TITLE：

Colored Random Graphs and the Order Property（Model theoretic aspects of the notion of independence and dimension）

AUTHOR（S）：
Tsuboi，Akito

CITATION：

Tsuboi，Akito．Colored Random Graphs and the Order Property（Model theoretic aspects of the notion of independence and dimension）．数理解析研究所講究録 2023，2249：64－67

ISSUE DATE：

2023－04
URL：
http：／／hdl．handle．net／2433／285439
RIGHT：

Colored Random Graphs and the Order Property

Akito Tsuboi
Professor Emeritus at the University of Tsukuba

1 Introduction

In this article, a graph means an R-structure, where R is a binary symmetric irreflexive predicate. If $R(a, b)$ holds, we consider a and b are adjacent by an edge. A subgraph means a subtructure, in the graph theory terminology, it is an induced subgraph. A finite coloring of a graph G usually means a function $f: R^{G} \rightarrow F$, where F is a finite set of colors. However, we are going to take a slightly different setting, which will be explained later. A monochromatic subgraph is a subgraph H for which the coloring function f is constant on R^{H}. In general, it is an important question whether a colored graph has monochrome subgraphs of a certain kind. Here we concentrate on countable random graphs and their coloring.

A graph G is called a random graph, it satisfies the following axioms for all disjoint subsets $A \neq \emptyset$ and B,

$$
\exists x\left(\bigwedge_{a \in A} R(a, x) \wedge \bigwedge_{b \in B} \neg R(a, b)\right)
$$

A random graph is necessarily infinite, and is universal in the sense that it embeds all finite graphs. It is easy to see that the theory of a random graph is \aleph_{0}-categorical, and is simple. In [2], they proved:
$\left.{ }^{*}\right)$ A colored countable random graph G has a subgraph H such that $H \cong G$ (as graphs) and that H is (at most) 2 -colored.

They also gave an example of G without monochromatic subgraph $H \cong G$.
In this article, we study the case when G does not have a monochromatic subgraph $H \cong G$. As a main result, we state some relation between the
coloring and the instability strength (see Theorem 9). We do not give a detail of the proof.

2 Definitions and Preliminaries

Let G be a countable random graph in the language $\{R\}$, where R is a binary predicate symbol for edges.

Let $N \in \omega$. An N-coloring of G means an expansion of G to the language $L \cup\left\{R_{i}\right\}_{i<N}$ such that R^{G} is the disjoint union of $R_{i}^{G}(i<N)$. For a subset $C \subset N, R_{C}(x, y)$ is an abbreviation of $\bigvee_{i \in C} R_{i}(x, y)$. If $R_{i}(a, b)$ holds, we think that the edge $a b$ is painted in the color i.

Now we fix a countable random graph G. We assume the edges of G are N-colored.
$S_{n a}$ denotes the set of all non-algebraic types with a finite domain.
Definition 1. 1. Let $p \in S_{n a}$. An infinite subset $X \subset G$ is p-large, if (1) $p(X)=X$ and (2) $q(X)$ is non-empty for all non-algebraic $q \supset p$. We say X is large, if $p(X)$ is p-large for some p.
2. We write $X \subset_{\operatorname{lrg}} Y$, if $X \subset Y$ and X is large.

Then, we can prove the following lemmas. (Proofs are not shown here.)
Lemma 2. Suppose that X is p-large and that $X=\bigcup_{i<n} X_{i}$, where $n \in \omega$. Then, there is an index $i<n$ and a non-algebraic type $q \supset p$ such that $q\left(X_{i}\right)$ is q-large.

Lemma 3. Suppose that X and Y are large. Then, there is a color $i<N$ and $X_{0} \subset_{\operatorname{lrg}} X$ such that, for all $a \in X_{0}$, both

$$
\left\{b \in Y: R_{i}(a, b)\right\} \text { and }\{b \in Y: \neg R(a, b)\}
$$

are large.
Definition 4. Let X and Y be large.

1. $C(X, Y)$ denotes the set of all colors $i<N$ for which some $X_{0} \subset_{\text {lrg }} X$ satisfies the statement of Lemma 3.
2. $C^{*}(X, Y)=\bigcap\left\{C\left(X^{\prime}, Y^{\prime}\right): X^{\prime} \subset_{\operatorname{lrg}} X, Y^{\prime} \subset_{\operatorname{lrg}} Y\right\}$.

Lemma 5. Let X, Y be large. Then, there is $X_{0} \subset_{l r g} X$ and $Y_{0} \subset_{l r g} Y$ such that $C^{*}\left(X_{0}, Y_{0}\right) \neq \emptyset$.

Lemma 6. There is a large set Z and $i^{*}, j^{*}<N$ such that for any large $W \subset Z$ there is a disjoint large sets $X, Y \subset W$ such that $i^{*} \in C^{*}(X, Y)$ and $j^{*} \in C^{*}(Y, X)$.

3 Main Results

Now we fix a large set Z and $i^{*}, j^{*}<N$ satisfying the requirement in Lemma 6.

Definition 7. Let A be a finite subset of Z, and $D \supset A$ a finite subset of G. Let $\mathfrak{X}=\left\{X_{p}\right\}_{p \in S_{n a}(A)}$ be a set of large subsets of Z and let $\mathfrak{T}=\left\{p^{*}\right\}_{p \in S_{n a}(A)}$ be a set of types. We say the tuple $(A, D, \mathfrak{X}, \mathfrak{T})$ is good, if the following are true: For all $p \neq q \in S_{n a}(A)$, 1. $p \subset p^{*} \in S_{n a}(D) ; 2 . X_{p}$ is p^{*}-large;3. $\left(i^{*}, j^{*}\right)$ or $\left(j^{*}, i^{*}\right)$ belongs to $C^{*}\left(X_{p}, X_{q}\right) \times C^{*}\left(X_{q}, X_{p}\right)$. For all $a \in A$ and $b \in A X_{p}$, $R(a, b) \Longleftrightarrow R_{\left\{i^{*}, j^{*}\right\}}(a, b)$.
Proposition 8. Suppose that $\left(A, D,\left\{X_{p}\right\}_{p \in S_{n a}(A)},\left\{p^{*}\right\}_{p \in S_{n a}(A)}\right)$ is good. Then, for all $s \in S_{n a}(A)$, we can find $d \in X_{s}, D^{\prime} \supset D,\left\{X_{q}\right\}_{q \in S_{n a}(A d)}$ and $\left\{q^{*}\right\}_{q \in S_{n a}(A d)}$ such that

- $\left(A d, D^{\prime},\left\{X_{q}\right\}_{q \in S_{n a}(A d)},\left\{q^{*}\right\}_{q \in S_{n a}(A d)}\right)$ is also good;
- $p^{*} \subset q^{*}$ and $X_{q} \subset X_{p}$, if $p \in S_{n a}(A), q \in S_{n a}(A d)$ and $p \subset q$.

Theorem 9. Let G be a random graph and suppose that an N-coloring is given on G by $L^{*}=\left\{R, R_{1}, \ldots, R_{N}\right\}$. Then the following conditions are equivalent:
(a) G does not have a monochromatic generic subgraph;
(b) For any generic subgraph $G_{0} \subset G$, there is a generic $H \subset G_{0}$ having the strict order property in the expanded language L^{*}.
Sketch of Proof. (b) \Rightarrow (a): This is trivial since a monochromatic subgraph is a mere random graph. (a) $\Rightarrow(\mathrm{b})$: We assume (a). For simplicity of the notation, we can assume $G_{0}=G$. We choose $i^{*}, j^{*}<N$ and Z as in Lemma 6. Since G does not have a monochromatic generic subgraph, we have $i^{*} \neq j^{*}$. So, for simplicity, we assume $i^{*}=0$ and $j^{*}=1$. Let $\left\{g_{i}\right\}_{i \in \omega}$ be an enumeration of G such that for all $i>0$,

1. $R\left(g_{0}, g_{i}\right)$ if and only if i is even;
2. $R\left(g_{4 i}, g_{j}\right)$ for all odd numbers $j<4 i$.

Notice that such an enumeration does exist. Choose disjoint large subsets $X_{0}, X_{1} \subset Z$ such that $0 \in C^{*}\left(X_{0}, X_{1}\right)$ and $1 \in C^{*}\left(X_{1}, X_{0}\right)$. We are going to define $h_{i}(i<\omega)$ such that $\left(g_{i}\right)_{i \in \omega} \cong\left(h_{i}\right)_{i \in \omega}$. By symmetry, shrinking X_{0} and X_{1}, we may assume $\forall x \in X_{0}\left(R\left(h_{0}, x\right)\right)$ and $\forall x \in X_{1}\left(\neg R\left(h_{0}, x\right)\right)$ hold for some $h_{0} \in G$. In this proof, we inductively choose elements $h_{i} \in X_{0} X_{1}$ $(i>0)$ such that, by letting

$$
D_{n}:=\left\{h_{m}: h_{m} \neq h_{0}, \neg R\left(h_{0}, h_{m}\right) \text { and } R_{1}\left(h_{4 n}, h_{m}\right)\right\}
$$

$\left\{D_{n}: n \in \omega\right\}$ forms a strictly increasing sequence of uniformly defined sets. Thus, $H:=\left\{h_{i}\right\}_{i \in \omega}$ has the strict order property.

References

[1] Chang-Keisler, Model Theory
[2] Maurice Pouzet and Norbert Sauer, Edge Partitions of the Rado Graph, Combinatorica 16 (4) (1996) 505-520.
[3] Takeuchi and Tsuboi, Infinite subgraphs with monochromatic edges, Unpublished.

