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ARTICLE

Genome analysis of Parmales, the sister group of
diatoms, reveals the evolutionary specialization
of diatoms from phago-mixotrophs to
photoautotrophs
Hiroki Ban 1, Shinya Sato2, Shinya Yoshikawa2, Kazumasa Yamada 2, Yoji Nakamura 3,

Mutsuo Ichinomiya4, Naoki Sato5, Romain Blanc-Mathieu 1,6, Hisashi Endo 1, Akira Kuwata 7✉ &

Hiroyuki Ogata 1✉

The order Parmales (class Bolidophyceae) is a minor group of pico-sized eukaryotic marine

phytoplankton that contains species with cells surrounded by silica plates. Previous studies

revealed that Parmales is a member of ochrophytes and sister to diatoms (phylum Bacil-

lariophyta), the most successful phytoplankton group in the modern ocean. Therefore, par-

malean genomes can serve as a reference to elucidate both the evolutionary events that

differentiated these two lineages and the genomic basis for the ecological success of diatoms

vs. the more cryptic lifestyle of parmaleans. Here, we compare the genomes of eight par-

maleans and five diatoms to explore their physiological and evolutionary differences. Par-

maleans are predicted to be phago-mixotrophs. By contrast, diatoms have lost genes related

to phagocytosis, indicating the ecological specialization from phago-mixotrophy to photo-

autotrophy in their early evolution. Furthermore, diatoms show significant enrichment in gene

sets involved in nutrient uptake and metabolism, including iron and silica, in comparison with

parmaleans. Overall, our results suggest a strong evolutionary link between the loss of phago-

mixotrophy and specialization to a silicified photoautotrophic life stage early in diatom

evolution after diverging from the Parmales lineage.
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The order Parmales (class Bolidophyceae) is a group of pico-
sized (2–5 μm) eukaryotic marine phytoplankton with cells
surrounded by silicified plates1. Parmaleans are widespread

in the ocean, from polar to tropical regions, and are relatively
abundant in polar and subarctic regions2,3. Parmalean sequences
are most abundant in the picoplanktonic fraction (0.8–5 µm) of
the global ocean metabarcoding data from Tara Oceans and
represent at most 4% of the sequences of photosynthetic organ-
isms and <1% on average2. Currently, only 17 taxa of parmaleans
have been described3,4. SEM and TEM observations, molecular
phylogenetics, and photosynthetic pigment analyses indicated
that parmaleans belongs to Bolidophyceae (ochrophytes)5, which
is the sister taxon of diatoms (phylum Bacillariophyta). Bolido-
phyceae also contains pico-sized photosynthetic naked flagellates
(called bolidomonads) that mainly inhabit subtropical waters6.
Recent phylogenetic analyses using several newly isolated strains
revealed that flagellated bolidomonad species belong to the sili-
cified and non-flagellated parmalean genus Triparma within
Bolidophyceae, suggesting that the Triparma life cycle switches
between silicified/non-flagellated and naked/flagellated stages2.

Diatoms are a relatively young group of unicellular eukaryotes
that are estimated to have emerged near the Triassic-Jurassic
boundary (ca. 200 million years ago7). Despite their short evo-
lutionary history, diatoms represent the most successful phyto-
plankton group in the modern ocean; they are highly diverse up
to 105 species8, and contribute extensively to marine primary
production, performing up to 20% of total planetary photo-
synthesis. Diatoms are thought to be particularly successful in
dynamic environments such as upwelling areas, and it has been
suggested that their ecological success is supported by traits such
as silicified cell wall defense9 and luxury nutrient uptake10.
However, despite advances in understanding diatom genomes
during the last two decades, the reasons underlying the success of
diatoms in modern oceans remain poorly understood. To
understand the ecological success of diatoms, characterization of
the evolution of physiology-related genes in this taxon is
necessary.

Although parmaleans are the closest relatives of diatoms, they
show much lower biomass, species diversity, and ecological
impact than their sister taxon. The proposed parmalean life cycle,
which switches between silicified/non-flagellated and naked/fla-
gellated stages, is similar to the proposed origin of diatoms2.
Ancestral diatoms were possibly haploid flagellates that formed
silicified diploid zygotes11. The mitotic division of the zygote
might have taken place preferentially to give rise to centric
diatoms12, which is the most ancient diatom group with a diploid
vegetative stage producing naked flagellated haploid male gametes
for sexual reproduction13. Thus, a comparison of parmaleans and
diatoms is expected to provide important clues on differences in
their ecological strategies and evolutionary paths. To date, only
limited genomic data on parmaleans have been available14, and
the genomic features and evolutionary events that led to differ-
ences between parmaleans and diatoms have remained unstudied.
In this study, we generated seven novel parmalean genome
assemblies. These seven draft genomes, one previously deter-
mined parmalean genome, and five publicly available diatom
genomes were used to perform a comparative genome analysis.
Our results delineate the evolutionary trajectories of these two
lineages after their divergence and correlate their ecological fea-
tures with their genomic functions.

Results and discussion
General genomic features. In this study, we obtained whole-
genome sequences of seven parmaleans, including six strains
from two genera (Triparma and Tetraparma) that are frequently

observed in the subarctic Pacific Ocean4,15, as well as one strain
(named ‘Scaly parma’) from an undescribed taxon that is phy-
logenetically and morphologically distinct from known parma-
leans. Together with the previously sequenced Triparma laevis f.
inornata genome14, we built a database of eight parmalean strain
genomes. Phylogenetic analysis of 18 S rRNA sequences of par-
maleans shows our genomes cover the wide range of parmalean
group from the most basal clade I (‘Scaly parma’) to clade III
(Tetraparma) and IV (Triparma) (Supplementary Fig. 1). The
parmalean genomes were similar in size, ranging from 31.0 Mb
for ‘Scaly parma’ to 43.6 Mb for Tetraparma gracilis (Table 1).
The predicted numbers of genes ranged from 12,177 for ‘Scaly
parma’ to 16,002 for Triparma laevis f. longispina (Table 1). These
genome sizes are relatively constant compared to diatom genomes
and similar to those of Thalassiosira pseudonana (32.4 Mb)16 and
Phaeodactylum tricornutum (27.4 Mb)17, which have rather small
genomes among diatoms.

We grouped the genes from the parmaleans (8 strains),
diatoms (5 strains), and other stramenopiles (5 strains) and
revealed 62,344 of orthologous groups (OGs) including single-
tons. Phylogenomic analysis based on 175 single-copy OGs
among them clearly shows parmaleans are monophyletic and
sister to diatoms (Fig. 1a). 34,299 OGs were present only in
diatoms or parmaleans and not in other stramenopiles (Fig. 1b:
yellow + orange + purple + green in diatoms and Parmales). Of
those, only 1,457 OGs were shared by diatoms and parmaleans
(Fig. 1b: yellow). 20,957 OGs were specific to diatoms (diatom-
specific OGs, Fig. 1b: orange + green in diatoms), and 11,885
OGs were specific to parmaleans (Parmales-specific OGs, Fig. 1b:
purple and green in Parmales). 55.1 % of the genes in the core
OGs conserved in all analysed strains (1,154 OGs, Fig. 1b: red)
had InterPro domains, and 51.1 % of the genes in the OGs shared
only by diatoms and parmaleans (1,457 OGs, Fig. 1b: yellow) had
InterPro domains. By contrast, only 16.2 % of genes in diatom-
specific OGs (20,957 OGs, Fig. 1b: orange + green in diatoms)
and 43.5 % of genes in parmalean-specific OGs (11,885 OGs,
Fig. 1b: purple and green in Parmales) had InterPro domains.

Differentially enriched protein domains. By comparing the
eight parmalean and five diatom genomes, we found 60 and 319
InterPro domains in which the diatom and Parmales lineages,
respectively, were significantly enriched (Supplementary Data 2,
Supplementary Data 3). We noted that diatoms were enriched in
cyclin domains and heat-shock transcription factor domains
compared to Parmales, consistent with previous data that diatoms
contain greater numbers of these proteins than other
eukaryotes16,17 (Fig. 2a). In addition, diatoms were enriched in
protease domains and sulfotransferase domains relative to Par-
males. Proteases and metalloproteases are known to be induced
by limitations of nitrogen, iron, and light18,19. Sulfotransferases
are enzymes that catalyses sulfonation and are implicated in
programmed cell death in Skeletonema marinoi, a bloom-forming
marine diatom20. These gene families are thought to be involved
in the stress response process in diatoms.

InterPro domains in which parmaleans were enriched included
those involved in intracellular signalling pathways, such as the G
protein signalling, cyclic nucleotide signalling, calcium signalling,
and action potential pathways (Fig. 2a). G protein-coupled
receptors were involved in responses to sexual cues in the
planktonic diatom Pseudo-nitzschia multistriata21, and to colo-
nization in the benthic morphotype of Phaeodactylum
tricornutum22, that are also known to have two planktonic
morphotypes. Diatoms also exhibit action potential signalling to
modulate their cellular motility23,24. Furthermore, parmaleans
encoded a strikingly greater number of calcium-binding proteins
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(close to 300) that could act as messenger molecules25 (Fig. 2b).
Intercellular signalling pathways in parmaleans may also be used
to sense the external environment similarly to diatoms. The
enrichment of these pathways may relate to the putative
alternating life cycle stages (i.e., silicified/non-flagellated and
naked/flagellated cell stages2) of parmaleans, and/or to flagellar
movement in response to the environment.

Parmalean genomes were notably enriched in domains
associated with lipids and fatty acids (Fig. 2a). For example,
diacylglycerol acyltransferase is an enzyme for the terminal step
in the production of triacylglycerol, the main component of
stored lipids26. The steroidogenic acute regulatory protein-related
lipid transfer (START) domain that binds to lipids and sterols27 is
one of the domains in which parmalean genomes are most
enriched, with up to 141 genes in Tetraparma gracilis. This
domain sometimes consists of multi-domain proteins and works
in lipid trafficking, lipid metabolism, and cell signalling in
animals and land plants27. START domain-containing proteins in
parmaleans also contain other functional domains, such as lipid
metabolism enzymes, transporters, kinases, and transcription
factors (Fig. 2c). These results suggest diverse lipid-related
physiological processes in parmaleans.

Phagotrophy. Some InterPro domains in which parmaleans are
enriched are known to be involved in phagotrophy28, including
cell adhesion29, intercellular signalling30, cytoskeleton31,
lysosome32, and WASH33 (WASP and SCAR homolog) complex
proteins (Fig. 3a). Using a gene-based phago-mixotrophy pre-
diction model28, parmaleans were predicted as phago-mixotrophs
(high scores > 0.99), whereas diatoms were not (low scores < 0.07)
(Fig. 3b). This result suggests that parmaleans are capable of
phagocytosis. We also applied this prediction model to the boli-
domonads (naked/flagellated parmaleans) transcriptomes, and
bolidomonads were also predicted as phago-mixotrophs (high
scores >0.96, Supplementary Fig. 2). Although there is no
experimental evidence of phagocytosis in silicified parmaleans,
field studies demonstrated that bolidomonads feed on
cyanobacteria34,35. As transcriptome data reflect gene repertoires
expressed under specific physiological conditions, bolidomonads
might be phagotrophs. It remains unclear which life cycle stages
of the parmaleans that we analysed are phagotrophs. However,
assuming that bolidomonads indeed represent a part of the par-
malean life cycle3, and a possibility that the silicified parmalean
cell wall could physically interfere with feeding bacteria, it is likely
that parmaleans perform phagocytosis in their putative naked/
flagellated stage (Fig. 3c).

In the following sections, we move from the analysis of
enriched domains to more focused investigation of genes in
specific pathways and functions.

Flagellum. To investigate the possibility that parmaleans can
produce a flagellated cell2, we searched for genes responsible for
flagellar motility in the parmalean and diatom genomes and
bolidomonad transcriptomes. The searched gene set included
intraflagellar transport (IFT) subunit genes36 of IFT-A complex
(6 genes), IFT-B complex (15 genes) and Bardet–Biedl Syndrome
proteins (BBSome; 7 genes). Flagellum structural genes for
tubulin, radial spokes, dynein arms, and the central pair complex
were excluded from analysis because these genes are also involved
in other processes/structures (such as the centriole in Triparma
laevis37) and are not unique to the flagellum. For this analysis,
bolidomonad transcriptomes and centric diatom genomes were
considered as positive controls because of the presence of the
flagellar structure6 and the presence of flagellated sperm in their
life cycle38, respectively. Similarly, pennate diatom genomes wereT
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considered as negative controls because flagellar structures have
never been observed in this group, even in known sexually
reproductive species39.

A nearly-full set of the flagellar genes were found in parmalean
genomes, bolidomonad transcriptomes and other genomes
(Aureococcus anophagefferens and Ectocarpus siliculosus), whereas
IFT-A and BBsome genes were completely absent in both types of
diatoms (Fig. 3d). IFT-B genes were partially detected in centric
diatoms and completely lost in pennate diatoms. These results
suggest that parmaleans have a flagellated stage in their life cycle
and are consistent with the idea that parmaleans are phago-
mixotrophs in their putative naked/flagellated stage. Jensen
et al.40 speculated that the two central microtubules were
dispensed within the sperms of centric diatoms. Given the
detection of the nearly-full set of flagellar genes in the parmaleans
vs. the complete lack of IFT-A and BBSome and partial loss of
IFT-B in the centric diatoms, it is possible that evolutionary
pressure to maintain the flagellated stage is higher in parmaleans
than in centric diatoms. This may be due to the presence of a
frequent or prolonged flagellated stage in parmaleans, which is
not expected for the sperms of centric diatoms.

Nitrogen metabolism. The number of transporter genes involved
in the uptake of nitrogen sources differed greatly between diatoms
and parmaleans (Fig. 4a). Parmaleans had 0–3 nitrate/nitrite
transporter genes, whereas diatoms had 3–7. Only one or no urea
transporter gene was detected in each parmalean, whereas 3–6
genes were detected in each diatom. Diatoms tended to have
more ammonium transporter genes than parmaleans, although
the difference was not as obvious as for the other transporters
(2–8 genes for parmaleans vs. 4–10 for diatoms). Vacuolar nitrate
transporters, which store nitrogen sources in the vacuole41 and
are considered important for the luxury nutrient uptake of
diatoms42–44, were absent from parmalean genomes. This sug-
gests that parmaleans may be less competent to store nitrogen
sources than diatoms, although it remains to be determined if
parmaleans utilise another vacuolar nitrate transporter that is not
orthologous to that of diatoms.

Parmaleans had all of the ornithine–urea cycle genes, as with
diatoms16 and other stramenopiles45 (Fig. 4b, Supplementary

Fig. 3). Other involved genes (i.e., those encoding NAD(P)H
nitrite reductase, carbamate kinase, formamidase, cyanate lyase,
and hydroxylamine reductase) were present in diatoms but absent
from parmaleans. NAD(P)H nitrite reductase is a major enzyme
in nitrogen metabolism that catalyses the production of
ammonium from nitrite. Carbamate kinase is a major enzyme
that produces carbamoyl phosphate, which is a precursor of the
urea cycle. It should be noted that while parmalean genomes
lacked NAD(P)H nitrite reductase, they retained a ferredoxin-
nitrite reductase gene also found in diatoms that can perform the
same activity. Likewise, parmaleans and diatoms share a
carbamoyl phosphate synthetase enzyme that can function in
lieu of carbamate kinase (Supplementary Fig. 4). The presence of
multiple alternative pathways for these activities in diatoms, as
opposed to only one in parmaleans, may enhance the efficiency of
their nitrogen metabolism. Formamidase, cyanate lyase, and
hydroxylamine reductase function around the main pathway of
nitrogen metabolism. Previous studies showed that formamidase
and cyanate lyase are upregulated under N-limited conditions in
the diatom Phaeodactylum tricornutum46 as well as other
ochrophytes such as Aureococcus anophagefferens47. Diatoms
encoding these enzymes may have the ability to obtain
ammonium from intercellular nitrogen compounds even when
they cannot obtain extracellular nitrogen46,47. By contrast,
parmaleans lacking these enzymes may not have this capacity.

Iron metabolism. Iron acts as an electron carrier in the pho-
tosynthesis and multiple other metabolic activities associated
with phototrophy. In marine ecosystems, iron is one of the
prime limiting elements for phototrophs because of high
demand48. Therefore, iron uptake ability is an important factor
for competition in marine environments. We searched for iron
metabolism-related genes in diatom and parmalean genomes.
Ferric reductase (FRE), a high-affinity reductive iron uptake
system component, was found in all diatoms and parmaleans
investigated (Fig. 5a), but parmaleans completely lacked Fe3+

permease (FTR) genes (Fig. 5a). Parmalean genomes encoded
genes with high sequence similarity to diatom FTR genes, but
the parmalean sequences lacked the [REXXE] motif, which is
important for iron permeation49. This indicates that the
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diatom/Parmales common ancestor possessed FTR but parma-
lean FTR homologs may have lost their ability to enable iron
permeation during evolution. As for the candidate genes
involved in the non-reductive iron uptake system, iron
starvation-induced protein 2A (ISIP2A/FEA)50 was widely
distributed in parmaleans, whereas ISIP1 was not present
(Fig. 5a). ISIP1 plays an important role in siderophore uptake in
diatoms and is considered a highly efficient iron uptake gene51.
Our results support the idea that ISIP1 is diatom-specific
(although there is a report on the possible presence of homologs
in some species of pelagophytes, haptophytes, and

dinoflagellates of the genus Karenia)51 and its presence may
underlie diatoms’ high iron uptake capacity.

Most parmaleans encoded genes for plastocyanin, a copper-
containing redox protein that can substitute for cytochrome c6,
which is a redox protein that requires iron and transfers electrons
from the cytochrome b6–f complex to photosystem I during
photosynthesis. It was generally thought that chlorophyll c-con-
taining algae lack plastocyanin, but several pelagic diatoms from
different genera (including Thalassiosira oceanica) encode plasto-
cyanin and are thought to be adapted to iron-deficient pelagic
regions52,53. Parmaleans may also have an environment-dependent
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adaptive strategy to differentially use cytochrome c6 and plasto-
cyanin. Phylogenetic analysis revealed that the plastocyanin genes
from diatoms and parmaleans were monophyletic (with dictyo-
chophytes and others), except for one from Fragilariopsis
kerguelensis, which was grouped with bacteria (Supplementary
Fig. 5). This result contradicts the previously proposed horizontal
acquisition of plastocyanin genes in pelagic diatoms52. The diatom/
Parmales common ancestor likely possessed both cytochrome c6
and plastocyanin, and some diatoms (mostly coastal ones) lost their
plastocyanin (Fig. 5b).

Silicate metabolism. Each parmalean genome contained 1-2
silicic acid transporter (SIT) gene, whereas diatom genomes
contained 3-8 SIT genes (Fig. 4a). Most SIT genes of diatoms
encoded a 10-fold transmembrane type (i.e., single SIT domain),
whereas many SIT genes of parmaleans encoded a 20-fold
transmembrane type (i.e., two SIT domains). Phylogenetic ana-
lysis of SIT domains indicated that parmalean SIT genes belong
to the most basal clade of diatom SITs (clade B)54, and that the
20-fold transmembrane-type SITs of Parmales are the result of
multiple domain duplications in the Triparma lineage (Fig. 6). A
large number of paralogous SITs (at least five clades) in diatoms
was generated through multiple gene duplications in the diatom
lineage after it diverged from the Parmales lineage.

We also found silicanin homologs, some of which are biosilica-
associated proteins55, in parmalean genomes. The parmalean
genomes contained low numbers (between 0 and 2 per species) of
silicanin homologs, compared to between 4 and 13 in ditatoms.
Parmalean silcanin homologs have the RXL domain, which is
typical of many diatom biosilica-associated proteins56–59 but lack
the NQ-rich domain that is found in the Sin1 and Sin2 genes of
Thalassosira pseudonana55. Silicanin homologs have been
reported in transcriptome data of other non-diatom eukaryotes
such as the ciliate Tiarina fusus and the dictyochophyte
Rhizochromulina marina55. We also found 19 silicanin homologs
from non-diatom eukaryote transcriptomes in the MMETSP
database (15 sequences from Tiarina fusus, 2 from Rhizochro-
mulina marina, 1 from the dinoflagellate Durinskia baltica and 1
from the dinoflagellate Kryptoperidinium foliaceum; Durinskia
and Kryptoperidinium are known to have endosymbiont
originated from diatoms60, but their endosymbiont does not
have silicified cell walls). Our finding of silicanin homologs in
most of the analyzed parmaleans strongly suggests that the
silicanin gene was already present in the diatom/Parmales
common ancestor. Silicanins, like SITs, have undergone multiple
gene duplications within the diatom lineage after the diatom/
Parmales divergence. Interestingly, SIT and silicanin proteins

were not found in any bolidomonad transcriptomes, which is
consistent with their lack of silica plates.

Ecological strategies and evolutionary scenarios. By comparing
the genomes of eight parmaleans and five diatoms, we were able
to delineate differences and similarities in gene content between
these two taxa (Fig. 7). Based on the gene-based trophic model,
our analysis suggests that parmaleans are phago-mixotrophs that
can acquire nutritional resources such as carbon, nitrogen,
phosphorus, vitamins, and trace elements (e.g., iron) in the form
of organic compounds by grazing other organisms, such as bac-
teria. Therefore phago-mixotrophs is considered less dependent
on the uptake of inorganic nutrients than photoautotrophs.
However this advantage is traded off with an associated increase
in metabolic costs for incorporating and maintaining the cellular
components required for both autotrophy and phagotrophy. In
addition, since phagotrophy reduces the cell surface area for
transporter sites, phago-mixotrophs are thought to have lower
growth efficiency relative to photoautotrophic specialists61,62.
According to a theoretical study, mixotrophy is beneficial espe-
cially in oligotrophic water, whereas autotrophy is advantageous
in eutrophic environments63,64.

Previous studies suggested that some mixotrophs can widen
their niche by alternating their trophic strategies65,66. For
example, several coccolithophores (Haptophyta) are known to
alternate between a motile phago-mixotrophic haploid stage and
a non-motile autotrophic diploid stage based on nutrient
condition67. Based on these facts and other field data, it has
been previously hypothesized that parmaleans have a similar life
stage alternation3. Namely, parmaleans may live as silicified
photoautotrophs during winter (the cold mixing season) when
nutrients are rich, while they may feed on bacteria through
phagocytosis as naked flagellates during summer (the warm
stratified season) when nutrients are depleted. Our study
reinforces the possibility of such a life cycle in Parmales, by
detecting the genes for phagocytosis which has a potential
association with the naked-flagellate stage. This putative life cycle
may also explain the wide distribution range of some parmalean
groups, from coastal regions to tropical, Arctic and Antarctic
regions2,3.

In addition to the absence of phagotrophy in diatoms, our
analysis revealed a marked contrast in the gene repertoires
between diatoms and parmaleans, with all indicating the
autotrophic adaptations of diatoms. For example, there is a large
difference in the number of nutrient transporter genes between
diatoms and parmaleans (Fig. 4a), clearly representing an
adaptation of diatoms to eutrophic environments, although it is
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Fig. 5 Iron-related genes of diatoms and parmaleans. a Presence (filled square) or absence/loss (grey square) of iron uptake system genes. Gene names
are abbreviated; full names and accessions can be found in Supplementary Data 10. b Schematic view of the evolutionary pattern of plastocyanin genes. A
whole phylogenetic tree is shown in Supplementary Fig. 5.
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not clear whether these paralogous genes have different functions
(e.g., affinity, transport rates, and subcellular localization) or a
dosage effect68. In addition, there are differences in the number of
genes involved in biophysical carbon-concentrating mechanisms
(Supplementary Fig. 6, Supplementary Data 11, Supplementary
Data 12; See Supplementary Note). Diatoms possess higher CO2

fixation capacity relative to other phytoplankton groups69, and
these gene repertoires may support this trait. We also revealed the
expansion of protease and sulfotransferase genes in diatoms in
addition to the previously described expansion of cyclin and heat-
shock transcription factor genes16,17 (Fig. 2a). These genes are
likely involved in stress response and population control, which
support the extraordinary growth capacity of diatoms.

To the best of our knowledge, phagotrophic mixotrophy has
not been observed in diatoms, although osmotrophic mixotro-
phy is known in diatoms (e.g., Phaeodactylum tricornutum feeds

on various carbon sources70 and non-photosynthetic osmo-
trophs such as Nitzschia putrida also exist71). All diatoms that
we studied were predicted as photoautotrophs (Fig. 3a, b) and
other diatoms including Epithemia pelagica with endosymbiotic
cyanobacteria72 were predicted as the same from their genomic
data (see Supplementary Note). On the other hand, diatoms
have secondary plastids originated from red algae, suggesting
phagotrophy must have existed for the ancestor of diatoms to
take up them. Some members of ochrophytes, such as
chrysophytes and dictyochophytes73, are known to be phago-
mixotrophs and our results suggest that Parmales, which is the
closest group to diatoms, is also phago-mixotrophs. These facts
firmly support the ideas that diatom/Parmales common ancestor
was phago-mixotrophs, and there were massive loss of
phagocytosis-related genes and specialization to photoautotro-
phy in the early evolution of diatoms after diverging from

Triparma verrucosa: TrVE_jg918.t1
Triparma strigata: TrST_g10032.t1 N-terminal

Triparma strigata: TrST_g10032.t1 C-terminal
Triparma laevis f. longispina: TrLO_g7215.t1 C-terminal
Triparma laevis f. inornata: TL16_g12826.t1 partial

Triparma laevis f. longispina: TrLO_g7215.t1 N-terminal
Tetraparma gracilis: TeGR_g1545.t1 partial

Tetraparma gracilis: TeGR_g772.t1 partial
Triparma columacea: TrCOL_g2251.t1 C-terminal
Triparma columacea: TrCOL_g2251.t1 N-terminal

Triparma retinervis: TrRE_jg9883.t1 N-terminal
Triparma retinervis: TrRE_jg9883.t1 C-terminal
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Fig. 6 Phylogenetic tree of SIT domains. Maximum likelihood phylogenetic tree of the SIT domains of diatoms, parmaleans, and ochrophytes (outgroup).
Sequences with more than two SIT domains were separated to each domain and aligned. Grouping of paralogues from diatoms is based on the classification of
Durkin et al.55 Bootstrap values >50 are shown as circles on the branches. The parmaleans clade has been manually expanded to permit legibility.
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Parmales (ca. 200 million years ago7) but before the subsequent
diversification of diatom lineages (i.e., the crown age; ca. 190
million years ago7).

Diatoms always have silicified cell walls in the vegetative stage,
whereas parmaleans putatively switch between two life stages,
silicified/non-flagellated and naked/flagellated stages. The silici-
fied cell wall could provide a barrier against grazers, parasites, and
pathogens74, but is obviously incompatible with phagocytosis as it
completely covers the cell. Thus, there is a trade-off between
silicification/autotrophy and phagocytosis, and the loss of
phagotrophy in diatoms may have been related to benefits from
the silicified cell wall. To reveal why photoautotrophic diatoms
diverged from the phago-mixotrophic lineage and specialized to
the silicified life stage, it is necessary to understand not only the
costs and benefits associated with mixotrophy but also those of
defence by silicified cell walls.

The next possible step in the evolution of diatoms after
specialization to silicification and photoautotrophy might have
been to thicken their silicified cell wall and increase their cell
size9. Diatoms tend to have larger cell sizes than parmaleans, and
the evolution of these traits has the great advantage of increasing
resistance to grazers75. The evolution of silicic acid transporter
genes (Fig. 6) may have supported the evolution of silicified cell
walls because diatoms with thick walls and large cells require
large amounts of silicate. It is also known that nutrient
metabolism, especially nitrogen metabolism, is closely related to
silica deposition in diatoms76. Thus, the ability of diatoms to take
up nutrients may also be related to the evolution of their silicified
cell wall. Silicanin, which diversified in diatoms, is also known to
be related to the strength and stiffness of their cell walls77 and
may have been important in the precise control of the formation
of thick cell walls. It has been also pointed out that vacuoles play a
major role in cell size expansion9. However, there is little evidence
of differences in vacuole-related genes between parmaleans and
diatoms (e.g., lack of a vacuolar nitrate transporter ortholog in
parmaleans), so further discovery and analysis of the relevant
genes are needed to address this issue.

Diatoms also have important systemic impacts on marine iron
usage, often dominating iron-stimulated blooms78. Analyses of
iron utilization strategies revealed that the ISIP1 gene, which is
involved in siderophore-mediated iron acquisition, is absent in
parmaleans and specific to diatoms (Fig. 5a). Siderophores are
thought to be major components of microbial iron cycling in the
ocean79. The lack of the ISIP1 gene in parmaleans supports the idea

that this gene underlies the high iron uptake capacity of diatoms
and supports their photoautotrophic lifestyle. We also found that
plastocyanin, which is an alternative for iron-requiring proteins in
photosynthesis, is widely distributed in parmaleans. Phylogenetic
analysis suggests that each lineage of diatoms lost their plastocya-
nin genes independently, and that pelagic diatoms and parmalean
groups conserved plastocyanin genes from their common ancestor
(Fig. 5b). This, together with their life cycles, may explain the wide
distribution range of some parmalean group, including coastal and
Arctic regions as well as iron-deficient areas such as tropical open
ocean and Antarctic regions. Parmaleans retained plastocyanin to
balance their restricted capacity for iron uptake in iron-limited
environments; diatoms increased their iron uptake capacity (e.g.,
ISIP1), while several lineages have specialized to coastal eutrophic
environments and lost plastocyanin.

Our analysis also revealed that the ornithine–urea cycle, the
mitochondrial pay-off phase of the glycolytic pathway, and the
Entner–Doudoroff pathway, which have been cited as unique
features of diatoms, were substantially conserved from the common
ancestor of Parmales and diatoms (Fig. 4b, Fig. 7, Supplementary
Fig. 3, Supplementary Fig. 7, Supplementary Data 9, Supplementary
Data 13: see Supplementary Note). We also found the expansion of
genes related to lipid metabolism and intracellular signalling, and the
degenerative evolution of several genes related to iron uptake and
ornithine–urea metabolism in Parmales (see Supplementary Note).
However, their physiological functions and evolutionary signifi-
cances remain unclear. Future studies based on a larger set of
genomic data will further enhance understanding of the physiology,
ecology, and evolution of these fascinating organisms.

Methods
Culture. We used strains of the parmaleans Triparma laevis f. inornata (NIES-
2656; Microbial Culture Collection at the National Institute for Environmental
Studies, Japan), Triparma laevis f. longispina (NIES-3699), Triparma verrucosa
(NIES-3700), and Triparma strigata (NIES-3701), isolated from the Oyashio region
of the western North Pacific. For the other strains, water samples were collected at
10 m in the Notoro-ko lagoon (44°3'2.1'' N, 144°9'38.8'' E, December 2015) for
Triparma retinervis, at 10 m in the Sea of Okhotsk (45°25'0'' N, 145°10'0'' E, June
2017) for Tetraparma gracilis and Triparma columacea, and at 30 m in the Sea of
Okhotsk (44°30'0'' N, 144°20'0'' E, June 2014) for the uncharacterized ‘Scaly parma’.
The strains were isolated by serial dilution with siliceous cell wall labelling tech-
niques described previously5. The strains were cultured in f/2 medium80 at 5 °C
under a light intensity of ca. 30 μmol photons m−2 s−1 (14:10 L:D cycle).

Genomic DNA, RNA extraction and sequencing. Cells grown under exponential
growth phase were harvested by centrifugation, and either DNA (all strains, except
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Fig. 7 Schematic view of diatoms and Parmales evolution. Putative evolutionary history of diatoms and Parmales identifying components contributing to
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Triparma laevis f. inornata) or RNA (for Triparma laevis f. inornata, Triparma
verrucosa, Triparma retinervis and ‘Scaly parma’) was extracted using the DNeasy
Plant Mini Kit or RNeasy Plant Mini Kit (Qiagen, Venlo, Netherlands), respec-
tively. Libraries were generated using the Illumina TruSeq DNA/RNA sample
preparation kit (Illumina, Inc., San Diego, USA). Sequencing of whole genomes or
transcriptomes was performed on an Illumina HiSeq X (150 bp, paired-end) or
HiSeq 2000 (100 bp, paired-end), respectively. Exceptionally, the genome of Tri-
parma laevis f. longispina and ‘Scaly parma’ was sequenced with an Illumina HiSeq
2500 (150 bp, paired-end). DNA extraction and sequencing methods for Triparma
laevis f. inornata were already reported in Kuwata et al.14.

Genome assembly and microbial sequence contamination removal. Genome
assembly and contamination removal methods for Triparma laevis f. inornata were
already reported in Kuwata et al.14 For the other strains, the Illumina reads were
trimmed with Trimmomatic (v.0.38)81 using the following parameters: LEAD-
ING:20 TRAILING:20 SLIDINGWINDOW:4:15 MINLEN:36 TOPHRED33. The
filtered reads were assembled by Platanus (v.1.2.4)82 with default options. To
remove bacterial contamination from contigs, clustering of contigs was performed
based on the coverage calculated by read mapping, GC frequency, and k-mer
frequency. In addition, the phylogenetic classification of the genes in the contigs
was estimated using lowest common ancestor analysis. The results were used to
determine the clusters composed of bacterial contigs. Read mapping to assembled
contigs with the filtered reads was performed with BWA (v.0.7.17)83. The coverage
was calculated from the resulting.sam file using sam_len_cov_gc_insert.pl (https://
github.com/sujaikumar/assemblage), which was also used to determine the GC
content. The tetramer frequency of contigs was calculated using cgat (v.0.2.6)84.
Open reading frames (ORFs) were predicted using GeneMarkS (v.4.30)85 and their
taxonomy was annotated with a last common ancestor strategy as in Carradec
et al.86 ORFs were searched against a database composed of UniRef 9087, MMETSP
database88, and Virus-Host DB89 using DIAMOND (v.0.9.18)90. Selected hits were
then used to derive the last common ancestor of the query ORFs with the NCBI
taxonomy database. Clustering of contigs was performed using the R script pro-
vided in the CoMet workflow91 with coverage, GC content, and k-mer frequency as
information sources. The organism from which each cluster originated was
determined from the estimated phylogeny of the genes in the contigs belonging to
the cluster. Contigs belonging to bacterial-derived clusters were excluded from the
datasets and not used in downstream analyses.

We also performed a BLASTn (v.2.11.0) search against the organelle genomes of
Triparma laevis f. inornata92 to remove the organelle genome from assembled
contigs. Contigs that hit the organelle genome of Triparma laevis f. inornata with
E-values < 1e− 40 were excluded from our dataset as organelle genomes.

Genome annotations. For Triparma laevis f. inornata genome14, rRNA and tRNA
genes were predicted by Barrnap (v.0.6, http://www.vicbioinformatics.com/
software.barrnap.shtml) and tRNA-scan-SE (v.1.23)93, respectively. The protein
coding-genes were predicted by AUGUSTUS (v.3.2.2)94 with the RNA-seq data
mentioned above. First, the RNA-seq reads processed by fastx-toolkit (v.0.0.13,
http://hannonlab.cshl.edu/fastx_toolkit/) were mapped to the contig of the Tri-
parma laevis f. inornata nuclear genome and assembled into transcript contigs
using Tophat (v.2.1.1)95, Cufflinks (v.2.2.1)96 and Trinity (v.2.0.6)97, respectively.
The diatom protein sequences from Thalassiosira pseudonana16 and Phaeodacty-
lum tricornutum17 were subsequently aligned to the transcript contigs using
tBLASTn search (v.2.2.29) and Exonerate (v.2.4.0)98 for detecting CDS regions in
the Triparma laevis f. inornata genome. Finally, a total of 687 loci on the Triparma
laevis f. inornata contigs were selected as those carrying full-length CDSs and used
for parameter fitting in training hidden Markov models in AUGUSTUS. In gene
prediction, the mapping data from both RNA-seq reads and diatom protein
sequences were utilized as hints in AUGUSTUS.

For other genomes, tRNA genes were predicted using tRNAscan-SE (v.2.0.7)99.
Non-coding RNAs excluding tRNAs but including rRNAs were predicted with the
Rfam database using infernal (v.1.1.3)100. Repeats and transposable elements were
annotated and soft-masked using RepeatModeler (v.2.0.1)101 and RepeatMasker
(v.4.1.0)102. For Triparma verrucosa, Triparma retinervis and ‘Scaly parma’, the
protein-coding genes were predicted by BRAKER2103 with the RNA-seq data
mentioned above and a reference protein sequence database. We generated a
reference protein sequence database for BRAKER2 from OrthoDB104, MMETSP
database88 and Triparma laevis f. inornata protein sequences predicted previously.
Firstly, RNA-seq data were mapped to the contigs by STAR (v.2.7.3a)105,
generating a .bam file. Secondly, BRAKER2 was run in –etpmode with the
generated .bam file and the reference protein sequence database as the protein
hints. For Triparma laevis f. longispina, Triparma strigata, Triparma columacea
and Tetraparma gracilis, the protein-coding genes were predicted by BRAKER2
only with a reference protein sequence database. We updated the mentioned
reference protein sequence database with the predicted protein sequences form
Triparma verrucosa, Triparma retinervis, and ‘Scaly parma’, and generated a new
database. Finally, BRAKER2 was run in -epmode using the newly generated
reference protein sequence database as the protein hints.

The completeness of genome assemblies and gene predictions were evaluated
using BUSCO (v5.1.2)106 with the stramenopiles_odb10 dataset.

Functional annotation. For methodological consistency, we applied the same
annotation pipelines for our novel genomes and the genomes downloaded from
public databases. For each genome, we used CD-HIT (v.4.8.1)107 with the para-
meters -c 1 -aS 1 to remove protein sequences with 100% similarity for downstream
analysis. Genes were functionally annotated by InterProScan (v.5.26-65.0)108 and
eggNOG-Mapper (v.2.0.1)109 with the eggNOG database (v.5.0)110. Protein loca-
lization was predicted using MitoFates (v.1.1)111, TargetP (v.2.0)112, SignalP
(v.4.1)113, and ASAFIND (v.1.1.7)114. Protein functions and localizations were
manually curated for detailed analyses.

Phylogenetic analysis. For phylogenetic analysis using 18 S rRNA, we down-
loaded 18 S rRNA genes categorized as “Bolidomonas” from the SILVA database
(accessed May 2020)115. For ‘Scaly parma’, Triparma columacea and Triparma
retinervis, which are missing from downloaded dataset, we assembled 18 S rRNA
gene from raw DNA sequences data using PhyloFlash (v 3.4)116. We merged these
two datasets and removed shorter sequences than 900 bp and add some diatoms
sequences as outgroups. We aligned and masked the sequences using SSU-ALIGN
(v 0.1.1)117 with default parameters. A maximum likelihood tree was inferred with
the generated multiple sequence alignment by IQ-Tree2(v 2.2.0)118 with the
GTR+ I+G model. We performed 1,000 ultrafast bootstrap replicates.

For phylogenomic analysis, orthologous genes (OGs) were determined by
OrthoFinder (v.2.3.7)119 with protein sequences of 8 parmalean genomes, other
available 10 stramenopile genomes, and ochrophyte transcriptomes
(Supplementary Data 14) from the MMETSP database88 and Kessenich et al.120

Gene annotation was not available for the data from Kessenich et al.120 therefore,
coding sequences were annotated using TransDecoder (v.5.5.0) (https://github.
com/TransDecoder/TransDecoder). Only single-copy genes in each OG and genes
that were found in the 18 stramenopile genomes were retained for downstream
phylogenomic analysis, resulting in 175 OGs. Gene sequences within each OG were
aligned using MAFFT (v.7.453)121 in the linsi mode, and poorly aligned regions
from the multiple sequence alignment were removed by trimAl (v.1.4.1)122 in the
automated1 mode. The resulting supermatrix contained 55,777 amino acid
positions for 18 species, with 6.09 % missing data. A maximum likelihood tree was
inferred by RAxML (v.8.2.12)123 with the partition information of each gene and
the LG+ F model. We performed 1,000 bootstrap replicates and all bootstrap
values were 100, indicating full support.

Predictions of phago-mixotrophy using a gene-based model. Predicted protein
data from eight parmalean genomes and five diatom genomes were tested for
phagocytotic potential using a gene-based model described by Burns et al.28 To
determine the phagocytotic potential of parmaleans, we also tested the five tran-
scriptomes of the naked flagellate (bolidomonads) from the MMETSP database88

and Kessenich et al.120.

Phylogenetic analysis of silicon transporter domains. We used the sequence
data of SIT proteins from diatoms and ochrophytes provided by Durkin et al.54 in
addition to those of parmaleans determined in this study. Diatom and parmalean
SIT proteins are usually composed of a single SIT domain, but some contain more
than two domains. To analyse multiple domains at once, SIT domain regions were
determined using hmmscan (HMMERv.3.3.2)124 with PF03842 from Pfam using
the profile’s GA gathering cutoff (--cut_ga mode) and selected for downstream
analysis. Each SIT domain sequence was aligned using MAFFT (v.7.453)121 in the
linsi mode with default parameters and unreliable sequences were manually
removed. A maximum likelihood phylogenetic tree was inferred from this multiple
alignment using RAxML (v.8.2.12)123 with default parameters. The amino acid
substitution model was automatically determined to be the LG model by the
software. Bootstrap values were obtained based on 100 bootstrap replicates.

Identification of silicanin homologs. To find silicanin homologs in MMETSP
database88, and our genomes, we used BLASTp search (Blast+ v2.10.1) with Sin1
gene of Thalassiosira pseudonana as query and default parameters. Among the hit
sequences, we selected those with E-value < 1e-5 and >300 aa and finally obtained
1990 silicanin homologs.

Phylogenetic analysis of plastocyanin. We used hmmsearch (HMMER v.3.3)124

with TIGR02656.1 from TIGERFAMs using the profile’s GA gathering cutoff
(--cut_ga mode) to find plastocyanin genes in Uniref 9087, MMETSP database88,
and our genomes. The genes from MMETSP database clustered with 97% similarity
using CD-HIT (v.4.8.1)107. Unreliable sequences were removed manually. We next
obtained 716 plastocyanin genes of photosynthetic eukaryotes, cyanobacteria, and
cyanophages. Because of the large divergence of the sequences and small number of
alignable regions, we used gs2, a software to conduct the Graph Splitting (GS)
method125, which can resolve the early evolution of protein families using a graph-
based approach, to estimate the phylogenetic tree of plastocyanin. We ran the GS
method with 100 replicates using the Edge Perturbation method for statistically
evaluating branch reliability.
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Statistics and reproducibility. Significant differences in protein domain content
annotated by InterProScan between the compared genomes were identified using
Fisher’s exact test (two-sided) to calculate the p-value for the difference in the
number of genes with each InterPro domains between parmalean (n= 8) and
diatom genomes (n= 5). The p-values were corrected for multiple comparisons
using Bonferroni correction. Then, we manually selected and grouped the domains
that are involved in specific biological processes.

Most analyses in this study have been performed using R (v.3.6.1)126. All other
programs used in this study are provided in the Methods section.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
In this study we used several public genomic data of diatoms16,17,127,128 and other
stramenopiles129–133, as well as transcriptome data88,120 (Supplementary Data 15).
Sequence data generated during the current study are available in DDBJ bioprojects,
under accession number PRJDB14101 (RNA reads for Triparma laevis f. inornata),
PRJDB13844 (DNA reads for the other seven strains), and PRJDB13933 (RNA reads for
the other three strains). The assembly data analysed during the current study are also
available in the DDBJ repository, under accession numbers BLQM01000001-
BLQM01000902 (Triparma laevis f. inornata), BRXW01000001-BRXW01001055
(Triparma laevis f. longispina), BRXX01000001-BRXX01000659 (Triparma verrucosa),
BRXY01000001-BRXY01000634 (Triparma strigata), BRXZ01000001-BRXZ01008760
(Triparma retinervis), BRYA01000001-BRYA01001858 (Triparma columacea),
BRYB01000001-BRYB01007082 (Tetraparma gracilis), and BRYC01000001-
BRYC01001921 (‘Scaly parma’). The data underlying our findings and numerical source
data for graphs and charts are provided in Supplementary Data 1–15. The newly
generated 18 S rRNA gene sequences of Parmales from this study are available on our
website (https://www.genome.jp/ftp/db/community/parmales_diatoms/). All other data
are available from the corresponding author on reasonable request.
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