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Smoothness of Directed Chain Stochastic Differential Equations
and its Applications

TOMOYUKI ICHIBA
Department of Statistics & Applied Probability
University of California Santa Barbara

1 Introduction

On a filtered probability space (£, F, (F;)i>0, P), we shall consider the following system of stochastic
differential equations for a pair (X o X ) of N -dimensional stochastic processes:

t ~ .
X0 = 9+/ Vo(s, X? Law(X?), X d9+Z/ Vi(s, X% Law(X?), X,)dB! 1)
JO

for ¢t > 0 with the distributional constraint
(X0t >0] := Law(X?,t > 0) = Law(X;,t > 0) = [X;, ¢ > 0], )

where V; : [0,7] x RV x Po(RY) x RV — RN, i = 0,1,...,d are some smooth coefficients,
B := (B',---,B%) is the standard d-dimensional Brownian motion. We assume the initial value
0 € Po(RY) is independent of B and X, and X is independent of B. Here, P2(RY) is the set of
probability measures on R with finite second moments. We equip Po(RY) with the 2-Wasserstein
metric, Wy . For a general metric space (M, d), we define the 2-Wasserstein metric on Pa(M) by
Wa(p,v) = infrep,, ([yyyn @ (x,y)(dz, dy))'/?, where P, denotes the class of probability
measures on M x M with marginals 1 and v . Note that the law [X?] of X? depends on the law [X.]
of X. and they are the same marginal law. Setting BY = ¢, t > 0, the above equation is rewritten as

Xf:t9+2/ Vi(s, X, (X0, X,)dBL; t>0, )
[X;,>0] = Law (X;,t>0) = Law (X/,t>0) = [X/,t >0].
We call the system (1) with the constraint (2) the system of directed chain stochastic differential equation.

For example, with N = 1, u € [0,1], and some smooth functions by; : Ry x R x R — R, for
i = 0,1,...,d, we define the coefficients

‘/z(t7 Z, [, y) = UbO,i(t7x7 y) + (1 - U)/ bO,i(t7 xz, Z)dﬂ(Z)
R

as a linear combination of two terms. When u = 0, the equation becomes a McKean-Vlasov equation;
When u = 1, there is no contribution from the distribution [X?].

Proposition 1 (Uniqueness of weak solution). Let p1g € P2(RY) be a fixed reference measure. Suppose
that Vi, i = 0,1,...,d are Lipschitz continuous and grow at most linearly in the sense that for every
T > 0, there exists a constant cy such that for every 0 < t < T, zy,y1, 2,y € RN, py,pup €
Po(RY),

Sup|‘/}(t,w17u17y1) - Vl‘(t7x2~,/‘27y2)| < CT(|'7;1 - '/I"Q‘ + ‘yl - y2‘ + WQ(MlvMQ) ) (4)
i
sup sup [Vi(t, z,p,y)| < er(1+[z] + |y[ + Wa(p, po)) - ®
i 0<I<T

Then there exists a unique weak solution (X?, X, B) (2, F,(F),P) to the system (1) of stochastic
differential equations with the distributional constraint (2).
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The analysis of the special case with N = d = 1, V; = 1 is considered in [DFI]. The name,
directed chain, is coined from the fact that the joint distribution of (XY, )?) in (1) can be approxi-
mated by the limit of the joint distribution of (X!, X2) from a finite particle system on the vertexes
i = 1,...,n, where the process X’ at vertex i depends on X’*! at vertex i + 1 via the equation
dX] = Vo(t, X{, 7, X;1)dt + dBi(t) with the empirical measure 7, = n~' 31, dy; of the par-
ticle system for i = 1,...,n—1 and dX}* = Vy(t, X}, f;, X})dt +dB"(t), t > 0. Here, §, is the
Dirac measure at the point x. Under some reasonable assumptions, the joint distribution of (X!, X?)
converges weakly to that of (X%, X.) in (1), as n — 0o.

The motivation of studying (1) comes from the interacting particles of sparse network [2], [10], [16]
as well as the mean field games [5], [7], [11], [13], [18]. particularly on the infinite random graph. In this
short note, we discuss the smoothness of the joint distribution. Smoothness of solution to MCKEAN-
VLASOV equation has been studied by [1], [8], [9].

2 Smoothness

2.1 LION’s derivatives in the Wasserstein space P,

Let us recall the Wasserstein distance between two measures u, v € Po(R) is written as
Wal,v) = inf{|[X = Ylls : [X] =, [¥] = v}.
For a function u : P, — R, we denote by U “extension” (or lift) to L2(€Y', 7', P') defined by
U(X) =u(Law(X)), Law(X)=[X]=p.

Here, (', F/,P") is an atomless Polish space. Following [6], we say wu is differentiable at [X] € P, if
there exists X’ such that [X'] = [X] and the lift U is Fréchet differentiable at X
For example, when u : Po(RY) — R is given by

o =11 /R piladula)

for some smooth functions ¢; € C2°(RN), then U(X) and its gradient DU(X) are given by

U(x) = [IE@(X)): (X = p UK = 3 (J]Eles () Dei(X),

i=1  j#i

and hence, for every v € RV, i € Po(RV),

D) = Y- (T] [ es(ant:)) Do),

i=1 i

which does not depend on the random vector X .

2.2 Smoothness of coefficients

We say V : Ry x RY x Py(RY) x RV — RV belongs to C,}”Ll{; , if each component V¥ of V =
(V1,...,VN) has bounded, Lipschitz continuous derivatives d,V?, 9V in the second and fourth
variables, respectively, in the sense of P.L. LIONS [6] with at most linear growth property, i.e., there

exists a constant ¢ > 0 such that

‘awvi(t7xv sy, U)‘ + |5Vi(tﬂzvuay7 U)I + |auvl(t7 T, u,y7v)| S c,
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|aﬂvl(f7 T, [ Y, 7)) - auvz(t/ xlvll'lvylvv)‘ S C(‘QZ’ - .Z'/‘ + |y - yll + |’U - ’U/| + WZ(N?NI))

for (t,z, u,y,v), (t,2', 1,y ,v") € [0,T] x RN x Po(RN) x RN . Moreover, we say V belongs to
G, Lklk if it has bounded, Lipschitz, k times derivatives 70 é)‘*VZ in multi-indexes («, 3,7,7),
la| + 8] + |7 + 7] < k with at most linear growth property.

Now we consider the pathwise-unique, strong solution to auxiliary stochastic equation

X =y /0 Vi(s, X219 (X9, X,)dB! 6)

0

given the solution pair (X' ,)N() in (1). More specifically, we set )N(g =: 6 and

_ d _ ~ )
x®lL0 — x—i—Z/ Vi(s, X200 [ X9 X,)dB! . @)
° 0

Then by the pathwise uniqueness, we have Xf’[g]ﬁ‘zzg = X,f ;0<s<T.

2.3 Flow property

For different initial points z, 2’ € RY, the corresponding solutions X 0010 and X100 in (7) satisfy
that for every 7" > 0, there exists a constant ¢y > 0 such that

]E[ sup |XI"[H]’§— Xz’,[f)],§|2] < CT|1‘ _ I/|2
t<s<T
by Lipschitz continuity and Burkholder-Davis-Gundy inequality. With a slightly abuse of notation, we
B9 for the process X.’ 1019 with Xf 08 _ z,and (Xte Xw) for the process (X X0 )
with (Xf"tg7 Xtt 9) = (0,6), we have the flow property

write X"

t,2,[0],0 [yt,07 5t,0 0~ vt.0 ~
(XT&XS X80 XE 7XT's,Xs 7Xf’XS ) = (Xﬁ,w,[ﬁlﬂ ,Xﬁ’e,Xﬁ"g); 0<t<s<r<T.

2.4 Partial Malliavin Calculus

Let us consider the Malliavin derivative operator D and its adjoint operator . Let o be the N x d

matrix with columns Vi,...,Vy. If there is no interaction with the neighborhood process X., the
McKean-Vlasov equation in (6) has the derivative

. X" = D X0 T (00 ) i XPOL K] o XT s r <t
however, because of the interaction with X. , in general,
&EX,;T’[Q] # DTXZE’[O]UT(UJT)_I(T‘, Xf’[e], [x?, )?T)GZX?[H] ;o or<t,

To overcome this difficulty, we shall apply the following partial Malliavin derivatives from [15], [19].
Let us take the rational numbers Qp := QN[0,7] in [0, 7] and define the o -field G := o({Xy,t €
Qr}) (countably generated) and the family of subspaces defined by the orthogonal complement

K(w) == (DX,(w),t € Qp)*



96

to the subspace generated by {DX,(w),t € Qr}. Then the family H := {K(w),w € Q} hasa
measurable projection. We define the partial derivative operator D7 : D%? — L2(Q, ), namely, for
FeDY?, D"F = Proj,(DF) = Proj i,y (DF)(w) with associated norm

k
1Fllpse = EIFP]+ Y E[D®DF5 )Y,
=1
where DU) is the j-th order derivative and D"U)F := Proj, (DY F) = ProjK(w)(D(j)F)(w),
Similar to the Malliavin calculus, there is an adjoint operator 3;(u) := &(Proj;(u)) of D™ if
Proj,,u € Dom(J), as well as the integration by parts formula E[(u, D*F)] = E[(Proj,u, DF)] =
E[F &3u] for any u € Dom(dy), F € D42,
Let E be a separable Hilbert space. For 7 € R, ¢, M € N let us define the family K{(E, M) of
processes U : [0, 7] x RY x Po(RY) — DM>°(E) satisfying the following:

(t,z,[0]) — 9705050 (¢, ., [0],v) € LP(Q)

exists and continuous for all p > 1 and multi-indexes («, 3,7) with || + |8| + |v] < M, and

8307050 (t,x, (0], ) |lpgr () < C(L+[a] + 10]]2)7

1
sup - sup -~ |

ve(RN)EP 1€[0,T)

for every p > 1, m € N and multi-indexes (o, 8,7v) with |a] + 8]+ |y|+m < M. Thisis a
modification of K{ in [9] for the smoothness of the density function of X @[]

Proposition 2. Assume V; € C; ’Lll-;: Ry x RY x Po(RN) x RN, RN). There exists a modification of

X=0 such that the map x +— Xf 10 is almost surely differentiable, and for t > 0,

d + 5 )
0o X1 = Idy + Y /0 Vi(s, X210 [x9), X))o, X20dB! .
=0

The maps 0 — X{, 0 — X;"” are Fréchet differentiable in L*(Q) with gradients DX;"”) and
DX/ 16] satisfying

d t ~ B ]
Dx(y) = 3 /O VDX 4 3V:DR,(7) + DV (DX’(7))]dB:
i=0

DX/(7) =1+ /0 0V.DX?(7) + VDX, (7) + DV}(DX’(7))d B,
=0

for v € L2(Q), t>0.
Moreover, the map [0] + X' 1) i differentiable with the derivative 0 Xy 1) satisfying

d t N
8uth’[9](’U) = Z/ {0{/2 (3’ X.?7[9]7 [XfL Xs)auX:[e](’U)
i=0 /0
+ OV (s, X219 [X0), X,) 0, X (v)

o {m (s, X2, [x7), X, (X:’Wl)vaz()c:m)’}

+E {auvz-(s, X200 (X, K., (Xﬁ’)’)a,xxf“[@])'(v)} }de ,
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where (X% is a copy of X7, 8Z(X:’[0])’ is a copy of 3, X and 6M(X,fl’[0])’ = 8,L(Xf’[0]);:9,

on a probability space with DXI’[G]( ) =E'0, Xm’[e]( 0")y']. Furthermore, Xf’[e],Xf € DY, and
DHX®IO = (DI (X)), oy 1 <icq satisfies, for 0 <17 <t

SV,

DX — o (r, x210 (X0, X +Z/ <8V s, X210 (X9, X,) D1 X [0])ng,

where a(r, Xf’[o], (X7, )Z'T) is the N x d matrix with columns V7,..., Vj.

2.5 Characterization of the auxiliary process

k.k.k
Cyi

Assume V; € Cyi([0,77] x RN x Po(RY) x RV;RY) for i = 1,...,d. Then the map satisfies

(t,z,[0) = X2 e KLRN, k).

If, in addition, V; are uniformly bounded, then (¢, z, [0]) — X 1 ¢ KY(RN, k) . Proof is based on the
first order derivatives (cf. [9]).

Now we define operators I() j=1,2,3, I(Z), ii) on ¥ € K¥(R,n) with a = (i), (t,z,[0]) €
[0, 7] x RN x P(RY),
1 -
I (W)(t, 2, [6)) = WJH (r= W(t,2, [0) (0 (o0 ") " (r, X5, [XT], X0 )0 X7H)i)

N

Iy (0)(t, 2, [0)) = Y 15 (X"} U (¢, [6])),

=1

I (W) (¢, 2, [0]) =115 (W) (¢, 2, [0]) + VIO U(t, , []) ®

Ty (0) 1. 00) =zt (07 (0 ™) 7 XX ).
0.0 X) 0, X7 0n) (e, 1) ).
Iy (0)(t,z, (0], 01) =T (U)(E, 2, (0], 01) + VEO L )it 2, 6], v1) .-
2.6 Integration-by-parts formulae

Assume V; € Cpit ([0, T] x RN x Py(RY) x RN; RY) and also the uniform ellipticity of the diffusion
coefficients. For f € C°(RY,R), ¥ € K¥(R,n), we have
o If || <nAk,then

E[02 (f (X)) w(t 2, 16)] = V2B [f (7)1 (w) (1, [60)] 5
o If |a| <n A (k—2),then
E[(0° ) (X7 )Wt 2, 10)] = VB[ £(XP ) 2 (0)(1, 2, [0)]
o If || <nAk,then
B[ (XT)w(t, 2, 0))] = t71V2E[f(x7O) B(w) (¢, 2, [0)] 5
o If |a| + |8 <nA(k—2),then

E[(D° ) (XYW (8, [0))] = ¢~ UIFID2R £ (X1 13 ((129)) (1, 2, [0])] -
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For f € C{°(RY,R) and ¥ € K}(R,n), we have
o If |3] < nA (k—2),then

E[0] (f (X)) (o) (t, 2, [0))] = ¢~ PR f (X T3 () (1, 6], 0)] 5
o If |3] <nA (k—2),then
ORE[F(XT) Wt 2, 10)] (0) =+ PPE[F (XTI I3 () (2, (0], 0)]

o If |a| + 8] <n A (k—2),then
ORE[( (X w(t, 2, )] (v) = ¢ IDPE | F (XTI W) (1. [0, 0) |
Forevery f € CP°(RY;R), multi-index a on {1,...,N} with |a| <k —2,

1
RESXG™) = e BT - Ja) ()]
where §, is a Dirac point mass at x € RY , and
Jaiy(®)(t,z) = I(?’i)(@)(t,x, 0z) +I€’i>(t, x,0.); t>0
with Jo(®) = Ju, 0Ja,_, 00 Jy, (P). Particularly, there exists a constant ¢ > 0 such that

(1 + |])*e

‘8;1]E[f(th761)]| S CHf“OO ! t\a\/2

for 0 <t < T, xcRY. Moreover, with |a| + |3] < k — 2,
z,0, 1 z,0,
FRE[O°) (X)) = WE[f(Xt )I3(Ja(1)(t, 2)]
2

and 13(Ja(1)) € Ko "™P(R, & — 2 — |a| — |B]). Thus, X" = X{|y_, has a probability density
function p(,z, z) such that (,z) — 8290 p(t, ., z) exists and is continuous.

2.7 Smoothness of the joint density

Proposition 3. Let «, 3 be multi-indices on {1,...,N} and k > |a| + || + N + 2. Under these
assumptions of the uniform ellipticity of o and the smoothness of coefficients V; € CII; Lklpk the solution
Xte to the directed chain SDE (1) with § = © € RN at time t > 0 has a density p(t,x,-) such that

(z,2) — 8285 p(t,x, 2) exist and is continuous. Moreover, there exists a constant C' which depends
on T, N and bounds on the coefficients, such that

10202 p(t, z, 2)| < C(1+ |a|) 13BN =Vl I8 /2 ©)

fort€(0,T], z,z € RN . Furthermore, if V;, i = 0,...,d are bounded, then

10)

C _ 2
020%p(t, 2, 2)| < Ct’<N+|a|+\5\)/2eXp<, M)

t
for t € (0,T), z,z € RV,



The above existence and smoothness results on the marginal density p(t,z, z) of a single particle
can be extended to the joint distribution of adjacent particles. That is, We extend the pair (X7, % ) to

consider the system (X 0 Xt X ), such that the joint distribution of adjacent pair is determined
by the directed chain stochastlc differential equation 1, namely, [X*~! X*] = [X? X] for k =
1,...,m.

Corollary. Under the same assumptions on the coefficients, the joint density of ()??, )?tl, . ,X*g”)

exists and is continuous for t > 0. Particularly, the joint density of (X%, X .) exists and is continuous.

The applications of the smoothness of the joint distribution are the recursive factorization of the first
order Markov random field [16], some connection to a class of non-linear partial differential equations,
smoothness of the filtering equation and the analysis of master equation of the mean-field game and the
mean-field control problems on the directed chain graph.

2.8 Relation to PDE

Let us consider time-homogeneous coefficients. For the function U (t,z,[0]) := E[g(X; 19, X1,
t €[0,T], » € RV, by the flow property, we have

z,[0
U(t+h,,[0]) = Elg(x[5, (X0, = B, Xp 7 [x0)]
for t >0, 0 <t <T — h. Then we come up with a PDE of the form
(0 — L)U(t,2,[0]) = 0, (t,z,[0]) € (0,T] x RN x Po(RN),

U0, ,[0]) = g(z,[0]), (z,0]) € RY x Py(RY),
for some function g : RY x Po(RY) — R, where the operator £ acts on smooth enough functions

F:RY x Po(RY) x RN defined by

N N

P 0) +=E| Vi 0,000 P ww%Z[aa%[917é>]i,jama%F<z7[en]

i=1 ij=1

N
{Zv (6,10],0)0,F(x,[0],0); Z[aa (0,10],0)):,;00,0,F (, [9]79)7-}

2]1

an

cf. [4], [9] for MCKEAN-VLASOV SDE.

2.9 Relation to Mimicking problem

The mimicking problem is to obtain the marginal distribution of some non-Markovian process by a
unique strong solution to the stochastic differential equation

AY; = bo(Yy)dt + by (Y))dBY(t); t>0, Yy :=¢ (12)

for Y with some smooth functions by : RN — RN by : RV — RVXN  BY is the n-dimensional
standard Brownian motion. cf. [3], [12], [17]. B

Conversely, it follows from the smoothness of the solution in Proposition 3 that there exist (X., X.)
and functions V;, i = 0, 1, such that (X, )?0) are independent and
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where the pair (X., X.) satisfies the directed chain equation
dX, = Vo(X,, Xo)dt + Vi(Xy, X0)dBy; t20, (13)

driven by another standard Brownian motion B independent of X.

Research supported in part by the National Science Foundation under grant DMS-20-08427. Part of research is
joint work [14] with M. MIN.
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