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In Brief

| 2
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Discrete cubical homotopy theory is a homotopy theory in the
category of simple graphs

Key invariants associated to ' (finite simple graph) are groups
An(T', v) which are discrete analogues of IM,(X, x).

Key concept: [ — X top. space constructed as a cubical
complex conjectured (2006) to be:

2

An(T,v) = Na(Xr, X)

2006: Proved for all n by Babson, B., de Longueville,
Laubenbacher conditional on the existence a cubical
approximation theorem

2022: Proved by Carranza and Kapulkin using categorification,
circumventing need of an approximation theorem



Origins and Developments

» Built on Atkin works (1972-1976): on modeling of social and
technological networks using simplicial complexes

» Formalized: Kramer, Laubenbacher (1998, n =1); B., K,
L.,Weaver (2001, all n): A3(A,0p), a bi-graded family of
groups

» Cubicalized: Babson, B., de Longueville, Laubenbacher
(2006): AS(IN)

» Generalized to metric spaces: B., Capraro, White (2014);
Delabie, Khukhro (2020)

» Homologized: B. Capraro, White (2014)

» Further Developed: Babson, B., Greene, Jarrah, Lutz,
McConville, Welker (2015-)

» Categorified: Carranza, Kapulkin (2022, preprint)

Discrete (Cubical) Homotopy Theory for Graphs

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White)

Definitions

1. T - graph (A simplicial complex; X metric space)
vo - distinguished vertex (oo; xo)
Z" - infinite lattice (usual metric)
2. Auy(T, w) - set of graph homs f: Z" — V/(I'), with finite support:

if d(3,b) =1in Z" then d(f(3), (b)) = 0 or 1, with
f(r) = vp almost everywhere

3. f,g are discrete homotopic if there exist h € A,11(I", w) and k, £ € N
such that for all i € Z", - ~
h(i', k) = f(i)

-,

h(i 0) = g(i)

4. An(T, ) - set of equivalence classes of maps in A,(I", vo)
Note: translation preserves discrete homotopy



A Discrete Homotopy of Graph Homomorphisms — Step 1

A Discrete Homotopy of Graph Homomorphisms — Step 2
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A Discrete Homotopy of Graph Homomorphims — Step 3

A Discrete Homotopy of Graph Homomorphims — Step 4
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Discrete Homotopy Theory for Graphs

Group Structure
» Multiplication: for f, g € Ap(T, vp) of radius M, N,

. 10 <M
g(il—(M+N),i2,...fn) hn>M

» n = 1 concatenation of loops based at vy
> n=2

Vo

Vo
Vo

v fowlg|w [fg]=If]lg]

Vo

Vo

Vo

Discrete Homotopy Theory for Graphs

Group Structure
> Identity: e(/)=vy VieZ"

-,

> Inverses: F~1(7) = f(—i,...,0n) VieZ

Example (n = 2)

2| K N A H T 2| T H A N K
11U O Y 1Y O U
f ON E M O W -1 o|w O M E N
=11 N -1/ N
2! H T A M -2/ M A T !
-2-1 0 1 2 -2-1 0 1 2
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Discrete Homotopy Theory for Graphs

Theorem

An(T', vo) is an abelian group ¥ n > 2

Discrete Homotopy Theory for Graphs

Examples
Al(“o—“l,V()):l
V2 Vo — Vi — V2 — W
al A )=t BN
Vo Vi Ww— W —W—Ww
Vo — VI — V2 — V3 — Vg
- _ R
A1 s Vo =1 Vo — Vg — Vi — Vg — W
ve—eu N N
Vo — Vo — Vg — Vo — V0

Al( @l,vo) ~1

Ai(T, vo) = mi (T, vo)/N(3,4 cycles) = m1(Xr, vo)

(Xr a 2-dim cell complex: attach 2-cells to A and O of I')



Discrete Homotopy Theory: from simplices to graphs

> AZ(Aa UO) g An(rqAa 0_0)

g connected chains of simplices, g —01 — 02 — -+ — 0
where dim(o; Noiy1) > g

A vertices = all maximal simplices of A of dim> ¢

(0,0") € E(T'}) <= dim(cNd’) >gq

Is it a Good Analogy to Classical Homotopy?

1. If T is connected, An(T, vo)independent of vy

2. Siefert-van Kampen: if
=T1UTly; I; connected; vg € N1 N Ty; 1 NI, connected
A, O lie in one of the I;

then
A1(T, vo) = A1(T1, vo) * A1(T2, vo)/N([€] = [6] 1)

for f aloopinl;Nly
3. Relative discrete homotopy theory and long exact sequences

4. Associated discrete homology theory.

81
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Discrete Homology Theory for Graphs
(B., Capraro, White)
1. Discrete n-dim cube Q, = {(a1,...,an) | @i =0o0r 1}
2. Singular n-cube o: Q, — I graph homomorphism
3. L,(IN) := free abelian group generated by all singular n-cubes o

> i*h front and back faces of o are singular (n — 1)-cubes

» Degenerate singular n-cube: if 3/ s.t. i-front=/i-back

» D,(I) := free abelian group generated by all degenerate
singular n-cubes

4. Cu(T) := Ln(T)/Dn(T); n-chains
5. Boundary operators 0, for each n > 1

n

0n(0) = 3_(~1) (Al(0) ~ BI(o))

6. The discrete homology groups of I':

DHn(T) = Ker(n)/Im(0ns1)

Discrete Homology Theory for Graphs

Examples
DH,(—=)=0 Vn>1 DH,(A)=0 Vn>1
DH,(O)=0 Yn>1 DH() =7 VYn>2, is trivial
DHy (%) =0 DHy(*) =7
DH;(%) =0

Definition

If I C T, then 9,(Ch(T")) € Co—1(I") and there are maps
On: Ca(T,T) = Ca(T)/ Ca(T") = Cpa (T, T)
The relative homology groups of (I',T"):

DHy(T, ') = Ker(8,)/1m(9ps1)



How to Judge if Homology Theory is Good?
1. Hurewicz Theorem: DH;(T') = A2b(T)

2. Discrete version of Mayer-Vietoris sequence
3. Eilenberg-Steenrod axioms:
» Homotopy: If
f7g: (rv rl) - (r/a r{l)

are discrete homotopic maps then their induced maps on
homology are the same
» Excision:

DH*(rz, I—1 N r2) = DH*(F, rl)

if T =T1UTl5 is a discrete cover
» Dimension:

DH,(e,0) = {0} Vn>1

» Long exact sequence:

-+ = DHp(T") < DHp(T) < DHo(T,T") 25 DH,_1(T") - --

How to Judge if Homology Theory is Good?
C. Which groups can we obtain?

» For a fine enough rectangulation R of a compact, metrizable,
smooth, path-connected manifold M, let g be the natural
graph associated to R. Then

7'['1(,\/]) = Al(l'R)

Il (+ suspension)

» For each finitely generated abelian group G and i1 € N, there is
a finite connected simple graph I such that

G ifn=n
DH,(T) :{ nnen
0 n<n
» There is a graph S” such that

DHk(Sn) _ {OZ Ifk: n

83



84

Applications (n = 1)

» Maurer (1971): Characterize matroid basis graphs:
(connected), interval and positioning conditions and
?
Ai1(lN) 21 <= T is a matroid basis graph
No (M. 1973), unless I contains at least one vertex with
finitely many neighbours (2015 Chapolin et al.)

» Lovasz (1977): Homology theory for spanning trees of a graph
— arborescence complex

> Malle (1983): Net homotopy of graphs; String groups are
A1(T') and A;(I') 2 1 <= each cycle has a pseudoplanar net.

» Laubenbacher et al. (2004): Time Series Analysis of data
from agent-base computer simulations. Trivial A; correlates
with high fitness of agents.

Applications (n = 1)

» B. Seavers, White (2011):

AP~k (R_Coxeter comp W) = 71 (M(k-parabolic arr. W
1 p p

generalizing Brieskorn's results for C-hyperbolic arrangements.

> A. Khukhro, T. Delabie (2020)

Al (Cay(G/N,S),e) = N.

Uses r-Lipschitz maps, Cayley graph of a finitely generated
group G =< S >, N a normal subgroup of G. The discrete
fundamental group of a Cayley graph detects the normal
subgroup used to build it.



Unexpected Application of Discrete Homotopy Theory

Complex K(m,1) Spaces Real K(m, 1) Spaces
ASQ braid arrangement: AH§73 3-equal subspace arr:
{ZEC”‘Z,’ZZJ},/<_] {)?ER"|X;:Xj:Xk},i<j<k
M(AS,) is K(m, 1) M(AE3) is K(m,1)
(Fadell-Neuwirth 1962) (Khovanov 1996)
wl(M(AS’z)) = pure braid gp. 7T1(M(.AH§,3)) = pure triplet gp.
(Fox-Fadell 1963) (Khovanov 1996)
M(AF (W) is K(m,1) M(AS 3(W)) are K(m,1)
(Deligne 1972) Davis-Januszkiewicz-Scott

2008)

Unexpected Application of Discrete Homotopy Theory

Complex K(m,1) Spaces Real K(,1) Spaces
A(SQ braid arrangement: A]E,a 3-equal subspace arr:
{ZGC"‘Z;:ZJ'},I'<_/' {)?ER"|Xi:Xj:Xk},I'<j<k
T (M(AG (W) m1(M(A55(W)) = Ker(¢)
= pure Artin group where AI§,3(W) is a 3-parabolic
= Ker(¢) subsp. arr. of type W
(Brieskorn 1971) (B-Severs-White 2009)
Theorem

AT=KF1( Coxeter complex W) = 1y (M(AR (W))) 3<k<n

I

Note: A:’l'_kJrl > =1for k>3
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Essence of the Proof

1. Presentation of a Coxeter group (W, S) subject to
(i) s>=1forse S
(i) (st)®> =1 for s, t such that m(s, t)
(i) (st)> =1 for s, t such that m(s, t)

2
3
2. Artin group: "W — (i)" i.e.

(st)?> =1, (st)® =1,

(W =S, represent the braid group )
3. Pure Artin gp: Ker(¢), where ¢: “W —(i)"— W by ¢(si) = si

T (M(A52)) & Ker(9)

Essence of the Proof

4. 3-parabolic arrangement of type W, subspaces invariant under
the action of irreducible parabolic subgroups of rank 2 (closed
under conjugation).

5. Real-Artin group “W’' = (W — {(iii),(iv),...},S),” i.e.: keep
only:

(i) s2=1forse S
(i) (st)> =1 for s, t such that m(s,t) =2 (W = S, represent the
triplet group (Khovanov))

6. ¢': W — W with ¢'(s) =s,Vse S

T (M(Ap3(W))) = Ker(¢') = AT~>"1(Coxeter complex W)
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Essence of Proof

» The W-permutahedron is the Minkowski sum of unit line
segments | to hyperplanes of W
» Its 2-skeleton has:

vertices w € W
edges (w, ws), where s is a simple reflection

2-faces are bounded by cycles (w, ws, wst, ..., w(st)™(:t))
4-cycles (st)>=1 (s and t commute)
6-cycles (st))=1
8-cycles (st)*=1

» The complement of the 3-parabolic subspace arrangement of
type W is homotopy equivalent to the space obtained from
the (dual) W-permutahedron by removing the faces bounded
by 6-cycles, 8-cycles,. ..

Unexpected Application of Discrete Homotopy Theory

» (Dual) Coxeter complex for S, is the permutahedron

}m/ \\

3oy

\//

\ \//

» (Dual) Coxeter complex for B,
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Conclusion

We have replaced a group (1) defined in terms of the topology of
a space with a group (A;) defined in terms of the combinatorial
structure of the space.

“The further a mathematical theory is developed, the more
harmoniously and uniformly does its construction proceed, and
unsuspected relations are disclosed between hitherto separated
branches of the science.” — David Hilbert

THANK YOU!





