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Colored Random Graphs and 
the Order Property 

Akito Tsuboi 
Professor Emeritus at the University of Tsukuba 

1 Introduction 

In this article, a graph means an R-structure, where R is a binary symmetric 
irreflexive predicate. If R(a, b) holds, we consider a and b are adjacent by 
an edge. A subgraph means a subtructure, in the graph theory terminology, 
it is an induced subgraph. A finite coloring of a graph G usually means a 
function f : RG ➔ F, where F is a finite set of colors. However, we are 
going to take a slightly different setting, which will be explained later. A 
monochromatic subgraph is a subgraph H for which the coloring function f 
is constant on RH. In general, it is an important question whether a colored 
graph has monochrome subgraphs of a certain kind. Here we concentrate on 
countable random graphs and their coloring. 

A graph G is called a random graph, it satisfies the following axioms for 
all disjoint subsets A =/ 0 and B, 

?Jx(/\ R(a,x) I\ I\ ---,R(a,b)). 
aEA bEB 

A random graph is necessarily infinite, and is universal in the sense that it 
embeds all finite graphs. It is easy to see that the theory of a random graph 
is ~0-categorical, and is simple. In [2], they proved: 

(*) A colored countable random graph G has a subgraph H such that 
H ~ G ( as graphs) and that H is ( at most) 2-colored. 

They also gave an example of G without monochromatic subgraph H ~ G. 
In this article, we study the case when G does not have a monochromatic 

subgraph H ~ G. As a main result, we state some relation between the 
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coloring and the instability strength (see Theorem 9). We do not give a 
detail of the proof. 

2 Definitions and Preliminaries 

Let G be a countable random graph in the language {R}, where Risa binary 
predicate symbol for edges. 

Let N E w. An N-coloring of G means an expansion of G to the language 
LU {Rih<N such that RG is the disjoint union of Rf (i < N). For a subset 
C C N, Rc(x, y) is an abbreviation of viEC Ri(x, y). If Ri(a, b) holds, we 
think that the edge ab is painted in the color i. 

Now we fix a countable random graph G. We assume the edges of Gare 
N-colored. 

Sna denotes the set of all non-algebraic types with a finite domain. 

Definition 1. 1. Let p E Sna· An infinite subset X C G is p-large, if (1) 
p(X) = X and (2) q(X) is non-empty for all non-algebraic q ~ p. We 
say X is large, if p(X) is p-large for some p. 

2. We write X Ctrg Y, if X C Y and X is large. 

Then, we can prove the following lemmas. (Proofs are not shown here.) 

Lemma 2. Suppose that X is p-large and that X = LJi<n Xi, where n E w. 
Then, there is an index i < n and a non-algebraic type q ~ p such that q(Xi) 
is q-large. 

Lemma 3. Suppose that X and Y are large. Then, there is a color i < N 
and Xo C1rg X such that, for all a E Xo, both 

{b E Y : Ri(a, b)} and {b E Y: ,R(a, b)} 

are large. 

Definition 4. Let X and Y be large. 

1. C(X, Y) denotes the set of all colors i < N for which some X 0 Czrg X 
satisfies the statement of Lemma 3. 

2. C*(X, Y) = n{C(X', Y'): X' Ctrg X, Y' Ctrg Y}. 
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Lemma 5. Let X, Y be large. Then, there is X 0 Czrg X and Yo Czrg Y such 
that C*(Xo, Yo) # 0. 

Lemma 6. There is a large set Z and i*, j* < N such that for any large 
WC Z there is a disjoint large sets X, Y C W such that i* E C*(X, Y) and 
j* E C*(Y, X). 

3 Main Results 

Now we fix a large set Zand i*,j* < N satisfying the requirement in Lemma 
6. 

Definition 7. Let A be a finite subset of Z, and D:::) A a finite subset of G. 
Let X = {Xp}pESna(A) be a set of large subsets of z and let 'I= {p*}pESna(A) 
be a set of types. We say the tuple (A, D, X, 'I) is good, if the following are 
true: For all p =/ q E Sna(A), l. p C p* E Sna(D); 2. Xp is p*-large;3. (i*,j*) 
or (j*, i*) belongs to C*(Xp, Xq) x C*(Xq, Xp)- 4. For all a EA and b E AXp, 
R(a, b) ~ R{i*,j*}(a, b). 

Proposition 8. Suppose that (A, D, {Xp}pESna(A), {p*}pESna(A)) is good. 
Then, for all s E Sna(A), we can find d E Xs, D' :::) D, {Xq}qESna(Ad) 
and {q*}qESna(Ad) such that 

• (Ad, D', {Xq}qESna(Ad), {q*}qESna(Ad)) is also good; 

• p* C q* and Xq C Xp, if p E Sna(A), q E Sna(Ad) and p C q. 

Theorem 9. Let G be a random graph and suppose that an N -coloring is 
given on G by L * = { R, R1 , ... , RN}. Then the following conditions are 
equivalent: 

( a) G does not have a monochromatic generic subgraph; 

(b) For any generic subgraph G0 c G, there is a generic H c G0 having the 
strict order property in the expanded language L *. 

Sketch of Proof. (b) ::::} (a): This is trivial since a monochromatic subgraph 
is a mere random graph. (a) ::::} (b): We assume (a). For simplicity of 
the notation, we can assume G0 = G. We choose i*, j* < N and Z as in 
Lemma 6. Since G does not have a monochromatic generic subgraph, we 
have i* =/ j*. So, for simplicity, we assume i* = 0 and j* = l. Let {gi}iEw be 
an enumeration of G such that for all i > 0, 
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l. R(go, gi) if and only if i is even; 

2. R(g4i, gj) for all odd numbers j < 4i. 

Notice that such an enumeration does exist. Choose disjoint large subsets 
X 0 , X 1 C Z such that 0 E C*(X0 , X 1 ) and 1 E C*(X1 , X 0 ). We are going 
to define hi (i < w) such that (gi)iEw ~ (hi)iEw· By symmetry, shrinking Xo 
and X 1 , we may assume Vx E X 0 (R(h0 ,x)) and Vx E X 1 (-.R(h0 ,x)) hold 
for some ho E G. In this proof, we inductively choose elements hi E X 0X 1 

(i > 0) such that, by letting 

{ Dn : n E w} forms a strictly increasing sequence of uniformly defined sets. 
Thus, H := { hihEw has the strict order property. □ 
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