
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

On the Structure of Hrushovski's
Pseudoplanes Associated to
Irrational Numbers (Model
theoretic aspects of the notion of
independence and dimension)

Kikyo, Hirotaka

Kikyo, Hirotaka. On the Structure of Hrushovski's Pseudoplanes Associated to Irrational Numbers (Model theoretic
aspects of the notion of independence and dimension). 数理解析研究所講究録 2023, 2249: 83-96

2023-04

http://hdl.handle.net/2433/285442



83

On the Structure of Hrushovski's Pseudoplanes 
Associated to Irrational Numbers 

Hirotaka Kikyo 
Graduate School of System Informatics 

Kobe University 

Abstract 

Let a be an irrational number, and a/b a reduced fraction. Suppose 
2/3 <a< a/b < 3/4 and bis sufficiently large. Let B be a canonical twig 
for a/ b and A the set of all leaves in B. Let p E B be a good vertex of B over 
A. Let M be the generic structure for (Kt,<) where f is the Hrushovski's 
log-like function associated to a. Assume that Bis a closed subset of M. Let 
D be the orbit of p over A in M. Then M = cl(D). Actually, we can prove 
this only assuming O <a< a/b < 1. 

1 Introduction 

We show that Hrushovski's pseudoplanes associated irrational numbers intro­
duced in his 1988 preprint [6] is a closure of an orbit of some point p over some 
finite set A. The "rank" of the type of p over A can be arbitrarily small positive real 
number. This statement is a weaker version of the monodimensionality introduced 
by D. Evans, Z. Ghademezhad, and K. Tent [4]. 

In this paper, we assume that the irrational number a satisfies 2/3 < a < 
3/4 instead of 1/2 < a< 2/3 assumed in Hrushovski's preprint [6]. With little 
modification, we can prove the same statement assuing 1/2 <a< 2/3, or even 
0 < a < l. We essentially use notation and terminology from Baldwin-Shi [2] 
and Wagner [15]. We also use some terminology from graph theory [3]. 

For a set X, [X]n denotes the set of all subsets of X of size n, and IXI the 
cardinality of X. 
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We recall some of the basic notions in graph theory we use in this paper. 
These appear in [3]. Let G be a graph. V(G) denotes the set of vertices of G. 
Vertices will be also called points. E ( G) is the set of edges of G. E ( G) is a 
subset of [V ( G) ]2. I GI denotes IV ( G) I and e( G) denotes IE ( G) 1- The degree of a 
vertex vis the number of edges at v. A vertex of degree 1 is a leaf G is a path 
xox1 ... xk if V(G) = {xo,x1, ... ,xk} and E(G) = {xox1,x1x2, ... ,xk-1xd where 
the Xi are all distinct. xo and xk are ends of G. The number of edges of a path 
is its length. A path of length O is a single vertex. G is a cycle xox1 ... Xk-IXO 

if k 2: 3, V(G) = {xo,x1, ... ,xk-l} and E(G) = {xox1,x1x2, ... ,xk-2Xk-l,Xk-lxo} 
where the Xi are all distinct. The number of edges of a cycle is its length. A non­
empty graph G is connected if any two of its vertices are linked by a path in G. 
A connected component of a graph G is a maximal connected subgraph of G. A 
forest is a graph not containing any cycles. A tree is a connected forest. 

To see a graph G as a structure in the model theoretic sense, it is a structure in 
language { E} where E is a binary relation symbol. V ( G) will be the universe, and 
E ( G) will be the interpretation of E. The language { E} will be called the graph 
language. 

Suppose A is a graph. If X ~ V (A), A IX denotes the substructure B of A such 
that V(B) = X. If there is no ambiguity, X denotes AIX. We usually follow this 
convention. B ~ A means that Bis a substructure of A. A substructure of a graph 
is an induced subgraph in graph theory. AIX is the same as A[X] in Diestel's book 
[3]. 

LetA, B, Cbe graphs such thatA ~ C andB ~ C. AB denotes Cl(V(A)UV(B)), 
AnB denotes Cl(V(A) nV(B)), andA-B denotes Cl(V(A)-V(B)). If AnB = 0, 
E(A,B) denotes the set of edges xy such that x EA and y EB. We put e(A,B) = 
IE(A,B)I. E(A,B) and e(A,B) depend on the graph in which we are working. 

Let D be a graph and A, B, and C substructures of D. We write D = B ®AC if 
D = BC, BnC =A, and E(D) = E(B) UE(C). E(D) = E(B) UE(C) means that 
there are no edges between B -A and C -A. Dis called a free amalgam of B and 
Cover A. If A is empty, we write D = B ® C, and Dis also called a free amalgam 
ofB andC. 

Definition 1.1. Let a be a real number such that O < a < 1. 

(1) For a finite graph A, we define a predimension function 8 by 8(A) = IAI -
e(A)a. 

(2) Let A and B be substructures of a common graph. Put 8(A/B) = 8(AB) -
8(B). 
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Definition 1.2. Let A and B be graphs with A S: B, and suppose A is finite. 
A < B if whenever A £; X S: B with X finite then 8 (A) < 8 (X). 
We say that A is closed in B if A < B. We also say that Bis a strong extension 

of A. 
We say that A is almost closed in B, written A<- B, if whenever A£; X £; B 

with X finite then 8(A) < 8(X). 

Let Ka be the class of all finite graphs A such that (I) < A. 
Some facts about< appear in [2, 15, 16]. Some proofs are given in [11]. 

Fact 1.3. Let A and B be disjoint substructures of a common graph. Then 8 (A/ B) = 
8(A) +e(A,B). 

Fact 1.4. If A < B S: D and C S: D then An C < B n C. 

Fact 1.5. Let D = B 0A C. 

(1) 8(D/A) = 8(B/A) + 8(C/A). 

(2) If A < C then B < D. 

(3) If A < Band A < C then A < D. 

Let B, C be graphs and g : B--+ Ca graph embedding. g is a closed embedding 
of B into C if g(B) < C. Let A be a graph with As:;; Band As:;; C. g is a closed 
embedding over A if g is a closed embedding and g(x) = x for any x EA. 

In the rest of the paper, K denotes a class of finite graphs closed under isomor­
phisms. 

Definition 1.6. Let K be a subclass of Ka. (K, <) has the amalgamation property 
if for any finite graphsA,B,C EK, whenever g1 :A-+ B andg2 : A-+ Care closed 
embeddings then there is a graph DE Kand closed embeddings h1 : B--+ D and 
g2 : C--+ D such that h1 o g1 = h2 o g2. 

K has the hereditary property if for any finite graphs A, B, whenever A S: BEK 
then A EK. 

K is an amalgamation class if (I) E K and K has the hereditary property and 
the amalgamation property. 

A countable graph Mis a generic structure of (K, <) if the following condi­
tions are satisfied: 

(1) If A S: M and A is finite then there exists a finite graph B S: M such that 
A S:B <M. 



86

(2) If A~ M then A EK. 

(3) For any A, B E K, if A < M and A < B then there is a closed embedding of 
B into M over A. 

Let A be a finite structure of M. There is a smallest B satisfying A ~ B < M, 
written cl(A). The set cl(A) is called the closure of A in M. 

Fact 1.7 ([2, 15, 16]). Let (K, <) be an amalgamation class. Then there is a 
generic structure of (K, <). Let M be a generic structure of (K, <). Then any 
isomorphism between finite closed substructures of M can be extended to an au­
tomorphism of M. 

Definition 1.8. Let K be a subclass of Ka. (K, <) has the free amalgamation 
property if whenever D = B 0A C with B, CE K, A <Band A < C then D E K. 

By Fact 1.5 (2), we have the following. 

Fact 1.9. Let K be a subclass ofKa. If (K, <) has the free amalgamation property 
then it has the amalgamation property. 

Definition 1.10. Let JR+ be the set of non-negative real numbers. Suppose f: 
JR+ ➔ JR+ is a strictly increasing concave (convex upward) unbounded function. 
Assume that f(O) = 0, and f(l) s 1. We assume that f is piecewise smooth. 
f~(x) denotes the right-hand derivative at x. We have f(x+ h) s f(x) + f~(x)h 
for h > 0. Define Kt as follows: 

Kt= {A E Ka I B ~A ⇒ 8(B) 2': f(IBI)}. 

Note that if Kt is an amalgamation class then the generic structure of (Kt, <) has 
a countably categorical theory [16]. 

A graph Xis normal to f if 8(X) 2': f(IXI). A graph A belongs to Kt if and 
only if U is normal to f for any substructure U of A. 

2 Hrushovski's Log-like Functions 

Definition 2.1. Let a be a positive real number. x is called a best approximation 
of a strictly from above with a denominator at most n if x is a smallest rational 
number r such that r = k/d > a with d Sn where k and dare positive integers. 



87

Definition 2.2 ([6]). Let a be a positive real number. We define Xn, en, kn, dn for 
integers n ~ 1 by induction as follows: Put x1 = 2 and e1 = 1. Assume that Xn and 
en are defined. Let rn be the best approximation of a strictly from above with a 
denominator at most en. Let kn/dn be the reduced fraction satisfying kn/dn = rn. 
Finally, let Xn+l = Xn + kn, and en+l =en+ dn. 

Letao = (0,0), and an= (xn,Xn -ena) for n ~ 1. Let fa be a function from JR+ 
to JR+ whose graph on interval [xn,Xn+1l with n ~ 0 is a line segment connecting 
an and an+l· We call fa a Hrushovski's log-like function associated to a. 

Fact 2.3 ([6]). Let fa be a Hrushovski's log-like function and {xi}, { ei}, {ki}, 
{di} sequences in the definition off a-

Suppose C is an extension of B by x points and z edges, IBI ~ Xn and x/z ~ 
kn/ dnfor some n, and Bis normal to fa- Then C is normal to fa-

Fact 2.4 ([6]). Let D = B 0A C. If 8(A) < 8(B), 8(A) < 8(C), and A, B, Care 
normal to fa then Dis normal to fa-

Fact 2.5 ([6]). Let a be a real number with 0 < a< 1. Then fa is strictly increas­
ing and concave, and (KJa, <) has the free amalgamation property. Therefore, 
there is a generic structure of (Kia,<). Any one point structure is closed in any 
structure in Kia· If a is rational then fa is unbounded. 

The following is easy. 

Lemma 2.6. Let C = A ®p B where p is a single vertex and A,B E K1. Then 
C E K1- Any finite forests belong to Ki. 

Lemma 2.7. Suppose 2/3 <a< 3/4. 

(1) The first several terms of the sequences defining fa are given by the follow­
ing chart with (ks,ds) being either (3,4) or (5, 7): 

Xi 2 3 4 5 8 
ei 1 2 3 4 8 
ki 1 1 1 3 ks 
di 1 1 1 4 ds 

(2) Suppose C is an extension of B by x points and z edges, 5 ~ IBI, 3/4 ~ x/z, 
and Bis normal to fa- Then C is normal to fa-
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(3) Suppose C is an extension of B by x points and z edges, 5 S IBI, z S ( 4 /7) IBI, 
a< x/z, and Bis normal to fa• Then C is normal to fa• 

Proof (1) is straightforward. (2) holds by Fact 2.3 and (1). 
(3) Choose i satisfying Xi S IBI < Xi+l· Since x4 = 5 S IBI, we have 4 S Xi. Then 
Xi - 1 S ei and ki/di S 3/4. Also, we have di S ei. So, IBI < Xi+l =Xi+ ki = 
Xi+ (ki/di)di S (ei + 1) + (3/4)ei = (7 /4)ei + 1. Hence, IBI S (7 /4)ei and thus 
z S (4/7)IBI S ei. By the choice of ki/di, we have ki/di S x/z. Since Xi S IBI, C 
is normal to fa by Fact 2.3. □ 

3 Special Structures 

Definition 3.1. Let h/k and h' /k' be reduced fractions of non-negative integers. 
(h + h')/(k+ k') is called a mediant of h/k and h' /k'. We say that (h/k,h' /k') is a 
Farey pair if h'k-hk' = 1. Note that OS h/k < h' /k'. 

The following lemma is well-known. 

Lemma 3.2. Let ( h / k, h' / k') be a Farey pair and u, v positive integers. 

(1) lf h/k < u/v < h' /k' then k+k' s v. 

(2) Leth" /k'' be the mediant ofh/k and h' /k'. Then (h/k, h" /k") and (h" /k",h' /k') 
are Farey pairs. 

Definition 3.3. Let u/v be a reduced fraction of positive integers. A graph Wis 
called a general twig for u/v if the number of edges of W is v, the number of 
non-leaf vertices of W is u, and the set of all leaves of W is almost closed in W 
with respect to Du/v· A general twig W for u/v is called a twig for u/v if there is 
a path P = Po · · · Pk in W such that Po is a leaf of W, Pk is a non-leaf vertex of W, 
and the paths from leaves of W other than Po to P are independent paths. The path 
P is called the main path of the twig W, Po the left end of the main path of W, and 
Pk the right end of the main path of W. Note that the left end of the main path of 
a twig is a leaf of the twig, and the right end of the main path is a non-leaf vertex 
of the twig. A twig is a twig for some reduced fraction. 

Lemma 3.4. Let (h/k,h' /k') be a Farey pair, A a general twig for h' /k' and Ba 
general twig for h / k. Suppose D = A ®c B where c is a non-leaf vertex of A as 
well as a leaf of B. Then Dis a general twig for (h+h')/(k+k'). 
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Proof First of all, it is clear that the number of all edges in D is k + k'. Since 
vertex c is a leaf in Bas well as a non-leaf vertex in A, the number of all non-leaf 
vertices in D is h + h'. 

Let F be the set of all leaves of D, X a proper substructure of D with F £; X. 
PutXA =XnA andX8 =XnB. ThenX =XA ®Xs if c tj_ X andX =XA ®cXB 

if c EX. Let u be the number of all non-leaf vertices of A in X, v the number of 
all edges of A in X, u' the number of all non-leaf vertices of B in X, v' the number 
of all edges of Bin X. Since c is a non-leaf vertex in A as well as a leaf in B, the 
number of non-leaf vertices of Din Xis u + u' and the number of edges of Din 
Xis v+v'. So, o(X/F) = (u+u')-(v+v')a where a= (h+h')/(k+k'). We 
have h/k < h' /k' :S: u/v because A is a general twig for h' /k', and We also have 
h/k :s; u' /v' becuase Bis a general twig for h/k. Hence, h/k < (u+u')/(v+v'). 
Since the number of all edges in D is k + k', X is a proper substructure of D, and 
Dis connected, we have v+v' < k+k'. Note that h/k and (h+h')/(k+k') form a 
Farey pair by Lemma 3.2 (2). Hence, we have (h+h')/(k+k') :S: (u+u')/(v+v') 
by Lemma 3.2 (1 ). Since v + v' < k + k', we cannot have ( u + u') / ( v + v') = 
(h+h')/(k+k'). □ 

Lemma 3.5. (1) A path of length 4 is a general twig for 3/4. It can be consid-
ered as a twig for 3 / 4 having a main path of length 2 and a uniform height 
2. This twig will be called a 2-twigfor 3/4. 

(2) A path of length 3 is a general twig for 2/3. It can be considered as a twig 
for 2/3 having a main path of length 1 and a uniform height 2. This twig 
will be called a 1-twigfor 2/3. 

Definition 3.6. Two twigs are said to be isomorphic twigs if there is a graph 
isomorphism between them which preserves the main paths. A graph W is called 
a concatenation of two twigs W1 and W2 if W = W{ ®c W~ where W{ is a twig 
isomorphic to W1, W~ is a twig isomorphic to W2 , and c is the left end of the 
main path of W{ as well as the right end of the main path of W~. A graph W = 
W1 ®p1 W2 ®p2 ···®Pk-I Wk is called a chain of twigs if each Wi is a twig and each 
Pi is a right end of the main path of Wi as well as the right end of the main path of 
"'i+1 for i = 1, ... , k-1. W1 ®p1 W2 ®p2 • • • ®pj-1 Wj with j :S: k will be called a 
left prefix of W. W is said to be a chain of twigs satisfying certain property if each 
W; has the property. For example, W is a chain of twigs for 2/3 if each W; is a 
twig for 2/3. Let p 0 be the right end of the main path of W1 and Pk the left end of 
the main path of Wk. The path from Po to Pk in W is called the main path of W, Po 

the left end of the main path of W, Pk the right end of the main path of W. Note 
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that the paths from leaves of W other than Po to P are independent paths. We say 
that a chain of twigs has a uniform height n if the distance from any leaves other 
than the left end of the main path is n. 

Lemma 3.7. Let (h/k,h' /k') be a Farey pair, W a twig for h/k, and W' a twig for 
h' /k'. Let u/v be a reduced fraction with h/k < u/v < h' /k'. Then there is a twig 
for u/v which is also a chain of twigs isomorphic to W or W'. 

Proof We prove the lemma by induction on v - ( k + k'). Let W" be a concatena­
tion of W and W'. Let h" / k" be the mediant of h / k and h' / k'. 

Suppose u/v = h" /k". Then W" is a twig for u/v by Lemma 3.4. We have the 
lemma in this case. 

Suppose u/v -=I- h" /k''. Then h/k < u/v < h" /k'' or h" /k" < u/v < h' /k'. 
Case h/k < u/v < h"/k''. Since k" = k+k' > k', we have v- (k+k") < 

v - (k + k'). By induction hypothesis, there is a twig W"' for u/v which is also a 
chain of twigs isomorphic to W or W". Since W" is a concatenation of W and W', 
W"' is also a chain of twigs isomorphic to W or W'. 

Case h" /k" < u/v < h' /k'. The proof for this case is similar to the proof for 
the previous case. □ 

Definition 3.8. Let a/b be a reduced fraction with 2/3 < a/b < 3/4. A twig for 
a/bis called a canonical twig if it is a chain of twigs isomorphic to a 2-twig for 
4/3 or a I-twig for 2/3. Canonical twigs exist for any such a/b. 

4 Almost Monodimensionality 

In this section, there are many cases that we want to show some structures are 
normal to f. Note that any trees are normal to f and any single vertex is closed in 
structures normal to f. Also, the free amalgamation property holds for the class 
of structures normal to f. So, if a structure is normal to f then any extension by a 
tree over a single vertex is also normal to f. 

Definition 4.1. Let B be a graph and A a substructure of B. A substructure X of B 
is said to be smooth over A if any leaves of X belong to A. 

Definition 4.2. Let B be a graph and A a substructure of B, and p E B. dB (p /A) 
denotes the smallest value of 8a (X /A) where A S: X S: B and there is a path from 
p to A inX. 
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Definition 4.3. Let B be a graph, A a substructure of B, and /3 a real number. B is 
called a 3/4-extension of A if x = IBI - IAI and z = e(B) - e(A) then x/z 2 3/4. 

Definition 4.4. Suppose A < B. p EB is called a good vertex of B over A if 
p EB-A and whenever p EX c B with X nA-=/=- 0 then either 7::; IX -Al or 
X ®pPPIP2P3 is a 3/4-extension of X'p3 for someX' ~ X withXnA ~ X'. Here, 
p PIP2P3 is a path of length 3 with ends p and p3. 

Proposition 4.5. Let a be an irrational number, and a/ b a reduced fraction. Sup­
pose 2/3 <a< a/b < 3/4 and bis sufficiently large. Let B be a canonical twig 
fora/band A the set of all leaves in B. Then there is a good vertex of B over A 
whose distance from A is 3. 

Proof Note that for any reduced fractions a'/b' with 2/3 < a'/b' < 3/4, the 
canonical twig for a'/ b' begins from the left end with a twig for 3 / 4 and ends 
with a twig for 2/3 at the right end. Since b is sufficiently large, the canonical 
twigs B for a/b look like the following: 

7 117 11 
Hence, there is a substructure of B which is isomorphic to one of the following 
pictures: 

p p 

!171 !177 
(1) (2) 

Let us assume that there is a substructure of B isomorphic to (1) above. Choose 
a vertex p as indicated in the figure. We show that p is a good vertex of B over A. 

Let X be a smooth and connected substructure of B over pA with p E X and 
X nA -=J. 0. Suppose that X does not contain a vertex in B adjacent top. Then 
X contains the other vertex in B adjacent top, say p'. Then X ®p PPIP2P3 = 
(X - p) ®p' p'pp1p2p3. Therefore, it is a 3/4-extension of (X - p)p3. See (3) in 
the figure below. 

Now, suppose that X contains both vertices adjacent top. If X contains at least 
5 vertices from the main path of B, then X contains at least 2 more paths from the 
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main path of B to A. Each such path has length 2 and thus contains an inner vertex. 
Hence X - A contais at least 7 vertices. See (7) in the figure below. 

If X contains exactly 3 vertices from the main path of B, then X ®p PPIP2P3 
looks like (4) in the figure below. It is an extension of (X nA)p3 by 7 vertices and 
9 edges. Since 7 /9 > 3/4, it is a 3/4-extension of (X nA)p3. 

If X contains exactly 4 vertices from the main path of B, (a) Xis isomorphic 
to (5) or (b) X ®pPPIP2P3 is isomorphic to (6) in the figure below. In the case 
(a), X -A contains 7 vertices. In the case (b), X ®p PPIP2P3 is an extension 
of (X nA)p3 by 8 vertices and 10 edges. Since 8/10 = 4/5 > 3/4, it is a 3/4-
extension of (X nA)p3. 

p3;qp~ P31 - P31 -
p,11 ri r11 r--1 n 

(3) (4) (5) (6) (7) 

We have shown that vertex p is a good vertex of B over A when we choose p 
as in ( 1). When we choose p as in ( 2), we can show that p is a good vertex of B 
over A similarly. □ 

Lemma 4.6. Let a be an irrational number with 2/3 <a< 3/4, u/v a reduced 
fraction with u/v < a such that whenever u/v < u' /v' < a then v < v'. Let f =fa 
be the Hrushovski's log-like function associated to a. Assume that BE Ki with 
A< Band there is a good vertex b of B over A, Wis a canonical twig for u/v, C the 
set of all leaves ofW, and k= ICI- Let D = (Bo®ABI ®AB2®A ·.·®A Bk-I) ®c W 
where C = {bo,bI, ... ,bk-I}, Bi is isomorphic to B over A and bi E Bi is the 
isomorphic image of b for each i = 0, ... , k - l. Then for sufficiently large v, D 
belongs to K1, and there is a good vertex p of Dover A such that db(p/A) > 
d13 (b/A) +min{d13 (b/A),3(l - a)}. 

Proof We show that D belongs to K1 by choosing v sufficiently large. It is 
straightforward to prove other statements. 

The bi are the leaves of W. We can assume that ho is the left end of the main 
path of W, and bI, b2, ... , bk-I are ordered from left to right respecting the order 
of vertices in the main path of W connected to bi by a path of length 2 in W. 
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For j with 1 ::; j ::=; k, let Dj = (Bo ®A B1 ®A B2 ®A ... ®A Bj) ®cj Wj where 
Cj = {bo,b1, ... ,bj}, and Wj is the left prefix of W with the right most leaf bj, 
Note that D = Dk-I· 

Now, let X be a substructure of D. Our aim is to show that Xis normal to f. 
By Fact 2.4 (the free amalgamation property for the structures normal to f), we 
can assume that X nA -=I=- 0, X is smooth over A, and X n W is connected. 

Put Yj = (X nBo) ®xnA · · · ®xnA (X nBj), Then Yj E K1 for any j. In partic­
ular, IYk' I > 7 I<. Also, the number of all edges in Wk' is at most 41< and Ck, < Wk'. 
By Lemma 2.7 (3), X nDk, = Yk, ®ck' Wk' is normal to f. 

Now, consider X n Dk,+ 1. There are two cases for Wk,+ 1: Wk'+ 1 = Wk, ® p Pk'+ 1 
where Pk,+ 1 is a path of length 4 or a path of length 3 with ends p E Wk' and bk,+ 1. 

We have Dk'+I = (Dk, ®ABk'+I) ®p,bk'+i P. 
If the length is 4, then X n Dk'+ 1 is a 3 / 4-extension of (X n Dk') ®xnA (X n 

Bk'+ 1), which is normal to f. Hence, X n Dk'+ 1 is also normal to f by Lemma 2. 7 
(2). If the length is 3, then X n Dk,+ 1 is a 3 / 4-extension of (X n Dk,) ®xnA X' for 
some X' with X nA ~ X' £;; X nBk'+I because bk'+I is a good vertex of Bk'+I over 
A. X nDk, ®xnAX' is normal to f by Fact 2.4, so is X nDk'+I by Lemma 2.7 (2). 
Repeating the similar arguments, we see that X nDk-l is normal to f. 

The essential remaining case is the case where W ~ X and IX n B j I ~ 7 for all 
j. Since vis sufficiently large, We can assume O > 8a(W /C) > -8a(B/A). We 
can also assume that k is very large. Then X nD is normal to f. □ 

Now, we prove the main theorem. 

Theorem 4.7. Let a be an irrational number, and a/b a reduced fraction. Sup­
pose 2/3 <a< a/b < 3/4 and bis sufficiently large. Let B be a canonical twig 
fora/band A the set of all leaves in B. Let p EB be a good vertex of B over A. 
Let M be the generic structure for (KJ, <) where f is the Hrushovski's log-like 
function associated to a. Assume that B is a closed subset of M. Let D be the 
orbit of p over A in M. Then M = cl(D). 

Proof We first claim that any points in M independent from A over the empty set 
belong to cl(D). 

Note that a good vertex of B over A exists by Proposition 4.5. Let B1 < M be 
the embedded image of D obtained by By Lemma 4.6 from B. Then B1 ~ cl(D,A), 
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A< B1, there is a good vertex Pl of B1 over A. Repeating this process, we get 
A< B1 < B2 < ... < Bj < M for any natural number j, and a good vertex Pi of Bi 
over A for each i ~ j. Each Pi+l for i belongs to cl(Orb(pi/A)). Therefore, each 
Pi+ 1 for i belongs to cl( Orb(p /A)). 

Let e = min{dB(p/A),3(1- a)}. By the structures of Bi, dB1 (pi/A)> 2£, 
dB2 (pl/ A) > 3£, and so on. We have dBj (p j /A) > (j + 1 )e. For sufficiently large 

j, we have dB_(pj/A) > l. Therefore, there is j such that d(pj/A) = 1 = d(pj) 
J 

and Pj E cl(D). Suppose xis not adjacent to vertices in A and xA < M. Since 
p jA < M and xA is isomorphic to p jA, there is an automorphism of M which 
sends x to Pj and fixes A pointwise. Hence, x belong to cl(D) also because Dis 
invariant under the automorphisms fixing A pointwise. We have shown the first 
claim. 

Choose a reduced fraction u/v with u/v < a which is a good approximation 
of a from below. Using twigs for u/v, make a big tree W such that there is a root 
x of W such that for all the leaves y of W, yx is not an edge of W, and yx < W. 

Now, let x EM. Consider cl(xA). Consider W ®x cl(xA) > cl(xA). We can 
embed W ®x cl(xA) into Mover cl(xA) as a closed structure. Let y be a leaf of W. 
Suppose yA ~ X ~ W ®x cl(xA). If x tf_ X, then X = (X n W) ® (X n cl(xA) ). In 
this case, y < (X nW) and A< X ncl(xA). Hence, o(yA) < o(X) unless yA = X. 

Supposex EX. X = (X nW) ®x (X ncl(xA)). We have o(yx) < o(XnW) unless 
XnW =yx. Also, we have o(A) < o(Xncl(xA)) sinceA <MandA £;Xncl(xA). 

Suppose yx £; X n W. We have 

o(x) = o(xnw) +o(Xncl(xA))-1 > o(yx)- l +o(A) = 1 +o(A). 

Therefore, yA is closed in W ®xcl(xA), and thus yA < M. This shows that all the 
leaves of W belong to cl(D). So, x belongs to cl(D). □ 
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