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Discrete cubical homotopy groups and real 

K('rr, 1) spaces 

Helene Barcelo 
Simons Laufer Mathematical Sciences Institute, Berkeley 

(formerly Mathematical Sciences Research Institute, MSRI) 

In Brief 

Women in Mathematics - RIMS, Kyoto University 
Sept. 7-9, 2022 

► Discrete cubical homotopy theory is a homotopy theory in the 
category of simple graphs 

► Key invariants associated to r (finite simple graph) are groups 

An(r, v) which are discrete analogues of nn(X, x). 

► Key concept: r ----+ Xr top. space constructed as a cubical 
complex conjectured (2006) to be: 

7 

An(r, v),:,., nn(Xr,x) 

► 2006: Proved for all n by Babson, B., de Longueville, 
Laubenbacher conditional on the existence a cubical 

approximation theorem 

► 2022: Proved by Carranza and Kapulkin using categorification, 
circumventing need of an approximation theorem 
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Origins and Developments 

► Built on Atkin works (1972-1976): on modeling of social and 
technological networks using simplicial complexes 

► Formalized: Kramer, Laubenbacher (1998, n = 1); B., K., 
L.,Weaver (2001, all n): Ah(~, uo), a bi-graded family of 
groups 

► Cubicalized: Babson, B., de Longueville, Laubenbacher 
(2006): A~(r) 

► Generalized to metric spaces: B., Capraro, White (2014); 
Delabie, Khukhro (2020) 

► Homologized: B. Capraro, White (2014) 

► Further Developed: Babson, B., Greene, Jarrah, Lutz, 
McConville, Welker (2015-) 

► Categorified : Carranza, Kapulkin (2022, preprint) 

Discrete (Cubical) Homotopy Theory for Graphs 

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White) 

Definitions 

1. r - graph (b. simplicial complex; X metric space) 
vo - distinguished vertex (o-o; xo) 
z;n - infinite lattice (usual metric) 

2. An(r, v0 ) - set of graph horns f: '//_,n --+ V(r), with finite support: 

if d(a, b) = 1 in zn then d(f(a), f(b)) = 0 or 1, with 

f(i) = v0 almost everywhere 

3. f, g are discrete homotopic if there exist h E An+i(r, v0 ) and k, Ji.EN 
such that for all i E 7/.,n, 

h(i, k) = f(i) 
h(i, Ji.) = g(i) 

4. An(r, vo) - set of equivalence classes of maps in An(r, vo) 
Note: translation preserves discrete homotopy 
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A Discrete Homotopy of Graph Homomorphisms - Step 1 

10 · · · 1- 1- 4- 7- 2- 1- 1 · · · 

9 6 

CD 

A Discrete Homotopy of Graph Homomorphisms - Step 2 

10 ... 1 - 1 - 4 - 7 - 2 - 1 - 1··· 

I I I I I I I 
... 1 - 4 - 9 - 10 - 6 - 3 - 1··· 

9 6 

CD 
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A Discrete Homotopy of Graph Homomorphims - Step 3 

10 ... 1 - 1 - 4 - 7 - 2 - 1 - 1··· 

I I I I I I I 
... 1 - 4 - 9 - 10 - 6 - 3 - 1··· 

I I I I I I I 
... 1 - 1 - 5 - 8 - 3 - 1 - 1··· 

9 6 

CD 

A Discrete Homotopy of Graph Homomorphims - Step 4 

10 ... 1 - 1 - 4 - 7 - 2 - 1 - 1··· 

I I I I I I I 
... 1 - 4 - 9 - 10 - 6 - 3 - 1··· 

I I I I I I I 
... 1 - 1 - 5 - 8 - 3 - 1 - 1··· 

I I I I I I I 
9 6 ••• 1 - 1 - 1 - 5 - 1 - 1 - 1 ... 

I I I I I I I 
3 ••• 1 - 1 - 1 - 1 - 1 - 1 - 1··· 

CD 
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Discrete Homotopy Theory for Graphs 

Group Structure 

► Multiplication: for f, g E An(r, vo) of radius M, N, 

f (i) = { f(i) 
g g(ii-(M+N),i2, ... in) 

► n = 1 concatenation of loops based at v0 

► n = 2 
VQ 

VQ 
VQ 

ii :s; M 

ii> M 

VQ f VQ g VQ [f g] = [f][g] 
VQ 

VQ 

vo 

Discrete Homotopy Theory for Graphs 

Group Structure 

► Identity: e( i) = vo \/iE zn 

► Inverses: r-1(i) = f(-ii, ... , in) VIE zn 

Example ( n = 2) 

2 K N A H T 2 T H A N 
1 u 0 y 1 y 0 u 

f: 
0 N E M 0 w r-1: 0 w 0 M E 

-1 I N -1 I N 
-2 H T A M -2 M A T H 

-2 -1 0 1 2 -2 -1 0 1 

K 

N 

2 
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Discrete Homotopy Theory for Graphs 

Theorem 

An(r, vo) is an abelian group V n 2:: 2 

Discrete Homotopy Theory for Graphs 

Examples 
( Vo VJ ) 

A1 -- ,vo =1 

vo-v1-vi-vo 

I I I I 
Vo-VJ.-Y2-V3-V() 

I I I I I 
Vo-Vo-Vi-Vo-Vo 

I I I I I 
Vo-Vo-Vo-Vo-Vo 

{Xr a 2-dim cell complex: attach 2-cells to L, and □ of r) 



81

Discrete Homotopy Theory: from simplices to graphs 

q connected chains of si m pl ices, o-o - 0-1 - 0-2 - · · · - a-m 

where dim(a-; n 0-;+1) 2 q 

fl vertices = all maximal simplices oft::.. of dim2 q 

Is it a Good Analogy to Classical Homotopy? 

1. If r is connected, An(r, vo)independent of vo 
2. Siefert-van Kampen: if 

then 

r = r1 u f 2 ; f; connected; v0 E r1 n f 2 ; r1 n r2 connected 
6, □ lie in one of the r; 

for C a loop in r 1 n r 2 

3. Relative discrete homotopy theory and long exact sequences 

4. Associated discrete homology theory. 
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Discrete Homology Theory for Graphs 
(B., Capraro, White) 

1. Discrete n-dim cube On= {(a1, ... , an) I a;= 0 or 1} 

2. Singular n-cube a: On ---+ r graph homomorphism 

3 . .Cn(1) := free abelian group generated by all singular n-cubes a 

► ;th front and back faces of a are singular (n - 1)-cubes 
► Degenerate singular n-cube: if :3 i s.t. i-front=i-back 
► Dn(r) := free abelian group generated by all degenerate 

singular n-cubes 

4. Cn(f) := .Cn(1)/ Dn(f); n-chains 

5. Boundary operators an for each n 2: 1 

n 

8n(a) = 2)-lf (A7(a) - BI'(a)) 
i=l 

6. The discrete homology groups of 1: 

Discrete Homology Theory for Graphs 

Examples 

DHn( - ) = 0 \;/ n ?:. 1 

DHn(D) = 0 V n ?:. 1 

DH1( ) = 0 

0H3( ) = 0 

Definition 

DHn(b.) = 0 \;/ n?:. 1 

DH1(O ) = Z \;/ n?:. 2, is trivial 

DH2( ) = Z 

If r' ~ r, then 8n( Cn(r')) ~ Cn-1(r') and there are maps 

The relative homology groups of (r, r'): 
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How to Judge if Homology Theory is Good? 

1. Hurewicz Theorem: DH1(r) ~ Aib(r) 

2. Discrete version of Mayer-Vietoris sequence 

3. Eilenberg-Steenrod axioms: 

► Homotopy: If 

are discrete homotopic maps then their induced maps on 
homology are the same 

► Excision: 

if r = r 1 u r 2 is a discrete cover 
► Dimension: 

DHn( •, 0) = {O} \/ n 2". 1 

► Long exact sequence: 

How to Judge if Homology Theory is Good? 
C. Which groups can we obtain? 

► For a fine enough rectangulation R of a compact, metrizable, 
smooth, path-connected manifold M, let r R be the natural 
graph associated to R. Then 

-lJ- ( + suspension) 

► For each finitely generated abelian group G and ii E N, there is 
a finite connected simple graph r such that 

if n = ii 

if n :S: ii 

► There is a graph 5n such that 



84

Applications ( n = 1) 

► Maurer (1971): Characterize matroid basis graphs: 
(connected), interval and positioning conditions and 

7 

A1(r) "' 1 -¢:::::::? r is a matroid basis graph 
No (M. 1973), unless r contains at least one vertex with 
finitely many neighbours (2015 Chapolin et al.) 

► Lovasz (1977): Homology theory for spanning trees of a graph 
- arborescence complex 

► Malle (1983): Net homotopy of graphs; String groups are 

A1(r) and A1(r) ~ 1 -¢:::::::? each cycle has a pseudoplanar net . 

► Laubenbacher et al. (2004): Time Series Analysis of data 
from agent-base computer simulations. Trivial A1 correlates 
with high fitness of agents. 

Applications ( n = 1) 

► B. Seavers, White (2011): 

A~-k+1(JR-Coxeter comp W) ~ 1r1(M(k-parabolic arr. W)) 

generalizing Brieskorn's results for C-hyperbolic arrangements. 

► A. Khukhro, T. Delabie (2020) 

Uses r-Lipschitz maps, Cayley graph of a finitely generated 
group G =< S >, Na normal subgroup of G. The discrete 
fundamental group of a Cayley graph detects the normal 
subgroup used to build it. 
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Unexpected Application of Discrete Homotopy Theory 

Complex K(1r, 1) Spaces 

A~ 2 braid arrangement: 

{iECnlz;=zj}, i<j 

M(A~ 2 ) is K(1r, 1) 
(Fadel'I-Neuwirth 1962) 

1r1(M(A~2)) ~ pure braid gp. 
(Fox-Fad~II 1963) 

M(A~ 2 (W)) is K(1r, 1) 
(Delig~e 1972) 

Real K(1r, 1) Spaces 

A!3 3-equal subspace arr: 

{ ,x' E IRn I Xj = Xj = Xk}, i < j < k 

M(A! 3) is K(1r, 1) 
(Khov~nov 1996) 

1r1(M(A! 3)) ~ pure triplet gp. 
(Khovan;v 1996) 

M(A! 3(W)) are K(1r, 1) 
' Davis-Jan uszkiewicz-Scott 

2008) 

Unexpected Application of Discrete Homotopy Theory 

Complex K(1r, 1) Spaces 

A~ 2 braid arrangement: 

{iECnlz;=zj}, i<j 

1r1(M(A~2(W)) 
' ~ pure Artin group 

~ Ker(¢) 
(Brieskorn 1971) 

Theorem 

Note: Ar-k+l ~ 7rl ~ 1 for k > 3 

Real K(1r, 1) Spaces 

A!3 3-equal subspace arr: 

{ ,x' E IRn I Xj = Xj = Xk}, i < j < k 

1r1(M(A! 3 (W)) ~ Ker(¢') 

where A~3(W) is a 3-parabolic 
' subsp. arr. of type W 

(B-Severs-White 2009) 
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Essence of the Proof 

1. Presentation of a Coxeter group ( W, 5) subject to 
(i) 5 2 = 1 for 5 E 5 

(ii) (5t)2 = 1 for 5, t such that m(5, t) = 2 
(iii) (5t)3 = 1 for 5, t such that m(5, t) = 3 

2. Artin group: "W - (i)" i.e. 

(st)2 = 1, (st) 3 = 1, 

( W = Sn represent the braid group ) 

3. Pu re Arti n gp: Ker(</>), where </>: "W - (i) "---+ W by </>(Si) = Si 

1r1(M(A~2)) ~ Ker(</>) 
' 

Essence of the Proof 

4. 3-parabolic arrangement of type W, subspaces invariant under 
the action of irreducible parabolic subgroups of rank 2 ( closed 
under conjugation). 

5. Real-Artin group "W' = (W - {(iii) ,(iv) , ... }, S)," i.e.: keep 
only: 

(i) 5 2 = 1 for 5 E 5 
(ii) (5t)2 = 1 for 5, t such that m(5, t) = 2 (W = Sn represent the 

triplet group (Khovanov)) 

6. </>': W'---+ W with </>'(s) = s, Vs E S 

1r1(M(A~,3(W))) ~Ker(</>')~ A1-3+1(Coxeter complex W) 
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Essence of Proof 

► The W-permutahedron is the Minkowski sum of unit line 
segments _l_ to hyperplanes of W 

► Its 2-skeleton has: 
vertices w E W 
edges ( w, ws), where s is a si m pie reflection 
2-faces are bounded by cycles (w, ws, wst, ... , w(st)m(s,t)) 

4-cycles 

6-cycles 

8-cycles 

(st) 2 = 1 (sand t commute) 

(st) 3 = 1 

(st) 4 = 1 

► The complement of the 3-parabolic subspace arrangement of 
type W is homotopy equivalent to the space obtained from 
the (dual) W-permutahedron by removing the faces bounded 
by 6-cycles, 8-cycles, ... 

Unexpected Application of Discrete Homotopy Theory 

► (Dual) Coxeter complex for Sn is the permutahedron 

► (Dual) Coxeter complex for Bn 
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Conclusion 

We have replaced a group ('1r1) defined in terms of the topology of 
a space with a group (A1) defined in terms of the combinatorial 
structure of the space. 

"The further a mathematical theory is developed, the more 
harmoniously and uniformly does its construction proceed, and 
unsuspected relations are disclosed between hitherto separated 
branches of the science." - David Hilbert 

THANK YOU~ 




