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Abstract: Microdevices have been actively implemented in chemical processes, such as in mixing
and reactions. However, microseparation devices, excluding extraction devices, are still under
development. In distillation, the use of microdevices has been expected to improve separation
performance, as their large specific surface area enables a rapid vapor–liquid equilibrium and for
large temperature gradients to be easily realized. In this study, improvements in throughput and
product purities in microdistillation devices were achieved for ethyl acetate–toluene distillation.
At low feedstock flow rates, ethyl acetate was successfully purified to 99.5 wt%. Although the
performance decreased with increasing feedstock flow rate, by increasing the channel length, this
performance decrease was suppressed even at high flow rates. The thickness of the channel was
also important, and the highest performance was observed at the lowest thickness of 0.5 mm. A
performance evaluation using the HETP showed that the efficiency was seven times higher than that
of conventional packed column distillators.

Keywords: microdevice; distillator; HETP; ethyl acetate; toluene

1. Introduction

In recent years, many studies have been conducted on microscale operations. Mi-
crodevices offer advantages such as exhibiting rapid heat transfer and mass transfer, which
are derived from their narrow flow path and high specific surface area, precise control of
the residence time, and improved safety. In particular, there are many reports on device
development, including reactors, mixers, and pumps [1–4]. There are also a wide variety
of reports on reaction operations [5,6], especially mixing, that take advantage of the tiny
mixing space in micro-devices and the resulting short diffusion distance [7]. However,
most of these reports focus on separation and specifically on extraction [8–10]. This occurs
because the use of microfluidic channels enables flow states that are difficult to realize on
a macroscopic scale, such as the realization of emulsions, lamellar flows, and slug flows.
All of these unique flow states maintain a large contact interfacial area between phases,
which is very useful for an extraction operation. For example, in a slug flow, multiple
immiscible fluids flow alternately in the channel. In this process, an internal circulation
flow is generated in each slug, and the concentration in the slug becomes uniform. As a
result, the accumulation of extracted components at the interface is suppressed, enabling
extraction operations with a large driving force (i.e., concentration difference) and a large
interfacial area. In emulsions, significantly large contact interfacial areas are achieved,
increasing the efficiency of mass transfer between the emulsion phases. In lamellar flow,
contact in a microchannel can achieve a large contact interfacial area between the fluids
while maintaining a regular flow regime in a channel. These features are expected to be
utilized not only in extraction but also in distillation, which is one of the very important
separation operations, yet there are fewer reported cases about microdistillation compared
to extraction. In one previous case, Timmer et al. implemented a distillation operation
using a microdevice equipped with a membrane [11]. An aqueous NaCl solution was
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brought into contact with a membrane installed in a microfluidic channel. On the permeate
side, a countercurrent flow of nitrogen gas swept out the permeating water vapor. The
NaCl concentration of the solution at the outlet of the membrane channel was measured,
and the performance of the device was discussed. The effects of the aqueous solution
and nitrogen gas flow rates were examined, and the large contact area achieved by the
membrane lead to highly efficient concentration. While a high selectivity and efficiency
separation were expected with the introduction of these membranes, issues remain related
to the manufacturing cost of these membranes and devices, along with the membrane’s
stability. Hibara et al. fabricated a microdistillation device using electron beam lithography
and plasma etching with fused silica [12]. The geometry of the device with micropillars was
precisely designed, including the width, length, and angle, and organized sections, such
as evaporation zones and condensation zones, were arranged to realize high performance.
The device allowed a stable concentration operation of 9.0 wt% aqueous ethanol solution to
19 wt%, with a throughput of 2 µL/min at 78 ◦C. While a stable performance was obtained,
high-manufacturing technology was required to fabricate complex structures in a small
device. Boyd et al. studied a system employing laser irradiation in a microchannel [13].
The liquid phase near the gas–liquid interface in a microchannel was irradiated using a
laser, and the vaporized components condensed a short distance away from the gas–liquid
interface to form the liquid phase. This design ensured that only the vaporized components
were collected as a pure solution at a distance. The biggest advantage of this system was
its heating capability, which was localized and mild without being excessive. However,
the system also did not realize high throughput and required precise operation. As an
example of multicomponent distillation, Ziogas et al. fabricated a miniaturized rectangular
distillation apparatus instead of a conventional cylindrical apparatus and separated several
mixtures [14]. For example, a mixture of p-xylene and o-xylene, which have very similar
boiling points, yielded a 68 mol% p-xylene solution as the distillate and 42 mol% as the
remaining fluid. Taking advantage of the unique features of microdistillation devices,
Hartman et al. reported a method that utilized a segmented flow of nitrogen carrier gas
and feedstock liquid [15]. While the slug flow passed through the channel, the gas–liquid
reached equilibrium, and the products were finally collected following gas–liquid sepa-
ration. Methanol–toluene mixtures and dichloromethane–toluene mixtures were used as
examples, and the results obtained were in good agreement with those obtained from the
flash distillation with the vapor–liquid equilibrium diagram. Wootton et al. also examined
distillation with carrier gas [16]. The equipment consisted of a gas–liquid contact section, a
condensation section, and a separation section for the carrier gas and product. After the
carrier gas and feedstock liquid made contact as a laminar parallel flow at the heated con-
tact section, gas–liquid separation was performed, and the vapor–gas passed through the
condensation section for subsequent gas–liquid separation. The separation of acetonitrile
and dimethylformamide was performed as an example, and a separation performance
of 0.72 as the number of plates at total reflux was obtained at a feedstock flow rate of
150 µL/min. One of the drawbacks evident in these methods was requiring carrier gas,
which lead to further separation at the outlet. Furthermore, distillation in these concurrent
flow operations was limited to a single theoretical plate, and the general disadvantage was
the small throughput due to the microdevice. As a microdistillation device with a counter-
current flow, Sundberg et al. used a horizontally placed distillator, with one end heated
and the other end cooled [17,18]. Vapor evaporated at the heating end was transported
toward the cooling end by a pressure gradient and was then condensed at the cooling
end. The condensate was then transported toward the heating end by capillary force. This
phenomenon is known as the “heat pipe principle.” Normal hexane–cyclohexane sepa-
ration was performed in this apparatus, and a stable, continuous steady-state operation
was performed. Various other devices have been developed, including those using the
heat pipe principle [19–21], porous membranes [22], and centrifugal force [23]. However,
these devices required complex structures in small packages and therefore required high
manufacturing technology and cost. In this study, we evaluated the performance of a

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Separations 2023, 10, 404 3 of 12

microdistillator with a simple structure, in which the target fluid flowed between two flat
plates. In this device, it was expected that the liquid would flow downward along the
bottom plate while the gas flowed upward over the liquid. As a microdevice holds a large
specific surface area, it constantly achieves vapor–liquid equilibrium and, therefore, it can
be expected to be a compact and highly efficient distillator.

2. Materials and Methods
2.1. Materials

For the feed material, 20/80, 45/55, 50/50, or 80/20 (w/w) ethyl acetate (EA)-toluene was
used. The mixtures were prepared by mixing EA and toluene, which were purchased from
FUJIFILM Wako Pure Chemical Corp. (Osaka, Japan) and used without further purification.

2.2. Experimental Setup

Figure 1 shows the experimental setup. A PTFE sheet was sandwiched between
a stainless steel plate and a glass plate, and the piles of the plates were installed. The
installed angle of the device was varied from 0 degrees (horizontal) to 90 degrees (vertical)
to examine the angle effect (Figure 1 shows the vertically installed setup). The stainless
steel plate had three holes, which were used for the outlets of the distillate (top hole) and
bottoms (bottom hole) and for the inlet of the feedstock (middle hole). The PTFE sheet was
curved in the shape of a flow channel. Several PTFE sheets with different hollow shapes
were prepared, and the channel width and thickness were changed by changing the PTFE
sheet. To change the channel length, all the plates were changed to meet the desirable
length. The channels were 115 or 275 mm long, 15 or 30 mm wide, and 0.5–7.4 mm thick.
The thickness was small compared to the length and width, so the specific surface area of
the channel could be changed widely by changing its thickness. In contrast, the volume
could be changed by length and width without significantly affecting the specific surface
area. Table 1 lists the properties of the devices used. The stainless steel plate had several
sockets for inserting thermocouples, and K-type thermocouples were used to measure the
temperature inside the stainless steel plate. The lower part of the device was heated, and
the inside temperature was controlled using a sheet heater and temperature controller. The
temperature was set as 110 ◦C or 125 ◦C when the used device was 115 mm long or 275 mm
long, respectively. The feedstock solution was fed at a constant flow rate through the
middle hole using a syringe pump (PHD ULTRA, HARVARD, Holliston, MA, USA) under
continuous heating and distillation in a temperature-distributed flow path. The bottoms
were obtained from the lower hole of the device (denoted as the bottom section hereafter)
and the distillate from the upper hole (denoted as the distillate section hereafter). The
bottoms were suctioned at a constant flow rate using a syringe pump. In some experiments,
a stainless cooler was installed on top of the device to control the temperature of the
distillate section. This cooler had internal channels for water flow. The coolant water was
circulated from an external thermostatic bath at a constant flow rate using a tube pump
(RP-1100, EYELA, Tokyo, Japan) to maintain a constant temperature in the distillate section.

Table 1. Properties of the distillators.

Length Width Thickness Volume Surface Area Specific Surface Area

[mm] [mm] [mm] [cm3] [cm2] [cm−1]

115 30 0.5 1.6 65.8 40.8
115 30 1.1 3.5 67.4 19.0
115 30 1.3 4.2 68.0 16.2
115 30 2.8 9.0 72.0 8.0
115 30 7.4 23.9 84.2 3.5
115 15 1.0 1.6 34.9 21.7
115 30 1.0 3.2 67.2 20.8
275 15 1.0 4.0 86.1 21.5
275 30 1.0 8.0 166.4 20.7
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Figure 1. The experimental setups of microdistillators.

2.3. Experimental Procedure

Using the above-described device, distillation experiments were performed using an
EA–toluene mixture solution. EA–toluene solution was fed into the device at 20 ◦C at flow
rates of 0.5, 1.0, 3.0, and 5.0 mL/min. The bottom suction rate was set to the toluene feeding
rate, which was calculated by multiplying the feedstock flow rate by the feedstock toluene
concentration, and each outlet solution was collected after water cooling. After 30 min from
the start of heating and feedstock supply, the temperature at each measurement position in
the stainless plate was confirmed to be constant; thus, it was determined to have reached a
steady state. Subsequently, the distillate was collected for 10 min. The resulting distillate
was weighed using an electronic balance (UX2200H, SHIMADZU, Nagoya, Japan), and
the weight fraction was determined using a refractometer (RX-5000i-Plus, ATAGO, Tokyo,
Japan). The composition of the bottoms was then calculated from the material balance.

3. Results
3.1. Effect of Microdistillator Angle and Observation of Flow State in Microdistillator

Firstly, the effect of the angle of the distillator was examined. The channel used was
115 mm long, 30 mm wide, and 1.3 mm thick. From the horizontal position, the angle was
changed by tilting the longer side of the device. The feedstock used was 45/55 (w/w) EA–
toluene, and the flow rate was set as 1.0 mL/min. The EA concentrations of the obtained
solutions are shown in Figure 2. When the device was installed horizontally (angle = 0◦),
the feedstock was directly obtained as a distillate. However, as the angle was increased, the
performance of the distillation improved, and 82.0 wt% EA was obtained as the distillate
at 90◦. The result was attributed to the flow state in the device. A schematic diagram
of the inside of the microdevice during the experiment is depicted in Figure 3. When
the experiment was conducted in a horizontal position, the gas component in the bottom
section stagnated, and distillation could not be performed because the feedstock came out
of the distillate section as it entered. When the device was tilted, liquid flowed from the
distillate section to the bottom section along the stainless plate, and gas flowed from the
bottom section to the distillate section over the flowing liquid. As a result, stable distillation
was performed when the device was tilted. When the device was installed vertically, the
liquid phase formed a film on the glass and stainless plates, and flowed downward by
gravity. The gas phase flowed upward between the liquid films. The observation results
suggested that gas-liquid contact occurred even more efficiently when the device was
installed vertically on both inner walls of the flow channel at arbitrary heights. Judging
from the flow state, high-efficiency distillation was expected when equilibrium between
the gas and liquid was achieved quickly enough. A photo of the device during operation is
provided (Supplementary Material Figure S1). According to the results, the examination
was conducted with the vertically installed device from the next section.
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3.2. Effect of Feedstock Composition and Heater Temperature

The effect of the feedstock concentration was examined. The channel used was 115 mm
long, 30 mm wide, and 1.3 mm thick. The device was installed vertically, as determined in
the previous section. The feedstock used was 20/80, 50/50, or 80/20 (w/w) EA–toluene, and
the flow rate was set as 1.0 mL/min. In this experiment, the heater temperature was set at
110 ◦C, 105 ◦C, or 90 ◦C for feedstock concentrations of 20/80, 50/50, or 80/20, respectively.
The EA concentrations of the obtained solutions are shown in Figure 4. Regardless of
the feedstock concentration, the concentration of distillate was not significantly changed,
which resulted in 80–90 wt% EA. The measured temperature at the distillate section was
not significantly different from the concentration, which was 83 ◦C, 78 ◦C, or 77 ◦C for
feedstock concentrations of 20/80, 50/50, or 80/20, respectively. We speculated that the
distillate and bottom concentration profiles were mainly dependent on the temperature
profiles. This indicated that vapor–liquid equilibrium was reached at each position in the
device for all examined feedstock concentrations and that continuous distillation based on the
temperature gradient was successfully realized. Based on the following section, the feedstock
concentration and the heater temperature were set as 50/50 and 110 ◦C, respectively.
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3.3. Effect of Microdistillator Channel Properties

To confirm the effect of the specific surface area of the channel on the separation
performance, experiments were conducted by changing the channel thickness in the range
of 0.5–7.4 mm, whereas the length and width were 115 mm and 30 mm, respectively. The
temperature of the heating section was kept constant at 110 ◦C, and the feedstock flow rate
was changed in the range of 0.5–5.0 mL/min. The relationship between the concentration
of EA in the distillate and bottoms and the channel thickness is shown in Figure 5a.
At feedstock flow rates below 3.0 mL/min, the separation performance decreased with
increasing channel thickness. This suggested that the specific surface area has a significant
effect on the performance. Considering the flow state of gas flowing between liquid films,
as depicted in Figure 3, the result of separation performance improvement due to increased
specific surface area was consistent. On the other hand, the separation performance tended
to decrease with increasing feedstock flow rate. This was concluded to be influenced by the
temperature distribution in the device.
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Figure 5b shows the temperature of the distillate and bottoms against the concentration
of EA in them at a channel thickness of 0.5 mm, along with the temperature composition
diagram. At a low feedstock flow rate of 0.5 mL/min, the temperature of the distillate
section was 77 ◦C, which was close to the boiling point of EA, indicating that distillation
was performed with high separation performance. In contrast, at the higher feedstock flow
rate of 5.0 mL/min, the temperature profile was not well-distributed in the device, and
the temperature in the distillate section was as high as 90 ◦C. At this temperature, the dew
point composition was approximately 67 wt% EA, and therefore, the distillation resulted in
a poor separation performance.

Next, experiments were conducted to change the channel volume without signifi-
cantly changing the specific surface area. These attempts were conducted to increase the
throughput of the device while maintaining high separation performance. All the tested
channels were 1.0 mm thick, while the length was 115 or 275 mm and the width was 15
or 30 mm. The heating temperature was set as 110 or 125 ◦C when the length was 115 or
275 mm, respectively. The residence time was defined by Equation (1), and the flow rate
was set to meet τ = 2, 3, 4, 5, 10, or 20 min.

τ [min] = (Channel volume [cm3])/(Feedstock flow rate [mL/min]) (1)

The distillation results are shown in Figure 6. We achieved similar distillation perfor-
mance at higher feedstock flow rates by maintaining the specific surface area. There was
no significant difference in the distillate composition with respect to the residence time,
and high distillation performance was realized by ensuring a residence time of approxi-
mately 10 min. The results indicated that, by using channels of similar specific surface area,
throughput was increased proportional to the channel volume.
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Figure 6. EA concentration of microdistillation products (distillate) using devices with the same specific
surface areas: (a) effect of feedstock flow rate; (b) effect of residence time. Channel thickness = 1.0 mm.
(Channel length [mm], width [mm], and heating temperature [◦C]); circle—(115, 15, 110), triangle—
(115, 30, 110), square—(275, 15, 125), and cross—(275, 30, 125).

3.4. Effect of Temperature Control at the Distillate Section

According to Figure 5b, the temperature of the distillate section had a significant effect
on the distillation performance. Higher performance was achieved when the distillate
section temperature was approximately 77 ◦C, which was near the boiling point of EA.
Therefore, we speculated that the distillation performance could be improved by control-
ling the distillate section temperature at 77 ◦C. The effect of temperature control on the
performance of the microdistillation device was examined by changing the distillate section
temperature between 60 and 80 ◦C. The employed device was 115 mm long, 30 mm wide,
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and 1.0 mm thick. The flow rate was 1.08 mL/min, which resulted in 3 min of residence
time. The concentration of EA in the distillate is plotted in Figure 7 against the water
temperature in the cooler during the experiment. The figure shows the concentration of EA
in the distillate without the cooler as a comparison. The highest performance was obtained
when the coolant temperature was 77.5 ◦C. When the coolant temperature was low, only
gas condensation occurred in the distillate section. This dynamic suppressed the mass
transfer from liquid to gas, which reduced the overall separation performance. On the other
hand, when the coolant temperature was high, the distillation performance decreased. This
occurred because the distillate section was heated over the boiling point of EA, and the
concentration of EA decreased to the corresponding dew point according to Figure 5b. The
results suggested the existence of an optimal temperature at the distillate section, which
was assumed to be the boiling temperature of the low-boiling point component.
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Figure 7. Relationship between coolant temperature and EA concentration of the distillate. The
dashed line indicates the result without cooling. Channel length = 115 mm, width = 30 mm, thick-
ness = 1.0 mm, heater temperature = 110 ◦C, and feedstock flow rate = 1.08 mL/min.

4. Discussion

In the channel volume change experiment (results shown in Figure 6), the temperature
at the distillate section was not constant even under constant conditions, resulting in errors
in the product composition. However, it is essential to obtain a stable product through
distillation. Because the experiment revealed that the temperature control of the distillate
section was very important in determining the outcome, the stability of the product by
controlling the temperature of the distillation section was further explored. Experiments
were conducted using a channel that was 115 mm long, 30 mm wide, and 1.0 mm thick at a
feedstock flow rate of 0.81 mL/min, with the cooler at the distillate section. The coolant
temperature was set as the average temperature of the distillate section in the previous
experiment without a cooler, which was 78.1 ◦C. The other conditions were the same as
in the previous experiment. The results are shown in Figure 8, along with the results
without the cooler. The number of data points for each case was 7. The importance of
temperature control was clear from the results. The concentration of EA in the distillate
was 95 ± 3 wt% when the temperature of the distillate section was not controlled, whereas
it was 95 ± 1 wt% when the temperature was controlled, indicating that the separation
accuracy was successfully improved by controlling the temperature at the distillate section.
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Figure 8. Effect of distillate section temperature control on the microdistillator performance.

Next, the required number of stages in a conventional packed column distillation to
achieve the same distillation performance as the microdistillation device was calculated.
The conditions selected for calculation were flow rates of 0.5 and 1.0 mL/min, which were
examined in Section 3.3, using a 115 mm long, 30 mm wide, and 1.1 mm thick device. Because
of the structure of the apparatus used in this study, the reflux ratio could not be determined.
Therefore, the reflux ratio was set as a 5-fold scalar of the minimum reflux ratio. The number of
stages was calculated by the McCabe–Thiele diagram, which is shown in Figure 9. Regardless
of the simple device, which consisted of stacked plates, the number of stages excluding the
reboiler was 8 and 5 for feedstock flow rates of 0.5 and 1.0 mL/min, respectively.
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Figure 9. Calculation of the number of stages in the packed column distillator to achieve performance
by the microdistillation device. The selected conditions were feedstock flow rates of (a) 0.5 mL/min
and (b) 1.0 mL/min, channel length = 115 mm, width = 30 mm, thickness = 1.1 mm, and heater
temperature = 110 ◦C.

Subsequently, the performance of the device was evaluated using HETP as the eval-
uation factor. Here, HETP indicates the “height equivalent of a theoretical plate”, which
is a common evaluation factor for distillation performance, and the value is expressed by
Equation (2):

HETP = (Length of the channel)/(Number of theoretical plates) (2)

where a smaller value of HETP indicates a higher performance of the distillator.
Because of the structure of the apparatus used in this study, the reflux ratio could not be

determined. Therefore, the HETP was calculated using the minimum number of theoretical
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plates determined from the composition of the outlet fluid. The experimental devices were
30 mm wide, 1.0 mm thick, and 115 mm or 275 mm long. Figure 10 shows the corresponding
results. The HETP for the devices ranged from 10–42 mm for a channel length of 115 mm
to 25–69 mm for a channel length of 275 mm. Even though they exhibited a similar device
performance, the large difference in HETP between the two devices occurred because the
minimum theoretical stage was obtained from the outlet fluid composition, despite the
lengths of the flow paths being different. In existing distillations, the HETP of a highly
efficient system is approximately 100–760 mm. Thus, this system was confirmed to be up
to 10 times more efficient than existing distillators.

Separations 2023, 10, x FOR PEER REVIEW 10 of 12 
 

 

  
(a) (b) 

Figure 9. Calculation of the number of stages in the packed column distillator to achieve perfor-
mance by the microdistillation device. The selected conditions were feedstock flow rates of (a) 0.5 
mL/min and (b) 1.0 mL/min, channel length = 115 mm, width = 30 mm, thickness = 1.1 mm, and 
heater temperature = 110 °C. 

Subsequently, the performance of the device was evaluated using HETP as the eval-
uation factor. Here, HETP indicates the “height equivalent of a theoretical plate”, which 
is a common evaluation factor for distillation performance, and the value is expressed by 
Equation (2): 

HETP = (Length of the channel)/(Number of theoretical plates) (2) 

where a smaller value of HETP indicates a higher performance of the distillator. 
Because of the structure of the apparatus used in this study, the reflux ratio could not 

be determined. Therefore, the HETP was calculated using the minimum number of theo-
retical plates determined from the composition of the outlet fluid. The experimental de-
vices were 30 mm wide, 1.0 mm thick, and 115 mm or 275 mm long. Figure 10 shows the 
corresponding results. The HETP for the devices ranged from 10–42 mm for a channel 
length of 115 mm to 25–69 mm for a channel length of 275 mm. Even though they exhibited 
a similar device performance, the large difference in HETP between the two devices oc-
curred because the minimum theoretical stage was obtained from the outlet fluid compo-
sition, despite the lengths of the flow paths being different. In existing distillations, the 
HETP of a highly efficient system is approximately 100–760 mm. Thus, this system was 
confirmed to be up to 10 times more efficient than existing distillators. 

 
Figure 10. Relationship between residence time and HETP in microdistillators. Channel width = 30 
mm, thickness = 1.0 mm, length = circle—115 mm, and square—275 mm. 

0

0.5

1

0 0.5 1

G
as

 p
ha

se
 E

A
 fr

ac
tio

n 
[w

/w
]

Liquid phase EA fraction [w/w]

q-line

0

0.5

1

0 0.5 1

G
as

 p
ha

se
 E

A
 fr

ac
tio

n 
[w

/w
]

Liquid phase EA fraction [w/w]

q-line

0

20

40

60

80

0 5 10 15 20 25

H
ET

P 
[m

m
]

Residence time [min]

Figure 10. Relationship between residence time and HETP in microdistillators. Channel width = 30 mm,
thickness = 1.0 mm, length = circle—115 mm, and square—275 mm.

We note that the heat efficiency of the distillation device is also a very important factor.
However, it was not discussed here because the manufactured device was a prototype
equipped with a sheet heater on both sides. While one side was attached to the device,
the other side was simply facing the air, which extremely decreased the heat efficiency. In
addition, the stainless steel device was not covered with insulation, which also decreased
the heat efficiency. Therefore, it was not possible to calculate the heat loss into the air, which
made it difficult to discuss the heat efficiency of the device.

5. Conclusions

In this study, the separation performance and throughput of a microscale distillation
device were evaluated. The effect of channel geometry was examined, and the effect of the
residence time and temperature control of the distillate section were also examined. We
clarified that tilting the device promoted the separation of gas and liquid phases desirably,
which improved the separation performance. We also showed that increasing the slope
allowed more efficient contact between the gas and liquid phases and realized a high
separation performance that depended on the temperature gradient in the device. The
specific surface area of the channel was clarified to have a significant effect on the separation
performance of the device. This occurred because the gas-liquid contact in the device took
place on the wall of the channel. We found that, for a similar specific surface area, it
was possible to increase the throughput while maintaining the separation performance by
increasing the channel volume. We also found that the separation performance of the device
with respect to residence time was independent of the volume of the channel. Therefore, by
using devices with shorter channel lengths, an approximately 10 times higher efficiency
than that of conventional distillation columns, in terms of HETP, was achieved.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/separations10070404/s1, Figure S1: The picture of the device under operation.
Feedstock was 50/50 (w/w) EA-toluene, channel length = 275 mm, width = 30 mm, thickness = 1.0 mm,
heater temperature = 125 ◦C, feedstock flow rate = 1.0 mL/min, device angle = 90 ◦.
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