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On the Structure of Hrushovski’s Pseudoplanes
Associated to Irrational Numbers

Hirotaka Kikyo
Graduate School of System Informatics
Kobe University

Abstract

Let o be an irrational number, and a/b a reduced fraction. Suppose
2/3 < a <a/b<3/4and b is sufficiently large. Let B be a canonical twig
for a/b and A the set of all leaves in B. Let p € B be a good vertex of B over
A. Let M be the generic structure for (Ky, <) where f is the Hrushovski’s
log-like function associated to ¢. Assume that B is a closed subset of M. Let
D be the orbit of p over A in M. Then M = cl(D). Actually, we can prove
this only assuming 0 < & < a/b < 1.

1 Introduction

We show that Hrushovski’s pseudoplanes associated irrational numbers intro-
duced in his 1988 preprint [6] is a closure of an orbit of some point p over some
finite set A. The “rank” of the type of p over A can be arbitrarily small positive real
number. This statement is a weaker version of the monodimensionality introduced
by D. Evans, Z. Ghadernezhad, and K. Tent [4].

In this paper, we assume that the irrational number ¢ satisfies 2/3 < a <
3/4 instead of 1/2 < ¢ < 2/3 assumed in Hrushovski’s preprint [6]. With little
modification, we can prove the same statement assuing 1/2 < o < 2/3, or even
0 < a < 1. We essentially use notation and terminology from Baldwin-Shi [2]
and Wagner [15]. We also use some terminology from graph theory [3].

For a set X, [X]" denotes the set of all subsets of X of size n, and |X| the
cardinality of X.
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We recall some of the basic notions in graph theory we use in this paper.
These appear in [3]. Let G be a graph. V(G) denotes the set of vertices of G.
Vertices will be also called points. E(G) is the set of edges of G. E(G) is a
subset of [V(G)]?. |G| denotes |V (G)| and e(G) denotes |E(G)|. The degree of a
vertex v is the number of edges at v. A vertex of degree 1 is a leaf. G is a path
xox1 ... x if V(G) = {x0,x1,...,x} and E(G) = {xox1,x1x2,...,X;_1X¢} where
the x; are all distinct. xop and x; are ends of G. The number of edges of a path
is its length. A path of length O is a single vertex. G is a cycle xoxp ...Xx_1X0
ifk>3,V(G) = {x0,x1,...,x_1} and E(G) = {x0X1,X1X2, . . ., X_2Xk_1,Xk_1X0 }
where the x; are all distinct. The number of edges of a cycle is its length. A non-
empty graph G is connected if any two of its vertices are linked by a path in G.
A connected component of a graph G is a maximal connected subgraph of G. A
forest is a graph not containing any cycles. A tree is a connected forest.

To see a graph G as a structure in the model theoretic sense, it is a structure in
language {E'} where E is a binary relation symbol. V(G) will be the universe, and
E(G) will be the interpretation of E. The language {E} will be called the graph
language.

Suppose A is a graph. If X C V(A), A|X denotes the substructure B of A such
that V(B) = X. If there is no ambiguity, X denotes A|X. We usually follow this
convention. B C A means that B is a substructure of A. A substructure of a graph
is an induced subgraph in graph theory. A|X is the same as A[X] in Diestel’s book
[3].

Let A, B, C be graphs such that A C C and B C C. AB denotes C|(V(A) UV (B)),
ANBdenotes C|(V(A)NV(B)),and A— B denotes C|(V(A) -V (B)). f ANB =10,
E(A,B) denotes the set of edges xy such that x € A and y € B. We put ¢(A,B) =
|E(A,B)|. E(A,B) and e(A, B) depend on the graph in which we are working.

Let D be a graph and A, B, and C substructures of D. We write D = B®4 C if
D=BC,BNC=A, and E(D) =E(B)UE(C). E(D) = E(B) UE(C) means that
there are no edges between B— A and C —A. D is called a free amalgam of B and
C over A. If A is empty, we write D = B® C, and D is also called a free amalgam
of B and C.

Definition 1.1. Let o be a real number such that 0 < o < 1.

(1) For a finite graph A, we define a predimension function 6 by 6(A) = |A| —
e(A)a.

(2) Let A and B be substructures of a common graph. Put 6(A/B) = 6(AB) —
o(B).



Definition 1.2. Let A and B be graphs with A C B, and suppose A is finite.

A < B if whenever A C X C B with X finite then 6(A4) < §(X).

We say that A is closed in B if A < B. We also say that B is a strong extension
of A.

We say that A is almost closed in B, written A <~ B, if whenever A C X C B
with X finite then 6(A) < 6(X).

Let Ky be the class of all finite graphs A such that () < A.
Some facts about < appear in [2, 15, 16]. Some proofs are given in [11].

Fact 1.3. Let A and B be disjoint substructures of a common graph. Then §(A/B) =
0(A)+e(A,B).

Fact14. fA<BCDandCC DthenANC <BNC.
Fact 1.5. Let D =B®,C.

(1) 8(D/A)=6(B/A)+6(C/A).

(2) IfA < C then B < D.

3) IfA<Band A <C then A < D.

Let B, C be graphs and g : B — C a graph embedding. g is a closed embedding
of B into C if g(B) < C. Let A be a graph with A C Band A C C. g is a closed
embedding over A if g is a closed embedding and g(x) = x for any x € A.

In the rest of the paper, K denotes a class of finite graphs closed under isomor-
phisms.

Definition 1.6. Let K be a subclass of K. (K, <) has the amalgamation property
if for any finite graphs A, B,C € K, whenever g; : A — B and g, : A — C are closed
embeddings then there is a graph D € K and closed embeddings 4 : B— D and
g2:C — Dsuchthathjog| =hyog.

K has the hereditary property if for any finite graphs A, B, whenever A C B€ K
then A € K.

K is an amalgamation class if ¢ € K and K has the hereditary property and
the amalgamation property.

A countable graph M is a generic structure of (K, <) if the following condi-
tions are satisfied:

(1) If A C M and A is finite then there exists a finite graph B C M such that
ACB<M.
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(2) If AC M then A € K.

(3) Forany A, Be K, if A <M and A < B then there is a closed embedding of
B into M over A.

Let A be a finite structure of M. There is a smallest B satisfying A C B < M,
written cl(A). The set cl(A) is called the closure of A in M.

Fact 1.7 ([2, 15, 16]). Let (K,<) be an amalgamation class. Then there is a
generic structure of (K,<). Let M be a generic structure of (K,<). Then any
isomorphism between finite closed substructures of M can be extended to an au-
tomorphism of M.

Definition 1.8. Let K be a subclass of K. (K, <) has the free amalgamation
property if whenever D = B®4 C with B,C € K, A < Band A < C then D € K.

By Fact 1.5 (2), we have the following.

Fact 1.9. Let K be a subclass of Kq. If (K, <) has the free amalgamation property
then it has the amalgamation property.

Definition 1.10. Let R™ be the set of non-negative real numbers. Suppose f :
R* — R is a strictly increasing concave (convex upward) unbounded function.
Assume that f(0) =0, and f(1) < 1. We assume that f is piecewise smooth.
fi(x) denotes the right-hand derivative at x. We have f(x+h) < f(x)+ f,(x)h
for 2 > 0. Define K as follows:

K, = {4 €Ky | BCA= 3(B)> £(|B])}.

Note that if K is an amalgamation class then the generic structure of (Ky, <) has
a countably categorical theory [16].

A graph X is normal to f if 6(X) > f(|X]). A graph A belongs to K if and
only if U is normal to f for any substructure U of A.

2 Hrushovski’s Log-like Functions
Definition 2.1. Let o be a positive real number. x is called a best approximation

of a strictly from above with a denominator at most n if x is a smallest rational
number r such that r = k/d > o with d < n where k and d are positive integers.



Definition 2.2 ([6]). Let « be a positive real number. We define x,,, e, k,, d,, for
integers n > 1 by induction as follows: Put x; =2 and e; = 1. Assume that x, and
e, are defined. Let r, be the best approximation of « strictly from above with a
denominator at most e,. Let k,/d, be the reduced fraction satisfying k,/d, = ry.
Finally, let x,, 11 = x,, + &y, and e, -1 = e,, +d,.

Letap = (0,0), and a, = (x,,x, — e, &) forn > 1. Let fg be a function from R™
to R™ whose graph on interval [x,,x,1] with n > 0 is a line segment connecting
an and a, 1. We call fy a Hrushovski’s log-like function associated to o.

Fact 2.3 ([6]). Let fo be a Hrushovski’s log-like function and {x;}, {e;}, {ki},
{d;} sequences in the definition of fq.

Suppose C is an extension of B by x points and z edges, |B| > x, and x/z >
kn/d, for some n, and B is normal to fo. Then C is normal to fq.

Fact 2.4 ([6]). Let D=B®4C. If 6(A) < 8(B), 6(A) < 6(C), and A, B, C are
normal to fy then D is normal to f.

Fact 2.5 ([6]). Let & be a real number with 0 < o0 < 1. Then fy, is strictly increas-
ing and concave, and (Ky,,<) has the free amalgamation property. Therefore,
there is a generic structure of (K, ,<). Any one point structure is closed in any
structure in Ky, . If o is rational then fq is unbounded.

The following is easy.

Lemma 2.6. Let C = A®, B where p is a single vertex and A,B € Ky. Then
C € Ky. Any finite forests belong to Ky.

Lemma 2.7. Suppose 2/3 < o < 3/4.

(1) The first several terms of the sequences defining fo, are given by the follow-
ing chart with (ks,ds) being either (3,4) or (5,7):

12 3 4 5 8
ei12348
k11 1 1 3 ks
|1 1 1 4 ds

(2) Suppose C is an extension of B by x points and z edges, 5 < |B|, 3/4 < x/z,

and B is normal to f. Then C is normal to fq.
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,z2<(4/7)|B

(3) Suppose C is an extension of B by x points and z edges, 5 < |B
o < x/z, and B is normal to fy. Then C is normal to f.

’

Proof. (1) is straightforward. (2) holds by Fact 2.3 and (1).

(3) Choose i satisfying x; < |B| < x;11. Since x4 =5 < |B|, we have 4 < x;. Then
xi—1 <eand k;/d; < 3/4. Also, we have d; < e;. So, |B| < xjy1 =xi+ki =
xi+ (ki/di)d; < (e;+ 1)+ (3/4)e; = (7/4)e; + 1. Hence, |B| < (7/4)e; and thus
z<(4/7)|B| < ei. By the choice of k;/d;, we have k;/d; < x/z. Since x; < |B|, C
is normal to f by Fact 2.3. U

3 Special Structures

Definition 3.1. Let 2/k and /' /K’ be reduced fractions of non-negative integers.
(h+H)/(k+K') is called a mediant of h/k and ' /k'. We say that (h/k,h'/K') is a
Farey pair if W'k —hk' = 1. Note that 0 < h/k < ' /K.

The following lemma is well-known.
Lemma 3.2. Let (h/k,i' /k') be a Farey pair and u, v positive integers.
(1) Ifh/k <u/v<Hh /K then k+k <v.

(2) Let " /K" be the mediant of h/k and I’ /k'. Then (h/k,h" /K" ) and (h" /K" W |K)

are Farey pairs.

Definition 3.3. Let u/v be a reduced fraction of positive integers. A graph W is
called a general twig for u/v if the number of edges of W is v, the number of
non-leaf vertices of W is u, and the set of all leaves of W is almost closed in W
with respect to §,/,. A general twig W for u/v is called a twig for u/v if there is
apath P = pg--- pr in W such that pg is a leaf of W, p; is a non-leaf vertex of W,
and the paths from leaves of W other than pg to P are independent paths. The path
P is called the main path of the twig W, pg the left end of the main path of W, and
P the right end of the main path of W. Note that the left end of the main path of
a twig is a leaf of the twig, and the right end of the main path is a non-leaf vertex
of the twig. A twig is a twig for some reduced fraction.

Lemma 3.4. Let (h/k,I' k') be a Farey pair, A a general twig for h' /K’ and B a
general twig for h/k. Suppose D = A @, B where c is a non-leaf vertex of A as
well as a leaf of B. Then D is a general twig for (h+h')/(k+K).



Proof. First of all, it is clear that the number of all edges in D is k+k’. Since
vertex c is a leaf in B as well as a non-leaf vertex in A, the number of all non-leaf
vertices in Dis h+ /.

Let F be the set of all leaves of D, X a proper substructure of D with FF C X.
Put X4 =XNAand Xg =XNB. Then X =X, @ Xp if c Z X and X = X4 @, Xp
if ¢ € X. Let u be the number of all non-leaf vertices of A in X, v the number of
all edges of A in X, u’ the number of all non-leaf vertices of B in X, v/ the number
of all edges of B in X. Since c is a non-leaf vertex in A as well as a leaf in B, the
number of non-leaf vertices of D in X is u + ' and the number of edges of D in
Xisv+V. So, 6(X/F)=(u+u')—(v+v)ox where a = (h+ 1) /(k+k'). We
have h/k < h'/k' < u/v because A is a general twig for i’ /k’, and We also have
h/k < u'/V' becuase B is a general twig for h/k. Hence, h/k < (u+u')/(v+V').
Since the number of all edges in D is k+ k', X is a proper substructure of D, and
D is connected, we have v+V < k+k’. Note that 4/k and (h+h') /(k+k) form a
Farey pair by Lemma 3.2 (2). Hence, we have (h+/')/(k+k') < (u+u')/(v+V)
by Lemma 3.2 (1). Since v+V' < k+ k', we cannot have (u+u')/(v+V') =
(h+h)/(k+K). OJ

Lemma 3.5. (1) A path of length 4 is a general twig for 3 /4. It can be consid-

ered as a twig for 3 /4 having a main path of length 2 and a uniform height
2. This twig will be called a 2-twig for 3 /4.

(2) A path of length 3 is a general twig for 2/3. It can be considered as a twig
for 2/3 having a main path of length 1 and a uniform height 2. This twig
will be called a 1-twig for 2/3.

Definition 3.6. Two twigs are said to be isomorphic twigs if there is a graph
isomorphism between them which preserves the main paths. A graph W is called
a concatenation of two twigs W and W, if W = W| ®. W, where W/ is a twig
isomorphic to W;, W, is a twig isomorphic to W,, and c is the left end of the
main path of W/ as well as the right end of the main path of W,. A graph W =
Wi @p, Wa®@p, + -+ @p, | W is called a chain of twigs if each W; is a twig and each
pi is aright end of the main path of W; as well as the right end of the main path of
Wiprfori=1,..,k—1. W ®, W2 ®), e Qp o Wi with j < k will be called a
left prefix of W. W is said to be a chain of twigs satisfying certain property if each
W; has the property. For example, W is a chain of twigs for 2/3 if each W; is a
twig for 2/3. Let pg be the right end of the main path of W; and py the left end of
the main path of Wy.. The path from pg to p; in W is called the main path of W, pg
the left end of the main path of W, p; the right end of the main path of W. Note
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that the paths from leaves of W other than pg to P are independent paths. We say
that a chain of twigs has a uniform height n if the distance from any leaves other
than the left end of the main path is n.

Lemma 3.7. Let (h/k,h' /k') be a Farey pair, W a twig for h/k, and W' a twig for
W /K. Let u/v be a reduced fraction with h/k < u/v < h'/K'. Then there is a twig
for u/v which is also a chain of twigs isomorphic to W or W'.

Proof. We prove the lemma by induction on v — (k+k’). Let W” be a concatena-
tion of W and W'. Let & /k” be the mediant of //k and A’ /K.

Suppose u/v="h"/k". Then W” is a twig for u/v by Lemma 3.4. We have the
lemma in this case.

Suppose u/v #h"/K". Then h/k <u/v <h' /K" or W' /K" <u/v <H' [k

Case h/k <u/v < h'/k". Since k" =k+k' >k, we have v — (k+ k") <
v— (k+k’). By induction hypothesis, there is a twig W’ for u/v which is also a
chain of twigs isomorphic to W or W”. Since W” is a concatenation of W and W/,
W' is also a chain of twigs isomorphic to W or W’.

Case 1" /K" < u/v < h'/K'. The proof for this case is similar to the proof for
the previous case. O

Definition 3.8. Let a/b be a reduced fraction with 2/3 < a/b < 3/4. A twig for
a/b is called a canonical twig if it is a chain of twigs isomorphic to a 2-twig for
4/3 or a 1-twig for 2/3. Canonical twigs exist for any such a/b.

4 Almost Monodimensionality

In this section, there are many cases that we want to show some structures are
normal to f. Note that any trees are normal to f and any single vertex is closed in
structures normal to f. Also, the free amalgamation property holds for the class
of structures normal to f. So, if a structure is normal to f then any extension by a
tree over a single vertex is also normal to f.

Definition 4.1. Let B be a graph and A a substructure of B. A substructure X of B
is said to be smooth over A if any leaves of X belong to A.

Definition 4.2. Let B be a graph and A a substructure of B, and p € B. d§(p/A)
denotes the smallest value of 64 (X /A) where A C X C B and there is a path from
ptoAinX.



Definition 4.3. Let B be a graph, A a substructure of B, and 3 a real number. B is
called a 3/4-extension of A if x = |B| —|A| and z = e(B) — e(A) then x/z > 3 /4.

Definition 4.4. Suppose A < B. p € B is called a good vertex of B over A if
p € B— A and whenever p € X C B with X NA # 0 then either 7 < |X —A| or
X ®p, pp1p2p3 is a 3 /4-extension of X'p3 for some X' C X with X NA C X'. Here,
pp1p2p3 is a path of length 3 with ends p and ps.

Proposition 4.5. Let o be an irrational number, and a/b a reduced fraction. Sup-
pose 2/3 < a < a/b < 3/4 and b is sufficiently large. Let B be a canonical twig
for a/b and A the set of all leaves in B. Then there is a good vertex of B over A
whose distance from A is 3.

Proof. Note that for any reduced fractions a'/b’ with 2/3 < d'/b' < 3/4, the
canonical twig for @’ /b’ begins from the left end with a twig for 3/4 and ends
with a twig for 2/3 at the right end. Since b is sufficiently large, the canonical
twigs B for a/b look like the following:

IR

Hence, there is a substructure of B which is isomorphic to one of the following

BRIl

Let us assume that there is a substructure of B isomorphic to (1) above. Choose
a vertex p as indicated in the figure. We show that p is a good vertex of B over A.

Let X be a smooth and connected substructure of B over pA with p € X and
X NA # 0. Suppose that X does not contain a vertex in B adjacent to p. Then
X contains the other vertex in B adjacent to p, say p’. Then X ®, pp1pap3 =
(X — p) ® p'pp1p2p3. Therefore, it is a 3/4-extension of (X — p)p3. See (3) in
the figure below.

Now, suppose that X contains both vertices adjacent to p. If X contains at least
5 vertices from the main path of B, then X contains at least 2 more paths from the
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main path of B to A. Each such path has length 2 and thus contains an inner vertex.
Hence X — A contais at least 7 vertices. See (7) in the figure below.

If X contains exactly 3 vertices from the main path of B, then X &, pp1pap3
looks like (4) in the figure below. It is an extension of (X NA)p3 by 7 vertices and
9 edges. Since 7/9 > 3/4, it is a 3 /4-extension of (X NA)ps.

If X contains exactly 4 vertices from the main path of B, (a) X is isomorphic
to (5) or (b) X ®, pp1p2p3 is isomorphic to (6) in the figure below. In the case
(a), X — A contains 7 vertices. In the case (b), X ®, ppi1pap3 is an extension
of (X NA)psz by 8 vertices and 10 edges. Since 8/10 =4/5 >3/4, itis a 3/4-
extension of (X NA) p3

jﬂ ;WTH P?m

We have shown that vertex p is a good vertex of B over A when we choose p
as in (1). When we choose p as in (2), we can show that p is a good vertex of B
over A similarly. l

Lemma 4.6. Let a be an irrational number with 2/3 < o« < 3/4, u/v a reduced
fraction with u/v < o such that whenever u/v <u'/v' < a thenv <V'. Let f = fo
be the Hrushovski’s log-like function associated to a. Assume that B € Ky with
A < B and there is a good vertex b of B over A, W is a canonical twig for u/v, C the
set of all leaves of W, and k = |C|. Let D = (By®@4 B @4 By ®4 ... Q@4 Br_1) @cW
where C = {bo,by,...,b;_1}, B; is isomorphic to B over A and b; € B is the
isomorphic image of b for each i =0, ..., k— 1. Then for sufficiently large v, D
belongs to Ky, and there is a good vertex p of D over A such that df,(p/A) >
dg(b/A) +min{dg(b/A),3(1 — o)}

Proof. We show that D belongs to Ky by choosing v sufficiently large. It is
straightforward to prove other statements.

The b; are the leaves of W. We can assume that by is the left end of the main
path of W, and by, by, ..., by are ordered from left to right respecting the order
of vertices in the main path of W connected to b; by a path of length 2 in W.



T

bibiy1 biyr  bi_o bi_

For j with 1 < j <k, let Dj = (BO RABI ®aABy®4y ... ®AB]') ®Cj WJ' where
Cj ={bo,b1,...,b;}, and W, is the left prefix of W with the right most leaf b;.
Note that D = Dy._;.

Now, let X be a substructure of D. Our aim is to show that X is normal to f.
By Fact 2.4 (the free amalgamation property for the structures normal to f), we
can assume that X NA # 0, X is smooth over A, and X N W is connected.

PutY; = (X NBy) @xra - @xna (X NBj). Then Y; € Ky for any j. In partic-
ular, Y| > 7k’. Also, the number of all edges in Wy is at most 4k" and Cpr < Wy
By Lemma 2.7 (3), X N Dy = Y ®c,, Wy is normal to f.

Now, consider X N Dy 1. There are two cases for Wy 1: Wy =Wy ®), Py
where Py is a path of length 4 or a path of length 3 with ends p € Wy and by, ;.
We have Dy = (Dy @4 By+1) @ppy,, P-

If the length is 4, then X N Dy is a 3/4-extension of (X NDy) @xna (X N
By 1), which is normal to f. Hence, X N Dy is also normal to f by Lemma 2.7
(2). If the length is 3, then X N Dy is a 3/4-extension of (X NDy) @xna X' for
some X’ with X NA C X' C X N By 1 because by is a good vertex of By, | over
A. X NDy ®xna X' is normal to f by Fact 2.4, so is X N Dy,; by Lemma 2.7 (2).
Repeating the similar arguments, we see that X N Dy_ is normal to f.

The essential remaining case is the case where W C X and |[X NB j\ > 7 for all
J. Since v is sufficiently large, We can assume 0 > 84(W /C) > —84(B/A). We
can also assume that k is very large. Then X N D is normal to f. 0

Now, we prove the main theorem.

Theorem 4.7. Let « be an irrational number, and a/b a reduced fraction. Sup-
pose 2/3 < a < a/b<3/4 and b is sufficiently large. Let B be a canonical twig
for a/b and A the set of all leaves in B. Let p € B be a good vertex of B over A.
Let M be the generic structure for (Kz, <) where f is the Hrushovski’s log-like
Junction associated to o. Assume that B is a closed subset of M. Let D be the
orbit of p over A in M. Then M = cl(D).

Proof. We first claim that any points in M independent from A over the empty set
belong to cl(D).

Note that a good vertex of B over A exists by Proposition 4.5. Let By < M be
the embedded image of D obtained by By Lemma 4.6 from B. Then B C cl(D,A),
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A < By, there is a good vertex p; of By over A. Repeating this process, we get
A <Bj <B; <...<Bj<M for any natural number j, and a good vertex p; of B;
over A for each i < j. Each p;, for i belongs to cl(Orb(p;/A)). Therefore, each
pi+1 for i belongs to cl(Orb(p/A)).

Let € = min{d}(p/A),3(1 — a)}. By the structures of B;, di (p1/A) > 2¢,
dg,(p2/A) > 3¢, and so on. We have dg, (pj/A) > (j+1)e. For sufficiently large
J» we have dg,j(pj/A) > 1. Therefore, there is j such that d(p;/A) = 1 =d(pj)
and p; € cl(D). Suppose x is not adjacent to vertices in A and xA < M. Since
pjA < M and xA is isomorphic to p;A, there is an automorphism of M which
sends x to p; and fixes A pointwise. Hence, x belong to cl(D) also because D is
invariant under the automorphisms fixing A pointwise. We have shown the first
claim.

Choose a reduced fraction u/v with /v < a which is a good approximation
of a from below. Using twigs for u/v, make a big tree W such that there is a root
x of W such that for all the leaves y of W, yx is not an edge of W, and yx < W.

Now, let x € M. Consider cl(xA). Consider W ®, cl(xA) > cl(xA). We can
embed W ®, cl(xA) into M over cl(xA) as a closed structure. Let y be a leaf of W.
Suppose yA C X C W @, cl(xA). If x € X, then X = (X NW) ® (X Ncl(xA)). In
this case, y < (X NW) and A < X Ncl(xA). Hence, (yA) < 6(X) unless yA = X.
Suppose x € X. X = (X NW) ®, (X Ncl(xA)). We have & (yx) < 6(X NW) unless
XNW =yx. Also, we have §(A) < §(XNcl(xA)) sinceA <M andA C X Ncl(xA).

Suppose yx C X NW. We have

S(X) = S(XNW) +8(XNecl(xA)) — 1 > S(yx) — 1+ 8(A) = 1 + §(A).

Therefore, yA is closed in W @, cl(xA), and thus yA < M. This shows that all the
leaves of W belong to cl(D). So, x belongs to cl(D). O
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