 1

t∑
s=1

αi(s)

)
− log

(
1 +

1

γβ2
0 − 1

t−1∑
s=1

αi(s)

)

= − log

(
1− αi(t)

γβ2
0 − 1 +

∑t
s=1 αi(s)

)
≥ − log

(
1− αi(t)

γβ2
0 +

∑t−1
s=1 αi(s)

)

≥ αi(t)

γβ2
0 +

∑t−1
s=1 αi(s)

,

where the first inequality follows from αi(t) ≤ 1 and the last inequality follows from
− log(1− x) ≥ x for x < 1. The second inequality in (6.28) follows from

log

(
1 +

1

γβ0
2 − 1

T∑
t=1

αi(t)

)
< log

(
1 +

1

γβ0
2

T∑
t=1

αi(t)

)
+ log

γβ0
2

γβ2
0 − 1

= log

(
βi(T + 1)2

β20

)
+ log

(
1 +

1

γβ2
0 − 1

)
≤ 2 log

βi(T + 1)

β0
+

2

γ
,
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where the last inequality follows from log(1+1/(x−1)) ≥ 2/x for x ≥ 3/2. Bounding
the RHS of (6.25) with (6.27) and (6.28) yields

T∑
t=1

(〈
ℓ̂(t)−m(t), x(t)− y(t+ 1)

〉
−Dt(y(t+ 1), x(t))

)
≤ γ

d∑
i=1

(
βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

)
+ d(1 + 2δ) . (6.29)

Finally, by bounding the RHS of (6.14) by sequentially using (6.16), (6.20) and (6.29),
we have

RegT ≤ γ
d∑
i=1

E
[
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

]
+ d2 + d(1 + 2δ) ,

which completes the proof.

6.7.1.2 Proof of Lemma 6.1

Proof. We can bound the regret from below as

RegT = E

[
T∑
t=1

⟨ℓ(t), a(t)− a∗⟩

]
= E

[
T∑
t=1

〈
ℓ′t, a(t)− a∗

〉
+

T∑
t=1

〈
ℓ(t)− ℓ′t, a(t)− a∗

〉]

≥ E

[
T∑
t=1

⟨µ, a(t)− a∗⟩ −
T∑
t=1

∥ℓ(t)− ℓ′t∥∞∥a(t)− a∗∥1

]

≥ E

[
T∑
t=1

⟨µ, a(t)− a∗⟩ − 2m

T∑
t=1

∥ℓ(t)− ℓ′t∥∞

]

≥ E

[
T∑
t=1

⟨µ, a(t)− a∗⟩

]
− 2mC , (6.30)

where the first inequality follows from the Hölder’s inequality and E[ℓ′t] = µ, the second
inequality follows since ∥a(t) − a∗∥1 ≤ 2m, and the last inequality follows from the
definition of C =

∑T
t=1∥ℓ(t)− ℓ′t∥∞. We then bound E

[∑T
t=1 ⟨µ, a(t)− a∗⟩

]
.

We consider the case of general action sets and recall that I∗ = {i ∈ [d] : a∗i = 1}
and J∗ = [d] \ I∗. Since

∑
i∈I∗(1 − ai(t)) ≤ min{|I∗|, d − m} and

∑
i∈J∗ ai(t) ≤

min{|J∗|,m}, we have

⟨µ, a(t)− a∗⟩ = 1

2
⟨µ, a(t)− a∗⟩+ 1

2
⟨µ, a(t)− a∗⟩

≥ 1

2min{|I∗|, d−m}
∑
i∈I∗

(1− ai(t)) ⟨µ, a(t)− a∗⟩

+
1

2min{|J∗|,m}
∑
i∈J∗

ai(t) ⟨µ, a(t)− a∗⟩

≥ 1

2min{|I∗|, d−m}
∑
i∈I∗

∆′
i,min(1− ai(t))

+
1

2min{m, |J∗|}
∑
i∈J∗

∆i,minai(t) ,

where the last inequality follows since for any i ∈ I∗ we have ⟨µ, a(t)− a∗⟩ ≥ ∆′
i,min,

and for any i ∈ J∗ we have ⟨µ, a(t)− a∗⟩ ≥ ∆i,min. Combining this inequality with (6.30)
completes the proof.
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Note that in the stochastic regime with adversarial corruptions, from Lemma 6.1 it
holds that

RegT ≥ E

[
T∑
t=1

(
1

v(A)

∑
i∈I∗

∆′
i,min(1− ai(t)) +

1

w(A)

∑
i∈J∗

∆i,minai(t)

)]
− 2Cm

=
1

v(A)

∑
i∈I∗

∆′
i,minQi +

1

w(A)

∑
i∈J∗

∆i,minPi − 2Cm , (6.31)

where the equality follows from the law of iterated expectations.

6.7.2 Proof of Theorem 6.3

6.7.2.1 Preliminaries

Before proving the regret upper bounds in Theorem 6.3, we prepare some lemmas. We
bound the sum over i ∈ [d] in (6.15) by considering different upper bounds for the optimal
and sub-optimal base-arms. Recall that αi(t) and mi(t) are given by (6.7) and (6.2),
respectively. We use a following lemma to bound

∑T
t=1 αi(t) for sub-optimal base-arms

i ∈ J∗.

Lemma 6.4. It holds for any i ∈ [d] and m∗
i ∈ [0, 1] that

T∑
t=1

αi(t) ≤
T∑
t=1

ai(t)(ℓi(t)−mi(t))
2 ≤

T∑
t=1

ai(t)(ℓi(t)−m∗
i )

2 + log(1 +Ni(T )) +
5

4
.

To prove this lemma, we use the following lemma.

Lemma 6.5 (Ito et al. 2022b, Lemma 8). Suppose ℓ(s) ∈ [0, 1] for any s ∈ [t] and define
m(t) ∈ [0, 1] by

m(t) =
1

t

(
1

2
+

t−1∑
s=1

ℓ(s)

)
.

Then, for any m∗ ∈ [0, 1] we have

T∑
t=1

((ℓ(t)−m(t))2 − (ℓ(t)−m∗)2) ≤ 5

4
+ log T .

Proof of Lemma 6.4. From the definition of αi(t), we have

T∑
t=1

αi(t) ≤
T∑
t=1

ai(t)(ℓi(t)−mi(t))
2

≤
T∑
t=1

ai(t)(ℓi(t)−m∗
i )

2 +
5

4
+ log

(
1 +

T∑
t=1

ai(t)

)

=

T∑
t=1

ai(t)(ℓi(t)−m∗
i )

2 +
5

4
+ log (1 +Ni(T )) ,

where the second inequality follows from Lemma 6.5 and the definition of mi(t) given
in (6.2).
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From Lemma 6.4, in the stochastic regime it holds that

E

[
T∑
t=1

αi(t)

]
≤ E

[
T∑
t=1

xi(t)σ
2
i + log(1 +Ni(T ))

]
+

5

4
≤ σ2i Pi + log(1 + Pi) +

5

4
,

(6.32)

where the first inequality follows from Lemma 6.4 withm∗
i = µi and in the last inequality

we define the expected number of times that the base-arm i is chosen by

Pi = E [Ni(T )] = E

[
T∑
t=1

1[i ∈ I(t)]

]
= E

[
T∑
t=1

ai(t)

]
= E

[
T∑
t=1

xi(t)

]
.(6.33)

On the other hand, for the analysis of the optimal base-arms i∗ ∈ I∗, we give a bound on∑T
t=1 αi(t) using the following lemma.

Lemma 6.6. It holds for any i∗ ∈ [d] that

E[αi∗(t)] ≤ 2E
[
min

{
xi∗(t),

1− xi∗(t)√
γ

}]
≤ 2E

[
1− xi∗(t)√

γ

]
.

Proof. From the definition of αi(t) in (6.7), we have

E[αi(t)|xi(t)] = E
[
ai(t)(ℓi(t)−mi(t))

2min

{
1,

2(1− xi(t))
γxi(t)2

} ∣∣∣∣ xi(t)]
≤ E

[
ai(t)min

{
1,

2(1− xi(t))
γxi(t)2

} ∣∣∣∣ xi(t)]
= min

{
xi(t),

2(1− xi(t))
γxi(t)

}
≤

{
xi(t) (xi(t) <

1√
γ )

2(1−xi(t))√
γ (xi(t) ≥ 1√

γ )
≤ 2
√
γ
(1− xi(t)) ,

where the first inequality follows from the condition of ℓi(t),mi(t) ∈ [0, 1] and the last
inequality is due to √γ ≥ 2 that follows from the assumption of T ≥ 55.

6.7.2.2 Proof for the Stochastic Regime

Proof of (6.9) in Theorem 6.3. We bound the RHS of (6.15) separately considering
sub-optimal and optimal base-arms.
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Sub-optimal base-arms side First, we let i ∈ J∗ be a sub-optimal base-arm. From (6.32),
the component of the RHS of (6.15) is bounded as

E
[
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

]

= E

2
√√√√β20 +

1

γ

T∑
t=1

αi(t)− β0 + δ log

(
1 +

1

γβ2
0

T∑
t=1

αi(t)

)
≤ 2

√
β20 +

1

γ

(
σ2i Pi + log(1 + Pi) +

5

4

)
− β0 + δ log

(
1 +

1

γβ2
0

(
σ2i Pi + log(1 + Pi) +

5

4

))

≤ 2

√
β20 +

σ2i Pi
γ

+
1

γβ0

(
log(1 + Pi) +

5

4

)
− β0

+ δ log

(
1 +

σ2i Pi
γβ2

0

)
+

δ

γβ2
0

(
log(1 + Pi) +

5

4

)

= 2

√
β20 +

σ2i Pi
γ
− β0 + δ log

(
1 +

σ2i Pi
γβ2

0

)
+
ξ

γ

(
log(1 + Pi) +

5

4

)
, (6.34)

where the first inequality follows from (6.32), the second inequality follows from
√
x+ y ≤√

x + y
2
√
x

that holds for any x > 0 and y ≥ 0, log(1 + x + y) ≤ log(1 + x) + y that
holds for any x, y ≥ 0, and in the last equality we define ξ = 1

β0
+ δ

β2
0
= 1

1+ϵ +
δ

(1+ϵ)2
.

Optimal base-arm side Next, we let i ∈ I∗ be an optimal base-arm. We define the
complement version of Pi by

Qi = E

[
T∑
t=1

(1− xi(t))

]
for i ∈ [d]. Then from Lemma 6.6 we have

E
[
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

]

= E

2
√√√√β20 +

1

γ

T∑
t=1

αi(t)− β0 + δ log

(
1 +

1

γβ2
0

T∑
t=1

αi(t)

)
≤ E

2
√√√√β20 +

1

γ

T∑
t=1

αi(t)− β0 + 2δ


√√√√1 +

1

γβ2
0

T∑
t=1

αi(t)− 1


= 2 (β0 + δ)E


√√√√1 +

1

γβ2
0

T∑
t=1

αi(t)− 1

+ β0

≤ 2(β0 + δ)


√√√√1 +

2

γ3/2β20
E

[
T∑
t=1

(1− xi(t))

]
− 1

+ β0 .

≤ 2(β0 + δ)

√√√√ 2

γ3/2β20
E

[
T∑
t=1

(1− xi(t))

]
+ β0 .

≤ 2(1 + δ)

√
2

γ3/2
Qi + β0 , (6.35)
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where the first inequality follows from the inequality of log(1+x) ≤ 2(
√
1 + x− 1) for

x > 0, the second inequality follows from Lemma 6.6, the third inequality follows from√
1 + x− 1 ≤

√
x for x ≥ 0, and the last inequality follows from β0 ≥ 1.

Putting together the upper and lower bounds and applying a self-bounding tech-
nique Bounding the RHS of (6.15) using (6.34) and (6.35) yields the regret upper
bound depending on (Pi)i∈J∗ and (Qi)i∈I∗ as

RegT
γ
≤
∑
i∈J∗

2

√
β20 +

σ2i Pi
γ
− β0 + δ log

(
1 +

σ2i Pi
γβ2

0

)
+
ξ

γ

(
log(1 + Pi) +

5

4

)
+ 2 (1 + δ)

∑
i∈I∗

√
2

γ3/2
Qi + β0|I∗|+

d2 + d(1 + 2δ)

γ

=
∑
i∈J∗

f̄i

(
Pi
γ

)
+ 2 (1 + δ)

∑
i∈I∗

√
2

γ3/2
Qi + β0|I∗|+

1

γ

(
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

)
,

(6.36)

where we define convex function f̄i : R+ → R by

f̄i(x) = 2
√
β20 + σ2i x+ δ log

(
1 +

σ2i x

β20

)
+
ξ

γ
log(1 + γx)− β0 . (6.37)

In the stochastic regime, setting C = 0 in (6.31) yields the regret lower bound de-
pending on (Pi)i∈J∗ and (Qi)i∈I∗ as

RegT ≥
1

v(A)

∑
i∈I∗

∆′
i,minQi +

1

w(A)

∑
i∈J∗

∆i,minPi . (6.38)

Combining (6.36) and (6.38), we have

RegT
log T

=
RegT
γ

= 2
RegT
γ
− RegT

γ

≤ 2
RegT
γ
− 1

γ

(
1

v(A)

∑
i∈I∗

∆′
i,minQi +

1

w(A)

∑
i∈J∗

∆i,minPi

)

≤
∑
i∈J∗

(
2f̄i

(
Pi
γ

)
− ∆i,min

w(A)

Pi
γ

)
+
∑
i∈I∗

(
4(1 + δ)

√
2

γ1/2
Qi
γ
−

∆′
i,min

v(A)

Qi
γ

)

+ 2β0|I∗|+
2

γ

(
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

)
≤
∑
i∈J∗

max
x≥0

{
2f̄i(x)−

∆i,min

w(A)
x

}
+
∑
i∈I∗

max
x≥0

{
4(1 + δ)

√
2

γ1/2
x−

∆′
i,min

v(A)
x

}

+ 2β0|I∗|+
2

γ

(
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

)
≤
∑
i∈J∗

max
x≥0

{
2f̄i(x)−

∆i,min

w(A)
x

}
+
∑
i∈I∗

16(1 + δ)2v(A)
√
γ∆′

i,min

+ 2β0|I∗|+
2

γ

(
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

)
, (6.39)

where the second inequality follows from (6.36) and the last inequality follows from
a
√
x− bx ≤ a2/(2b) for a, b, x ≥ 0.
In the following, we evaluate the first term of (6.39).
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Bounding the first term of (6.39) We will prove the following statement:

max
x≥0

{
2f̄i(x)−

∆i,min

w(A)
x

}
≤ h

(
w(A)

σ2i
∆i,min

)
+O

(
log(1 + γ)

γ

)
, (6.40)

where h : R+ → R is defined as

h(z)=


2β0 if 0 ≤ z ≤ β0

2(1+δ/β0)
,

2z
(
1+
√

1+2 δz
)
−2δ+4δ

(
log z

β0
+log(1+

√
1+2 δz)

)
+
β2
0
z −2β0 if z > β0

2(1+δ/β0)
.

(6.41)

Let ∆̄i = ∆i,min/w(A) for the notational simplicity. As fi is concave, the maximum of
2fi(x)− ∆̄ix is attained by x∗i ∈ R satisfying 2f ′(x∗i ) = ∆̄i. Define x̃i ≥ 0 by

x̃i := max

{(
4σi
∆̄i

)2

,
8δ

∆̄i
,
16ξ

γ∆̄i

}
.

We then have

2f ′i(x̃i) ≤
2σi√(
4σi
∆̄i

)2 +
2δσ2i

β0
2 + σ2i

8δ
∆̄i

+
2ξ

1 + γ 16ξ
γ∆̄i

≤ ∆̄i

2
+

∆̄i

4
+

∆̄i

8
< ∆̄i ,

which implies x̃i ≥ x∗i . Hence, we have

max
x≥0

{
2fi(x)− ∆̄ix

}
= 2fi(x

∗
i )− ∆̄ix

∗
i

= 4
√
β20 + σ2i x

∗
i + 2δ log

(
1 +

σ2i x
∗
i

β20

)
+ 2

ξ

γ
log(1 + γx∗i )− ∆̄ix

∗
i − 2β0

≤ 4
√
β20 + σ2i x

∗
i + 2δ log

(
1 +

σ2i x
∗
i

β20

)
+ 2

ξ

γ
log(1 + γx̃i)− ∆̄ix

∗
i − 2β0

≤ max
x≥0

{
4
√
β20 + σ2i x+ 2δ log

(
1 +

σ2i x

β20

)
− ∆̄ix

}
+ 2

ξ

γ
log(1 + γx̃i)− 2β0

= max
x≥0

{
gi(x)− ∆̄ix

}
− 2β0 +O

(
log(1 + γ)

γ

)
, (6.42)

where we define

gi(x) = 4
√
β20 + σ2i x+ 2δ log

(
1 +

σ2i x

β20

)
.

From (6.42) and (6.39), we have

lim sup
T→∞

RT
log T

≤
∑
i∈J∗

(
max
x≥0

{
gi(x)− ∆̄ix

}
− 2β0

)
+ 2β0|I∗| .

In the following, we write zi =
σ2
i

∆̄i
. As we have

g′i(x) =
2σ2i√

β20 + σ2i x
+

2δσ2i
β20 + σ2i x

≤ 2σ2i

(
1

β0
+

δ

β20

)
,
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If zi =
σ2
i

∆̄i
≤ 1

2(1/β0+δ/β2
0)

= β0
2(1+δ/β0)

, the maximum of gi(x) − ∆̄ix is attained by
x = 0, implying

max
x≥0

{
gi(x)− ∆̄ix

}
= gi(0) = 4β0 if zi :=

σ2i
∆̄i
≤ β0

2(1 + δ/β0)
. (6.43)

Otherwise, we have

gi(x)− ∆̄ix = 4β0

√
1 +

σ2i x

β20
+ 2δ log

(
1 +

σ2i x

β20

)
− β20∆̄i

σ2i

(
1 +

σ2i x

β20

)
+
β20
zi

= 4β0

√
1 +

σ2i x

β20
+ 4δ log

(√
1 +

σ2i x

β20

)
− β20
zi

(√
1 +

σ2i x

β20

)2

+
β20
zi
.

From this, by setting y =

√
1 +

σ2
i x

β2
0

, we obtain

max
x≥0

{
gi(x)− ∆̄ix

}
≤ max

y≥0

{
4β0y + 4δ log y − β20

zi
y2
}
+
β20
zi
. (6.44)

We here use the following:

max
y≥0

{
ay + b log y − cy2

}
=

1

2

( a
4c

(
a+

√
a2 + 8bc

)
− b
)
+ b log

a+
√
a2 + 8bc

4c
,

which holds for any a, b, c > 0. We hence have

max
y≥0

{
4β0y + 4δ log y − β20

zi
y2
}

=
1

2

4β0zi
4β20

4β0 +

√
(4β0)2 + 32

δβ2
0

zi

− 4δ

+ 4δ log
4β0 +

√
(4β0)2 + 32δβ2

0/zi
4β20/zi

= 2

(
zi

(
1 +

√
1 + 2

δ

zi

)
− δ

)
+ 4δ

(
log

zi
β0

+ log

(
1 +

√
1 + 2

δ

zi

))
. (6.45)

Combining (6.42) with (6.43), (6.44), and (6.45), we obtain

max
x≥0

{
2fi(x)− ∆̄ix

}
≤ h

(
σ2i
∆̄i

)
+O

(
log(1 + γ)

γ

)
= h

(
w(A)

σ2i
∆i,min

)
+O

(
log(1 + γ)

γ

)
,

(6.46)

where h : R+ → R is defined by (6.41). From (6.39) and (6.46), we complete the proof
of (6.40).

Bounding h For z > β0
2(1+δ/β0)

, h(z) in (6.41) is bounded as

h(z) ≤ 2z

(
1 + 1 +

δ

z

)
− 2δ + 4δ

(
log z + log

(
1 +

√
1 + 2

δ

z

))
+
β20
β0
· 2
(
1 +

δ

β0

)
− 2β0

= 4z + 4δ

(
log z + log

(
1 +

√
1 + 2

δ

z

)
+

1

2

)
≤ 4z + c log(1 + z)

(
c = O

(
δ2
)
= O

((
log ϵ−1

)2))
,
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where the last inequality follows from log(1+z) = Ω(1/δ) that holds for z > β0
2(1+δ/β0)

.
Hence, for any z ≥ 0, h(z) is bounded as

h(z) ≤ max {4z + c log(1 + z), 2β0} . (6.47)

From this and (6.46), recalling that β0 = 1 + ϵ, we obtain

RegT ≤

(∑
i∈J∗

max

{
4
w(A)σ2i
∆i,min

+ c log

(
1 +

w(A)σ2i
∆i,min

)
, 2(1 + ϵ)

}
+ 2(1 + ϵ)|I∗|

)
log T

+
∑
i∈I∗

16(1 + δ)2v(A)

∆′
i,min

√
log T + o(

√
log T ) ,

which completes the proof of (6.9) in Theorem 6.3.

6.7.2.3 Proof for the Stochastic Regime with Adversarial Corruptions

We here show a regret bound for the stochastic regime with adversarial corruptions given
in Theorem 6.3, which is the following regret bound:

RegT ≤ RLS +O
(√

CmRLS
)
,

where RLS is the RHS of (6.9) and C is the corruption level defined in Section 6.3.

Proof. In stochastic regimes with adversarial corruptions, using Lemma 6.4 with m∗
i =

µi we have

E

[
T∑
t=1

αi(t)

]
≤ E

[
T∑
t=1

ai(t)(ℓi(t)− µi)2 + log(1 +Ni(T ))

]
+

5

4

= E

[
T∑
t=1

xi(t)(ℓi(t)− ℓ′i(t) + ℓ′i(t)− µi)2 + log(1 +Ni(T ))

]
+

5

4

= E

[
T∑
t=1

xi(t)
(
(ℓi(t)− ℓ′i(t))2 + σ2i

)
+ log(1 +Ni(T ))

]
+

5

4

≤ σ2i Pi + log(1 + Pi) +
5

4
+ P ′

i , (6.48)

where we define

P ′
i = E

[
T∑
t=1

xi(t)(ℓi(t)− ℓ′i(t))2
]
. (6.49)

Hence, by a similar argument to that of showing (6.34), by using (6.48) instead of (6.32),
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we obtain

E
[
2βi(T + 1)− βi(1) + 2δ log

βi(T + 1)

βi(1)

]

= E

2
√√√√β20 +

1

γ
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αi(t)− β0 + δ log

(
1 +

1

γβ2
0
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)
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√
β20 +

σ2i Pi
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− β0 + δ log
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γβ2
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+
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log(1 + Pi) +

5
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√
P ′
i

γ
+ δ log

(
1 +

P ′
i

γβ2
0

)

≤ 2

√
β20 +

σ2i Pi
γ
− β0 + δ log

(
1 +

σ2i Pi
γβ2

0

)
+
ξ

γ

(
log(1 + Pi) +

5

4

)
+

(
2 +

δ

β0

)√
P ′
i

γ
,

where the last inequality follows from log(1 + x) ≤
√
x for x ≥ 0. Combining this

with (6.15) and (6.35), via a similar argument to that of showing (6.39), we have

RegT
γ
≤
∑
i∈J∗

f̄i

(
Pi
γ

)
+ β0|I∗|+

1

γ

(
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

)
+

(
2 +

δ

β0

)∑
i∈J∗

√
P ′
i

γ
,

(6.50)

where we recall that f̄i is defined in (6.37) by

f̄i(x) = 2
√
β20 + σ2i x+ δ log

(
1 +

σ2i x

β20

)
+
ξ

γ
log(1 + γx)− β0 .

We further have

∑
i∈J∗

√
P ′
i

γ
≤
√
|J∗|
γ

∑
i∈J∗

P ′
i =

√√√√ |J∗|
γ

E

[
T∑
t=1

∑
i∈J∗

xi(t)(ℓi(t)− ℓ′i(t))2
]

≤

√√√√m|J∗|
γ

E
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]
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γ

E

[
T∑
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∥ℓ(t)− ℓ′(t)∥∞

]
=

√
m|J∗|
γ

C ,

(6.51)

where the first inequality follows from the Cauchy-Schwarz inequality, the first equality
follows from the definition of P ′

i in (6.49), and the second inequality follows from the
fact that

∑
i∈J∗ xi(t) ≤ m. Combining (6.50) and (6.51), we obtain

RegT
γ
≤
∑
i∈J∗

f̄i

(
Pi
γ

)
+ β0|I∗|+

1

γ

(
d2 + d(1 + 2δ) +

5

4
ξ|J∗|

)
+
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δ

β0

)√
m|J∗|
γ

C .

(6.52)

From (6.52) and Lemma 6.1, for any λ ∈ (0, 1], letting ∆̄i = ∆i,min/w(A) we have

RegT
log T

= (1 + λ)
RegT
γ
− λRegT

γ

≤
∑
i∈J∗

max
x≥0

{
(1 + λ)f̄i(x)− λ∆̄ix

}
+
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λ

4(1 + δ)2v(A)
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+ 2

(
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δ
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γ

C +
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γ

+ (1 + λ)

(
β0|I∗|+

1

γ

(
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5

4
ξ|J∗|

))
, (6.53)
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which can be shown in a way similar to the argument of (6.39). Further, we have

max
x≥0

{
(1 + λ)f̄i(x)− λ∆̄ix

}
=

1 + λ

2
max
x≥0

{
2f̄i(x)−

2λ∆̄i

1 + λ
x

}
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2
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(1 + λ)σ2i
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+O
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log(1 + γ)

γ

)
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λ

σ2i
∆̄i

+ c log
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)
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∆̄i

+ c log

(
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∆̄i

)
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1

λ
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+O

(
log(1 + γ)

γ

)
,

(6.54)

where h(z) is defined as (6.41), the first inequality follows from (6.46), the second in-
equality comes from (6.47) and λ ∈ (0, 1], and the last inequality follows from

(1 + λ)2

λ
= λ+ 2 +

1

λ
≤ 3 +

1

λ
= 4 +

(
1

λ
− 1

)
,

log
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∆̄i

)
≤ log

(
1 +

σ2i
∆̄i

)
+

(
1

λ
− 1

)
σ2i
∆̄i

.

Using (6.53), (6.54), and λ ≤ 1, we obtain
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By choosing λ =

√√√√√ γ
∑
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)
γ
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, we have
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√√√√γ
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1

λ
− 1 =

√√√√1 +
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√√√√ 2Cm
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which imply that

2

(
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δ
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C +
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γ
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(
1
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σ2i
∆̄i

+ 1

) .

From this and (6.55), recalling that γ = log T , β0 = 1 + ϵ and ∆̄i = ∆i,min/w(A), we
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obtain

RegT ≤
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√
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which completes the proof for the stochastic regime with adversarial corruptions.

6.7.2.4 Proof for the Adversarial Regime

Proof of (6.10) in Theorem 6.3. First, we prove RegT ≤
√
4dQ2 log T +O(d log T )+

d2 + d(1 + 2δ). For any m∗ ∈ [0, 1]d, bounding the RHS of Lemma 6.3 we have
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+ d2 + d(1 + 2δ)

≤ 2γ
d∑
i=1

E [βi(T + 1)] +O(dγ + d2)

= 2γ

d∑
i=1

E


√√√√β20 +

1

γ

T∑
t=1

αi(t)

+O(dγ + d2)

≤ 2γ
d∑
i=1

E


√√√√β20 +

1

γ

(
T∑
t=1

ai(t)(ℓi(t)−m∗
i )

2 + log(1 +Ni(T )) +
5

4

)+O(dγ + d2)

≤ 2γ
d∑
i=1

E


√√√√1

γ

T∑
t=1

ai(t)(ℓi(t)−m∗
i )

2

+O(dγ + d2)

≤ 2E


√√√√dγ

d∑
i=1

T∑
t=1

ai(t)(ℓi(t)−m∗
i )

2

+O(dγ + d2) (6.56)

≤ 2E


√√√√dγ

T∑
t=1

∥ℓ(t)−m∗∥22

+O(dγ + d2) ,

where the second inequality follows from βi(T +1) = O(T ), the third inequality follows
from Lemma 6.4, and the fifth inequality follows from the Cauchy-Schwarz inequality.
Since m∗ is arbitrary, we obtain the desired results by m∗ = ℓ̄.

Next, we prove RegT ≤
√
4dL∗ log T + O(d log T ) + d2 + d(1 + 2δ). By setting

m∗ = 0 in (6.56), we have

RegT ≤ 2E

√√√√dγ
T∑
t=1

∑
i∈I(t)

ℓi(t)2

+O(dγ + d2)

≤ 2E

√√√√dγ

T∑
t=1

∑
i∈I(t)

ℓi(t)

+O(dγ + d2)
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= 2E


√√√√dγ

T∑
t=1

ℓ(t)⊤a(t)

+O(dγ + d2)

= 2E


√√√√dγ

(
T∑
t=1

(ℓ(t)⊤a(t)− ℓ(t)⊤a∗) +
T∑
t=1

ℓ(t)⊤a∗

)+O(dγ + d2)

≤ 2

√√√√dγ

(
E

[
T∑
t=1

(ℓ(t)⊤a(t)− ℓ(t)⊤a∗)

]
+ E

[
T∑
t=1

ℓ(t)⊤a∗

])
+O(dγ + d2)

= 2
√
dγ (RegT + L∗) +O(dγ + d2) ,

where the third inequality follows from Jensen’s inequality. By solving this inequation
in RegT , we obtain

RegT ≤ 2
√
dγL∗ +O(dγ + d2) ,

which is the desired bound.
Finally, we prove RegT ≤

√
4d(mT − L∗) log T + O(d log T ) + d2 + d(1 + 2δ).

By setting m∗ = 1 in (6.56) and repeating a similar argument as for proving RegT ≤√
4dL∗ log T +O(d log T ) + d2 + d(1 + 2δ) we have

RegT ≤ 2E

√√√√dγ
T∑
t=1

∑
i∈I(t)

(ℓi(t)− 1)2

+O(dγ + d2)

≤ 2E

√√√√dγ

T∑
t=1

∑
i∈I(t)

(1− ℓi(t))

+O(dγ + d2)

≤ 2E


√√√√dγ

(
mT −

T∑
t=1

ℓ(t)⊤a∗ −
T∑
t=1

⟨ℓ(t), a(t)− a∗⟩

)+O(dγ + d2)

≤ 2
√
dγ (mT − L∗ − RegT ) +O(dγ + d2) ,

where the third inequality follows since ∥ai(t)∥1 ≤ m and the forth inequality follows
from Jensen’s inequality. By solving this inequation in RegT , we obtain

RegT ≤ 2
√
dγ(mT − L∗) +O(dγ + d2) ,

which completes the proof.

6.7.3 Proof of Theorem 6.4

We can prove Theorem 6.4 by using a similar argument as for Theorem 6.3. We first
discuss the key lemma for this argument, the very similar argument of which is given
in Ito (2021c).

6.7.3.1 Preliminary

Here, we present the key lemma for proving Theorem 6.4.

158



Lemma 6.7. Assume thatmi(t) is given by (6.3). Then for any i ∈ [d] andui(1), . . . , ui(T ) ∈
[0, 1] we have

T∑
t=1

αi(t) ≤
T∑
t=1

ai(t)(ℓi(t)−mi(t))
2

≤ 1

1− 2η

T∑
t=1

ai(t)(ℓi(t)− ui(t))2 +
1

η(1− 2η)

(
1

4
+ 2

T−1∑
t=1

|ui(t+ 1)− ui(t)|

)
.

Proof. Take i ∈ [d] satisfying ai(t) = 1. Then it holds that

(ℓi(t)−mi(t))
2 − (ℓi(t)− ui(t))2

≤ 2(ℓi(t)−mi(t))(ui(t)−mi(t))

= 2(ℓi(t)−mi(t))(mi(t+ 1)−mi(t)) + 2(ℓi(t)−mi(t))(ui(t)−mi(t+ 1))

= 2η(ℓi(t)−mi(t))
2 +

2

η
(mi(t+ 1)−mi(t))(ui(t)−mi(t+ 1))

≤ 2η(ℓi(t)−mi(t))
2 +

1

η

(
(ui(t)−mi(t))

2 − (ui(t)−mi(t+ 1))2
)
,

where the inequalities follow from y2 − x2 = 2y(y − x) − (x − y)2 ≤ 2y(y − x) for
x, y ∈ R and the last equality follows from the definition of m(t) in (6.3). Hence, we
have

(ℓi(t)−mi(t))
2 ≤ 1

1− 2η

(
(ℓi(t)− ui(t))2 +

1

η

(
(ui(t)−mi(t))

2 − (ui(t)−mi(t+ 1))2
))

.

(6.57)

From the definition of αi(t) in (6.8) and (6.57), we have

T∑
t=1

αi(t)

≤
T∑
t=1

ai(t)(ℓi(t)−mi(t))
2

≤ 1

1− 2η

T∑
t=1

(ℓi(t)− ui(t))2 +
1

η(1− 2η)

T∑
t=1

{
(ui(t)−mi(t))

2 − (ui(t)−mi(t+ 1))2
}

=
1

1− 2η

T∑
t=1

(ℓi(t)− ui(t))2

+
1

η(1− 2η)

(
T∑
t=1

{
(ui(t+ 1)−mi(t+ 1))2 − (ui(t)−mi(t+ 1))2

}
+ (ui(1)−mi(1))

2

)

≤ 1

1− 2η

T∑
t=1

(ℓi(t)− ui(t))2

+
1

η(1− 2η)

(
T∑
t=1

(ui(t+ 1) + ui(t)− 2mi(t+ 1))(ui(t+ 1)− ui(t)) +
1

4

)

≤ 1

1− 2η

T∑
t=1

ai(t)(ℓi(t)− ui(t))2 +
1

η(1− 2η)

(
1

4
+ 2

T−1∑
t=1

|ui(t+ 1)− ui(t)|

)
,

which completes the proof.
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6.7.3.2 Proof for the Stochastic Regime

Proof of (6.11) in Theorem 6.4. From Lemma 6.7, setting ui(t) = µi for all i ∈ [d]
and t ∈ [T ] in Lemma 6.7 and taking the expectation yield that

E

[
T∑
t=1

αi(t)

]
≤ 1

1− 2η
E

[
T∑
t=1

ai(t)(ℓi(t)− µi)2
]
+

1

4η(1− 2η)
=

1

1− 2η
σ2i Pi +

1

4η(1− 2η)
,

where Pi is defined in (6.33). By using this inequality instead of (6.32) and repeating the
same argument as that in Section 6.7.2.2, we obtain

RegT ≤
1

1− 2η

(∑
i∈J∗

max

{
4
w(A)σ2i
∆i,min

+ c log

(
1 +

w(A)σ2i
∆i,min

)
, 2(1 + ϵ)

}
+ 2(1 + ϵ)|I∗|

)
log T

+O

(
d

√
log T

η(1− 2η)

)
+
∑
i∈I∗

16(1 + δ)2v(A)

∆′
i,min

√
log T + o(

√
log T ) ,

which is the desired bound.

6.7.3.3 Proof for the Stochastic Regime with Adversarial Corruptions

Here we show a regret bound for the stochastic regime with adversarial corruptions given
in Theorem 6.4:

RegT ≤ RGD +O
(√

CmRGD
)
.

Proof. Letting ui(t) = µi for all i ∈ [d] and t ∈ [T ] in Lemma 6.7 and taking the
expectation yield that

E

[
T∑
t=1

αi(t)

]
≤ 1

1− 2η
E

[
T∑
t=1

ai(t)(ℓi(t)− µi)2
]
+

1

4η(1− 2η)

≤ 1

1− 2η
σ2i Pi + P ′

i +
1

4η(1− 2η)
,

where Pi is defined in (6.33) and the last inequality is obtained by a similar argument as
for (6.48). By using this inequality instead of (6.32) and repeating a similar argument as
that in Section 6.7.2.3, we obtain

RegT ≤
1

1− 2η

(∑
i∈J∗

max

{
4
w(A)σ2i
∆i,min

+ c log

(
1 +

w(A)σ2i
∆i,min

)
, 2(1 + ϵ)

}
+ 2(1 + ϵ)|I∗|

)
log T

+O

(
d

√
log T

η(1−2η)

)
+O

√√√√Cm
∑
i∈J∗

(
w(A)σ2i
∆i,min

+1

)
log T


+
∑
i∈I∗

16(1 + δ)2v(A)

∆′
i,min

√
log T + o(

√
log T ) ,

which completes the proof.
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6.7.3.4 Proof for the Adversarial Regime

Proof of (6.12) in Theorem 6.4. From Lemma 6.7, we immediately obtain

T∑
t=1

d∑
i=1

αi(t) ≤
1

1− 2η

T∑
t=1

d∑
i=1

ai(t)(ℓi(t)− ui(t))2

+
1

η(1− 2η)

(
d

4
+ 2

T−1∑
t=1

∥u(t+ 1)− u(t)∥1

)
(6.58)

for any u(t) = (u1(t), . . . , ud(t))
⊤ ∈ [0, 1]d.

First, we prove RegT ≤
√

γ
η(1−2η) (d+ 8V1) + O(dγ + d2). Letting u(t) = ℓ(t)

in (6.58) we can bound the regret as

RegT ≤ 2γ
d∑
i=1

E


√√√√β20 +

1

γ

T∑
t=1

αi(t)

+O(dγ + d2)

≤ 2E


√√√√γ

T∑
t=1

d∑
i=1

αi(t)

+O(dγ + d2)

≤ 2√
η(1− 2η)

E


√√√√γ

(
d

4
+ 2

T−1∑
t=1

∥ℓ(t+ 1)− ℓ(t)∥1

)+O(dγ + d2)

≤
√

γ

η(1− 2η)
(d+ 8V1) +O(dγ + d2) ,

where the second inequality follows from the Cauchy-Schwarz inequality, the third in-
equality follows by setting ui(t) = ℓi(t) for all i ∈ [d] and t ∈ [T ] in (6.58), and the
last inequality follows from Jensen’s inequality. This becomes the desired path-length
bound.

Next, we prove we prove RegT ≤
√

γ
1−2η min{L∗,mT − L∗, Q2} + O(dγ + d2).

For any m∗ ∈ [0, 1]d, letting u(t) = m∗ for all t ∈ [T ] in (6.58), we have

T∑
t=1

d∑
i=1

αi(t) ≤
1

1− 2η

T∑
t=1

d∑
i=1

ai(t)(ℓi(t)−m∗
i )

2 +
d

4η(1− 2η)
.

Using this inequality, we have

E

[
T∑
t=1

d∑
i=1

αi(t)

]
≤ 1

1− 2η
min

m∗∈[0,1]d

{
E

[
T∑
t=1

d∑
i=1

ai(t)(ℓi(t)−m∗
i )

2

]}
+

d

4η(1− 2η)

≤ 1

1− 2η
min{RegT + L∗,mT − L∗ − RegT , Q2}+

d

4η(1− 2η)
,

where in the last inequality we setm∗ = 0 and (resp.m∗ = 1) and use the same argument
as that in Section 6.7.2.4 for deriving the term with RegT +L

∗ (resp.mT −L∗−RegT ),
and m∗ = ℓ̄ for deriving the term with Q2, and this complete the proof.

6.8 Conclusion

In this chapter, we considered the combinatorial semi-bandit problem and presented the
new BOBW algorithm with various adaptive guarantees. The new algorithm enjoys a

161



variance-dependent regret bound depending on the tight suboptimality gap with a good
leading constant in the stochastic regime and multiple data-dependent regret bounds. We
numerically investigated the performance of the proposed algorithm and confirmed that
the proposed algorithm performs competitively to Thompson sampling and achieve the
best results in the adversarial regime.

One limitation of the proposed algorithm lies in its computational complexity: (i) sam-
pling action a(t) based on x(t) and (ii) efficiently computing x(t) in (6.1). Limitation
(i) has long been a problem in semi-bandits using the (O)FTRL framework. Although
polynomial-time algorithms exist (e.g., Schrijver 1998, Corollary 14.1g), they are not
very practical. For limitation (ii), it is not easy to efficiently compute x(t) in existing
studies, where Shannon entropy regularization for 1 − xi is combined with the typical
regularizers. If we can safely remove the Shannon entropy regularization for 1 − xi(t),
x(t) then has a closed form, and an analysis for such a variant is important future work.
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Chapter 7

Conclusion and Future Direction

In this chapter, we summarize this dissertation and discuss important future research
prospects.

7.1 Summary

This dissertation was devoted to establish various adaptive algorithms mainly for struc-
tured bandits. This technological development allows us to choose more structure-capturing
and adaptive algorithms for solving real-world problems. The following summarizes the
contributions of each chapter.

Chapters 3 and 4 focused on partial monitoring. In particular, in Chapter 3, we in-
vestigated if we can construct a Thompson-sampling-based algorithm, which is known to
perform significantly well in practice, with a distribution-dependent bound. We answered
this question affirmatively by establishing the new Thompson-sampling-based algorithm
that theoretically achieves the distribution-dependent regret bound in the stochastic regime
in the linearized version of the game with local observability. Moreover, the proposed
algorithm significantly outperformed existing algorithms in the experiments. In Chap-
ter 4, we investigated if such a logarithmic guarantee for the stochastic regime can be ob-
tained while at the same time having the theoretical guarantee for the adversarial regime,
i.e., the BOBW guarantee. We provided a positive response to this question: we devel-
oped algorithms based on the follow-the-regularized-leader framework by extending the
framework of exploration by optimization and adaptive learning rate for online learning
with feedback graphs. In Chapter 5, we aimed to further improve adaptivity of follow-
the-regularized-leader. This was accomplished by constructing the learning rate so that
it adapts simultaneously to stability and penalty components, whereas existing learning
rates so far are adaptive to only one of the two components. This allowed us to achieve
BOBW and data-dependent bounds simultaneously, or more specifically, the sparsity-
dependent bound for multi-armed bandits and the game-dependent bound for partial mon-
itoring. Finally, in Chapter 6, we targeted combinatorial semi-bandits and constructed the
follow-the-regularized-leader-based algorithm that simultaneously achieves BOBW and
several data-dependent bounds (first-, second-order and path-length bounds) simultane-
ously with the tight suboptimality gaps by developing the novel adaptive learning rate
taking the underlying variances into account and deriving the tighter regret lower bound.

7.2 Future Direction

Throughout history and through the contributions in this dissertation, BOBW algorithms
have rapidly advanced beyond vanilla multi-armed bandits and this progression has led to
a vast accumulation of knowledge. Still, there are several important research questions to
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be addressed. The following section describes the future direction that will be important
for the further spread of BOBW algorithms, especially for real-world applications.

7.2.1 Improving Theoretical Understanding

One of the important future directions arises from the fact that the “best” of the BOBW
algorithms are in fact not truly the best in the stochastic regime. We discuss this from
two main perspectives in the following.

What is the achievable leading constant of a regret upper bound in the stochas-
tic regime while preserving a guarantee in the adversarial regime? In this disser-
tation, Definitions 2.1 and 2.2 are adopted as the definition of a BOBW algorithm in
the sequential decision-making problem. However, this definition only considers the
order with respect to T and does not consider the leading constant values. In fact, it
is still unknown whether the existing BOBW algorithms can achieve optimal leading
constants in the stochastic regime. For example, one algorithm in Zimmert and Seldin
(2021) can achieve regret upper bounds of RegT ≤ 2

√
kT in the adversarial regime and

RegT ≤
∑

a ̸=a∗
log T
∆a

+ 28k log T + o(log T ) in the stochastic regime. One can see that
the leading constant of the bound in the stochastic regime is approximately twice as worse
as that of the optimal regret in the stochastic regime (see Theorem 2.1).

An important question then arises: can we achieve the regret upper bound with opti-
mal leading constants in multi-armed bandits in the stochastic regime while guaranteeing
the regret upper bound of Õ(

√
kT ) in the adversarial regime? If not, how small a leading

constant can we obtain? This investigation is important for implementing BOBW algo-
rithms in real-world problems with almost stochastic environments. As we can see from
the experimental results of Zimmert and Seldin (2021) and Chapter 6, the BOBW algo-
rithms actually perform worse than Thompson sampling in the truly stochastic regime,
and thus it is difficult to determine whether to use Thompson sampling or BOBW algo-
rithms for real-world problems with a very high degree of stochasticity.

To what extent can we exploit distributional information in the stochastic regime
while maintaining guarantees in the adversarial regime? Another important aspect
is how much distributional information in the stochastic regime can be exploited. In
Chapter 6, we discussed variance-dependent regret upper bound with this motivation
and found that a significant performance improvement can indeed be obtained solely
by taking variances into account. However, the truly optimal regret bound is expressed
using the information on higher-order moments of an underlying distribution (Burnetas
and Katehakis, 1996), and whether this can be achieved while preserving the performance
guarantee in an adversarial regime is an important research question.

7.2.2 Performance Evaluation through Comprehensive Studies and Improvement
of User-Friendliness

Important future directions for the use of the BOBW algorithms in real-world problems
are not limited to theoretical aspects. There are two important future directions from ap-
plication aspects: comprehensive numerical studies and evaluation of existing algorithms
in real-world problems, and improving their user-friendliness.

Comprehensive numerical studies and evaluation of existing algorithms on real-
world problems It had been rare for BOBW algorithms to be compared by numeri-
cal experiments until the paper of the celebrated Tsallis-INF algorithm by Zimmert and
Seldin (2019, 2021). They conducted extensive numerical experiments on multi-armed
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bandits and demonstrated the usefulness of the Tsallis-INF algorithm, motivating fur-
ther investigation of BOBW algorithms. Subsequently, as discussed in Chapter 2, many
BOBW algorithms have been developed for various structured bandits and in various se-
tups. In the most recent example, at the time of writing this dissertation, a framework
that achieves a O(log T ) regret upper bound in a stochastic regime for a wide range of
sequential decision-making problems, such as only learning with feedback graphs, linear
bandits, and episodic Markov decision processes, was established (Dann et al., 2023).
However, most of the recent BOBW algorithms for structured bandits do not include
numerical experimental evaluation, possibly because they are too computationally inten-
sive or do not have sufficient numerical performance. Therefore, it is desirable to conduct
comprehensive numerical experiments to investigate the numerical properties of each al-
gorithm that would shed light on what algorithms to use in practice.

In particular, the performance evaluation in the stochastic regime with adversarial
corruptions is an important challenge. As discussed in Chapter 2, this regime is a very
practical regime for real-world problems, and one of the major advantages of the BOBW
algorithm is in its adaptivity to this regime. However, numerical experiments in the ad-
versarial regime of existing BOBW methods are limited to the stochastically constrained
adversarial regime. In this regime, we only need to determine the expected difference
between the losses of arms and can evaluate the performance of the algorithm with the
same degree of freedom as in the stochastic regime. In contrast, in the stochastic regime
with adversarial corruptions, we need to determine how the adversarial noise is added,
which makes it difficult to evaluate the performance of the algorithm in a proper manner.

Improving user-friendliness of best-of-both-worlds algorithms Algorithms often used
in real-world problems tend to be the UCB algorithm or Thompson sampling. There ap-
pear to be several reasons for this, but the most likely reason is that they are relatively
easy to implement and do not involve highly complex optimization problems. As intro-
duced in Chapter 2, the UCB algorithm just needs to compute the UCB-index and selects
the arm with the maximum index, and Thompson sampling samples from the posterior
distribution and selects the arm with the lowest sampled losses. In contrast, most exist-
ing BOBW algorithms involve solving some form of convex optimization problem. For
instance, this occurs when computing an output of FTRL or when selecting an arm such
that the probability of that arm being selected aligns with the output of FTRL. Further-
more, the UCB algorithm and Thompson sampling are widely well-known, and there
are already a large number of books and web pages with their explanations and imple-
mentation instructions. In contrast, although many theoretically and empirically superior
bandit algorithms besides UCB and Thompson sampling have been developed, it cannot
be said that they are sufficiently applied in the industry. In light of such a situation, it
seems that several obstacles need to be overcome for BOBW algorithms to be accepted
and applied in the industry. Building an accessible environment for those who work on
sequential decision-making problems through survey articles, online explanations, and
the development of a library of BOBW algorithms will be an important research topic, as
well as evaluation through the comprehensive numerical experiments described above.
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