
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Radar-Based Estimation of Human
Body Orientation Using Respiratory
Features and Hierarchical
Regression Model

Sun, Wenxu; Iwata, Shunsuke; Tanaka, Yuji;
Sakamoto, Takuya

Sun, Wenxu ...[et al]. Radar-Based Estimation of Human Body Orientation Using
Respiratory Features and Hierarchical Regression Model. IEEE Sensors Letters 2023, 7(9):
7004704.

2023-09

http://hdl.handle.net/2433/285574

This work is licensed under a Creative Commons Attribution 4.0
License.



VOL. 7, NO. 9, SEPTEMBER 2023 7004704

Sensor signal processing

Radar-Based Estimation of Human Body Orientation Using Respiratory
Features and Hierarchical Regression Model

Wenxu Sun, Shunsuke Iwata, Yuji Tanaka∗ , and Takuya Sakamoto∗∗

Department of Electrical Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
∗Member, IEEE
∗∗Senior Member, IEEE

Manuscript received 25 July 2023; revised 23 August 2023; accepted 24 August 2023. Date of publication 30 August 2023; date of current version 6
September 2023.

Abstract—This letter proposes an accurate method to estimate human body orientation using a millimeter-wave radar
system. Body displacement is measured from the phase of the radar echo, which is analyzed to obtain features associated
with the fundamental and higher order harmonic components of the quasi-periodic respiratory motion. These features
are used in body orientation estimation invoking a novel hierarchical regression model in which a logistic regression
model is adopted in the first step to determine whether the target person is facing forward or backward; a pair of ridge
regression models is employed in the second step to estimate body orientation angle. To evaluate the performance of
the proposed method, respiratory motions of five participants were recorded using three millimeter-wave radar systems;
cross validation was also performed. The average error in estimating body orientation angle was 38.3◦ and 23.1◦ using,
respectively, a conventional method with only the fundamental frequency component and our proposed method, indicating
an improvement in accuracy by a factor of 1.7 when using the proposed method. In addition, the coefficients of correlation
between the actual and estimated body orientation angles using the conventional and proposed methods are 0.74 and
0.91, respectively. These results show that by combining the characteristic features of the fundamental and higher order
harmonics from the respiratory motion, the proposed method offers better accuracy.

Index Terms—Sensor signal processing, body orientation, millimeter-wave radar, regression model, respiratory harmonics, sensor
applications.

I. INTRODUCTION

Among various sensors for monitoring respiration, radar-based sen-
sors have an advantage when constant monitoring is required because
the discomfort when wearing a sensor is no longer present [1], [2],
[3]. In addition, a single radar system suffices in monitoring multiple
people simultaneously, a convenience that cannot be achieved by
conventional contact-type sensors [4], [5], [6], [7].

Radar-based respiratory measurements use the phase of the radar
echo signal to estimate body displacement produced through the
respiratory motion. The waveform of these displacements depends
on body orientation, which affects the accuracy in determining the
characteristic features of respiratory motion [8], [9], [10]. Noguchi
et al. [8] reported the difficulty in estimating the respiration rate accu-
rately when the target person is facing away from the radar antennas.
Moreover, body orientation also affects the accuracy of radar-based
determination of heartbeat rates [11], [12], indicating that an accurate
estimation of body orientation leads to better accuracy in radar-based
measurements of respiration and heartbeat.

Of the existing studies on radar-based estimation of the human
body orientation [13], [14], Li et al. [13] proposed a method based on
measurements of micro-Doppler effects produced by the movement of
the arms during specific actions; Yang et al. [14] proposed an alter-
native method based on the random forest algorithm to estimate body
orientation. These methods, however, can only estimate approximate
body orientations from six or eight directions.
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In this letter, we propose a radar-based accurate method to es-
timate body orientation using a hierarchical regression model with
respiratory features calculated from body displacement components
in the frequency domain. Unlike conventional methods, our proposed
method uses respiratory waveforms instead of simply amplitudes. The
proposed method is also expected to contribute to the establishment
of a mathematical model that describes the relationship between
respiratory displacement and human body orientation. We evaluated
the effectiveness of the proposed method quantitatively using radar
data obtained in a study involving five participants. A preprint of this
manuscript has been posted [15].

II. RADAR-BASED RESPIRATORY
MEASUREMENT AND THE

PROPOSED METHOD

A. Respiratory Measurement Using Radar

We used a radar system with a multiple-input multiple-output
(MIMO) array with three transmitting and four receiving elements
spaced, respectively, 2λ and λ/2 apart, where λ is the wavelength.
This MIMO array can be approximated as an N-element virtual
array with N = 12 and element spacing of λ/2. Let sn(t, τ ) be
the signal received by the nth virtual element, where t is the
slow time and τ is the fast time; a complex-valued radar image
I ′(r, ϕ, t ) is obtained as I ′(r, ϕ, t ) = ∑N

n=1 wn(ϕ)sn(t, 2r/c), with r
denoting range and ϕ the azimuth counterclockwise angle with re-
spect to the array’s normal direction. Here, wn(ϕ) = αnejπ (n−1) sin ϕ

is a beamforming weight with Taylor coefficient αn. The polar co-
ordinates (r, ϕ) when converted to Cartesian coordinates (x, y) =
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(−r sin ϕ, r cos ϕ) give the complex-valued radar image I0(r, t ) at
position r = (x, y), where the x-axis is in the direction of the array
baseline.

The complex radar image I0(r, t ) contains desired echoes from
targets and undesired static clutter reflected from stationary ob-
jects. Removing the static clutter yields a clutter-free radar image
I (r, t ) obtained by subtracting the average over a time duration
T as I (r, t ) = I0(r, t ) − (1/T )

∫ t
t−T I0(r, τ )dτ . Target position r0 =

arg maxr

∫ T
0 |I (r, t )|2dt is estimated. The body displacement d (t ) is

then obtained as d (t ) = (λ/4π )unwrap(∠I (r0, t )), where ∠(·) signi-
fies the phase of a complex number, and unwrap(·) signifies the phase
unwrapping operator. In the next section, we propose a novel method
for estimating the body orientation using d (t ).

B. Proposed Method for Body Orientation Estimation

The fundamental frequency f0 of the respiration can be estimated
from the Fourier transform D( f ) = F[d (t )], where F[·] denotes the
Fourier transform operator. Using D( f ) and f0, we define a feature
vector x = [1, x1, x2, x3, x4, x5]T, where x1 = |D( f0)| is the amplitude
of the fundamental, x2 = |D(2 f0 )/D( f0)| is the amplitude of the second
harmonic, x3 = ∠[D(2 f0)/D( f0)] is the phase of the second harmonic,
x4 = |D(3 f0)/D( f0 )| is the amplitude of the third harmonic, and
x5 = ∠[D(3 f0)/D( f0 )] is the phase of the third harmonic. Note that
the second and third harmonics are normalized by the fundamental
frequency component D( f0).

Note that in many cases, human respiratory movements are bilater-
ally symmetrical, and thus, distinguishing the sign of θ is fundamen-
tally impossible (i.e., the respiratory motion is almost the same for
θ and −θ ). Therefore, we impose a condition 0◦ ≤ θ ≤ 180◦, where
θ = 0◦ and 180◦ corresponding to a body orientation facing forward
and backward, respectively, with respect to the radar antenna.

One of the simplest methods to estimate body orientation angle
is the linear regression model; the estimate θ̂ is calculated using
θ̂ = wTx, where w is a weight vector (a superscript T signifies
the transpose operator), which is deemed to be a one-step method
in the following sections. Instead of this one-step method with a
simple linear regression model, our proposed method is based on a
hierarchical regression model that comprises two steps: the first step
determines whether θ belongs to class 1 (0◦ ≤ θ < 90◦) or class 2
(90◦ ≤ θ ≤ 180◦); and the second step estimates the body orientation
angle θ̂ . Because respiratory motions seen from front- and back-facing
bodies are significantly different [16], the first step becomes a binary
classification for which we use a logistic regression model and adopt
the logit link function logit(z) = log[z/(1 − z)] for 0 < z < 1. This
function is used to construct a generalized linear regression model. The
output class of the classifier is determined based on the sign of the log
odds, which is defined as logit(p) = βTx, where p is the probability of
the feature vector belonging to class 1, and β = [β0, β1, β2, . . . , βM ]T

is a weight vector, for which we set the dimension of the feature vector
to M = 5 except for a constant term.

In the second step, we construct two ridge regression models and
estimate θ̂ using θ̂ = wT

1 x (if logit(p) ≥ 0) or θ̂ = wT
2 x (if logit(p) <

0), where one of the two models is used depending on the output class
(class 1 or 2) of the first step. To determine the weight w = w1 or w2,
we solve the optimization problem

min
w

L∑

	=1

∣∣θ	 − wTx	

∣∣2 + γ |w|2 (1)

where x	 (	 = 1, . . . , L) denotes the feature vector corresponding to
the 	th body orientation angle θ	, and γ is a regularization parameter
set to γ = 0.05 based on empirical results.

Fig. 1. Experimental setup showing the locations of the three radar
systems around the participant. The body orientation angle θ is defined
as the angle between the x-axis vector and the normal vector directed
away from the front of the torso.

Fig. 2. (a) Typical respiratory displacement waveform. (b) Its ASD
function.

III. EXPERIMENTAL PERFORMANCE
EVALUATION OF THE
PROPOSED METHOD

A. Experimental Setup

We used a frequency-modulated continuous-wave radar system
(T14_01120112_2D, S-Takaya Electronics Industry Company, Ltd.,
Okayama, Japan) with a center frequency of 79 GHz, a center wave-
length λ = 3.8 mm, an occupied bandwidth of 3.9 GHz, a range
resolution of 44 mm, and a slow-time sampling frequency of 10 Hz.
The beamwidths of the radar array elements are ±4◦ and ±35◦ in
the E and H planes, respectively. With the equivalent isotropically
radiated power 20 dBm, antenna gain 18.7 dBi, distance 1 m, radar
cross section −8.1 dBsm [17], and signal processing gain 46.6 dB, the
received power becomes approximately 0.38 mW per frame (0.1 s).
Several respiratory displacement waveforms obtained from five male
participants, whose ages ranged between 21 and 23 years, were
recorded from different angles (see Fig. 1). The protocol involved
seating the participants and instructing them to breathe naturally. Three
radar systems were positioned approximately 1.0 m away from the
participant. Each recording of the waveform lasted 40 s, and after
each recording, the participant’s body orientation angle θ was changed
sequentially by 10◦ (see Fig. 1). For each participant, a total of 57
waveforms from the three radar systems were recorded.

The feature vector x was extracted from the amplitude spectral
density (ASD) function for each of the L = 19 body orientations. Fig. 2
shows an example of a respiratory waveform and its ASD function.
Note that the phase of the fundamental component ∠D( f0) was not
used as a feature, because the respiratory phase cannot be controlled
in the measurement. In the first step, we evaluated the effectiveness
of the binary classifier logit(p) = βTx using a chi-squared test and a
receiver operation characteristic (ROC) analysis for various combi-
nations of features x. We also evaluated the performance of a simple
method in which only the amplitude of the fundamental frequency
component x1 = |D( f0 )| is used; its performance is discussed later.
To evaluate the accuracy of the various methods, the coefficient of
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Table 1. Characteristics of the Five Features

Fig. 3. Characteristic analysis for the receiver operation of the binary
classification.

Table 2. Confusion Matrix of the Logistic Regression Model

correlation (CC) ρ = 〈(θ̂ − 〈θ̂〉)(θ − 〈θ〉)〉 between θ and θ̂ (i.e.,
the actual and estimated body orientation angles) is used; here, 〈·〉
denotes the expectation operation. The root-mean-square (RMS) error
ε = [〈|θ̂ − θ |2〉]1/2 is also used in the following sections.

B. Performance Evaluation of the Proposed Method

The mean ± standard deviation and p-values of the five features
are listed in Table 1, where the significance level was set to p < 0.05.
All the features except x3 were confirmed to satisfy the significance
level. The ROC curves calculated using different combinations of the
features satisfying p < 0.05 are displayed in Fig. 3, for which a fivefold
cross validation was adopted. To compare the performance of the ROC
curves with different features, the area under the curve (AUC) was
used. Feature x1 = |D( f0 )| is seen to be a good indicator, and its AUC
is almost the same as that of a combination of the four features x1, x2,
x4, and x5. For this reason, we used only x1 without any other features
for the regression model for the proposed binary classification; the
adopted regression coefficients were β0 = −5.60, β1 = 6.93 mm−1,
and β2 = β3 = β4 = β5 = 0. For the entire dataset obtained from the
five participants, the confusion matrix of the logistic regression model
is presented in Table 2, and the average accuracy in the first step was
82.0%.

We discuss next the second step of the two regression models. To
evaluate the effectiveness of the proposed method using all the features
of the respiratory harmonics (not only x1), we analyzed the accuracy
for each of four methods: (a) a one-step method using only x1 without
the hierarchical model; (b) a two-step method using only x1 with the
hierarchical model; (c) a one-step method using x1, x2, x4, and x5

without the hierarchical model; and (d) the proposed two-step method
using x1, x2, x4, and x5 with the hierarchical model.

In the performance evaluation of these methods, a fivefold cross
validation was also used, for which data of four out of five datasets from

Fig. 4. Comparison of actual and estimated body orientation angles
using the conventional and proposed methods. (a) One-step method
using x1. (b) Two-step method using x1. (c) One-step method using x.
(d) Proposed two-step method using x.

Table 3. Comparison of Performances of the Conventional and the
Proposed Methods

each participant were used to construct each model; the performance
is evaluated using the data from the excluded dataset. Fig. 4 displays
a scatter plot of θ̂–θ for the four methods. The CC ρ and RMS error
ε of the methods are listed in Table 3; for method (a), the values are
ρ = 0.74 and ε = 38.3◦. From Fig. 4(a) and (b), we see that method (b)
performs better than method (a), thus demonstrating the effectiveness
of the proposed hierarchical regression model. These results indicate
the validity of the binary classification in the first step of the proposed
method, mainly because the component x1 for front- and back-facing
body orientations differs significantly, as evident in Table 1.

The proposed method (d) improves the average estimation accuracy
by factors of 1.7, 1.1, and 1.7 compared with those for methods
(a), (b), and (c), respectively. In Fig. 4(d), the variance of the plots
around the diagonal straight line θ̂ = θ diminishes especially for
0◦ ≤ θ < 90◦ compared with Fig. 4(b). These results indicate that the
features of the second and third harmonics x2, x4, and x5 contribute in
producing accurate estimations of body orientation angle θ , especially
for front-facing bodies. Note that in Table 3, the accuracy of methods
(a) and (c) is almost the same, which means that harmonic features
do not contribute in improving accuracy if the one-step approach is
adopted.

These results indicate the importance of combining a binary classifi-
cation model using x1 with the regression models including respiratory
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Table 4. Comparison With Other Studies

harmonic features x2, x4, and x5 in realizing accurate body orientation
estimations. Compared with the conventional method, the use of the
proposed method improves the CC ρ by a factor of 1.2 and the average
estimation accuracy ε by a factor of 1.7. These results demonstrate the
effectiveness of the proposed method in achieving a higher accuracy
in estimating the body orientation by combining the fundamental
component with higher order harmonics of the respiratory motion.

As for the computational complexity, in the first step of the proposed
method, just a single multiplication is required; in the second step,
the calculation of wTx requires M multiplications, resulting in a total
of M + 1 multiplications. A comparison with other state-of-the-art
methods is presented in Table 4, in which the method in [14] is
based on a classification instead of a regression for classes of angles
0, 60◦, 120◦, . . . , 300◦, the method in [18] is based on a classification
for three classes (supine, prone, side) using an effective radar cross
section, and the method in [19] requires eight radar systems, whereas
our method requires only a single radar system, which demonstrates
the advantage of our approach.

IV. CONCLUSION

A novel hierarchical regression model that exploits respiratory fea-
tures was proposed in this letter. The fundamental frequency amplitude
was used in a logistic regression model to estimate whether the target
person is facing toward or away from receivers. A pair of ridge
regression models was then developed that combined both fundamental
frequency and higher order harmonic components. Using the proposed
method, accuracies were improved by 1.7 times over those obtained by
the conventional method with a simple regression model. In addition,
the CC between the actual and estimated body orientation angles
using the conventional and proposed methods were 0.74 and 0.91,
respectively.
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