

TITLE:

H-BASIS IN GEOMETRIC STRUCTURES WITH A DENSE/CODENSE INDEPENDENT SUBSET (Model theoretic aspects of the notion of independence and dimension)

AUTHOR(S):

YONEDA, IKUO

CITATION:

YONEDA, IKUO. H-BASIS IN GEOMETRIC STRUCTURES WITH A DENSE/CODENSE INDEPENDENT SUBSET (Model theoretic aspects of the notion of independence and dimension). 数理解析研究所講究録 2023, 2249: 27-36

ISSUE DATE: 2023-04

URL: http://hdl.handle.net/2433/285435 RIGHT:

H-BASIS IN GEOMETRIC STRUCTURES WITH A DENSE/CODENSE INDEPENDENT SUBSET

IKUO YONEDA

GENERAL EDUCATION, NATIONAL INSTITUTE OF TECHNOLOGY, TOKUYAMA COLLEGE

ABSTRACT. We discuss H-basis in geometric structures with a dense/codense independent subset, and algebraic n-gons in geometric structures to calculate the ranks of H-structures in trivial/non-trivial independence of base geometric structures.

1. NOTATIONS AND ALGEBRAIC DIMENSION

Let T be a complete L-theory and let \mathcal{M} be a sufficiently saturated model of T. a, b, c, . . . denote elements of \mathcal{M} . $\bar{a}, \bar{b}, \bar{c}, \ldots$ denote finite tuples of \mathcal{M} . A, B, C denote small subsets of \mathcal{M} . We write $\bar{a} \in \operatorname{acl}(A)$ if $|\{\sigma(\bar{a}) : \sigma \in \operatorname{Aut}(\mathcal{M}/A)\}|$ is finite. The algebraic closure of A.

Let $i(\geq 1)$ be a natural number. We put $\bar{a}_{\leq i} := \bar{a}_1, \ldots, \bar{a}_i$. $\bar{a}_{< i} = \bar{a}_1, \ldots, \bar{a}_{i-1}$. $\bar{a}_{<1} := \emptyset$.

We say that $a_{\leq n} = a_1, a_2, \ldots, a_n$ is algebraically independent over B if $a_i \notin \operatorname{acl}(Ba_{\leq i})$ for each $i \leq n$.

We say that $(\mathcal{M}, \operatorname{acl}(*))$ has Steinitz exchange property if $a \in \operatorname{acl}(Bb) \setminus \operatorname{acl}(B)$ implies $b \in \operatorname{acl}(Ba)$.

We say that $(\mathcal{M}, \operatorname{acl}(*))$ is geometric if it has Steinitz exhchange property and eliminates \exists^{∞} .

Assume that $(\mathcal{M}, \operatorname{acl}(*))$ has Steinitz exchange property. Then for any $a_{\leq n} = a_1, a_2, \ldots, a_n$ and B, after renumbering indices, there exists unique $m(\leq n)$ such that

$$a_i \notin \operatorname{acl}(Ba_{\leq i})$$
 for each $i \leq m$
 $a_i \in \operatorname{acl}(Ba_{\leq m})$ for each $j > m$

We write $m = \dim(a_{\leq n}/B)$, the dimension of $a_{\leq n}$ over B. Basic properties on dimension

- (1) If $A \subseteq B$, then $\dim(\bar{a}/A) \ge \dim(\bar{a}/B)$.
- (2) Transitivity: If $A \subseteq B \subseteq C$, then $\dim(\bar{a}/A) = \dim(\bar{a}/C)$ iff $\dim(\bar{a}/A) = \dim(\bar{a}/B)$ and $\dim(\bar{a}/B) = \dim(\bar{a}/C)$
- (3) Sub-additivity: $\dim(\bar{a}\bar{b}/A) = \dim(\bar{a}/A) + \dim(\bar{b}/A\bar{a}).$
- (4) Finite coding: There exists a finite tuple $b \subseteq B$ such that $\dim(\bar{a}/B) = \dim(\bar{a}/\bar{b})$.

Date: April 6, 2023.

¹⁹⁹¹ Mathematics Subject Classification. 03C45.

Key words and phrases. geometric structures, dense/codense subset, H-structures, H-basis.

The independence relation by dimension We write $\bar{a} \perp \int_{\bar{b}}^{\dim} \bar{c}$ if $\dim(\bar{a}/\bar{b}) = \dim(\bar{a}/\bar{b}\bar{c})$.

Symmetry: $\bar{a} \perp \int_{\bar{b}}^{\dim} \bar{c}$ implies $\bar{c} \perp \int_{\bar{b}}^{\dim} \bar{a}$.

Proof. By using sub-additivity, we have $\dim(\bar{c}/\bar{a}\bar{b}) + \dim(\bar{a}/\bar{b}) = \dim(\bar{a}\bar{c}/\bar{b}) =$ $\dim(\bar{a}/\bar{b}\bar{c}) + \dim(\bar{c}/\bar{b})$. So $\dim(a/\bar{b}\bar{c}) = \dim(\bar{a}/b)$ implies $\dim(\bar{c}/\bar{a}\bar{b}) = \dim(\bar{c}/\bar{b})$.

Monotonicity: if $\bar{a} \, \bigsqcup_{\bar{b}}^{\dim} \bar{c}$ and $\bar{a}_0 \subseteq \bar{a}$, then $\bar{a}_0 \, \bigsqcup_{\bar{b}}^{\dim} \bar{c}$. *Proof.* By symmetry $\bar{c} \, \bigsqcup_{\bar{b}}^{\dim} \bar{a}$. By transitivity $\bar{c} \, \bigsqcup_{\bar{b}}^{\dim} \bar{a}_0$. By symmetry again, $\bar{a}_0 \perp_{\bar{b}}^{\dim} \bar{c}.$

Now we define $A \perp_B^{\dim} C$ if $\dim(\bar{a}/B) = \dim(\bar{a}/BC)$ for any finite tuple $\bar{a} \subseteq A$. We intruduce the imaginarr element $e \in \mathcal{M}^{eq}$ if $e = \bar{a}/E$, where $E(\bar{x}, \bar{y})$ is an

 \emptyset -definible equivalence relation with $\ln(\bar{a}) = \ln(\bar{x}) = \ln(\bar{y})$ and some $\bar{a} \subset \mathcal{M}$. For $e \in \mathcal{M}^{eq}$ and $A \subset \mathcal{M}^{eq}$ we write $e \in \operatorname{acl}^{eq}(A)$ if $|\{\sigma(e) : \sigma \in \operatorname{Aut}(\mathcal{M}^{eq}/A)\}|$ is finite.

The independence calculus: See [A].

A symmetric ternary relation $* \downarrow_* *$ on \mathcal{M}^{eq} has the independence calculus if the following 8 conditions hold:

- (1) Normality: $A igsquarepsilon_B C$ implies $A igsquarepsilon_B BC$.
- (2) Invariance: $A \, \bigcup_B C$ and $ABC \equiv A'B'C'$ imply $A' \, \bigcup_{B'} C'$ (3) Monotonicity: $A \, \bigcup_B C$ and $A_0 \subseteq A$ imply $A_0 \, \bigcup_B C$ (4) Transitivity : If $B \subseteq C \subseteq D$, then

- $A \perp_B D$ iff $A \perp_B C$ and $A \perp_C D$
- (5) Extention: There exists $A' \equiv_B A$ such that $A' \downarrow_B C$.
- (6) Finite character: If $\bar{a} \, \bigcup_B C$ for any finite tuple $\bar{a} \subseteq A$, then $A \, \bigcup_B C$.
- (7) Local character: For any $\bar{a}, A \subset \mathcal{M}$, there exists $A_0 \subseteq A$ such that $|A_0| \leq A$ |T| and $\bar{a} igsquarepsilon_{A_0} A$.
- (8) Anti-reflexivity: $\bar{a} \, \bigsqcup_A \bar{a}$ implies $\bar{a} \in \operatorname{acl}^{\operatorname{eq}}(A)$.

symmetric transitive local character holds modulo other properties of the independence calculus. We have the following: $stable \Rightarrow simple \Rightarrow rosy(i.e.having the$ independence calculus) $\Leftarrow o$ -minimal

 $superstable(U < \infty) \Rightarrow supersimple(SU < \infty) \Rightarrow superrosy(U^{p} < \infty).$ strongly minimal $(0 < U \le RM = 1, \deg_{RM} = 1) \Rightarrow SU = 1 \Rightarrow U^{\mathfrak{p}} = 1 \Leftarrow o$ -minimal.

2. Non-triviality and algebraic n-gons

Assume that $(\mathcal{M}, \operatorname{acl}(*))$ has Steinitz exchange property and put $\bigcup = \bigcup^{\dim}$.

We say that $a \in \mathcal{M}$ is *non-trivial* if there exists a_2, a_3, \overline{c} such that $a \bigcup_{\overline{c}} a_2, a \bigcup_{\overline{c}} a_3, a_2 \bigcup_{\overline{c}} a_3$ and $a \not \perp_{\overline{c}} a_2, a_3$. Then we say that a, a_2, a_3 is an algebraic triangle over \overline{b} .

We say that $a_{\leq n} = a_1, \cdots, a_n$ is an algebraic n-gon over A if $\dim(a_{\leq n}/A) = n-1$ and dim $(a_{\leq n} \setminus \{a_i\}/A) = n - 1$ for each $1 \leq i \leq n$.

Then a_i, a_j, a_k is an algebraic triangle over $Aa_{\leq n} \setminus \{a_i, a_j, a_k\}$, because $a_i \not \perp_{Aa_{\leq n} \setminus \{a_i, a_j, a_k\}} a_j, a_k$. so any point of *n*-gon is non-trivial.

Fact 2.1. If $a \in \mathcal{M}$ is non-trivial, then for each $n < \omega$, there exists $b_{\leq n-1}$, A such that $ab_{\leq n-1}$ is an algebraic n-gon over A.

Proof. The case n = 3 is clear. By induction hypothesis, assume that $ab_{\leq n-1}$ is an algebraic *n*-gon over A. As b_{n-1} is non-trivial, there exist $b_n, b_{n+1}, \overline{c}$ such that $b_{n-1}b_nb_{n+1}$ is an algebraic triangle over \overline{c} . By an automorphism fixing b_{n-1} , we may assume that $b_nb_{n+1}\overline{c} extsf{ }_{b_{n-1}}b_{\leq n-2}A$.

CLAIM: $ab_{\leq n-2}b_nb_{n+1}$ is an algebraic (n+1)-gon over $A\overline{c}$.

Subclaim 1: dim $(ab_{\leq n-2}b_nb_{n+1}/A\overline{c}) = n.$

As $b_{n+1} \in \operatorname{acl}(b_{n-1}b_n\overline{c})$ and $b_{n-1} \in \operatorname{acl}(ab_{\leq n-2}A)$, we have $b_{n+1} \in \operatorname{acl}(ab_{\leq n-2}b_nA\overline{c})$. On the other hand, we have $b_n\overline{c} \downarrow_{b_{n-1}} b_{\leq n-2}A$, $b_n \downarrow_{\overline{c}} b_{n-1}$ and $a \in \operatorname{acl}(b_{\leq n-1}A)$, we have $b_n \downarrow_{\overline{c}} ab_{\leq n-2}A$. As $\overline{c} \downarrow_{b_{n-1}} ab_{\leq n-2}A$ and $\overline{c} \downarrow b_{n-1}$, we have $\overline{c} \downarrow_A ab_{\leq n-2}$. Therefore dim $(ab_{\leq n-2}b_nb_{n+1}/A\overline{c}) = n$.

Subclaim 2: $ab_{\leq n-2}b_n$ is independent over $A\overline{c}$. Similarly for $ab_{\leq n-2}b_{n+1}$. By $b_n \notin \operatorname{acl}(b_{n-1}\overline{c})$ and $b_nb_{n+1}\overline{c} \, \bigsqcup_{b_{n-1}} b_{\leq n-2}A$, we have $b_n \notin \operatorname{acl}(b_{\leq n-1}A\overline{c}) = \operatorname{acl}(ab_{\leq n-2}A\overline{c})$ as $ab_{\leq n-1}$ is an algebraic *n*-gons over *A*.

We use the following : We have $b_n b_{n+1} \perp_{\overline{c}} A$ by $b_n b_{n+1} \overline{c} \perp_{b_{n-1}} A$ and $b_{n-1} \perp A$. Note that $b_n \perp_{A\overline{c}} b_{n+1}$.

Subclaim 3: $b_{\leq n-2}b_nb_{n+1}$ is independent over $A\overline{c}$.

Since $b_{n-1}b_nb_{n+1}$ is an algebraic triangle over \bar{c} and $b_n extstyle _{b_{n-1}\bar{c}}b_{\leq n-2}A$, we see that $b_n extstyle _{\bar{c}}b_{\leq n-2}A$. So $b_{\leq n-2}b_n$ is independent over $A\bar{c}$. By $b_nb_{n+1}\bar{c} extstyle _{b_{n-1}}b_{\leq n-2}A$ and $b_{n-1} extstyle _A b_{\leq n-2}$, we have $b_nb_{n+1}b_{n-1}\bar{c} extstyle _A b_{\leq n-2}$. If we had $b_{n+1} \in \operatorname{acl}(b_nb_{\leq n-2}A\bar{c})$, we would have $b_{n+1} \in \operatorname{acl}(b_nA\bar{c})$. As we have $b_nb_{n+1} extstyle _{\bar{c}}A$, $b_{n+1} \in \operatorname{acl}(b_n\bar{c})$ follows, a contradiction to $b_n extstyle _{\bar{c}}b_{n+1}$.

Subclaim 4: $ab_{\leq n-2}b_nb_{n+1} \setminus \{b_j\}$ is independent over $A\overline{c}$ for each $1 \leq j \leq n-2$. As $b_{n-1} \bigcup_A ab_{\leq n-2} \setminus \{b_j\}$ and $b_nb_{n+1}\overline{c} \bigcup_{b_{n-1}} ab_{\leq n-2}A$, we have $b_nb_{n+1}b_{n-1}\overline{c} \bigcup_A ab_{\leq n-2} \setminus \{b_j\}$. So $ab_{\leq n-2} \setminus \{b_j\}b_n$ is independent over $A\overline{c}$. If we had $b_{n+1} \in \operatorname{acl}(b_nab_{\leq n-2} \setminus \{b_j\})$, we would have $b_{n+1} \in \operatorname{acl}(b_nA\overline{c})$, a contradiction. \Box

3. H-structure

Let \mathcal{M} be a sufficiently saturated model of a complete *L*-theory *T*. Suppose that $(\mathcal{M}, \operatorname{acl}(*))$ has Steinitz exchange property. We add a unary predicate H(x) for a dense/codense independent subset. L_H denotes $L \cup \{H\}$.

Definition 3.1. We say that $(\mathcal{M}, H(\mathcal{M}))$ is an *H*-structure if

- (1) $H(\mathcal{M})$ is *independent*: If $a_1, \dots, a_n \in H(\mathcal{M})$ are distinct, they are independent over \emptyset .
- (2) density: If $A \subset \mathcal{M}$ is finite dimensional and p(x) is a unary non-algebraic *L*-type over *A*, then there exists $a \in H(\mathcal{M})$ such that $a \models p(x)$.
- (3) codensity: If $A \subset \mathcal{M}$ is finite dimensional and q(x) is a unary non-algebraic *L*-type over *A*, then there exists $b \notin \operatorname{acl}(AH(\mathcal{M}))$ such that $b \models q(x)$.

For $A \subset \mathcal{M}$ we say A is H-independent in \mathcal{M} if $A \perp_{H(A)} H(\mathcal{M})$, where $H(A) = H(\mathcal{M}) \cap A$. Note that if A is H-independent, then $\operatorname{acl}(A)$ is also H-independent. tp denotes L-type and tp_H denotes L_H -type.

- **Fact 3.2.** (1) For any (M, H(M)), there exists a sufficiently saturated H-structure $(M, H(M)) \subseteq (\mathcal{M}, H(\mathcal{M}))$ with M is H-independent in \mathcal{M} .
 - (2) Suppose that (M, H(M)) and (N, H(N)) are H-structures. If H-independent tuples ā ⊂ M, b̄ ⊂ N with tp(ā, H(ā)) = tp(b̄, H(b̄)), then tp_H(ā) = tp_H(b̄). In particular, all H-structures are elementarily equivalent, let T^{ind} be the common theory. If T eliminates ∃[∞], then T^{ind} is axiomatizable such that all |T|⁺-saturated model of T^{ind} are H-structures.

The following theories eliminate \exists^{∞} : strongly minimal theories, SU = 1 theories, dense *o*-minimal theories and the *p*-adics in a single sort.

Let T be the theory of infinite dimensional countable vector space V over a finite field. Put $H(V) := \{v_i : i < \omega\}$ a basis of V. Then (V, H(V)) is a model of T^{ind} but not H-structure because it does not satisfy codense property. Put $H_j(V) := \{v_i : i > j\}$. Then $(V, H_j(V))$ is a model of T^{ind} but not H-structure and $(V, H_j(V))$ is not isomorphic to $(V, H_k(V))$ for $j \neq k < \omega$, so T^{ind} is not ω -categorical. Put $H_{even}(V) = \{v_{2i} : i < \omega\}$. Then $(V, H_{even}(V))$ is an H-structure.

4. H-basis

Let $A \subset \mathcal{M}$ be *H*-independent. For any $\bar{a} \subset \mathcal{M}$ we can take a finite tuple $\bar{h} \subset H(\mathcal{M})$ such that $\bar{a} \bigcup_{A\bar{h}} H(\mathcal{M})$ and $A \cap \bar{h} = \emptyset$. Suppose that \bar{h} is minimal length. We show the uniqueness of \bar{h} up to permutation.

Take such another \bar{h}' and let $\bar{h}_1 := \bar{h} \cap \bar{h}', \bar{h} = \bar{h}_1 \bar{h}_2$ and $\bar{h}' = \bar{h}_1 \bar{h}'_2$. As $H(\mathcal{M})$ is an independent subset and $\bar{h} \cap A = \bar{h}' \cap A = \emptyset$, we have $\bar{h}_2 \downarrow_{H(A)\bar{h}_1} \bar{h}'_2$. As A is H-independent, $A\bar{h}_1 \downarrow_{H(A)\bar{h}_1} \bar{h}_2 \bar{h}'_2$, we have $\bar{h}_2 \downarrow_{A\bar{h}_1} \bar{h}'_2$.

Let $\bar{a} = \bar{a}_1 \bar{a}_2$ be such that $\bar{a}_1 \, \bigcup \, AH(\mathcal{M})$ and $\bar{a}_2 \in \operatorname{acl}(\bar{a}_1 AH(\mathcal{M}))$. Note that $\bar{a}_2 \in \operatorname{acl}(\bar{a}_1 A \bar{h}_1 \bar{h}_2) \setminus \operatorname{acl}(\bar{a}_1 A \bar{h}_1)$ and $\bar{a}_2 \in \operatorname{acl}(\bar{a}_1 A \bar{h}_1 \bar{h}_2) \setminus \operatorname{acl}(\bar{a}_1 A \bar{h}_1)$ by minimality of \bar{h} and \bar{h}' . Note that $\bar{h}'_2 \not {\perp}_{\bar{a}_1 A \bar{h}_1} \bar{h}_2$ witnessed by \bar{a}_2 . By $\bar{a}_1 \bigcup CH(\mathcal{M})$, we have $\dim(\bar{h}'_2/A \bar{h}_1 \bar{h}_2) = \dim(\bar{h}'_2/\bar{a}_1 A \bar{h}_1 \bar{h}_2) < \dim(\bar{h}'_2/\bar{a}_1 A \bar{h}_1) = \dim(\bar{h}'_2/A \bar{h}_1)$, $\bar{h}'_2 \not {\perp}_{A \bar{h}_1} \bar{h}_2$, a contradiction to the independency of $H(\mathcal{M})$.

We write $HB(\bar{a}/A) := \bar{h}$, which is called *H*-basis of $tp(\bar{a}/A)$, where *A* is *H*-independent. Note that $HB(\bar{a}/A) \in acl_H(\bar{a}, A)$ and $HB(\bar{a}/A) = HB(\bar{a}/acl(A))$.

- Fact 4.1. (1) $HB(\bar{a}\bar{b}/A) = HB(\bar{a}/A)HB(\bar{b}/A\bar{a}HB(\bar{a}/A))$ for any H-independent set A.
 - (2) If $A \subseteq B$ are *H*-independent, then $HB(\bar{a}/A) \subseteq HB(\bar{a}/B)H(B)$.

Proof. (1): Put $\bar{h}_1 := HB(\bar{a}/A), \bar{h}_2 = HB(\bar{b}/\bar{a}A\bar{h}_1)$ and $\bar{h} = HB(\bar{a}\bar{b}/A).$ As $\bar{a} \downarrow_{A\bar{h}_1} H(\mathcal{M}), \bar{a}A\bar{h}_1$ is *H*-independent, so we can consider $\bar{h}_2 = HB(\bar{b}/\bar{a}A\bar{h}_1).$ Claim 1: $\bar{h} \subseteq \bar{h}_1\bar{h}_2.$

As $\bar{a} \downarrow_{A\bar{h}_1} H(M)$ and $\bar{b} \downarrow_{\bar{a}A\bar{h}_1\bar{h}_2} H(M)$, we have $\bar{a}\bar{b} \downarrow_{A\bar{h}_1\bar{h}_2} H(M)$ as desired. Claim 2: $\bar{h}_1\bar{h}_2 \subseteq \bar{h}$.

As $\bar{a}\bar{b} \downarrow_{A\bar{b}} H(\overline{\mathcal{M}})$, we have $\bar{a} \downarrow_{A\bar{b}} H(\mathcal{M})$, so $\bar{h}_1 \subseteq \bar{h}$ follows. On the other hand,

we have $\bar{b} \downarrow_{\bar{a}A\bar{h}} H(\mathcal{M})$, so $\bar{b} \downarrow_{\bar{a}A\bar{h}_1\bar{h}} H(\mathcal{M})$, $\bar{h}_2 \subseteq \bar{h}$ follows. (2): Put $\bar{h} = HB(\bar{a}/B)$. As $\bar{a} \downarrow_{B\bar{h}} H(\mathcal{M})$, we have $\bar{a}B \downarrow_{B\bar{h}} H(\mathcal{M})$. As B is H-independent, $B\bar{h} \downarrow_{H(B)\bar{h}} H(\mathcal{M})$. So we get $\bar{a} \downarrow_{H(B)\bar{h}A} H(\mathcal{M})$. So $HB(\bar{a}/A) \subseteq H(B)\bar{h} = H(B)HB(\bar{a}/B)$. \Box

Question 4.2. If $A \subseteq B$ are *H*-independent, then $HB(\bar{a}/B) \subseteq HB(\bar{a}/A)$?

Fact 4.3. Let $(\mathcal{M}, H(\mathcal{M}))$ be an *H*-structure.

- (1) Suppose that A is H-independent, then $\operatorname{acl}(A) = \operatorname{acl}_H(A)$.
- (2) $\operatorname{acl}(AHB(A)) = \operatorname{acl}_H(A)$ for any $A \subset \mathcal{M}$.

Proof. (1): $\operatorname{acl}(A) \subseteq \operatorname{acl}_H(A)$ is clear.

We show that $a \notin \operatorname{acl}(A)$ implies $a \notin \operatorname{acl}_H(A)$.

The case that $a \notin acl(AH(\mathcal{M}))$: As $a \downarrow_A H(\mathcal{M})$ and A is H-independent, we see that Aa is H-independent. By extension property take $(a_i : i < \omega)$ realizations of $\operatorname{tp}(a/A)$ which are *acl*-independent over $AH(\mathcal{M})$. As A is H-independent, we see that Aa_i is H-independent. By Fact 3.2 (2), we see that $\operatorname{tp}_H(a_i/A) = \operatorname{tp}_H(a/A)$ as desired.

The case that $a \in acl(AH(\mathcal{M}))$: Take $b \in H(\mathcal{M})$ such that $a \in acl(Ab)$. By coheir property take $(\bar{b}_i : i < \omega)$ acl-independent realizations in $H(\mathcal{M})$ of $tp(\bar{b}/A)$. Let a_i be such that $a_i\bar{b}_i \models tp(a\bar{b}/A)$. As Ab_i is H-independent and $Aa_i\bar{b}_i \subseteq acl(A\bar{b}_i)$, $Aa_i\bar{b}_i$ is H-independent. By Fact 3.2 (2), $tp_H(a_i\bar{b}_i/A) = tp_H(a\bar{b}/A)$ follows, as desierd.

(2): $\operatorname{acl}_H(A) \subseteq \operatorname{acl}_H(AHB(A))$ is clear. By (1) and *H*-independence of AHB(A), we have $\operatorname{acl}_H(AHB(A)) = \operatorname{acl}(AHB(A))$. As we have $HB(A) \in \operatorname{acl}_H(A)$, we see $\operatorname{acl}(AHB(A)) \subseteq \operatorname{acl}_H(A)$. \Box

Proposition 4.4. Let $b \in \operatorname{acl}(h_1, \dots, h_n A)$ where A is H-independent, $\overline{h} = h_1, \dots, h_n \subset H(\mathcal{M})$ and n is minimal. Then $\operatorname{acl}_H(bA) = \operatorname{acl}_H(\overline{h}A)$.

Proof. We have $\operatorname{acl}_H(bA) = \operatorname{acl}(bAHB(bA))$ by 4.3 (2). By 4.1 (1), HB(Ab) = HB(A)HB(b/AHB(A)) follows. Since A is H-independent, we see $\operatorname{acl}(HB(A)) = \operatorname{acl}(H(A))$. On the other hand we have $b \bigcup_{A\bar{h}} H(\mathcal{M})$. By minimality of \bar{h} , $\bar{h} = HB(b/A)$ follows. Thus $\operatorname{acl}(HB(Ab)) = \operatorname{acl}(H(A)HB(b/\operatorname{acl}(A))) = \operatorname{acl}(H(A)\bar{h})$. So we have $\operatorname{acl}_H(bA) = \operatorname{acl}(bA\bar{h}) = \operatorname{acl}(A\bar{h})$. As $A\bar{h}$ is H-indepedent, $\operatorname{acl}(A\bar{h}) = \operatorname{acl}_H(A\bar{h})$ follows. Therefore we have $\operatorname{acl}_H(bA) = \operatorname{acl}_H(\bar{h}A)$. \Box

5. Rank in $(\mathcal{M}, H(\mathcal{M}))$, where \mathcal{M} is strongly minimal

Let X_H be an L_H -definable set over A. We say that X_H is small if $X \subset \operatorname{acl}(AH(\mathcal{M}))$. Otherwise, we say that X_H is large. Let X be an L-definable set over A. By codensity of H, X is infinite iff X is large. Clearly H(x) is small.

Fact 5.1. In a sufficiently saturated *H*-structure $(\mathcal{M}, H(\mathcal{M}))$, let X_H be an L_H -definable set in \mathcal{M} . Then there exists an *L*-definable set *X* in \mathcal{M} such that $X_H \triangle X$ is small.

Recall that $X \triangle Z \subseteq (X \triangle Y) \cup (Y \triangle Z)$.

The case that the base theory is strongly minimal

(1) large L_H -type is unique: If X_H, Y_H be large L_H -definable, then $X_H \triangle Y_H$ is

small. (Because there exist infinite L-definable sets X, Y in \mathcal{M} such that $X_H \bigtriangleup$ $X, Y_H \triangle Y$ are small and $X \triangle Y$ is finite.) This argument holds if there exists the unique non-algebraic 1-type in geometric L-structures.

(2) H(x) has the unique non-algebraic type over H-independent set A: Suppose that $b, b' \in H(\mathcal{M})$ such that $\operatorname{tp}_H(b/A), \operatorname{tp}_H(b'/A)$ are non-algebraic. Clearly $b, b' \notin \mathcal{A}$ acl(A). As tp(AbH(Ab)) = tp(Ab'H(Ab')) (by strong minimality) and Ab, Ab' are *H*-independent, we have $tp_H(Ab) = tp_H(Ab')$.

(3) It is shown that $(\mathcal{M}, H(\mathcal{M}))$ is ω -stable by counting of types over countable sets. By (2) $RM_H(H(x)) = 1$.

The case that the base theory is strongly minimal and trivial

(1) Suppose that $b \in \operatorname{acl}(AH(\mathcal{M}))$. Then by triviality either $b \in \operatorname{acl}(A)$ or $b \in$ $\operatorname{acl}(h) \setminus \operatorname{acl}(A)$ for some $h \in H(\mathcal{M})$. So we see that $RM_H(b/A) = RM_H(h/A) =$ $RM_H(h) = 1$. So $RM_H(\text{small type}) \leq 1$. As any large type has the unique large extension, $RM_H(\text{large type}) \leq 2$.

(2) If $\operatorname{acl}(a) \setminus \operatorname{acl}(\emptyset)$ is finite for all non-algebraic $a \in \mathcal{M}$, $RM_H(x = x) = 1$. (3) If $\operatorname{acl}(a) \setminus \operatorname{acl}(\emptyset)$ is infinite for all non-algebraic $a \in \mathcal{M}$, $RM_H(x = x) = 2$.

The case that the base theory is strongly minimal and non-trivial

(1) Suppose that $b \in \operatorname{acl}(AH(\mathcal{M}))$, where A is H-independent. Take

 $h \subset H(\mathcal{M})$ be minimal length such that $b \in \operatorname{acl}(A\bar{h})$. Then $\operatorname{acl}_H(A\bar{b}) = \operatorname{acl}_H(A\bar{h})$. So $RM_H(b/A) = |\overline{h}|$.

(2) Let $a_{\leq n}$ be an algebraic *n*-gon over *H*-independent set *A*. By density, we may assume that $a_{\leq n-1} \subseteq H(\mathcal{M})$. Then $a_n \notin H(\mathcal{M})$ follows. Then we see that $HB(a_n/A) = a_{\leq n-1}$ and $\operatorname{acl}_H(Aa_n) = \operatorname{acl}(Aa_{\leq n-1})$ by Proposition 4.4. So we see that $\operatorname{RM}_H(a_n/A) = n - 1$.

(3) Suppose that $b \notin \operatorname{acl}(AH(\mathcal{M}))$. If $b \in \operatorname{acl}(BH(\mathcal{M}))$, then $RM_H(b/B) < \omega$. Large extension of $\operatorname{tp}(b/A)$ over B is unique, we see that $RM_H(b/A) = \omega$.

6. Ampleness and Triviality

 $\bar{a}_{<i}$ denotes $\bar{a}_0, \bar{a}_1, \cdots, \bar{a}_i, \bar{a}_{<i}$ denotes $\bar{a}_0, \bar{a}_1, \cdots, \bar{a}_{i-1}$ and $\bar{a}_{<0} = \emptyset$. We say that $(\mathcal{M}, \downarrow)$ is *n*-ample over \bar{c} if there exist $\bar{c}, \bar{a}_{\leq n}$ such that for any $0 \le i < n$

- (1) $\bar{a}_{i+1} \downarrow_{\bar{c}\bar{a}_i} \bar{a}_{< i}$ (2) $\operatorname{acl^{eq}}(\bar{c}\bar{a}_{< i}\bar{a}_{i+1}) \cap \operatorname{acl^{eq}}(\bar{c}\bar{a}_{< i}\bar{a}_i) = \operatorname{acl^{eq}}(\bar{c}\bar{a}_{< i})$
- (3) $\bar{a}_n \not \perp_{\bar{a}} \bar{a}_0$

If $(\mathcal{M}, \downarrow)$ has weak canonical bases and $\bar{a}_{\leq n+1} = \bar{a}_0, \bar{a}_1, \cdots, \bar{a}_{n+1}$ is (n+1)ample over \bar{c} , then $\bar{a}_1, \dots, \bar{a}_{n+1}$ is *n*-ample over $\bar{c}\bar{a}_0$, so (n+1)-ampleness implies n-ampleness.

n-dimesional free pseudospace ((n+1)-many sorts and *n*-many incident relations) is n-ample but not (n + 1)-ample. we have one-basedness \Leftrightarrow non-1-ampleness and CM-triviality \Leftrightarrow non-2-ampleness.

For any sequence $(\bar{a}_i : i \in I)$, we write $\bar{a}_{\neq i} := (\bar{a}_i : j \in I \setminus \{i\})$. We say that $(\bar{a}_i : i \in I)$ is independent over A if $\bar{a}_i \, \bigcup_A \bar{a}_{\neq i}$. We say that $(\bar{a}_i : i \in I)$ is pairwise independent over A if $\bar{a}_i \, \bigcup_A \bar{a}_j$ for any $i \neq j \in I$. We say that T is *trivial* if any pairwise independent sequence in \mathcal{M}^{eq} is independent.

We say that $(\mathcal{M}, \operatorname{acl}(*))$ is trivial if $\operatorname{acl}(A) = \bigcup_{a \in A} \operatorname{acl}(\{a\})$ for any $A \subset \mathcal{M}$. If $(\mathcal{M}, \operatorname{acl}(*))$ is not trivial, there exists $a, b, c, B \subset \mathcal{M}$ such that $a \in \operatorname{acl}(bcB) \setminus \mathbb{C}$

If $(\mathcal{M}, \operatorname{acl}(*))$ is not trivial, there exists $a, b, c, B \subset \mathcal{M}$ such that $a \in \operatorname{acl}(bcB) \setminus (\operatorname{acl}(bB) \cup \operatorname{acl}(cB))$. (Take a minimal size A =: Bc such that $\operatorname{acl}(A) = \bigcup \operatorname{acl}(\{a\})$

and if $b \notin \operatorname{acl}(A)$, then $\emptyset \neq \operatorname{acl}(Ab) \setminus (\operatorname{acl}(A) \cup \operatorname{acl}(b))$. Take $a \in \operatorname{acl}(Bcb) \setminus (\operatorname{acl}(Bc) \cup \operatorname{acl}(b))$. As |A| = |Bb|, we have $\operatorname{acl}(Bb) = \bigcup_{d \in Bb} \operatorname{acl}(\{d\})$. So $a \notin \operatorname{acl}(Bb)$, as desired.)

The triviality of $(\mathcal{M}, \operatorname{acl}(*))$ coincides with the triviality of (\mathcal{M}, \bigcup) .

7. A lovely pair and ampleness

Let $L_P = L \cup \{P(x)\}$, where P(x) is a new unary predicate. Let $\kappa \ge |T|^+$ We say that (M, P(M)) is a κ -lovely pair if

- (1) $P(M) \prec M \models T$
- (2) Coheir property: For any $A \subset M$ with $|A| < \kappa$ and any fininary *L*-type $p(\bar{x})$ over A with $\bar{a} \downarrow_{P(A)} A$ and $\bar{a} \models p(\bar{x})$, then $p(\bar{x})$ is realized in P(M)
- (3) Extension property: For any $A \subset M$ with $|A| < \kappa$ and any fininary *L*-type $p(\bar{x})$ over *A* there exists $\bar{a} \models p(\bar{x})$ such that $\bar{a} \downarrow_A AP(M)$.

If $(\mathcal{M}, \downarrow)$ has independence calculus, then a κ -lovely pair exists. κ -lovely pairs are elementarily equivalent, T_P denotes the theory of lovely pair, where $T = \text{Th}(\mathcal{M})$. Any $|T|^+$ -saturated model of T_P is a lovely pair. If T is simple, T_P is axiomatizable iff T is low and has weak non-finite cover property. If T is simple and T_P is axiomatizable, then T_P is also simple. [B-YPiV].

- Fact 7.1. (1) If T is simple, one-based and T_P is axiomatizable, then T_P is simple and one-based. [B-YPiV].
 - (2) If T is stable, trivial and does not have finite cover property, then T is n-ample iff T_P is n-ample for any $n \ge 1$ assuming a nice characterization of forking in T_P : In general for $A, B, C \subset \mathcal{M}$, we have

$$A \bigcup_{C}^{r} B \Leftrightarrow AP \bigcup_{CP} BP, \operatorname{Cb}(AC/P) \bigcup_{\operatorname{Cb}(C/P)} \operatorname{Cb}(BC/P).$$

The nice characterization of forking in T_P is as follows: For any P-independent subsets A, B, C,

$$A \bigcup_{C}^{r} B \Leftrightarrow AP \bigcup_{CP} BP, AC \bigcup_{C} BC.$$

[CM-PP].

р

D

- (3) If T has SU-rank one with QE, then T is one-based iff acl = acl_P in T_P iff T_P has SU-rank≤ 2 iff T_P is model-complete iff (M, acl) is modular over P(M). [V1].
- (4) If T is geometric(=having Steinitz exchange property for acl and elimination of ∃[∞]), then T is weakly locally modular iff (M, acl) is modular over P(M) iff acl = acl_P in T_P. [BV1].

(5) If T eliminates \exists^{∞} and $U^{\mathfrak{p}}(T) = 1$, then $U^{\mathfrak{p}}_{\mathcal{P}}(T_{\mathcal{P}}) \leq \omega$. [B]. Moreover if T is weakly local modular, then $U^{\mathfrak{p}}_{\mathcal{P}}(T_{\mathcal{P}}) \leq 2$. [BV1].

Question 7.2. If T eliminates \exists^{∞} , $U^{\mathfrak{p}}(T) = 1$ and T is weakly local modular, then is T_P weakly locally modular? There is a proof containing serious gaps in [BB-WKAP]. (We do not know whether $A \perp_B^{\mathfrak{p}} C$ and $AP \perp_{BP}^{\mathfrak{p}} CP$ imply $A \perp_B^{P,\mathfrak{p}} C$ or not. And we can not find the reason for $\bar{a} \perp_{\bar{a}_2\bar{a}'}^{\mathfrak{p}} C$ in the proof of Theorem 4.2 in [BB-WKAP].)

8. A dense independent subset in supersimple structures and Ampleness

This section is almost due to [BV4]. We assume that $(\mathcal{M}, \downarrow)$ is supersimple and Let $T = \text{Th}(\mathcal{M})$. Fix a partial unary type $\Pi(x)$ over \emptyset and let H(x) be a new predicate.

We say that (M, H(M)) is H-structure associated to Π if

- (1) If $h \in H(M)$, then $\models \Pi(h)$.
- (2) $h_1, \dots, h_n \in H(M)$ are distinct, then $\{h_1, \dots, h_n\}$ is \downarrow -independent.
- (3) Density: Let $\overline{b} \subset M$ and let $\Pi(x) \subset p(x)$ be a complete type over \overline{b} such that if $a \models p(x)$ then $a \perp \overline{b}$. Then there exists $h \in H(M)$ such that $h \models p(x)$.
- (4) Codensity: Let $\overline{b} \subset M$ and let p(x) be a complete type over \overline{b} . Then there exists $a \in M$ such that $a \models p(x)$ and $a \downarrow_{\overline{b}} H(M)$.

An *H*-structure associated to $\Pi(x)$ exists. *H*-structures associated to $\Pi(x)$ are elementarily equivalent, T_{Π}^{ind} denotes the common theory of *H*-structure associated to $\Pi(x)$. T_{Π}^{ind} is axiomatizable if *T* has two conditions (1) (2):

- (1) For each formula $\varphi(x, \bar{y})$ there exists a formula $\psi(\bar{y})$ such that (there exists a such that $a \models \varphi(x, \bar{b})$ and $a \perp \bar{b}$) iff $\bar{b} \models \psi(\bar{y})$.
- (2) Let $\varphi(\bar{x}, \bar{y})$ and $\psi(\bar{y}, \bar{z})$ be formulas. The following condition on \bar{c} is typedefinable: For any $\bar{b} \models \psi(\bar{y}, \bar{c})$ there exists $\bar{a} \models \varphi(\bar{x}, \bar{b})$ we have $\bar{a} \downarrow_{\bar{x}} \bar{b}$.

Any $|T|^+$ -saturated model of T_{Π}^{ind} is a *H*-structure associated to $\Pi(x)$. If *T* is supersimple and T_{Π}^{ind} is axiomatizable, then T_{Π}^{ind} is supersimple.

- Fact 8.1. (1) [BV4] Let $(\mathcal{M}, H(\mathcal{M}))$ be an H-structure associated to $\Pi(x)$, where \mathcal{M} is supersimple. Then $\bar{a} \downarrow_A^H B \Leftrightarrow \bar{a} \downarrow_{AH(\mathcal{M})} BH(\mathcal{M}), HB(\bar{a}/A) = HB(\bar{a}/B).$
 - (2) [BV3] Let $(\mathcal{M}, H(\mathcal{M}))$ be an H-structure, where $SU(\mathcal{M}) = 1$. Suppose that $A = \operatorname{acl}_{H}(A)$.
 - (a) $a \in A$ iff $SU_H(a/A) = 0$
 - (b) $a \in \operatorname{acl}(AH(\mathcal{M})) \setminus A$ iff $\operatorname{acl}_H(aA) = \operatorname{acl}(AHB(a/A))$ iff $\operatorname{SU}_H(a/A) = |HB(a/A)|$.
 - (c) If a is trivial over A, then $a \in \operatorname{acl}(AH(\mathcal{M})) \setminus A$ then $\operatorname{SU}_H(a/A) = 1$.
 - (d) If a is trivial over A and $a \notin \operatorname{acl}(AH(\mathcal{M}))$ then $\operatorname{SU}_H(a/A) = 1$.

(e) If a is non-trivial over A, then $a \notin \operatorname{acl}(AH(\mathcal{M}))$ iff $\operatorname{SU}_H(a/A) = \omega$.

Proof. (c) : By triviality there exists $h \in H(\mathcal{M})$ such that HB(a/A) = h. The conclusion follows from (b).

(d) : If $a \not\perp_A^H B$ with $B = \operatorname{acl}_H(B)$, by $HB(a/B) \subseteq HB(a/A) = \emptyset$, we have $a \not\perp_{AH(\mathcal{M})} BH(\mathcal{M})$. So $a \in \operatorname{acl}(BH(\mathcal{M}))$. By triviality and $a \notin \operatorname{acl}(AH(\mathcal{M}))$ we have $a \in \operatorname{acl}(B) \setminus \operatorname{acl}(AH(\mathcal{M}))$. So $\operatorname{SU}_H(a/B) = 0$ follows by (a). Therefore we have $\operatorname{SU}_H(a/A) = 1$. \Box

- Fact 8.2. (1) [BV3] There exists a non-trivial one-based strongly minimal theory T whose T^{ind} is not one-based. (V, +, 0, H) be a vector space over \mathbb{Q} , where $H(V) = \{v_i \in V : i < \omega\}$. Then $(V, +, 0, H) \models T^{ind}$. Let $u \in V \setminus H(V)$. Put $t = u + v_1, t' = u + v_2$. Then $HB(tt') = v_1v_2$ because $\operatorname{acl}_H(tt') = \operatorname{acl}(v_1v_2t')$ as $t - t' = v_1 - v_2$ and $tt' igstarrow_{v_1v_2} H(V)$ and $tt' igstarrow_{v_i} H(V)$. We have $t igstarrow_u^H ut'$ as $v_1 igstarrow_u^H v_2$. If T^{ind} was onebased and $\operatorname{acl}_H(t) \cap \operatorname{acl}_H(ut') = \operatorname{acl}_H(\emptyset)$, then $t igstarrow_u ut'$. On the other hand $\operatorname{RM}_H(t/ut') = \operatorname{RM}_H(v_1/ut') \leq 1$ and $\operatorname{RM}_H(t/t') = \operatorname{RM}_H(v_1v_2/t') = 2$. So $t igstarrow_{t'}^H ut'$, a contradiction.
 - (2) If T is one-based and $T_{x=x}^{ind}$ is axiomatizable, then T is trivial iff $T_{x=x}^{ind}$ is one-based.
 - (3) For any partial type $\Pi(x)$ over \emptyset , if $T_{\Pi(x)}^{ind}$ is axiomatizable, T is n-ample iff $T_{\Pi(x)}^{ind}$ is n-ample for any $n \ge 2$.

Let $\operatorname{SU}(T) = \omega^{\alpha}$. Let $\operatorname{cl}(A) := \{x \in \mathcal{M} : \operatorname{SU}(x/A) < \omega^{\alpha}\}$. We say that $\operatorname{cl}(*)$ is trivial if $\operatorname{cl}(A) = \bigcup_{a \in A} \operatorname{cl}(\{a\})$ for any $A \subset \mathcal{M}$.

Fact 8.3. Suppose that SU-rank is continuous. Let $\Pi(x)$ be the union of all the types over \emptyset of SU = ω^{α} . Assume that T_{Π}^{ind} is axiomatizable and T is one-based. Then cl(*) on \mathcal{M} is trivial iff T_{Π}^{ind} is one-based.

9. Triviality and T^{ind}

This section is due to [BV3].

Fact 9.1. (1) If T is strongly minimal and trivial, then $\text{RM}_H(T^{ind}) \leq 2$.

- (2) If T is strongly minimal and non-trivial, then $\operatorname{RM}_H(T^{ind}) = \omega$.
- (3) If SU(T) = 1 and trivial, then $SU_H(T^{ind}) = 1$.
- (4) If SU(T) = 1 and non-trivial, then $SU_H(T^{ind}) = \omega$.
- (5) If $U^{\mathfrak{p}}(T) = 1$ and trivial, then $U^{\mathfrak{p}}_{H}(T^{ind}) = 1$.
- (6) If $U^{\mathfrak{p}}(T) = 1$ and non-trivial, then $U^{\mathfrak{p}}_{H}(T^{ind}) = \omega$.

Acknowledgement: This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

- [A] H.Adler, Explanation of independence, Ph.D thesis, Freiburg, 2005, arXiv:math.LO/0511616 v1, 24 Nov 2005.
- [B] G.J.Boxall, Lovely pairs and dense pairs of real closed fields, Ph.D thesis, The university of Leeds, July 20, 2009.

- [BB-WKAP] G.Boxall, D.Bradley-Williams, C.Kestner, A.O.Aziz and D.Penazzi, Weak onebasedness, Notre Dame J. Formal Logic 54 (2013), 435-448.
- [BV1] A.Berenstein and E.Vassiliev, On lovely pairs of geometric structures, Ann.Pure.Appl.Logic 161 (2010), 866-878.
- [BV2] A.Berenstein and E.Vassiliev, Weakly one-based geometric structures, J.Symbolic Logic 77 (2012), 392-422.
- [BV3] A.Berenstein and E.Vassiliev, Geometric structures with a dense independent subset, Sel.Math.New Ser. 22 (2016), 191-225.
- [BV4] A.Berenstein and E.Vassiliev, Supersimple structures with a dense independent subset, arXiv:1803.07215v1 [math.LO] 20 Mar 2018. (Math. Logic Quarterly 63 (2017), 552-573.)
- [B-YPiV] I.Ben-Yaacov, A.Pillay and E.Vassiliev, Lovely pairs of models, Ann.Pure Appl.Logic 122 (2003), 235-261.
- [CM-PP] E.Casanovas, A.Martin-Pizarro and D.Palacin, Ample pairs, Fundamenta Mathematicae 247 (2019), 37-48.
- [Pi1] A.Pillay, A note on CM-triviality and the geometry of forking, J.Symbolic Logic 65 (2000), 474-480.
- [V1] E.Vassiliev, Generic pairs of SU-rank 1 structures, Ann.Pure Appl.Logic 120 (2003), 103-149.
- [V2] E.Vassiliev, On pseudolinearity and generic pairs, Math.Logic Quarterly 56 (2010), 35-41.

General Education, National Institute of Technology, Gakuendai, Shunan 745-8585, Japan

E-mail address: yoneda@tokuyama.ac.jp