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A method for efficiently deriving a reduced-order model of a cage induction motor (IM) with skewed rotor slots is proposed based on 

the multiport Cauer ladder network (CLN) method. This paper presents several formulations of the multiport CLN method for the 
skewed rotor, in which the continuity of the bar currents and the space harmonics included in the air-gap flux density waveform are 
treated differently. The effectiveness of the developed methods was verified from the viewpoints of computational accuracy and cost 
through application to a practical cage IM with skewed rotor slots. 
 

Index Terms— Cage induction motor, Cauer ladder network, finite-element method, model order reduction, skewed rotor slots.  
 

I. INTRODUCTION 
N the design of a control system for an electric motor, it is 
desirable to use an accurate model that can appropriately 

represent the influence of nonlinear magnetic properties and 
slot harmonics on machine performance. To derive an accurate 
model of a cage induction motor (IM), various model order 
reduction (MOR) methods have been used and extended to 
nonlinear problems [1]-[4]. In this study, the multiport Cauer 
ladder network (CLN) method [5] was adopted as the MOR 
method for a cage IM. This approach constructs the matrix 
Cauer circuits for the stator and rotor domains separately, and 
the circuits are connected based on the boundary conditions for 
the space harmonics (SHs) included in the air-gap flux density 
waveform [6]. The dominant SHs can be selected based on time 
and space harmonic analysis [7], [8]. Furthermore, the 
nonlinear MOR for cage IMs using the multiport CLN method 
has been proposed [4]. To date, however, the motor MOR based 
on the CLN is restricted within a two-dimensional (2D) 
formulation and cannot handle skewed slots, although they are 
typically adopted to cage IMs to reduce torque ripples. 
Therefore, a modeling method for the three-dimensional (3D) 
skewed structure is essentially needed to further enhance the 
practicality of the MOR for IMs. 

With this background, this study investigated a method for 
efficiently deriving a reduced-order model of a cage IM with 
skewed structure. A multislice method (MSM) [9] was adopted 
to model the skewed rotor. This paper proposes three novel 
formulations of the multiport CLN method for skewed rotor 
slots, in which the continuity of the bar currents and SHs 
included in the air-gap flux density waveform are treated 
differently. Finally, the effectiveness of the developed methods 
was verified by the steady-state analysis of a practical cage IM 
from the viewpoints of computational accuracy and cost. 

II. METHOD OF ANALYSIS 

A. Multiport CLN Method for Cage IM 
Fig. 1 shows the matrix CLN corresponding to the stator and 

rotor domains in a cage IM [6], in which the SHs of the air-gap 
flux densities and phase currents/voltages are considered as the 
input data of each domain. The multiport CLN method with 
several stages is applied to the rotor domain to consider the 
frequency characteristics of the eddy-current fields in the 
secondary conductor. The number of stages is denoted as N. 
Because this study focused on a method for modeling skewed 
rotor slots in the context of the MOR of cage IMs based on the 
multiport CLN method, linear magnetic properties are assumed 
as a first step toward the practical use of the developed approach.  

A winding resistance Rs and the inductance matrices Ls, Lh, 
and Lsh are considered in the stator domain. Here, the three-by-
three matrix Ls denotes the inductances of the primary windings, 
the M-by-M matrix Lh represents the inductances corresponding 
to the SHs of the air-gap flux density, the three-by-M matrix Lsh 
represents the interactions between the primary windings and 
the SHs, and M is the number of SHs.  

To ensure that the sum of the rotor bar currents per pole pair 
is always zero strictly by considering the circuit connection of 
the rotor bars, this study adopted the CLN method based on the 
A-φ formulation [8], [10], where A is the magnetic vector 
potential and φ is the electric scalar potential. The inductance 
matrix L2n−1 and resistance matrix R2n in Fig. 1(b) are 
determined as follows: 

( )T
2 1 2 1 2 2n n n nν σ+ −− =C M C A A M E R , (1) 

T T
2 1 2 1 2 1n n nν+ + +=L A C M CA , (2) 

1
2 2 2 2 1 2 1n n n n

−
+ + +− = −E E A L , (3) 

T T
2 2 2 2n nσ σ+ += −G M GΨ G M E , (4) 

2 2 2 2 2 2n n n+ + += +E E GΨ , (5) 
1 T

2 2 2 2 2 2n n nσ
−

+ + +=R E M E , (6) 
using the initial values of A−1 = 0 and E0 = 0. Here, G is the 
discrete gradient operator, C is the discrete curl operator [11], 
the positive integer n is the stage number, and L2n−1 and R2n are 
M-by-M matrices, respectively. When n = 0, the right-hand side 
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in (1) is replaced with the vectors corresponding to the air-gap 
magnetic field given by a Neumann boundary condition [6]. 
The (i, j)-th entries of Mν and Mσ are expressed by the magnetic 
reluctivity, conductivity, and face-element and edge-element 
basis functions [6]. Matrices A2n−1, E2n, and Ψ 2n consist of the 
basis vectors associated with the line integrals of the magnetic 
vector potential and electric field, and the electric scalar 
potential, respectively.  

In Fig. 1(a), V, I, and Φ are the vectors comprising the SHs 
of the circumferential component of the air-gap magnetic field, 
and the axial components of the air-gap electric field and the 
air-gap magnetic vector potential, respectively, on the stator-
fixed coordinate system; in Fig. 1(b) V ', I0, and Φ ' denote those 
on the rotor-fixed coordinate system. The physical quantities in 
each domain are connected by I0 = −TI and Φ ' = TΦ, where the 
transformation matrix T is given by [6],[8]  

1 2

cos sin
blockdiag[ , ,..., ],

sin cosM m

mp t mp t
mp t mp t

ω ω
ω ω

− 
= =  

 
T T T T T . (7) 

Here, ω is the mechanical angular frequency and p is the 
number of pole pairs. 

B. Multislice Method 
Fig. 2 shows the concept of the MSM, in which the number 

of slices Ns is 3. This method is a combination of 2D 
formulations at several cross-sections of the cage IM, and the 
positions of the respective rotor meshes change according to the 
skew angle. Therefore, this method is considered as the 
stepwise 3D modeling of the rotor, as shown in Fig. 2(b). The 
bar currents flowing in each bar are kept continuous by 
imposing equipotential boundary conditions on the interface of 
the bars. Consequently, the magnetic coupling between the 
slices is indirectly considered through the bar currents. For the 
detailed discussion about the accuracy of the MSM compared 
with a full 3D model of the skewed structure, see, for instance, 
[12]. In this study, the MSM was used in finite-element 
analyses (FEAs) of cage IMs with skewed rotor slots, and in the 
proposed CLN methods described in the next section.  

C. Modelling of Skewed Rotor Slots for CLN Method 
The simple idea for considering the skewed rotor slots in the 

multiport CLN method is to connect the several Cauer circuits 
for the rotor domain in parallel. This is called “Method 1.” Fig. 
3(a) shows the equivalent circuit of Method 1 when Ns = 3. The 
superscript of V, I, V ', and I0 denotes the slice number. The 
vector ports for the SHs included in the air-gap flux densities 
exist independently at each slice. Thus, the sum of the number 
of SHs at every slice is MNs. Here, circuit parameters Lh and Lsh 
in the stator domain and L2n−1 and R2n in the rotor domain are 
determined by the ordinary CLN method. In Method 1, Lh, Lsh, 
L2n−1, and R2n are divided by Ns in the equivalent circuit, as 
shown in Fig. 3(a), because the thickness of each slice is equal 
to 1/Ns of the axial length of the analyzed cage IM.  

The rotor positions of each slice are different owing to the 
skew angle θs, although the Cauer circuits for the rotor domain 
are identical. To consider the difference of the rotor position at 
respective slices, Tm in (7) at Slice k (0 ≤ k ≤ Ns−1) is given by 

(a) 

(b) 

 
(c) 

Fig. 3.  Equivalent Cauer circuit for cage IM with skewed rotor slots: (a)
Method 1; (b) Method 2; (c) Method 3. 
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Fig. 1.  Multiport CLN for cage IMs: (a) stator domain; (b) rotor domain. 
 

 
(a)                                              (b) 

Fig. 2.  Multislice method: (a) 2D meshes; (b) equivalent 3D model. 
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s s s s s s( )

s s s s s s

cos ( (2 1 ) 2 ) sin ( (2 1 ) 2 )
sin ( (2 1 ) 2 ) cos ( (2 1 ) 2 )

k
m

mp t k N N mp t k N N
mp t k N N mp t k N N

ω θ ω θ
ω θ ω θ

− + − − − + − 
=  − + − − + − 

T . (8) 

The bar current is not continuous because the internal vector 
ports corresponding to bar currents are not connected between 
the slices in Method 1, which results in inadequate accuracy. 
The circuit equations for the rotor domain are block diagonal 
owing to neglecting the magnetic coupling between the slices. 

To directly derive the Cauer circuit for the rotor domain by 
considering the skewed structure, the multiport CLN method is 
applied to the stepwise 3D model derived from the MSM shown 
in Fig. 2(b). This is called “Method 2.” Fig. 3(b) shows the 
corresponding equivalent Cauer circuit when Ns = 3. In this 
approach, the vector ports for the SHs are unified, and the sum 
of the number of SHs is M as is the case in the ordinary CLN 
method. The equivalent circuits for the stator and rotor domains 
are connected using T in (7). Method 2 essentially satisfies the 
bar current continuity because L2n−1 and R2n in the rotor domain 
are determined based on the stepwise 3D model, although the 
computational cost required to derive the circuit parameters 
increases. However, it is assumed that the amplitudes of the 
dominant SHs are constant along the axis direction, which may 
lead to insufficient computational accuracy. 

To solve this problem, the SHs included in the air-gap flux 
densities at each slice are separately treated as other vector ports 
when applying the multiport CLN method to the stepwise 3D 
model. This is called “Method 3,” and Fig. 3(c) shows the 
corresponding equivalent circuit when Ns

 = 3. Although only the 
self-resistance R2n

(k) and self-inductance matrix L2n+1
(k) at Slice 

k are explicitly shown in Fig. 3(c), the mutual-resistance matrix 
R2n

(k)(l) and mutual-inductance matrix L2n+1
(k)(l), which represent 

the interactions between Slice k and Slice l, also exist in the 
equivalent circuit for the rotor domain. The sum of the number 
of SHs at every slice is MNs, and the equivalent circuits for each 
domain are connected at each slice using T in (7). Although the 
computational cost increases with the increase in the number of 
SHs, the accuracy can be improved by considering the change 
of the air-gap flux densities along the axis direction. 

III. NUMERICAL RESULTS 
The effectiveness of the proposed methods was verified by 

analyzing the cage IM with semi-closed rotor slots shown in Fig. 
4; θs is equivalent to 1-rotor slot pitch, and Ns is 3. The number 
of time steps per period was set to 360 for all calculations in 
this paper to evaluate the SHs in the air-gap flux densities 
accurately. The dominant SHs for the multiport CLN method 
were determined based on the steady-state solutions at slip s = 
0 using the method proposed in [8]. In this case, the number of 
selected SHs is 36. Initial values for transient calculations of the 
FEA and CLN methods were determined based on time-
harmonic eddy-current analysis [13], in which the slip 
frequency is applied to the rotor region. The ICCG method was 
used as a linear iterative solver, and the convergence criterion ε 
was set to 10-8. When deriving the circuit parameters using 
Method 3, the ICMRTR method [14] was used to stabilize the 
convergence behavior, and ε was set to 10-7.  

Fig. 5 compares the phase current and torque waveforms at s 

= 1, s = 0.0588, and s = 0 when applying a sinusoidal voltage 
waveform with a frequency of 50 Hz and rms value of 100 V. 
The phase current waveforms obtained by Method 1 are in good 
agreement with the reference solutions obtained using the FEM. 
However, the torque waveforms differ substantially at any slip 
in Method 1, because the continuity of the bar currents is 
ignored. In Method 2, the phase current waveforms are slightly 
different, and the torque waveform is entirely different at s = 1. 
In contrast, the numerical results are in relatively good 
agreement with those obtained by the FEM at a small slip. The 
reason for this is the assumption that the SHs included in the 
air-gap flux densities are identical along the axis direction.  

Fig. 6 shows the distribution of flux density at each slice at 
respective slips when Ns = 3. In Fig. 6, the vector diagram of 
the main flux Φ m and the magnetomotive forces F1' and F2 
corresponding to the primary and secondary load currents are 
also shown. The resultant vector of F1' and F2 strengthens Φ m 
at Slice 2 because F2 rotates counterclockwise due to its 
position skewed to the rotational direction. In contrast, the 
resultant vector of F1' and F2 weakens Φ m at Slice 0 because F2 
rotates clockwise due to its position skewed to the anti-
rotational direction. Consequently, the flux distribution changes 
drastically at each slice at s = 1. When s is large, the effect of 
the secondary current is significant, which results in the change 

      
Fig. 4.  2D mesh of a cage IM with semi-closed rotor slots. 

 

(a)                                                           (b)                        

(c)                                                           (d)                        

(e)                                                           (f)                        
Fig. 5.  Numerical results obtained by FEM and CLN methods: (a) phase
current at s = 1; (b) torque at s = 1; (c) phase current at s = 0.0588; (d) torque 
at s = 0.0588; (e) phase current at s = 0; (f) torque at s = 0. 
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of the air-gap flux density along the axis direction. As s 
approaches zero, the effect of the secondary current decreases, 
and the difference in the distribution of the flux densities 
between the slices is gradually reduced. Therefore, Method 2 
can obtain the appropriate numerical results at a small slip.  

Method 3 can obtain almost the same numerical results as the 
FEM at any slip because it can consider the continuity of bar 
currents and the change of the air-gap flux densities along the 
axis direction. Although the torque waveform at s = 1 is slightly 
different from the reference solution, the accuracy can be easily 
improved by increasing the number of selected SHs.  

Table I presents the calculation time required to extract the 
dominant SHs using the FEM, derive the circuit parameters 
using the CLN method, and perform transient analysis at s = 
0.0588. The values in parentheses denote the number of periods 
required to obtain the steady state during a period. The 
derivation of the circuit parameters using Method 1 is faster 
compared with Methods 2 and 3 because they can be 
determined by the ordinary CLN method. The number of SHs 
in Fig. 3(b) is smaller than those in Figs. 3(a) and 3(c). Thus, 
the transient analysis based on Method 2 is much faster than 
other methods. Method 3 requires more calculation time 
compared with Methods 1 and 2 because the circuit parameters 
shown in Fig. 3(c) are derived using quasi-3D FEAs based on 
the MSM and the number of SHs in the equivalent circuit is 
MNs. However, the transient analysis based on Method 3 is 
approximately 100 times faster compared with the FEM. When 
using the proposed method, we need the preliminary 
calculations for extracting dominant SHs and deriving circuit 
parameters only once. Therefore, it is suitable to situations 
where transient analyses are repeatedly performed. For instance, 
the CLN can be effectively used as an accurate motor model in 
the design of the control system. When the performance of the 
cage IM is approximated, Method 2 is also effective because it 
is very fast and has acceptable accuracy at a small slip, which 
reflects the typical operating condition of practical motors. 

IV. CONCLUSION 
This study developed novel reduced-order models of cage 

IMs with skewed rotor slots in the context of the CLN method. 
As a result of applying the proposed approaches to a practical 
cage IM, the effectiveness of Method 3, in which the SHs of the 
air-gap flux densities at each slice are separately treated as other 
vector ports in the equivalent circuit derived from the stepwise 
3D model, was confirmed from the viewpoints of computa-
tional accuracy and cost. In future work, we will combine the 
developed method with nonlinear MOR using a parameterized 
CLN method to apply it to a cage IM with closed rotor slots. 
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 Fig. 6.  Comparison of flux density distribution at each slip. 
 

TABLE I 
COMPUTATIONAL TIMES FOR FEM AND CLN METHODS 

Method 
Computational time [s] 

Extracting 
dominant SHs 

Deriving circuit 
parameters 

Transient analysis 
at s = 0.0588 

Method 1 
891.4 (2) 

242.9 18.9 (3) 
Method 2 574.9 2.7 (3) 
Method 3 2056.1 36.0 (3) 

FEM - - 3672.1 (3) 
Intel Xeon Gold 6148 was used.
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