TITLE：

Discrete cubical homotopy groups and real $\$ K \$(\$ ¥ p i \$, 1)$ spaces （Women in Mathematics）

AUTHOR（S）：
Barcelo，Hélène

[^0]
Discrete cubical homotopy groups and real $K(\pi, 1)$ spaces

Hélène Barcelo
Simons Laufer Mathematical Sciences Institute, Berkeley (formerly Mathematical Sciences Research Institute, MSRI)

Women in Mathematics - RIMS, Kyoto University
Sept. 7-9, 2022

In Brief

- Discrete cubical homotopy theory is a homotopy theory in the category of simple graphs
- Key invariants associated to 「 (finite simple graph) are groups $A_{n}(\Gamma, v)$ which are discrete analogues of $\Pi_{n}(X, x)$.
- Key concept: $\Gamma \rightarrow X_{\Gamma}$ top. space constructed as a cubical complex conjectured (2006) to be:

$$
A_{n}(\Gamma, v) \stackrel{?}{\cong} \Pi_{n}\left(X_{\Gamma}, x\right)
$$

- 2006: Proved for all n by Babson, B., de Longueville, Laubenbacher conditional on the existence a cubical approximation theorem
- 2022: Proved by Carranza and Kapulkin using categorification, circumventing need of an approximation theorem

Origins and Developments

- Built on Atkin works (1972-1976): on modeling of social and technological networks using simplicial complexes
- Formalized: Kramer, Laubenbacher (1998, $n=1$); B., K., L.,Weaver (2001, all n): $A_{n}^{q}\left(\Delta, \sigma_{0}\right)$, a bi-graded family of groups
- Cubicalized: Babson, B., de Longueville, Laubenbacher (2006): $A_{n}^{G}(\Gamma)$
- Generalized to metric spaces: B., Capraro, White (2014); Delabie, Khukhro (2020)
- Homologized: B. Capraro, White (2014)
- Further Developed: Babson, B., Greene, Jarrah, Lutz, McConville, Welker (2015-)
- Categorified: Carranza, Kapulkin (2022, preprint)

Discrete (Cubical) Homotopy Theory for Graphs

(Babson, B., Kramer, de Longueville, Laubenbacher, Severs, Weaver, White)

Definitions

1. Γ - graph (Δ simplicial complex; X metric space)
v_{0} - distinguished vertex ($\sigma_{0} ; x_{0}$)
\mathbb{Z}^{n} - infinite lattice (usual metric)
2. $\mathcal{A}_{n}\left(\Gamma, v_{0}\right)$ - set of graph homs $f: \mathbb{Z}^{n} \rightarrow V(\Gamma)$, with finite support:
if $d(\vec{a}, \vec{b})=1$ in \mathbb{Z}^{n} then $d(f(\vec{a}), f(\vec{b}))=0$ or 1 , with
$f(\vec{i})=v_{0}$ almost everywhere
3. f, g are discrete homotopic if there exist $h \in \mathcal{A}_{n+1}\left(\Gamma, v_{0}\right)$ and $k, \ell \in \mathbb{N}$ such that for all $\vec{i} \in \mathbb{Z}^{n}$,

$$
\begin{aligned}
& h(\vec{i}, k)=f(\vec{i}) \\
& h(\vec{i}, \ell)=g(\vec{i})
\end{aligned}
$$

4. $A_{n}\left(\Gamma, v_{0}\right)$ - set of equivalence classes of maps in $\mathcal{A}_{n}\left(\Gamma, v_{0}\right)$

Note: translation preserves discrete homotopy

A Discrete Homotopy of Graph Homomorphisms - Step 1

A Discrete Homotopy of Graph Homomorphisms - Step 2

A Discrete Homotopy of Graph Homomorphims - Step 3

A Discrete Homotopy of Graph Homomorphims - Step 4

Discrete Homotopy Theory for Graphs

Group Structure

- Multiplication: for $f, g \in \mathcal{A}_{n}\left(\Gamma, v_{0}\right)$ of radius M, N,

$$
f g(\vec{i})= \begin{cases}f(\vec{i}) & i_{1} \leq M \\ g\left(i_{1}-(M+N), i_{2}, \ldots i_{n}\right) & i_{1}>M\end{cases}
$$

- $n=1$ concatenation of loops based at v_{0}
- $n=2$

Discrete Homotopy Theory for Graphs

Group Structure

- Identity: $e(\vec{i})=v_{0} \quad \forall \vec{i} \in \mathbb{Z}^{n}$
- Inverses: $f^{-1}(\vec{i})=f\left(-i_{1}, \ldots, i_{n}\right) \quad \forall \vec{i} \in \mathbb{Z}^{n}$

Example ($n=2$)

Discrete Homotopy Theory for Graphs

Theorem
$A_{n}\left(\Gamma, v_{0}\right)$ is an abelian group $\forall n \geq 2$

Discrete Homotopy Theory for Graphs

Examples

$$
\begin{aligned}
& A_{1}\left(\Gamma, v_{0}\right) \cong \pi_{1}\left(\Gamma, v_{0}\right) / N(3,4 \text { cycles }) \cong \pi_{1}\left(X_{\Gamma}, v_{0}\right)
\end{aligned}
$$

(X_{Γ} a 2-dim cell complex: attach 2-cells to \triangle and \square of Γ)

Discrete Homotopy Theory: from simplices to graphs

$$
\begin{aligned}
& \quad A_{n}^{q}\left(\Delta, \sigma_{0}\right) \cong A_{n}\left(\Gamma_{\Delta}^{q}, \sigma_{0}\right) \\
& \quad q \text { connected chains of simplices, } \sigma_{0}-\sigma_{1}-\sigma_{2}-\cdots-\sigma_{m} \\
& \quad \text { where } \operatorname{dim}\left(\sigma_{i} \cap \sigma_{i+1}\right) \geq q \\
& \quad \Gamma_{\Delta}^{q} \text { vertices }=\text { all maximal simplices of } \Delta \text { of } \operatorname{dim} \geq q \\
& \quad\left(\sigma, \sigma^{\prime}\right) \in E\left(\Gamma_{\Delta}^{q}\right) \Longleftrightarrow \operatorname{dim}\left(\sigma \cap \sigma^{\prime}\right) \geq q
\end{aligned}
$$

Is it a Good Analogy to Classical Homotopy?

1. If Γ is connected, $A_{n}\left(\Gamma, v_{0}\right)$ independent of v_{0}
2. Siefert-van Kampen: if
$\Gamma=\Gamma_{1} \cup \Gamma_{2} ; \Gamma_{i}$ connected; $v_{0} \in \Gamma_{1} \cap \Gamma_{2} ; \Gamma_{1} \cap \Gamma_{2}$ connected \triangle, \square lie in one of the Γ_{i} then

$$
A_{1}\left(\Gamma, v_{0}\right) \cong A_{1}\left(\Gamma_{1}, v_{0}\right) * A_{1}\left(\Gamma_{2}, v_{0}\right) / N\left([\ell] *[\ell]^{-1}\right)
$$

for ℓ a loop in $\Gamma_{1} \cap \Gamma_{2}$
3. Relative discrete homotopy theory and long exact sequences
4. Associated discrete homology theory.

Discrete Homology Theory for Graphs

(B., Capraro, White)

1. Discrete n-dim cube $Q_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}=0\right.$ or 1$\}$
2. Singular n-cube $\sigma: Q_{n} \rightarrow \Gamma$ graph homomorphism
3. $\mathcal{L}_{n}(\Gamma):=$ free abelian group generated by all singular n-cubes σ

- $i^{\text {th }}$ front and back faces of σ are singular $(n-1)$-cubes
- Degenerate singular n-cube: if $\exists i$ s.t. i-front $=i$-back
- $D_{n}(\Gamma):=$ free abelian group generated by all degenerate singular n-cubes

4. $C_{n}(\Gamma):=\mathcal{L}_{n}(\Gamma) / D_{n}(\Gamma) ; n$-chains
5. Boundary operators ∂_{n} for each $n \geq 1$

$$
\partial_{n}(\sigma)=\sum_{i=1}^{n}(-1)^{i}\left(A_{i}^{n}(\sigma)-B_{i}^{n}(\sigma)\right)
$$

6. The discrete homology groups of Γ :

$$
D H_{n}(\Gamma)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)
$$

Discrete Homology Theory for Graphs

Examples

$$
\begin{array}{llll}
D H_{n}(-)=0 & \forall n \geq 1 & D H_{n}(\triangle)=0 & \forall n \geq 1 \\
D H_{n}(\square)=0 & \forall n \geq 1 & D H_{1}(\checkmark)=\mathbb{Z} & \forall n \geq 2, \text { is trivial } \\
D H_{1}(\not)=0 & & D H_{2}(\not)=\mathbb{Z} & \\
D H_{3}(\not)=0 & & &
\end{array}
$$

Definition
If $\Gamma^{\prime} \subseteq \Gamma$, then $\partial_{n}\left(C_{n}\left(\Gamma^{\prime}\right)\right) \subseteq C_{n-1}\left(\Gamma^{\prime}\right)$ and there are maps

$$
\partial_{n}: C_{n}\left(\Gamma, \Gamma^{\prime}\right)=C_{n}(\Gamma) / C_{n}\left(\Gamma^{\prime}\right) \rightarrow C_{n-1}\left(\Gamma, \Gamma^{\prime}\right)
$$

The relative homology groups of $\left(\Gamma, \Gamma^{\prime}\right)$:

$$
D H_{n}\left(\Gamma, \Gamma^{\prime}\right)=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)
$$

How to Judge if Homology Theory is Good?

1. Hurewicz Theorem: $D H_{1}(\Gamma) \cong A_{1}^{\mathrm{ab}}(\Gamma)$
2. Discrete version of Mayer-Vietoris sequence
3. Eilenberg-Steenrod axioms:

- Homotopy: If

$$
f, g:\left(\Gamma, \Gamma_{1}\right) \rightarrow\left(\Gamma^{\prime}, \Gamma_{1}^{\prime}\right)
$$

are discrete homotopic maps then their induced maps on homology are the same

- Excision:

$$
D H_{*}\left(\Gamma_{2}, \Gamma_{1} \cap \Gamma_{2}\right) \cong D H_{*}\left(\Gamma, \Gamma_{1}\right)
$$

if $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ is a discrete cover

- Dimension:

$$
D H_{n}(\bullet, \emptyset)=\{0\} \quad \forall n \geq 1
$$

- Long exact sequence:

$$
\cdots \rightarrow D H_{n}\left(\Gamma^{\prime}\right) \hookrightarrow D H_{n}(\Gamma) \hookrightarrow D H_{n}\left(\Gamma, \Gamma^{\prime}\right) \xrightarrow{\partial_{*}} D H_{n-1}\left(\Gamma^{\prime}\right) \cdots
$$

How to Judge if Homology Theory is Good?

C. Which groups can we obtain?

- For a fine enough rectangulation R of a compact, metrizable, smooth, path-connected manifold M, let Γ_{R} be the natural graph associated to R. Then

$$
\pi_{1}(M) \cong A_{1}\left(\Gamma_{R}\right)
$$

$$
\Downarrow(+ \text { suspension })
$$

- For each finitely generated abelian group G and $\bar{n} \in \mathbb{N}$, there is a finite connected simple graph 「 such that

$$
D H_{n}(\Gamma)= \begin{cases}G & \text { if } n=\bar{n} \\ 0 & \text { if } n \leq \bar{n}\end{cases}
$$

- There is a graph S^{n} such that

$$
D H_{k}\left(S^{n}\right)= \begin{cases}\mathbb{Z} & \text { if } k=n \\ 0 & \text { if } k \neq n\end{cases}
$$

Applications $(n=1)$

- Maurer (1971): Characterize matroid basis graphs: (connected), interval and positioning conditions and $A_{1}(\Gamma) \stackrel{?}{\cong} 1 \Longleftrightarrow \Gamma$ is a matroid basis graph No (M. 1973), unless Γ contains at least one vertex with finitely many neighbours (2015 Chapolin et al.)
- Lovász (1977): Homology theory for spanning trees of a graph - arborescence complex
- Malle (1983): Net homotopy of graphs; String groups are $A_{1}(\Gamma)$ and $A_{1}(\Gamma) \cong 1 \Longleftrightarrow$ each cycle has a pseudoplanar net.
- Laubenbacher et al. (2004): Time Series Analysis of data from agent-base computer simulations. Trivial A_{1} correlates with high fitness of agents.

Applications ($n=1$)
B. Seavers, White (2011):
$A_{1}^{n-k+1}(\mathbb{R}$-Coxeter comp W$) \cong \pi_{1}(M(k$-parabolic arr. W$))$
generalizing Brieskorn's results for \mathbb{C}-hyperbolic arrangements.

- A. Khukhro, T. Delabie (2020)

$$
A_{1}^{r}(\operatorname{Cay}(G / N, \bar{S}), e) \cong N .
$$

Uses r-Lipschitz maps, Cayley graph of a finitely generated group $G=<S>, N$ a normal subgroup of G. The discrete fundamental group of a Cayley graph detects the normal subgroup used to build it.

Unexpected Application of Discrete Homotopy Theory

Complex $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)$ is $K(\pi, 1)$
(Fadell-Neuwirth 1962)
$\pi_{1}\left(M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)\right) \cong$ pure braid gp.
(Fox-Fadell 1963)
$M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}(W)\right)$ is $K(\pi, 1)$
(Deligne 1972)

Real $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 3}^{\mathbb{R}} 3$-equal subspace arr: $\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$
$M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}\right)$ is $K(\pi, 1)$
(Khovanov 1996)
$\pi_{1}\left(M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}\right)\right) \cong$ pure triplet gp. (Khovanov 1996)
$M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}(W)\right)$ are $K(\pi, 1)$
Davis-Januszkiewicz-Scott 2008)

Unexpected Application of Discrete Homotopy Theory

Complex $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 2}^{\mathbb{C}}$ braid arrangement:
$\left\{\vec{z} \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}, i<j$
$\pi_{1}\left(M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}(W)\right)\right.$
\cong pure Artin group
$\cong \operatorname{Ker}(\phi)$
(Brieskorn 1971)

Real $K(\pi, 1)$ Spaces
$\mathcal{A}_{n, 3}^{\mathbb{R}} 3$-equal subspace arr:
$\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}=x_{k}\right\}, i<j<k$
$\pi_{1}\left(M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}(W)\right) \cong \operatorname{Ker}\left(\phi^{\prime}\right)\right.$
where $\mathcal{A}_{n, 3}^{\mathbb{R}}(W)$ is a 3 -parabolic
subsp. arr. of type W
(B-Severs-White 2009)

Theorem

$$
A_{1}^{n-k+1}(\text { Coxeter complex } W) \cong \pi_{1}\left(M\left(\mathcal{A}_{n, k}^{\mathbb{R}}(W)\right)\right) \quad 3 \leq k \leq n
$$

Note: $A_{1}^{n-k+1} \cong \pi_{1} \cong 1$ for $k>3$

Essence of the Proof

1. Presentation of a Coxeter group (W, S) subject to
(i) $s^{2}=1$ for $s \in S$
(ii) $(s t)^{2}=1$ for s, t such that $m(s, t)=2$
(iii) $(s t)^{3}=1$ for s, t such that $m(s, t)=3$
2. Artin group: " W - (i)" i.e.

$$
(s t)^{2}=1, \quad(s t)^{3}=1, \quad \cdots
$$

($W=S_{n}$ represent the braid group)
3. Pure Artin gp: $\operatorname{Ker}(\phi)$, where $\phi:$ " $W-(\mathrm{i})$ " $\rightarrow W$ by $\phi\left(s_{i}\right)=s_{i}$

$$
\pi_{1}\left(M\left(\mathcal{A}_{n, 2}^{\mathbb{C}}\right)\right) \cong \operatorname{Ker}(\phi)
$$

Essence of the Proof

4. 3-parabolic arrangement of type W, subspaces invariant under the action of irreducible parabolic subgroups of rank 2 (closed under conjugation).
5. Real-Artin group " $W^{\prime}=(W-\{(i i i),(i v), \ldots\}, S)$," i.e.: keep only:
(i) $s^{2}=1$ for $s \in S$
(ii) $(s t)^{2}=1$ for s, t such that $m(s, t)=2\left(W=S_{n}\right.$ represent the triplet group (Khovanov))
6. $\phi^{\prime}: W^{\prime} \rightarrow W$ with $\phi^{\prime}(s)=s, \forall s \in S$

$$
\pi_{1}\left(M\left(\mathcal{A}_{n, 3}^{\mathbb{R}}(W)\right)\right) \cong \operatorname{Ker}\left(\phi^{\prime}\right) \cong A_{1}^{n-3+1}(\text { Coxeter complex } W)
$$

Essence of Proof

- The W-permutahedron is the Minkowski sum of unit line segments \perp to hyperplanes of W
- Its 2-skeleton has:
vertices $w \in W$
edges ($w, w s$), where s is a simple reflection
2 -faces are bounded by cycles ($w, w s, w s t, \ldots, w(s t)^{m(s, t)}$)

4-cycles	$(s t)^{2}=1 \quad(s$ and t commute $)$
6-cycles	$(s t)^{3}=1$
8-cycles	$(s t)^{4}=1$

- The complement of the 3-parabolic subspace arrangement of type W is homotopy equivalent to the space obtained from the (dual) W-permutahedron by removing the faces bounded by 6 -cycles, 8 -cycles,...

Unexpected Application of Discrete Homotopy Theory

- (Dual) Coxeter complex for S_{n} is the permutahedron

- (Dual) Coxeter complex for B_{n}

Conclusion

We have replaced a group $\left(\pi_{1}\right)$ defined in terms of the topology of a space with a group $\left(A_{1}\right)$ defined in terms of the combinatorial structure of the space.
"The further a mathematical theory is developed, the more harmoniously and uniformly does its construction proceed, and unsuspected relations are disclosed between hitherto separated branches of the science." - David Hilbert

THANK YOU!

[^0]: CITATION：
 Barcelo，Hélène．Discrete cubical homotopy groups and real \＄K\＄（\＄¥pi\＄，1）spaces （Women in Mathematics）．数理解析研究所講究録 2023，2248：75－88

 ISSUE DATE：
 2023－04
 URL：
 http：／／hdl．handle．net／2433／285405
 RIGHT：

