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ABSTRACT Modern deep learning algorithms comprise highly complex artificial neural networks, making
it extremely difficult for humans to track their inference processes. As the social implementation of deep
learning progresses, the human and economic losses caused by inference errors are becoming increasingly
problematic, making it necessary to develop methods to explain the basis for the decisions of deep learning
algorithms. Although an attention mechanism-based method to visualize the regions that contribute to
steering angle prediction in an automated driving task has been proposed, its explanatory capability is low.
In this paper, we focus on the fact that the importance of each bit in the activation value of a network is
biased (i.e., the sign and exponent bits are weighted more heavily than the mantissa bits), which has been
overlooked in previous studies. Specifically, this paper quantizes network activations, encouraging important
information to be aggregated to the sign bit. Further, we introduce an attention mechanism restricted to the
sign bit to improve the explanatory power. Our numerical experiment using the Udacity dataset revealed that
the proposed method achieves a 1.14× higher area under curve (AUC) in terms of the deletion metric.

INDEX TERMS Self-driving, explainable AI, attention, quantized neural network.

I. INTRODUCTION
Deep neural networks (DNNs) have demonstrated over-
whelmingly effective performance in tasks such as image
recognition, in which they often outperform humans, and
their application to speech synthesis and automatic transla-
tion has been expanding. To address growing shortages of
workers arising from factors such as an aging society and
declining birth rates, there has been growing interest in the
integration of DNNs into robots and automobiles to further
improve the efficiency of factory operations and logistics [1].
As new network structures are invented on a daily basis,
DNNs continue to be the subject of intense research and have
become far more complex than when they were first devel-
oped. For example, AlexNet, whichwas proposed in 2012 and
sparked the DNN boom, comprises approximately 6 mil-
lion parameters; by contrast, the famous VGG-19 network,
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which was published in 2014, incorporates approximately
144 million parameters and was optimized using millions of
images [2], corresponding to an increase in DNN complexity
by a factor of 24 in only two years. The decision-making
processes of such a complex DNNs are no longer humanly
traceable; this problem is known as ‘‘black box AI’’ and
is a significant factor preventing DNNs from being applied
to mission-critical applications [3], [4], [5]. To address the
black box problem, explainable artificial intelligence (XAI)
efforts attempt to make models interpretable by clarifying
their inference processes, enabling human understanding of
the rationales for actions. By increasing interpretability, the
causes of erroneous judgments can be investigated and model
judgments can be made more reliable.

One approach to improving the interpretability of DNNs
is to visualize the regions of input images that are important
in making predictions. For example, Ribeiro et al. proposed
a method called ‘‘LIME’’ that provides an interpretable and
faithful description of classifier predictions [6] by improving
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model interpretability using simple, interpretable classi-
fiers with linear kernels such as support vector machines
(SVMs). For a given input image, random perturbations
are applied to generate samples that are used to train a
local classifier such as an SVM that can easily interpret the
inference process and extract regions that contribute to infer-
ence. However, this approach is not suitable for real-time
applications because it requires iterative computation. Sub-
sequently, in 2017 Selvaraju et al. proposed a method called
‘‘Grad-CAM’’ that exploits the information of gradients
flowing into the last convolutional layer of a convolutional
neural network (CNN) to evaluate the importance of each
input pixel for the final class label prediction without the
time-consuming iterative training required by a local clas-
sifier [7]. Although Grad-CAM is computationally inexpen-
sive, its inverse convolution-based approach suffers from
low spatial resolution in its attention maps. To address this,
a method for allowing the network to explain the basis for
the model’s decisions by modifying the network structure
so that it outputs not only predictions but also the part that
the network focused on making the predictions has been
proposed [8]. This mechanism is called the ‘‘attention mech-
anism’’ and is widely used in neural networks, particularly in
those focused on natural language processing. An approach
based on the attention mechanism can directly extract regions
of an image that have a significant impact on the output of the
network [9], [10].

In 2017, Kim et al., reported the first successful application
of the attentionmechanism in self-driving systems [11]. Their
model predicts steering angle commands from input raw
images in an end-to-end manner and generates an attention
heat map that visualizes where and what the model sees.
Recent studies have shown that the attention mechanism is
effective not only at improving the explainability of DNNs
that perform a single task, such as following the road, but
also in causal inference for selecting driving behaviors such
as stopping at a traffic light or making a left-right turn [12].
However, an attention heatmap can contain unimportant
regions, making it necessary to apply post-processing to sort
out regions that do not contribute to the network prediction.
Accordingly, improvements at the network structure level
continue to be made, including an approach that improves
explainability by introducing a gazing mechanism at infor-
mation bottlenecks [13].

In this paper, we focus on the fact that the importance
of each bit in the activation value of a network is biased
(i.e., the sign and exponent bits are weighted more heavily
than the mantissa bits), which has been overlooked in pre-
vious studies, and propose a method to further improve the
explainability of the network. Specifically, by limiting the
addition of attention to specific bits, an attention heatmap that
does not require post-processing can be generated. As the bits
representing the most significant bit (MSB) side are more
informative than other bits, the importance of the bits that
make up a floating-point value differ. For example, a change
in the sign bit will reverse the direction of steering. Whereas

conventional methods assign attachments equally to all bits,
the proposed method limits attachment to important bits
such as sign bits, making it possible to improve explanatory
capability.

We verified the effectiveness of the proposed method using
Udacity’s automatic driving dataset [14].Wefirst investigated
the prediction accuracy of steering angle and confirmed that
the proposed method introduced no degradation in accuracy.
We then investigated whether the saliencies of the described
attention maps correlated with their contributions to predic-
tion accuracy using the deletion metric [15], a method of
masking pixels in an input image in order of increasing atten-
tion and comparing the increases in prediction error. If the
masking results in a large increase in prediction error, it can be
concluded that attention is correctly assigned to the important
regions that contribute to the prediction. Numerical experi-
ments revealed that the proposed method maintains the same
steering angle prediction accuracy as the existingmethod [11]
while obtaining 1.14 times more explainability. We further
investigated the explainability of the results produced by
the proposed method under varied feature quantization and
confirmed that the increase in prediction error arising from
application of the deletion metric was maximized when the
features were quantized with 10 bits. It was found that the
bit size did not have a significant effect on explainability but
could reduce prediction accuracy; accordingly, the optimal
bit width for quantization was determined to be approxi-
mately 10 bits.

The contributions of this paper are summarized as follows.

• To the best of our knowledge, this paper firstly focuses
on the previously overlooked benefits of discretization
on explanatory power.

• We demonstrate that introducing a sign-limited atten-
tional mechanism improves explanatory power.

• Numerical experiments on an automated driving task
demonstrates a 1.14× improvements in AUC compared
to existing methods.

This paper is an extended version of our previously pub-
lished paper [16]. The enhancements are summarized as
follows.

• While [16] required two dedicated convolutional feature
extractors, this paper proposes to share a single convo-
lutional feature extractor to reduce the computational
complexity.

• While [16] has used floating point representations for
network activations, this paper employs discretized acti-
vations to improve the explainability.

• Comparative experiments with Grad-CAM [7] and
LIME [6]were conducted and demonstrated that the pro-
posedmethod is superior to these sophisticatedmethods.

The remainder of this paper is organized as follows.
In Sec. II, we provide research background and context, fol-
lowing which we provide the details of the proposed method
in Sec. III. In Sec. IV, we discuss our experimental results.
Finally, in Sec. V, we provide concluding remarks.
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II. PRELIMINARY
A. AUTOMATIC DRIVING SYSTEMS BASED ON IMITATION
LEARNING
Self-driving applications have made significant progress in
the past few years; in particular, there is growing interest in
self-driving cars based on imitation learning using DNNs.
In this approach, human driving behavior is collected as
training data and the DNN is trained to imitate it. Specif-
ically, the system collects information from various sen-
sors, including cameras mounted in front of the vehicle,
and control information relevant to factors such as steering
and throttling. The DNN is then trained to generate control
commands for steering, throttle opening, etc., from sensor
information such as camera images. Automated driving by
imitation learning has a long history, with the earliest attempts
dating to the Autonomous Land Vehicle In a Neural Net-
work (ALVINN) published in 1989 [17]. ALVINN imitates
human driving operation by having a neural network learn
the correspondence between a forward camera image and the
driver’s steering wheel and pedal operations. More recently,
the introduction of DNNs has made it possible to automate
driving in more realistic situations via imitation learning.
An example of this approach is the CNN-based approach
proposed by Bojarski et al. [1], who developed a system
capable of predicting steering maneuvers using three cameras
that capture images of the front, left, and right sides of the
car, respectively, as inputs. In a test on a public road, the
system successfully drove 10 miles without human interven-
tion. Although automatic driving systems based on DNN and
imitation learning have performedwell in practical situations,
they often demonstrate a ‘‘black box problem’’ in which it
is difficult to analyze the inference process and the basis
through which the network carries it out.

B. EXPLAINABLE AI
The black box problem is a significant barrier to social imple-
mentation of DNNs, and variousmethods have been proposed
to make the DNN inference process interpretable. A pioneer
approach in this field was a method called Local Interpretable
Model-agnostic Explanation (LIME), which allows neural
networks to have explanatory properties. LIME allows inter-
pretation of prediction results based on the idea that DNN
models can be easily approximated in the neighborhood of
a particular input even if they are very complex in a global
context. For a DNN-based classifier and input samples f
and X , respectively, LIME adds random noise to X to gen-
erate samples in their neighborhood and the corresponding
neural network output f (X+ϵ). f is then approximated locally
in the neighborhood of X using a sparse linear model, g.
Because g is a linear function, i.e., g = w ·X , a weight vector
w can be used to identify features of X that have a significant
impact on discrimination.

Although LIME is versatile and can be applied to a variety
of models, it is not suitable for applications that require
real-time performance because it requires re-training of the

FIGURE 1. Example of Neural Network that predicts steering wheel
steering angle via the application of an attention mechanism.

classifier for each input. Thus, Grad-CAM, a more com-
putationally efficient method, has been proposed [7]. Grad-
CAM visualizes important pixels by weighting gradients
against predictions based on the idea that pixels with large
gradients have a large impact on predictions. The approach
has been extended to Guided Grad-CAM, which visualizes
the color maps obtained by Grad-CAM in combination with
existing explanatory methods such as Guided Backpropaga-
tion and Deconvolution. Grad-CAM and Guided Grad-CAM
are computationally less expensive than other XAI methods
because they use gradients, which are essential for neural
network training, making them suitable for implementation
on resource-constrained equipment. However, they rely on a
deconvolution layer, which results in an explained attention
map with a low spatial resolution.

Attention is a method for representing the underlying
‘‘reasoning’’ underlying model decision-making through the
introduction of a mechanism to indicate the components of
the input data that the model focuses on when making infer-
ences. The attention mechanism was initially introduced to
machine translation models in the field of natural language
processing as a mechanism for learning the origins within a
source text of specific words in a translation generated from
it. Recently, it has been applied to CNNs, which are primarily
used for image recognition, making it possible to visualize as
a heat map the regions in an input image that are focused on
during the inference process.

The application of XAI technologies to automated driving
has also been expanding. For example, Kim et al. introduced
an attention mechanism into an automated driving system
comprising a CNN and a long short-term memory (LSTM) to
improve model interpretability by displaying image regions
that the model focuses on when predicting the steering
angle [11]. Fig. 1 shows the model proposed by Kim et al.
First, a feature map is extracted through a CNN in the same
manner as a general image-input model. This feature map
is then passed through a convolutional layer to generate an
attention map with the same spatial resolution as the feature
map but with a single channel. A spatial Softmax, defined as
follows, is then used to generate the attention map:

yi,j =
exi,j

6i,jexi,j
, (1)
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where xi,j and yi,j are the pixel values of attention map and
attention weight at pixel (i, j), respectively.
As the entire attention map is normalized so that the sum

of all attention maps is equal to one, the network param-
eters are naturally trained so that the attention is concen-
trated on regions that are useful for inference. Therefore,
by observing the attention map during inference, it is possible
to visually track which regions of the input image have been
paid attention to. However, as the naive attention mechanism
occasionally assigns high attention to regions that do not con-
tribute to the inference result, Kim et al.’s method performs
post-processing to ensure that only regions of interest that are
likely to actually contribute significantly to the prediction are
retained.

III. PROPOSED METHOD
The structure of the proposed network is shown in Fig. 2.
First, a feature map is extracted from the input image using
a CNN with five convolutional layers. The extracted feature
maps are then weighted by attention weights estimated by
the attention mechanism. Unlike the conventional attention
mechanism, in which all bits are equally weighted, the pro-
posed network applies attention only to the signs of the bits.
The output of the attentional mechanism, which is designed
to have a flat shape, is input to the LSTM, which predicts the
steering angle. The following sections describe the flow of
each of these processes.

A. PREPROCESSING
Given an image captured by a camera at the front of a vehicle,
the proposed model predicts continuous steering angle values
in an end-to-end fashion. First, an exponential smoothing
method is applied to the measured steering angle to reduce
measurement noise and improve learning stability as follows:(

θt
v̂t

)
= αs

(
θt
vt

)
+ (1 − αs)

(
θt−1
v̂t−1

)
, (2)

where θ̂t and ût are the smoothed steering angle and vehi-
cle speed time series data, respectively. αs is a parameter
that adjusts the degree of smoothing; as it approaches zero,
the smoothing effect increases. Because the magnitude of
the steering angle depends on the structure of the vehicle
in terms of, e.g., the wheelbase, this method predicts the
inverse turning radius ut instead of the steering angle [1], [11].
The relationship between the steering angle and the inverse
turning radius ut is approximated by the following equation:

ut =
θ̂t

dwKs
(
1 + Kslipv̂t

2
) , (3)

where dw is the distance between the front and rear tires, Ks
is the ratio of steering wheel rotation to wheel rotation, and
Kslip is the relative motion between the wheels and the road
surface. The images used as input data are resized to 80 ×

160 × 3 to reduce computational cost, and the color space is
converted from RGB to HSV.

TABLE 1. Structure of feature extraction encoder.

B. NETWORK STRUCTURE
The proposed network comprises three parts: a feature extrac-
tor, an attention mechanism, and a steering angle predictor.

1) FEATURE EXTRACTOR
Feature maps are extracted based on the conventional method
using a network comprising five convolutional layers [11].
The structure of the feature extraction encoder of the pro-
posed network is shown in Table 1, in which the first column
contains the names of the layers, the second column shows
the output size, and the third column shows the filter window
size, number of channels and stride size. A series of convolu-
tion operations on an input image at time t yields a tensor Xt
with height H , width W , and channel C . The (i, j) elements
of Xt are referred to as xt,i,j = (xt,i,j,1, xt,i,j,2, . . . , xt,i,j,C ).

2) ATTENTION MECHANISM
As explained earlier, to improve the explainability, an atten-
tion map is applied only to the signs. To this end, the tensor
X t is split into two elements: a sign xsigt,i,j,c and a magnitude
xmagt,i,j,c. Defining the weight of the attention at time t as αt =

{αt,1,1, αt,1,2, · · · , αt,W ,H }, the sign of X t can be computed
as follows:

xsigt,i,j,c =

{
+1 if xt,i,j,c · αt,i,j ≥ 0,
−1 otherwise.

(4)

where the attention weight satisfies 6i,jαt,i,j = 1. The abso-
lute value of Xt is extracted using the ‘‘Softplus’’ function as
follows:

xamp
t,i,j,c = log(1 + ext,i,j,c ). (5)

where xamp
t,i,j,c is a floating-point value in which the significant

bits have been distributed to the sign and exponent bits.
To isolate the important bits into sign bits alone, the activation
is discretized by the discretization function Q:

xquantt,i,j,c = Qa,b,n

(
xamp
t,i,j,c

)
. (6)

The proposed model utilizes Quantization-Aware Training
(QAT) to avoid significant degradation of inference accu-
racy in discretization. QAT was originally used to quantize
the parameters and activations of neural networks to reduce
model size. Approximating floating-point parameters with
small numbers of bits can speed up calculations and reduce
memory usage. However, simply quantizing the numerical
values as they results in a deterioration of the accuracy of
the model after quantization. Therefore, QAT was devised
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FIGURE 2. Structure of proposed network.

to learn to take the effects of discretization into account and
maintain accuracy when quantized.

In QAT, the quantization function Q(·) is expressed as
follows:

Qa,b,n(x) =

 min (max(x, a), b) − a

b− x

n− 1


b− x
n− 1

+ a, (7)

where r is the number before quantization, [a; b] is the range
of quantization, ⌊·⌉ is rounding to the nearest integer, and n is
the quantization scale, e.g., n = 28 = 256 for 8-bit discretiza-
tion. The derivative of the ⌊·⌉ function is zero in most places,
making it impossible to directly apply the general gradient
descent algorithm during training. To solve this problem,
a technique called Straight Through Estimator, in which the
gradient of the ⌊·⌉ function is given as follows [18]:

∂

∂x
⌊x⌉ =

{
1 if a ≤ x ≤ b,
0 otherwise.

(8)

is utilized. Finally, the outcomes of the first and second paths
are multiplied together to reconstitute the signed features:

x̂t,i,j =

(
xsigt,i,j,1 · xquantt,i,j,1, · · · , xsigt,i,j,C · xquantt,i,j,C

)
. (9)

The resultant tensor X̂t , whose (i, j)-element is given by x̂t,i,j
is flattened to fit into the LSTM module as follows:
yt = fflatten(X̂t ),
where yt hasW × H × C elements.

3) PREDICTION OF INVERSE TURNING RADIUS AND
ATTENTION
After passing through the attention mechanism, the activa-
tion is forwarded to the LSTM module, which predicts the
inverse turning radius ut and the attention αt conditioned on
the previous hidden state of the LSTM, ht−1. Formally, the
prediction of ut can be expressed as

ût = fout(ht−1, X̂t )

=

(
Sigm(Wα · ht−1 + bα) ◦ X̂t

)
·Wβ + bβ , (10)

where Wα and Wβ are the trainable weight matrices, bα and
bβ are trainable biases, Sigm(·) is the sigmoid function, and
◦ is the element-wise multiplication.
To generate the attention α, we first compute the additional

hidden layer:

et = fattn(X ,ht−1)

= tanh (Wγ · Xt +Wδ · ht−1) + bγ , (11)

where Wγ , Wδ are trainable weight matrices and bγ is a
trainable bias. The Softmax function is then applied to ensure
that

∑
i αt,i = 1 as follows:

α̂t,i =
exp(et,i)

6i exp(et,i)
. (12)

Finally, α̂t is reshaped into the two-dimensional attention
matrix αt .

To initialize of the cell and hidden states of the LSTM at
time t = 0, we follow the method shown in [11]. Specifically,
the states are initialized by the following equation using the
hidden layer finit,c and finit,h:

c0 = finit,c

(
1
L

L∑
i=1

x0,i

)
, (13)

h0 = finit,h

(
1
L

L∑
i=1

x0,i

)
, (14)

where c0 and h0 are the cell and hidden states, respectively,
of the LSTM at t = 0.
The pseudo code of the network definition is shown

in Fig. 3.

IV. EXPERIMENTAL RESULT ON SELF DRIVING TASK
A. EXPERIMENTAL SETUP
We trained and evaluated the proposed method using the
Udacity dataset [14], an open-source automated driving
project launched in 2016. The dataset contains video images
captured by a front view camera mounted on the rear of
a vehicle windshield and time-stamped sensor measure-
ments such as vehicle speed and steering angle recorded at
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FIGURE 3. Pseudo-code.

TABLE 2. Comparison of steering angle prediction accuracies.

20 frames/second over 3.6 hours of daytime driving on high-
ways and city streets. The dataset contains 263,075 frames,
of which 257,796 are used to train the model and the remain-
ing 5,279 are used to evaluate the prediction accuracy of the
steering angle.

The model was trained using an NVIDIA Geforce
GTX2080Ti GPU and the code was written using the PyTorch
framework. Xavier initialization was used for network weight
initialization and an Adam optimizer with a learning rate
of 10−4 was used for training. The dropout probability and
size of the LSTM hidden state were set to 0.5 and 1,024,
respectively.

B. PERFORMANCE ANALYSIS
1) STEERING ANGLE PREDICTION ACCURACY
We first compared the steering angle prediction accuracy
of the proposed method with that of the model proposed
in [11]. To examine the impact of the attention mechanism
on the prediction performance, we also implemented a com-
bined CNN-and-LSTM structure that was identical to ours
except that it lacked an attention mechanism. Tab. 2 lists
the mean absolute errors (MAEs) obtained by each method,
demonstrating that the proposed method is able to achieve
performance comparable to existing methods.

2) VISUALIZATION OF SALIENCY MAP
Fig. 4 shows raw input images from the front camera and
corresponding attention heat maps arranged from left to right.
As attention is added to the output of the CNN-based feature
extraction mechanism, the obtained attention has a resolution

FIGURE 4. Examples of input images and corresponding attention maps.

FIGURE 5. Procedures for evaluating explainability via the deletion
metric, involving assignment of high-attrition masking regions and
evaluation of the increase in inference error.

of one-eighth that of the input image. To match the resolution
of the input images, up-sampling has been applied followed
by Gaussian blurring to soften the edges of the image. It is
seen from the figure that the proposed method assigns atten-
tion to the center line of the road, the white spring, and
oncoming cars, all of which are considered to be important
when driving.

We further investigated whether the reported attention can
effectively reflect the contribution of the deletion metric to
the prediction of steering angle [15]. The deletion metric
progressively masks pixels according to the ranking provided
by the attention mechanism and measures the corresponding
increase in the prediction error. For a good explanation,
we should observe a monotonic increase in the predic-
tion error. Examples of relationships between masked input
images and prediction accuracies are shown in Fig. 5, which
demonstrates that the prediction error for the original input
image was 5.54◦ and increased to 17.7◦ when one quarter
of the image was masked. We conducted the same proce-
dure on 5,279 frames in the test dataset and calculated the
resulting MAE. Fig. 6(a) shows the relationship between the
percentage of pixels masked and the calculated MAE, with
the black and red lines corresponding to the MAEs of the
conventional attention-based method [11], Grad-CAM [7],
LIME [6], and proposed methods, respectively. It is clearly
seen that the proposed method produces a sharp increase
in error; specifically, when a quarter of the input image is
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masked, the error produced by the proposedmethod increases
to 8.35◦ whereas those of [6], [7], and [11] increase only
to 6.33◦, 6.63◦, 7.43◦, respectively, confirming the improved
explainability of the proposed method. As shown in Fig. 6(b),
we further calculated the areas under curve (AUCs) to quan-
titatively compare the reliability of the proposed attention
mechanism. The AUC of the proposedmethod is 162whereas
those of the conventional attention-based method [11], Grad-
CAM [7], and LIME [6] are 141, 140, 154, respectively.
A high AUC indicates that the attention weights closely
correlate with the significance of the input regions. The
1.14× increase in the AUC achieved by the proposed method
relative to the conventional attention-basedmethod [11] again
confirms that the explanation of the proposedmethod is better
than that of the conventional method. Some readers may
find that the explanatory ability of the proposed method is
only marginally improved compared to LIME. However, the
computational cost of the proposed method is significantly
lower because it can extract the region of interest in a single
inference, whereas LIME requires multiple inferences with
perturbations to the input.

C. QUANTIZED ATTENTION
The proposed method discretizes the feature map activations
to ensure that sign bits have the greatest weight. The dis-
cretization accuracy should be selected carefully because it
affects the prediction accuracy and explainability of the steer-
ing angle. Specifically, decreasing the discretization accu-
racy (approximating the activation with fewer bits) should
degrade prediction accuracy while improving explanatory
ability. On the other hand, increasing the discretization accu-
racy (approximating activations using more bits) improves
prediction accuracy while decreasing the explanatory power
owing to the relatively lower weights of the sign bits. There-
fore, we investigated the relationship between bit width, pre-
diction accuracy, and explanatory power when converting
features to fixed-point representation. The AUCs produced
by the deletion metric when the bit width is increased in steps
of 2 bits from 2 to 24 bits are shown in Fig. 7(a). Similarly,
the relationship between the steering angle prediction error
and bit accuracy is shown in Fig. 7(b). From Fig. 7(a), it is
seen that the AUC is highest when activations are quantized
at 10 bits. From Fig. 7(b), it is seen that changing the bit width
does not significantly change the prediction accuracy, which
indicates that 16 bits—at which point the highest AUC is
achieved—is the optimal value.

D. IMPROVED EXPLAINABILITY WITH SOFTMAX WITH
TEMPERATURE
To promote attention to specific areas in an input image,
a temperature parameter T can be introduced to the Spatial
Softmax function as follows:

S(yi,j) =
exi,j/T∑
i,j e

xi,j/T
(15)

FIGURE 6. (a) Relationship between percentage of masking and increase
in inference error and (b) AUCs of proposed and existing methods.

FIGURE 7. (a) Relationship between number of quantization bits (n) and
AUC and (b) Relationship between mean absolute error (MAE) of steering
angle prediction and number of quantization bits (n).

The temperature parameter T can be used to control the
smoothness of the probability distribution, i.e., as T decreases
a higher probability is assigned to the probability correspond-
ing to the (i, j) with the largest yi,j (S(yi)) and, conversely, as T
increases S(yi,j) is assigned a uniform probability regardless
of whether yi,j is large or small. For example, at the limit of
T → 0, only S(yi,j) corresponding to the i that maximizes
yi,j will be equal to one. Conversely, at the limit of T → ∞,
S(yi,j) takes equal values for all (i, j).
By using the property of Spatial Softmax with tempera-

ture, which assigns probabilities to specific inputs when the
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FIGURE 8. Relationship between temperature parameter (T ) and
attention.

FIGURE 9. Relationships between (a) temperature parameter (T ) and AUC
and (b) temperature parameter (T ) and inference accuracy in MAE.

temperature T is decreased, it is possible to force the con-
centration of attention on specific regions in an input image.
Fig. 8 shows output attention maps obtained by applying
Spatial Softmax with different temperatures to the same input
image. The results clearly indicate that reducing the temper-
ature causes more attention to be focused on a single point,
whereas increasing the temperature increasingly disperses the
attention.

It would seem plausible that reducing the temperature
parameter would make the model pay more attention to the
important areas involved in the prediction, thereby improving
its explanatory power. Therefore, we examined the effect
of temperature parameters on explanatory power using the
deletion metric [15]. The relationship between temperature
and AUC is shown in Fig.9(a); for comparison, the AUC of
the proposed method is also shown. From the figure, it is
seen that theAUC increases insignificantly as the temperature
is decreased. To quantitatively investigate the relationship
between temperature and AUC, we applied Welch’s t-test,
which is used to test the hypothesis that two populations
have equal means. Unlike the Student’s t-test, it can be used
on two samples that might have unequal variances. Welch’s
t-test defines the statistic t using the following equation:

t =
X̄1 − X̄2√
s21
N1

+
s22
N2

. (16)

To test whether the AUCs obtained at T = 0.1 and T = 1
differ significantly, the p-value corresponding to the two
curves was calculated using Welch’s T-test as p = 0.193.
At a significance level of 5%, this is considered not to be
a significant difference. On the other hand, testing of the
AUCs of the proposed method and that at T = 0.1 returned
a p-value of 6.55 × 10−5, which represents a significant
difference. From the relationship between inference accuracy

and temperature shown in Fig. 9(b), it is further seen that
the inference accuracy changes insignificantly even if the
temperature is varied. Furthermore, the inference accuracy
of the proposed method, which is shown with the blue bar,
differs to no significant degree from that of the conventional
method. It is clear from these results that the proposedmethod
is able to improve explanatory power without sacrificing
inferential accuracy.

V. CONCLUSION
In this paper, we proposed a novel attention mechanism
to enhance the explanatory power of deep learning algo-
rithms. Exploiting the fact that bits are not equally important,
i.e., MSBs should carry more information than other bits,
we developed a method under which the attention mask
is applied only to ‘‘sign’’ bits. By exploiting the STE tech-
nique, the proposed model can be trained via a standard back
propagation algorithm in an end-to-end manner, resulting in
no degradation in prediction accuracy under the proposed
sign-only attention mechanism. We investigated whether the
reported attention mechanism effectively reflects the sig-
nificance of input in making predictions using the deletion
metric and confirmed that the proposed method achieves an
AUC 1.14× higher than that achieved by the conventional
method [11], indicating that the proposed method can cor-
rectly assign attention to important image regions.

The proposedmethod can visualise the areas that the neural
network focuses on during inference in a single inference,
so it is expected to be suitable for applications such as
automated driving and robot control, where real-time per-
formance is required. Recent research has shown that safety
can be improved by attaching eyes to vehicles so that auto-
mated vehicles and pedestrians can communicate through eye
contact [19]. If the proposed method can help the automated
driving algorithm to adaptively direct its eyes to the areas
where attention is being paid, further safety improvements
could be possible.
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